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Abstract. We devise a variant of Dialectica interpretation of intuition-
istic linear logic for LMSO, a linear logic-based version MSO over infinite
words. LMSO was known to be correct and complete w.r.t. Church’s syn-
thesis, thanks to an automata-based realizability model. Invoking Büchi-
Landweber Theorem and building on a complete axiomatization of MSO
on infinite words, our interpretation provides us with a syntactic ap-
proach, without any further construction of automata on infinite words.
Via Dialectica, as linear negation directly corresponds to switching play-
ers in games, we furthermore obtain a complete logic: either a closed
formula or its linear negation is provable. This completely axiomatizes
the theory of the realizability model of LMSO. Besides, this shows that
in principle, one can solve Church’s synthesis for a given ∀∃-formula by
only looking for proofs of either that formula or its linear negation.
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1 Introduction

Monadic Second-Order Logic (MSO) over ω-words is a simple yet expressive
language for reasoning on non-terminating systems which subsumes non-trivial
logics used in verification such as LTL (see e.g. [30,2]). MSO on ω-words is decid-
able by Büchi’s Theorem [6] (see e.g. [29,24]), and can be completely axiomatized
as a subsystem of second-order Peano’s arithmetic [28]. While MSO admits an
effective translation to finite-state (Büchi) automata, it is a non-constructive
logic, in the sense that it has true (i.e. provable) ∀∃-statements which can be
witnessed by no continuous stream function.

On the other hand, Church’s synthesis [8] can be seen as a decision problem
for a strong form of constructivity in MSO. More precisely (see e.g. [32,12]),
Church’s synthesis takes as input a ∀∃-formula of MSO and asks whether it
can be realized by a finite-state causal stream transducer. Church’s synthesis is
known to be decidable since Büchi-Landweber Theorem [7], which gives an ef-
fective solution to ω-regular games on finite graphs generated by ∀∃-formulae. In
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traditional (theoretical) solutions to Church’s synthesis, the game graphs are in-
duced from deterministic (say parity) automata obtained by McNaughton’s The-
orem [19]. Despite its long history, Church’s synthesis has not yet been amenable
to tractable solutions for the full language of MSO (see e.g. [12]).

In recent works [25,26], the authors suggested a Curry-Howard approach to
Church’s synthesis based on intuitionistic and linear variants of MSO. In partic-
ular, [26] proposed a system LMSO based on (intuitionistic) linear logic [13], in
which via a translation (−)L : MSO → LMSO, the provable ∀∃(−)L-statements
exactly correspond to the realizable instances of Church’s synthesis. Realizer
extraction for LMSO is done via an external realizability model based on alter-
nating automata, which amounts to see every formula ϕ(a) as a formula of the
form (∃u)(∀x)ϕD(u, x, a), where ϕD represents a deterministic automaton.

In this paper, we use a variant of Gödel’s “Dialectica” functional interpreta-
tion as a syntactic formulation of the automata-based realizability model of [26].
Dialectica associates to ϕ(a) a formula ϕD(a) of the form (∃u)(∀x)ϕD(u, x, a).
In usual versions formulated in higher-types arithmetic (see e.g. [1,16]), the for-
mula ϕD is quantifier-free, so that ϕD is a prenex form of ϕ. This prenex form
is constructive, and a constructive proof of ϕ can be turned to a proof of ϕD

with an explicit witness for ∃u. Even if Dialectica originally interprets intuition-
istic arithmetic, it is structurally linear, and linear versions of Dialectica were
formulated at the very beginning of linear logic [21,22,23] (see also [14,27]).

We show that the automata-based realizability model of [26] can be obtained
by a suitable modification of the usual linear Dialectica interpretation, in which
the formula ϕD essentially represents a deterministic automaton on ω-words
and is in general not quantifier-free, and whose realizers are exactly the finite-
state accepting strategies in the model of [26]. In addition to provide a syntactic
extraction procedure with internalized and automata-free correctness proof, this
reformulation has a striking consequence, namely that there exists an extension
LMSO(C) of LMSO which is complete in the sense that for each closed formula
ϕ, it either proves ϕ or its linear negation ϕ( ⊥. Since LMSO(C) has realizers
for all provable ∀∃(−)L-statements, its completeness contrasts with the classical
setting, in which due to provable non-constructive statements, one can not decide
Church’s synthesis by only looking for proofs of ∀∃-statements or their negations.
Besides, LMSO(C) has a linear choice axiom which is realizable in the sense of
both (−)D and [26], but whose naive MSO counterpart is false.

The paper is organized as follows. We present our basic setting in §2, with a
particular emphasis on particularities of (finite-state) causal functions to model
strategies and realizers. Our variant of Dialectica and the corresponding linear
system are discussed in §3, while §4 defines the systems LMSO and LMSO(C)
and shows the completeness of LMSO(C).

2 Preliminaries

Alphabets (denoted Σ,Γ, etc) are finite non-empty sets of the form 2p for some
p ∈ N. We let 1 := 20. Note that alphabets are closed under Cartesian products



and set-theoretic function spaces. It follows that taking JoK := 2, we have an
alphabet JτK for each simple type τ ∈ ST, where

σ, τ ∈ ST ::= 1 | o | σ × τ | σ → τ

We often write (τ)σ for the type σ → τ . Given an ω-word (or stream) B ∈ Σω

and n ∈ N, we write B�n for the finite word B(0). · · · .B(n− 1) ∈ Σ∗.

Church’s Synthesis and Causal Functions. Church’s synthesis consists in
the automatic extraction of stream functions from input-output specifications
(see e.g. [31,12]). These specifications are in general asked to be ω-regular, or
equivalently definable in MSO over ω-words. In practice, proper subsets of MSO
(and even of LTL) are assumed (see e.g. [5,11,12]). As an example, the relation

(∃∞k)B(k) ⇒ (∃∞k)C(k) resp. (∀∞k)B(k) ⇒ (∃∞k)C(k) (1)

with input B ∈ 2ω and output C ∈ 2ω specifies functions F : 2ω → 2ω such
that F (B) ∈ 2ω ' P(N) is infinite whenever B ∈ 2ω ' P(N) is infinite (resp.
the complement of B is finite). One may also additionally require to respect the
transitions of some automaton. For instance, following [31], in addition to either
case of (1) one can ask C ⊆ B and C not to contain two consecutive positions:

(∀n)(C(n) ⇒ B(n)) and (∀n)(C(n) ⇒ ¬C(n+ 1)) (2)

In any case, the realizers must be (finite-state) causal functions. A stream
function F : Σω → Γω is causal (notation F : Σ →S Γ ) if it can produce a prefix
of length n of its output from a prefix of length n of its input. Hence F is causal
if it is induced by a map f : Σ+ → Γ as follows:

F (B)(n) = f(B(0) · . . . ·B(n)) (for all B ∈ Σω and all n ∈ N)

The finite-state (f.s.) causal functions are those induced by Mealy machines. A
Mealy machine M : Σ → Γ is a DFA over input alphabet Σ equipped with an
output function λ : QM × Σ → Γ (where QM is the state set of M). Writing
∂∗ : Σ∗ → QM for the iteration of the transition function ∂ ofM from its initial
state, M induces a causal function via (a.a ∈ Σ+) 7→ (λ(∂∗(a), a) ∈ Γ ).

Causal and f.s. causal functions form categories with finite products. Let S
be the category whose objects are alphabets and whose maps from Σ to Γ are
causal functions F : Σω → Γω. Let M be the wide subcategory of S whose maps
are finite-state causal functions.3

Example 1. (a) Usual functions Σ → Γ lift to (pointwise, one-state) maps
Σ →M Γ . For instance, the identity Σ →M Σ is induced by the Mealy
machine with 〈∂, λ〉 : (−, a) 7→ (−, a).

(b) Causal functions 1→S Σ correspond exactly to ω-words B ∈ Σω.

3 A subcategory D of C is wide if D has the same objects as C.
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Fig. 1. A Mealy machine (left) and an equivalent eager (Moore) machine (right).

(c) The conjunction of (2) with either side of (1) is realized by the causal function
F : 2 →M 2 induced by the machine M : 2 → 2 displayed on Fig. 1 (left,
where a transition a|b outputs b from input a), taken from [31].

Proposition 1. The Cartesian product of Σ1, . . . , Σn (for n ≥ 0) in S,M is
given by the product of sets Σ1 × · · · ×Σn (so that 1 is terminal).

The Logic MSO(M). Our specification language MSO(M) is an extension of
MSO on ω-words with one function symbol for each f.s. causal function. More
precisely, MSO(M) is a many-sorted first-order logic, with one sort for each
simple type τ ∈ ST, and with one function symbol of arity (σ1, . . . , σn; τ) for each
map Jσ1K×· · ·×JσnK→M JτK. A term t of sort τ (notation tτ ) with free variables
among xσ1

1 , . . . , xσnn (we say that t is of arity (σ1, . . . , σn; τ)) thus induces a map
JtK : Jσ1K × · · · × JσnK →M JτK. Given a valuation xi 7→ Bi ∈ JσiKω ' S[1, JσiK]
for i ∈ {1, . . . , n}, we then obtain an ω-word

JtK ◦ 〈B1, . . . , Bn〉 ∈ S[1, JτK] ' JτKω

MSO(M) extends MSO with ∃xτ and ∀xτ ranging over S[1, JτK] ' JτKω and
with sorted equalities tτ

.
= uτ interpreted as equality over S[1, JτK] ' JτKω.

Write |= ϕ when ϕ holds in this model, called the standard model. The full
definition of MSO(M) is deferred to §4.1.

An instance of Church’s synthesis problem is given by a closed formula
(∀xσ)(∃uτ )ϕ(u, x). A positive solution (or realizer) of this instance is a term
t(x) of arity (σ; τ) such that (∀xσ)ϕ(t(x), x) holds.

Proposition 1 implies that MSO(M) proves the following equations:

πi(〈t1, . . . , tn〉)
.
=σi ti and t

.
=σ1×···×σn 〈π1(t), . . . , πn(t)〉 (3)

Hence each formula ϕ(aσ1
1 , . . . , aσnn ) can be seen as a formula ϕ(aσ1×···×σn).

Eager Functions. A causal function Σ →S Γ is eager if it can produce a prefix
of length n+1 of its output from a prefix of length n of its input. More precisely,
an eager F : Σ →S Γ is induced by a map f : Σ∗ → Γ as

F (B)(n) = f(B(0) · . . . ·B(n− 1)) (for all B ∈ Σω and all n ∈ N)

Finite-state eager functions are those induced by eager (Moore) machines (see
also [11]). An eager machine E : Σ → Γ is a Mealy machine Σ → Γ whose output



function λ : QE → Γ does not depend on the current input letter. An eager
E : Σ → Γ induces an eager function via the map (a ∈ Σ∗) 7→ (λE(∂

∗
E(a)) ∈ Γ ).

We write F : Σ →E Γ when F : Σ →S Γ is eager and F : Σ →EM Γ when F
is f.s. eager. All functions F : Σ →M 1, and more generally, constants functions
F : Σ →S Γ are eager. Note also that if F : Σ →S Γ is eager, then F : Σ →EM Γ .
On the other hand, if F : Σ →EM Γ is induced by an eager machine E then F is
finite-state causal as being induced by the Mealy machine with same states and
transitions as E , but with output function (q, a) 7→ λE(q).

Eager functions do not form a category since the identity of S is not eager.
On the other hand, eager functions are closed under composition with causal
functions.

Proposition 2. If F is eager and G,H are causal then H ◦ F ◦G is eager.

Isolating eager functions allows a proper treatment of strategies in games and
realizers w.r.t. the Dialectica interpretation. Since Σ+ → Γ ' Σ∗ → ΓΣ , maps
Σ →E Γ

Σ are in bijection with maps Σ →S Γ . This easily extends to machines.
Given a Mealy machineM : Σ → Γ , let Λ(M) : Σ → ΓΣ be the eager machine
defined as M but with output map taking q ∈ QM to (a 7→ λM(q, a)) ∈ ΓΣ .

Example 2. Recall the Mealy machine M : 2 → 2 of Ex. 1.(c). Then Λ(M) :
2 → 22 is the eager machine displayed in Fig. 1 (right, where the output is
indicated within states).

Eager f.s. functions will often be used with the following notations. First, let
@ be the pointwise lift to M of the usual application function ΓΣ ×Σ → Γ . We
often write (F )G for @(F,G). Consider a Mealy machine M : Σ → Γ and the
induced eager machine Λ(M) : Σ → ΓΣ . We have

FM(B) = @(FΛ(M)(B), B) (for all B ∈ Σω)

Given F : Γ →E Σ
Γ , we write e(F ) for the causal @(F (−),−) : Γ →S Σ. Given

F : Γ →S Σ, we write Λ(F ) for the eager Γ →E Σ
Γ such that F = e(Λ(F )).

We extend these notations to terms.
Eager functions admit fixpoints similar to those of contractive maps in the

topos of tree (see e.g. [4, Thm. 2.4]).

Proposition 3. For each F : Σ × Γ →E Σ
Γ there is a fix(F ) : Γ →E Σ

Γ s.t.

fix(F )(C) = F
(
e(fix(F ))(C) , C) (for all C ∈ Γω)

If F is induced by the eager machine E : Σ×Γ → ΣΓ , then fix(F ) is induced by
the eager H : Γ → ΣΓ defined as E but with ∂H : (q, b) 7→ ∂E

(
q, ((λE(q))b, b)

)
.

Games. Traditional solutions to Church’s synthesis turn specifications to infi-
nite two-player games with ω-regular winning conditions. Consider an MSO(M)
formula ϕ(uτ , xσ) with no free variable other than u, x. We see this formula
as defining a two-player infinite game G(ϕ)(uτ , xσ) between the Proponent P



(∃löıse), playing moves in JτK and the Opponent O (∀bélard), playing moves in
JσK. The Proponent begins, and then the two players alternate, producing an
infinite play of the form

χ := u0x0 · · · unxn · · · ' ((uk)k, (xk)k) ∈ JτKω × JσKω

The play χ is winning for P if ϕ((uk)k, (x)k) holds. Otherwise χ is winning for
O. Strategies for P resp. O in this game are functions

JσK∗ −→ JτK resp. JτK+ −→ JσK ' JτK∗ −→ JσKJτK

Hence finite-state strategies are represented by f.s. eager functions. In particular,
a realizer of (∀xσ)(∃uτ )ϕ(u, x) in the sense of Church is a f.s. P-strategy in

G
(
ϕ((u)x, x)

)(
u(τ)σ, xσ

)
Most approaches to Church’s synthesis reduce to Büchi-Landweber Theo-

rem [7], stating that games with ω-regular winning conditions are effectively
determined, and that the winner always has a finite-state winning strategy. We
will use Büchi-Landweber Theorem in following form. Note that an O-strategy
in the game G(ϕ)(uτ , xσ) is a P-strategy in the game G

(
¬ϕ(u, (x)u)

)(
x(σ)τ , uτ

)
.

Theorem 1 ([7]). Let ϕ(uτ , xσ) be an MSO(M)-formula with only u, x free.
Then either there is an eager term u(x) of arity (σ; τ) such that |= (∀x)ϕ(u(x), x)
or there is an eager term x(u) of arity (τ ; (σ)τ) such that |= (∀u)¬ϕ(u, e(x)(u)).
It is decidable which case holds and the terms are computable from ϕ.

Curry-Howard Approaches. Following the complete axiomatization of MSO
on ω-words of [28] (see also [26]), one can axiomatize MSO(M) with a deduction
system based on arithmetic (see §4.1). Consider an instance of Church’s synthesis
(∀xσ)(∃uτ )ϕ(u, x). Then we get from Theorem 1 the alternative

`MSO(M) (∀x)ϕ
(
e(u)(x), x

)
or `MSO(M) (∀u)¬ϕ

(
(u)(x(u)), x(u)

)
(4)

for an eager term u(x) or a causal term x(u). By enumerating proofs and ma-
chines, one thus gets a (naive) syntactic algorithm for Church’s synthesis. But
it seems however unlikely to obtain a complete classical system in which the
provable ∀∃-statements do correspond to the realizable instances of Church’s
synthesis, because MSO(M) has true but unrealizable ∀∃-statements. Besides,
note that

(∀xσ)ϕ
(
e(u)(x), x

)
`MSO(M) (∀xσ)(∃uτ )ϕ(u, x)

(∀u(τ)σ)¬ϕ
(
(u)(x(u)), x(u)

)
`MSO(M) (∀u(τ)σ)(∃xσ)¬ϕ

(
(u)x, x

)
¬(∀xσ)(∃uτ )ϕ(u, x) `MSO(M) (∀u(τ)σ)(∃xσ)¬ϕ

(
(u)x, x

)
while it is possible both for realizable and unrealizable instances to have

`MSO(M) (∀xσ)(∃uτ )ϕ(u, x) ∧ (∀u(τ)σ)(∃xσ)¬ϕ
(
(u)x, x

)
(5)



In previous works [25,26], the authors devised intuitionistic and linear vari-
ants of MSO on ω-words in which, thanks to automata-based polarity systems,
proofs of suitably polarized existential statements correspond exactly to realiz-
ers for Church’s synthesis. In particular, [26] proposed a system LMSO based
on (intuitionistic) linear logic [13], such that via a translation (−)L : MSO →
LMSO, provable ∀∃(−)L-statements exactly correspond to realizable instances
of Church’s synthesis, while (4) exactly corresponds to alternatives of the form

`LMSO (∀xσ)(∃uτ )
[
ϕ
(
(u)x, x

)]L
or `LMSO (∀u(τ)σ)(∃xσ)

[
¬ϕ
(
(u)x, x

)]L
(6)

This paper goes further. We show that the automata-based realizability
model of [26] can be obtained in a syntactic way, thanks to a (linear) Dialectica-
like interpretation of a variant of LMSO, which turns a formula ϕ to a formula
ϕD of the form (∃u)(∀x)ϕD(u, x), where ϕD(u, x) essentially represents a deter-
ministic automaton. While the correctness of the extraction procedure of [25,26]
relied on automata-theoretic techniques, we show here that it can be performed
syntactically. Second, by extending LMSO with realizable axioms, we obtain a
system LMSO(C) in which, using an adaptation of the usual Characterization
Theorem for Dialectica stating that ϕ ˛ ϕD (see e.g. [16]), alternatives of the
form (6) imply that for a closed ϕ,

`LMSO(C) ϕ or `LMSO(C) ϕ( ⊥

where (−)( ⊥ is a linear negation. We thus get a complete linear system with
extraction of suitably polarized ∀∃-statements. Such a system can of course not
have a standard semantics, and indeed, LMSO(C) has a functional choice axiom

(∀xσ)(∃yτ )ϕ(x, y) −( (∃f (τ)σ)(∀xσ)ϕ(x, (f)x) (LAC)

which is realizable in the sense of both (−)D and [26], but whose translation to
MSO(M) (which precludes (5)) is false in the standard model.

3 A Monadic Linear Dialectica-like Interpretation

Gödel’s “Dialectica” functional interpretation associates to ϕ(a) a formula ϕD(a)
of the form (∃uτ )(∀xσ)ϕD(u, x, a). In usual versions formulated in higher-types
arithmetic (see e.g. [1,16]), the formula ϕD is quantifier-free, so that ϕD is a
prenex form of ϕ. This prenex form is constructive, and a constructive proof of
ϕ can be turned to a proof of ϕD with an explicit (closed) witness for ∃u. We call
such witnesses realizers of ϕ. Even if Dialectica originally interprets intuitionistic
arithmetic, it is structurally linear: in general, realizers of contraction

ϕ(a) −→ ϕ(a) ∧ ϕ(a)

only exist when the term language can decide ϕD(u, x, a), which is possible in
arithmetic but not in all settings. Besides, linear versions of Dialectica were
formulated at the very beginning of linear logic [21,22,23] (see also [14,27]).



