
Type-based termination with sized products

Gilles Barthe1?, Benjamin Grégoire2, and Colin Riba2

1 IMDEA Software, Madrid, Spain gilles.barthe@imdea.org
2 INRIA Sophia-Antipolis, France

{Benjamin.Gregoire,Colin.Riba}@sophia.inria.fr

Abstract. Type-based termination is a semantically intuitive method
that ensures termination of recursive definitions by tracking the size
of datatype elements, and by checking that recursive calls operate on
smaller arguments. However, many systems using type-based termina-
tion rely on a semantical anomaly to guarantee strong normalization;
namely, they impose that non-recursive elements of a datatype, e.g. the
empty list, have size 1 instead of 0. This semantical anomaly also pre-
vents functions such as quicksort to be given a precise typing.
The main contribution of this paper is a type system that remedies this
anomaly, and still ensures termination. In addition, our type system fea-
tures prenex stage polymorphism, a weakening of existential quantifica-
tion over stages, and is precise enough to type quicksort as a non-size
increasing function. Moreover, our system accomodate stage addition
with all positive inductive types.

1 Introduction

Type-based termination is a method to guarantee termination of recursive defi-
nitions by a non-standard type system in which datatype elements are assigned
a size, which is used by the typing rule for letrec to ensure that recursive calls
are made on smaller elements, i.e. elements with a smaller size. The semantical
intuition behind size-based termination is embedded in the (simplified) typing
rule for recursive definitions, which states that the definition of a function on
elements of size ı can only make recursive calls on elements of smaller size:

Γ, f : Listıτ → σ ` e : Listbıτ → σ

Γ ` letrec f = e : List∞τ → σ
(1)

where ı is a size variable, Listı denotes the type of lists of size less or equal to
ı, and ̂ is the successor function on stages, Listbı denotes the type of lists of size
less or equal to ı̂ and List∞ denotes the usual type of lists.

One distinguishing feature of type-based termination is its expressiveness.
Indeed, even the simplest systems of type-based termination are sufficiently ex-
pressive to allow to give precise typings for some structurally recursive functions:

map : (X → Y) → ListıX → ListıY

? Most of this work was performed while working at INRIA Sophia-Antipolis.

2 Gilles Barthe, Benjamin Grégoire, and Colin Riba

and to type functions that are not structurally recursive such as the quicksort
function:

letrec qs = λl. case l of
| nil ⇒ nil
| cons x xs ⇒ let 〈z1, z2〉 = (filter x xs)

in app (qs z1) (cons x (qs z2))

(2)

Many type-based termination systems [7, 1–3] allow the typing:

quicksort : List∞X → List∞X (3)

but cannot yield the more precise typing:

quicksort : ListıX → ListıX (4)

Achieving a precise typing for quicksort requires extending the type system so
that it yields precise typings for app and filter: first, app must be given a precise
typing by means of stage addition:

app : ListıX → ListX → Listı+X (5)

Second, we have to express that filter divides a list of size ı into two lists whose
respective sizes 1 and 2 sum up to ı which could be expressed using constrained
existential types, as in [4, 10]:

filter : X → ListıX → ∃1, 2 (1 + 2 = ı). List1X × List2X (6)

Unfortunately, adding constrained existential quantification over stages may
break subject reduction (see Section 2) and leads to complex type systems,
where type checking requires solving constraints in Presburger arithmetic.

Furthermore, having nil of size at least 0̂ (as in [7, 1–3]), we cannot type filter
as in (6), and this prevents the typing quicksort as in (4). Thus, we must give
the size 0 to nil. Alas, using the typing rule for fixpoints of [7, 1–3], and letting
nil : List0X, leads to typable non-terminating terms: using the typing rule for
fixpoints of [7, 1–3], (letrec f x = f nil) nil is typable (using the subtyping rule
List0X ≤ ListıX) but not terminating.

Thus, defining a simple yet precise type system that enjoys good meta-
theoretical properties is a challenge. The main contribution of this article is the
definition of a type system F×̂ that features a monoidal structure on stages (with
zero and addition), that simulates existential quantification over stages, and still
enjoys subject reduction and strong normalization for first-order and higher-
order inductive types. Technically, we achieve subject reduction for existentials
by attaching existential quantification to a container structure: this way, intro-
duction and elimination of existential quantification is linked with introduction
and elimination of the corresponding type constructor. This leads to a system
which features subject reduction and where eliminations of existential quantifi-
cation are easier to write for the user. The resulting system provides a well-
behaved intermediate step between basic type-based termination criterion [7,

Type-based termination with sized products 3

1–3], and more powerful but less tractable constraint based approaches [10, 4].
For simplicity, in this paper we focus on a binary product, which we call sized
product.

To achieve strong normalization, we resort to constraining the form of recur-
sive definitions, requiring that the body of the function immediately performs a
case analysis on its recursive argument; this syntactic restriction forces a style of
definitions close to rewriting. However, in contrast with rewriting, the body of
recursive definitions are still part of the terms. This allows for a more powerful
intensional equality between functions than with rewriting. Another feature of
F×̂ is the associativity and commutativity of the addition on the stages of higher-
order inductive datatypes. This is possible because, in the model construction
for strong normalization, stage addition is interpreted by the natural addition
on the ordinals which interpret the stages of higher-order inductive datatypes.

The paper is organized as follows. In Sect. 2 we discuss related works and
presents informally the main characteristics of F×̂. Sect. 3 is devoted to the
formal definition of the system, while Sect. 4 and Sect. 5 outline respectively the
proofs of subject reduction and strong normalization proofs.

2 Overview and related work

The purpose of this section is to present the main characteristics of F×̂ and
its relation with other works on type-based termination. We begin with a brief
overview of the works that support precise typings for quicksort, and then explain
the main specificities of our work.

There has been a lot of interest in using type systems to guarantee termi-
nation or to characterize the complexity of recursive functions, see e.g. [1] for
an overview. Most systems share the semantical anomaly of F̂ and we are only
aware of three systems in which quicksort can be given its exact typing.

The first system is that of Chin and Khoo [5], which annotates every type with
size annotations and infers a formula of Presburger arithmetic that guarantees
termination. We believe that their system, while expressive, generates constraints
which are too complex to be used in practice. The second system is that of Xi [10],
which uses restricted dependent types to ensure termination. The third system
is that of Blanqui and Riba [4]. Recursive functions are defined by rewrite rules,
and as in F×̂, having non-recursive constructors of size 0 is not problematic.

We now discuss the two main characteristics of F×̂: the sized product and the
typing of fixpoints.

2.1 The sized product

Advanced systems of type-based termination, such as Xi and Blanqui, feature
constrained existential and universal stage quantification, respectively written
∃ıP.τ and ∀ıP.τ , where P is a constraint and τ is a type. These systems deal
with judgments of the form K ; Γ ` e : τ where K is a conjunction of constraints,
and their type checking algorithm generate constraints in Presburger arithmetic.

4 Gilles Barthe, Benjamin Grégoire, and Colin Riba

Apart from the inherent complexity of type checking, there are some known
difficulties with existential types.

Fully explicit existential types, which are used by Xi [10], enjoy subject reduc-
tion but rely on a complex elaboration mechanism for type checking. In contrast,
implicit existential types do not satisfy subject reduction. Blanqui and Riba [4]
use the elimination rule:

(∃-elim)
K ; Γ ` e : ∃ıP.τ K, P ; Γ, x :τ ` e′ : σ

K ; Γ ` let x = e in e′ : σ
ı /∈ K, Γ, σ

together with the let-reduction rule:

let x = e in e′ 7→ e′[x := e]

Subject reduction fails is this system (the example of Tatsuta [9] is easily adapted).
Because let-reduction is performed even if the typing of e does not end with an
∃ıP.τ -introduction, the sharing information given by the second premise of (∃-
elim), which is lost by let-reduction, is not regained by the witness information
given by ∃ıP.τ -introductions. Note that the failure of subject reduction is ac-
tually not a so big problem in [4] since the constrained type system is used to
analyze rewrite rules, while ensuring their termination in a standard type system
which features subject reduction.

The above discussion illustrates the difficulties with existential quantification
over stages and justifies our choice to focus on a simpler system that partially
simulates, but does not have, existential quantification. Indeed, our type system
F×̂ achieves a similar effect using prenex stage quantification and using instead
of explicitly existential quantification an embedding of existential quantification
inside some specific type constructors. This way, introduction and elimination
of existential quantification is linked with introduction and elimination of the
corresponding type constructor. This leads to a system which features subject
reduction and where eliminations of existential quantification are easier to write
for the user. For simplicity, in this paper we focus on a binary product, which
we call sized product. We explain it with an example. To express that filter x l
computes a pair of lists whose sizes sum up to the size of l, we write

filter : X → ListıX → List X ×ı List X

The existential information on 1 and 2 in (6) is expressed using the rule (let),
which is inspired by the usual elimination of existential quantification

(let)

K ; Γ ` filter x l : List X ×ı List X
K, 1 + 2 ≤ ı ; Γ, z1 :List1X, z2 :List2X ` e : Listı X

K ; Γ ` let 〈z1, z2〉 = filter x l in e : Listı X
1, 2 /∈ K, Γ

The sized product allows to combine pair opening and let-reduction, which cor-
responds to the elimination of the existential information in the rule (let). This
leads to the following rewrite rule, which is the key-point for subject reduction
in F×̂:

let 〈x1, x2〉 = 〈e1, e2〉 in e 7→θ e[x1 := e1, x2 := e2]

Type-based termination with sized products 5

2.2 Typing of fixpoints

In order to reject the non-terminating term in the introduction, we constrain the
form of recursive definitions, requiring that the body of the function immediately
performs a case analysis on its recursive argument, and distinguishing in the
typing rule between recursive and non-recursive constructors. This approach is
connected to definitions by rewriting [4], where fixpoints and case analysis are
performed in a single definition. To avoid the non-normalizing term (letrec f x =
f nil) nil while having nil of size 0, we ensure that no evaluation strategy of a
typable expression of the form (letrec f = e) nil can make recursive calls to
letrec f = e. The simplest syntactic way to achieve this is to stick fixpoints
definitions letrec f = e to case analysis, and to make a distinction between the
recursive and the non-recursive constructors of a datatype d. Intuitively, d can
not occur in the type of the arguments of a non-recursive constructors. Then,
our fixpoints have the shape

letrec f case {cnr ⇒ enr | cr ⇒ er}

where cnr are non-recursive constructors and cr are recursive constructors, and
where enr can not depend on f . Thus, the following term is strongly normalizing:

(letrec f case {0 ⇒ 1 | s ⇒ λx.(f 0) + (f x)}) 0

It would be desirable to separate fixpoints from case analysis, as in F ,̂ but we
have been unable to find a strongly normalizing system for the usual syntax.

In contrast, Xi [10] can have nil : List0τ without disturbing normalization.
Instead of (1), fixpoints can be typed as follows:

K ; Γ, f : ∀ı < .Listıτ → σ ` e : Listτ → σ

Γ ` letrec f = e : ∀ı.Listıτ → σ

It is possible for Xi to rely on a strict ordering on stages, because he relies on
existential quantification to encode List∞τ as ∃ı.Listıτ . In our case, we cannot
use such a strict ordering, because ı ≤ ∞ but not ı < ∞.

3 System F×̂

In this section, we present the syntax of system F×̂. We begin by the stages, then
define types, terms, reductions and present the typing rules of the system.

3.1 Stages

Stages expression are built from a set VS = {ı, , κ, . . . } of stage variables. They
use a binary stage addition +, a successor operation ·̂ and the constants 0, ∞,
denoting respectively the least and the greatest stage.

6 Gilles Barthe, Benjamin Grégoire, and Colin Riba

Definition 3.1 (Stages). The set S of stage expressions is given by the abstract
syntax:

s, r ::= VS | 0 | ∞ | ŝ | s + r

The substitution s[ı := r] of the stage variable ı for r in s is defined in the
obvious way.

The system uses inequalities s ≤ r on stage expressions. They are derived by
judgments of the form K ` s ≤ r, where K is a conjunction of stages inequalities
called stage constraint. These judgments are defined by the substage relation.

Definition 3.2. A stage constraint is a finite set K ∈ K of stage inequalities
s ≤ r with s, r ∈ S. The substage relation is the smallest relation K ` s ≤ r,
where K ∈ K and s, r ∈ S, such that

(ax)
K, s ≤ r ` s ≤ r

(refl)
K ` s ≤ s

(inf)
K ` 0 ≤ s

(sup)
K ` s ≤ ∞

(trans)
K ` s ≤ r K ` r ≤ p

K ` s ≤ p
(mon)

K ` s ≤ r

K ` s + p ≤ r + p
(inj)

K ` bs ≤ br
K ` s ≤ r

(com)
K ` s + r ≤ r + s

(assoc)
K ` s + (r + p) ≤ (s + r) + p

(succ)
K ` s + br = ŝ + r

(zero)
K ` 0 + s = s

where K ` s = r abbreviates the conjunction of K ` s ≤ r and K ` r ≤ s.

Note that the rule (sup) implies ∞̂ ≤ ∞. Moreover, we can derive K ` s ≤ ŝ,
K ` (s + r) + p ≤ s + (r + p), K ` s ≤ s + r; and K ` ŝ ≤ r̂ from K ` s ≤ r.

