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—— Abstract

We propose a notion of morphisms between tree automata based on game semantics. Morphisms

are winning strategies on a synchronous restriction of the linear implication between acceptance
games. This leads to split indexed categories, with substitution based on a suitable notion
of synchronous tree function. By restricting to tree functions issued from maps on alphabets,
this gives a fibration of tree automata. We then discuss the (fibrewise) monoidal structure issued
from the synchronous product of automata. We also discuss how a variant of the usual projection
operation on automata leads to an existential quantification in the fibered sense. Our notion of
morphism is correctin the sense that it respects language inclusion, and in a weaker sense also
complete.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages. F.4.1 Mathem-
atical Logic. F.4.2 Formal Languages.

Keywords and phrases Tree automata, Game semantics, Categorical logic.

1 Introduction

This paper proposes a notion of morphism between tree automata based on game semantics.
We follow the Curry-Howard-like slogan: Automata as objects, Executions as morphisms.

We consider general alternating automata on infinite ranked trees. These automata
encompass Monadic Second-Order Logic (MSO) and thus most of the logics used in veri-
fication [8]. Tree automata are traditionally viewed as positive objects: one is primarily
interested in satisfaction or satisfiability, and the primitive notion of quantification is ex-
istential. In contrast, Curry-Howard approaches tend to favor proof-theoretic oriented and
negative approaches, i.e. approaches in which the predominant logical connective is the im-
plication, and where the predominant form of quantification is universal. In order to handle
quantifications, our categories are organized in fibrations.

We consider full infinite ranked trees, built from a non-empty finite set of directions D
and labeled in non-empty finite alphabets Y. The base category Tree has alphabets as
objects and morphisms from ¥ to I' are (¥ — I')-labeled D-ary trees.

The fibre categories are based on a generalization of the usual acceptance games, where
for an automaton A on alphabet T' (denoted I - A), input characters can be precomposed
with a tree morphism M € Tree[X, T, leading to substituted acceptance games of type
¥+ G(A, M). Usual acceptance games, which correspond to the evaluation of ¥ + A on
a Y-labeled input tree, are substituted acceptance games 1 F G(A,t) with ¢t € Tree[1, 3].
Games of the form X+ G(A, M) are the objects of the fibre category over 3.

For morphisms, we introduce a notion of “synchronous” simple game between accept-
ance games. We rely on Hyland & Schalk’s functor (denoted HS) from simple games to
Rel [11]. A synchronous strategy ¥ o : G(A, M) —® G(B, N) is a strategy in the simple
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Fibrations of Tree Automata

game G(A, M) — G(B, N) required to satisfy (in Set) a diagram of the form of (1) below,
expressing that A and B are evaluated along the same path of the tree and read the same
input characters:

HS(c) —— G(B,N) (1)

¥ \
G(A, M) — (D +%)*

This gives a split fibration game of tree automata and acceptance games. When restrict-
ing the base to alphabet morphisms (i.e. functions ¥ — I'), substitution can be internalized
in automata. By change-of-base of fibrations, this leads to a split fibration aut. In the
fibers of aut, the substituted acceptance games have finite-state winning strategies, whose
existence can be checked by trivial adaptation of usual algorithms.

Each of these fibrations is monoidal in the sense of [21], by using a natural synchronous
product of tree automata. We also investigate a linear negation, as well as existential
quantifications, obtained by adapting the usual projection operation on non-deterministic
automata to make it a left-adjoint to weakening, the adjunction satisfying the usual Beck-
Chevalley condition.

Our linear implication of acceptance games seems to provide a natural notion of prenex
universal quantification on automata not investigated before. As expected, if there is a
synchronous winning strategy o IF A —® B, then £(.A) C L(B) (i.e. each input tree accepted
by A is also accepted by B). Under some assumptions on A and B the converse holds:
L(A) C L(B) implies o I+ A —® B for some o.

At the categorical level, thanks to (1), the constructions mimic relations in slices cat-
egories Set/(D + X)* of the co-domain fibration: substitution is given by a (well chosen)
pullback, and the monoidal product of automata is issued from the Cartesian product of
plays in Set/(D + X)* (i.e. also by a well chosen pullback).

The paper is organized as follows. Section 2 presents notations for trees and tree auto-
mata. Our notions of substituted acceptance games and synchronous arrow games are then
discussed in Sect. 3. Substitution functors and the corresponding fibrations are presented
in Sect. 4, and Section 5 overviews the monoidal structure. We then state our main correct-
ness results in Sect. 6. Section 7 presents existential quantifications and quickly discusses
non-deterministic automata. A short Appendix A gives some definitions on simple games,
and a long version of the paper with full proofs [20] can be found on the webpage of the
author.

2 Preliminaries

Fix a singleton set 1 = {o} and a finite non-empty set D of (tree) directions.

Alphabets and Trees. We write 3,T",... for alphabets, i.e. finite non-empty sets. We let
Alph be the category whose objects are alphabets and whose morphisms 5 € Alph[3, T
are functions g : ¥ — T

We let Tree[X] be the set of 3-labeled full D-ary trees, i.e. the set of maps T : D* — .
Let Tree be the category with alphabets as objects and with morphisms Tree[X,T'] :=
Tree[(X — TI')], i.e. (¥ — I')-labeled trees. Maps M € Tree[3,I'] and L € Tree[l', A] are
composed as

LoM : peD* w— (aeX ~ L(p)(M(p)a)))
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and the identity Idy, € Tree[X, Y] is defined as Idx(p)(a) := a. Note that Tree[l,X] is in
bijection with Tree[X].