ϕ ` ϕ
ϕ ` γ, ϕ′ ψ, γ ` ψ′

ϕ,ψ ` ϕ′, ψ
′

ϕ,ϕ, ψ, ψ ` ϕ′

ϕ,ψ, ϕ, ψ ` ϕ′
ϕ ` ϕ′, ϕ, ψ, ψ

′

ϕ ` ϕ′, ψ, ϕ, ψ
′

ϕ ` ψ
ϕ, I ` ψ ` I

ϕ,ϕ0, ϕ1 ` ϕ′

ϕ,ϕ0 ⊗ ϕ1 ` ϕ′
ϕ ` ϕ,ϕ′ ψ ` ψ,ψ′

ϕ,ψ ` ϕ⊗ ψ,ϕ′, ψ
′

ϕ,ϕ ` ψ
ϕ ` ϕ( ψ

⊥ `
ϕ ` ψ
ϕ ` ⊥, ψ

ϕ, ϕ ` ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ` ψ ` ϕ′, ψ
′

ϕ ` ϕ0, ϕ1, ϕ
′

ϕ ` ϕ0 ` ϕ1, ϕ′
ϕ ` ϕ,ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ( ψ ` ϕ′, ψ
′

ϕ,ϕ ` ϕ′

ϕ, (∃zτ )ϕ ` ϕ′
ϕ ` ϕ[tτ/xτ ], ϕ′

ϕ ` (∃xτ )ϕ,ϕ′
ϕ,ϕ[tτ/xτ ] ` ϕ′

ϕ, (∀xτ )ϕ ` ϕ′
ϕ ` ϕ

ϕ ` (∀zτ )ϕ

Fig. 2. Deduction for MF (where zτ is fresh).

In this paper, we use a variant of Dialectica as a syntactic formulation of the
automata-based realizability model of [26]. The formula ϕD essentially repre-
sents a deterministic automaton on ω-words and is in general not quantifier-free.
Moreover, we extract f.s. causal functions, while the category M is not closed.
As a result, a realizer of ϕ is an open (eager) term u(x) of arity (σ; τ) satisfying
ϕD(u(x), x). While it is possible to exhibit realizers for contraction on closed
ϕ thanks to the Büchi-Landweber Theorem, this is generally not the case for
open ϕ(a). We therefore resort to working in a linear system, in which we obtain
witnesses for ∀∃(−)L-statements (and thus for realizable instances of Church’s
synthesis), but not for all ∀∃-statements.

Fix a set of atomic formulae At containing all (tτ
.
= uτ ), and a standard

interpretation extending §2 for each α ∈ At.

3.1 The Multiplicative Fragment

Our linear system is based on full intuitionistic linear logic (see [15]). The for-
mulae of the multiplicative fragment MF are given by the grammar:

ϕ,ψ ::= I | ⊥ | α | ϕ( ψ | ϕ⊗ ψ | ϕ` ψ | (∃xτ )ϕ | (∀xτ )ϕ

(where α ∈ At). Deduction is given by the rules of Fig. 2 and the axioms

` tτ .
= tτ tτ

.
= uτ , ϕ[tτ/xτ ] ` ϕ[uτ/xτ ]

Jtτ K = Juτ K
` tτ .

= uτ
(7)

Each formula ϕ of MF can be mapped to a classical formula bϕc (where I, (,
⊗, ` are replaced resp. by >,→,∧,∨). Hence bϕc holds whenever ` ϕ

The Dialectica interpretation of MF is the usual one rewritten with the con-
nectives of MF, but for the disjunction ` that we treat similarly as ⊗. To each
formula ϕ(a) with only a free, we associate a formula ϕD(a) with only a free,
as well as a formula ϕD with possibly other free variables. For atomic formulae
we let ϕD(a) := ϕD(a) := ϕ(a). The inductive cases are given on Fig. 3, where
ϕD(a) = (∃u)(∀x)ϕD(u, x, a) and ψD(a) = (∃v)(∀y)ψD(v, y, a).



(ϕ⊗ ψ)D(a) := ∃〈u, v〉∀〈x, y〉. (ϕ⊗ ψ)D(〈u, v〉, 〈x, y〉, a) :=
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a)⊗ ψD(v, y, a)

(ϕ` ψ)D(a) := ∃〈u, v〉∀〈x, y〉. (ϕ` ψ)D(〈u, v〉, 〈x, y〉, a) :=

∃〈u, v〉∀〈x, y〉. ϕD(u, x, a) ` ψD(v, y, a)
(ϕ( ψ)D(a) := ∃〈f, F 〉∀〈u, y〉. (ϕ( ψ)D(〈f, F 〉, 〈u, y〉, a) :=

∃〈f, F 〉∀〈u, y〉. ϕD(u, (F )uy, a)( ψD((f)u, y, a)
(∃w.ϕ)D(a) := ∃〈u,w〉∀x. (∃w.ϕ)D(〈u,w〉, x, a) := ∃〈u,w〉∀x. ϕD(u, x, 〈a,w〉)

(∀w.ϕ)D(a) := ∃f ∀〈x,w〉. (∀w.ϕ)D(f, 〈x,w〉, a) := ∃f ∀〈x,w〉. ϕD((f)w, x, 〈a,w〉)

Fig. 3. The Dialectica Interpretation of MF (where types are leaved implicit).

Dialectica is such that ϕD is equivalent to ϕ via possibly non-intuitionistic
but constructive principles. The tricky connectives are implication and uni-
versal quantification. Similarly as in the intuitionistic case (see e.g. [16,1,33]),
(ϕ( ψ)D is prenex a form of ϕD ( ψD obtained using (LAC) together with
linear variants of the Markov and Independence of premises principles. In our
case, the equivalence ϕ˛ ϕD also requires additional axioms for ⊗ and `. We
give details for the full system in §3.3.

The soundness of (−)D goes as usual, excepted that we extract open eager
terms: from a proof of ϕ(aκ) we extract a realizer of (∀a)ϕ(a), that is an open
eager term u(x, a) s.t. ` ϕD(@(u(x, a), a), x, a). Composition of realizers (in part.
required for the cut rule) is given by the fixpoints of Prop. 3. Note that a realizer
of a closed ϕ is a finite-state winning P-strategy in G(bϕDc)(u, x).

3.2 Polarized Exponentials

It is well-known that the structure of Dialectica is linear, as it makes problematic
the interpretation of contraction:

ϕ(a) −( ϕ(a)⊗ ϕ(a) and ϕ(a) ` ϕ(a) −( ϕ(a)

In our case, the Büchi-Landweber Theorem implies that all closed instances of
contraction have realizers which are correct in the standard model. But this is
in general not true for open instances.

Example 3. Realizers of ϕ ( ϕ ⊗ ϕ for a closed ϕ are given by eager terms
U1(u, x1, x2), U2(u, x1, x2), X(u, x1, x2) which must represent P-strategies in the
game G(Φ)(〈U1, U2, X〉, 〈u, x1, x2〉), where Φ is

bϕD(u, (X)ux1x2)c −→ bϕD((U1)u, x1)c ∧ bϕD((U2)u, x2)c

By the Büchi-Landweber Theorem 1, either there is an eager term U(x) such
that bϕD(U(x), x)c holds, so that

bϕD(u, x1)c −→ bϕD(e(U)(x1), x1)c ∧ bϕD(e(U)(x2), x2)c

or there is an eager term X(u) such that ¬bϕD(u, e(X)(u))c holds, so that

bϕD(u, e(X)(u))c −→ bϕD(u, x1)c ∧ bϕD(u, x2)c



Example 4. Consider the open formula ϕ(ao) := (∀xo)(t(x, a)
.
= 0ω) where

JtK(B,C) = 0n+11ω for the first n ∈ N with C(n+1) = B(0) if such n exists, and
such that JtK(B,C) = 0ω otherwise. The game induced by ((∀a)(ϕ( ϕ⊗ ϕ))D
is G(Φ)(X, 〈x1, x1, a〉), where Φ is

t((X)x1x2a, a)
.
= 0ω −→ t(x1, a)

.
= 0ω ∧ t(x2, a)

.
= 0ω

In this game, P begins by playing a function 23 → 2, O replies in 23, and then
P and O keep on alternatively playing moves of the expected type. A finite-state
winning strategy for O is easy to find. Let P begin with the function X. Fix some
a ∈ 2 and let i := X(0, 1, a). O replies (0, 1, a) to X. The further moves of P
are irrelevant, and O keeps on playing (−,−, 1− i) (the values of x1 and x2 are
irrelevant after the first round). This strategy ensures

t((X)x1x2a, a)
.
= 0ω ∧ ¬(t(x1, a)

.
= 0ω ∧ t(x2, a)

.
= 0ω)

Hence we can not realize contraction while remaining correct w.r.t. the stan-
dard model. On the other hand, Dialectica induces polarities generalizing the
usual polarities of linear logic (see e.g. [17]). Say that ϕ(a) is positive (resp.
negative) if ϕD(a) is of the form ϕD(a) = (∃uτ )ϕD(u,−, a) (resp. ϕD(a) =
(∀xσ)ϕD(−, x, a)). Quantifier-free formulae are thus both positive and negative.

Example 5. Polarized contraction

ϕ+ −( ϕ+ ⊗ ϕ+ and ψ− ` ψ− −( ψ− (ϕ+ positive, ψ− negative)

gives realizers of all instances of itself. Indeed, with say ϕD(a) = (∃u)ϕD(u,−, a)
and ψD(a) = (∀y)ψD(−, y, a), Λ(π1) (for π1 a M-projection on suitable types)
gives eager terms U(u, a) and Y(y, a) such that

ϕD(u,−, a) −(
(
ϕD
(
e(U)(u, a),−, a

)
⊗ ϕD

(
e(U)(u, a),−, a

))
and

(
ψD
(
−, e(Y)(y, a), a

) ` ψD
(
−, e(Y)(y, a), a

))
−( ψD(−, y, a)

We only have exponentials for polarized formulae. First, following the usual
polarities of linear logic, we can let

(!(ϕ+))D(a) := (∃u)(!(ϕ+))D(u,−, a) := (∃u)!ϕD(u,−, a)
(?(ψ−))D(a) := (∀y)(?(ψ−))D(−, y, a) := (∀x)?ψD(−, y, a)

(8)

Hence !ϕ is positive for a positive ϕ and ?ψ is negative for a negative ψ. The
following exponential contraction axioms are then interpreted by themselves:

!(ϕ+) −( !(ϕ+)⊗ !(ϕ+) and ?(ψ−) ` ?(ψ−) −( ?(ψ−)

Second, we can have exponentials !(ψ−) and ?(ϕ+) with the automata-based
reading of [26]. Positive formulae are seen as non-deterministic automata, and
?(−) on positive formulae is determinization on ω-words (McNaughton’s Theo-
rem [19]). Negative formulae are seen as universal automata, and !(−) on negative



ψ ` ψ′

ψ, !ϕ ` ψ′
ψ, !ϕ, !ϕ ` ψ′

ψ, !ϕ ` ψ′
ϕ,ϕ ` ϕ′

ϕ, !ϕ ` ϕ′
!ϕ ` ϕ, ?ψ
!ϕ ` !ϕ, ?ψ

ϕ, !ϕ ` ψ, ?ψ
ϕ ` !ϕ( ψ, ?ψ

ψ ` ψ′

ψ ` ?ϕ,ψ
′

ψ ` ?ϕ, ?ϕ,ψ
′

ψ ` ?ϕ,ψ
′

ϕ ` ϕ,ψ
ϕ ` ?ϕ,ψ

!ϕ,ϕ ` ?ψ

!ϕ, ?ϕ ` ?ψ

ϕ ` ϕ, ?ψ
ϕ ` (∀z)ϕ, ?ψ

Fig. 4. Exponential rules of PF.

formulae is co-determinization (an instance of the Simulation Theorem [10,20]).
Formulae which are both positive and negative (notation (−)±) correspond to
deterministic automata, and are called deterministic. We let

(!(ψ−))D(a) := (!(ψ−))D(−,−, a) := !(∀x)ψD(−, x, a)
(?(ϕ+))D(a) := (?(ϕ+))D(−,−, a) := ?(∃u)ϕD(u,−, a)

(9)

So !(ψ−) and ?(ϕ+) are always deterministic. The corresponding exponential
contraction axioms are interpreted by themselves. This leads to the following
polarized fragment PF (the deduction rules for exponentials are given on Fig. 4):

ϕ±, ψ± ::= I | ⊥ | α | !(ϕ−) | ?(ϕ+) | ϕ± ⊗ ψ± | ϕ± ` ψ± | ϕ±( ψ±

ϕ+, ψ+ ::= ϕ± | !(ϕ+) | (∃xσ)ϕ+ | ϕ+ ⊗ ψ+ | ϕ+ ` ψ+ | ϕ−( ψ+

ϕ−, ψ− ::= ϕ± | ?(ϕ−) | (∀xσ)ϕ− | ϕ− ⊗ ψ− | ϕ− ` ψ− | ϕ+( ψ−

3.3 The Full System

The formulae of the full system FS are given by the following grammar:

ϕ,ψ ::= ϕ+ | ϕ− | ϕ( ψ | ϕ⊗ ψ | ϕ` ψ | (∃xτ )ϕ | (∀xτ )ϕ

Deduction in FS is given by Fig. 2, Fig. 4 and (7). We extend b−c to FS with
b!ϕc := b?ϕc := bϕc. Hence bϕc holds when ` ϕ is derivable. The Dialectica
interpretation of FS is given by Fig. 3 and (8), (9) (still taking ϕD(a) := ϕD(a) :=
ϕ(a) for atoms). Note that (−)D preserves and reflects polarities.

Theorem 2 (Soundness). Let ϕ be closed with ϕD = (∃uτ )(∀xσ)ϕD(u, x).
From a proof of ϕ in FS one can extract an eager term u(x) such that FS proves
(∀xσ)ϕD(u(x), x).

As usual, proving ϕ ˛ ϕD requires extra axioms. Besides (LAC), we use the
following (linear) semi-intuitionistic principles (LSIP), with polarities as shown:

(∀a)(ϕ−(a)⊗ ψ−) −( (∀a)ϕ−(a)⊗ ψ−
(∀a)(ϕ−(a) ` ψ−) −( (∀a)ϕ−(a) ` ψ−

(∃a)ϕ−(a) ` ψ −( (∃a)(ϕ−(a) ` ψ)
(ψ−( (∃a)ϕ−(a)) −( (∃a)(ψ−( ϕ−(a))
((∀a)ϕ±(a)( ψ±) −( (∃a)(ϕ±(a)( ψ±)

(LSIP)



as well as the following deterministic exponential axioms (DEXP):

δ −( !δ and ?δ −( δ (δ deterministic)

All these axioms but (LAC) are true in the standard model (via b−c). Moreover:

Proposition 4. The axioms (LAC) and (LSIP) are realized in FS. The axioms
(DEXP) are realized in FS + (DEXP).

Theorem 3 (Characterization). We have

`FS+(LAC)+(LSIP)+(DEXP) ϕ(a) ˛ ϕD(a) (ϕ FS-formula)

`FS+(LSIP)+(DEXP) ϕ(a) ˛ ϕD(a) (ϕ PF-formula)

Corollary 1 (Extraction). Consider a closed formula ϕ := (∀xσ)(∃uτ )δ(u, x)
with δ deterministic. From a proof of ϕ in FS + (LAC) + (LSIP) + (DEXP) one
can extract a term t(x) such that |= (∀xσ)bδ(t(x), x)c.

Note that FS + (DEXP) proves δ ` (δ( ⊥) for all deterministic δ.

3.4 Translations of Classical Logic

There are many translations from classical to linear logic. Two canonical possi-
bilities are the (−)

T
and (−)

Q
-translation of [9] (see also [17,18]) targeting resp.

negative and positive formulae. Both take classical sequents to linear sequents
of the form !(−) ` ?(−), which are provable in FS thanks to the PF rules

ϕ, !ϕ ` ψ, ?ψ
ϕ ` !ϕ( ψ, ?ψ

ϕ ` ϕ, ?ψ
ϕ ` (∀z)ϕ, ?ψ

For the completeness of LMSO(C) (Thm. 6, §4), we shall actually require a
translation (−)L such that the linear equivalences (with polarities as displayed)

?ϕ+ ˛ bϕ+cL δ± ˛ bδ±cL !ψ− ˛ bψ−cL (10)

are provable possibly with extra axioms that we require to realize themselves. In
part., (10) implies (DEXP), and (−)L should give deterministic formulae. While

(−)
T

and (−)
Q

can be adapted accordingly, (10) induces axioms which make the
resulting translations equivalent to the deterministic (−)L-translation of [26]:

⊥L := ⊥ >L := I αL := α (ϕ ∨ ψ)L := ϕL ` ψL (∃xσ.ϕ)L := ?(∃xσ)ϕL

(ϕ→ ψ)L := ϕL( ψL (ϕ ∧ ψ)L := ϕL ⊗ ψL (∀xσ.ϕ)L := !(∀xσ)ϕL

Proposition 5. The scheme (10) is equivalent in FS to (DEXP)+(PEXP), where
(PEXP) are the following polarized exponential axioms, with polarities as shown:

?(ϕ+) −( ?!(ϕ+) !?(ψ−) −( !(ψ−)
!(ϕ−)( ?(ψ+) −( ?(ϕ−( ψ+) ?(ϕ+)( !(ψ−) −( !(ϕ+( ψ−)
?(ϕ+)⊗ ?(ψ+) −( ?(ϕ+ ⊗ ψ+) !(ϕ− ⊗ ψ−) −( !(ϕ−)⊗ !(ψ−)
?(ϕ+) ` ?(ψ+) −( ?(ϕ+ ` ψ+) !(ϕ− ` ψ−) −( !(ϕ−) ` !(ψ−)



Proposition 6. If ϕ is provable in many-sorted classical logic with equality then
FS + (DEXP) proves ϕL.

Proposition 7. The axioms (PEXP) are realized in FS + (LSIP) + (DEXP) +
(PEXP). Corollary 1 thus extends to FS + (LAC) + (LSIP) + (DEXP) + (PEXP).

Note that ϕL is deterministic and that bϕLc = ϕ.

4 Completeness

In §3 we devised a Dialectica-like (−)D providing a syntactic extraction proce-
dure for ∀∃(−)L-statements. In this Section, building on an axiomatic treatment
of MSO(M), we show that LMSO, an arithmetic extension of FS + (LSIP) +
(DEXP) + (PEXP) adapted from [26], is correct and complete w.r.t. Church’s
synthesis, in the sense that the provable ∀∃(−)L-statements are exactly the re-
alizable ones. We then turn to the main result of this paper, namely the com-
pleteness of LMSO(C) := LMSO + (LAC). We fix the set of atomic formulae

α ∈ At ::= tτ
.
= uτ | to ⊆̇ uo | E(to) | N(to) | S(to, uo) | 0(to) | to ≤̇ uo

4.1 The Logic MSO(M)

MSO(M) is many-sorted first-order logic with atomic formulae α ∈ At. Its sorts
and terms are those given in §2, and standard interpretation extends that of §2
as follows: ⊆̇ is set inclusion, E holds on B iff B is empty, N (resp. 0) holds on
B iff B is a singleton {n} (resp. the singleton {0}), and S(B,C) (resp. B ≤̇ C)
holds iff B = {n} and C = {n+ 1} for some n ∈ N (resp. B = {n} and C = {m}
for some n ≤ m). We write xι for variables xo relativized to N, so that (∃xι)ϕ
and (∀xι)ϕ stand resp. for (∃xo)(N(x) ∧ ϕ) and (∀xo)(N(x) → ϕ). Moreover,
xι ∈̇ t stands for xι ⊆̇ t, so that to ⊆̇ uo is equivalent to (∀xι)(x ∈̇ t→ x ∈̇ u).

The logic MSO+ [26] is MSO(M) restricted to the type o, hence with only
terms for Mealy machines of sort (2, . . . ,2; 2). The MSO of [26] is the purely
relational (term-free) restriction of MSO+. Recall from [26, Prop. 2.6], that for
each Mealy machine M : 2p → 2, there is an MSO-formula δM(X,x) such that
for all n ∈ N and all B ∈ (2ω)p, we have FM(B)(n) = 1 iff δM({n}, B) holds.

The axioms of MSO(M) are the arithmetic rules of Fig. 5, the axioms (7)
and the following, where M : 2p → 2 and y, z,X are fresh.

