Sparse graphs with bounded induced cycle packing number have logarithmic treewidth

Marthe Bonamy ${ }^{1}$ Édouard Bonnet ${ }^{2}$ Hugues Déprés ${ }^{2}$ Louis Esperet ${ }^{3}$ Colin Geniet ${ }^{2} \quad$ Claire Hilaire $^{1} \quad$ Stéphan Thomassé ${ }^{2} \quad$ Alexandra Wesolek ${ }^{4}$
${ }^{1}$ Univ. Bordeaux, France
${ }^{2}$ ENS de Lyon, France
${ }^{3}$ Univ. Grenoble, France
${ }^{4}$ Simon Fraser Univ., Canada

Symposium on Discrete Algorithms 2023

Erdős Pósa property

Cycle packing $c p(G)$: maximum size of a collection of vertex-disjoint cycles in G.

Feedback-vertex-set fvs(G): minimum number of vertices required to intersect all cycles of G.

Erdős Pósa property

Cycle packing $c p(G)$: maximum size of a collection of vertex-disjoint cycles in G.

Feedback-vertex-set fvs(G): minimum number of vertices required to intersect all cycles of G.

Theorem (Erdős-Pósa)

$$
f v s(G) \leq f(c p(G)) \text { with } f(k)=O(k \log k)
$$

A graph with $c p(G)$ bounded is a tree plus a bounded number of vertices.
\Rightarrow algorithmically simple graphs

Odd cycles packing

Odd cycle packing $\operatorname{ocp}(G)$: same with only odd cycles.
Theorem (Fiorini, Joret, Weltge, Yuditsky, '21)
In graphs with $\operatorname{ocp}(G) \leq k$, MAXIMUM INDEPENDENT SET can be solved in polynomial time.

Odd cycles packing

Odd cycle packing $\operatorname{ocp}(G)$: same with only odd cycles.
Theorem (Fiorini, Joret, Weltge, Yuditsky, '21)
In graphs with $\operatorname{ocp}(G) \leq k$, MAXIMUM INDEPENDENT SET can be solved in polynomial time.

Induced odd cycle packing iocp (G) : only consider packings of non-adjacent odd cycles.
Theorem (Bonamy et al., '18)
For graphs with $\operatorname{iocp}(G)$ bounded, VC-dimension bounded, and linear size independent sets, there is an EPTAS for MAXIMUM INDEPENDENT SET.

Applications to disk and unit ball graphs.

Induced cycle packing

Induced cycle packing $\operatorname{icp}(G)$: maximum number of vertex-disjoint and non-adjacent cycles in G.

Induced cycle packing

Induced cycle packing $\operatorname{icp}(G)$: maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with $\operatorname{icp}(G) \leq k$ (k constant). Problems:

- Testing $\operatorname{icp}(G) \leq k$
- Algorithms in this class for independent set, ...

Induced cycle packing

Induced cycle packing $\operatorname{icp}(G)$: maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with $i c p(G) \leq k$ (k constant).
Problems:

- Testing $\operatorname{icp}(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $\operatorname{icp}(G) \leq k$ imply $f v s(G) \leq f(k)$?

Induced cycle packing

Induced cycle packing $\operatorname{icp}(G)$:
maximum number of vertex-disjoint and non-adjacent cycles in G.
We study the class of graphs with $i c p(G) \leq k$ (k constant).
Problems:

- Testing $\operatorname{icp}(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $\operatorname{icp}(G) \leq k$ imply $f v s(G) \leq f(k)$?
No: cliques have $\operatorname{icp}\left(K_{t}\right)=1$ but $f v s\left(K_{t}\right)=t-2$.

Induced cycle packing

Induced cycle packing $\operatorname{icp}(G)$:
maximum number of vertex-disjoint and non-adjacent cycles in G.
We study the class of graphs with $i c p(G) \leq k$ (k constant).
Problems:

- Testing $\operatorname{icp}(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $\operatorname{icp}(G) \leq k$ and no $K_{t, t}$ subgraph imply $f v s(G) \leq f(k, t)$?
Still no!
$i c p(G)=1$ and FVS unbounded.

Feedback vertex set is logarithmic

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and without $K_{t, t}$ subgraph, then

$$
f v s(G) \leq f(k, t) \cdot \log n
$$

Feedback vertex set is logarithmic

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and without $K_{t, t}$ subgraph, then

$$
f v s(G) \leq f(k, t) \cdot \log n
$$

Some problems with algorithms in time $2^{O(\operatorname{tw}(G))} \cdot \operatorname{poly}(n)$:

- Maximum independent set
- 3-coloring
- Hamiltonian cycle
- ...
- Testing $\operatorname{icp}(G) \leq k[M i$. Pilipczuk, '22]

When $f v s(G)$ is logarithmic in n, these algorithms are polynomial.

Solving Maximum Independent Set

F feedback vertex set of size $O(\log n)$.

Solving Maximum Independent Set

F feedback vertex set of size $O(\log n)$.
We construct I independent.
For each $v \in F$, branch on v :

- either pick $v \in I$, and delete $N[v]$,
- or $v \notin I$, and delete v.