3.2 Types and datatypes declarations

The system F×̂ is an extension of Church’s style System F . In addition to the
function space and the second order type quantification ΠX.τ , sized types are
built using the sized product ×s and the bounded universal stage quantification
∀ı ≤ s.τ , which binds ı in τ but not in s (so that, by Barendregt convention,
we may always assume ı /∈ s). The bound s in universal stage quantification is
essential for the typing of fixpoints (typing rule (rec)).

We consider three sets of types: erased types |τ | ∈ |T|, that do not carry size
annotations, sized types τ ∈ T, in which stage variables are free, and constrained
types τ ∈ T, which are built from sized types using prenex universal stage
quantification. Erased types are needed because Church’s typing imposes types
to appear at the term level, while we do not want size annotations to appear in
terms because it makes fail subject reduction (see Sect. 2.4 of [3]).

We assume given a set VT = {X, Y, . . . } of type variables and a set D of
datatype identifiers. Each datatype identifier comes equipped with an arity ar(d).

Type-based termination with sized products 7

Definition 3.3 (Types). The sets |T|, T and T of erased types, sized types and
constrained types are given by the following abstract syntaxes:

|T| ::= VT | |T| → |T| | ΠVT.|T| | D |T| | |T| × |T|
T ::= VT | T → T | ΠVT.T | DS T | D T ×S D T

T ::= T | ∀ı ≤ s.T

where ı /∈ s and in the clause for datatypes, it is assumed that the length of the
vectors T and |T| is exactly the arity of the datatype.

Let |τ |, |θ|, |σ|, . . . range over erased types, τ, θ, σ, . . . range over sized types and
τ , θ, σ, . . . range over constrained types. We write ∀ı.τ for ∀ı ≤ ∞.τ and ∀ı ≤ s.τ
for ∀ı1 ≤ s1. · · · ∀ın ≤ sn.τ . Note that every τ ∈ T can be written ∀ı ≤ s.τ with
τ ∈ T. Moreover, we denote by |.| the obvious erasure map from T to |T|. A type
is closed if it contains no free stage variables and no free type variables.

The subtyping relation is inherited from the substage relation. The rules are
syntax-directed.

Definition 3.4 (Subtyping). The subtyping relation is the smallest relation
K ` τ v σ, where K ∈ K and τ , σ ∈ T, such that

(var)
K ` X v X

(cst)
K ` r ≤ s K, ı ≤ r ` τ v σ

K ` ∀ı ≤ s.τ v ∀ı ≤ r.σ
if ı /∈ K

(func)
K ` τ ′ v τ K ` σ v σ′

K ` τ → σ v τ ′ → σ′ (prod)
K ` σ v σ′

K ` ΠX.σ v ΠX.σ′

(data)
K ` s ≤ r K ` τ v τ ′

K ` dsτ v drτ ′ (pair)
K ` s ≤ r K ` τ v σ K ` τ ′ v σ′

K ` dτ ×s d′τ ′ v dσ ×r d′σ′

Note that the rule (cst) is contravariant wrt. stages inequalities.

Lemma 3.5. The relation K ` v is reflexive and transitive.

We now turn to datatype declarations. We assume given a fixed set C of
constructors, and a function C : D 7→ ℘(C) such that C(d) ∩ C(d′) = ∅ for every
distinct d, d′ ∈ D. Each constructor c ∈ C(d) is given an erased type of the
form ΠX.|θ| → d X, where |θ| is an erased type in which d and X occur only
positively [2]. Note that the arity condition on d imposes that X has the same
length for all c ∈ C(d). We let C =def

⋃
{C(d) | d ∈ D}.

Moreover, we distinguish between recursive and non-recursive constructors.
This is essential to annotate constructor types and to the reduction and typing
rules of fixpoints. Formally, we assume that C(d) = Cnr(d)] Cr(d). Then, c ∈
C(d) is recursive if c ∈ Cr(d) and non-recursive otherwise. Intuitively, c is non-
recursive iff d does not occur in |θ|. For instance, the constructor nil : ΠX.List X
is non-recursive, while cons : ΠX.X → List X → List X is recursive. We write cr

(resp. cnr) to denote a recursive (resp. non-recursive) constructor.
Constructor types are annotated as follows: each occurrence of d′ 6= d in |θ|

is annotated with ∞, and each occurrence of d in |θ| is annotated with a stage

8 Gilles Barthe, Benjamin Grégoire, and Colin Riba

variable ı. Then, the constrained type of c is of the form ∀ı.ΠX.θ → dbıX if c
is recursive and of the form ∀ı.ΠX.θ → dıX otherwise. In particular, we get
nil |τ | : List0τ and cons |τ | a l : Listbsτ whenever l : Listsτ and a : τ .

Definition 3.6 (Inductive datatypes).
(i) A signature is a map Σ : C 7→ T such that for all c ∈ C(d), Σ(c) is a closed

type of the form ∀ı.ΠX.θ → dıX where
– θ are sized types on the abstract syntax T+ (where d′ 6= d):

T+ ::= VT | T− → T+ | ΠVT.T+ | d′∞ T + | dı X
T− ::= VT \X | T+ → T− | ΠVT.T− | d′∞ T −

– if d occurs in θ then c ∈ Cr(d) and ı = ı̂; otherwise c ∈ Cnr(d) and ı = ı.
Moreover, let Inst(c, s, τ , σ) =def θ[X := τ , ı := s] → σ.

(ii) Let d ≤Σ d′ iff d occurs in Σ(c) for some c ∈ C(d′). Σ is well-formed if ≤Σ

is a partial order whose strict part <Σ is well-founded.

Note that if c ∈ C(d) has type ∀ı.ΠX.θ → dıX, then ı is the sole stage
variable occurring in θ. Hence, if c is non-recursive, Inst(c, s, τ , σ) is of the form
θ[X := τ] → σ, and we write it Inst(c, , τ , σ).

Note also that well-formed signatures rule out heterogeneous datatypes, and
for simplicity, mutually inductive datatypes also. Besides, the positivity require-
ment for dıX is standard to guarantee strong normalization. Also, the positivity
requirement for X is added to guarantee the soundness of the subtyping rule
(data) for datatypes, and to avoid considering polarity, as in e.g. [8].

In the remaining of the paper we assume given a well-formed signature Σ.

3.3 Terms and reductions

Terms are built from variables, abstractions, applications, constructors, case-
expressions, pairs, let-expressions and recursive definitions letrec. Recursive def-
initions come with case analysis for pattern matching, and let-expressions bind
pairs of variables. We assume given a set VE = {f, x, y, z, . . . } of term variables.

Definition 3.7. The set E of terms is given by the syntax (where |τ | ∈ |T|):

e, e′ ::= VE | λx : |τ |.e | e e′ | ΛX.e | e |τ | | c
| case|τ | e of {c ⇒ e}
| 〈e, e′〉 | let 〈x, x′〉 = e in e′

| letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}

Free and bound variables are defined as usual with the following proviso:
in letrec expressions, the (fixpoint) variable f is bound in the branches er for
the recursive constructors, but not in the branches enr for the non-recursive
ones. Hence, by Barendregt convention, we may assume that f /∈ enr. This is
important for the typing and reduction rules of letrec. Note that no stage variable
occurs in a term e ∈ E.

Substitutions are maps ρ : (VE 7→ E)] (VT 7→ |T|) of finite domain. The
capture-avoiding application of ρ to e is denoted eρ, but we may also write
e[x := ρ(x),X := ρ(X)] when dom(ρ) = x]X. The reductions are as follows.

Type-based termination with sized products 9

Definition 3.8 (Reductions). The relation of βιµθ-reduction → is the small-
est rewrite relation containing 7→βιµθ, where

(λx : |τ |.e) e′ 7→β e[x := e′] (ΛX.e) |τ | 7→β e[X := |τ |]
case|τ | (ci |σ| a) of {c ⇒ e} 7→ι ei a

let 〈x1, x2〉 = 〈e1, e2〉 in e 7→θ e[x1 := e1, x2 := e2]

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} (cnr
i |σ| a) 7→µ enr

i a
letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} (cr

i |σ| a) 7→µ er
i [f := ef]a

with ef = letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}.

The rewrite system 7→βιµθ is orthogonal and thus confluent.

3.4 Typing rules

The typing system is an extension of [3] with sized products and prenex bounded
universal stage quantification. Recall that τ ∈ T denotes a constrained type, ie.
a type of the form ∀ı ≤ s.τ where τ ∈ T is a sized type. The capture-avoiding
substitution of τ for X in σ is written σ[X := τ].

Definition 3.9 (Typing). A context is a map Γ : VE 7→ T of finite domain.
The typing relation is the smallest relation K ; Γ ` e : τ which is closed by the
rules of Fig. 1.

The positivity condition ı pos σ in the rule (rec) is defined in the usual
way [2]. Note that the expression λx : Nat.x has type ∀ı.Natı → Natı.

The rule (rec) combines the usual rule of fixpoints (1) with the rule (case).
The first premise line is the typing of the branches corresponding to non-recursive
constructors. They can not depend on the fixpoint variable f . The others premises
are the branches for the recursive constructors, which can depend on the fixpoint
variable f . The intuition of the termination argument is the following. Assume
that we typecheck the approximation of f at type dbτ → θ[ı := ̂] and let
cr
k : ∀ı.ΠX.θ → dbıX. The branch er

k corresponding to cr
k must be of type

θ[X := τ , ı := ] → θ[ı := ̂], provided that f is used with type ∀ı ≤ .dıτ → θ.
That is, only strictly less defined approximations of f can be used to type er

k.
The µ-reduction of fixpoints takes into account the difference between recur-

sive and non-recursive constructors: the fixpoint variable is only substituted in
the recursive branches.

Finally, a crucial point with constrained-based approaches is that the satis-
fiability of the constraints K in judgments K ; Γ ` e : τ must be preserved by
typing rules read bottom up. With general constraints systems like [10, 4], satis-
fiability tests of K during type-checking generate existential constraints. This is
manageable when stages are interpreted by natural numbers, but this may not
be the case when constraints have to be interpreted by countable ordinals. By
restricting to bounded universal quantifications ∀ı ≤ s.τ , type checking gener-
ates constraints of the form ı ≤ s, which are always satisfiable by [ı := s]. As a

10 Gilles Barthe, Benjamin Grégoire, and Colin Riba

consequence, the satisfiability of K in K ; Γ ` e : τ is preserved by typing rules,
and there is no need of satisfiability tests during type checking. That is why we
have a tractable system with stage addition and all positive inductive types.

4 Subject reduction

The proof of the subject reduction property relies on the usual intermediate
properties, namely inversion and substitution.

For inversion of typing, it is convenient to work in an equivalent type sys-
tem, in which stage quantification is independent from the introduction and
elimination rules of term constructs.

Definition 4.1. Let F ′̂
× be the type system identical to F×̂, except for the rules

(cons) and (rec) which are replaced with

(cons’)
c ∈ C(d) for some d Σ(c) = ∀ı.σ

K ; Γ ` c : σ[ı := s]

(rec’)

Cnr(d) = {cnr
1 , . . . , cnr

n } K ; Γ ` enr
k : Inst(cnr

k , , τ , θ) (1 ≤ k ≤ n)
Cr(d) = {cr

1, . . . , c
r
m}

K ; Γ, f :∀ı ≤ .dıτ → θ ` er
k : Inst(cr

k, , τ , θ[ı := b]) (1 ≤ k ≤ m)

K ; Γ ` letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : dsτ → θ[ı := s]

where ı /∈ K, Γ, τ ı pos θ  /∈ ı, K, Γ, τ , θ |τ | = d|τ | → |θ|

Lemma 4.2. K ; Γ ` e : τ is derivable in F×̂ iff it is derivable in F ′̂
× .

Proposition 4.3 (Inversion of stage quantification). Let e /∈ VX. In F ′̂
× ,

if K ; Γ ` e : ∀ı ≤ p.τ then there is a sized type σ such that K, ı ≤ p ` σ v τ
and K, ı ≤ p ; Γ ` e : σ is derivable in a derivation whose last rule is neither
(S-gen), (S-inst) nor (sub).

The main point in using F ′̂
× instead of F×̂ in Prop. 4.3 is to ensure that the

last rule of the derivation is the rule corresponding to the top symbol of e, when
e is not a variable. This leads to the usual inversion properties for typing in F ′̂

× ,
and thus in F×̂ using Lem. 4.2.

Theorem 4.4 (Subject reduction). In F×̂,

(K ; Γ ` e1 : τ ∧ e1 → e2) =⇒ K ; Γ ` e2 : τ

5 Strong normalization

We outline a realizability proof that typable terms are strongly normalizing. We
begin by the interpretation of stages, and then turn to the strong normalization
proof itself, which relies on Tait’s saturated sets.