` (∀Xo
)(∀xι)

(
x ∈̇ fM(X) ↔ δM(x,X)

) ` (∃Xo)(∀xι) (x ∈̇ X ↔ ϕ)

ϕ, 0(z) ` ϕ[z/x], ϕ′ ϕ, S(y, z), ϕ[y/x] ` ϕ[z/x], ϕ′

ϕ ` (∀xι)ϕ,ϕ′

The theory MSO(M) is complete. Thus provability in MSO(M) and validity
in the standard model coincide. This extends [26, Thm. 2.11 (via [28])].

Theorem 4 (Completeness of MSO(M)). For closed MSO(M)-formulae ϕ,
we have |= ϕ if and only if `MSO(M) ϕ.



E(t) ` t ⊆̇ u

ϕ ` t ⊆̇ z, ϕ′

ϕ ` E(t), ϕ′
ϕ, z ⊆̇ t ` E(z), z

.
= t, ϕ′

ϕ ` N(t),E(t), ϕ′
ϕ,N(z), z ⊆̇ t ` z ⊆̇ u, ϕ′

ϕ ` t ⊆̇ u, ϕ′ N(t),E(t) `

` t ⊆̇ t t ⊆̇ u, u ⊆̇ v ` t ⊆̇ v t ⊆̇ u, u ⊆̇ t ` t
.
= u N(t), u ⊆̇ t ` E(u), u

.
= t S(t, u), 0(u) `

N(t) ` t ≤̇ t t ≤̇ u, u ≤̇ v ` t ≤̇ v t ≤̇ u, u ≤̇ t ` t
.
= u S(t, u) ` t ≤̇ u 0(t) ` N(t)

ϕ, 0(z) ` ϕ′

ϕ ` ϕ′ S(u, v), t ≤̇ v ` t
.
= v, t ≤̇ u t ≤̇ u ` N(t) t ≤̇ u ` N(u) S(t, u) ` N(t)

ϕ,S(t, z) ` ϕ′

ϕ ` ϕ′ 0(t), 0(u) ` t
.
= u S(t, u), S(t, v) ` u

.
= v S(u, t), S(v, t) ` u

.
= v S(t, u) ` N(u)

Fig. 5. The Arithmetic Rules of MSO(M) and LMSO (with terms of sort o and z fresh).

4.2 The Logic LMSO

The system LMSO is FS+ (LSIP) + (DEXP) + (PEXP) extended with Fig. 5 and

` (∀Xo
)(∀xι)

(
x ∈̇ fM(X) ˛ δLM(x,X)

) ` ?(∃Xo)!(∀xι) (x ∈̇ X ˛ δ±)

!ϕ, 0(z) ` ϕ−[z/x], ?ϕ′ !ϕ,S(y, z), !ϕ−[y/x] ` ϕ−[z/x], ?ϕ′

!ϕ ` (∀xι)ϕ−, ?ϕ′

Let LMSO(C) := LMSO + (LAC). Note that `MSO(M) bϕc whenever `LMSO ϕ.
Proposition 6 extends so that similarly as in [26] we have

Proposition 8. If `MSO(M) ϕ then `LMSO ϕ
L. In part., for a realizable instance

of Church’s synthesis (∀xσ)(∃uτ )ϕ(u, x), we have `LMSO (∀xσ)(∃uτ )ϕL(u, x).

Moreover, the soundness of (−)D extends to LMSO. It follows that LMSO(C) is
coherent and proves exactly the realizable ∀∃(−)L-statements.

Theorem 5 (Soundness). Let ϕ be closed with ϕD = (∃uτ )(∀xσ)ϕD(u, x).
From a proof of ϕ in LMSO(C) one can extract an eager term u(x) such that
LMSO proves (∀xσ)ϕD(u(x), x).

Corollary 2 (Extraction). Consider a closed formula ϕ := (∀xσ)(∃uτ )δ(u, x)
with δ deterministic. From a proof of ϕ in LMSO(C) one can extract a term t(x)
such that |= (∀xσ)bδ(t(x), x)c.

4.3 Completeness of LMSO(C)

The completeness of LMSO(C) follows from a couple of important facts. First,
LMSO(C) proves the elimination of linear double negation, using (via Thm. 3)
the same trick as in [26].

Lemma 1. For all LMSO-formula ϕ, we have (ϕ( ⊥)( ⊥ `LMSO(C) ϕ.



Combining Lemma 1 with (LAC) gives classical linear choice.

Corollary 3. (∀f)(∃x)ϕ(x, (f)x) `LMSO(C) (∃x)(∀y)ϕ(x, y).

The key to the completeness of LMSO(C) is the following quantifier inversion.

Lemma 2. (∀xσ)ϕ(tτ (x), x) `LMSO(C) (∃uτ )(∀xσ)ϕ(u, x), where t(x) is eager.

Lemma 2 follows (via Cor. 3) from the fixpoints on eager machines (Prop. 3). Fix
an eager tτ (xσ). Taking the fixpoint of J(f)t(x)K : JσK × J(σ)τK →EM JσKJ(σ)τK

gives a term vσ(f (σ)τ ) such that v(f)
.
= @(f, t(v(f))). Then conclude with

(∀xσ)ϕ(t(x), x) `LMSO ϕ
(
t(v(f)) , v(f)

)
`LMSO ϕ

(
t(v(f)) , @(f, t(v(f)))

)
`LMSO (∃uτ )ϕ

(
u, (f)u

)
`LMSO (∀f (σ)τ )(∃uτ )ϕ

(
u, (f)u

)
`LMSO(C) (∃uτ )(∀xσ)ϕ(u, x)

Completeness of LMSO(C) then follows via (−)D, Proposition 5, completeness of
MSO(M) and Büchi-Landweber Theorem 1. The idea is to lift a f.s. winning P-
strat. in G(bϕD(u, x)c)(u, x) to a realizer of ϕD = (∃u)(∀x)ϕD(u, x) in LMSO(C).

Theorem 6 (Completeness of LMSO(C)). For each closed formula ϕ, either
`LMSO(C) ϕ or `LMSO(C) ϕ( ⊥.

5 Conclusion

We provided a linear Dialectica-like interpretation of LMSO(C), a linear vari-
ant of MSO on ω-words based on [26]. Our interpretation is correct and com-
plete w.r.t. Church’s synthesis, in the sense that it proves exactly the realiz-
able ∀∃(−)L-statements. We thus obtain a syntactic extraction procedure with
correctness proof internalized in LMSO(C). The system LMSO(C) is moreover
complete in the sense that for every closed formula ϕ, it proves either ϕ or its
linear negation. While completeness for a linear logic necessarily collapse some
linear structure, the corresponding axioms (DEXP) and (PEXP) do respect the
structural constraints allowing for realizer extraction from proofs. The complete-
ness of LMSO(C) contrasts with that of the classical system MSO(M), since the
latter has provable unrealizable ∀∃-statements. In particular, proof search in
LMSO(C) for ∀∃(−)L-formulae and their negation is correct and complete w.r.t.
Church’s synthesis. The design of the Dialectica interpretation also clarified the
linear structure of LMSO, as it allowed us to decompose it starting from a system
based on usual full intuitionistic linear logic (see e.g. [3] for recent references on
the subject).

An outcome of witness extraction for LMSO(C) is the realization of a simple
version of the fan rule (in the usual sense of e.g. [16]). We plan to investigate
monotone variants of Dialectica for our setting. Thanks to the compactness
of Σω, we expect this to allow extraction of uniform bounds, possibly with
translations to stronger constructive logics than LMSO.
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A Proofs of §2 (Preliminaries)

We decompose Prop. 2 as follows.

Proposition 9 (Prop. 2).

(1) If F : Σ →E Γ is eager and G : Γ →S ∆ is causal then G ◦ F : Σ →E ∆ is
eager.

(2) If F : Σ →E Γ is eager and G : ∆ →S Σ is causal then F ◦G : ∆ →E Γ is
eager.

Proof. Assume that F : Σ →E Γ is induced by f : Σ∗ → Γ .

(a) Assume that G : Γ →S ∆ is induced by g : Γ+ → ∆. Then

(F◦G)(B)(n) = F (G(B))(n) = f(G(B)(0)·. . .·G(B)(n−1)) = f(g(B(0))·. . .·g(B�n))

So (F ◦G)(n) only depends on B(0), . . . , B(n− 1).
(b) Assume that G : ∆→S Σ is induced by g : ∆∗ → Γ . Then

(G◦F )(B)(n) = G(F (B))(n) = g(F (B)(0)·. . .·F (B)(n)) = g(f(ε)·. . .·f(B�n))

So (G ◦ F )(n) only depends on B(0), . . . , B(n− 1).

A.1 Proof of Proposition 3 (Fixpoints for Eager Functions)

We split Proposition 3 into two statements.

Proposition 10. For each F : Σ×Γ →E Σ
Γ there is a fix(F ) : Γ →E Σ

Γ such
that

fix(F )(C) = F
(
e(fix(F ))(C) , C) (for all C ∈ Γω)

Consider an eager function

F : Σ × Γ −→E Σ
Γ

We are going to define a causal function

fix(F ) : Γ −→E Σ
Γ

such that for all C ∈ Γω,

fix(F )(C) = F
(
e(fix(F ))(C) , C) = F

(
@(fix(F )(C), C) , C) ∈

(
ΣΓ
)ω

Intuitively, fix(F )(C) is the fixpoint of the map
(
B 7→ F (B,C)

)
. Assume first

that F is induced by

f̃ :
⋃
n∈N

(
Σn × Γn+1

)
−→ Σ ' (Σ × Γ )

∗ −→ ΣΓ



and let us look at how

fix(F ) : Γ −→M Σ ' Γ −→E Σ
Γ

can be induced induced by a function h̃ : Γ+ → Σ defined from f̃ . We should
have

h̃(b1) = f̃(ε, b1) = a1
h̃(b1b2) = f̃(f̃(b1, ε), b1b2) = f̃(a1, b1b2) = a2

h̃(b1b2b3) = f̃(f̃(b1, ε) · f̃(f̃(ε, b1), b1b2) , b1b2b3) = f̃(a1a2, b1b2b3) = a3
...

h̃(b1 . . . bnbn+1) = f̃(a1 . . . an, b1 . . . bnbn+1) = an+1

That is, for n > 0, h̃(b1 . . . bn) = an, where the ak’s are given by the recurrence:

a1 := f̃(ε, b1) and ak+1 := f̃(a1 . . . ak, b1 . . . bkbk+1)

In terms of

f : (Σ × Γ )
∗ −→ ΣΓ such that F (B,C)(n) = f(B�n,C�n)

this amounts to define

h : Γ ∗ −→ ΣΓ such that fix(F )(C)(n) = h(C�n)

as follows:

h(ε) := f(ε) = g1 ∈ ΣΓ

h(b1) := f(a1, b1) = g2 ∈ ΣΓ

h(b1b2) := f(a1a2, b1b2) = g3 ∈ ΣΓ

...
h(b1 . . . bn) := f(a1 . . . an, b1 . . . bn) = gn+1 ∈ ΣΓ

where ak = gk(bk), that is

a1 := @(f(ε), b1) and ak+1 := @(f(a1 . . . ak, b1 . . . bk), bk+1)

This easily gives an eager machine for fix(F ) given an eager machine for F .

Lemma 3. Consider a f.s. eager function

F : Σ × Γ −→EM ΣΓ

induced by an eager machine

(E : Σ × Γ → ΣΓ ) = (Q, qı, ∂, λ)

Then
fix(F ) : Γ −→EM ΣΓ



is induced by the eager machine

(H : Γ → ΣΓ ) = (Q, qı, ∂H, λ)

where
∂H : Q× Γ −→ Q

(q , b) 7−→ ∂(q , (@(λ(q), b), b))

Proposition 10 will mostly be used in the following context. Consider a Mealy
term u(z, y) of sort (ς, σ; τ) and an eager term t(x, y) of sort (τ, σ; ς). Intuitively,
the term u(t(x, y), y) is “eager in x”, in the sense that it can be seen as an eager
Moore function

JτK× JσK −→EM JτKJσK

Lemma 4. Given

F : Σ × Γ −→E Θ
and G : Θ ×Σ × Γ −→E (∆Γ )Θ

there is an eager H : Σ × Γ →E ∆
Γ such that such that for all B ∈ Σω and all

C ∈ Γω, we have

@
(
H(B,C), C

)
= @

(
G
(
F (B,C), B, C

)
, F (B,C) , C

)
Moreover H is finite-state whenever F and G are finite-state.

Proof. Assume that F and G are induced respectively by

f : (Σ × Γ )
∗ −→ Θ

g : (Θ ×Σ × Γ )
∗ −→ (∆Γ )Θ

Then for all B ∈ Σω, all C ∈ Γω and all n ∈ N we have

@
(
G
(
F (B,C), B,C

)
, F (B,C) , C

)
(n) = @

(
G
(
F (B,C), B,C

)
(n) , F (B,C)(n) , C(n)

)
= @

(
g
(
F (B,C)�n,B�n,C�n

)
, f(B�n,C�n) , C(n)

)
Let h : (Σ × Γ )

∗ → ∆Γ take (a, b) ∈ (Σ × Γ )
∗

to(
b 7−→ @

(
g
(
f(ε) · · · f(a, b), a, b

)
, f(a, b) , b

))
∈ ∆Γ

and let H : Σ×Γ →E ∆
Γ be the eager function induced by h. Then we are done

since
@(H(B,C), C)(n) = @(h(B�n,C�n), C(n))

ut

In particular, given F as in Lemma 4 and given G : Θ × Γ →S ∆, since

ΛG : Θ × Γ →E ∆
ΓΘ we obtain H such that

@
(
H(B,C), C

)
= @

(
ΛG

(
F (B,C), C

)
, F (B,C) , C

)
= G(F (B,C), C)



Corollary 4. If G : Θ × Γ →S ∆ is causal and F : Σ × Γ →E Θ is eager, then
there is an eager H : Σ × Γ →E ∆

Γ such that for all B ∈ Σω and all C ∈ Γω,
we have

@(H(B,C), C) = G(F (B,C), C)

Moreover, H is finite-state whenever so are F and G.

Returning to u(z, y) and t(x, y), consider H defined from G := JuK and
F := JtK as in Corollary 4. Note that H is finite state since so are JuK and JtK.
By applying Proposition 10 to

H : Σ × Γ −→EM ΣΓ

we thus obtain a fixpoint of
(
x 7−→ u(t(x, y), y)

)
since

fix(H) : Γ −→EM ΣΓ

is such that

JuK
(
JtK
(
e(fix(H))(C), C

)
, C
)

= e(H)(e(fix(H))(C), C)

= e(fix(H))(C)

B Proofs of §3 (A Monadic Linear Dialectica-like
Interpretation)

B.1 Soundness of Dialectica (Theorem 2)

Notation 7. Consider formulae ϕ(a) and ψ(a) with free variable aυ and let

ϕD(a) = (∃uτ )(∀xσ)ϕD(u, x, a) and ψD(a) = (∃vκ)(∀yς)ψD(v, y, a)

We write
ϕ(a) −p→Ax ψ(a)

if there are eager terms

v(u, y, a) of sort (τ, ς, υ; (κ)υτ)
and x(u, y, a) of sort (τ, ς, υ; (σ)υςτ)

such that

ϕD
(
u , @(x(u, y, a), u, y, a) , a

)
`FS+Ax ψD

(
@(v(u, y, a), u, a) , y , a

)
In particular, ϕ(a) −p→ ψ(a) stands for −p→ w.r.t. the system FS without further
axioms.

We will prove Theorem 2 with the following inductive invariant. Let

⊗1≤i≤0ϕi(a) := I and `1≤j≤0 ψj(a) := ⊥



Theorem 8. Assume given ϕ(a) = ϕ1(a), . . . , ϕn(a) and ψ(a) = ψ1(a), . . . , ψm(a)
with free variables among a. The we have

ϕ1(a), . . . , ϕn(a) `FS+Ax ψ1(a), . . . , ψm(a) =⇒
(
⊗iϕi(a)

)
−p→Ax

(`j ψj(a)
)

Remark 1. Note that

ϕ(a) −p→Ax ψ(a) ⇐⇒ ϕ′(a) −p→Ax ψ
′(a)

whenever (
(∀a)

(
ϕ(a) −( ψ(a)

))D
=

(
(∀a)

(
ϕ′(a) −( ψ′(a)

))D
We first list some (expected) structure of −p→Ax and then give the proof of
Theorem 8.

Basic Structure.

Lemma 5. ϕ(a) −p→Ax ϕ(a).

Proof. We have
ϕD(aυ) = (∃uτ )(∀xσ)ϕD(u, x, a)

and we have to provide eager terms

u(u, x, a) of sort (τ, σ, υ; (τ)υτ)
and x(u, y, a) of sort (τ, σ, υ; (σ)υστ)

such that

ϕD
(
u , @(x(u, x, a), u, x, a) , a

)
`FS+Ax ϕD

(
@(u(u, x, a), u, a) , x , a

)
For x(u, x, a), consider the M-projection

[π] : JτK× JσK× JυK −→M JσK

We obtain x(u, x, a) by composising the eager term for

Λ([π]) : JτK× JσK× JυK −→EM JσKJτK×JσK×JυK

with the M-iso
JσKJτK×JσK×JυK ' ((JσKJυK)JσK)JτK

For u(u, x, a), we take the eager term obtained by composing the eager function

JτK× JυK
Λ([π])−→EM JσKJτK×JυK '−→M (JσKJυK)JτK

(where π is a suitable projection) with the Mealy projection

JτK× JσK× JυK −→M JτK× JυK

Then we are done since FS proves

` @(u(u, x, a), u, a)
.
=σ u and ` @(x(u, x, a), u, x, a)

.
=σ x

ut



Proposition 11.

ϕ0(a) −p→Ax ϕ1(a) =⇒ ϕ1(a) −p→Ax ϕ2(a) =⇒ ϕ0(a) −p→Ax ϕ2(a)

The proof of Proposition 11 relies on the fixpoints of (finite-state) eager functions
given by Proposition 3 (see also §A.1). For legibility reasons, we may refrain from
writing free variables of terms explicitely and manipulate explicit substitutions.
In such a case, given a term t(. . . , x, . . . ) with free variable x and a term u of
the appropriate sort, we write t[u/x] for the substitution of x by u in t. Let

ϕD0 (aυ) = (∃uτ00 )(∀xσ0
0 )(ϕ0)D(u0, x0, a)

ϕD1 (aυ) = (∃uτ11 )(∀xσ1
1 )(ϕ1)D(u1, x1, a)

ϕD2 (aυ) = (∃uτ22 )(∀xσ2
2 )(ϕ2)D(u2, x2, a)

By assumption, there are eager terms

u1(u0, x1, a) of sort (τ0, σ1, υ; (τ1)υτ0)
x0(u0, x1, a) of sort (τ0, σ1, υ; (σ0)υσ1τ0)
u2(u1, x2, a) of sort (τ1, σ2, υ; (τ2)υτ1)

and x1(u1, x2, a) of sort (τ1, σ2, υ; (σ1)υσ2τ1)

such that

(ϕ0)D
(
u0 , (x0)u0x1a , a

)
`FS+Ax (ϕ1)D

(
(u1)u0a , x1 , a

)
and (ϕ1)D

(
u1 , (x1)u1x2a , a

)
`FS+Ax (ϕ2)D

(
(u2)u1a , x2 , a

)
From this data, our goal is to produce eager terms

v(u0, x2, a) of sort (τ0, σ2, υ; (τ2)υτ0)
and y(u0, x2, a) of sort (τ0, σ2, υ; (σ0)υσ2τ0)

such that

(ϕ0)D
(
u0 , (y)u0x2a , a

)
`FS+Ax (ϕ2)D

(
(v)u0a , x2 , a

)
We would like v and y to satisfy the following equations in FS:

(y)u0x2a
.
= (x0)u0x1a

(v)u0a
.
= (u2)u1a

where
u1 := (u1)u0a
x1 := (x1)u1x2a

But the variables xσ1
1 and uτ11 , which are free in u1 and x1, should not occur in

the terms y, v. We are thus lead to solve the following equations in FS

(y)u0x2a
.
= (x0[y1/x1])u0y1a

(v)u0a
.
= (u2[v1/u1])v1a

where
v1

.
= (u1[y1/x1])u0a

y1
.
= (x1[v1/u1])v1x2a

(11)

with terms
y1(u0, x2, a) of sort (τ0, σ2, υ;σ1)
v1(u0, x2, a) of sort (τ0, σ2, υ; τ1)



Assuming (11) satisfied, we are done since

(ϕ0)D
(
u0 , (y)u0x2a , a

)
`FS (ϕ0)D

(
u0 , (x0[y1/x1])u0y1a , a

)
`FS+Ax (ϕ1)D

(
(u1[y1/x1])u0a , y1 , a

)
`FS (ϕ1)D

(
v1 , (x1[v1/u1])v1x2a , a

)
`FS+Ax (ϕ2)D

(
(u2)v1a , x2 , a

)
`FS (ϕ2)D

(
(v)u0a , x2 , a

)
We now turn to the resolution of (11). We first discuss the construction of

y1 and v1 and then turn to y and v.