There is a faithful functor from Alph to Tree, mapping 5 € Alph[X, '] to the constant
tree morphism (__ — /) € Tree[%, T'] that we simply write /5.

Tree Automata. Alternating tree automata [17] are finite state automata running on full
infinite Y-labeled D-ary trees. Their distinctive feature is that transitions are given by
positive Boolean formulas with atoms pairs (¢,d) of a state ¢ and a tree direction d € D
((g,d) means that one copy of the automaton should start in state ¢ from the d-th son of
the current tree position).

Acceptance for alternating tree automata can be defined either via run trees or via the
existence of winning strategies in acceptance games [17]. In both cases, we can w.l.o.g.
restrict to transitions given by formulas in (irredundant) disjunctive normal form [18]. In
our setting, it is quite convenient to follow the presentation of [23], in which disjunctive
normal forms with atoms in @ x D are represented as elements of P(P(Q x D)).

An alternating tree automaton A on alphabet ¥ has the form (Q,¢%,¢,2) where @ is
the finite set of states, ¢* € @Q is the initial state, the acceptance condition is 2 C Q¥ and
following [23], the transition function ¢ has the form

b+ QxX — PP@QxD))

We write ¥ F A if A is a tree automaton on ¥. Usual acceptance games are described in
Sec. 3.1. It is customary to put restrictions on the acceptance condition Q C Q% typically
by assuming it is generated from a Muller family F € P(P(Q)) as the set of 7 € Q¥ such
that Inf(7) € F. We call such automata regular'. They have decidable emptiness checking
and the same expressive power as MSO on D-ary trees (see e.g. the survey [22]).

3 Categories of Acceptance Games and Automata
We present in this Section the categories SAG(EW) of substituted acceptance games. Their ob-
jects will be substituted acceptance games (to be presented in Sect. 3.1) and their morphisms
will be strategies in corresponding synchronous arrow games (to be presented in Sect. 3.2).
Substituted acceptance games and synchronous arrow games are the two main notions we
introduce in this paper. Our categories of Aut(zw) of automata will be full subcategories of
SAG(ZW), while SAG(ZW) and Aut(zw) will be the total categories of our fibrations

game(w) . SAGW)  —  Tree aut™) o Awt™W) Alph

to be presented in Sect. 4. Appendix A summarizes the basic notion of games we are using.

3.1 Substituted Acceptance Games

Consider a tree automaton A = (@, ¢",9,2) on I' and a morphism M € Tree[X,T']. The
substituted acceptance game 3+ G(A, M) is the positive game

GA,M) = (D" x(Ap+ Ao), E, % \§W)

! By adding states to A if necessary, one can describe Q by an equivalent parity condition.
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whose positions are given by Ap := @ and Ap := ¥ x P(Q x D), whose polarized root is
x := (e, q") with £(x) = P, whose polarized moves (F, \) are given by

from (D* x Ap) to (D" x Ao) :  (p,a) — (pa,y) iff v € (g, M(p)(a)
from (D* x Ag) to (D* x Ap) : (p,a,7) 9, (p.d,q) iff (¢q,d) ey

and whose winning condition is given by
(6,90) - (6,a0,%) - (P1,q1) * -+ (Pns @) * (Prs @y yn) - €W it (gi)ien €Q

The input alphabet of I' A is I", and we use the tree morphism M € Tree[X,I] in a
contravariant way to obtain a game with “input alphabet” 3, that we emphasize by writing
Y F G(A,M). Input characters a € ¥ are chosen by P, directions d € D are chosen by O.

Write X F o I- G(A, M) if o is a winning P-strategy on ¥ F G(A, M), and X I+ G(A, M)
it ¥ F o lFG(A, M) for some o.

Correspondence with usual Acceptance Games. Usual acceptance games model the eval-
uation of automata ¥ - A on input trees ¢ € Tree[X]. They correspond to games of the
form 1+ G(A,t), where ¢ € Tree[1,Y] is the tree morphism corresponding to ¢t € Tree[Y)].

Note that in these cases, Ag is of the form 1 x P(Q x D) ~ P(Q x D), so that the games
1+ G(A, %) are isomorphic to the acceptance games of [23].

» Definition 3.1. Let X F A.

(i) A accepts the tree t € Tree[Y] if there is a strategy o such that 1 F o IF G(A, £).
(ii) Let £L(A) C Tree[X], the language of A, be the set of trees accepted by .A.

3.2 Synchronous Arrow Games

Consider games ¥ F G(A,M) and ¥ F G(B,N) with A = (Q4,¢%,04,24) and B =
(@B, 4%, 08, 2B). Similarly as in Sect. 3.1 above, write

Ap == Qu Ao = ¥xP(QaxD) Bp = Qs Bo := XxP(QpxD)
We define the synchronous arrow game

YFGA M) —®G(B,N)
as the negative game (V, E, *, A, £, W) whose positions are given by

V. = (D*"xAp)x(D*xBp) + (D*x Ap) x (D* x Bp) + (D* x Ap) x (D* x Bop)

whose polarized root is * := ((g,¢4%), (¢,qp)) with £(*) := O, whole polarized edges (E, \)
are given in Table 1, and whose winning condition is given by

((e,d%) 5 (&,q8) - o - ((5,d0) 5 (,q8) - ... €W
iff ((qf@)ieN €04 = (ghlien € QB)

Note that P-plays end in positions of the form

((pvQ.A) 3 (p,qB)) S (D* X AP) X (D* X Bp)
and ((paav’YA) ) (pva7’YB)) S (D* X AO) X (D* X Bo)
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A GAM) —e G(B,N)
((p,qa) : (p,q8))

