Tournaments, First-Order Logic, and Twin-Width

Colin Geniet Stéphan Thomassé

ENS Lyon

LoGAlg 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Simple classes for FO

Setting: C class of graphs (or relational structures), hereditary (= closed under induced subgraphs).

Is C simple with regards to first-order logic (FO)?

.

Simple classes for FO

Setting: C class of graphs (or relational structures), hereditary (= closed under induced subgraphs).

Is C simple with regards to first-order logic (FO)?

Definition

C is *independent* if there is a FO transduction Φ such that $\Phi(C)$ is the class of all graphs. Otherwise, C is dependent / NIP.

Simple classes for FO

Setting: C class of graphs (or relational structures), hereditary (= closed under induced subgraphs).

Is C simple with regards to first-order logic (FO)?

Definition

C is *independent* if there is a FO transduction Φ such that $\Phi(C)$ is the class of all graphs. Otherwise, C is dependent / NIP.

Definition

C has fixed-parameter tractable (FPT) FO model checking if there is an algorithm to test $G \models \phi$ for $G \in C$, in time

 $f(\phi) \cdot \textit{poly}(|\textit{G}|)$

< ロ > < 同 > < 回 > < 回 >

NIP and FO model checking

Conjecture (Gajarský et al., '20)

A hereditary class C is NIP iff it has FPT model checking.

→ ∃ →

NIP and FO model checking

Conjecture (Gajarský et al., '20)

A hereditary class C is NIP iff it has FPT model checking.

Theorem (Grohe, Kreutzer, Siebertz & Adler, Adler)

Let C class of graphs closed under subgraphs. TFAE:

- C is dependent,
- C has FPT model checking,
- C is nowhere dense.

★ ∃ ►

Twin-width

Contracting vertices x, y into z:

- if both xu, yu are edges, then zu is an edge
- if neither xu, yu are edges, then zu is not an edge
- if exactly one of xu, yu are edges, then zu is an error edge

Twin-width

Contracting vertices x, y into z:

- if both xu, yu are edges, then zu is an edge
- if neither xu, yu are edges, then zu is not an edge
- if exactly one of xu, yu are edges, then zu is an error edge

Contraction sequence: start from G, contract until only one vertex is left.

Twin-width

Contracting vertices x, y into z:

- if both xu, yu are edges, then zu is an edge
- if neither xu, yu are edges, then zu is not an edge
- if exactly one of xu, yu are edges, then zu is an error edge

Contraction sequence: start from G, contract until only one vertex is left.

width of the sequence = maximum red degree twin-width tww(G) = minimum width of a sequence for G

Example: grids

Colin Geniet (ENS Lyon)

Twin-width of tournaments

· ▶ ◀ 볼 ▶ 볼 ∽ (~ LoGAlg 2022 4/16

< □ > < □ > < □ > < □ > < □ >

FO and twin-width

Theorem (Bonnet, Kim, Thomassé, Watrigant, '20)

For any FO transduction $\Phi,$ there is a function f such that

 $\operatorname{tww}(\Phi(G)) \le f(\operatorname{tww}(G))$

Corollary

If C has bounded twin-width, it is NIP.

A B A A B A

FO and twin-width

Theorem (Bonnet, Kim, Thomassé, Watrigant, '20)

For any FO transduction Φ , there is a function f such that

 $\operatorname{tww}(\Phi(G)) \le f(\operatorname{tww}(G))$

Corollary

If C has bounded twin-width, it is NIP.

Theorem (Bonnet, Kim, Thomassé, Watrigant, '20)

Given a graph G, a FO formula ϕ , and a contraction sequence of width t, one can test $G \models \phi$ in time $f(\phi, t) \cdot n$.

effectively bounded twin-width \Rightarrow FPT model checking

Colin Geniet (ENS Lyon)

イロト 不得 トイラト イラト 一日

Cubic graphs:

- are NIP,
- have FPT model checking,
- but do not have bounded twin-width (counting argument).

< ∃ > <

Twin-width and ordered graphs

Ordered graph (G, <): graph G with an order < on the vertices.
FO logic can use the order:

$$\forall x, y, z, x < y < z \land E(x, z) \Rightarrow E(x, y)$$

• Out of order contractions create errors for twin-width.

★ ∃ ► ★

Twin-width and ordered graphs

Ordered graph (G, <): graph G with an order < on the vertices.
FO logic can use the order:

$$\forall x, y, z, x < y < z \land E(x, z) \Rightarrow E(x, y)$$

• Out of order contractions create errors for twin-width.

Theorem (BGOSTT, '21)

Twin-width of ordered graphs can be approximated up to some function, and witnesses of twin-width can be computed.

Furthermore, for C a hereditary class of ordered graphs, TFAE:

- C is NIP,
- C has FPT FO model checking,
- C has bounded twin-width.