Definition of y1(u0, x2, a) and v1(u0, x2, a). Note that if y1 satisfies

`FS y1
.
=

(
x1[(u1[y1/x1])u0a/u1]

) (
(u1[y1/x1])u0a

)
x2 a (12)

then a by taking v1 := (u1[y1/x1])u0a one obtains a term satisfying the corre-
sponding equation in (11). The Mealy term

t(u, u0, x2, a) :=
(
x1[(u)u0a/u1]

)(
(u)u0a

)
x2 a

induces a finite-state causal function

G : J(τ1)υτ0K×
(
Jτ0K× Jσ2K× JυK

)
−→E Jσ1K

while the eager term u1(u0, x1, a) induces (via Prop. 9) a f.s. eager function

F : Jσ1K×
(
Jτ0K× Jσ2K× JυK

)
−→EM J(τ1)υτ0K

By Corollary 4, there is a (f.s.) eager function

H : Jσ1K×
(
Jτ0K× Jσ2K× JυK

)
−→EM Jσ1KJτ0K×Jσ2K×JυK

such that, for all X1 ∈ Jσ1Kω, U0 ∈ Jτ0Kω, X2 ∈ Jσ2Kω and B ∈ JυKω,

e(H)(X1, U0, X2, B) = G
(
F (X1, U0, X2, B) , U0, X2, B

)
Take the fixpoint

fix(H) : Jτ0K× Jσ2K× JυK −→EM Jσ1KJτ0K×Jσ2K×JυK

of H given by Proposition 10. We thus get

fix(H)(U0, X2, B) = H
(
e(fix(H))(U0, X2, B) , U0, X2, B

)
Note that fix(H) is finite-sate by Lemma 3. Let y1 be the Mealy term of sort
(τ0, σ2, υ;σ1) for e(fix(H))(−,−,−). It follows that y1 satisfies (12) since

`FS y1(u0, x2, a)
.
= t

(
u1
(
u0 , y1(u0, x2, a) , a

)
, u0, x2, a

)



Definition of y(u0, x2, a). We have to provide a term

y(u0, x2, a) (τ0, σ2, υ; (σ0)υσ2τ0) of sort

First, since x0 is eager it follows from Prop. 9 that the term

x0(u0 , y1(u0, x2, a) , a)

is eager. Let

F0 := Jx0(u0 , y1(u0, x2, a) , a)K : Jτ0K× Jσ2K× JυK −→EM J(σ0)υσ1τ0K

and

G0 := J(f)u0y1aK : J(σ0)υσ1τ0K×
(
Jτ0K× Jσ2K× JυK

)
−→M Jσ0K

By Corollary 4 there is a finite-state eager function

H0 : Jτ0K× Jσ2K× JυK −→EM Jσ0KJτ0K×Jσ2K×JυK

such that for U0 ∈ Jτ0Kω, X2 ∈ Jσ2Kω and B ∈ JυKω,

e(H0)(U0, X2, B) = G0(F0(U0, X2, B), U0, X2, B)

Letting y(u0, x2, a) be the term for e(H0), we thus get

`FS (y)u0x2a
.
= (x0[y1/x1])u0y1a

Definition of v(u0, x2, a). Our goal is to find a finite-state eager

V : Jτ0K× Jσ2K× JυK −→EM (Jτ2KJυK)Jτ0K

with term v(u0, x2, a) such that

@(v(u0, x2, a) , u0 , a) = @
(
u2
(
v1(u0, x2, a), x2, a

)
, v1(u0, x2, a), a

)
Let Σ := Jσ2K, Γ := Jτ0K× JυK and Θ := Jτ1K. We apply Lemma 4 to

F := Jv1(u0, x2, a)K : Σ × Γ −→EM Θ
and G := Ju2(u1, x2, a)K : Θ ×Σ × Γ −→EM (∆Γ )Θ

Then we are done since we obtain obtain a finite-state eager

V : Σ × Γ −→EM ∆Γ

with term v(u0, x2, a) such that

`FS @
(
v(u0, x2, a), u0, a

) .
= @

(
u2
(
v1(u0, x2, a), x2, a

)
, v1(u0, x2, a), a

)
This concludes the proof of Proposition 11. ut



Monoidal Structure.

Lemma 6.

(1) If ϕ(a) −p→Ax ϕ
′(a) and ψ(a) −p→Ax ψ

′(a), then ϕ(a) ⊗ ψ(a) −p→Ax ϕ
′(a) ⊗

ψ′(a).
(2) If ϕ(a) −p→Ax ϕ

′(a) and ψ(a) −p→Ax ψ
′(a), then ϕ(a) ` ψ(a) −p→Ax ϕ

′(a) `
ψ′(a).

(3) ϕ(a)⊗ ψ(a) −p→Ax ψ(a)⊗ ϕ(a).
(4) ϕ(a) ` ψ(a) −p→Ax ψ(a) ` ϕ(a).
(5) ϕ(a)⊗ I −p→Ax ϕ(a).
(6) ϕ(a) −p→Ax ⊥` ϕ(a).
(7) (ϕ(a) ` ψ(a))⊗ γ(a) −p→Ax ϕ(a) ` (ψ(a)⊗ γ(a))

Exponential Structure.

Lemma 7.

(1) !ϕ(a) −p→Ax ϕ(a).
(2) !ϕ(a) −p→Ax I.
(3) !ϕ(a) −p→Ax !ϕ(a)⊗ !ϕ(a).
(4) ϕ(a) −p→Ax ?ϕ(a).
(5) ⊥ −p→Ax ?ϕ(a).
(6) ?ϕ(a) ` ?ϕ(a) −p→Ax ?ϕ(a).

Proof. Let
ϕD(aυ) = (∃uτ )(∀xσ)ϕD(u, x, a)

The cases of !(ϕ−) and ?(ϕ+) are easy. The cases of !(ϕ+) and ?(ϕ−) amount
to the corresponding rules in PF and follow by taking terms similar to those of
Lemma 5. We only detail some cases. We first consider cases of !(ϕ−) and ?(ϕ+).

(1) We have(
(∀a)

(
!ϕ−(a) −( ϕ−(a)

))D
=

(∀x1)(∀a)
(
!(∀x0)ϕD(−, x0, a) −( ϕD(−, x1, a)

)
and the result follows from

ϕD(−, x1, a) ` ϕD(−, x1, a)

(∀x0)ϕD(−, x0, a) ` ϕD(−, x1, a)

!(∀x0)ϕD(−, x0, a) ` ϕD(−, x1, a)

(2) We have(
(∀a)

(
!ϕ−(a) −( I

))D
= (∀a)

(
!(∀x)ϕD(−, x, a) −( I

)
and the result follows from the that FS proves !ψ( I for all ψ.



(3) We have

(
(∀a)

(
!ϕ−(a) −( !ϕ−(a)⊗ !ϕ−(a)

))D
=

(∀a)
(
!(∀x)ϕD(−, x, a) −( !(∀x)ϕD(−, x, a)⊗ !(∀x)ϕD(−, x, a)

)
and the result follows from the that FS proves !ψ −( !ψ ⊗ !ψ for all ψ.

We now turn to cases of !(ϕ+) and ?(ϕ−).

(1) We have

(
(∀aυ)

(
!ϕ+(a) −( ϕ+(a)

))D
=

(∃u(τ)υτ1 )(∀uτ0)(∀aυ)
(
!ϕD(u0,−, a) −( ϕD((u1)u0a,−, a)

)
and we conclude as in Lemma 5, using that FS proves !ψ( ψ for all ψ.

(2) We have(
(∀a)

(
!ϕ+(a) −( I

))D
= (∀u)(∀a)

(
!ϕD(u,−, a) −( I

)
and we conclude from the fact that FS proves !ψ( I for all ψ.

(3) We have

(
(∀a)

(
!ϕ+(a) −( !ϕ+(a)⊗ !ϕ+(a)

))D
=

(∃u1)(∃u2)(∀u0)(∀a)
(
!ϕD(u0,−, a) −( !ϕD((u1)u0a,−, a)⊗!ϕD((u2)u0a,−, a)

)
and we conclude as in Lemma 5, using that FS proves !ψ −( !ψ⊗ !ψ for all
ψ. ut

Lemma 8.

(1) If !γ(a) −p→Ax ϕ(a) ` ?ψ(a) then !γ(a) −p→Ax !ϕ(a) ` ?ψ(a).
(2) If !γ(a)⊗ ϕ(a) −p→Ax ?ψ(a) then !γ(a)⊗ ?ϕ(a) −p→Ax ?ψ(a).

Proof. First, note that !γ(a) is positive and that ?ψ(a) is negative. We thus have

(!γ)D(a) = (∃w)(!γ)D(w,−, a) and (?ψ)D(a) = (∀y)(?ψ)D(−, y, a)

where (!γ)D (resp. (?ψ)D) is an !-formula (resp. a ?-formula).

(1) Consider first the case of ϕ negative. We have

(!ϕ)D(a) = (!ϕ)D(−,−, a) = !(∀x)ϕD(−, x, a)

By assumption, FS + Ax proves

(!γ)D(w,−, a) ` ϕD(−, x, a) ` (?ψ)D(−, y, a)



and the result follows from

(!γ)D(w,−, a) ` ϕD(−, x, a), (?ψ)D(−, y, a)

(!γ)D(w,−, a) ` (∀x)ϕD(−, x, a), (?ψ)D(−, y, a)

(!γ)D(w,−, a) ` !(∀x)ϕD(−, x, a), (?ψ)D(−, y, a)

Consider now the case of ϕ positive. We have

(!ϕ)D(a) = (∃u)(!ϕ)D(u,−, a) = (∃u)!ϕD(u,−, a)

By assumption there is an eager term u(w, y, a) such that

(!γ)D(w,−, a) `FS+Ax ϕD(@(u(w, y, a), w, a),−, a) ` (?ψ)D(−, y, a)

and the result follows from

(!γ)D(w,−, a) ` ϕD(@(u(w, y, a), w, a),−, a), (?ψ)D(−, y, a)

(!γ)D(w,−, a) ` !ϕD(@(u(w, y, a), w, a),−, a), (?ψ)D(−, y, a)

(2) Consider first the case of ϕ positive. We have

(?ϕ)D(a) = (?ϕ)D(−,−, a) = ?(∃u)ϕD(u,−, a)

By assumption, FS + Ax proves

(!γ)D(w,−, a)⊗ ϕD(u,−, a) ` (?ψ)D(−, y, a)

and the result follows from

(!γ)D(w,−, a), ϕD(u,−, a) ` (?ψ)D(−, y, a)

(!γ)D(w,−, a), (∃u)ϕD(u,−, a) ` (?ψ)D(−, y, a)

(!γ)D(w,−, a), ?(∃u)ϕD(u,−, a) ` (?ψ)D(−, y, a)

Consider now the case of ϕ negative. We have

(?ϕ)D(a) = (∀x)(?ϕ)D(−, x, a) = (∀x)?ϕD(−, x, a)

By assumption there is an eager term u(w, y, a) such that

(!γ)D(w,−, a)⊗ ϕD(−,@(x(w, y, a), w, y, a), a) `FS+Ax (?ψ)D(−, y, a)

and the result follows from

(!γ)D(w,−, a), ϕD(−,@(x(w, y, a), w, y, a), a) ` (?ψ)D(−, y, a)

(!γ)D(w,−, a), ?ϕD(−,@(x(w, y, a), w, y, a), a) ` (?ψ)D(−, y, a)
ut



Closed Structure.

Lemma 9.

(1) We have γ(a)⊗ ϕ(a) −p→Ax ψ(a) if and only if γ(a) −p→Ax ϕ(a)( ψ(a).
(2) If γ(a)⊗ !ϕ(a) −p→Ax ψ(a)`?γ′(a) then γ(a) −p→Ax (!ϕ(a)( ψ(a))`?γ′(a).

Proof. Let
ϕD(a) = (∃u)(∀x)ϕD(u, x, a)
ψD(a) = (∃v)(∀y)ψD(v, y, a)
γD(a) = (∃w)(∀z)γD(w, z, a)

(1) Note that(
ϕ(a)( ψ(a)

)D
= (∃v, x)(∀u, y)

(
ϕD
(
u, (x)uy, a

)
( ψD

(
(v)u, y, a

))
First, note that(

(∀a)
(
γ ⊗ ϕ −( ψ

))D
=

(∃v, z, x)(∀w, u, y, a)
(
γD
(
w, (z)wuya, a

)
⊗ϕD

(
u, (x)wuya, a

)
−( ψD

(
(v)wua, y, a

))
and(

(∀a)
(
γ −( (ϕ( ψ)

))D
=

(∃v, x, z)(∀w, u, y, a)
(
γD
(
w, (z)wuya, a

)
−(

(
ϕD
(
u, (x)uywa, a

)
( ψD

(
(v)uwa, y, a

)))
So both formulae have the same realizers modulo (ΣΓ )∆ 'M (Σ∆)Γ . The
result then follows from

γD, ϕD ` ψD
γD ` ϕD ( ψD

and γD ` ϕD ( ψD

ϕD ` ϕD ψD ` ψD
ϕD ( ψD, ϕD ` ψD

γD, ϕD ` ψD
γD ⊗ ϕD ` ψD

(2) Note that !ϕ is positive and that ?γ′ is negative, so that

(!ϕ)D(a) = (∃u)(!ϕ)D(u,−, a) and (?γ′)D(a) = (∀z′)(?γ′)D(−, z′, a)

where (!ϕ)D (resp. (?γ′)D) is an !-formula (resp. a ?-formula). We have(
ψ(a) ` ?γ′(a)

)D
= (∃v)(∀y, z′)

(
ψD(v, y, a) ` (?γ′)D(−, z′, a)

)
and

(
!ϕ(a)( ψ(a)

)D
= (∃v)(∀u, y)

(
(!ϕ)D(u,−, a)( ψD((v)u, y, a)

)
It follows that

γ(a)⊗!ϕ(a) −p→Ax ψ(a)`?γ′(a) =⇒ γ(a) −p→Ax (!ϕ(a)( ψ(a))`?γ′(a)



since(
γ(a)⊗ !ϕ(a) −( ψ(a) ` ?γ′(a)

)D
=

(∃v, z)(∀w, u, y, z′)
(
γD(w, (z)wuyz′, a)⊗(!ϕ)D(u,−, a) −( ψD((v)wu, y, a)`(?γ′)D(−, z′, a)

)
and(

γ(a) −(
(
!ϕ(a)( ψ(a)

)` ?γ′(a)
)D

=

(∃v, z)(∀w, u, y, z′)
(
γD(w, (z)wuyz′, a) −(

(
(!ϕ)D(u,−, a)( ψD((v)wu, y, a)

)`(?γ′)D(−, z′, a)
)

ut

Quantifiers.

Lemma 10.

(1) ϕ(a, t(a)) −p→Ax (∃z)ϕ(a, z).
(2) (∀z)ϕ(a, z) −p→Ax ϕ(a, t(a)).

Proof. Let
ϕD(a, z) = (∃uτ )(∀xσ)ϕD(u, x, a, z)

We thus have

(∃z.ϕ(a, z))D = (∃u)(∃z)(∀x)ϕD(u, x, a, z) and (∀z.ϕ(a, z))D = (∃u(τ)κ)(∀x)(∀z)ϕD((u)z, x, a, z)

In both cases we assume aυ, zκ and t(a) to be of sort (υ;κ)

(1) We have to find eager terms u(u, x, a), z(u, x, a) and x(u, x, a) such that

ϕD(u,@(x(u, x, a), u, x, a), a, t(a)) −( ϕD(@(u(u, x, a), u, a), x, a,@(z(u, x, a), a))

We let u and x be given as in Lemma 5. As for z(u, x, a), we take the eager
term obtained from the composite

JτK× JσK× JυK
[π]−→M JυK

Λ(t)−→EM JκKJυK

where [π] is a suitable Mealy projection.
(2) Note that the variable u now has type (τ)κ. We have to find eager terms

u(u, x, a), z(u, x, a) and x(u, x, a) such that

ϕD
(
(u)(@(z(u, x, a), z)),@(x(u, x, a), u, x, a), a,@(z(u, x, a), a)

)
−(

ϕD(@(u(u, x, a), u, x, a), x, a, t(a))

First, for z(u, x, a), we take as above the eager term obtained from the
composite

JτKJκK × JσK× JυK
[π]−→M JυK

Λ(t)−→EM JκKJυK



It thus remains to find u and x such that

ϕD
(
@(u, t(a)),@(x(u, x, a), u, x, a), a, t(a)

)
−(

ϕD(@(u(u, x, a), u, x, a), x, a, t(a))

We then take for x the same term as in Lemma 5. It remains to deal with
u. Consider the Mealy term ũ for

JτKJκK × JσK× JυK
[π]−→M JτKJκK × JυK

@(u,t(a))−→M JτK

Then we take for u the eager term

JτKJκK × JσK× JυK
Λ(ũ)−→EM JτKJτKJκK×JσK×JυK '−→M ((JτKJυK)JσK)JτKJκK

ut

Lemma 11.

(1) If γ(a)⊗ ϕ(a, b) −p→Ax ψ(a), then γ(a)⊗ (∃b)ϕ(a, b) −p→Ax ψ(a).
(2) If γ(a) −p→Ax ϕ(a, b) ` ?ψ(a), then γ(a) −p→Ax (∀b)ϕ(a, b) ` ?ψ(a).

Proof. Let

γD(a) = (∃w)(∀z)γD(w, z, a) and ϕD(a, b) = (∃u)(∀x)ϕD(u, x, a, b)

(1) Let
ψD(a, b) = (∃v)(∀y)ψD(v, y, a, b)

We have (
γ(a)⊗ ϕ(a, b)

)D
= (∃w, u)(∀z, x)

(
γD(w, z, a)⊗ ϕD(u, x, a, b)

)
and

(
γ(a)⊗ (∃b)ϕ(a, b)

)D
= (∃w, u, b)(∀z, x)

(
γD(w, z, a)⊗ ϕD(u, x, a, b)

)
It follows that(

γ(a)⊗ ϕ(a, b) −( ψ(a)
)D

=

(∃v, z, x)(∀w, u, y)
(
γD(w, (z)wuy, a)⊗ϕD(u, (x)wuy, a, b) −( ψD((v)wu, y, a)

)
and(

γ(a)⊗ (∃b)ϕ(a, b) −( ψ(a)
)D

=

(∃v, z, x)(∀w, u, b, y)
(
γD(w, (z)wuby, a)⊗ϕD(u, (x)wuby, a, b) −( ψD((v)wub, y, a)

)
We thus obtain

γ(a) −p→Ax ϕ(a, b) ` ?ψ(a) ⇐⇒ γ(a) −p→Ax (∀b)ϕ(a, b) ` ?ψ(a)



since(
(∀a, b)

(
γ(a)⊗ ϕ(a, b) −( ψ(a)

))D
=

(∃v, z, x)(∀w, u, y, b, a)
(
γD(w, (z)wuyba, a)⊗ϕD(u, (x)wuyba, a, b) −( ψD((v)wuba, y, a)

)
and(

(∀a)
(
γ(a)⊗ (∃b)ϕ(a, b) −( ψ(a)

))D
=

(∃v, z, x)(∀w, u, b, y, a)
(
γD(w, (z)wubya, a)⊗ϕD(u, (x)wubya, a, b) −( ψD((v)wuba, y, a)

)
(2) Note that ?ψ is negative. We thus have

(?ψ)D(a) = (∀y)(?ψ)D(−, y, a)

where (?ψ)D is a ?-formula. Moreover,

(∀b.ϕ(a, b))D = (∃u)(∀x, b)ϕD((u)b, x, a, b)

We have (
ϕ(a, b) ` ?ψ(a)

)D
= (∃u)(∀x, y)

(
ϕD(u, x, a, b) ` (?ψ)D(−, y, a)

)
and

(
(∀b)ϕ(a, b) ` ?ψ(a)

)D
= (∃u)(∀x, b, y)

(
ϕD((u)b, x, a, b) ` (?ψ)D(−, y, a)

)
It follows that(

γ(a) −( ϕ(a, b) ` ψ(a)
)D

=

(∃u, z)(∀w, x, y)
(
γD(w, (z)wxy, a) −( ϕD((u)w, x, a, b) ` ψD(−, y, a)

)
and(

γ(a) −( (∀b)ϕ(a, b) ` ψ(a)
)D

=

(∃u, z)(∀w, x, b, y)
(
γD(w, (z)wxby, a) −( ϕD((u)bw, x, a, b)`ψD(−, y, a)

)
We thus obtain

γ(a) −p→Ax ϕ(a, b) ` ?ψ(a) ⇐⇒ γ(a) −p→Ax (∀b)ϕ(a, b) ` ?ψ(a)

since(
(∀a, b)

(
γ(a) −( ϕ(a, b) ` ψ(a)

))D
=

(∃u, z)(∀w, x, y, b, a)
(
γD(w, (z)wxyba, a) −( ϕD((u)wba, x, a, b)`ψD(−, y, a)

)
and(

(∀a)
(
γ(a) −( (∀b)ϕ(a, b) ` ψ(a)

))D
=

(∃u, z)(∀w, x, b, y, a)
(
γD(w, (z)wxbya, a) −( ϕD((u)bwa, x, a, b)`ψD(−, y, a)

)
ut



The Equality Axioms (7). Realization of the equality axioms (7), follows from
the fact that atomic formulae are interpreted by themselves, so these axioms are
interpreted by instances of themselves.

