Sparse graphs with bounded induced cycle packing number have logarithmic treewidth

 $\begin{array}{lll} \mbox{Marthe Bonamy}^1 & \mbox{Édouard Bonnet}^2 & \mbox{Hugues Déprés}^2 & \mbox{Louis Esperet}^3 \\ \hline \mbox{Colin Geniet}^2 & \mbox{Claire Hilaire}^1 & \mbox{Stéphan Thomassé}^2 & \mbox{Alexandra Wesolek}^4 \\ \end{array}$

¹Univ. Bordeaux, France

²ENS de Lyon, France

³Univ. Grenoble, France

⁴Simon Fraser Univ., Canada

Symposium on Discrete Algorithms 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Erdős Pósa property

Cycle packing cp(G): maximum size of a collection of vertex-disjoint cycles in G.

Feedback-vertex-set fvs(G): minimum number of vertices required to intersect all cycles of G.

Erdős Pósa property

Cycle packing cp(G): maximum size of a collection of vertex-disjoint cycles in G.

Feedback-vertex-set fvs(G): minimum number of vertices required to intersect all cycles of G.

SODA23

1/10

 \Rightarrow algorithmically simple graphs

Colin Geniet (ENS de Lyon)

Graphs with bounded induced cycle packing

Odd cycles packing

Odd cycle packing ocp(G): same with only odd cycles.

Theorem (Fiorini, Joret, Weltge, Yuditsky, '21)

In graphs with $ocp(G) \leq k$, MAXIMUM INDEPENDENT SET can be solved in polynomial time.

Odd cycles packing

Odd cycle packing ocp(G): same with only odd cycles.

Theorem (Fiorini, Joret, Weltge, Yuditsky, '21)

In graphs with $ocp(G) \leq k$, MAXIMUM INDEPENDENT SET can be solved in polynomial time.

Induced odd cycle packing iocp(G): only consider packings of non-adjacent odd cycles.

Theorem (Bonamy et al., '18)

For graphs with iocp(G) bounded, VC-dimension bounded, and linear size independent sets, there is an EPTAS for MAXIMUM INDEPENDENT SET.

Applications to disk and unit ball graphs.

Induced cycle packing icp(G): maximum number of vertex-disjoint and non-adjacent cycles in G.

- K 🖻

Induced cycle packing icp(G): maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with $icp(G) \le k$ (k constant). Problems:

- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, ...

Induced cycle packing icp(G): maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with $icp(G) \le k$ (k constant). Problems:

- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $icp(G) \le k$ imply $fvs(G) \le f(k)$?

Induced cycle packing icp(G): maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with $icp(G) \le k$ (k constant). Problems:

- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $icp(G) \le k$ imply $fvs(G) \le f(k)$?

No: cliques have $icp(K_t) = 1$ but $fvs(K_t) = t - 2$.

Induced cycle packing icp(G): maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with $icp(G) \le k$ (k constant). Problems:

- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $icp(G) \le k$ and no $K_{t,t}$ subgraph imply $fvs(G) \le f(k, t)$?

Still no!

icp(G) = 1 and FVS unbounded.

■ ■ つへで SODA23 4/10

イロト 人間ト イヨト イヨト

Feedback vertex set is logarithmic

Theorem

If G is a graph with $icp(G) \leq k$ and without $K_{t,t}$ subgraph, then

 $fvs(G) \leq f(k,t) \cdot \log n$

Feedback vertex set is logarithmic

Theorem

If G is a graph with $icp(G) \leq k$ and without $K_{t,t}$ subgraph, then

 $fvs(G) \leq f(k,t) \cdot \log n$

Some problems with algorithms in time $2^{O(tw(G))} \cdot poly(n)$:

- Maximum independent set
- 3-coloring
- Hamiltonian cycle
- ...
- Testing $icp(G) \le k$ [Mi. Pilipczuk, '22]

When fvs(G) is logarithmic in *n*, these algorithms are polynomial.

F feedback vertex set of size $O(\log n)$.

SODA23 6 / 10

< E

F feedback vertex set of size $O(\log n)$.

We construct *I* independent. For each $v \in F$, branch on *v*:

- either pick $v \in I$, and delete N[v],
- or $v \notin I$, and delete v.

F feedback vertex set of size $O(\log n)$.

We construct *I* independent. For each $v \in F$, branch on *v*:

- either pick $v \in I$, and delete N[v],
- or $v \notin I$, and delete v.

After this, only a forest is left \Rightarrow pick leafs greedily.

F feedback vertex set of size $O(\log n)$.

We construct *I* independent. For each $v \in F$, branch on *v*:

- either pick $v \in I$, and delete N[v],
- or $v \notin I$, and delete v.

After this, only a forest is left \Rightarrow pick leafs greedily.

Branching is polynomial because F is logarithmic.

Theorem

For any fixed k, MAXIMUM INDEPENDENT SET can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \le k$.