0 1

((p,a,va) (p.gg)) | if va € 6.4(qa, M(p)(a))
P 4

((p7 aa’YA) ’ (paav'yB)) if B € 53((]3,N(p)((l))
0 1

(pra,yva)  ,  (pd,qy)) | if (g5,d) € 8
P {

(pd,dy) .,  (pdyqp) | if (¢4,d) €ya

Figure 1 Moves of G(A, M) —® G(B,N)

Each of these position is of homogeneous type, and moreover in each case the D* and X
components coincide. On the other hand, O-plays end in positions of the form

((pya;v4) 5 (prga)) € (D*xAo) x (D*x Bp)
and  ((p,a,v4) , (p-d,gg)) € (D*x Ap) x (D* x Bp)

Each of these intermediate position is of heterogeneous type, and in the second one, the D*
components do not coincide.

We write X+ o : G(A, M) —® G(B, N) if ¢ is a P-strategy on G(A, M) —® G(B, N), and
YFolkG(A, M) —-® G(B,N) if o is moreover winning. Finally, we write

SIFG(A,M) —® G(B,N)

if there is a winning P-strategy o on G(A, M) —® G(B, N).

» Remark. Recall that if Q4 and Qp are Borel sets, then W is a Borel set and by Martin’s
Theorem [14], either P or O has a winning strategy. Moreover, if the automata A and B are
regular (in the sense of Sect. 2), then W is an w-regular language. If in addition the trees
M and N are regular (in the usual sense), then the game is equivalent to a finite regular
game. By Biichi-Landweber Theorem, the existence of a winning strategy for a given player
is decidable, and the winning player has finite state winning strategies (see e.g. [22]).

3.3 Characterization of the Synchronous Arrow Games

We now give a characterization of synchronous arrow games in traditional games semantics.
Our characterization involve relations in slices categories Set/J, that will give rise to a strong
analogy between our fibrations game") and aut™) and substitution (a.k.a change-of-base)
in the codomain fibration cod : Set™ — Set.

Simple Games. Recall the usual notion of simple games (see e.g. [1, 9]). Simple games are
usually negative, but given positive games A and B, their negative linear arrow A — B can
still be defined. Moreover, simple games, with linear arrows A — B between games A and
B of the same polarity, form a category that we write SGG. When equipped with winning
conditions, winning strategies compose, giving rise to a category that we write SGG".

A P-strategy X F o : G(A, M) —® G(B, N) is a morphism of SGG from the substituted
acceptance game G(A, M) to the substituted acceptance game G(B,N). If o is moreover
winning, then it is a morphism of SGGW.
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The Hyland & Schalk Functor. Hyland & Schalk have presented in [11] a faithful functor,
that we denote HS, from simple games to the category Rel of sets and relations. This
functor can easily be extended to a functor HS : SGGW) —s Rel.

Given a play s € p(A — B) we let s[A € p(A) be its projection on A and similarly for
B.% so that HS(s) := (s[4, s[B). Given a P-strategy o : A — B we have o C pP(A — B)
and thus

HS(o) = {HS(s)|sco} C p(4)xp(B)

We write px(A, M) for the plays of the substituted acceptance game ¥ + G(A, M).
Given X+ o : G(A, M) —® G(B, N), we thus have

HS(U) < @E(-A7 M) X 92(87 N)

Composition by pullbacks. An interesting of the faithful functor HS is that it allows to
compose strategies as relations. Moreover, it is easy to check (and folklore) that composition
of strategies, when seen as relations, is given by pullbacks: given o : A —o Band 7: B — C
we have, in Set:

HS(7 o U_I) — HS(7) where HS(0) —— p(B) HS(1) —=p(C) (2)
:

: :
HS(0) ——> p(B) p(4) o(B)

Synchronous Relations. We will now see that P-strategies on a synchronous arrow game
can be seen as relations in slice categories Set/J. We call such relations synchronous.
Given a set J, define the category Rel(Set/.J) as follows:

Objects are indexed sets A % J, written simply A when g is understood from the context.

Morphisms from A % J to B M T are given by relations R : A = B such that the
following commutes:

A“WI/R&B
g\J/%

Traces. For the synchronous arrow games, synchronization is performed using the following
notion of trace. Given I' - A and M € Tree[l', X], define

tr : ps(A M) — (D+YD)"
inductively as follows
tr(e) = ¢ tr(s = (p,a,7)) = tr(s)-a tr(s = (p-d,q)) = tr(s)-d

The image of tr is the set Try = (X-D)*+ (X-D)*-X.

2 We write p(A) for the set of plays on A, and g (A) for the set of P-plays.
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Characterization of the Synchronous Arrow. We can now characterize the synchronous
arrow games. First, via the functor HS, synchronous strategies are synchronous relations.

» Proposition 3.2. Strategies on the synchronous arrow game G(A, M) —® G(B,N) are
exactly the strategies o : G(A, M) — G(B, N) such that

HS(0) — px(B, N) (3)
i/ \Ltr
[@)>) (.A, M) TI‘E

tr

Second, plays on the synchronous arrow can be obtained in a canonical way from plays on
its components.