Proof of Theorem 8. Assume given ϕ(a) = ϕ1(a), . . . , ϕn(a) and ψ(a) =
ψ1(a), . . . , ψm(a) with free variables among a. We show

ϕ1(a), . . . , ϕn(a) `FS+Ax ψ1(a), . . . , ψm(a) =⇒
(
⊗i ϕi(a)

)
−p→Ax

(`j ψj(a)
)

with, as expected,

⊗1≤i≤0ϕi(a) = I and `1≤j≤0 ψj(a) = ⊥

We reason by induction on derivations.

– The cases of

ϕ ` ϕ
ϕ,ϕ, ψ, ψ ` ϕ′

ϕ,ψ, ϕ, ψ ` ϕ′
ϕ ` ϕ′, ϕ, ψ, ψ′

ϕ ` ϕ′, ψ, ϕ, ψ′

directly follow from Lemmas 5 and 6.
– Case of

ϕ ` γ, ϕ′ ψ, γ ` ψ′

ϕ,ψ ` ϕ′, ψ′

We show that if

ϕ(a) −p→Ax γ(a) ` ϕ′(a) and ψ(a)⊗ γ(a) −p→Ax ψ
′(a)

then
ϕ(a)⊗ ψ(a) −p→Ax ϕ

′(a) ` ψ′(a)

Proof. Assuming ϕ(a) −p→Ax γ(a) ` ϕ′(a), Lemma 6 gives

ϕ(a)⊗ ψ(a) −p→Ax (γ(a) ` ϕ′(a))⊗ ψ(a)

from which Lemma 6 together with Proposition 11 implies

ϕ(a)⊗ ψ(a) −p→Ax ϕ′(a) ` (ψ(a)⊗ γ(a))

Since ψ(a) ⊗ γ(a) −p→Ax ψ
′(a), Lemma 6 together with Proposition 11 give

the result. ut

– The cases of

ϕ ` ψ
ϕ, I ` ψ ` I ⊥ `

ϕ ` ψ
ϕ ` ⊥, ψ

directly follow from Lemma 6 together with Proposition 11.



– The cases of
ϕ,ϕ0, ϕ1 ` ϕ′

ϕ,ϕ0 ⊗ ϕ1 ` ϕ′
ϕ ` ϕ0, ϕ1, ϕ

′

ϕ ` ϕ0 ` ϕ1, ϕ
′

are tautological.
– Case of

ϕ ` ϕ,ϕ′ ψ ` ψ,ψ′

ϕ,ψ ` ϕ⊗ ψ,ϕ′, ψ′

We show that if

ϕ(a) −p→Ax γ0(a) ` ϕ′(a) and ψ(a) −p→Ax γ1(a) ` ψ′(a)

then
ϕ(a)⊗ ψ(a) −p→Ax (γ0(a)⊗ γ1(a)) ` ϕ′(a) ` ψ′(a)

Proof. By Lemma 6, we have

ϕ(a)⊗ ψ(a) −p→Ax

(
γ0(a) ` ϕ′(a)

)
⊗
(
γ1(a) ` ψ′(a)

)
from which we deduce by Lemma 6 and Proposition 11

ϕ(a)⊗ ψ(a) −p→Ax

(
γ0(a)⊗ (γ1(a) ` ψ′(a))

)` ϕ′(a)

and then

ϕ(a)⊗ ψ(a) −p→Ax

(
(γ0(a)⊗ γ1(a)) ` ψ′(a)

)` ϕ′(a)

ut

– Case of
ϕ,ϕ ` ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ` ψ ` ϕ′, ψ′

We show that if

ϕ(a)⊗ γ0(a) −p→Ax ϕ
′(a) and ψ(a)⊗ γ1(a) −p→Ax ψ

′(a)

then
ϕ(a)⊗ ψ(a)⊗ (γ0(a) ` γ1(a)) −p→Ax ϕ

′(a) ` ψ′(a)

Proof. By Lemma 6 we have(
ϕ(a)⊗ γ0(a)

)` (ψ(a)⊗ γ1(a)
)
−p→Ax ϕ

′(a) ` ψ′(a)

On the other hand, by Lemma 6 we have

ϕ(a)⊗ ψ(a)⊗ (γ0(a) ` γ1(a)) −p→Ax

(
(ϕ(a)⊗ γ0) ` γ1(a)

)
⊗ ψ(a)

so that Lemma 6 together with Proposition 11 give

ϕ(a)⊗ ψ(a)⊗ (γ0(a) ` γ1(a)) −p→Ax (ϕ(a)⊗ γ0) ` (γ1(a)⊗ ψ(a))

and we conclude by Propsition 11. ut



– Lemma 7 (together with Lemma 6 and Proposition 11) handles the rules:

ψ ` ψ′

ψ, !ϕ ` ψ′
ψ, !ϕ, !ϕ ` ψ′

ψ, !ϕ ` ψ′
ϕ,ϕ ` ϕ′

ϕ, !ϕ ` ϕ′

ψ ` ψ′

ψ ` ?ϕ,ψ
′

ψ ` ?ϕ, ?ϕ,ψ
′

ψ ` ?ϕ,ψ
′

ϕ ` ϕ,ψ
ϕ ` ?ϕ,ψ

– Lemma 8 handles the rules

!ϕ ` ϕ, ?ψ
!ϕ ` !ϕ, ?ψ

!ϕ,ϕ ` ?ψ

!ϕ, ?ϕ ` ?ψ

– The rules
ϕ ` ϕ[t/x], ϕ′

ϕ ` (∃x)ϕ,ϕ′
ϕ,ϕ[t/x] ` ϕ′

ϕ, (∀x)ϕ ` ϕ′

follow from Lemma 10 (together with Lemma 6 and Proposition 11).
– The cases of

ϕ,ϕ ` ϕ′

ϕ, (∃z)ϕ ` ϕ′
ϕ ` ϕ, ?ψ

ϕ ` (∀z)ϕ, ?ψ
are tautological (Lemma 11).

– Lemma 9 handles the rules

ϕ,ϕ ` ψ
ϕ ` ϕ( ψ

and
ϕ, !ϕ ` ψ, ?ψ
ϕ ` !ϕ( ψ, ?ψ

– It remains to deal with

ϕ ` ϕ,ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ( ψ ` ϕ′, ψ′

Since

ϕ ` ϕ,ϕ′

ϕ( ψ ` ϕ( ψ ϕ ` ϕ
ϕ( ψ,ϕ ` ψ ψ,ψ ` ψ′

ψ,ϕ( ψ,ϕ ` ψ′

ϕ,ψ, ϕ( ψ ` ϕ′, ψ′

We are left with showing

γ(a) −p→Ax ϕ(a)( ψ(a) and γ′(a) −p→Ax ϕ(a) imply γ⊗γ′ −p→Ax ψ(a)

Proof. Assume γ(a) −p→Ax ϕ(a) ( ψ(a) and γ′(a) −p→Ax ϕ(a). Lemma 9
gives

γ(a)⊗ ϕ(a) −p→Ax ψ(a)

while Lemma 6 gives

γ(a)⊗ γ′(a) −p→Ax γ(a)⊗ ϕ(a)

and we conclude by Proposition 11. ut
This concludes the proof of Theorem 8. ut



B.2 Realization of Additional Axioms (Proposition 4)

We decompose Proposition 4 as follows.

Lemma 12. The axioms (LSIP) are realized in FS:

(1) (∀a)(ϕ−(a)⊗ ψ−) −p→ (∀a)ϕ−(a)⊗ ψ−
(2) (∀a)(ϕ−(a) ` ψ−) −p→ (∀a)ϕ−(a) ` ψ−

(3) (∃a)ϕ−(a) ` ψ −p→ (∃a)(ϕ−(a) ` ψ)
(4) ψ−( (∃a)ϕ−(a) −p→ (∃a)(ψ−( ϕ−(a))
(5) ((∀a)ϕ±(a)( ψ±) −p→ (∃a)(ϕ±(a)( ψ±)

Proof. Let

ϕD(a) = (∃u)(∀x)ϕD(u, x, a) and ψD(a) = (∃v)(∀y)ψD(v, y, a)

In each case we are done by taking terms similar to those of Lemma 5:

(1) We have(
(∀a)

(
ϕ−(a)⊗ ψ−

))D
= (∀x, y, a)

(
ϕD(−, x, a)⊗ ψD(−, y)

)(
(∀a)ϕ−(a)⊗ ψ−

)D
= (∀a, x, y)

(
ϕD(−, x, a)⊗ ψD(−, y)

)
(2) We have(

(∀a)
(
ϕ−(a) ` ψ−

))D
= (∀x, y, a)

(
ϕD(−, x, a) ` ψD(−, y)

)(
(∀a)ϕ−(a) ` ψ−

)D
= (∀a, x, y)

(
ϕD(−, x, a) ` ψD(−, y)

)
(3) We have(

(∃a)ϕ−(a) ` ψ
)D

= (∃a, v)(∀x, y)
(
ϕD(−, x, a) ` ψD(v, y)

)(
(∃a)

(
ϕ−(a) ` ψ

))D
= (∃a, v)(∀x, y)

(
ϕD(−, x, a) ` ψD(v, y)

)
(4) We have(

ψ−( (∃a)ϕ−(a)
)D

= (∃a, y)(∀x)
(
ψD(−, (y)x)( ϕD(−, x, a)

)(
(∃a)

(
ψ−( ϕ−(a)

))D
= (∃a, y)(∀x)

(
ψD(−, (y)x)( ϕD(−, x, a)

)
(5) We have(

(∀a)ϕ±(a)( ψ±
)D

= (∃a)
(
ϕD(−,−, a)( ψD(−,−)

)(
(∃a)

(
ϕ±(a)( ψ±

))D
= (∃a)

(
ϕD(−,−, a)( ψD(−,−)

)
ut



Lemma 13. The axiom (LAC) is realized in FS:

(∀aσ)(∃bτ )ϕ(a, b, c) −p→ (∃f (τ)σ)(∀aσ)ϕ(a, (f)a, c)

Proof. Let
ϕD(a, b, c) = (∃u)(∀x)ϕD(u, x, 〈a, b, c〉)

We thus have(
(∀c)(∀a)(∃b)ϕ(a, b, c)

)D
= (∃b, u)(∀x, a, c)ϕD((u)ac, x, 〈a, (b)ac, c〉)

and(
(∀c)(∃f)(∀a)ϕ(a, (f)a, c)

)D
= (∃f, u)(∀x, a, c)ϕD((u)ac, x, 〈a, (f)ac, c〉)

Hence we are done by taking terms similar to those of Lemma 5. ut

Lemma 14. The axioms (DEXP) are realized in Ax+(DEXP), in the sense that
for all deterministic δ we have

δ −p→(DEXP) !δ and ?δ −p→(DEXP) δ

Proof. If δ(a) is deterministic, then δD(a) = δD(−,−, a) with δD deterministic.
It follows that the axioms reduce to themselves:

δD(−,−, a) `FS+(DEXP) !δD(−,−, a)
and ?δD(−,−, a) `FS+(DEXP) δD(−,−, a)

ut

B.3 The Characterization Theorem (Theorem 3)

Theorem 3 can be split in two statements, one for polarized formulae and one
for all FS-formulae.

Characterization for The Full System FS. We begin by the full system.
We show by induction on formulae that

`FS+(LAC)+(LSIP)+(DEXP) ϕ(a) ˛ ϕD(a)

– If ϕ is atomic, then the result is trivial since ϕD = ϕ.
– Consider the case of ϕ(a)� ψ(a) with � is either ⊗, ` or (. By induction

hypothesis, we have

ϕ(a) ˛ (∃u)(∀x)ϕD(u, x, a)
ψ(a) ˛ (∃v)(∀y)ψD(v, y, a)

and in each case we are left with showing

(ϕ(a)� ψ(a))D ˛ ϕD(a)� ψD(a)



• Case of ϕ⊗ ψ. We first show

(ϕ⊗ ψ)D −( ϕD ⊗ ψD

using the axiom

(∀a)(ϕ−(a)⊗ ψ−) −( (∀a)ϕ−(a)⊗ ψ−

(∀xy)(ϕD(u, x)⊗ ψD(v, y)) ` (∀x)ϕD(u, x)⊗ (∀y)ψD(v, y)

...
D

(∀xy)(ϕD(u, x)⊗ ψD(v, y)) ` (∃u)(∀x)ϕD(u, x)⊗ (∃v)(∀y)ψD(v, y)

(∃v)(∀xy)(ϕD(u, x)⊗ ψD(v, y)) ` (∃u)(∀x)ϕD(u, x)⊗ (∃v)(∀y)ψD(v, y)

(∃uv)(∀xy)(ϕD(u, x)⊗ ψD(v, y)) ` (∃u)(∀x)ϕD(u, x)⊗ (∃v)(∀y)ψD(v, y)

where D is

(∀x)ϕD(u, x) ` (∀x)ϕD(u, x)

(∀x)ϕD(u, x) ` (∃u)(∀x)ϕD(u, x)

(∀y)ψD(v, y) ` (∀y)ψD(v, y)

(∀y)ψD(v, y) ` (∃v)(∀y)ψD(v, y)

∀x.ϕD(u, x),∀y.ψD(v, y) ` ∃u.∀x.ϕD(u, x)⊗ ∃v.∀y.ψD(v, y)

∀x.ϕD(u, x)⊗ ∀y.ψD(v, y) ` ∃u.∀x.ϕD(u, x)⊗ ∃v.∀y.ψD(v, y)

The other direction is trivial:

ϕD(u, x), ψD(v, y) ` ϕD(u, x)⊗ ψD(v, y)

ϕD(u, x), (∀y)ψD(v, y) ` ϕD(u, x)⊗ ψD(v, y)

(∀x)ϕD(u, x), (∀y)ψD(v, y) ` ϕD(u, x)⊗ ψD(v, y)

(∀x)ϕD(u, x), (∀y)ψD(v, y) ` (∀xy)(ϕD(u, x)⊗ ψD(v, y))

(∀x)ϕD(u, x), (∀y)ψD(v, y) ` (∃uv)(∀xy)(ϕD(u, x)⊗ ψD(v, y))

(∀x)ϕD(u, x), (∃v)(∀y)ψD(v, y) ` (∃uv)(∀xy)(ϕD(u, x)⊗ ψD(v, y))

(∃u)(∀x)ϕD(u, x), (∃v)(∀y)ψD(v, y) ` (∃uv)(∀xy)(ϕD(u, x)⊗ ψD(v, y))

(∃u)(∀x)ϕD(u, x)⊗ (∃v)(∀y)ψD(v, y) ` (∃uv)(∀xy)(ϕD(u, x)⊗ ψD(v, y))

• Case of ϕ` ψ. We first show

(ϕ` ψ)D −( ϕD ` ψD

using axiom

(∀a)(ϕ−(a) ` ψ−) −( (∀a)ϕ−(a) ` ψ−

(∀xy)(ϕD(u, x) ` ψD(v, y)) ` (∀x)ϕD(u, x) ` (∀y)ψD(v, y)

...
D

(∀xy)(ϕD(u, x) ` ψD(v, y)) ` (∀x)ϕD(u, x), (∀y)ψD(v, y)

(∀xy)(ϕD(u, x) ` ψD(v, y)) ` (∀x)ϕD(u, x), (∃v)(∀y)ψD(v, y)

(∀xy)(ϕD(u, x) ` ψD(v, y)) ` (∃u)(∀x)ϕD(u, x), (∃v)(∀y)ψD(v, y)

(∃uv)(∀xy)(ϕD(u, x) ` ψD(v, y)) ` (∃u)(∀x)ϕD(u, x), (∃v)(∀y)ψD(v, y)

(∃uv)(∀xy)(ϕD(u, x) ` ψD(v, y)) ` (∃u)(∀x)ϕD(u, x) ` (∃v)(∀y)ψD(v, y)



where D is

(∀x)ϕD(u, x) ` (∀y)ψD(v, y) ` (∀x)ϕD(u, x), (∀y)ψD(v, y)

(∀x)ϕD(u, x) ` (∀y)ψD(v, y) ` (∀x)ϕD(u, x), (∃v)(∀y)ψD(v, y)

(∀x)ϕD(u, x) ` (∀y)ψD(v, y) ` (∃u)(∀x)ϕD(u, x), (∃v)(∀y)ψD(v, y)

For the converse implication, we use the axiom

(∃a)ϕ−(a) ` ψ −( (∃a)(ϕ−(a) ` ψ)

∃u.∀x.ϕD(u, x) ` ∃v.∀y.ψD(v, y) ` ∃u.∀x.ϕD(u, x) ` ∃v.∀y.ψD(v, y)

...
D ′

(∃u)(∀x)ϕD(u, x) ` (∃v)(∀y)ψD(v, y) ` (∃uv)((∀x)ϕD(u, x) ` (∀y)ψD(v, y))

...
D

(∃u)(∀x)ϕD(u, x) ` (∃v)(∀y)ψD(v, y) ` (∃uv)(∀xy)(ϕD(u, x) ` ψD(v, y))

where D is obtained by proceeding as in

(∀a)ϕ(a) ` ψ ` ϕ(a), ψ

(∀a)ϕ(a) ` ψ ` ϕ(a) ` ψ

(∀a)ϕ(a) ` ψ ` ∀a(ϕ(a) ` ψ)

and where D ′ is obtained using the axiom

(∃a)ϕ−(a) ` ψ −( (∃a)(ϕ−(a) ` ψ)

• Case of ϕ( ψ. We first show

(ϕ( ψ)D −( ϕD ( ψD

ϕD(u, (F )uy)( ψD((f)u, y), ϕD(u, (F )uy) ` ϕD((f)u, y)

ϕD(u, (F )uy)( ψD((f)u, y), (∀x)ϕD(u, x) ` ϕD((f)u, y)

(∀uy)
(
ϕD(u, (F )uy)( ψD((f)u, y)

)
, (∀x)ϕD(u, x) ` ϕD((f)u, y)

(∀uy)
(
ϕD(u, (F )uy)( ψD((f)u, y)

)
, (∀x)ϕD(u, x) ` (∀y)ϕD((f)u, y)

(∀uy)
(
ϕD(u, (F )uy)( ψD((f)u, y)

)
, (∀x)ϕD(u, x) ` (∃v)(∀y)ϕD(v, y)

(∃f, F )(∀uy)
(
ϕD(u, (F )uy)( ψD((f)u, y)

)
, (∃u)(∀x)ϕD(u, x) ` (∃v)(∀y)ϕD(v, y)

(∃f, F )(∀uy)
(
ϕD(u, (F )uy)( ψD((f)u, y)

)
` (∃u)(∀x)ϕD(u, x)( (∃v)(∀y)ϕD(v, y)

For the converse direction, we use the axioms (LAC) as well as
∗ ψ−( (∃a)ϕ−(a) −( ∃a.(ψ−( ϕ−(a))
∗ ((∀a)ϕ±(a)( ψ±) −( (∃a)(ϕ±(a)( ψ±)



We have to show

(∃u)(∀x)ϕD(u, x)( (∃v)(∀y)ψD(v, y) ` (∃f, F )(∀uy)
(
ϕD(u, (F )uy))( ψD((f)u, y)

)
Since

ϕ(a) ` (∃a)ϕ(a) ψ ` ψ
(∃a)ϕ(a)( ψ,ϕ(a) ` ψ

(∃a)ϕ(a)( ψ ` ϕ(a)( ψ

(∃a)ϕ(a)( ψ ` (∀a)
(
ϕ(a)( ψ

) and
ψ ` ψ

ϕ(a) ` ϕ(a)

(∀a)ϕ(a) ` ϕ(a)

ψ( (∀a)ϕ(a), ψ ` ϕ(a)

ψ( (∀a)ϕ(a) ` ψ( ϕ(a)

ψ( (∀a)ϕ(a) ` (∀a)
(
ψ( ϕ(a)

)
and using the axioms
∗ ψ−( (∃a)ϕ−(a) −( ∃a.(ψ−( ϕ−(a))
∗ ((∀a)ϕ±(a)( ψ±) −( (∃a)(ϕ±(a)( ψ±)

we derive

(∃u)(∀x)ϕD(u, x)( (∃v)(∀y)ψD(v, y) ` (∀u)(∃v)(∀y)(∃x)
(
ϕD(u, x)( ψD(v, y)

)
We can then conclude with (LAC).

