Factorising Pattern-Free Permutations

Édouard Bonnet Romain Bourneuf <u>Colin Geniet</u> Stéphan Thomassé

ENS Lyon

SODA 24

Permutations

Permutation = two linear orders on the same set: $(X, <_1, <_2)$

Permutations

Permutation = two linear orders on the same set: $(X, <_1, <_2)$

Permutations

Permutation = two linear orders on the same set: $(X, <_1, <_2)$

Patterns in permutations

Permutation $(X, <_1, <_2)$

Patterns in permutations

Permutation $(X, <_1, <_2)$

Pattern = induced substructure

$$(Y, <_1, <_2), \quad Y \subset X$$

Patterns in permutations

Permutation $(X, <_1, <_2)$

Pattern = induced substructure

$$(Y, <_1, <_2), \quad Y \subset X$$

Pattern-free permutation class:

$$\mathcal{F}(\tau) = \{ \sigma : \tau \not\subseteq \sigma \}$$

Separable permutations $= \mathcal{F}(3142, 2413)$

Separable permutations $= \mathcal{F}(3142, 2413)$

= permutations created by direct/skew sum

Separable permutations $= \mathcal{F}(3142, 2413)$

= permutations created by direct/skew sum

Separable permutations $= \mathcal{F}(3142, 2413)$

= permutations created by direct/skew sum

Separable permutations $= \mathcal{F}(3142, 2413)$

= permutations created by direct/skew sum

Separable permutations $= \mathcal{F}(3142, 2413)$

= permutations created by direct/skew sum

Separable permutations $= \mathcal{F}(3142, 2413)$

= permutations created by direct/skew sum

Tree representation:

Separable permutations $= \mathcal{F}(3142, 2413)$

= permutations created by direct/skew sum

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Recognition algorithm:

```
Theorem (Guillemot–Marx '14)
```

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_1$ or $<_2$
- minimize the error degree

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_1$ or $<_2$
- minimize the error degree

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_1$ or $<_2$
- minimize the error degree

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_1$ or $<_2$
- minimize the error degree

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_1$ or $<_2$
- minimize the error degree

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_1$ or $<_2$
- minimize the error degree

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_1$ or $<_2$
- minimize the error degree

Separable \iff twin-width = 0

Theorem (Guillemot–Marx '14)

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

Win-win argument:

Lemma

A class C avoids a pattern if and only if it has bounded twin-width.

Lemma

One can test if τ is a pattern of σ in time $f(\tau, \text{tww}(\sigma)) \cdot |\sigma|$.

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Recognition algorithm:

```
Theorem (Guillemot–Marx '14)
```

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

We give a 'decomposition':

Theorem (BBGT)

For any pattern τ , there is a constant k such that any $\sigma \in \mathcal{F}(\tau)$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with σ_i separable.

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Recognition algorithm:

```
Theorem (Guillemot–Marx '14)
```

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

We give a 'decomposition':

Theorem (BBGT) For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Fact

For any σ_1, σ_2 , tww $(\sigma_1 \circ \sigma_2) \leq f(tww(\sigma_1), tww(\sigma_2))$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Fact

For any σ_1, σ_2 , tww $(\sigma_1 \circ \sigma_2) \leq f(tww(\sigma_1), tww(\sigma_2))$.

Corollary

For a class C of permutations, TFAE:

- C avoids a pattern,
- C has bounded twin-width,
- $\mathcal{C} \subset \mathcal{S}^k$ for some $k \in \mathbb{N}$ (\mathcal{S} = separable permutations).

A class C of permutations avoids a pattern if and only if $C \subset S^k$ for some $k \in \mathbb{N}$.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk & Sokołowski, Bourneuf & Thomassé, '23) Graphs with bounded twin-width are polynomially χ -bounded.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk & Sokołowski, Bourneuf & Thomassé, '23) Graphs with bounded twin-width are polynomially χ -bounded.

Behind this theorem: decomposition of graphs of twin-width k into graphs of twin-width k-1.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk & Sokołowski, Bourneuf & Thomassé, '23) Graphs with bounded twin-width are polynomially χ -bounded.

Behind this theorem: decomposition of graphs things of twin-width k into things of twin-width k - 1.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $tww(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $tww(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk & Sokołowski, Bourneuf & Thomassé, '23) Graphs with bounded twin-width are polynomially χ -bounded.

Behind this theorem: decomposition of graphs things of twin-width k into things of twin-width k - 1.

For permutations, this decomposition can be expressed with direct and skew sums, and a bounded number of products.

Substitution

X = leaves, $<_1$ is left-to-right $x <_2 y$: find the common ancestor t, read the local permutation on the children

Substitution

X = leaves, $<_1$ is left-to-right

 $x <_2 y$: find the common ancestor t, read the local permutation on the children

Lemma

If all local permutations are separable, so is the global permutation.

Delayed Substitution

X = leaves, $<_1$ is left-to-right $x <_2 y$: find the common ancestor t, read the local permutation on the grandchildren

Using Delayed Substitutions

Key facts:

• [PS, BT] Delayed substitutions can be computed greedily.

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.

Using Delayed Substitutions

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.
- [BBGT] Any delayed substitution of permutations in C can be rewritten into 2 compositions of substitutions of permutations in C.

Using Delayed Substitutions

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.
- [BBGT] Any delayed substitution of permutations in C can be rewritten into 2 compositions of substitutions of permutations in C.

Key facts:

- [PS, BT] Delayed substitutions can be computed greedily.
- [PS, BT] In a delayed substitutions, the local permutations are simpler (in the sense of twin-width) than the global permutation.
- [BBGT] Any delayed substitution of permutations in C can be rewritten into 2 compositions of substitutions of permutations in C.

To factorise a permutation σ :

- $\bullet\,$ compute the delayed substitution for $\sigma,$
- recursively factorise the local permutations,
- rewrite into composition of substitution of separable permutations (using some distributive property)

Corollary (Sparse graphs)

There are $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$ satisfying the following: if G has no $K_{t,t}$ -subgraph and $\operatorname{tww}(G) \leq k$, then the f(k, t)-subdivision of G has twin-width $\leq c$.

Corollary (Sparse graphs)

There are $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$ satisfying the following: if G has no $K_{t,t}$ -subgraph and $\operatorname{tww}(G) \leq k$, then the f(k, t)-subdivision of G has twin-width $\leq c$.

Corollary (General case)

There is a constant c such that for any k, there is an encoding of graphs of twin-width k into graphs of twin-width c expressed with first-order logic.

Corollary (Sparse graphs)

There are $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$ satisfying the following: if G has no $K_{t,t}$ -subgraph and $\operatorname{tww}(G) \leq k$, then the f(k, t)-subdivision of G has twin-width $\leq c$.

Corollary (General case)

There is a constant c such that for any k, there is an encoding of graphs of twin-width k into graphs of twin-width c expressed with first-order logic.

Conjecture: c = 4 can be reached for both results.

- Algorithmic applications of the factorisation?
- Computing shortest factorisations into separable permutations? (is it FPT? approximation?)
- Generalisation to matrices?

- Algorithmic applications of the factorisation?
- Computing shortest factorisations into separable permutations? (is it FPT? approximation?)
- Generalisation to matrices?

Thank you!