Maximum Independent Set when excluding

 induced minors: $K_{1}+t K_{2}$ and $t C_{3} \uplus C_{4}$Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek

ENS Lyon

ESA 2023

Maximum independent set

Problem (MIS)

Given a graph G, find a largest set S of pairwise non-adjacent vertices.

NP-hard, even on planar graphs.
No approximation, no FPT algorithm.

Maximum independent set

Problem (MIS)

Given a graph G, find a largest set S of pairwise non-adjacent vertices.

NP-hard, even on planar graphs.
No approximation, no FPT algorithm.
Which classes of graphs have a polynomial algo for MIS?

Maximum independent set

Problem (MIS)

Given a graph G, find a largest set S of pairwise non-adjacent vertices.

NP-hard, even on planar graphs.
No approximation, no FPT algorithm.
Which classes of graphs have a polynomial algo for MIS?

Theorem

MIS is polynomial on H -minor free graphs iff H is planar.

- If H is planar, H-minor free graphs have bounded tree-width (grid minor theorem). MIS is polynomial by dynamic programming.
- If H is not planar, all planar graphs are H-minor free.

Induced minors

H induced minor of G :
obtained by (1) deleting vertices and (2) contracting edges.
Deleting edges is forbidden!

Induced minors

H induced minor of G :
obtained by (1) deleting vertices and (2) contracting edges.
Deleting edges is forbidden!
Examples:

- induced P_{k}-minor $=$ induced P_{k}
- induced C_{k}-minor $=$ induced $C_{\ell}, \ell \geq k$

Induced minors

H induced minor of G :
obtained by (1) deleting vertices and (2) contracting edges.
Deleting edges is forbidden!
Examples:

- induced P_{k}-minor $=$ induced P_{k}
- induced C_{k}-minor $=$ induced $C_{\ell}, \ell \geq k$

Conjecture (Dallard, Milanič, Štorgel)

MIS is polynomial on induced H-minor free graphs iff H is planar.

Some known results

Known algorithms for MIS for some excluded induced minors: (not exhaustive!)

$t C_{3}$ (BBDEGHTW '23)

Some known results

Known algorithms for MIS for some excluded induced minors: (not exhaustive!)

t-matching (Alekseev '07)
t-windmill
$t C_{3}$ (BBDEGHTW '23)
$\underline{C_{4} \uplus t C_{3}}$

Induced matchings

Theorem (Alekseev, '07)

For any fixed t, graphs without induced t-matching have a polynomial number of (inclusionwise) maximal independent set.

Induced matchings

Theorem (Alekseev, '07)

For any fixed t, graphs without induced t-matching have a polynomial number of (inclusionwise) maximal independent set.

4-windmill:

Theorem

MIS is polynomial on t-windmill induced-minor free graphs.

No t-windmill induced minor - bounded diameter case

$L_{i}=$ vertices at distance i of r

No t-windmill induced minor - bounded diameter case

$L_{i}=$ vertices at distance i of r
$G\left[L_{i}\right]$ is has no induced $t K_{2} \Rightarrow$ polynomially many maximal IS

No t-windmill induced minor - bounded diameter case

$L_{i}=$ vertices at distance i of r
$G\left[L_{i}\right]$ is has no induced $t K_{2} \Rightarrow$ polynomially many maximal IS

Lemma

For t, I fixed, MIS is polynomial inside $\bigcup_{i=k}^{k+\ell} L_{i}$.
S^{*} MIS in $\bigcup_{i=k}^{k+\ell} L_{i}$

No t-windmill induced minor - bounded diameter case

$L_{i}=$ vertices at distance i of r
$G\left[L_{i}\right]$ is has no induced $t K_{2} \Rightarrow$ polynomially many maximal IS

Lemma

For t, I fixed, MIS is polynomial inside $\bigcup_{i=k}^{k+\ell} L_{i}$.
S^{*} MIS in $\bigcup_{i=k}^{k+\ell} L_{i}$
Guess a maximal IS $S_{i} \subseteq L_{i}$ such that $S^{*} \cap L_{i} \subseteq S_{i}$.

