Maximum Independent Set when excluding induced minors: $K_1 + tK_2$ and $tC_3 \uplus C_4$

Édouard Bonnet, Julien Duron, <u>Colin Geniet</u>, Stéphan Thomassé, and Alexandra Wesolek

ENS Lyon

ESA 2023

(日) (四) (문) (문) (문)

Maximum independent set

Problem (MIS)

Given a graph G, find a largest set S of pairwise non-adjacent vertices.

NP-hard, even on planar graphs. No approximation, no FPT algorithm.

Maximum independent set

Problem (MIS)

Given a graph G, find a largest set S of pairwise non-adjacent vertices.

NP-hard, even on planar graphs. No approximation, no FPT algorithm.

Which classes of graphs have a polynomial algo for MIS?

Maximum independent set

Problem (MIS)

Given a graph G, find a largest set S of pairwise non-adjacent vertices.

NP-hard, even on planar graphs. No approximation, no FPT algorithm.

Which classes of graphs have a polynomial algo for MIS?

Theorem

MIS is polynomial on H-minor free graphs iff H is planar.

- If *H* is planar, *H*-minor free graphs have bounded tree-width (grid minor theorem). MIS is polynomial by dynamic programming.
- If *H* is *not* planar, all planar graphs are *H*-minor free.

Induced minors

H induced minor of G: obtained by (1) deleting vertices and (2) contracting edges. Deleting edges is forbidden! H induced minor of G: obtained by (1) deleting vertices and (2) contracting edges. Deleting edges is forbidden!

Examples:

- induced P_k -minor = induced P_k
- induced C_k -minor = induced C_ℓ , $\ell \ge k$

H induced minor of G: obtained by (1) deleting vertices and (2) contracting edges. Deleting edges is forbidden!

Examples:

- induced P_k -minor = induced P_k
- induced C_k -minor = induced C_ℓ , $\ell \ge k$

Conjecture (Dallard, Milanič, Štorgel) MIS is polynomial on induced H-minor free graphs iff H is planar. Known algorithms for MIS for some excluded induced minors: (not exhaustive!)

poly	quasi poly
<i>P</i> ₆ (GKPP '22)	<i>P_k</i> (GL '20)
C_5 (ACPRS '20)	<i>C_k</i> (GLPPR '21)
<i>t</i> -matching (Alekseev '07)	

tC₃ (BBDEGHTW '23)

Known algorithms for MIS for some excluded induced minors: (not exhaustive!)

 tC_3 (BBDEGHTW '23) $C_4 \uplus tC_3$

イロト 不得 トイヨト イヨト 二日

Induced matchings

Theorem (Alekseev, '07)

For any fixed t, graphs without induced t-matching have a polynomial number of (inclusionwise) maximal independent set.

Induced matchings

Theorem (Alekseev, '07)

For any fixed t, graphs without induced t-matching have a polynomial number of (inclusionwise) maximal independent set.

4-windmill:

Theorem

MIS is polynomial on t-windmill induced-minor free graphs.

 L_i = vertices at distance *i* of *r*

 L_i = vertices at distance *i* of *r* $G[L_i]$ is has no induced $tK_2 \Rightarrow$ polynomially many maximal IS

 L_i = vertices at distance *i* of *r* $G[L_i]$ is has no induced $tK_2 \Rightarrow$ polynomially many maximal IS

Lemma

For t, I fixed, MIS is polynomial inside $\bigcup_{i=k}^{k+\ell} L_i$.

 S^* MIS in $\bigcup_{i=k}^{k+\ell} L_i$

 L_i = vertices at distance *i* of *r* $G[L_i]$ is has no induced $tK_2 \Rightarrow$ polynomially many maximal IS

Lemma

For t, I fixed, MIS is polynomial inside $\bigcup_{i=k}^{k+\ell} L_i$.

 S^* MIS in $\bigcup_{i=k}^{k+\ell} L_i$ Guess a maximal IS $S_i \subseteq L_i$ such that $S^* \cap L_i \subseteq S_i$.

イロト 不得 トイヨト イヨト

 L_i = vertices at distance *i* of *r* $G[L_i]$ is has no induced $tK_2 \Rightarrow$ polynomially many maximal IS

Lemma

For t, I fixed, MIS is polynomial inside $\bigcup_{i=k}^{k+\ell} L_i$.

 $\begin{array}{l} S^* \text{ MIS in } \bigcup_{i=k}^{k+\ell} L_i \\ \text{Guess a maximal IS } S_i \subseteq L_i \text{ such that } S^* \cap L_i \subseteq S_i. \\ \bigcup_i S_i \text{ is bipartite and contains } S^* \end{array}$

Consider a t-matching M (if there are none, Alekseev's result applies).

Consider a *t*-matching M (if there are none, Alekseev's result applies). M disconnects G (assuming no pending vertices).

Consider a *t*-matching M (if there are none, Alekseev's result applies). M disconnects G (assuming no pending vertices). Choose M to maximize the largest component of G - M.

Lemma

Let C be a component of G - M, $e \in C \setminus N[M]$.

Consider a *t*-matching M (if there are none, Alekseev's result applies). M disconnects G (assuming no pending vertices). Choose M to maximize the largest component of G - M.

Lemma

Let C be a component of G - M, $e \in C \setminus N[M]$. Then e disconnects C, and all components of C - e intersect N[M].

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

Lemma

An induced path intersects N[M] at most $O(t^2)$ times.

Lemma

No *t*-windmill induced minor — finishing

Lemma

- \Rightarrow path decomposition such that:
 - adhesions have size $O(t^2)$
 - bags are contained in ${\it O}(t^4)$ consecutive layers of the BFS

No *t*-windmill induced minor — finishing

Lemma

In $O(t^4)$ consecutive layers of the BFS, there is a left/right separator of size $O(t^2)$.

 \Rightarrow path decomposition such that:

• adhesions have size $O(t^2)$

• bags are contained in $O(t^4)$ consecutive layers of the BFS Recall

Lemma

For t, I fixed, MIS is polynomial inside I consecutive layers.

 \Rightarrow we can solve MIS inside a bag of the path decomposition Dynamic programming...

• MIS with forbidden induced minors: P_7 , C_6 , ...

- MIS with forbidden induced minors: P_7 , C_6 , ...
- MIS is linear for graphs with bounded degree avoiding a planar induced minor [Korhonen '23].
 Relax bounded degree to weaker sparsity notions?

- MIS with forbidden induced minors: P_7 , C_6 , ...
- MIS is linear for graphs with bounded degree avoiding a planar induced minor [Korhonen '23].
 Relax bounded degree to weaker sparsity notions?

- MIS with forbidden induced minors: P_7 , C_6 , ...
- MIS is linear for graphs *with bounded degree* avoiding a planar induced minor [Korhonen '23]. Relax bounded degree to weaker sparsity notions?

Thanks!