» Proposition 3.3. Let X+ G(A, M) and ¥+ G(B,N). The following is a pullback in Set:

(=)1G(B,N)

_l
(—)fg(AyM)l ltr

[9)>) (.A7 M) TI“E

tr

We write tr™® for any of two equal maps

tro(=)IG(AM), tro(=)IGB,N) : L(GA M) -®G(B,N)) — Trx

3.4 Categories of Substituted Acceptance Games and Automata

We now define our categories SAG(EW) of substituted acceptance games and their full sub-
categories Aut(zw) of tree automata. That they indeed form categories follows from the
characterization Prop. 3.2, together with the fact that Rel(Set/.J) and SGG™) are cat-
egories, and the fact that the identity strategies id : G(A, M) — G(B, N) are synchronous.

The Categories SAGy, and SAGY:

Objects of SAGx and SAGYY are games ¥ - G(A, M),

Morphisms of SAGy are synchronous strategies X o : G(A, M) —-® G(B, N),
Morphisms of SAG;V are synchronous winning strategies X F o IF G(A, M) —® G(B,N).

The Categories Auty, and Auty, :

Objects of Autys and Autg are automata X - A,

Morphisms of Auts; are synchronous strategies ¥ F o0 : G(A,Idy) —-® G(B,1dy),
Morphisms of Autyy are synchronous winning strategies ¥ - o IF G(A, Ids) —® G(B, Idx).

A Lifting Property. Among the useful consequences of Prop. 3.3, we state the following
lifting property.

» Proposition 3.4. Consider ¥+ G(A, M) and ¥ F G(B, N). Assume that, in Rel(Set/Try)
we have an isomorphism R : (px(A, M) LN Tre) == /1y, (=(B, N) 2 Try).
There is a (unique, total) isomorphism o : G(A, M) —saas G(B,N) s.t. HS(c) = R.

In general we can not ask ¢ to be winning, and in particular to be a morphism of SAG\EN.
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4 Fibrations of Acceptance Games and Automata

A tree morphism L € Tree[X, I'] defines a map L* from the objects of SAGr to the objects
of SAGy: welet L*(THG(A,M)) =2 FG(A, Mo L).

In this Section, we show that L* extends to functors L* : SAG;W) — SAG(EW) and
that the operation (—)* is itself functorial and thus leads to split indexed categories (—)* :
Tree’® — Cat. By applying Groethendieck completion, we obtain our split fibrations of
acceptance games game™) SAG™) — Tree.

On the other hand, by restricting substitution to tree morphisms generated by alphabet
morphisms 5 € Alph[3, T, we obtain functors 5* : Autl(ﬂw) — Aut(zw) giving rise to split
fibrations of tree automata aut™) : Aut™) —s Alph.

Our substitution functors L* are build in strong analogy with change-of-base functors
Set/Trr — Set/Try of the codomain fibration cod : Set™ — Set. We refer to [12] for basic
material about fibrations.

4.1 Substitution Functors

Change-of-Base in Set . A morphism L € Tree[X, I'| induces a map Tr(L) : Try, — Trp
inductively defined as follows (where (—)p is the obvious projection Try, — D*):

Tr(L)(e) = ¢ Tr(L)(w-a) := Tr(L)(w)- L(wp)(a) Tr(L)(w-d) := Tr(L)(w)-d

The map Tr(L) gives rise to the usual change-of-base functor L*® : Set/Trr — Set/Try,
defined using chosen pullbacks in Set:

L*(pr(A, M)) — pr(A, M)

_|
L*® (tr) i itr
Tr(L)

TI‘Z T‘I‘F

Substitution on Plays. The action of the substitution L* on plays can be described, sim-
ilarly as the action of L*® on objects of Set/Trr, by a pullback property.

Consider T' + G(A, M), so that ¥ + G(A,M o L). A position (p,a,v4) of the game
Y F G(A, M o L) can be mapped to the position (p, L(p)(a),v4) of the game T+ G(A, M).
Moreover, since 0.4(qga, (M o L)(p)(a)) = d.4(qa, M(p)(L(p)(a))), we have

(p,ga) — (p,a,v4)  ifandonly if  (p,qa) = (p, L(p)(a),7.4)
This gives a map
o(L) : ps(AMoL) — or(A, M)
If we are also given I' - G(B, N), then we similarly obtain
p(l)e : ps(@AMoL)-®G(B,NoL)) — pr((G(A M)-®G(B,N))

These two maps are related via HS as expected: HSop(L)_g = (p(L) X p(L))oHS. Moreover,
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» Proposition 4.1. We have, in Set:

on(A M o L) "7 or(A M) GE(GA Mo L) 9 G(B,No L)
trl \Ltr tr@l p(L) s
Tr(L)
TI‘E TI“F TrE @?‘ (g(Av M) —® g(Bv N))
Tr(L) ltr@
TI‘F

Substitution on Strategies. The action of L* on strategies is defined using Prop. 4.1:
Given T'F o : G(A, M) —® G(B, N), so that o C pP(G(A, M) —® G(B, N)), we define

L*(0) = p(L)g(0) S pn(G(A,MoL)-®G(B,NoL))
» Proposition 4.2. L*(0) is a strategy. If moreover o is winning, then L*(o) is also winning.
Functoriality of Substitution. Proposition 4.1 can be formulated by saying that the maps
(tr, (L)) and (tr™® (L) _g) are bijections, respectively:

@E(A7MOL)
@g(g(A7MOL) —® g(B’NOL))

i> TI‘Z X Trs, pr(.A, M)
=5 Try Xy 90(G(A, M) —® G(B, N))

These bijections are crucial to prove that
» Proposition 4.3. L* is a functor from SAG(FW) to SAG(EW),

» Remark. Recall that L® : Trr — Try has a left adjoint, and thus preserves limits. Since
strategies can be seen as synchronous relations, which can moreover be composed by pull-
backs (2), this suggests that the codomain fibration cod already provides enough categorical
structure to obtain substitution functors on synchronous acceptance games. This seems
however a priori not sufficient to obtain strict substitution functors, since the limits (2) may
not be preserved on the noise. This motivated the finer description provided by the pullback
properties of Prop. 4.1, in which all maps involved are specifically defined.