• • • • • • • • • • • •

Tournaments

Tournament: clique with a choice of orientation of each edge.

Twin-width for tournaments: edges in opposite directions cause errors.

Tournaments

Tournament: clique with a choice of orientation of each edge.

Twin-width for tournaments: edges in opposite directions cause errors.

Tournaments

Tournament: clique with a choice of orientation of each edge.

Twin-width for tournaments: edges in opposite directions cause errors.

Twin-width and tournaments

Theorem (G., T.)

There is a function f and an FPT algorithm which given a tournament T and $k \in \mathbb{N}$ answers

 $\operatorname{tww}(T) \ge k$ or $\operatorname{tww}(T) \le f(k)$

Theorem (G., T.)

Let C be a hereditary class of tournaments. TFAE:

- C is NIP,
- C has FPT FO model checking,
- C has bounded twin-width.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Transducing a total order?

Is there a FO transduction which gives a total order on any tournament?

- If yes, tournaments are FO-equivalent to ordered graphs.
- NIP, FPT model checking, and bounded twin-width go through transductions.
- So the result on tournaments reduces to the result on ordered graphs.

Transducing a total order?

Is there a FO transduction which gives a total order on any tournament?

Counter-example:

Binary search trees in tournaments

LoGAlg 2022 11 / 16

- 4 回 ト 4 ヨ ト 4 ヨ ト

Binary search trees in tournaments

BST order: left-to-right order on a BST.

BST orders are good for twin-width

Lemma (G., T.)

There is a function f such that if T is a tournament, < a BST order, then

 $\operatorname{tww}(T,<) \le f(\operatorname{tww}(T))$

BST orders are good for twin-width

Lemma (G., T.)

There is a function f such that if T is a tournament, < a BST order, then

 $\operatorname{tww}(T,<) \le f(\operatorname{tww}(T))$

We will use:

Theorem (Bonnet et al., '21)

For an ordered graph (G, <), TFAE:

• (G, <) has large twin-width

• The matrix of G in the order < has a large rank minor

・ 何 ト ・ ヨ ト ・ ヨ ト

Obstruction to twin-width

 $\mathcal{F}_{=}(\sigma)$

 $\mathcal{F}_{\leq}(\sigma)$

 $\mathcal{F}_{\geq}(\sigma)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Obstruction to twin-width

Theorem (G., T.)

 $\label{eq:constant} \begin{array}{l} \mathcal{C} \mbox{ hereditary class of tournaments has unbounded twin-width if and only if} \\ \mathcal{C} \mbox{ contains one of } \mathcal{F}_{=}(\sigma), \mathcal{F}_{\leq}(\sigma), \mathcal{F}_{\geq}(\sigma) \mbox{ for any permutation } \sigma. \end{array}$

Colin Geniet (ENS Lyon)

Twin-width of tournaments

Characterisation of NIP and FPT model checking

Lemma

The obstructions $\mathcal{F}_{=}(\sigma), \mathcal{F}_{\leq}(\sigma), \mathcal{F}_{\geq}(\sigma)$ encode arbitrary graphs in first-order logic.

< /₽ > < E > <

Characterisation of NIP and FPT model checking

Lemma

The obstructions $\mathcal{F}_{=}(\sigma), \mathcal{F}_{\leq}(\sigma), \mathcal{F}_{\geq}(\sigma)$ encode arbitrary graphs in first-order logic.

Corollary

If ${\mathcal C}$ is a (hereditary) class of tournaments with unbounded twin-width, then

- C is independent, and
- FO model checking in C is AW[*]-complete.

.

Generalisations

The results still hold

- for arbitrary binary relational structures, where one of the relations is a tournament, and
- when replacing tournaments with oriented graphs with bounded independence number.

Generalisations

The results still hold

- for arbitrary binary relational structures, where one of the relations is a tournament, and
- when replacing tournaments with oriented graphs with bounded independence number.

We also obtain an enumerative characterisation:

Theorem

If C is a hereditary class of tournaments, TFAE:

- C has bounded twin-width,
- C has growth at most cⁿ
- C has growth less than (n/2 2)!

Conclusion

For tournaments, bounded twin-width, NIP, and FPT FO model checking are equivalent + algorithm and characterisation by forbidden structures.

Based on similar results for ordered graphs [BGOSTT '21] Main tool: BST order

- 4 目 ト - 4 日 ト

Conclusion

For tournaments, bounded twin-width, NIP, and FPT FO model checking are equivalent + algorithm and characterisation by forbidden structures.

```
Based on similar results for ordered graphs [BGOSTT '21]
Main tool: BST order
```

Questions:

- NIP \iff FPT model checking in general?
- Approximating twin-width in general?
- The equivalence 'NIP \iff bounded twin-width' is called *delineation* [BCKKLT '22].
 - Interval graphs are delineated.
 - Conjectured to be delineated: segment graphs, some visibility graphs.