Stages are interpreted by the ordinals used to build the interpretation of in-
ductive types. While first-order inductive types can be interpreted by induction

Type-based termination with sized products 11

(var)
K ; Γ, x :σ ` x : σ

(abs)
K ; Γ, x :τ ` e : σ

K ; Γ ` λx : |τ |.e : τ → σ

(app)
K ; Γ ` e : τ → σ K ; Γ ` e′ : τ

K ; Γ ` e e′ : σ

(T-abs)
K ; Γ ` e : σ

K ; Γ ` ΛX.e : ΠX.σ
if X 6∈ Γ

(T-app)
K ; Γ ` e : ΠX.σ

K ; Γ ` e |τ | : σ[X := τ]

(S-gen)
K, ı ≤ s ; Γ ` e : τ

K ; Γ ` e : ∀ı ≤ s.τ
if ı /∈ Γ, K, s

(S-inst)
K ; Γ ` e : ∀ı ≤ s.τ K ` r ≤ s

K ; Γ ` e : τ [ı := r]

(cons)
c ∈ C(d) for some d

K ; Γ ` c : Σ(c)

(pair)
K ; Γ ` e1 : ds1

1 τ1 K ; Γ ` e2 : ds2
2 τ2

K ; Γ ` 〈e1, e2〉 : d1 τ1 ×s1+s2 d2 τ2

(let)

K ; Γ ` e : d1 τ1 ×s d2 τ2

K, ı1 + ı2 ≤ s ; Γ, x1 :dı1
1 τ1, x2 :dı2

2 τ2 ` e′ : σ

K ; Γ ` let 〈x1, x2〉 = e in e′ : σ
where ı1, ı2 /∈ Γ, K, σ, s, τ1, τ2

(case)

K ; Γ ` e : dbsτ
C(d) = {c1, . . . , cn} K ; Γ ` ek : Inst(ck, s, τ , θ) (1 ≤ k ≤ n)

K ; Γ ` case|θ| e of {c ⇒ e} : θ

(rec)

Cnr(d) = {cnr
1 , . . . , cnr

n } K ; Γ ` enr
k : Inst(cnr

k , , τ , θ) (1 ≤ k ≤ n)
Cr(d) = {cr

1, . . . , c
r
m}

K ; Γ, f :∀ı ≤ .dıτ → θ ` er
k : Inst(cr

k, , τ , θ[ı := b]) (1 ≤ k ≤ m)

K ; Γ ` letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : ∀ı.dıτ → θ

where ı /∈ K, Γ, τ ı pos θ  /∈ ı, K, Γ, τ , θ |τ | = d|τ | → |θ|

(sub)
K ; Γ ` e : σ K ` σ v τ

K ; Γ ` e : τ

Fig. 1. Typing rules for Fb×

12 Gilles Barthe, Benjamin Grégoire, and Colin Riba

on N, higher-order inductive types may require an induction on countable or-
dinals. Existing systems with stage addition [10, 4] are restricted to first-order
inductive types, and stages constraints are formulas of Presburger arithmetic.

We go one step further by allowing at the same time all positive inductive
types and stage addition. Stage addition is interpreted by the natural addition on
countable ordinals. This operation is associative and commutative, in contrast
with the usual ordinal addition which is in general not commutative.

In the whole section, if f is a map from A to B, a ∈ A and b ∈ B, then
f(a := b) : A 7→ B maps a to b and is equal to f everywhere else.

5.1 The stage model

Stages are interpreted by ordinals below the first uncountable cardinal.

Definition 5.1 (Countable ordinals). We denote by (Ω,≤Ω) the well-ordered
set of countable ordinals and by +Ω the usual ordinal addition on Ω.

Recall that N can be seen as a proper subset of Ω and that +Ω coincide
with the usual addition on N. We want an associative and commutative addition
on Ω, but +Ω is in general not commutative on Ω. Instead, we use the natural
addition on ordinals. To define it, we use the well-known fact that every α ∈ Ω
can be written in Cantor normal form,

α = cn.ωαn +Ω · · ·+Ω c1.ω
α1

where α1 <Ω . . . <Ω αn ∈ Ω and c1, . . . , cn ∈ N. The natural addition ⊕ on Ω
is then defined as

(cn.ωαn +Ω · · ·+Ω c1.ω
α1) ⊕ (dn.ωαn +Ω · · ·+Ω d1.ω

α1)
=def (cn +Ω dn).ωαn +Ω · · ·+Ω (c1 +Ω d1).ωα1

Proposition 5.2. The natural addition is associative, commutative and with
neutral element 0. Moreover, for all α ∈ Ω, the successor ordinal of α is α⊕ 1.

We are now ready to define our stage model. Each inductive type can be
interpreted using an induction up to a countable ordinal (see Prop. 5.9). We can
thus interpret ∞ by Ω. This motivates the following definition.

Definition 5.3 (Stage model). Let Ω̂ =def Ω ∪ {Ω}. For all α, β ∈ Ω̂, let

α < β iff (β = Ω ∨ α <Ω β) and α + β =def

{
α⊕ β if α, β ∈ Ω
Ω otherwise

So we have an addition + on stages which is monotone, associative and
commutative. Moreover we have α + β < Ω for all α, β < Ω.

Definition 5.4 (Interpretation of stages). A stage valuation is a map π

from VS to Ω̂, and is extended to a stage interpretation L.Mπ : S 7→ Ω̂ as follows:

L0Mπ =def 0 L∞Mπ =def Ω LŝMπ =def LsMπ+1 Ls + rMπ =def LsMπ+LrMπ

We let π |= K if LsMπ ≤ LpMπ for all s ≤ p ∈ K, and let K |= s ≤ r if π |= s ≤ r
for all π such that π |= K. K is satisfiable if there is π such that π |= K.

Type-based termination with sized products 13

5.2 Type interpretation

Let SN be the set of strongly normalizing terms. We interpret types by saturated
sets. It is convenient to define them by means of elimination contexts:

E[] ::= [] | E[] e | E[] |τ | | case|τ | E[] of {c ⇒ e}
| let 〈x, x′〉 = E[] in e′ | letrec|τ | f case {c ⇒ e} E[]

Note that the hole [] of E[] never occurs under a binder. Thus E[] can be seen
as a term with one occurrence of a special variable [].

Let E[e] →wh E[e′] if e 7→βιµθ e′.

Definition 5.5 (Saturated sets).
A set S ⊆ SN is saturated (S ∈ SAT) if

(SAT1) E[x] ∈ S for all E[] ∈ SN and all x ∈ VX,
(SAT2) if e ∈ SN and e →wh e′ for some e′ ∈ S then e ∈ S.

It is well-known that SN ∈ SAT and that
⋂

Y,
⋃

Y ∈ SAT for all non-empty
Y ⊆ SAT. Hence, for each X ⊆ SN there is a smallest saturated set containing
X, written X. As usual, the function space on SAT is given for X, Y ∈ SAT by:

X → Y =def {e | ∀e′. e′ ∈ X =⇒ e e′ ∈ Y }

The interpretation of types is defined in two steps. We first define the inter-
pretation scheme of types, given an interpretation of datatypes. We then define
the interpretation of datatypes.

Definition 5.6. An interpretation of datatypes is a family of functions (Id)d∈D

where Id : SATar(d) × Ω̂ 7→ SAT for each d ∈ D. Given an interpretation of
datatypes I, a stage valuation π and a type valuation ξ : VT 7→ SAT, the type
interpretation J.KI

π,ξ : T 7→ SAT is defined by induction on types as follows

J∀ı ≤ s.τKI
π,ξ =

⋂
{JτKI

π(ı:=α),ξ | α ≤ LsMπ}

JXKI
π,ξ = ξ(X)

Jτ → σKI
π,ξ = JτKI

π,ξ → JσKI
π,ξ

JΠX.τKI
π,ξ = {e | ∀|σ| ∈ |T|, ∀S ∈ SAT, e |σ| ∈ JτKI

π,ξ(X:=S)}

Jdτ ×s d′τ ′KI
π,ξ =

⋃
{〈Id(Jτ KI

π,ξ, α), Id′(Jτ ′KI
π,ξ, α

′)〉 | α + α′ ≤ LsMπ}

Jdsτ KI
π,ξ = Id(Jτ KI

π,ξ, LsMπ)

where 〈S1, S2〉 =def {〈e1, e2〉 | e1 ∈ S1 ∧ e2 ∈ S2} for all S1, S2 ∈ SAT.

Note that unions and intersections are always taken over non-empty sets of
saturated sets.

We now define the interpretation of inductive datatypes. Recall that the
relation <Σ is assumed to be a well-founded strict partial order (see Def. 3.6).
The interpretation (Id)d∈D is defined by induction on <Σ , and for each d ∈ D,
the map Id : SATar(d) × Ω̂ 7→ SAT is defined by induction on Ω̂.

14 Gilles Barthe, Benjamin Grégoire, and Colin Riba

Substitution Lp[ı := s]Mπ = LpMπ(ı:=LsMπ)

Jτ [ı := s]Kπ,ξ = JτKπ(ı:=LsMπ),ξ

Jτ [X := σ]Kπ,ξ = JτKπ,ξ(X:=JσKπ,ξ)

Stage monotony α ≤ β ⇒ Id(S, α) ⊆ Id(S, β)
α ≤ β ∧ ı pos θ ⇒ JθKπ(ı:=α),ξ ⊆ JθKπ(ı:=β),ξ

α ≤ β ∧ ı neg θ ⇒ JθKπ(ı:=β),ξ ⊆ JθKπ(ı:=α),ξ

Substage soundness K ` s ≤ p ⇒ K |= s ≤ p
Subtyping soundness K ` τ v σ ∧ π |= K ⇒ JτKπ,ξ ⊆ JσKπ,ξ

Fig. 2. Properties of the type interpretation

Definition 5.7. For all d ∈ D, all S ∈ SATar(d) and all α ∈ Ω̂, we define
Id(S, α), by induction on pairs (d, α) ordered by (<Σ , <)lex, as follows:

Id(S, 0) =
⋃
{cnr JθKI

∅,X:=S | cnr ∈ Cnr(d) ∧Σ(cnr) = ∀ı.ΠX.θ → dıX}

Id(S, α⊕ 1) =
⋃
{c JθKI

ı:=α,X:=S | c ∈ C(d) ∧Σ(c) = ∀ı.ΠX.θ → dıX}

Id(S, λ) =
⋃
{Id(S, α) | α < λ} if λ is a limit ordinal

where cS =def {c |τ |a | a ∈ S ∧ |τ | ∈ |T|} for all S ∈ SAT.

Note that Id(S, α⊕ 1) only uses cJθKI
ı:=α,X:=S with c ∈ C(d), which in turn

only uses Id′(U , β) with (d′, β) (<Σ , <)lex (d, α⊕ 1).

Definition 5.8. Let J.Kπ,ξ =def J.KI
π,ξ.

Fig. 2 collects some essential properties of L.Mπ and J.Kπ,ξ. The following
proposition states that each inductive datatype can be interpreted by a countable
ordinal. This is crucial in order to deal with the rule (cons) in the proof of
Thm. 5.10. The key-point is that for every countable S ⊆ Ω, there is β ∈ Ω such
that α < β for all α ∈ S [6].

Proposition 5.9. For all d ∈ D and all S ∈ SATar(d), there is an ordinal α < Ω
such that Id(S, α) = Id(S, β) for all β such that α ≤ β ≤ Ω.

As usual, soundness is shown by induction on typing derivations. Note that
if K is satisfied by π, then every K ′ occurring in the derivation of K ; Γ ` e : τ
is satisfied by an extension of π. Thus, in contrast to [4], there is no need of tests
of the form K ` ∃ı.P in typing derivations.

Theorem 5.10 (Typing soundness). Given π : VS 7→ Ω̂, ξ : VT 7→ SAT and
ρ : (VE 7→ E)] (VT 7→ |T|), we let (π, ξ, ρ) |= K;Γ if and only if π |= K and
ρ(x) ∈ JΓ (x)Kπ,ξ for all x ∈ dom(Γ).

If K ; Γ ` e : τ , then eρ ∈ JτKπ,ξ for all π, ξ, ρ such that (π, ξ, ρ) |= K;Γ .

We deduce the strong normalization of terms typable with satisfiable K.

Corollary 5.11. If K ; Γ ` e : τ with K satisfiable, then e ∈ SN.

Type-based termination with sized products 15

6 Conclusion

F×̂ is a variant of F̂ that supports simple yet precise typing by using sized prod-
ucts instead of existential quantification, for which subject reduction is prob-
lematic. We have proved strong normalization and subject reduction of F×̂, and
conjecture that type-checking is tractable. On the other hand, size inference
seems more difficult than in [3], in particular for precise annotations with addi-
tion such as for the function append on lists.

Our main next objective is to extend our results to the Calculus of Inductive
Constructions, and to implement type-based termination in Coq. It would also
be interesting to study the expressivity of more general forms of sized products,
both with general container types instead of cartesian products, and arbitrary
binary operators instead of +. Moreover, it would be interesting to study the
tractability of more liberal subtyping relations for universal stage quantifications.
Finally, an outstanding issue is the design of a strongly normalizing type system
in which non-recursive constructors can be given the size zero while keeping
fixpoint definitions separated from case analysis.

References

1. A. Abel. Type-Base Termination. A Polymorphic Lambda-Calculus with Sized
Higher-Order Types. PhD thesis, LMU University, Munich, 2006.

2. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-Based Ter-
mination of Recursive Definitions. Mathematical Structures in Computer Science,
14(1):97–141, 2004.

3. G. Barthe, B. Grégoire, and F. Pastawski. Practical Inference for Type-Based
Termination in a Polymorphic Setting. In Proceedings of TLCA’05, pages 71–85,
2005.

4. F. Blanqui and C. Riba. Combining Typing and Size Constraints for Checking
the Termination of Higher-Order Conditional Rewrite Systems. In Proceedings of
LPAR’06, volume 4246 of LNAI, 2006.