4.2 Fibrations of Acceptance Games

Consider now L € Tree[X,I'] and K € Tree[l', A]. Since Tr(K o L) = Tr(K) o Tr(L) and
(K o L)(—g) = 9(K)(—g) © p(L)(—e) we immediately get

» Proposition 4.4. The operations (—)* : Tree®® — Cat, mapping X to SAG(EW), and
mapping L € Tree[X, T to L* : SAG%W) — SAG(EW) are functors.

By using Groethendieck completion (see e.g. [12, §1.10]), this gives us split fibrations of
acceptance games game(W) : SAG™W) — Tree that we do not detail here by lack of space.

4.3 Fibrations of Automata

In order to obtain fibrations of automata, we restrict substitution to tree morphisms gen-
erated by alphabet morphisms 5 € Alph[¥,T]. The crucial point is that these restricted
substitutions can be internalized in automata.

Given I' - A with A = (Q, ¢",6,9), and 8 € Alph[3, T, define the automaton ¥ - A[3]

as A[f] .= (Q, q", 03, Q) where d3(q,a) := (g, B(a)).
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» Proposition 4.5. X+ G(A[8],1ds) = X+ G(A,P).
It is easy to see that (—)* restricts to a functor from Alph°? to Cat, so that we get fibrations

aut™) o Aut™W) Alph

5 Symmetric Monoidal Structure

We now consider a synchronous product of automata. When working on complete automata
(to be defined in Sect. 5.1 below), it gives rise to split symmetric monoidal fibrations, in the
sense of [21].

According to [21, Thm. 12.7], split symmetric monoidal fibrations can equivalently be
obtained from split symmetric monoidal indexed categories. In our context, this means that
the functors (—)* extend to

(=) : Tree”® — SymMonCat (=) : Alph®”® — SymMonCat

where SymMonCat is the category of symmetric monoidal categories and strong monoidal

functors. Hence, we equip our categories of (complete) acceptance games and automata with

a symmetric monoidal structure. Substitution turns out to be strict symmetric monoidal.
We refer to [16] for background on symmetric monoidal categories.

5.1 Complete Tree Automata

An automaton A is complete if for every (g,a) € Q x X, the set §(g,a) is not empty and
moreover for every vy € §(g,a) and everydirection d € D, we have (¢’,d) € v for some ¢’ € Q.

Given an automaton A = (Q,¢", 0, 2) its completion is the automaton A= (@, q", g, ﬁ)
with states Q := Q + {true, false}, with acceptance condition Q:=Q+ Q" true- Q~, and
with transition function § defined as

~ -~

d(true,q) = {{(true,d) | d € D}} O(false,q) := {{(false,d) | d € D}}
E(q,a) = {{(false,d) | d € D}} if g€ Q and §(q,a) =0
§g,a) == {F|v€d(ga)} otherwise

where, given v € §(q, a), we let ¥ := ~ U {(true,d) | there is no q € Q s.t. (¢,d) € 7}.
» Proposition 5.1. £(A) = L(A).

(W) — (W
Restricting to complete automata gives rise to full subcategories SAGy, = and Aut(E ) of

resp. SAG(EW) and Aut(Ew), and thus induces fibrations
— ==W) —~ — (W)
game : SAG — Tree aut :  Aut — Alph

5.2 The Synchronous Product

Assume given complete automata ¥ - A and X F B. Define X+ A ® B as

A®B = (Q.A X QB7(Q34>Q%)=5A®B»QA®B)

where (¢4, ¢%)nen € Qaes iff ((¢%)nen € Q4 and (¢g)nen € Qg), and where we let
dae8((qa,q8),a) be the set of all the v4 ® 5 for Y4 € 04(qa,a) and v5 € d5(gs,a),
with 4 ® 8 = {((¢}4,q5),d) | d € D and (¢)y,d) € 74 and (g5, d) € 8}

Note that since A and B are complete, each Y4e5 € daes((q4,95),a) uniquely decom-
poses as YaeB = YA ® V8-
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Action on Plays. The unique decomposition property of v 445 allows to define projections

w; (A1 ® A2, M) —  pxn(A;, M)
@ ® 1 e (G(A @B, M) ®G(A @By, N)) — 5 (G(Ai, M) —® G(B;,N))

We write SP := (@, @) and SP_g := (@] ®, @, ®).

» Proposition 5.2. We have, in Set:

ps(A®B,M) —>px(B,M) o8 (G(A®B,M)—® G(C® D,N))

zml - itr - %
tr

oz (A, M) =i° P%.(G(B, M) —® G(D, N))

[

P%(G(A, M) —® G(C,N)) —— Try

TI‘E

(W
Action on Synchronous Games. The action of ® on the objects of SAG(Z ) is given by
(ErFGAM))® (EFG(B,N)) = Xk G(Ar® B[], (M N))

where 7 and 7’ are suitable projections. For morphisms, let X - o : G(Ag, My) —® G( Ay, M)
and X+ 7: G(By, No) —® G(By, N1). Then since ¥ - G(A;[m;], (M;, N;)) = X+ G(A;, M)
and ¥ + G(B;[n}],(M;,N;)) = X F G(B;, N;), thanks to Prop. 5.2 we can simply let
o®T = SP:é(O’, T).