No t-windmill induced minor - bounded diameter case

$L_{i}=$ vertices at distance i of r
$G\left[L_{i}\right]$ is has no induced $t K_{2} \Rightarrow$ polynomially many maximal IS

Lemma

For t, I fixed, MIS is polynomial inside $\bigcup_{i=k}^{k+\ell} L_{i}$.
S^{*} MIS in $\bigcup_{i=k}^{k+\ell} L_{i}$
Guess a maximal IS $S_{i} \subseteq L_{i}$ such that $S^{*} \cap L_{i} \subseteq S_{i}$.
$\bigcup_{i} S_{i}$ is bipartite and contains S^{*}

No t-windmill induced minor

Consider a t-matching M (if there are none, Alekseev's result applies).

No t-windmill induced minor

Consider a t-matching M (if there are none, Alekseev's result applies).
M disconnects G (assuming no pending vertices).

No t-windmill induced minor

Consider a t-matching M (if there are none, Alekseev's result applies).
M disconnects G (assuming no pending vertices).
Choose M to maximize the largest component of $G-M$.

Lemma

Let C be a component of $G-M$, $e \in C \backslash N[M]$.

No t-windmill induced minor

Consider a t-matching M (if there are none, Alekseev's result applies).
M disconnects G (assuming no pending vertices).
Choose M to maximize the largest component of $G-M$.

Lemma

Let C be a component of $G-M, e \in C \backslash N[M]$. Then e disconnects C, and all components of $C-e$ intersect $N[M]$.

M is the good t-matching. C a component of $G-M$.

M is the good t-matching. C a component of $G-M$.

BFS: re

M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a separator of size $O\left(t^{2}\right)$.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a separator of size $O\left(t^{2}\right)$.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a separator of size $O\left(t^{2}\right)$.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a separator of size $O\left(t^{2}\right)$.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a separator of size $O\left(t^{2}\right)$.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a separator of size $O\left(t^{2}\right)$.
M is the good t-matching. C a component of $G-M$.

Lemma

An induced path intersects $N[M]$ at most $O\left(t^{2}\right)$ times.

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a separator of size $O\left(t^{2}\right)$.

No t-windmill induced minor - finishing

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a left/right separator of size $O\left(t^{2}\right)$.
\Rightarrow path decomposition such that:

- adhesions have size $O\left(t^{2}\right)$
- bags are contained in $O\left(t^{4}\right)$ consecutive layers of the BFS

No t-windmill induced minor - finishing

Lemma

In $O\left(t^{4}\right)$ consecutive layers of the BFS, there is a left/right separator of size $O\left(t^{2}\right)$.
\Rightarrow path decomposition such that:

- adhesions have size $O\left(t^{2}\right)$
- bags are contained in $O\left(t^{4}\right)$ consecutive layers of the BFS

Recall

Lemma

For t, I fixed, MIS is polynomial inside I consecutive layers.
\Rightarrow we can solve MIS inside a bag of the path decomposition Dynamic programming...

Open questions

- MIS with forbidden induced minors: P_{7}, C_{6}, \ldots

Open questions

- MIS with forbidden induced minors: P_{7}, C_{6}, \ldots
- MIS is linear for graphs with bounded degree avoiding a planar induced minor [Korhonen '23]. Relax bounded degree to weaker sparsity notions?

Open questions

- MIS with forbidden induced minors: P_{7}, C_{6}, \ldots
- MIS is linear for graphs with bounded degree avoiding a planar induced minor [Korhonen '23]. Relax bounded degree to weaker sparsity notions?

Open questions

- MIS with forbidden induced minors: P_{7}, C_{6}, \ldots
- MIS is linear for graphs with bounded degree avoiding a planar induced minor [Korhonen '23]. Relax bounded degree to weaker sparsity notions?

Thanks!