5. W.-N. Chin and S.-C. Khoo. Calculating Sized Types. Higher-Order and Symbolic
Computation, 14(2–3):261–300, 2001.

6. J.H. Gallier. What’s So Special About Kruskal’s Theorem and the Ordinal Γ0?
A Survey of Some Results in Proof Theory. Annals of Pure and Applied Logic,
53(3):199–260, 1991.

7. J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems
Using Sized Types. In Proceedings of POPL’96, pages 410–423. ACM, 1996.

8. M. Steffen. Polarized Higher-order Subtyping. PhD thesis, Department of Com-
puter Science, University of Erlangen, 1997.

9. M. Tatsuta. Simple Saturated Sets for Disjunction and Second-Order Existential
Quantification. In Proceedings of TLCA’07, volume 4583 of LNCS, pages 366–380.
Springer, 2007.

10. H. Xi. Dependent Types for Program Termination Verification. Higher-Order and
Symbolic Computation, 15(1):91–131, 2002.

16 Gilles Barthe, Benjamin Grégoire, and Colin Riba

K ; Γ ` e1 e2 : τ ⇒ ∃σ, σ′.
K ` σ v τ ∧ K ; Γ ` e1 : σ′ → σ ∧K ; Γ ` e2 : σ′

K ; Γ ` λx : |σ|.e1 : τ ⇒ ∃τ1, τ2.
|τ2| = |σ| ∧ K ` τ2 → τ1 v τ ∧ K ; Γ, x :τ2 ` e : τ1

K ; Γ ` e |σ| : τ ⇒ ∃X, σ1, σ2.
|σ2| = |σ| ∧ K ` σ1[X := σ2] v τ ∧ K ; Γ ` e : ΠX.σ1

K ; Γ ` ΛX.e : τ ⇒ ∃σ. K ` ΠX.σ v τ ∧ K ; Γ ` e : σ

K ; Γ ` cnr : τ ⇒ ∃d, s, θ.
K ` ΠX.θ → dsX v τ ∧ Σ(cnr) = ∀ı.ΠX.θ → dıX

K ; Γ ` cr : τ ⇒ ∃d, s, θ.

K ` ΠX.θ[ı := s] → dbsX v τ ∧ Σ(cr) = ∀ı.ΠX.θ → dbıX
K ; Γ ` 〈e, e′〉 : τ ⇒ ∃d, d′, s, s′, τ , τ ′.

K ` d τ ×s+s′
d′ τ ′ v τ ∧ K ; Γ ` e : dsτ ∧ K ; Γ ` e′ : d′

s′
τ ′

K ; Γ ` letrec|σ| f case {cnr ⇒ enr | cr ⇒ er} : τ ⇒ ∃d, s, ı, , τ , θ.
K ` dsτ → θ[ı := s] v τ

∧ ∀k ∈ {1, . . . , n}. K ; Γ ` enr
k : Inst(cnr

k , , τ , θ)
∧ ∀k ∈ {1, . . . , m}. K ; Γ, f :∀ı ≤ .dıτ → θ ` er

k : Inst(cr
k, , τ , θ[ı := b])

Fig. 3. Inversion of typing

A Subject reduction

In this section, we prove Thm. 4.4, that is subject reduction for F×̂. We actually
show subject reduction for F ′̂

× in Thm. A.12, from which we deduce subject
reduction for F×̂ (Cor. A.13). Recall that F ′̂

× is defined in Def. 4.1. In this
section, unless explicitly stated otherwise we only work in F ′̂

× .
The main properties are the usual inversion and substitution lemmas. Sub-

stitutions properties are gathered in Fig. 4 and inversion is depicted in Fig. 3.

A.1 Basic lemmas on stages

We begin by some basic lemmas on stages.

Proposition A.1 (Stage weakening). If K ` s ≤ r then K, p ≤ q ` s ≤ r.

Proof. By induction on K ` s ≤ r. ut

Lemma A.2 (Size cut admissibiliy). Let P and Q be two stages inequalities.

(i) If K, K ′, P ` Q and K ` P then K, K ′ ` Q.
(ii) If K, K ′, P ` τ v σ and K ` P then K, K ′ ` τ v σ.

Type-based termination with sized products 17

K ` p ≤ q ⇒ K[ı := s] ` p[ı := s] ≤ q[ı := s]
K ` σ v τ ⇒ K[ı := s] ` σ[ı := s] v τ [ı := s]

K ; Γ ` e : τ ⇒ K[ı := s] ; Γ [ı := s] ` e : τ [ı := s]

(ı pos τ ∧ K ` s ≤ r) ⇒ K ` τ [ı := s] v τ [ı := r]
(ı neg τ ∧ K ` r ≤ s) ⇒ K ` τ [ı := s] v τ [ı := r]

(K ; Γ, x :σ ` e : τ ∧ K ; Γ ` e′ : σ) ⇒ K ; Γ ` e[x := e′] : τ

K ` σ v τ ⇒ K ` σ[X := θ] v τ [X := θ]
K ; Γ ` e : τ ⇒ K ; Γ [X := σ] ` e[X := |σ|] : τ [X := σ]

(X pos θ ∧ K ` σ v τ) ⇒ K ` θ[X := σ] v θ[X := τ]
(X neg θ ∧ K ` τ v σ) ⇒ K ` θ[X := σ] v θ[X := τ]

Fig. 4. Substitution properties

(iii) If K, K ′, P ; Γ ` e : τ and K ` P then K, K ′ ; Γ ` e : τ in an isomorphic
derivation tree.

Proof. By induction on K, K ′, P ` Q for (i); by induction on K, K ′, P ` τ ≤ σ,
using (i) for (ii); by induction on K, K ′, P ; Γ ` e : τ , using (i), (ii) for (iii). ut

We now turn to properties of stage substitution.

Proposition A.3 (Commutation of substitutions).
(i) If  6= ı and ( /∈ s or ı /∈ p), then

p[ := r][ı := s] = p[ı := s][ := r[ı := s]]

(ii) If  6= ı and ( /∈ s or ı /∈ τ), then

τ [ := r][ı := s] = τ [ı := s][ := r[ı := s]]

(iii) τ [X := σ][ı := s] = τ [ı := s][X := σ[ı := s]]
(iv) For all constructor c,

Inst(c, s, τ , θ)[ := r] = Inst(c, s[ := r], τ [ := r], θ[ := r])

Proof. By induction on p for (i); by induction on τ , using (i) for (ii). Property (iii)
is shown by induction on τ , and (iv) follows from (ii) and (iii). ut

The next two lemmas (Lem. A.4 and Lem. A.5) correspond to the first five
properties depicted in Fig. 4. Note that the case (iii) of Lem. A.4 is stronger
than the corresponding property of Fig. 4. We rely on this to prove Thm. A.12.

Lemma A.4 (Stage substitution).
(i) If K ` p ≤ q then K[ı := s] ` p[ı := s] ≤ q[ı := s].
(ii) If K ` σ v τ then K[ı := s] ` σ[ı := s] v τ [ı := s]

18 Gilles Barthe, Benjamin Grégoire, and Colin Riba

(iii) If K ; Γ ` e : τ then K[ı := s] ; Γ [ı := s] ` e : τ [ı := s] in an isomorphic
derivation tree.

Proof.
(i) By induction on K ` p ≤ q.
(ii) By induction on K ` σ v τ .
(iii) By induction on the height h of the derivation tree of K ; Γ ` e : τ .

The cases of the rules (var), (abs), (app), (T-abs), (pair), (case) are trivial.
We use Prop. A.3.(iii) for the rule (T-app), Prop. A.3.(iv) for the rule (case),
and property (ii) for (sub). The rule (S-gen) is dealt with using Barendregt
convention: since  appears bound in the sequent K ; Γ ` e : ∀ ≤ p.τ , we
may assume that  6= ı and that  /∈ s. Rules (S-inst) and (cons) are dealt
with similarly, using the following facts:
– since  6= ı and  /∈ s, we have τ [ := r][ı := s] = τ [ı := s][ := r[ı := s]]

by Prop. A.3.(ii).
– since K ` r ≤ p, we have K[ı := s] ` r[ı := s] ≤ p[ı := s] by property (i).

It remains the cases of the rules (let) and (rec).
(let)

K ; Γ ` e : d1 τ1 ×r d2 τ2

K, ı1 + ı2 ≤ r ; Γ, x1 :dı1
1 τ1, x2 :dı2

2 τ2 ` e′ : σ

K ; Γ ` let 〈x1, x2〉 = e in e′ : σ

where ı1, ı2 /∈ Γ,K, σ, r, τ1, τ2

Assume that
K ; Γ ` let 〈x1, x2〉 = e in e′ : σ (7)

is derivable in a tree of height less that h + 1, with

K ; Γ ` e : d1 τ1 ×r d2 τ2 (8)

and
K, ı1 + ı2 ≤ r ; Γ, x1 :dı1

1 τ1, x2 :dı2
2 τ2 ` e′ : σ (9)

derivable in trees of height less than h.
Let be two distinct stage variables 1, 2 /∈ Γ,K, σ, s, r, τ1, τ2. By apply-
ing two times the induction hypothesis with the substitutions [ı1 := 1]
and [ı2 := 2], since ı1, ı2 /∈ Γ,K, σ, r, s, τ1, τ2 we obtain that

K, 1 + 2 ≤ r ; Γ, x1 :d1
1 τ1, x2 :d2

2 τ2 ` e′ : σ

is derivable in a tree isomorphic to the derivation tree of (9), hence of
height less than h.
Applying again the induction hypothesis, we get that

K[ı := s] ; Γ [ı := s] ` e : d1 τ1[ı := s]×r[ı:=s] d2 τ2[ı := s]

and
K[ı := s], 1 + 2 ≤ r[ı := s] ;
Γ, x1 :d1

1 τ1[ı := s], x2 :d2
2 τ2[ı := s] ` e′ : σ[ı := s]

Type-based termination with sized products 19

are derivable in trees isomorphic to the derivation trees of (8) (resp. (9)).
Since 1, 2 /∈ Γ,K, σ, r, s, τ1, τ2, we have

1, 2 /∈ Γ [ı := s],K[ı := s], σ[ı := s], r[ı := s], τ1[ı := s], τ2[ı := s]

and we can apply the rule (let) to obtain that

K[ı := s] ; Γ [ı := s] ` let 〈x1, x2〉 = e in e′ : σ[ı := s]

in a tree isomorphic to the derivation tree of (7).
(rec)

Cnr(d) = {cnr
1 , . . . , cnr

n } K ; Γ ` enr
k : Inst(cnr

k , , τ , θ) (1 ≤ k ≤ n)
Cr(d) = {cr

1, . . . , c
r
m}

K ; Γ, f :∀κ ≤ .dκτ → θ ` er
k : Inst(cr

k, , τ , θ[κ := ̂]) (1 ≤ k ≤ m)

K ; Γ ` letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : dκτ → θ[κ := r]

where κ /∈ K, Γ, τ κ pos θ  /∈ κ, K, Γ, τ , θ |τ | = d|τ | → |θ|

Assume that

K ; Γ ` letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : drτ → θ[κ := r] (10)

is derivable in a tree of height less than h+1 with for all k ∈ {1, . . . , n},

K ; Γ ` enr
k : Inst(cnr

k , , τ , θ) (11)

and for all k ∈ {1, . . . ,m},

K ; Γ, f :∀κ ≤ .dκτ → θ ` er
k : Inst(cr

k, , τ , θ[κ := ̂]) (12)

derivable in trees of height less than h.
Recall that thanks to Prop A.3.(iv), for all c ∈ C(d) we have

Inst(c, , τ, θ[κ := ̂])[ı := s] = Inst(c, [ı := s], τ [ı := s], θ[κ := ̂][ı := s])

We first show the following claim:
We can assume that  6= ı. Let ′ be a fresh stage variable. Since we

have  /∈ κ, K, Γ, τ ,θ, by applying the induction hypothesis to (12)
with substitution [ := ′], for all k ∈ {1, . . . ,m}, we can derive

K ; Γ, f :∀κ ≤ ′.dκτ → θ ` er
k : Inst(cr

k, ′, τ , θ[κ := ̂][ := ′])

in trees isomorphic to (12), hence of height less than h. Moreover,
since ′ is fresh, By Prop. A.3.(ii), we have

θ[κ := ̂][ := ′] = θ[ := ′][κ := ̂[ := ′]]

Hence, since  /∈ θ, we get θ[κ := ̂][ := ′] = θ[κ := ̂′]. ut

20 Gilles Barthe, Benjamin Grégoire, and Colin Riba

By Barendregt convention, since κ appears bound the derivation tree,
we may assume that κ 6= ı and that κ /∈ s. By Prop. A.3.(ii), we have

θ[κ := r][ı := s] = θ[ı := s][κ := r[ı := s]]

Since moreover  6= ı, again by Prop. A.3.(ii), we have

θ[κ := ̂][ı := s] = θ[ı := s][κ := r]

Let K ′ =def K[ı := s], Γ ′ =def Γ [ı := s], r′ =def r[ı := s], τ ′ =def τ [ı := s]
and θ′ =def θ[ı := s]. Now, by induction hypothesis, for all k ∈ {1, . . . , n}
we can derive K ′ ; Γ ′ ` enr

k : Inst(cnr
k , , τ ′, θ′), and for all k ∈ {1, . . . ,m}

we can derive K ′ ; Γ ′, f :∀κ ≤ .dκτ ′ → θ′ ` er
k : Inst(cr

k, , τ ′, θ′[κ := ̂])
in trees isomorphic to the trees respectively of (11) and of (12), hence of
height less than h. We conclude that

K ′ ; Γ ′ ` letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : dr′
τ ′ → θ′[κ := r′]

is derivable in a tree isomorphic to that of (10). ut

Lemma A.5 (Stage monotony).
If ı pos τ and K ` s ≤ r then K ` τ [ı := s] v τ [ı := r].
If ı neg τ and K ` r ≤ s then K ` τ [ı := s] v τ [ı := r].

