Twincut graphs

Colin Geniet
joint work with Édouard Bonnet, Romain Bourneuf, Julien Duron, Stéphan Thomassé, and Nicolas Trotignon

ANR DIGRAPHS workshop
1st June 2023, Sète

Glueing

Identify two graphs on some partial isomorphism:

Inverse of splitting on a separator.

Glueing

Identify two graphs on some partial isomorphism:

Inverse of splitting on a separator.

Theorem (Chudnovsky, Penev, Scott, Trotignon, '11)

If \mathcal{C} is χ-bounded, then the closure of \mathcal{C} under glueing on $\leq k$ vertices is also χ-bounded.

Substitution

Replace a vertex with a graph, making it a module:

Theorem (Chudnovsky, Penev, Scott, Trotignon, '11)

If \mathcal{C} is (polynomially) χ-bounded, then the closure of \mathcal{C} under substitution is also (polynomially) χ-bounded.

Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, '11)

If \mathcal{C} is χ-bounded, is the closure of \mathcal{C} under both substitution and glueing on $\leq k$ vertices also χ-bounded?

Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, '11)

If \mathcal{C} is χ-bounded, is the closure of \mathcal{C} under both substitution and glueing on $\leq k$ vertices also χ-bounded?

Very special case:
Let \mathcal{C} be the class obtained, starting with an edge, by

- making non-adjacent twins (= substitution by a stable set of size 2),
- and glueing on 2 non-ajacent vertices,
\mathcal{C} is triangle free. Is it χ-bounded?

Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, '11)

If \mathcal{C} is χ-bounded, is the closure of \mathcal{C} under both substitution and glueing on $\leq k$ vertices also χ-bounded?

Very special case:
Let \mathcal{C} be the class obtained, starting with an edge, by

- making non-adjacent twins (= substitution by a stable set of size 2),
- and glueing on 2 non-ajacent vertices,
\mathcal{C} is triangle free. Is it χ-bounded?

Remark

- \mathcal{C} is closed under induced subgraphs
- \mathcal{C} does not contain the cube

Zykov graphs

Z_{k} : add a vertex adjacent to each transversal of Z_{1}, \ldots, Z_{k-1}

Zykov graphs

Z_{k} : add a vertex adjacent to each transversal of Z_{1}, \ldots, Z_{k-1}

Zykov graphs

Z_{k} : add a vertex adjacent to each transversal of Z_{1}, \ldots, Z_{k-1}

Zykov graphs

Z_{k} : add a vertex adjacent to each transversal of Z_{1}, \ldots, Z_{k-1}

Zykov graphs

Z_{k} : add a vertex adjacent to each transversal of Z_{1}, \ldots, Z_{k-1}

Zykov graphs induce all bipartite graphs.

Twincut graphs

Twincut graphs

Twincut graphs

$\begin{array}{llll}T_{1} & T_{2} & 2 \times T_{3} & 10 \times T_{4}\end{array}$

Twincut graphs

$$
\begin{array}{llll}
T_{1} & T_{2} & 2 \times T_{3} & 10 \times T_{4}
\end{array}
$$

Twincut graphs

Bad orientation

$k+1$ vertices per transversal

Bad orientation

$k+1$ vertices per transversal

$$
\odot \odot \cdots \odot \odot|\odot \odot \odot \odot \odot| \odot \odot \cdots \odot \odot
$$

Bad orientation

$k+1$ vertices per transversal

$$
\odot \odot \cdots \odot \odot\left|\odot \underset{k(k+1) \times \bar{z}_{k}}{\mid \odot \odot \odot}\right| \odot \odot \odot
$$

Bad orientation

$k+1$ vertices per transversal