.. . (W)  —(W) ——=(W)
» Proposition 5.3. The product _ ® _ gives functors SAGy, x SAGy — SAGq

5.3 Symmetric Monoidal Structure

=W
Thanks to Prop. 5.2 and Prop. 3.4 the symmetric monoidal structure of ® in SAGy,

can be directly obtained from the symmetric monoidal structure of the tensorial product of
Rel(Set/Try).

Symmetric Monoidal Structure in Rel(Set/.J). We define a product ® in Rel(Set/J):
On Objects: for (A, g) and (B, h) objects in Rel(Set/J) the product A® B is A x ; B with
the corresponding map, that is

AgB = {(ab)€AxB|gla)=h0b)} =T

On Morphisms: given R € Rel(Set/J)[A, C] and P € Rel(Set/J)[B, D], we define RQP €
Rel(Set/J)[A® B,C ® D] as

ReP := {((a,b),(c,d) e (A®B)x (C®D)|(a,c) € R and (b,d) € P}

For the unit, we choose some I = (3:1 = J). Note that 7 is required to be a bijection.
The natural isomorphisms are given by:

dapo = {(a0),¢), (a,(b,¢))) | gala) =gp(b) = go(c)}
A= {(e,a) 5 a) [ g(e) = gala)}
pa = Ala,e), a)[gala)=2a(e)}
YA.B {((a,0) , (b;a)) | ga(a) = g5(b)}

We easily get:

» Proposition 5.4. The category Rel(Set/J), equipped with the above data, is symmetric
monoidal.
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Unit Automata. The requirement that the monoidal unit 3 : I — J of Rel(Set/J) should
be a bijection leads us to the following unit automata. We let Z := (Qz, ¢z, 07, Qz) where

Qr =1, qr =, Qr = Q7 and dz(qz, a) := {{(qz,d) | d € D}}.
Note that since d7 is constant, we have ¥ - G(Z, M) = ¥ + G(Z,1d). Moreover,

» Proposition 5.5. Given M € Tree[X,T'], we have, in Set, a bijection

tr : pxn(Z,M) — Ty

Symmetric Monoidal Structure. Using Prop. 3.4, the structure isos of Rel(Set/Try) can

=W
be lifted to SAGy, = (winning is trivial). Moreover, the required equations (naturality and
coherence) follows from Prop. 3.3, Prop 5.2, and the fact that ((SP x SP)oHS)(c ® 7) =
HS(0) ® HS(7) (where composition on the left is in Set, and the expression denotes the

actions of the resulting function on the set of plays (¢ ® 7)).
_— — (W
All the symmetric monoidal structure restricts from SAGy, ~ to Aut(z )

(W — (W
» Proposition 5.6. The categories SAG(E ) and Aut(z ) equipped with the above data, are
symmetric monoidal.

5.4 Symmetric Monoidal Fibrations

In order to obtain symmetric monoidal fibrations, by [21, Thm. 12.7], it remains to check
that substitution is strong monoidal. It is actually strict monoidal: it directly commutes
with ® and preserves the unit, as well as all the structure maps.

» Proposition 5.7.

)

(W) (W
(i) Given L € Tree[X, T, the functors L* : SAG; — SAG(Z ) are strict monoidal.

— (W — (W
(ii) Given B € Alph[%,T], the functors 5* : Aut; ) — Aut(z : are strict monoidal.

6 Correctness w.r.t. Language Operations

This Section gathers several properties stating the correctness of our constructions w.r.t.
operations on recognized languages. We begin in Sect. 6.1 by properties on the symmetric
monoidal structure, the most important one being that the synchronous arrow is correct,
in the sense that ¥ + A —® B implies £(A) C L(B). Then, in Sect. 6.2, we discuss
complementation of automata, and its relation with the synchronous arrow.

6.1 Correctness of the Symmetric Monoidal Structure

We begin by a formal correspondence between acceptance games and synchronous games
of a specific form. This allows to show that the synchronous arrow is correct, in the sense
that X - A —® B implies £(A) C L(B). We then briefly discuss the correctness of the
synchronous product w.r.t. language intersection.

» Proposition 6.1. Given ¥ F A and t € Tree[X], there is a bijection:
{o|1FolFG(A L)} o~ {0 1F0IFG(Z,1dy) —® G(A, 1)}

» Remark. The above correspondence is only possible for acceptance games over 1:
InXFolkG(A M), ois a positive P-strategy, hence chooses the input characters in X.
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In X+ 01k G(Zs,1ds) —® G(A, M), the strategy 0 is a negative. It plays positively in
Y+ G(A, M), but must follow the input characters chosen by O in ¥ F G(Zyx, Idy).

We now check that the arrow G(A, M) —-® G(B, N) is correct w.r.t. language inclusion:

» Proposition 6.2 (Correctness of the Arrow). Assume given ¥+ o IF G(A, M) —® G(B, N).

(i) For allt € Tree[X], we have t*(c) I G(A, M of) —® G(B, N o).
(ii) If LI G(A, M ot) then 1 I G(B, N ot).
(iii) For all tree t € Tree[X], if M(t) € L(A) then N(t) € L(B).

The converse property will be discussed in Sect. 7. We finally check that the synchronous
product is correct.

» Proposition 6.3. L(A® B) = L(A) N L(B).