Proof. The two statements are shown simultaneously by induction on τ . ut

A.2 Inversion

We now turn to inversion properties. We begin by the proof of Lem. 3.5.

Lemma A.6 (Lem. 3.5). The following subtyping rules are admissible:

(refl)
K ` σ v σ

(trans)
K ` σ v σ′ K ` σ′ v σ′′

K ` σ v σ′′

Proof. The admissibility of (refl) is shown by induction on σ. For the admissi-
bility of (trans), reason by induction on K ` σ v σ′ and K ` σ′ v σ′′, using the
transitivity of the substage relation. The key-point is that both derivations are
isomorphic.

Since the subtyping relation is syntax directed, its inversion property is trivial
and we do not state it. To prove inversion of typing, we rely on Prop. 4.3.

Proposition A.7 (Inversion of stage quantification – Prop. 4.3).
Let e /∈ VX. If K ; Γ ` e : ∀ı ≤ p.τ then there is a sized type σ such that
K, ı ≤ p ` σ v τ and K, ı ≤ p ; Γ ` e : σ is derivable in a derivation tree
whose last rule is neither (S-gen), (S-inst) nor (sub).

Type-based termination with sized products 21

Proof. By induction on K ; Γ ` e : ∀ı ≤ p.τ . Since e is not a variable, the last
rule can not be (var). Among the other rules, only (S-gen), (S-inst), (sub) allow
a constrained type in their conclusion. Therefore, if the last rule is not one of
them, then we have ∀ı ≤ p.τ = τ and we conclude by taking σ =def τ .

(S-gen)
K,  ≤ q ; Γ ` e : ∀ı ≤ p.τ

K ; Γ ` e : ∀ ≤ q.∀ı ≤ p.τ
if  /∈ Γ,K, q

By induction hypothesis there is a sized type σ such that K,  ≤ q, ı ≤ p `
σ v τ and K,  ≤ q, ı ≤ p ; Γ ` e : σ is derivable in a derivation whose last
rule is neither (S-gen), (S-inst) nor (sub).

(S-inst)
K ; Γ ` e : ∀ ≤ q.∀ı ≤ p.τ K ` s ≤ q

K ; Γ ` e : ∀ı ≤ p.τ [ := s]
By applying Barendregt convention, since stage variables , ı appears bound
in ∀ ≤ q.∀ı ≤ p.τ , we may assume that  /∈ ı, s and that ı /∈ s,K, Γ . It
follows that (∀ı ≤ p.τ)[ := s] = ∀ı ≤ p[ := s].τ [ := s].
By induction hypothesis there is a type σ such that K,  ≤ q, ı ≤ p ` σ v τ
and K,  ≤ q, ı ≤ p ; Γ ` e : σ is derivable in a derivation whose last rule is
neither (S-gen), (S-inst) nor (sub).
By Lem. A.4, since  /∈ K, Γ, q we deduce that

K, s ≤ q, ı ≤ p[ := s] ` σ[ := s] v τ [ := s]

and that K, s ≤ q, ı ≤ p[ := s] ; Γ ` e : σ[ := s] is derivable in a derivation
whose last rule is neither (S-gen), (S-inst) nor (sub). Since K ` s ≤ q, by
Lem. A.2 we obtain K, ı ≤ p[ := s] ` σ[ := s] v τ [ := s] and that

K, ı ≤ p[ := s] ; Γ ` e : σ[ := s]

is derivable in a derivation whose last rule is neither (S-gen), (S-inst) nor
(sub).

(sub)
K ; Γ ` e : σ K ` σ v ∀ı ≤ p.τ

K ; Γ ` e : ∀ı ≤ p.τ

By Barendregt convention, we can assume that ı /∈ K, Γ .
By repeated application of subtyping inversion, we know that σ = ∀ı ≤ q.σ
with K, ı ≤ p ` σ v τ and K ` p ≤ q.
By induction hypothesis there is a sized type σ′ such that K, ı ≤ q ` σ′ v σ
and K, ı ≤ q ; Γ ` e : σ′ in a derivation whose last rule is neither (S-gen),
(S-inst) nor (sub).
From K ` p ≤ q, by stage weakening (Prop. A.1) we get K, ı ≤ p ` p ≤ q
and using the substage rule (trans) we deduce that K, ı ≤ p ` ı ≤ q.
By Lem. A.2 and Prop. A.1 we obtain that K, ı ≤ p ` σ′ v σ and that
K, ı ≤ p ; Γ ` e : σ′ is derivable in a derivation whose last rule is neither
(S-gen), (S-inst) nor (sub) ; and using the subtyping rule (trans) we conclude
that K, ı ≤ p ` σ′ v τ . ut

22 Gilles Barthe, Benjamin Grégoire, and Colin Riba

We now show the inversion properties of typing stated in Fig. 3. Note that
they hold for both F×̂ and F ′̂

× .
The main point in using F ′̂

× instead of F×̂ in Prop. 4.3 is to ensure that the
last rule of the derivation is the rule corresponding to the top symbol of e. Hence
the inversion is easily proved in F ′̂

× . Inversion for F×̂ then easily follows from
Lem. 4.2.

Proposition A.8 (Inversion of typing). The properties of Fig. 3 hold for
both F×̂ and F ′̂

× .

Proof. We first show them for F ′̂
× . The result for F×̂ then follows from Lem. 4.2.

In each case, by Prop. A.7 there is a sized type σ such that K ` σ v τ
and K ; Γ ` e : σ is derivable in a derivation whose last rule is neither (S-gen),
(S-inst) nor (sub). Therefore, the last applied rule in that derivation can only
by the rule corresponding to the top construction of e, and we conclude using
subtyping inversion. ut

A.3 Subject Reduction

We now turn to subject reduction. We begin by some usual substitutions prop-
erties. They are the last five properties depicted in Fig. 4.

Lemma A.9 (Term Substitution). If K ; Γ, x : σ ` e : τ and K ; Γ ` e′ : σ
then K ; Γ ` e[x := e′] : τ .

Proof. By induction on K ; Γ, x :σ ` e : τ . ut

Lemma A.10 (Type Substitution).
(i) If K ` σ v τ then K ` σ[X := θ] v τ [X := θ]
(ii) If K ; Γ ` e : τ then K ; Γ [X := σ] ` e[X := |σ|] : τ [X := σ]
(iii) If K ` σ v τ and X pos θ then K ` θ[X := σ] v θ[X := τ]

If K ` τ v σ and X neg θ then K ` θ[X := σ] v θ[X := τ]

Proof. Property (i) is shown by induction on K ` σ v τ . Property (ii) is shown
by induction on K ; Γ ` e : τ , using (i) in the case of (sub). For (iii), the two
properties are shown simultaneously by induction on θ. ut

The following property is a simple unrolling of inversion. It is very convenient
in the proof of Thm. A.12.

Proposition A.11.
(i) If K ; Γ ` cr |σ| a : dsτ , then there are a stage expression r and types σ′

such that
K ` r̂ ≤ s K ; Γ ` a : θ[X := σ′, ı := r]
K `σ′ v τ

with |σ′| = |σ| and Σ(cr) = ∀ı.ΠX.θ → dbıX

Type-based termination with sized products 23

(ii) If K ; Γ ` cnr |σ| a : dsτ , then there are types σ′ such that

K `σ′ v τ K ; Γ ` a : θ[X := σ′]

with |σ′| = |σ| and Σ(cnr) = ∀ı.ΠX.θ → dıX

Proof. We only detail (i): (ii) is similar and simpler.

(i) Assume that K ; Γ ` cr |σ| a : dsτ . Then, by Prop. A.8 and subtyping
inversion, there are s′, θ′ and τ ′ such that

K ; Γ ` cr |σ| : θ′ → ds′
τ ′ K ; Γ ` a : θ′

K ` s′ ≤ s K ` τ ′ v τ

By Prop. A.8, and subtyping inversion there are s′′, θ′′, τ ′′ and σ′ such that

K ; Γ ` cr : ΠX.θ′′ → ds′′
τ ′′

K ` s′′ ≤ s′ K ` τ ′′[X := σ′] v τ ′ K ` θ′ v θ′′[X := σ′]

with |σ′| = |σ|. Now, by Prop. A.8, and subtyping inversion, there is r such
that we have

K ` r̂ ≤ s′′ K ` θ′′ v θ[ı := r] K ` X v τ ′′

where Σ(cr) = ∀ı.ΠX.θ → dbıX and ı pos θ and X pos θ.
We deduce that K ` r̂ ≤ s. Moreover, by subtyping inversion, we have
τ ′′ = X, hence K ` σ′ v τ . Finally, it follows from Lem. A.10.(i) that

K ` θ′′[X := σ′] v θ[X := σ′, ı := r]

and we deduce that K ` θ′ v θ[X := σ′, ı := r], hence

K ; Γ ` a : θ[X := σ′, ı := r]

ut

We now show subject reduction in F ′̂
× and deduce it in F×̂.

Theorem A.12 (Subject reduction). In F ′̂
× ,

(K ; Γ ` e1 : τ ∧ e1 → e2) =⇒ K ; Γ ` e2 : τ

Proof. We reason by induction on K ; Γ ` e : τ . If the last applied rule is
neither (T-app), (app), (case) nor (let), then the result follows from the induction
hypothesis. Otherwise, if the reduction occurs in a proper subterm of e1, then
the result follows also from the induction hypothesis.

It remains to deal with the rules (T-app), (app), (case) and (let) when fur-
thermore e1 → e2 contracts a root redex of e1.

24 Gilles Barthe, Benjamin Grégoire, and Colin Riba

(T-app) Assume that e1 = (ΛX.e) |τ | and e2 = e[X := |τ |] with

K ; Γ ` ΛX.e : ΠX.σ

K ; Γ ` ΛX.e |τ | : σ[X := τ]

By Prop. A.8, there exists σ′ such that

K ` σ′ v σ and K ; Γ ` e : σ′

with X /∈ Γ . By Lem. A.10.(i) and Lem. A.10.(ii), since X /∈ Γ we deduce
that

K ` σ′[X := τ] v σ[X := τ] and K ; Γ ` e[X := |τ |] : σ′[X := τ]

and we conclude that

K ; Γ ` e[X := |τ |] : σ[X := τ]

(app) Assume that e1 = a b and the last step is

K ; Γ ` a : τ → σ K ; Γ ` b : τ

K ; Γ ` a b : σ

There are two subcases.
(i) a = λx : |τ ′|.e and e2 = e1[x := b].

In this case, by Prop. A.8, we know that there are τ ′ and σ′ such that

K ` τ v τ ′ K ; Γ, x :τ ′ ` e : σ′

K `σ′vσ

with |τ ′| = |τ ′|. Since K ; Γ ` b : τ we have K ; Γ ` b : τ ′ and we deduce
that K ; Γ ` e1[x := b] : σ′ by Lem. A.9. From K ` σ′ v σ we conclude
that K ; Γ ` e1[x := b] : σ.

(ii) a = letrec|σ| f case {cnr ⇒ enr | cr ⇒ er} and b = c |σ| a.
By Prop. A.8, and subtyping inversion there exists a datatype identifier
d, stages expressions s, r, stage variables ı, , and types τ , τ ′, σ′ such
that

K ` s ≤ r K ` τ v τ ′ K ` σ′[ı := r] v σ

and for all k ∈ {1, . . . , n},

K ; Γ ` enr
k : Inst(cnr

k , , τ ′, σ′) (13)

and for all k ∈ {1, . . . ,m},

K ; Γ, f :∀ı ≤ .dıτ ′ → σ′ ` er
k : Inst(cr

k, , τ ′, σ′[ı := ̂]) (14)

with τ = dsτ → σ, ı /∈ K, Γ, τ ′,  /∈ ı, K, Γ, τ ′, σ′, and i pos σ′.
We distinguish two cases, whether c is recursive or not.

Type-based termination with sized products 25

c is recursive. In this case, c = cr
k for some k ∈ {1, . . . ,m} and e2 =

er
k[f := e′] a, where

e′ =def letrec|σ| f case {cnr ⇒ enr | cr ⇒ er}

Let Σ(cr
k) = ∀ı.ΠX.θ → dbıX.

