Factorising Pattern-Free Permutations

Édouard Bonnet Romain Bourneuf
Colin Geniet Stéphan Thomassé
ENS Lyon
SODA 24

Permutations

Permutation $=$ two linear orders on the same set: $\left(X,<_{1},<_{2}\right)$

Permutations

Permutation $=$ two linear orders on the same set: $\left(X,<_{1},<_{2}\right)$

Permutations

Permutation $=$ two linear orders on the same set: $\left(X,<_{1},<_{2}\right)$

Patterns in permutations

Permutation $\left(X,<_{1},<_{2}\right)$

Patterns in permutations

Permutation $\left(X,<_{1},<_{2}\right)$
Pattern $=$ induced substructure

$$
\left(Y,<_{1},<_{2}\right), \quad Y \subset X
$$

Patterns in permutations

Permutation $\left(X,<_{1},<_{2}\right)$
Pattern $=$ induced substructure

$$
\left(Y,<_{1},<_{2}\right), \quad Y \subset X
$$

Pattern-free permutation class:

$$
\mathcal{F}(\tau)=\{\sigma: \tau \nsubseteq \sigma\}
$$

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

$=$ permutations created by direct/skew sum

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

$=$ permutations created by direct/skew sum

Tree representation:

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

$=$ permutations created by direct/skew sum

Tree representation:

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

$=$ permutations created by direct/skew sum

Tree representation:

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

$=$ permutations created by direct/skew sum

Tree representation:

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

$=$ permutations created by direct/skew sum

Tree representation:

Separable permutations

Separable permutations
$=\mathcal{F}(3142,2413)$

$=$ permutations created by direct/skew sum

Tree representation:

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)
For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)
For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.
Recognition algorithm:
Theorem (Guillemot-Marx '14)
One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

$$
\text { Separable } \Longleftrightarrow \text { twin-width }=0
$$

Guillemot-Marx Algorithm

Theorem (Guillemot-Marx '14)

One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.

Win-win argument:
Lemma
A class \mathcal{C} avoids a pattern if and only if it has bounded twin-width.

Lemma

One can test if τ is a pattern of σ in time $f(\tau, \operatorname{tww}(\sigma)) \cdot|\sigma|$.

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)

For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.
Recognition algorithm:
Theorem (Guillemot-Marx '14)
One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.

We give a 'decomposition':

Theorem (BBGT)

For any pattern τ, there is a constant k such that any $\sigma \in \mathcal{F}(\tau)$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with σ_{i} separable.

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)

For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.
Recognition algorithm:
Theorem (Guillemot-Marx '14)
One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.

We give a 'decomposition':

Theorem (BBGT)

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Fact

For any σ_{1}, σ_{2}, $\operatorname{tww}\left(\sigma_{1} \circ \sigma_{2}\right) \leq f\left(\operatorname{tww}\left(\sigma_{1}\right), \operatorname{tww}\left(\sigma_{2}\right)\right)$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Fact

For any σ_{1}, σ_{2}, $\operatorname{tww}\left(\sigma_{1} \circ \sigma_{2}\right) \leq f\left(\operatorname{tww}\left(\sigma_{1}\right), \operatorname{tww}\left(\sigma_{2}\right)\right)$.

Corollary

For a class \mathcal{C} of permutations, TFAE:

- \mathcal{C} avoids a pattern,
- \mathcal{C} has bounded twin-width,
- $\mathcal{C} \subset \mathcal{S}^{k}$ for some $k \in \mathbb{N}(\mathcal{S}=$ separable permutations $)$.

A class \mathcal{C} of permutations avoids a pattern if and only if $\mathcal{C} \subset \mathcal{S}^{k}$ for some $k \in \mathbb{N}$.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:

Theorem (Pilipczuk \& Sokołowski, Bourneuf \& Thomassé, '23)

Graphs with bounded twin-width are polynomially χ-bounded.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:

Theorem (Pilipczuk \& Sokołowski, Bourneuf \& Thomassé, '23)

Graphs with bounded twin-width are polynomially χ-bounded.