– Case of (∃a)ϕ(a). Let

ϕD(a) = (∃u)(∀x)ϕD(u, x, a)

and by induction hypothesis assume

ϕD(a) ˛ ϕ(a)

Hence we are done if we show

(∃a.ϕ(a))D ˛ (∃a)ϕD(a)

But this is trivial since (∃a.ϕ(a))D = (∃a)ϕD(a) by definition.
– Case of (∀a)ϕ(a). Let

ϕD(a) = (∃u)(∀x)ϕD(u, x, a)

and by induction hypothesis assume

ϕD(a) ˛ ϕ(a)

We have to show

(∃u)(∀x)(∀a)ϕD((u)a, x, a) ˛ (∀a)ϕD(a)

The right-to-left implication is given by (LAC) and the left-to-right implica-
tion follows from

ϕD((u)a, x, a) ` ϕD((u)a, x, a)

(∀a)ϕD((u)a, x, a) ` ϕD((u)a, x, a)

(∀xa)ϕD((u)a, x, a) ` ϕD((u)a, x, a)

(∀xa)ϕD((u)a, x, a) ` (∀x)ϕD((u)a, x, a)

(∀xa)ϕD((u)a, x, a) ` (∃u)(∀x)ϕD(u, x, a)

(∃u)(∀xa)ϕD((u)a, x, a) ` (∃u)(∀x)ϕD(u, x, a)

(∃u)(∀xa)ϕD((u)a, x, a) ` (∀a)(∃u)(∀x)ϕD(u, x, a)



– We finally deal with the exponentials. By induction hypothesis, assume

ϕ(a) ˛ (∃u)(∀x)ϕD(u, x, a)

In each relevant case we show

(!ϕ)D ˛ !ϕD and (?ϕ)D ˛ ?ϕD

• Cases of !(ϕ−) and ?(ϕ+). Both cases are trivial since

(!(ϕ−))D = !(∀x)ϕD(−, x, a) = !(ϕ−)D and (?(ϕ+))D = ?(∃u)ϕD(u,−, a) = ?(ϕ+)D

• Cases of !(ϕ+) and ?(ϕ+). We have

(!(ϕ+))D = (∃u)!ϕD(u,−, a) and (?(ϕ−))D = (∀x)?ϕD(−, x, a)

We first have

ϕD(u,−, a) ` ϕD(u,−, a)

!ϕD(u,−, a) ` ϕD(u,−, a)

!ϕD(u,−, a) ` (∃u)ϕD(u,−, a)

!ϕD(u,−, a) ` !(∃u)ϕD(u,−, a)

(∃u)!ϕD(u,−, a) ` !(∃u)ϕD(u,−, a)

and

ϕD(−, x, a) ` ϕD(−, x, a)

ϕD(−, x, a) ` ?ϕD(−, x, a)

(∀x)ϕD(−, x, a) ` ?ϕD(−, x, a)

?(∀x)ϕD(−, x, a) ` ?ϕD(−, x, a)

?(∀x)ϕD(−, x, a) ` (∀x)?ϕD(−, x, a)

For the converse implications, we use the exponential axioms (DEXP):

ϕD(u,−, a) ` !ϕD(u,−, a)

ϕD(u,−, a) ` (∃u)!ϕD(u,−, a)

(∃u)ϕD(u,−, a) ` (∃u)!ϕD(u,−, a)

!(∃u)ϕD(u,−, a) ` (∃u)!ϕD(u,−, a)

and

?ϕD(−, x, a) ` ϕD(−, x, a)

(∀x)?ϕD(−, x, a) ` ϕD(−, x, a)

(∀x)?ϕD(−, x, a) ` (∀x)ϕD(−, x, a)

(∀x)?ϕD(−, x, a) ` ?(∀x)ϕD(−, x, a)

Characterization for Polarized Formulae. There are two ways to see char-
acterization for polarized formulae. The first one, stated in Theorem 3,

`FS+(LSIP)+(DEXP) ϕ(a) ˛ ϕD(a) (ϕ PF-formula)

amounts to the following.

Lemma 15. FS + (LSIP) proves

ϕ˛ ϕD, ψ ˛ ψD ` (ϕ( ψ) ˛ (ϕ( ψ)D (ϕ(a)( ψ(a) polarized)

ϕ(a, b) ˛ ϕD(a, b) ` (∀b.ϕ(a, b)) ˛ (∀b.ϕ(a, b))D ((∀b)ϕ(a, b) negative)

The second one is to notice that characterization for polarized formulae is
provable within the polarized fragment PF augmented with the following polar-
ized weakening of (LSIP) (with polarities as displayed):

(∀a)(ϕ±(a)⊗ ψ−) −( (∀a)ϕ±(a)⊗ ψ−
(∀a)(ϕ±(a) ` ψ−) −( (∀a)ϕ±(a) ` ψ−

(∃a)ϕ±(a) ` ψ+ −( (∃a)(ϕ±(a) ` ψ+)
ψ−( (∃a)ϕ±(a) −( (∃a)(ψ−( ϕ±(a))

((∀a)ϕ±(a)( ψ±) −( (∃a)(ϕ±(a)( ψ±)

(PLSIP)

We only detail Lemma 15, as it corresponds to the statement of Theorem 3.



Proof of Lemma 15. Consider first the case of ϕ(a)( ψ(a). By assumption, for
θ either ϕ or ψ, we have

θ+(a) ˛ ∃u.θD(u,−, a)
θ−(a) ˛ ∀x.θD(−, x, a)
θ±(a) ˛ θD(−,−, a)

The case of ϕ±(a)( ψ±(a) is trivial. The other cases are given by the following
derviations (where we did not display the free variable a).

– Case of (ϕ−( ψ+)D.
We first show

(ϕ−( ψ+)D −(
(
(ϕ−)D ( (ψ+)D

)
ϕD(x) ` ϕD(x)

(∀x)ϕD(x) ` ϕD(x)

ψD(v) ` ψD(v)

ψD(v) ` (∃v)ψD(v)

ϕD(x)( ψD(v), (∀x)ϕD(x) ` (∃v)ψD(v)

ϕD(x)( ψD(v) ` (∀x)ϕD(x)( (∃v)ψD(v)

(∃v, x)
(
ϕD(x)( ψD(v)

)
` (∀x)ϕD(x)( (∃v)ψD(v)

For the converse implication, we use the axioms
• ψ−( (∃a)ϕ±(a) −( (∃a)(ψ−( ϕ±(a))
• ((∀a)ϕ±(a)( ψ±) −( (∃a)(ϕ±(a)( ψ±)

D ′
D (∃v, x)

(
ϕD(x)( ψD(v)

)
` (∃v, x)

(
ϕD(x)( ψD(v)

)
(∃v)

(
(∀x)ϕD(x)( ψD(v)

)
` (∃v, x)

(
ϕD(x)( ψD(v)

)
(∀x)ϕD(x)( (∃v)ψD(v) ` (∃v, x)

(
ϕD(x)( ψD(v)

)
where D is obtained from the axiom

((∀a)ϕ±(a)( ψ±) −( (∃a)(ϕ±(a)( ψ±)

and D ′ is obtained from the axiom

ψ−( (∃a)ϕ±(a) −( (∃a)(ψ−( ϕ±(a))

– Case of (ϕ+( ψ−)D.
We first show

(ϕ+( ψ−)D −(
(
(ϕ+)D ( (ψ−)D

)
ϕD(u) ` ϕD(u) ψD(y) ` ψD(y)

ϕD(u)( ψD(y), ϕD(u) ` ψD(y)

(∀y, u)
(
ϕD(u)( ψD(y)

)
, ϕD(u) ` ψD(y)

(∀y, u)
(
ϕD(u)( ψD(y)

)
, (∃u)ϕD(u) ` (∀y)ψD(y)

(∀y, u)
(
ϕD(x)( ψD(u)

)
` (∃u)ϕD(u)( (∀y)ψD(y)



The converse direction is given by

ϕD(u) ` ϕD(u)

ϕD(u) ` (∃u)ϕD(u)

ψD(y) ` ψD(y)

(∀y)ψD(y) ` ψD(y)

(∃u)ϕD(u)( (∀y)ψD(y), ϕD(u) ` ψD(y)

(∃u)ϕD(u)( (∀y)ψD(y) ` ϕD(u)( ψD(y)

(∃u)ϕD(u)( (∀y)ψD(y) ` (∀u, y)
(
ϕD(u)( ψD(y)

)
Consider now the case of (∀a)ϕ−(a). Let

ϕD(a) = (∀x)ϕD(−, x, a)

and by assumption
ϕD(a) ˛ ϕ(a)

We have to show
(∀x)(∀a)ϕD(−, x, a) ˛ (∀a)ϕD(a)

But this is trivial since for negative ϕ−, we have (∀a.ϕ(a))D = (∀a)ϕD(a) by
definition. ut

B.4 Extraction (Corollary 1)

Let recall the statement of Corollary 1

Corollary 5 (Extraction (Cor. 1)). Consider a closed formula ϕ := (∀xσ)(∃uτ )δ(u, x)
with δ deterministic. From a proof of ϕ in FS + (LAC) + (LSIP) + (DEXP) one
can extract a term t(x) such that |= (∀xσ)bδ(t(x), x)c.

Proof. Note that

ϕD = (∃f (τ)σ)(∀xσ)δD(−,−, 〈(f)x, x〉)

By Theorem 2 (Thm. 8) and Proposition 4 (Lem. 12 & 13), from a proof of ϕ
in FS + (LAC) + (LSIP) + (DEXP) we get an eager term u(τ)σ(xσ) such that

`FS+(DEXP) δD(−,−, 〈e(u)(x), x〉)

Since δ deterministic, we have

δD(a) = δD(−,−, a)

and from Characterization for polarized formulae (Theorem 3) we get

`FS+(DEXP)+(PEXP) δ(e(u)(x), x)

We thus obtain

|= (∀xσ)bδc(t(x), x) (where tτ (x) := e(u)(x))

ut



B.5 Proofs of §3.4 (Translations of Classical Logic)

While the usual (−)
T

and (−)
Q

translations target resp. negative and positive
formulae [9] (see also [18]), one can consider the following deterministic variants:

>T± := ?I
⊥T± := ?⊥

(t
.
= u)

T±
:= ?(t

.
= u)

(ϕ→ ψ)
T±

:= ?(!ϕT±( ψT±)

(ϕ ∧ ψ)
T±

:= ?(!ϕT± ⊗ !ψT±)

(ϕ ∨ ψ)
T±

:= ?(ϕT± ` ψT±)

(∃x.ϕ)
T±

:= ?(∃x)!ϕT±

(∀x.ϕ)
T±

:= ?!(∀x)ϕT±

and

>Q± := !I
⊥Q± := !⊥

(t
.
= u)

Q±
:= !(t

.
= u)

(ϕ→ ψ)
Q±

:= !(ϕQ±( ?ψQ±)

(ϕ ∧ ψ)
Q±

:= !(ϕQ± ⊗ ψQ±)

(ϕ ∨ ψ)
Q±

:= !(?ϕQ± ` ?ψQ±)

(∃x.ϕ)
Q±

:= !?(∃x)ϕQ±

(∀x.ϕ)
Q±

:= !(∀x)?ϕQ±

Soundness (Proposition 6). The soundness of (−)
T±

and (−)
Q±

proceeds

as that of (−)
T

and (−)
Q

. We then easily deduce the soundness of (−)L.

Proposition 12. If many-sorted first-order logic proves a sequent

ϕ1, . . . , ϕn ` ψ1, . . . , ψm

then
!ϕ1

T±, . . . , !ϕn
T± `FS ψ1

T±, . . . , ψm
T±

and ϕ1
Q±, . . . , ϕn

Q± `FS ?ψ1
Q±, . . . , ?ψm

Q±

Proof. The proof goes on as in the case of (−)
T

and (−)
Q

. We obtain sequents
provable in FS because both translations produce sequents of the form !(−) `
?(−), so that the right ( and ∀ rules of FS

ϕ, !ϕ ` ψ, ?ψ
ϕ ` !ϕ( ψ, ?ψ

ϕ ` ϕ, ?ψ
ϕ ` (∀z)ϕ, ?ψ

can be used for the right → and ∀ rules of classical logic

ϕ,ϕ ` ψ,ψ
ϕ ` ϕ( ψ,ψ

ϕ ` ϕ,ψ
ϕ ` (∀z)ϕ,ψ

We only detail the cases which differs from [18]. As usual we write

ϕT± = ?ϕT± and ϕQ± = ?ϕQ±

– Case of the (−)
T±

translation of the rule

ϕ,ϕ0, ϕ1 ` ψ
ϕ,ϕ0 ∧ ϕ1 ` ψ



The result follows from

...

!?ϕT±, !?(ϕ0)T±, !?(ϕ1)T± ` ?ψT±

!?ϕT±, !?(ϕ0)T± ⊗ !?(ϕ1)T± ` ?ψT±

!?ϕT±, ?(!?(ϕ0)T± ⊗ !?(ϕ1)T±) ` ?ψT±

!?ϕT±, !?(!?(ϕ0)T± ⊗ !?(ϕ1)T±) ` ?ψT±

– Case of the (−)
T±

translation of the rule

ϕ ` ϕ,ϕ′ ψ ` ψ,ψ′

ϕ,ψ ` ϕ ∧ ψ,ϕ′, ψ′

The result follows from

...
!?ϕT± ` ?ϕT±, ?ϕ

′
T±

!?ϕT± ` !?ϕT±, ?ϕ
′
T±

...

!?ψT± ` ?ψT±, ?ψ
′
T±

!?ψT± ` !?ψT±, ?ψ
′
T±

!?ϕT±, !?ψT± ` !?ϕT± ⊗ !?ψT±, ?ϕ
′
T±, ?ψ

′
T±

!?ϕT±, !?ψT± ` ?(!?ϕT± ⊗ !?ψT±), ?ϕ′T±, ?ψ
′
T±

– Case of the (−)
T±

translation of the rule

ϕ,ϕ[t/x] ` ψ
ϕ, (∀x)ϕ ` ψ

The result follows by cutting

?ϕT± ` ?ϕT±

(∀x)?ϕT± ` ?ϕT±

!(∀x)?ϕT± ` ?ϕT±

?!(∀x)?ϕT± ` ?ϕT±

!?!(∀x)?ϕT± ` ?ϕT±

!?!(∀x)?ϕT± ` !?ϕT±

!?!(∀x)?ϕT± ` (∀x)!?ϕT±

!?!(∀x)?ϕT± ` ?(∀x)!?ϕT±

!?!(∀x)?ϕT± ` !?(∀x)!?ϕT±

with
...

!?ϕT±, !?ϕT±[t/x] ` ?ψT±

!?ϕT±, (∀x)!?ϕT± ` ?ψT±

!?ϕT±, ?(∀x)!?ϕT± ` ?ψT±

!?ϕT±, !?(∀x)!?ϕT± ` ?ψT±



– Case of the (−)
T±

translation of the rule

ϕ ` ϕ,ψ
ϕ ` (∀z)ϕ,ψ

The result follows from

...

!?ϕT± ` ?ϕT±, ?ψT±

!?ϕT± ` (∀z)?ϕT±, ?ψT±
!?ϕT± ` !(∀z)?ϕT±, ?ψT±
!?ϕT± ` ?!(∀z)?ϕT±, ?ψT±

– Case of the (−)
Q±

translation of the rule

ϕ,ϕ ` ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ ∨ ψ ` ϕ′, ψ′

The result follows from

...
!ϕQ±, !ϕQ± ` ?!ϕ′Q±

!ϕQ±, ?!ϕQ± ` ?!ϕ′Q±

...

!ψQ±, !ψQ± ` ?!ψ
′
Q±

!ψQ±, ?!ψQ± ` ?!ψ
′
Q±

!ϕQ±, !ψQ±, ?!ϕQ± ` ?!ψQ± ` ?!ϕ′Q±, ?!ψ
′
Q±

!ϕQ±, !ψQ±, !(?!ϕQ± ` ?!ψQ±) ` ?!ϕ′Q±, ?!ψ
′
Q±

– Case of the (−)
Q±

translation of the rule

ϕ ` ϕ0, ϕ1, ϕ
′

ϕ ` ϕ0 ∨ ϕ1, ϕ
′

The result follows from

...
!ϕQ± ` ?!ϕ0Q±, ?!ϕ1Q±, ?!ϕ′Q±

!ϕQ± ` ?!ϕ0Q± ` ?!ϕ1Q±, ?!ϕ′Q±

!ϕQ± ` ?(?!ϕ0Q± ` ?!ϕ1Q±), ?!ϕ′Q±

– Case of the (−)
Q±

translation of the rule

ϕ,ϕ ` ψ
ϕ, (∃z)ϕ ` ψ



The result follows from

...

!ϕQ±, !ϕQ± ` ?!ψQ±

!ϕQ±, (∃z)!ϕQ± ` ?!ψQ±

!ϕQ±, ?(∃z)!ϕQ± ` ?!ψQ±

!ϕQ±, !?(∃z)!ϕQ± ` ?!ψQ±

– Case of the (−)
Q±

translation of the rule

ϕ ` ϕ[t/x], ψ

ϕ ` (∃x)ϕ,ψ

The result follows by cutting

!ϕQ± ` !ϕQ±

!ϕQ± ` (∃x)!ϕQ±

!ϕQ± ` !(∃x)!ϕQ±

!ϕQ± ` !?(∃x)!ϕQ±

!ϕQ± ` ?!?(∃x)!ϕQ±

?!ϕQ± ` ?!?(∃x)!ϕQ±

(∃x)?!ϕQ± ` ?!?(∃x)!ϕQ±

!(∃x)?!ϕQ± ` ?!?(∃x)!ϕQ±

?!(∃x)?!ϕQ± ` ?!?(∃x)!ϕQ±

with
...

!ϕQ± ` ?!ϕQ±[t/x], ?!ψQ±

!ϕQ± ` (∃x)?!ϕQ±, ?!ψQ±

!ϕQ± ` !(∃x)?!ϕQ±, ?!ψQ±

!ϕQ± ` ?!(∃x)?!ϕQ±, ?!ψQ±
ut

The soudness of (−)L (Proposition 6) then follows by noticing that FS+(DEXP)

proves that (−)
T±

, (−)
Q±

and (−)L are all equivalent.