By applying the rule (rec) to the derivations (13) and (14), we get

K ; Γ ` letrec|σ| f case {cnr ⇒ enr | cr ⇒ er} : dıτ ′ → σ′

Since ı /∈ K, Γ , using (S-gen) it follows that

K ; Γ ` letrec|σ| f case {cnr ⇒ enr | cr ⇒ er} : ∀ı.dıτ ′ → σ′

Since K `  ≤ ∞, using reflexivity of subtyping and the rule (cst)
we derive

K ` ∀ı.dıτ ′ → σ′ v ∀ı ≤ .dıτ ′ → σ′

and we deduce that

K ; Γ ` letrec|σ| f case {cnr ⇒ enr | cr ⇒ er} : ∀ı ≤ .dıτ ′ → σ′

By applying Lem. A.9 to (14) we obtain

K ; Γ ` er
k[f := e′] : Inst(cr

k, , τ ′, σ′[ı := ̂])

that is

K ; Γ ` er
k[f := e′] : θ[X := τ ′, ı := ] → σ′[ı := ̂] (15)

By Prop. A.11.(i), from

K ; Γ ` cr
k |σ| a : dsτ

we deduce that there are a stage expression p and types σ′ such that

K ` p̂ ≤ s K ; Γ ` a : θ[X := σ′, ı := p]
K `σ′ v τ

with |σ′| = |σ|. Since X pos θ, we obtain from Lem. A.10.(iii) that

K ; Γ ` a : θ[X := τ ′, ı := p]

On the other hand, by applying Prop. A.4.(ii) to (15) with substitu-
tion [ := p], since  /∈ K, Γ, τ ′,θ, σ′ we get

K ; Γ ` er
k[f := e′] a : σ′[ı := p̂]

Since moreover ı pos σ′, K ` p̂ ≤ s and K ` r ≤ s, by Lem. A.5 we
have K ` σ′[ı := p̂] ≤ σ′[ı := r], and since K ` σ′[ı := r] ≤ σ, we
deduce that

K ; Γ ` er
k[f := e′] a : σ

26 Gilles Barthe, Benjamin Grégoire, and Colin Riba

c is non-recursive. In this case, c = cnr
k for some k ∈ {1, . . . , n} and

e2 = enr
k a. Let Σ(cnr

k) = ∀ı.ΠX.θ → dıX. We deduce that

K ; Γ ` enr
k : θ[X := τ ′] → σ′

By Prop. A.11.(ii), from

K ; Γ ` cnr
k |σ| a : dsτ

we deduce that there are types σ′ such that

K `σ′ v τ K ; Γ ` a : θ[X := σ′]

with |σ′| = |σ|. Since X pos θ, we obtain from Lem. A.10.(iii) that

K ; Γ ` a : θ[X := τ ′]

hence
K ; Γ ` enr

k a : σ′

Since ı appears bound in Σ(cnr
k), we can assume that ı /∈ K, Γ .

Therefore, using Lem. A.4.(ii), since K ` σ′[ı := r] v σ, we obtain

K ; Γ ` enr
k a : σ

(case) Assume that e1 = case|θ| e of {cnr ⇒ enr | cr ⇒ er} with e = c |σ| a
and

K ; Γ ` e : dbsτ
Cnr(d) = {cnr

1 , . . . , cnr
n } K ; Γ ` enr

k : Inst(cnr
k , , τ , σ) (1 ≤ k ≤ n)

Cr(d) = {cr
1, . . . , c

r
m} K ; Γ ` er

k : Inst(cr
k, s, τ , σ) (1 ≤ k ≤ m)

K ; Γ ` case|σ| e of {cnr ⇒ enr | cr ⇒ er} : σ

We distinguish two cases, whether c is recursive or not.
c is recursive. In this case, c = cr

k for some k ∈ {1, . . . ,m} and e2 = er
k a.

By Prop. A.11.(i), from

K ; Γ ` cr
k |σ| a : dbsτ

we deduce that there are a stage expression p and types σ′ such that

K ` p̂ ≤ ŝ K ; Γ ` a : θ[X := σ′, ı := p]
K `σ′ v τ

with |σ′| = |σ| an Σ(cr
k) = ∀ı.ΠX.θ → dbıX. Since

K ; Γ ` er
k : Inst(cr

k, s, τ , σ)

we deduce that

K ; Γ ` er
k : θ[X := τ , ı := s] → σ

Type-based termination with sized products 27

Since K ` p̂ ≤ ŝ, we deduce from substage rule (inj) that K ` p ≤ s.
Since moreover ı pos θ, X pos θ and K ` σ′ v τ , we deduce from
Lem. A.10.(iii) and Lem A.5 that

K ; Γ ` a : θ[X := τ , ı := s]

Therefore we have
K ; Γ ` er

k a : σ

c is non-recursive. In this case, c = cnr
k for some k ∈ {1, . . . , n} and e2 =

enr
k a. By Prop. A.11.(ii), from

K ; Γ ` cnr
k |σ| a : dbsτ

we deduce that there are types σ′ such that

K `σ′ v τ K ; Γ ` a : θ[X := σ′]

with |σ′| = |σ| and Σ(cnr
k) = ∀ı.ΠX.θ → dıX. Since

K ; Γ ` enr
k : Inst(cnr

k , , τ , σ)

we deduce that
K ; Γ ` enr

k : θ[X := τ] → σ

Since X pos θ and K ` σ′ v τ , we deduce from Lem. A.10.(iii) that

K ; Γ ` a : θ[X := τ]

Therefore we have
K ; Γ ` enr

k a : σ

(let) Assume that e1 = let 〈x1, x2〉 = 〈a1, a2〉 in e and e2 = e[x1 := a1, x2 := a2]
with

K ; Γ ` 〈a1, a2〉 : d1 τ1 ×s d2 τ2

K, ı1 + ı2 ≤ s ; Γ, x1 :dı1
1 τ1, x2 :dı2

2 τ2 ` e : σ

K ; Γ ` let 〈x1, x2〉 = 〈a1, a2〉 in e : σ

where ı1, ı2 /∈ Γ, K, σ, s, τ1, τ2

By Prop. A.8, there exists stage expressions s1, s2 and types σ1, σ2, such
that

K `s1 + s2 ≤ s K ; Γ ` a1 : ds1
1 σ1

K ` σ1 v τ1 K ; Γ ` a2 : ds2
2 σ2

K ` σ2 v τ2

Now, we apply Lem. A.4.(iii) with substitutions [ı1 := s1] and [ı2 := s2].
Since ı1, ı2 /∈ Γ,K, σ, s, τ1, τ2, we obtain that

K, s1 + s2 ≤ s ; Γ, x1 :ds1
1 τ1, x2 :ds2

2 τ2 ` e : σ

28 Gilles Barthe, Benjamin Grégoire, and Colin Riba

Since K ` s1 + s2 ≤ s, by Lem. A.2.(iii) we deduce that

K ; Γ, x1 :ds1
1 τ1, x2 :ds2

2 τ2 ` e : σ

By Lem. A.9 applied with substitutions [x1 := a1] and [x2 := a2], we obtain

K ; Γ ` e[x1 := a1, x2 := a2] : σ

ut

Corollary A.13 (Subject reduction – Thm. 4.4). In F×̂,

(K ; Γ ` e1 : τ ∧ e1 → e2) =⇒ K ; Γ ` e2 : τ

Proof. By Thm. A.12 and Lem. 4.2. ut

Type-based termination with sized products 29

B Strong normalization

In this section, we show that typable terms are strongly normalizable.
We begin by properties of the stage model (Sect. B.1). We then turn to

saturated sets (Sect. B.2) and to the type interpretation (Sect. B.3).

B.1 The stage model

In this section, we show the two properties on stages depicted in Fig. 2. The
corresponding definitions are given in Sect. 5.1.

Proposition B.1. Lr[ı := s]Mπ = LrMπ(ı:=LsMπ)

Proof. By induction on r. ut

Lemma B.2. If K ` s ≤ r then K |= s ≤ r.

Proof. By induction on K ` s ≤ r. The interesting cases are the following ones.

(assoc)

K ` s + (r + p) ≤ (s + r) + p

We show that for all α, β, γ ∈ Ω̂ we have α + (β + γ) = (α + β) + γ.
If either α, β or γ is Ω, then α + (β + γ) = Ω = (α + β) + γ.
Otherwise we have α + (β + γ), (α + β) + γ < Ω and we conclude by the
associativity of ⊕ in Ω.

(com)

K ` s + r ≤ r + s

We have to show that for all α, β ∈ Ω̂ we have α + β ≤ β + α.
If either α or β is Ω, then α + β = Ω = β + α.
Otherwise we have α + β, β + α < Ω and we conclude by the commutativity
of ⊕ in Ω.

(succ)

K ` s + r̂ = ŝ + r

We have to show that for all α, β ∈ Ω we have α+(β+1) = (α+β)+1. This
follows directly from the associativity of +, proved in the case of (assoc).

(zero)

K ` 0 + s = s

Because for all α ∈ Ω̂, we have 0 + α = α + 0.
(inj)

K ` ŝ ≤ r̂

K ` s ≤ r

We show that α + 1 ≤ β + 1 implies α ≤ β for all α, β ∈ Ω̂.
Since Ω is not a successor ordinal, if α +1 = Ω, then α = β +1 = Ω and we
are done. Otherwise, if β + 1 = Ω, then β = Ω and α + 1 < β, hence α < β.
In the remaining case we have α, β < Ω and we conclude by Prop. 5.2. ut

30 Gilles Barthe, Benjamin Grégoire, and Colin Riba

B.2 Saturated sets

In this section, we prove some properties on saturated sets (defined in Def. 5.5).

Lemma B.3 (Non-interaction). In each of the cases (i), (ii), (iii), (iv) and
(v) below, if E[e] → b then b = E′[e′] with (E[], e) → (E′[], e′).

(i) e =def (λx : |τ |.e1) e2

(ii) e =def (ΛX.e1)|τ |
(iii) e =def let 〈x1, x2〉 = 〈e1, e2〉 in e3

(iv) e =def case|τ | (ci |σ| a) of {c ⇒ e}
(v) e =def letrec|τ | f case {c ⇒ e} (ci |σ| a)

Lemma B.4 (Weak standardization). If a →wh b and a → a′ with a′ 6= b
then a′ →wh b′ and b →∗ b′.

Proof. Since a →wh b, be definition of →wh there is E[], e and e′ such that
e 7→βιµθ e′, E[e] = a and E[e′]. The proof is by induction on E[], using Lem. B.3
and that a[x := e] →∗ a[x := e′] whenever e → e′.

Lemma B.5.
(i) If e2, E[e1[x := e2]] ∈ SN then E[(λx : |τ |.e1) e2] ∈ SN.
(ii) If E[e1[X := |τ |]] ∈ SN then E[(ΛX.e1) |τ |] ∈ SN.
(iii) If e1, e2, E[e3[x1 := e1, x2 := e2]] ∈ SN then

E[let 〈x1, x2〉 = 〈e1, e2〉 in e3] ∈ SN.
(iv) If e, E[ei a] ∈ SN then E[case|τ | (ci |σ| a) of {c ⇒ e}] ∈ SN.
(v) If e, E[ei a] ∈ SN then E[letrec|τ | f case {c ⇒ e} (cnr

i |σ| a)] ∈ SN.
(vi) If e, E[e′i a] ∈ SN then E[letrec|τ | f case {c ⇒ e} (cr

i |σ| a)] ∈ SN, where
e′i = ei[f := letrec|τ | f case {c ⇒ e}].

Proof. By weak standardization B.4. ut
For each X ⊆ SN the smallest saturated set containing X is

X =
⋂
{S ∈ SAT | X ⊆ S}

It follows that the smallest element of SAT is ⊥ =def ∅ and that X ⊆ Y ⊆ SN
implies X ⊆ Y .

Lemma B.6.
(i) ⊥ = {e ∈ SN | ∃E[], x. e →∗

wh E[x]}.
(ii) If X ⊆ SN then X = ⊥ ∪ {e ∈ SN | e →∗

wh X}.
Lemma B.7. If e ∈ ⊥ and e, e′ ∈ SN then

(i) case|τ | e of {c ⇒ e} ∈ ⊥,
(ii) letrec|τ | f case {c ⇒ e} e ∈ ⊥,
(iii) let 〈x1, x2〉 = e in e′ ∈ ⊥.

Lemma B.8. Let e, e′ ∈ E such that e ∈ SN and e →wh e′.

(i) If letrec|τ | f case {c ⇒ e} e′ ∈ SN then letrec|τ | f case {c ⇒ e} e ∈ SN.
(ii) If let 〈x1, x2〉 = e′ in e′′ ∈ SN then let 〈x1, x2〉 = e in e′′ ∈ SN
(iii) If case|τ | e′ of {c ⇒ e} ∈ SN then case|τ | e of {c ⇒ e} ∈ SN.

Proof. By weak standardization B.4. ut

Type-based termination with sized products 31

B.3 Type interpretation

In this section, we prove the soundness of the interpretation defined in Sect. 5.2.
We first check that the interpretation scheme of Def. 5.6 is well-defined.

Lemma B.9. If X, Y ∈ SAT then X → Y ∈ SAT.

Proposition B.10 (Interpretation correctness). For all (Id)d∈D, all π and
all ξ, we have J.KI

π,ξ : T → SAT.

Proof. We reason by induction on the definition of J.KI
π,ξ. Recall that SAT is

closed under non-empty intersections and unions. By Lem. B.9, its moreover
closed under the function space →. It remains the case of JΠX.τKI

π,ξ.
Given T ∈ SAT and |σ| ∈ |T|, let T |σ| =def {e | e |σ| ∈ T}. We first show the

following claim.