Behind this theorem:
decomposition of graphs of twin-width k into graphs of twin-width $k-1$.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:

Theorem (Pilipczuk \& Sokołowski, Bourneuf \& Thomassé, '23)

Graphs with bounded twin-width are polynomially χ-bounded.

Behind this theorem:
decomposition of graphs things of twin-width k into things of twin-width $k-1$.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:

Theorem (Pilipczuk \& Sokołowski, Bourneuf \& Thomassé, '23)

Graphs with bounded twin-width are polynomially χ-bounded.

Behind this theorem:
decomposition of graphs things of twin-width k into things of twin-width $k-1$.
For permutations, this decomposition can be expressed with direct and skew sums, and a bounded number of products.

Substitution

$X=$ leaves, $<_{1}$ is left-to-right
$x<2 y$: find the common ancestor t, read the local permutation on the children

Substitution

$X=$ leaves, $<_{1}$ is left-to-right
$x<2 y$: find the common ancestor t, read the local permutation on the children

Lemma

If all local permutations are separable, so is the global permutation.

Delayed Substitution

$X=$ leaves, $<_{1}$ is left-to-right
$x<_{2} y$: find the common ancestor t, read the local permutation on the grandchildren

Using Delayed Substitutions

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.

Using Delayed Substitutions

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.

Using Delayed Substitutions

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.
- [BBGT] Any delayed substitution of permutations in \mathcal{C} can be rewritten into 2 compositions of substitutions of permutations in \mathcal{C}.

Using Delayed Substitutions

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.
- [BBGT] Any delayed substitution of permutations in \mathcal{C} can be rewritten into 2 compositions of substitutions of permutations in \mathcal{C}.

Using Delayed Substitutions

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.
- [BBGT] Any delayed substitution of permutations in \mathcal{C} can be rewritten into 2 compositions of substitutions of permutations in \mathcal{C}.

To factorise a permutation σ :

- compute the delayed substitution for σ,
- recursively factorise the local permutations,
- rewrite into composition of substitution of separable permutations (using some distributive property)

Application to Graphs

Corollary (Sparse graphs)

There are $f: \mathbb{N} \rightarrow \mathbb{N}$ and $c \in \mathbb{N}$ satisfying the following: if G has no $K_{t, t}$-subgraph and $\operatorname{tww}(G) \leq k$, then the $f(k, t)$-subdivision of G has twin-width $\leq c$.

Application to Graphs

Corollary (Sparse graphs)

There are $f: \mathbb{N} \rightarrow \mathbb{N}$ and $c \in \mathbb{N}$ satisfying the following: if G has no $K_{t, t}$-subgraph and $\operatorname{tww}(G) \leq k$, then the $f(k, t)$-subdivision of G has twin-width $\leq c$.

Corollary (General case)

There is a constant c such that for any k, there is an encoding of graphs of twin-width k into graphs of twin-width c expressed with first-order logic.

Application to Graphs

Corollary (Sparse graphs)

There are $f: \mathbb{N} \rightarrow \mathbb{N}$ and $c \in \mathbb{N}$ satisfying the following: if G has no $K_{t, t}$-subgraph and $\operatorname{tww}(G) \leq k$, then the $f(k, t)$-subdivision of G has twin-width $\leq c$.

Corollary (General case)

There is a constant c such that for any k, there is an encoding of graphs of twin-width k into graphs of twin-width c expressed with first-order logic.

Conjecture: $c=4$ can be reached for both results.

Open Questions

- Algorithmic applications of the factorisation?
- Computing shortest factorisations into separable permutations? (is it FPT? approximation?)
- Generalisation to matrices?

Open Questions

- Algorithmic applications of the factorisation?
- Computing shortest factorisations into separable permutations? (is it FPT? approximation?)
- Generalisation to matrices?

Thank you!