Lemma 16. For all formula ϕ of classical logic with equality, we have

`FS+(DEXP) ϕT± ˛ ϕL ˛ ϕQ±

Corollary 6 (Prop. 6). If many-sorted first-order logic proves a sequent

ϕ1, . . . , ϕn ` ψ1, . . . , ψm

then
ϕL1 , . . . , ϕ

L
n `FS+(DEXP) ψ

L
1 , . . . , ψ

L
m



Proof. It remains to deal with the equality axioms (7). But they follow from the
fact that αL = α for each atomic formula α ∈ At. ut

Proof of Proposition 5. We now turn to Prop. 5, namely the equivalence of
(DEXP) + (PEXP) with

?ϕ+ ˛ bϕ+cL δ± ˛ bδ±cL !ψ− ˛ bψ−cL

First, notice that

bIcT± = ?I

b⊥cT± = ?⊥
b(t .

= u)cT± = ?(t
.
= u)

bϕ( ψcT± = ?(!bϕcT±( bψcT±)

bϕ⊗ ψcT± = ?(!bϕcT± ⊗ !bψcT±)

bϕ` ψcT± = ?(bϕcT± ` bψcT±)

b!ϕcT± = bϕcT±

b?ϕcT± = bϕcT±

b∃x.ϕcT± = ?(∃x)!bϕcT±

b∀x.ϕcT± = ?!(∀x)bϕcT±

bIcQ± = !I

b⊥cQ± = !⊥
b(t .

= u)cQ± = !(t
.
= u)

bϕ( ψcQ± = !(bϕcQ±( ?bψcQ±)

bϕ⊗ ψcQ± = !(bϕcQ± ⊗ bψcQ±)

bϕ` ψcQ± = !(?bϕcQ± ` ?bψcQ±)

b!ϕcQ± = bϕcQ±

b?ϕcQ± = bϕcQ±

b∃x.ϕcQ± = !?(∃x)bϕcQ±

b∀x.ϕcQ± = !(∀x)?bϕcQ±

Hence (DEXP) proves

bϕcT± ˛ bϕcL ˛ bϕcQ±

Moreover, (DEXP) follows from the equivalence

bδcL ˛ δ (δ deterministic)

So we can as well prove Proposition 5 with (−)
T±

instead of (−)L. We split this
into two statements.

Lemma 17. FS augmented with the axioms

?ϕ+ ˛ bϕ+cT± δ± ˛ bδ±cT± !ψ− ˛ bψ−cT±

(for formulae ϕ+, ψ−, δ± with the displayed equalities), proves all instances of
(DEXP) and (PEXP).

Proof. We show that FS augmented with the axioms

?ϕ+ ˛ bϕ+cT± δ± ˛ bδ±cT± !ψ− ˛ bψ−cT±

proves

(1) δ±( !δ±.
(2) ?δ±( δ±.



(3) ?(ϕ+)( ?!(ϕ+).
(4) !?(ψ−)( !(ψ−).
(5) (!(ϕ−)( ?(ψ+))( ?(ϕ−( ψ+).
(6) (?(ϕ+)( !(ψ−))( !(ϕ+( ψ−).
(7) ?(ϕ+)⊗ ?(ψ+)( ?(ϕ+ ⊗ ψ+).
(8) !(ϕ− ⊗ ψ−)( !(ϕ−)⊗ !(ψ−).
(9) ?(ϕ+) ` ?(ψ+)( ?(ϕ+ ` ψ+).

(10) !(ϕ− ` ψ−)( !(ϕ−) ` !(ψ−).

(1) We have b!δcT± = bδcT± and we obtain the result by following the chain of
implications

δ±( bδ±cT± = b!δ±cT±( !δ±

(2) Similar.

(3) We have b!ϕcT± = bϕcT± and we obtain the result by following the chain
of implications

?(ϕ+)( bϕ+cT± = b(!ϕ)+cT±( ?(!ϕ)+

(4) Similar.
(5) We have

!(ϕ−) ˛ bϕ−cT± ?(ψ+) ˛ bψ+cT± and ?(ϕ−( ψ+) ˛ bϕ−( ψ+cT±

Using the ! and ?-properties of determinisitic formulae, it follows that we
have the following chain of implications:

(!(ϕ−)( ?(ψ+)) ( (bϕ−cT±( bψ+cT±)

( ?(!bϕ−cT±( bψ+cT±)

= bϕ−( ψ+cT±

( ?(ϕ−( ψ+)

(6) Similar.
(7) We have

?(ϕ+) ˛ bϕ+cT± ?(ψ+) ˛ bψ+cT± and ?(ϕ+⊗ψ+) ˛ bϕ+ ⊗ ψ+cT±

Using the ! and ?-properties of determinisitic formulae, it follows that we
have the following chain of implications:

(?(ϕ+)⊗ ?(ψ+)) ( (bϕ+cT± ⊗ bψ+cT±)

( ?(!bϕ+cT± ⊗ !bψ+cT±)

= bϕ+ ⊗ ψ+cT±

( ?(ϕ+ ⊗ ψ+)

(8) Similar.



(9) We have

?(ϕ+) ˛ bϕ+cT± ?(ψ+) ˛ bψ+cT± and ?(ϕ+`ψ+) ˛ bϕ+ ` ψ+cT±

Using the ?-property of determinisitic formulae, it follows that we have the
following chain of implications:

(?(ϕ+) ` ?(ψ+)) ( (bϕ+cT± ` bψ+cT±)

( ?(bϕ+cT± ` bψ+cT±)

= bϕ+ ` ψ+cT±

( ?(ϕ+ ` ψ+)

(10) Similar. ut

Lemma 18. The equivalences

?ϕ+ ˛ bϕ+cT± δ± ˛ bδ±cT± !ψ− ˛ bψ−cT±

(where ϕ+, δ± and ψ− have the displayed polarities) are provable in FS +
(DEXP) + (PEXP).

Proof. First note that using the ! and ?-axioms on deterministic formulae, for a
deterministic δ±, the equivalence

δ ˛ bδcT±

follows from the series of equivalences

bδ+cT± ˛ ?(δ+) ˛ δ± ˛ !(δ−) ˛ bδ−cT±

Conversely, the equivalence
δ ˛ bδcT±

entails
?(δ+) ˛ bδ+cT± and !(δ−) ˛ bδ−cT±

We proceed by simulateneous induction on formulae.

– Case of ϕ and atomic formula α. Since bαcT± = ?α, we have to show

?α+ ˛ ?α and !α− ˛ ?α

and we are done by the ! and ?-axioms on deterministic formulae.
– Case of (ϕ−( ψ+)+. We have

bϕ( ψcT± = ?(!bϕcT±( bψcT±)

so that we have to show

?(ϕ−( ψ+) ˛ ?(!bϕcT±( bψcT±)



By induction hypothesis we have

!(ϕ−) ˛ bϕ−cT± and ?(ψ+) ˛ bψ+cT±

We are thus left with showing

?(ϕ−( ψ+) ˛ ?(!!(ϕ−)( ?(ψ+))

The left-to-right implication follows from

ϕ− ` ϕ− ψ+ ` ψ+

ϕ−( ψ+, ϕ− ` ψ+

ϕ−( ψ+, !(ϕ−) ` ψ+

ϕ−( ψ+, !!(ϕ−) ` ψ+

ϕ−( ψ+, !!(ϕ−) ` ?(ψ+)

ϕ−( ψ+ ` !!(ϕ−)( ?(ψ+)

ϕ−( ψ+ ` ?(!!(ϕ−)( ?(ψ+))

?(ϕ−( ψ+) ` ?(!!(ϕ−)( ?(ψ+))

The right-to-left implication follows from the ?/ (-axiom for positive im-
plications:

!(ϕ−) ` !(ϕ−)

!(ϕ−) ` !!(ϕ−) ?(ψ+) ` ?(ψ+)

!!(ϕ−)( ?(ψ+), !(ϕ−) ` ?(ψ+)

!!(ϕ−)( ?(ψ+) ` !(ϕ−)( ?(ψ+) !(ϕ−)( ?(ψ+) ` ?(ϕ−( ψ+)

!!(ϕ−)( ?(ψ+) ` ?(ϕ−( ψ+)

?(!!(ϕ−)( ?(ψ+)) ` ?(ϕ−( ψ+)

– Case of (ϕ+( ψ−)−. We have

bϕ( ψcT± = ?(!bϕcT±( bψcT±)

so that we have to show

!(ϕ+( ψ−) ˛ ?(!bϕcT±( bψcT±)

By induction hypothesis we have

?(ϕ+) ˛ bϕ+cT± and !(ψ−) ˛ bψ−cT±

We are thus left with showing

!(ϕ+( ψ−) ˛ ?(!?(ϕ+)( !(ψ−))



The left-to-right implication follows from the !-axiom for deterministic for-
mulae. We cut

ϕ+ ` ϕ+

ϕ+ ` ?(ϕ+)

ψ− ` ψ−

!(ψ−) ` ψ−

?(ϕ+)( !(ψ−), ϕ+ ` ψ−

?(ϕ+)( !(ψ−) ` ϕ+( ψ−

!(?(ϕ+)( !(ψ−)) ` ϕ+( ψ−

!(?(ϕ+)( !(ψ−)) ` !(ϕ+( ψ−) ?(ϕ+)( !(ψ−) ` !(?(ϕ+)( !(ψ−))

?(ϕ+)( !(ψ−) ` !(ϕ+( ψ−)

with

?(ϕ+) ` !?(ϕ+) !(ψ−) ` !(ψ−)

!?(ϕ+)( !(ψ−), ?(ϕ+) ` !(ψ−)

!?(ϕ+)( !(ψ−) ` ?(ϕ+)( !(ψ−) ?(ϕ+)( !(ψ−) ` !(ϕ+( ψ−)

!?(ϕ+)( !(ψ−) ` !(ϕ+( ψ−)

?(!?(ϕ+)( !(ψ−)) ` !(ϕ+( ψ−)

The right-to-left implication follows from the !/ (-axiom for negative im-
plications:

!(ϕ+( ψ−) ` ?(ϕ+)( !(ψ−)

?(ϕ+) ` ?(ϕ+) !(ψ−) ` !(ψ−)

?(ϕ+)( !(ψ−), ?(ϕ+) ` !(ψ−)

?(ϕ+)( !(ψ−), !?(ϕ+) ` !(ψ−)

?(ϕ+)( !(ψ−) ` !?(ϕ+)( !(ψ−)

!(ϕ+( ψ−) ` ?(!?(ϕ+)( !(ψ−))

– Case of ϕ+ ⊗ ψ+. We have

bϕ⊗ ψcT± = ?(!bϕcT± ⊗ !bψcT±)

so that we have to show

?(ϕ+ ⊗ ψ+) ˛ ?(!bϕ+cT± ⊗ !bψ+cT±)

The induction hypothesis gives

?(ϕ+) ˛ bϕ+cT± and ?(ψ+) ˛ bψ+cT±

We are thus left with showing

?(ϕ+ ⊗ ψ+) ˛ ?(!?(ϕ+)⊗ !?(ψ+))



The left-to-right implication follows from the !-axiom on deterministic for-
mulae:

ϕ+ ` ϕ+

ϕ+ ` ?(ϕ+) ?(ϕ+) ` !?(ϕ+)

ϕ+ ` !?(ϕ+)

ψ+ ` ψ+

ψ+ ` ?(ψ+) ?(ψ+) ` !?(ψ+)

ψ+ ` !?(ψ+)

ϕ+, ψ+ ` !?(ϕ+)⊗ !?(ψ+)

ϕ+, ψ+ ` ?(!?(ϕ+)⊗ !?(ψ+))

ϕ+ ⊗ ψ+ ` ?(!?(ϕ+)⊗ !?(ψ+))

?(ϕ+ ⊗ ψ+) ` ?(!?(ϕ+)⊗ !?(ψ+))

The right-to-left implication follows from the ?/⊗-axiom for positive formu-
lae:

?(ϕ+), ?(ψ+) ` ?(ϕ+ ⊗ ψ+)

!?(ϕ+), !?(ψ+) ` ?(ϕ+ ⊗ ψ+)

!?(ϕ+)⊗ !?(ψ+) ` ?(ϕ+ ⊗ ψ+)

?(!?(ϕ+)⊗ !?(ψ+)) ` ?(ϕ+ ⊗ ψ+)

– Case of ϕ− ⊗ ψ−. We have

bϕ⊗ ψcT± = ?(!bϕcT± ⊗ !bψcT±)

so that we have to show

!(ϕ− ⊗ ψ−) ˛ ?(!bϕ−cT± ⊗ !bψ−cT±)

The induction hypothesis gives

!(ϕ−) ˛ bϕ−cT± and !(ψ−) ˛ bψ−cT±

We are thus left with showing

!(ϕ− ⊗ ψ−) ˛ !(!!(ϕ−)⊗ !!(ψ−))

The left-to-right implication follows from the !/⊗-axiom for negative formu-
lae:

!(ϕ− ⊗ ψ−) ` !(ϕ−)⊗ !(ψ−)

!(ϕ−) ` !(ϕ−)

!(ϕ−) ` !!(ϕ−)

!(ψ−) ` !(ψ−)

!(ψ−) ` !!(ψ−)

!(ϕ−), !(ψ−) ` !!(ϕ−)⊗ !!(ψ−)

!(ϕ−)⊗ !(ψ−) ` !!(ϕ−)⊗ !!(ψ−)

!(ϕ− ⊗ ψ−) ` !!(ϕ−)⊗ !!(ψ−)

!(ϕ− ⊗ ψ−) ` !(!!(ϕ−)⊗ !!(ψ−))



The right-to-left implication is given as follows:

ϕ− ` ϕ−

!(ϕ−) ` ϕ−

!!(ϕ−) ` ϕ−

ψ− ` ψ−

!(ψ−) ` ψ−

!!(ψ−) ` ψ−

!!(ϕ−), !!(ψ−) ` ϕ− ⊗ ψ−

!!(ϕ−)⊗ !!(ψ−) ` ϕ− ⊗ ψ−

!(!!(ϕ−)⊗ !!(ψ−)) ` ϕ− ⊗ ψ−

!(!!(ϕ−)⊗ !!(ψ−)) ` !(ϕ− ⊗ ψ−)

– Case of ϕ+ ` ψ+. We have

bϕ` ψcT± = ?(bϕcT± ` bψcT±)

so that we have to show

?(ϕ+ ` ψ+) ˛ ?(bϕ+cT± ` bψ+cT±)

The induction hypothesis gives

?(ϕ+) ˛ bϕ+cT± and ?(ψ+) ˛ bψ+cT±

We are thus left with showing

?(ϕ+ ` ψ+) ˛ ?(?(ϕ+) ` ?(ψ+))

The left-to-right implication is given by

ϕ+ ` ϕ+

ϕ+ ` ?(ϕ+)

ψ+ ` ψ+

ψ+ ` ?(ψ+)

ϕ+ ` ψ+ ` ?(ϕ+), ?(ψ+)

ϕ+ ` ψ+ ` ?(ϕ+) ` ?(ψ+)

ϕ+ ` ψ+ ` ?(?(ϕ+) ` ?(ψ+))

?(ϕ+ ` ψ+) ` ?(?(ϕ+) ` ?(ψ+))

The right-to-left implication follows from the ?/`-axiom on positive formu-
lae:

?(ϕ+) ` ?(ψ+) ` ?(ϕ+ ` ψ+)

?(?(ϕ+) ` ?(ψ+)) ` ?(ϕ+ ` ψ+)

– Case of ϕ− ` ψ−. We have

bϕ` ψcT± = ?(bϕcT± ` bψcT±)

so that we have to show

!(ϕ− ` ψ−) ˛ ?(bϕ−cT± ` bψ−cT±)



The induction hypothesis gives

!(ϕ−) ˛ bϕ−cT± and !(ψ−) ˛ bψ−cT±

We are thus left with showing

!(ϕ− ` ψ−) ˛ ?(!(ϕ−) ` !(ψ−))

The left-to-right implication follows from the !/`-axiom for negative formu-
lae:

!(ϕ− ` ψ−) ` !(ϕ−) ` !(ψ−)

!(ϕ− ` ψ−) ` ?(!(ϕ−) ` !(ψ−))

The right-to-left implication follows form the ! and ?-axioms on deterministic
formulae:

?(!(ϕ−) ` !(ψ−)) ` !(ϕ−) ` !(ψ−)

ϕ− ` ϕ−

!(ϕ−) ` ϕ−
ψ− ` ψ−

!(ψ−) ` ψ−

!(ϕ−) ` !(ψ−) ` ϕ−, ψ−

!(ϕ−) ` !(ψ−) ` ϕ− ` ψ− ϕ− ` ψ− ` !(ϕ− ` ψ−)

!(ϕ−) ` !(ψ−) ` !(ϕ− ` ψ−)

?(!(ϕ−) ` !(ψ−)) ` !(ϕ− ` ψ−)

– Case of (!(ϕ+))+. Since b!ϕcT± = bϕcT± we have to show

?!ϕ˛ bϕcT±

We have bϕ+cT± ˛ ?(ϕ+) by induction hypothesis. We are thus left with

?!(ϕ+) ˛ ?(ϕ+)

and the result follows from the !-axiom on positive formulae.
– Case of (!(ϕ−))±. Since b!ϕcT± = bϕcT± we have to show

!ϕ˛ bϕcT±

We have bϕ−cT± ˛ !(ϕ−) by induction hypothesis. We are thus left with

!ϕ˛ !ϕ

and we are done.
– Case of (?(ϕ−))−. Since b?ϕcT± = bϕcT± we have to show

!?ϕ˛ bϕcT±

We have bϕ−cT± ˛ !(ϕ−) by induction hypothesis. We are thus left with
showing

!?ϕ˛ !ϕ

and the result follows from the ?-axiom on negative formulae.



– Case of (?(ϕ+))±. Since b?ϕcT± = bϕcT± we have to show

?ϕ˛ bϕcT±

We have bϕ+cT± ˛ ?(ϕ+) by induction hypothesis. We are thus left with

?ϕ˛ ?ϕ

and we are done.
– Case of ((∃x)ϕ)+. Since

b(∃x)ϕcT± = ?(∃x)!bϕcT±

we have to show
?(∃x)ϕ˛ ?(∃x)!bϕcT±

The induction hypothesis gives

?(ϕ+) ˛ bϕ+cT±

and it follows from the !-axioms on deterministic formulae that we have the
sequence of equivalences

?(∃x)!bϕcT± ˛ ?(∃x)bϕcT± ˛ ?(∃x)?ϕ

We are thus left with showing

?(∃x)ϕ˛ ?(∃x)?ϕ

and the result follows from

ϕ ` ϕ
ϕ ` (∃x)ϕ

ϕ ` ?(∃x)ϕ

?ϕ ` ?(∃x)ϕ

(∃x)?ϕ ` ?(∃x)ϕ

?(∃x)?ϕ ` ?(∃x)ϕ

and

ϕ ` ϕ
ϕ ` ?ϕ

ϕ ` (∃x)?ϕ

ϕ ` ?(∃x)?ϕ

(∃x)ϕ ` ?(∃x)?ϕ

?(∃x)ϕ ` ?(∃x)?ϕ

– Case of ((∀x)ϕ)−. Since

b(∀x)ϕcT± = ?!(∀x)bϕcT±

we have to show
!(∀x)ϕ˛ ?!(∀x)bϕcT±

The induction hypothesis gives

!(ϕ−) ˛ bϕ−cT±



and it follows from the ?-axioms on deterministic formulae that we have the
sequence of equivalences

?!(∀x)bϕcT± ˛ !(∀x)bϕcT± ˛ !(∀x)!ϕ

We are thus left with showing

!(∀x)ϕ˛ !(∀x)!ϕ

and the result follows from

ϕ ` ϕ
(∀x)ϕ ` ϕ
!(∀x)ϕ ` ϕ
!(∀x)ϕ ` !ϕ

!(∀x)ϕ ` (∀x)!ϕ

!(∀x)ϕ ` !(∀x)!ϕ

and

ϕ ` ϕ
!ϕ ` ϕ

(∀x)!ϕ ` ϕ
!(∀x)!ϕ ` ϕ

!(∀x)!ϕ ` (∀x)ϕ

!(∀x)!ϕ ` !(∀x)ϕ

ut

Proof of Proposition 7 (Extraction from FS + (DEXP) + (PEXP)). We
first show that FS+ (LSIP) + (DEXP) + (PEXP) realises all instances of (PEXP).