Claim: T |σ| ∈ SAT. First, T |σ| ⊆ SN since T ⊆ SN. Moreover,
(SAT1) if E[] ∈ SN, then E[] |τ | ∈ SN, hence E[x] |τ | ∈ T by (SAT1) on T ,

and it follows that E[x] ∈ T |σ|;
(SAT2) if e →wh e′ with e′ ∈ T |σ|, then e|σ| →wh e′|σ| ∈ T , hence e|σ| ∈ T

by (SAT2) on T . ut

Now, by induction hypothesis we have JτKI
π,ξ(X:=S) ∈ SAT for all S ∈ SAT.

To conclude, it is sufficient to remark that

JΠX.τKI
π,ξ =

⋂
{JτKI

π,ξ(X:=S) |σ| | |σ| ∈ |T| ∧ S ∈ SAT} ∈ SAT

ut

We now turn to the second and third substitution properties of Fig. 2.

Proposition B.11. For all (Id)d∈D, all π and all ξ,

(i) Jτ [ı := s]Kπ,ξ = JτKπ(ı:=LsMπ),ξ

(ii) Jτ [X := σ]Kπ,ξ = JτKπ,ξ(X:=JσKπ,ξ)

Proof. By induction on τ . ut

The stage monotony properties of Fig. 2 are proved for the datatype inter-
pretation (Id)d∈D defined in Def. 5.7. Note that for all S1, S2, T1, T2 ∈ SAT such
that S1 ⊆ T1 and T1 ⊆ T2, we have 〈S1, S2〉 ⊆ 〈T1, T2〉 (see Def. 5.6); and that
for all S,T ∈ SAT such that S ⊆ T , we have cS ⊆ cT (see Def. 5.7).

Lemma B.12 (Stage monotony). Let (Id)d∈D be the datatype interpretation
defined in Def. 5.7. Then,

(i) If α ≤ β and S ⊆ T then Id(S, α) ⊆ Id(T , β).
(ii) If ı pos θ and α ≤ β then JθKI

π(ı:=α),ξ ⊆ JθKI
π(ı:=β),ξ.

If ı neg θ and α ≤ β then JθKI
π(ı:=β),ξ ⊆ JθKI

π(ı:=α),ξ.

32 Gilles Barthe, Benjamin Grégoire, and Colin Riba

Proof. We reason by induction on <Σ . Let d ∈ D such that (i) holds for all
d′ <Σ d. We show (i) for d and (ii) for all θ in which only occurs d′ ≤Σ d. We
reason by induction on β ∈ Ω̂.

(i) We reason by cases on β. The result is trivial if wither β = 0 or β is a limit
ordinal. If β is a successor ordinal, then we apply the induction hypothesis on
β to the type interpretations of the constructors arguments of d (which only
uses Id′(U , γ) with (d′, γ) (<Σ , <)lex (d, β)). We conclude by the monotony
of cS w.r.t. S ∈ SAT.

(ii) The two properties are shown simultaneously by induction on θ, using (i) in
the cases of datatypes and sized products. ut

We can now prove Prop. 5.9.

Proposition B.13 (Prop 5.9). For all d ∈ D and all S ∈ SATar(d), there is
an ordinal α < Ω such that Id(S, α) = Id(S, β) for all β such that α ≤ β ≤ Ω.

Proof. By Lem. B.12.(i), α ≤ β implies Id(S, α) ⊆ Id(S, β) for all α, β.
Assume that for all α < β < Ω we have Id(S, α) (Id(S, β). Then, since Ω

is uncountable, we would have an uncountable set {eα | α ∈ Ω} ⊆ E. But this is
not possible as E is countable.

Hence there are α < β < Ω such that Id(S, α) = Id(S, β). Reasoning by
well-founded induction on Ω, we have Id(S, α) = Id(S, γ) for all γ such that
α < γ < Ω. We obtain that Id(S, Ω) = Id(S, α) by definition of Id(S, Ω). ut

We now show the soundness of the interpretation. We begin by the soundness
of subtyping (see Fig. 2). Recall from Def. 5.8 that J.Kπ,ξ =def J.KI

π,ξ, where
(Id)d∈D is the datatype interpretation defined in Def. 5.7.

Lemma B.14 (Subtyping soundness). If K ` τ v σ and π |= K then
JτKπ,ξ ⊆ JσKπ,ξ.

Proof. By induction on K ` τ v σ. Rules (var), (func), (prod) and (data) are
dealt with as usual (using Lem. B.12.(i) and Lem. B.2 for (data)). We only detail
the cases of (cst) and (pair).

(cst)
K ` r ≤ s K, ı ≤ r ` τ v σ

K ` ∀ı ≤ s.τ v ∀ı ≤ r.σ
if ı /∈ K

Let π such that π |= K and e ∈ J∀ı ≤ s.τKπ,ξ. We have to show that e ∈
J∀ı ≤ r.σKπ,ξ, i.e., that e ∈ JσKπ(ı:=α),ξ for all α ∈ Ω̂ such that α ≤ LrMπ

(recall that ı /∈ s).
Let α ∈ Ω̂ such that α ≤ LrMπ. Since K ` r ≤ s and π |= K, by Lem. B.2
we have LrMπ ≤ LsMπ, hence α ≤ LsMπ It follows that e ∈ JτKπ(ı:=α),ξ. Since
ı /∈ K, we have π(ı := α) |= K, ı ≤ r, and by induction hypothesis we get
e ∈ JσKπ(ı:=α),ξ.

Type-based termination with sized products 33

(pair)
K ` s ≤ r K ` τ v σ K ` τ ′ v σ′

K ` dτ ×s d′τ ′ v dσ ×r d′σ′

Let π such that π |= K. We have to show that for all α, α′ ∈ Ω̂ such that
α + α′ ≤ LsMπ, there exists β, β′ ∈ Ω̂ such that β + β′ ≤ LrMπ and

〈Id(Jτ Kπ,ξ, α), Id′(Jτ ′Kπ,ξ, α
′)〉 ⊆ 〈Id(JσKπ,ξ, β), Id′(Jσ′Kπ,ξ, β

′)〉 (16)

Now, since K ` s ≤ r, by Lem. B.2 we have LsMπ ≤ LrMπ. It is therefore
sufficient to show (16) with β = α and β′ = α′.
By induction hypothesis, we get Jτ Kπ,ξ ⊆ JσKπ,ξ and Jτ ′Kπ,ξ ⊆ Jσ′Kπ,ξ. By
Lem. B.12. (i), for all α, α′ ∈ Ω̂ we have Id(Jτ Kπ,ξ, α) ⊆ Id(JσKπ,ξ, α) and
Id′(Jτ ′Kπ,ξ, α

′) ⊆ Id′(Jσ′Kπ,ξ, α
′). We conclude thanks to the monotony of

〈S1, S2〉 in S1, S2 ∈ SAT. ut

We can now show the main result of this section. The key-point that if K
is satisfied with π, then every K ′ occurring in the derivation of K ; Γ ` e : τ is
satisfied with an extension of π.

Theorem B.15 (Typing soundness – Thm. 5.10). If K ; Γ ` e : τ , then
eρ ∈ JτKπ,ξ for all π, ξ, ρ such that (π, ξ, ρ) |= K;Γ .

Proof. We reason by induction on K ; Γ ` e : τ .

(var)

K ; Γ, x :σ ` x : σ

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ, x :τ . We have xρ = ρ(x) ∈ JτKπ,ξ.
(abs)

K ; Γ, x :τ ` e : σ

K ; Γ ` λx : |τ |.e : τ → σ

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . Furthermore let e′ ∈ JτKπ,ξ ⊆ SN.
We have to show that (λx : |τ |.e)ρ e′ ∈ JσKπ,ξ.
Since (π, ξ, ρ(x := e′)) |= K;Γ, x : τ , we have eρ(x := e′) ∈ JσKπ,ξ ⊆ SN by
induction hypothesis. Since x appears bound in λx : |τ |.e, we can assume
that x /∈ codom(ρ). Therefore, we have eρ(x := e′) = (eρ)[x := e′]. Now,
since (eρ)[x := e′], e′ ∈ SN, by Lem. B.5.(i) we have (λx : |τ |.eρ) e′ ∈ SN,
hence (λx : |τ |.eρ) e′ ∈ JσKπ,ξ, by (SAT2), that is (λx : |τ |.e)ρ e′ ∈ JσKπ,ξ.

(app)
K ; Γ ` e : τ → σ K ; Γ ` e′ : τ

K ; Γ ` e e′ : σ

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . By induction hypothesis we have
eρ ∈ JτKπ,ξ → JσKπ,ξ and e′ρ ∈ JτKπ,ξ. It follows that e e′ ∈ JσKπ,ξ.

34 Gilles Barthe, Benjamin Grégoire, and Colin Riba

(T-abs)
K ; Γ ` e : σ

K ; Γ ` ΛX.e : ΠX.σ
if X 6∈ Γ

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . Let furthermore τ ∈ T and
S ∈ SAT. We have to show that (ΛX.e)ρ |τ | ∈ JσKπ,ξ(X:=S).
Since X /∈ Γ , we have (π, ξ(X := S), ρ(X := |τ |)) |= K;Γ , and by induction
hypothesis we obtain eρ(X := |τ |) ∈ JσKπ,ξ(X:=S) ⊆ SN.
Since X appears bound in ΛX.e, by Barendregt convention, we can assume
that X /∈ codom(ρ). Hence eρ(X := |τ |) = (eρ)[X := |τ |]. Now, since
(eρ)[x := |τ |] ∈ SN, by Lem. B.5.(ii) we have (ΛX.eρ) |τ | ∈ SN, hence
(ΛX.eρ) |τ | ∈ JσKπ,ξ(X:=S), by (SAT2), that is (ΛX.e)ρ |τ | ∈ JσKπ,ξ(X:=S).

(T-app)
K ; Γ ` e : ΠX.σ

K ; Γ ` e |τ | : σ[X := τ]
Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . By induction hypothesis we
have e|τ | ∈ JσKπ,ξ(X:=JτKπ,ξ) and we conclude that e|τ | ∈ Jσ[X := τ]Kπ,ξ

by Prop. B.11.(ii).
(S-gen)

K, ı ≤ s ; Γ ` e : τ

K ; Γ ` e : ∀ı ≤ s.τ
if ı /∈ Γ,K, s

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . First, it follows from ı /∈ s that
LıMπ(ı := LsMπ) = LsMπ. Since ı /∈ Γ,K, we get (π(ı := LsMπ), ξ, ρ) |= K;Γ . We
thus have {JτKπ(ı:=α),ξ | π(ı := α) |= ı ≤ s} 6= ∅.
Hence, we have to show that eρ ∈ JτKπ(ı:=α),ξ for all α ∈ Ω̂ such that
π(ı := α) |= ı ≤ s. Now, for all α ∈ Ω̂ such that π(ı := α) |= ı ≤ s, since
ı /∈ Γ,K we have (π(ı := α), ξ, ρ) |= K, ı ≤ s;Γ , and by induction hypothesis
we conclude that eρ ∈ JτKπ(ı:=α),ξ.

(S-inst)
K ; Γ ` e : ∀ı ≤ s.τ K ` r ≤ s

K ; Γ ` e : τ [ı := r]
Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . Recall that ı /∈ s. By assumption
we have π |= r ≤ s, and it follows from Prop. B.1 that π(ı := LrMπ) |= ı ≤ s.
Hence {JτKπ(ı:=α),ξ | π(ı := α) |= ı ≤ s} 6= ∅.
By induction hypothesis we have eρ ∈ JτKπ(ı:=LrMπ),ξ, and we conclude that
eρ ∈ Jτ [ı := r]Kπ,ξ by Prop. B.11.(i).

(cons)

K ; Γ ` c : Σ(c)
if c ∈ C(d) for some d

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . Furthermore, Σ(c) is of the form
∀ı.ΠX.θ → dıX where ı = ı̂ if c is recursive and ı = ı otherwise.
Recall that ı is the unique free stage variable of θ and that X are the unique
free type variables of θ. Hence, using Prop. B.11.(i), we have to show that
for all α ∈ Ω̂, all τ and all S ∈ SAT we have

c |τ | ∈ JθKı:=α,X:=S → Id(S, LıMı:=α)

Type-based termination with sized products 35

We reason by cases on LıMı:=α.
LıMı:=α = 0. In this case, ı can not be ı̂ and c is a non-recursive constructor.

Note that ı /∈ θ. By definition, we have c |τ | a ∈ c JθK∅,X:=S for all
a ∈ JθK∅,X:=S . Since c JθK∅,X:=S ⊆ Id(S, 0), it follows that

c |τ | ∈ JθKı:=0,X:=S → Id(S, 0)

LıMı:=α = β ⊕ 1. We have c |τ | a ∈ c JθKı:=β,X:=S for all a ∈ JθKı:=β,X:=S .
Since c JθKı:=β,X:=S ⊆ Id(S, β ⊕ 1), it follows that

c |τ | ∈ JθKı:=β,X:=S → Id(S, β ⊕ 1)

LıMı:=α is a limit ordinal λ. There are two subcases.
ı = ı. Then c is non-recursive and ı /∈ θ. Hence, for all a ∈ JθK∅,X:=S

we have c |τ | a ∈ c JθK∅,X:=S ⊆ Id(S, 0) ⊆ Id(S, λ). It follows that
c |τ | ∈ JθKı:=λ,X:=S → Id(S, λ).