6.2 Complementation and Falsity

Complementation. Given an automaton A = (Q, ¢*, 4, ), following [23], we let its com-
plement be ~A := (Q, ¢*,6~u, Qn), where Q4 := Q¥ \ Q and

doualg,a) = {y~ €P(Q x D) |Vyedlga), v~ Ny #0}

The idea is that P on ~A simulates O on A, so that the correctness of ~A relies on determ-
inacy of acceptance games. In particular, thanks to Borel determinacy [14], we have:

» Proposition 6.4 ([23]). Given A with Q4 a Borel set, we have L(~A) = Tree[X]\ L(A).

Note that if A is complete, then ~A is not necessarily complete, but d. 4 is always not
empty and so are the ’s in its image.

The Falsity Automaton L. Welet L := (Q1,q.,01,Q) where QL :=1,q,:=¢, Q=1
and 0.(qu,a) :={{(¢gv,d)} | d € D}. Note that Z = ~L. In particular, it is actually P who
guides the evaluation of L, by choosing the tree directions.

» Proposition 6.5. Let A and B be complete. Then X1 A® B —® L ifXIFA-—® ~B.

» Corollary 6.6. Let A be a complete automaton on ¥. Then 1 |- ~A iff1IFA-® L.

7 Projection and Fibred Simple Coproducts

We now check that automata can be equipped with existential quantifications in the fibered

sense. Namely, given a projection © € Alph[X x I',¥], the induced weakening functor
(W — (W
T Aut(g ) — Aut(zx)r has a left-adjoint Iy, r, and moreover this structure is preserved by

substitution, in the sense of the Beck-Chevalley condition (see e.g. [12]). This will lead to a
(weak) completeness property of the synchronous arrow on non-deterministic automata, to
be discussed below.

Recall from [13, Thm. IV.1.2.(ii)] than an adjunction IIy p 4 7*, with 7#* a functor,
is completely determined by the following data: To each object ¥ x I' F A, an object
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YFIgrA and amap na : ExI'F A — ¥ x T+ (Iy rA)[n] satisfying the following
universal lifting property:

For every
o YxIF YxI'HB
fh xR A — 2 s A M (g rA)r]  (4)
ere is a unique
T : Yk HZ,FA — YFB > J/TI'*(T)
B[]

In our context, the Beck-Chevalley condition amounts to the equalities

Ak g rA)p] = Ak Tar(A[S x Idr]) Napgxiar] = (B x1dr)*(na) ()

It turns out that the usual projection operation on automata (see e.g. [23]) is not functorial.
Surprisingly, this is independent from whether automata are non-deterministic or not?. We
devise a lifted projection operation, which indeed leads to a fibered existential quantification,
and which is correct, on non-deterministic automata, w.r.t. the recognized languages.

The Lifted Projection. Consider ¥ x I' - A with A = (@, ¢*,9,9). Define ¥ I Iy, 1A as
HE’F.A = (Q xI'+ {q1}7 q", 014, QHA) where

51_1.,4((11; a) = Uber{7+b | v e 5(qza (aa b))}
5].[./4(((17_)) a) = Uber{7+b | Y € 5(qa (a’ b))}

and, given v € P(Q x D) and b € T', we let v*° := {((¢**,d) | (¢,d) € v} with ¢™° := (¢,b).
For the acceptance condition, we let ¢*-(qo, bo) - - -*(qn, bn) ... in Quua iff ¢"qo-. . .-qn-. .. € Q.

Action on Plays of The Lifted Projection. The action on plays of Iy r is characterized
by the map p(II) : prxr(A) — px(s r.A) inductively defined as p(II)(e, ¢") := (e,¢") and

p(I)((e,q") =* (p,q) = (p,(a,0),7)) = p()((e,¢") =* (p,q)) = (p,a,71?)
p(ID)((e,q") =* (p, (a,b),7) = (p.d,q)) = p()((e,q") =* (p,(a,b),7)) = (p.d,q*?)

» Proposition 7.1. If A is a complete automaton, then p(I1) is a bijection.

The Unit Maps 7(=)- Consider the injection ts;r @ ps(IIsrA) — psxr((Us rA)[7])
inductively defined as t5 r((g,q4)) = (¢,4¢%) and ts,r(s = (p,¢™)) :== ts,r(s) = (p,q™)
and uxr(s = (p,a,7"")) == 12.0(s) = (p, (a,0),7).

If ¥ x I' b A is complete, we let the unit 14 be the unique strategy of STAE;NW such that
HS(na) = {(t,txr o p()(t)) | t € puxr(A)}. We do not detail the B.-C. condition (5).

The Unique Lifting Property (4). Consider some ¥ xI'+ o : A —® B[n]| with A complete.
We let 7 be the unique strategy such that HS(7) = {(p(IT)(s), p(7)(t)) | (s,t) € HS(o)}. It

is easy to see that 7 is winning whenever ¢ is winning. Moreover

» Lemma 7.2. 0 = 7*(7) on4.

For the unicity part of the lifting property of 7.4, it is sufficient to check:
» Lemma 7.3. If m*(0) ona =7*(0') ona then 0 =6'.

3 Tt is well-known that the projection operation is correct w.r.t. the recognized languages only on non-
deterministic automata.
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Non-Deterministic Tree Automata. An automaton A is non-deterministic if for every ~
in the image of 6 and every direction d € D, there is at most one state ¢ such that (q,d) € 7.

» Remark. If A and B are non-deterministic, then so are A ® B and II(.A).

» Proposition 7.4 ([6, 18, 23]). For each regular automaton X b A there is a complete
non-deterministic automaton ¥+ ND(A) such that L(A) = L(ND(A)).

» Proposition 7.5. If ¥ x I' - A is non-deterministic and complete, then L(IIspA) =
75,0 (L(A)) where ms r € Alph[¥ x T', X is the first projection.