Theorem

For any fixed k, MAXIMUM INDEPENDENT SET can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \le k$.

Let S the set of cycles with length 4.

Colin Geniet (ENS de Lyon)

Theorem

For any fixed k, MAXIMUM INDEPENDENT SET can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \le k$.

Let S the set of cycles with length 4.

Fix
$$C \in S$$
. All cycles are adjacent to C .

Theorem

For any fixed k, MAXIMUM INDEPENDENT SET can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \le k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.

Thus some $v \in C$ is adjacent to 1/4 of the cycles of S.

Theorem

For any fixed k, MAXIMUM INDEPENDENT SET can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \le k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.

Thus some $v \in C$ is adjacent to 1/4 of the cycles of S.

Branch on v:

- Take v and delete $N(v) \Rightarrow$ destroys 1/4 cycles in S,
- Delete $v \Rightarrow$ destroys C

This kind of branching is quasipolynomial.

Theorem

For any fixed k, MAXIMUM INDEPENDENT SET can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \le k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.

Thus some $v \in C$ is adjacent to 1/4 of the cycles of S.

Branch on v:

- Take v and delete $N(v) \Rightarrow$ destroys 1/4 cycles in S,
- Delete $v \Rightarrow$ destroys C

This kind of branching is quasipolynomial.

When $S = \emptyset$, we are in the $K_{2,2}$ -free case.

Theorem

If G is a graph with $icp(G) \le k$ and without $K_{t,t}$ subgraph, then $fvs(G) \le f(k,t) \cdot \log n$.

Theorem

If G is a graph with $icp(G) \le k$ and with girth > 10, then G has average degree $\le 2k + 2$.

→ ∢ ≣

→ ∢ ≣

Theorem

If G is a graph with $icp(G) \le k$ and with girth > 10, then G has average degree $\le 2k + 2$.

Pick C cycle with minimal length.

Theorem

If G is a graph with $icp(G) \le k$ and with girth > 10, then G has average degree $\le 2k + 2$.

Pick C cycle with minimal length. Let N its neighbourhood, $R = G \setminus (C \cup N)$,

Theorem

If G is a graph with $icp(G) \le k$ and with girth > 10, then G has average degree $\le 2k + 2$.

Pick *C* cycle with minimal length. Let *N* its neighbourhood, $R = G \setminus (C \cup N)$, and *S* the second neighbourhood of *C*.

Theorem

If G is a graph with $icp(G) \le k$ and with girth > 10, then G has average degree $\le 2k + 2$.

Pick *C* cycle with minimal length. Let *N* its neighbourhood, $R = G \setminus (C \cup N)$, and *S* the second neighbourhood of *C*.

C is the only cycle in $G[C \cup N \cup S]$, otherwise C would not be minimal \Rightarrow average degree ≤ 2 .

Theorem

If G is a graph with $icp(G) \le k$ and with girth > 10, then G has average degree $\le 2k + 2$.

Pick *C* cycle with minimal length. Let *N* its neighbourhood, $R = G \setminus (C \cup N)$, and *S* the second neighbourhood of *C*.

C is the only cycle in $G[C \cup N \cup S]$, otherwise C would not be minimal \Rightarrow average degree ≤ 2 .

G[R] is disjoint from C, so $icp(G[R]) \le k - 1$. \Rightarrow average degree $\le 2k$ by induction.

For graphs with $icp(G) \le k$ and no $K_{t,t}$ subgraph: (sparse setting)

• Feedback vertex set is logarithmic + tight up to the constant.

For graphs with $icp(G) \leq k$ and no $K_{t,t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute icp(G).

For graphs with $icp(G) \le k$ and no $K_{t,t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute icp(G).

For graphs with $icp(G) \leq k$: (dense setting)

• Quasi-polynomial algorithms for independent set and 3-coloring.

For graphs with $icp(G) \le k$ and no $K_{t,t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute icp(G).

For graphs with $icp(G) \leq k$: (dense setting)

• Quasi-polynomial algorithms for independent set and 3-coloring.

Related result:

Theorem (Nguyen, Scott, Seymour + Le, '22)

In graphs with $icp(G) \le k$, there are at most $|V(G)|^{f(k)}$ induced paths.

Implies a polynomial algorithm to test $icp(G) \leq k$.

Open Questions

- In the dense settings, can quasi-polynomial algorithms be improved to be polynomial?
- Any FPT algorithms with *icp*(*G*) as parameter?
- What about restricting packing of specific types of cycles? (E.g., packing nonadjacent induced cycles of length $\geq 4.$)

Open Questions

- In the dense settings, can quasi-polynomial algorithms be improved to be polynomial?
- Any FPT algorithms with *icp*(*G*) as parameter?
- What about restricting packing of specific types of cycles? (E.g., packing nonadjacent induced cycles of length $\geq 4.$)

Thank you!