ı = ı̂ and α = Ω. According to Prop. B.13, there is γ < Ω such that
Id(S, Ω) = Id(S, γ) for all γ′ ≥ γ. As in the case LıMı:=α = β ⊕ 1, we
get c |τ | ∈ JθKı:=γ,X:=S → Id(S, γ ⊕ 1). Note that in θ, d occurs only
under the form dı X. Hence we have JθKı:=γ,X:=S = JθKı:=Ω,X:=S

and we deduce c |τ | ∈ JθKı:=Ω,X:=S → Id(S, Ω). Since L̂ıMı:=Ω = Ω,
we obtain that c |τ | ∈ JθKı:=Ω,X:=S → Id(S, L̂ıMı:=Ω).

(pair)
K ; Γ ` e1 : ds1

1 τ1 K ; Γ ` e2 : ds2
2 τ2

K ; Γ ` 〈e1, e2〉 : d1 τ1 ×s1+s2 d2 τ2

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . By induction hypothesis we
have e1ρ ∈ d1(Jτ1Kπ,ξ, Ls1Mπ) and e2ρ ∈ d2(Jτ2Kπ,ξ, Ls2Mπ). Since Ls1Mπ +
Ls2Mπ = Ls1 + s2Mπ, we have Ls1Mπ + Ls2Mπ ≤ Ls1 + s2Mπ, and by definition of
Jd1 τ1 ×s1+s2 d2 τ2Kπ,ξ, it follows that 〈e1, e2〉ρ ∈ Jd1 τ1 ×s1+s2 d2 τ2Kπ,ξ.

(let)
K ; Γ ` e : d1 τ1 ×s d2 τ2

K, ı1 + ı2 ≤ s ; Γ, x1 :dı1
1 τ1, x2 :dı2

2 τ2 ` e′ : σ

K ; Γ ` let 〈x1, x2〉 = e in e′ : σ

where ı1, ı2 /∈ Γ,K, σ, s, τ1, τ2

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ .
Since x1, x2 appears bound in let 〈x1, x2〉 = e in e′, by Barendregt convention
we may assume that x1, x2 /∈ codom(ρ). Hence we have

(let 〈x1, x2〉 = e in e′)ρ = let 〈x1, x2〉 = eρ in e′ρ

We first show the following claim.
Claim: e′ρ ∈ SN. Let π′ =def π(ı1 := s, ı2 := 0). Hence

(π′, ξ, ρ(x1 := x1, x2 := x2)) |= K, ı1 + ı2 ≤ s ; Γ, x1 :dı1
1 τ1, x2 :dı2

2 τ2

and by induction hypothesis we have

e′ρ = e′ρ(x1 := x1, x2 := x2) ∈ JσKπ′,ξ ⊆ SN

ut

36 Gilles Barthe, Benjamin Grégoire, and Colin Riba

We now show that let 〈x1, x2〉 = eρ in e′ρ ∈ JσKπ,ξ. By induction hypothesis
we have eρ ∈ Jd1τ1 ×s d2τ2Kπ,ξ, and there are two cases.
(i) If eρ ∈ ⊥, then since e′ρ ∈ SN, by Lem. B.7.(iii) we have

let 〈x1, x2〉 = eρ in e′ρ ∈ ⊥ ⊆ JσKπ,ξ

(ii) Otherwise, there exist ordinals α1, α2 ∈ Ω̂ such that α1 +α2 ≤ LsMπ and
e →∗

wh 〈e1, e2〉 with ek ∈ Id(JτkKπ,ξ, αk) for all k ∈ {1, 2}.
Let π′′ =def π(ı1 := α1, ı2 := α2). Since ı1, ı2 /∈ K, Γ, τ1, τ2, we have

(π′′, ξ, ρ(x1 := e1, x2 := e2)) |= K, ı1 + ı2 ≤ s ; Γ, x1 :dı1
1 τ1, x2 :dı2

2 τ2

and by induction hypothesis we obtain that

e′ρ(x1 := e1, x2 := e2) ∈ JσKπ′′,ξ

Since x1, x2 /∈ codom(ρ), we have

e′ρ(x1 := e1, x2 := e2) = (eρ)[x1 := e1, x2 := e2]

and since ı1, ı2 /∈ σ, we deduce that

(e′ρ)[x1 := e1, x2 := e2] ∈ JσKπ,ξ

Therefore, it follows from Lem. B.5.(iii) that

let 〈x1, x2〉 = 〈e1, e2〉 in e′ρ ∈ JσKπ,ξ

Now, since eρ →∗
wh 〈e1, e2〉, it follows from Lem. B.8.(ii) and (SAT2) that

(let 〈x1, x2〉 = e in e′)ρ ∈ JσKπ,ξ

(case)

K ; Γ ` e : dbsτ
K ; Γ ` ek : Inst(ck, s, τ , θ) (1 ≤ k ≤ n)

K ; Γ ` case|θ| e of {c ⇒ e} : θ
if C(d) = {c1, . . . , cn}

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . By induction hypothesis we have
eρ ∈ JInst(c, s, τ , θ)Kπ,ξ ⊆ SN and eρ ∈ Id(Jτ Kπ,ξ, LŝMπ). By definition of
Id(Jτ Kπ,ξ, LŝMπ) and Lem. B.6.(ii), there are two cases.
First case: eρ ∈ ⊥. Since eρ ∈ SN, by Lem. B.7.(i) we have

(case|τ | e of {c ⇒ e})ρ ∈ ⊥ ⊆ JθKπ,ξ

Second case: e →∗
wh ck |τ ′| a. Let Σ(ck) = ∀ı.ΠX.θ → dıX. We thus

have K ; Γ ` ek : θ[X := τ , ı := ı] → θ. By Prop. B.11 we obtain that
a ∈ Jθ[X := τ , ı := ı]Kπ,ξ. Moreover, by induction hypothesis, ekρ be-
longs to Jθ[X := τ , ı := ı]Kπ,ξ → JθKπ,ξ. We deduce that ekρ a ∈ JθKπ,ξ.
Since eρ ∈ SN, by Lem. B.5.(iv) we conclude that

case|τ | c |τ ′| a of {c ⇒ eρ} ∈ JθKπ,ξ

Now, since eρ →∗
wh c |τ ′| a, by Lem. B.8.(iii) and (SAT2) we obtain

(case|τ | e of {c ⇒ e})ρ ∈ JθKπ,ξ

Type-based termination with sized products 37

(rec)

Cnr(d) = {cnr
1 , . . . , cnr

n } K ; Γ ` enr
k : Inst(cnr

k , , τ , θ) (1 ≤ k ≤ n)
Cr(d) = {cr

1, . . . , c
r
m}

K ; Γ, f :∀ı ≤ .dıτ → θ ` er
k : Inst(cr

k, , τ , θ[ı := ̂]) (1 ≤ k ≤ m)

K ; Γ ` letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : ∀ı.dıτ → θ

where ı /∈ K, Γ, τ ı pos θ  /∈ ı, K, Γ, τ , θ |τ | = d|τ | → |θ|

Let π, ξ and ρ such that (π, ξ, ρ) |= K;Γ . Since ı /∈ τ , we have to show that
for all α ∈ Ω̂ we have

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}ρ ∈ Id(Jτ Kπ,ξ, α) → JθKπ(ı:=α),ξ

We reason by induction on α ∈ Ω̂.
Since f appears bound in letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}ρ by
Barendregt convention we may assume that f /∈ codom(ρ). Hence we have

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}ρ
= letrec|τ | f case {cnr ⇒ enrρ | cr ⇒ erρ}

First, we show the following claim.
Claim: enrρ, erρ ∈ SN. By induction hypothesis, since (π, ξ, ρ) |= K;Γ , we

have enrρ ∈ JInst(cnr, , τ , θ)Kπ,ξ ⊆ SN Now, since  /∈ K, Γ and since
f ∈ ⊥, for all α ∈ Ω̂ we have

(π( := α), ξ, ρ(f := f)) |= K;G, f :∀ı ≤ .dıτ → θ

Hence by induction hypothesis we obtain

erρ(f := f) = erρ ∈ JInst(cr, , τ , θ[ı := ̂])Kπ(:=α),ξ ⊆ SN

ut
Now, let a ∈ Id(Jτ Kπ,ξ, α). We show that

letrec|τ | f case {cnr ⇒ enrρ | cr ⇒ erρ} a ∈ JθKπ(ı:=α),ξ

If a ∈ ⊥, since enrρ, erρ ∈ SN, by Lem. B.7.(ii) we have

letrec|τ | f case {cnr ⇒ enrρ | cr ⇒ erρ} a ∈ ⊥ ⊆ JθKπ(ı:=α),ξ

We now assume that a ∈ Id(Jτ Kπ,ξ, α) \ ⊥ and reason by cases on α ∈ Ω̂.
α = 0. There are k ∈ {1, . . . , n} and a ∈ SN such that a →∗

wh cnr
k |τ ′| a with

a ∈ JθK∅,X:=JτKπ,ξ
and Σ(cnr

k) = ∀ı.ΠX.θ → dıX. Recall that K ; Γ `
enr
k : θ[X := τ] → θ. Since ı /∈ K, Γ , we have (π(ı := 0), ξ, ρ) |= K, Γ and

by induction hypothesis we get enr
k ρ ∈ Jθ[X := τ] → θKπ(ı:=0),ξ. Now,

recall that ı /∈ θ, τ and moreover that the only free type variables of θ are
X. Hence, by Prop. B.11 we get enr

k ρ ∈ JθK∅,X:=JτKπ,ξ
→ JθKπ(ı:=0),ξ. We

38 Gilles Barthe, Benjamin Grégoire, and Colin Riba

deduce that enr
k ρ a ∈ JθKπ(ı:=0),ξ. Since enrρ, erρ ∈ SN, by Lem. B.5.(v)

we have

letrec|τ | f case {cnr ⇒ enrρ | cr ⇒ erρ} (cnr
k |τ ′| a) ∈ JθKπ(ı:=0),ξ

Now, by (SAT2) and Lem. B.8.(i), since a →∗
wh cnr

k |τ ′| a we deduce that

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}ρ a ∈ JθKπ(ı:=0),ξ

α = β ⊕ 1. There are a ∈ SN such that a →∗
wh c |τ ′|a. If c is non-recursive,

then we reason as in the case α = 0. So we assume that c = cr
k for some

k ∈ {1, . . . ,m}. Thus a ∈ JθKı:=β,X:=JτKπ,ξ
and Σ(cr

k) is of the form
∀ı.ΠX.θ → dbıX. Let e′ =def letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}.
By induction hypothesis on α, for all γ ≤ β we have

e′ρ ∈ Id(Jτ Kπ,ξ, γ) → JθKπ(ı:=γ),ξ

Let π′ =def π( := β). Since  /∈ ı, τ , θ, it follows that

e′ρ ∈
⋂
{Jdıτ → θKπ′(ı:=γ),ξ | π′(ı := γ) |= ı ≤ }

that is e′ρ ∈ J∀ı ≤ .dıτ → θKπ′,ξ. Since  /∈ K, Γ it follows that we have

(π′, ξ, ρ(f := e′ρ)) |= K;Γ, f :∀ı ≤ .dıτ → θ

Recall that K ; Γ, f :∀ı ≤ .dıτ → θ ` er
k : θ[X := τ , ı := ] → θ[ı := ̂].

By induction hypothesis, we obtain

er
kρ(f := e′ρ) ∈ Jθ[X := τ , ı := ] → θ[ı := ̂]Kπ′,ξ

By Prop. B.11 we deduce that

er
kρ(f := e′ρ) ∈ JθKπ′(ı:=LMπ′),ξ(X:=JτKπ′,ξ) → JθKπ′(ı:=LbMπ′),ξ

Since  /∈ θ, τ , θ (recall that the only free stage variable of θ is ı and that
ı 6= ), we have er

kρ(f := e′ρ) ∈ JθKπ(ı:=β),ξ(X:=JτKπ,ξ) → JθKπ(ı:=β⊕1),ξ.
It follows that er

kρ(f := e′ρ) a ∈ JθKπ(ı:=β⊕1),ξ. Since f /∈ codom(ρ), we
have er

kρ(f := e′ρ) = (er
kρ)[f := e′ρ]. Since moreover enrρ, erρ ∈ SN,

by Lem. B.5.(vi) we deduce that

letrec|τ | f case {cnr ⇒ enrρ | cr ⇒ erρ} (cr
k |τ ′| a) ∈ JθKπ(ı:=β⊕1),ξ

Now, by (SAT2) and Lem. B.8.(i), since a →∗
wh cr

k |τ ′| a we deduce that

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}ρ a ∈ JθKπ(ı:=β⊕1),ξ

α is a limit ordinal. In this case, there is β < α such that a ∈ Id(Jτ Kπ,ξ, β).
By induction hypothesis we have

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}ρ a ∈ JθKπ(ı:=β),ξ

and since ı pos θ, by Lem. B.12 we deduce

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}ρ a ∈ JθKπ(ı:=α),ξ

Type-based termination with sized products 39

(sub)
K ; Γ ` e : σ K ` σ v τ

K ; Γ ` e : τ

By induction hypothesis and Lem. B.14. ut

