Colin Geniet

joint work with Édouard Bonnet, Romain Bourneuf, Julien Duron, Stéphan Thomassé, and Nicolas Trotignon

> ANR DIGRAPHS workshop 1st June 2023, Sète

Glueing

Identify two graphs on some partial isomorphism:

Inverse of splitting on a separator.

Glueing

Identify two graphs on some partial isomorphism:

Inverse of splitting on a separator.

Theorem (Chudnovsky, Penev, Scott, Trotignon, '11)

If C is χ -bounded, then the closure of C under glueing on $\leq k$ vertices is also χ -bounded.

Substitution

Replace a vertex with a graph, making it a module:

Theorem (Chudnovsky, Penev, Scott, Trotignon, '11)

If $\mathcal C$ is (polynomially) χ -bounded, then the closure of $\mathcal C$ under substitution is also (polynomially) χ -bounded.

Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, '11)

If $\mathcal C$ is χ -bounded, is the closure of $\mathcal C$ under both substitution and glueing on $\leq k$ vertices also χ -bounded?

Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, '11)

If $\mathcal C$ is χ -bounded, is the closure of $\mathcal C$ under both substitution and glueing on $\leq k$ vertices also χ -bounded?

Very special case:

Let ${\mathcal C}$ be the class obtained, starting with an edge, by

- making non-adjacent twins (= substitution by a stable set of size 2),
- and glueing on 2 non-ajacent vertices,

 $\mathcal C$ is triangle free. Is it χ -bounded?

Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, '11)

If $\mathcal C$ is χ -bounded, is the closure of $\mathcal C$ under both substitution and glueing on $\leq k$ vertices also χ -bounded?

Very special case:

Let ${\mathcal C}$ be the class obtained, starting with an edge, by

- making non-adjacent twins (= substitution by a stable set of size 2),
- and glueing on 2 non-ajacent vertices,

 $\mathcal C$ is triangle free. Is it χ -bounded?

Remark

- $ightharpoonup \mathcal{C}$ is closed under induced subgraphs
- \triangleright \mathcal{C} does not contain the cube

 Z_k : add a vertex adjacent to each transversal of Z_1, \dots, Z_{k-1}

 Z_k : add a vertex adjacent to each transversal of Z_1, \ldots, Z_{k-1}

 Z_k : add a vertex adjacent to each transversal of Z_1, \dots, Z_{k-1}

 Z_k : add a vertex adjacent to each transversal of Z_1, \ldots, Z_{k-1}

 Z_k : add a vertex adjacent to each transversal of Z_1, \ldots, Z_{k-1}

Zykov graphs induce all bipartite graphs.

 T_1 T_2 $2 \times T_3$ $10 \times T_4$

 T_1 T_2 $2 \times T_3$ $10 \times T_4$

 I_2 $Z \times I_3$ $I_0 \times I_2$

 T_1 T_2 $2 \times T_3$ $10 \times T_4$

k+1 vertices per transversal

• • · · · • •

$$k(k+1) \times \vec{Z}_k$$

k+1 vertices per transversal

k+1 vertices per transversal

k+1 vertices per transversal

k+1 vertices per transversal

• • · · · • •

$$k(k+1) \times \vec{Z}_k$$

k+1 vertices per transversal

$$k(k+1) \times \vec{Z}_k$$

k+1 vertices per transversal