Lemma 19. The axioms (PEXP) are realized in FS+(LSIP)+(DEXP)+(PEXP):

(1) ?(ϕ+) −( ?!(ϕ+)
(2) !?(ψ−) −( !(ψ−)
(3) !(ϕ−)( ?(ψ+) −( ?(ϕ−( ψ+)
(4) ?(ϕ+)( !(ψ−) −( !(ϕ+( ψ−)
(5) ?(ϕ+)⊗ ?(ψ+) −( ?(ϕ+ ⊗ ψ+)
(6) !(ϕ− ⊗ ψ−) −( !(ϕ−)⊗ !(ψ−)
(7) ?(ϕ+) ` ?(ψ+) −( ?(ϕ+ ` ψ+)
(8) !(ϕ− ` ψ−) −( !(ϕ−) ` !(ψ−)

Proof. Let

ϕD = (∃u)(∀x)ϕD and ψD = (∃v)(∀y)ψD(v, y)

(1) We have to show

?(∃u)ϕD(u,−) −( ?(∃u)!ϕD(u,−)

This follows from (DEXP):

ϕD(u) ` !ϕD(u)

ϕD(u) ` (∃u)!ϕD(u)

ϕD(u) ` (∃u)!ϕD(u)

ϕD(u) ` ?(∃u)!ϕD(u)

(∃u)ϕD(u) ` ?(∃u)!ϕD(u)

?(∃u)ϕD(u) ` ?(∃u)!ϕD(u)



(2) We have to show
!(∀y)?ψD(−, y) −( !(∀y)ψD

This follows from (DEXP):

?ψD(y) ` ψD(y)

(∀y)?ψD(y) ` ψD(y)

!(∀y)?ψD(y) ` ψD(y)

!(∀y)?ψD(y) ` (∀y)ψD(y)

!(∀y)?ψD(y) ` !(∀y)ψD(y)

(3) We have to show

!(∀x)ϕD(−, x)( ?(∃v)ψD(v,−) −( ?(∃v)(∃x)
(
ϕD(−, x)( ψD(v,−)

)
With (LSIP) we have

(∀x)ϕD(x)( (∃v)ψD(v) ` (∃v)(∃x)
(
ϕD(x)( ψD(v)

)
and we conclude with (PEXP).

(4) We have to show

?(∃u)ϕD(u,−)( !(∀y)ψD(−, x) −( !(∀u)(∀y)
(
ϕD(u,−)( ψD(−, y)

)
First, with (PEXP) we have

?(∃u)ϕD(u,−)( !(∀y)ψD(−, x) −( !
(
(∃u)ϕD(u,−)( (∀y)ψD(−, y)

)
We the conclude from

(∃u)ϕD(u,−)( (∀y)ψD(−, y) −( (∀u)(∀y)
(
ϕD(u,−)( ψD(−, y)

)
(see the case of (−)D ( (−)D −( (−( −)D in the proof of Theorem 3,
§B.3.)

(5) We have to show

?(∃u)ϕD(u,−)⊗ ?(∃v)ψD(v,−) −( ?(∃u, v)
(
ϕD(u,−)⊗ ψD(v,−)

)
First, with (PEXP) we have

?(∃u)ϕD(u,−)⊗ ?(∃v)ψD(v,−) −( ?
(
(∃u)ϕD(u,−)⊗ (∃v)ψD(v,−)

)
We then conclude as follows:

ϕD(u), ψD(v) ` ϕD(u)⊗ ψD(v)

ϕD(u), ψD(v) ` ∃u, v. ϕD(u)⊗ ψD(v)

(∃u)ϕD(u), (∃v)ψD(v) ` ∃u, v. ϕD(u)⊗ ψD(v)

(∃u)ϕD(u)⊗ (∃v)ψD(v) ` ∃u, v. ϕD(u)⊗ ψD(v)



(6) We have to show

!(∀x, y)
(
ϕD(−, x)⊗ ψD(−, y)

)
−( !(∀x)ϕD(−, x)⊗ !(∀y)ψD(−, y)

First, by (LSIP) we have

(∀x, y)
(
ϕD(−, x)⊗ ψD(−, y)

)
−( (∀x)ϕD(−, x)⊗ (∀y)ψD(−, y)

and we conclude with (PEXP).
(7) We have to show

?(∃u)ϕD(u,−) ` ?(∃v)ψD(v,−) −( ?(∃u, v)
(
ϕD(u,−) ` ψD(v,−)

)
First, by (PEXP) we have

?(∃u)ϕD(u,−) ` ?(∃v)ψD(v,−) −( ?
(
(∃u)ϕD(u,−) ` (∃v)ψD(v,−)

)
and we conclude with (LSIP).

(8) We have to show

!(∀x, y)
(
ϕD(−, x) ` ψD(−, y)

)
−( !(∀x)ϕD(−, x) ` !(∀y)ψD(−, y)

First, by (LSIP) we have

(∀x, y)
(
ϕD(−, x) ` ψD(−, y)

)
−( (∀x)ϕD(−, x) ` (∀y)ψD(−, y)

and we conclude with (PEXP). ut

The corresponding extension of Corollary 1 (Cor. 5) is the following. The
proof is exactly that of Cor. 5, but invoking Lemma 19 in addition to Theorem 2
(Thm. 8) and Proposition 4 (Lem. 12 & 13).

Corollary 7. Consider a closed formula ϕ := (∀xσ)(∃uτ )δ(u, x) with δ deter-
ministic. From a proof of ϕ in FS+ (LAC) + (LSIP) + (DEXP) + (PEXP) one can
extract a term t(x) such that |= (∀xσ)bδ(t(x), x)c.

C Proofs of §4 (Completeness)

C.1 Completeness of MSO(M) (Theorem 4)

Thanks to the equational theory of MSO(M), we reduce Theorem. 4 to the
completeness of MSO+ [26, Thm. 2.11]:

Theorem 9 (Completeness of MSO+). For each closed formula ϕ of MSO+,

|= ϕ ⇐⇒ `MSO+ ϕ



First, recall that Proposition 1 implies that MSO(M) proves (3). In particular,
MSO(M) proves

t
.
= 〈π1t, . . . , π2pt〉 (JσK = 2p)

Hence each term t of sort (σ1, . . . , σn; τ) with JτK = 2p is provably equal to a
tuple of terms (ti)1≤i≤2p with each ti of sort (σ1, . . . , σn; o). Now, we turn terms
t of sort (σ1, . . . , σn; o) with

Jσ1K× · · · × JσnK = 2q

to terms t̃ of sort
(2, . . . ,2︸ ︷︷ ︸

q

; 2)

Moreover, we replace each such term t̃ with the MSO+-term 〈t〉 representing
the Mealy machine 2q → 2 for t̃. To summarize, we have

`MSO(M )(ω) t
.
=σ u ←→

∧
1≤i≤2p

〈ti〉
.
=o 〈ui〉 (t, u of sort (σ1, . . . , σn; τ))

Consider now an MSO(M)-formula ϕ with free variables among xσ1 , . . . , xσn . To
ϕ we can associate an MSO+-formula 〈ϕ〉 with free variables among xo1,1, . . . , x

o
1,m1

, . . . , xon,1, . . . , x
o
n,mn

(where JσiK = 2mi) and such that∧
1≤i≤n

xσi
.
= 〈xoi,1, . . . , xoi,ni〉 `MSO(M )(ω) ϕ ←→ 〈ϕ〉

Theorem 4 then follows from Theorem 9.

C.2 Proof of §4.2 (The Logic LMSO)

We split Proposition 8 into two statements.

Proposition 13. If `MSO(M) ϕ then `LMSO ϕ
L.

Proof. The result directly follows from Proposition 6 (Cor. 6) and the fact that
LMSO proves the (−)L translation of all the axioms of MSO(M). They are dealt
with exactly as in [26].

– The arithmetic rules of Fig. 5 follow from the fact that αL = α for each
atomic formula α ∈ At.

– The induction scheme of LMSO requires one hypothesis to be under an ex-
ponential modality !(−) to accomodate arbitrary negative formulae; the sit-
uation is resolved by cutting with the LMSO axiom enabling to remove ex-
ponentials over deterministic formulae.
By the induction hypothesis (and since (−)L commutes over substitution),
we have proofs of

ϕL, 0(z) ` ϕL[z/x], ψ
L

and ϕL,S(y, z), ϕL[y/x] ` ϕL[z/x], ψ
L



Using (DEXP) we thus derive

!ϕL, 0(z) ` ϕL[z/x], ?ψ
L

and !ϕL,S(y, z), !ϕL[y/x] ` ϕL[z/x], ?ψ
L

from which the induction scheme of LMSO gives

!ϕL ` (∀xι)ϕL, ?ψL

and we directly get

!ϕL ` !(∀xι)ϕL, ?ψL

– The translation of each instance of the comprehension scheme of MSO(M)
is an instance of the comprehension scheme of LMSO.

– The axiom scheme defining terms in MSO(M) is as follows

` (∀Xo
)(∀xι)

(
x ∈̇ fM(X) ←→ δM(x,X)

)
Clearly, it is equivalent to the following scheme where we make the universal
quantification implicit by using formulae with free variables

` N(x)→
(
x ∈̇ fM(X) ←→ δM(x,X)

)
which translate to the following, which is then clearly derivable from the
corresonding scheme in LMSO by instantiating the universal quantifiers by
the free variables

` N(x)(
(
x ∈̇ fM(X) ˛ δM(x,X)L

)
ut

Proposition 14. Given a realizable instance of Church’s synthesis (∀xσ)(∃uτ )ϕ(u, x),
we have `LMSO (∀xσ)(∃uτ )ϕL(u, x).

Proof. Assume that there is a Mealy term uτ (xσ) such that

|= (∀xσ)ϕ(u(x), x)

It then follows from the completeness of MSO(M) (Theorem 4) that

`MSO(M) (∀xσ)ϕ(u(x), x)

so that Proposition 8 (Proposition 13) gives

`LMSO !(∀xσ)ϕL(u(x), x)

We then easily derive
`LMSO ϕ

L(u(x), x)

whence the result. ut



Theorem 10 (Soundness of (−)D (Theorem 5)). Let ϕ be closed with ϕD =
(∃uτ )(∀xσ)ϕD(u, x). From a proof of ϕ in LMSO(C) one can extract an eager
term u(x) such that LMSO proves (∀xσ)ϕD(u(x), x).

Proof. The result follows from the soundness of (−)D in FS + (LAC) + (LSIP) +
(DEXP) + (PEXP) given by Theorem 2 (Thm. 8), Proposition 4 (Lem. 12 & 13)
and Lemma 19, and the fact that the axioms of LMSO are realized.

– For the arithmetic rules of Fig. 5, this follow from the fact that atomic
formulae are interpreted by themselves, so these axioms are interpreted by
instances of themselves.

– For comprehension, this follows from the fact that the axiom is a determin-
istic formula, so its realizers are trivial, and the fact that each instance is
interpreted by an instance of the axiom.

– For the axiom giving definition definitions of Mealy machines, since atomic
formulae are interpreted by themselves and since (−)L-formulae are deter-
ministic, each instance is interpreted by a formula of the form

x ∈̇ fM(X) ˛ (δLM)D(x,X)

The result then follows from Characterization (Theorem 3).
– Consider now induction:

!ϕ, 0(z) ` ϕ−[z/x], ?ϕ′ !ϕ,S(y, z), !ϕ−[y/x] ` ϕ−[z/x], ?ϕ′

!ϕ ` (∀xι)ϕ−, ?ϕ′

First, note that the conlusion is of the form (−)+ ` (−)−, so no realizers have
to be provided and we just have to show that the axiom is interpreted by in
instance of itself. Now, (−)D takes !-formulae to !-formulae and ?-formulae
to ?-formulae. So we are left with showing that from a proof of

(!ϕ)D,S(y, z), (!ϕ−)D[y/x] ` ϕD(−, x̃, z)(?ϕD ′)D

one can get a proof of

(!ϕ)D,S(y, z), !ϕD(−, x̃, [y/z]) ` ϕD(−, x̃, z)(?ϕD ′)D

But this is trivial since

(!ϕ−)D(a) = !(∀x̃)ϕD(−, x̃, a) −( !ϕD(−, x̃, a)

ut

C.3 Proofs of §4.3 (Completeness of LMSO(C))

Lemma 20 (Lem. 1). For each LMSO-formula ϕ, we have

(ϕ(a)( ⊥)( ⊥ `LMSO(C) ϕ(a)



Lemma 20 relies on a combinatorial property already used in [26].

Lemma 21. Let P and O be sets such that O may be well-ordered. Then the
following is true

∀F ∈ POP

.∃p ∈ P.∀o ∈ O.∃f ∈ OP. [F (f) = p and f(p) = o]

Proof. Fix F ∈ POP

. The negation of our statement is equivalent to

∀p ∈ P.∃o ∈ O.¬
(
∃f ∈ OP. [F (f) = p ∧ f(p) = o]

)
Using an instance of choice available thanks to the fact that O may be well-
ordered, this is in turn equivalent to

∃õ ∈ OP.∀p ∈ P.¬
(
∃f ∈ OP. [F (f) = p ∧ f(p) = õ(p)]

)
It follows that we only need to prove

∀F ∈ POP

.∀õ ∈ OP.∃p ∈ P.∃f ∈ OP. [F (f) = p and f(p) = õ(p)]

But this is now easy: given F ∈ POP

and õ ∈ OP, we can take f := õ and
p := F (õ) to conclude. ut

In particular, given alphabets Σ and Γ , there are functions

u : (Γ )((Σ)Γ ) −→ Γ and g : (Γ )((Σ)Γ )×Σ −→ (Σ)Γ

such that for all F : (Σ)Γ → Γ and all x ∈ Σ,

@(F , g(F, x)) = u(F ) and @(g(F, x) , u(F )) = x

We can now prove Lemma 20. Recall that

`LMSO δ , δ( ⊥ (δ deterministic)

so that
(δ( ⊥)( ⊥ `LMSO δ (δ deterministic)

Proof (of Lemma 20). Let

ψ(a) := (ϕ(a)( ⊥)( ⊥

Thanks to the Characterization Theorem 3, we are done if we show

ψD(a) `LMSO(C) ϕD(a)

Assume
ϕD(a) = (∃uτ )(∀xσ)ϕD(u, x, a)

We thus have

(ϕ(a)( ⊥)D = (∃g(σ)τ )(∀uτ )
(
ϕD(u, (g)u, a)( ⊥

)



so that(
(ϕ(a)( ⊥)( ⊥

)D ˛ (∃F (τ)((σ)τ))(∀g(σ)τ )ϕD((F )g , (g)((F )g) , a)

Then we are done if we show that LMSO proves

(∀F (τ)((σ)τ))(∃uτ )(∀xσ)(∃g(σ)τ )
(
ϕD((F )g , (g)((F )g) , a) −( ϕD(u, x, a)

)
Consider the functions

u : J(τ)((σ)τ)K −→ JτK and g : J(τ)((σ)τ)K× JσK −→ J(σ)τK

given by Lemma 21. Let u(F ) and g(F, x) be terms representing their pointwise
lift to M. We then have, in LMSO

u(F )
.
= @

(
F , g(F, x)

)
and @

(
g(F, x) , u(F )

) .
= x

and we conclude as follows:

`LMSO ϕD

(
@
(
F , g(F, x)

)
, @
(
g(F, x) , @

(
F , g(F, x)

))
, a
)
−( ϕD

(
u(F ) , x

)
`LMSO (∀xσ)(∃g(σ)τ )

(
ϕD
(
(F )g , (g)((F )g) , a

)
−( ϕD

(
u(F ) , x

))
`LMSO (∀F (τ)((σ)τ))(∃uτ )(∀xσ)(∃g(σ)τ )

(
ϕD
(
(F )g , (g)((F )g) , a

)
−( ϕD(u, x)

)
ut

Lemma 22 (Lemma 2).

(∀xσ)ϕ(tτ (x), x) `LMSO(C) (∃uτ )(∀xσ)ϕ(u, x) (t eager)

Proof. Thanks to Corollary 3 we are done if we show

(∀xσ)ϕ(tτ (x), x) `LMSO(C) (∀f (σ)τ )(∃uτ )ϕ(u, (f)u) (t eager)

We use fixpoints for finite-state eager functions (Proposition 3 and §A.1). Let

Σ := ∆ := JσK Γ := J(σ)τK Θ := JτK

We apply Corollary 4 to

F := JtK : Σ × Γ −→EM Θ and G := @ : Γ ×Θ −→M ∆

We thus obtain a f.s. eager

H : Σ × Γ −→EM ∆Σ

such that

@(H(B,C), C) = @(C, JtK(B)) (for all B ∈ Σω, C ∈ Γω)



We now apply Proposition 3 and obtain a finite-state fixpoint of H, that is
a finite-state eager

fix(H) : Γ −→EM ΣΓ

such that

@
(

fix(H)(C) , C
)

= e(fix(H))(C)
= @

(
H(e(fix(H))(C), C) , C

)
= @

(
C , JtK(e(fix(H))(C))

) (for all C ∈ Γω)

Let v(f (σ)τ ) be the (Mealy) term for e(fix(H)) : J(σ)τK→M JσK. We thus have

`LMSO v(f)
.
= @(f , t(v(f)))

and it follows that

(∀xσ)ϕ(t(x), x) `LMSO ϕ
(
t(v(f)) , v(f)

)
`LMSO ϕ

(
t(v(f)) , @(f, t(v(f)))

)
`LMSO (∃uτ )ϕ

(
u , (f)u

)
`LMSO (∀f (σ)τ )(∃uτ )ϕ

(
u , (f)u

)
ut

Theorem 11 (Completeness of LMSO(C) (Theorem 6)). For each closed
formula ϕ, either `LMSO(C) ϕ or `LMSO(C) ϕ( ⊥.

Proof. Let ϕ be a closed LMSO-formula and ϕD(uτ , xσ) be the body of its Di-
alectica interpretation. We apply Büchi-Landweber Theorem 1 to the MSO(M)-
formula bϕD(uτ , xσ)c. There are two cases.

– Either there exists an eager term u(x) of sort (σ, τ) such that (∀xσ)bϕD(t(x), x)c
holds. We then proceed as follows.

MSO(M) ` bϕD(u(x), x)c By Completeness of MSO(M) (Thm. 4)
LMSO(C) ` bϕD(u(x), x)cL By Proposition 8
LMSO(C) ` ϕD(u(x), x) By Proposition 5 (ϕD is always ±)
LMSO(C) ` (∀xσ)ϕD(u(x), x) ∀-right
LMSO(C) ` (∃uτ )(∀xσ)ϕD(u, x) By Lemma 22, since u(x) is eager
LMSO(C) ` ϕD By definition
LMSO(C) ` ϕ By Characterization (Thm. 3)

– Otherwise, there exists a term x(u) of sort (τ ;σ) such that (∀uτ )¬bϕD(x(u), u)c
holds. Note that

¬bϕD(x(u), u)c = bϕD(x(u), u)( ⊥c



We then conclude as follows.

MSO(M) ` bϕD(u, x(u))( ⊥c By Completeness of MSO(M) (Thm. 4)
LMSO ` bϕD(u, x(u))( ⊥cL By Proposition 8
LMSO ` ϕD(u, x(u))( ⊥ By Proposition 5 (ϕD is always ±)
LMSO ` (∃xσ)(ϕD(u, x)( ⊥) ∃-right
LMSO ` (∀uτ )(∃xσ)(ϕD(u, x)( ⊥) ∀-right
LMSO(C) ` (∃g(σ)τ )(∀uτ )(ϕD(u, (g)u))( ⊥) By (LAC)
LMSO(C) ` (ϕ( ⊥)D By definition (see Fig. 3)
LMSO(C) ` ϕ( ⊥ By Characterization (Thm. 3)

ut
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