Solving Maximum Independent Set

F feedback vertex set of size $O(\log n)$.
We construct I independent.
For each $v \in F$, branch on v :

- either pick $v \in I$, and delete $N[v]$,
- or $v \notin I$, and delete v.

After this, only a forest is left \Rightarrow pick leafs greedily.

Solving Maximum Independent Set

F feedback vertex set of size $O(\log n)$.
We construct I independent.
For each $v \in F$, branch on v :

- either pick $v \in I$, and delete $N[v]$,
- or $v \notin I$, and delete v.

After this, only a forest is left \Rightarrow pick leafs greedily.
Branching is polynomial because F is logarithmic.

Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with icp $(G) \leq k$.

Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with icp $(G) \leq k$.

Let S the set of cycles with length 4.

Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with icp $(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.

Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with icp $(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.
Thus some $v \in C$ is adjacent to $1 / 4$ of the cycles of S.

Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with icp $(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.
Thus some $v \in C$ is adjacent to $1 / 4$ of the cycles of S.
Branch on v :

- Take v and delete $N(v) \Rightarrow$ destroys $1 / 4$ cycles in S,
- Delete $v \Rightarrow$ destroys C

This kind of branching is quasipolynomial.

Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with icp $(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.
Thus some $v \in C$ is adjacent to $1 / 4$ of the cycles of S.
Branch on v :

- Take v and delete $N(v) \Rightarrow$ destroys $1 / 4$ cycles in S,
- Delete $v \Rightarrow$ destroys C

This kind of branching is quasipolynomial.
When $S=\varnothing$, we are in the $K_{2,2}$-free case.

Back to the main theorem

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and without $K_{t, t}$ subgraph, then $f v s(G) \leq f(k, t) \cdot \log n$.

Back to the main theorem

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and with girth >10, then G has average degree $\leq 2 k+2$.

Back to the main theorem

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and with girth >10, then G has average degree $\leq 2 k+2$.

Pick C cycle with minimal length.

Back to the main theorem

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and with girth >10, then G has average degree $\leq 2 k+2$.

Pick C cycle with minimal length.
Let N its neighbourhood, $R=G \backslash(C \cup N)$,

Back to the main theorem

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and with girth >10, then G has average degree $\leq 2 k+2$.

Pick C cycle with minimal length.
Let N its neighbourhood, $R=G \backslash(C \cup N)$, and S the second neighbourhood of C.

Back to the main theorem

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and with girth >10, then G has average degree $\leq 2 k+2$.

Pick C cycle with minimal length.
Let N its neighbourhood, $R=G \backslash(C \cup N)$, and S the second neighbourhood of C.
C is the only cycle in $G[C \cup N \cup S]$, otherwise C would not be minimal
\Rightarrow average degree ≤ 2.

Back to the main theorem

Theorem

If G is a graph with $\operatorname{icp}(G) \leq k$ and with girth >10, then G has average degree $\leq 2 k+2$.

Pick C cycle with minimal length.
Let N its neighbourhood, $R=G \backslash(C \cup N)$, and S the second neighbourhood of C.
C is the only cycle in $G[C \cup N \cup S]$, otherwise C would not be minimal
\Rightarrow average degree ≤ 2.
$G[R]$ is disjoint from C, so $\operatorname{icp}(G[R]) \leq k-1$. \Rightarrow average degree $\leq 2 k$ by induction.

Summary

For graphs with $\operatorname{icp}(G) \leq k$ and no $K_{t, t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.

Summary

For graphs with $\operatorname{icp}(G) \leq k$ and no $K_{t, t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute $\operatorname{icp}(G)$.

Summary

For graphs with $\operatorname{icp}(G) \leq k$ and no $K_{t, t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute $\operatorname{icp}(G)$.

For graphs with $\operatorname{icp}(G) \leq k$: (dense setting)

- Quasi-polynomial algorithms for independent set and 3-coloring.

Summary

For graphs with $\operatorname{icp}(G) \leq k$ and no $K_{t, t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute $\operatorname{icp}(G)$.

For graphs with $\operatorname{icp}(G) \leq k$: (dense setting)

- Quasi-polynomial algorithms for independent set and 3-coloring.

Related result:
Theorem (Nguyen, Scott, Seymour + Le, '22)
In graphs with $\operatorname{icp}(G) \leq k$, there are at most $|V(G)|^{f(k)}$ induced paths.
Implies a polynomial algorithm to test $i c p(G) \leq k$.

Open Questions

- In the dense settings, can quasi-polynomial algorithms be improved to be polynomial?
- Any FPT algorithms with $i c p(G)$ as parameter?
- What about restricting packing of specific types of cycles? (E.g., packing nonadjacent induced cycles of length ≥ 4.)

Open Questions

- In the dense settings, can quasi-polynomial algorithms be improved to be polynomial?
- Any FPT algorithms with $i c p(G)$ as parameter?
- What about restricting packing of specific types of cycles? (E.g., packing nonadjacent induced cycles of length ≥ 4.)

Thank you!

