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Pattern = induced substructure

(Y , <1, <2), Y ⊂ X

Pattern-free permutation class:

F(τ) = {σ : τ 6⊆ σ}
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Separable permutations
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Pattern-free classes are nice

Theorem (Marcus–Tardos ’04)
For any τ , there is a constant c such that F(τ) has ≤ cn permutations of size n.

Recognition algorithm:

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

We give a ‘decomposition’:

Theorem (BBGT)
For any , there is a constant k such that any factorises as σ = σ1 ◦ · · · ◦ σk , with .
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Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they interleave for
either <1 or <2

minimize the error degree

Separable ⇐⇒ twin-width = 0
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Guillemot–Marx Algorithm

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

Win–win argument:

Lemma
A class C avoids a pattern if and only if it has bounded twin-width.

Lemma
One can test if τ is a pattern of σ in time f (τ, tww(σ)) · |σ|.
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Pattern-free classes are nice

Theorem (Marcus–Tardos ’04)
For any τ , there is a constant c such that F(τ) has ≤ cn permutations of size n.

Recognition algorithm:

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

We give a ‘decomposition’:

Theorem (BBGT)
For any pattern τ , there is a constant k such that any σ ∈ F(τ) factorises as
σ = σ1 ◦ · · · ◦ σk , with σi separable.
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Factorisation

Theorem
For any t ∈ N, there is a constant k such that any σ with tww(σ) ≤ t factorises as
σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.
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Factorisation

Theorem
For any t ∈ N, there is a constant k such that any σ with tww(σ) ≤ t factorises as
σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Fact
For any σ1, σ2, tww(σ1 ◦ σ2) ≤ f (tww(σ1), tww(σ2)).

Corollary
For a class C of permutations, TFAE:

C avoids a pattern,
C has bounded twin-width,
C ⊂ Sk for some k ∈ N (S = separable permutations).

A class C of permutations avoids a pattern if and only if C ⊂ Sk for some k ∈ N.
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Proof overview (from very far away)

Theorem
For any t ∈ N, there is a constant k such that any σ with tww(σ) ≤ t factorises as
σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Main tool for the proof:

Theorem (Pilipczuk & Sokołowski, Bourneuf & Thomassé, ’23)
Graphs with bounded twin-width are polynomially χ-bounded.

Behind this theorem:
decomposition of graphs of twin-width k into graphs of twin-width k − 1.

For permutations, this decomposition can be expressed with direct and skew sums,
and a bounded number of products.
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Substitution

(X , <1, <2):

4 3 6 5

14

12 11

8 7

9 10

13

2 1 16

20

18 19

15 17

X = leaves, <1 is left-to-right
x <2 y : find the common ancestor t, read the local permutation on the children

Lemma
If all local permutations are separable, so is the global permutation.
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Delayed Substitution

(X , <1, <2):

3 1 10 5

16

9 8

4 2

6 7

11

17

15

13 12

18 14

X = leaves, <1 is left-to-right
x <2 y : find the common ancestor t, read the local permutation on the grandchildren
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Using Delayed Substitutions

Key facts:
[PS, BT] Delayed substitutions can be computed greedily.

[PS, BT] In a delayed substitutions, the local permutations are simpler (in the
sense of twin-width) than the global permutation.
[BBGT] Any delayed substitution of permutations in C can be rewritten into 2

compositions of substitutions of permutations in C.

To factorise a permutation σ:
compute the delayed substitution for σ,
recursively factorise the local permutations,
rewrite into composition of substitution of separable permutations (using some
distributive property)
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Application to Graphs

Corollary (Sparse graphs)
There are f : N → N and c ∈ N satisfying the following: if G has no Kt,t-subgraph
and tww(G) ≤ k, then the f (k, t)-subdivision of G has twin-width ≤ c.

Corollary (General case)
There is a constant c such that for any k, there is an encoding of graphs of
twin-width k into graphs of twin-width c expressed with first-order logic.

Conjecture: c = 4 can be reached for both results.
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Open Questions

Algorithmic applications of the factorisation?
Computing shortest factorisations into separable permutations? (is it FPT?
approximation?)
Generalisation to matrices?

Thank you!
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