» Proposition 7.6. Consider complete reqular automata 3+ A and ¥+ B.
If L(A) C L(B) then X I ND(A) —® ~C with C := ND(~B).

8 Conclusion

We presented monoidal fibrations of tree automata and acceptance games, in which the fibre
categories are based on a synchronous restriction of linear simple games.

For technical simplicity, we did not yet consider monoidal closure, but strongly expect
that it holds. One of the main question is whether suitable restrictions of these categories
are Cartesian closed, so as to interpret proofs from intuitionistic variants of MSO. Among
other questions are the status of non-determinization (7.e. whether it can be made functorial,
or even co-monadic), as well as relation with the Dialectica interpretation (in the vein of
e.g. [10]). Our result of weak completeness (Prop. 7.6) suggests strong connections with the
notion of guidable non-deterministic automata of [4]. On a similar vein, connections with
game automata [5, 7] might be relevant to investigate.

Acknowledgments. This work benefited from numerous discussions with Pierre Clairam-
bault and Thomas Colcombet.
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A Simple Graph Games

We work on simple graph games with winning, of the form G = (V, E,*, \,£, W). They are
played by Opponent (O) and Proponent (P) on the graph with vertices in V, edges in E,
root x, edge labeling A : E — {O,P}, polarity £ : {#*} — {O,P} and winning condition
W C V¥. Vertices are game positions, while edges are moves: Opponent plays O-labeled
moves and Proponent plays P-labeled moves. We write v — w if (v,w) € E.

We assume that games are alternating, in the sense that v — v — w implies A(u —
v) # A(v = w), and polarized in the sense that A(u — v) = A(u — w) for all coinitial edges
u — v, 4 — w, and moreover A(x — u) = () for all * — u. A game is positive if £(x) = P
and negative otherwise. A play is a finite path starting from the root *. It is a P-play (resp.
an O-play) if it is either empty or ends with a P-move (resp. an O-move). A P-strategy is a
non-empty set o of P-plays which is
P-prefix-closed: if s —»* v € ¢ and s is a P-play then s € o, and
P-deterministic: if s - w € 0 and s - w’ € ¢ then w = w'.

Consider a P-strategy o and an O-play s. We say that s is an O-interrogation of o if either
s = * and G is a positive game, or if s = ¢ — u for some P-play ¢t € 0. We say that o is
total if for every O-interrogation s of o, we have s — v € o for some v. A P-strategy o is
winning if it is total and moreover, for all infinite path ©# € V¢, we have m € WW whenever
m(0) — ... = m(n) € o for infinitely many n € N.

17
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2 Graph Games

We briefely discuss here graph games inspired from Mellies’ presentation of Conway games
(see e.g. [15, 16]). The two main differences are that we do not assume here that graphs are
well-founded, nor that strategies are winning.

2.1 Basic Graph Games

Basic Graph Games are played by Opponent (O) and Proponent (P) on edge-labeled rooted
graphs of the form A = (V, E,*, \), where V is the set of vertices, E C V x V is the edge
relation, * € V is the root, and A : E — {O, P} is the labelling function. Vertices are game
positions, while edges are moves: Opponent plays O-labeled moves and Proponent plays
P-labeled moves. We write v — w if (v,w) € E.

A path from position v to position w is a non-empty sequence s of the form

S:1vV) UL ... VU, where vg = v and v, = w

In particular, for each position v, there is a unique empty path € : v, that we also write v.
We write s : v =™ w when s is a path from v to w or v —* w when s is understood from the
context.

Note that a basic graph game can have no edge, but must have at least one vertex,
namely its root. Let 1sgg = ({*},0, *,0).

Dualization. The dual of the basic graph game A = (V, E, %, \) is

At = (VB %, \1) where Mu—-w) =P iff Av—-w)=0

Plays. A finite play in A = (V, E, %, ) is a finite path v9 — v1 — ... — v, which starts
from the root (vo = ). A play as above is alternating if M(vi_1 — v;) = A (v; = vi1)
whenever n > 2 and 1 < i < n. Note that the empty path on the initial position € : x is a
play. We let p(A) be the set of plays on A.

We say that a play is a P-play (resp. O-play) if it is either empty or its last move is a
P-move (resp. an O-move). We write pF(A) and p°(A) for the sets of resp. P-plays and
O-plays on A.

Strategies. A P-strategy is a non-empty set o of P-plays which is

P-prefix-closed: if s +* v € 0 and s is a P-play then s € g, and

P-deterministic: if s - w € 0 and s - w’ € ¢ then w = w'.

An O-strategy is defined similarly, by exchanging P and O. Formally, an O-strategy on A is
a P-strategy on A'.

Tensor Product. The product of A = (Va,Ea,*a,Aa) and B = (Vp, Ep,*p,\p) is
AxB = (VaxVp,EsxB,(*¥a,*B), AaxB)
where Faxp and Aaxp are given by

if w—au  then (u,v) 2axp (v,v) with polarity Aa(u — )
if wv—opv  then (u,v) 2axp (u,v')  with polarity Ag(v — v')
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Note that (Aaxs)" = Aaiypt, so that dualization commutes with the tensor product:

(Ax B)* = At x Bt
Arrow Type. Given basic graph games A and B, we let A — B := (A x B+)* = A+ x B.

2.2 Graph Games (with Legal Plays)

We discuss here a simple notion of graph games, which are basic graph games equipped with
legal plays. This notion will be most useful to analyse composition in simple graph games
(see Sect. 4), but it is conventient to introduce it here.

Games with Legal Plays. Formally, a graph game with legal plays (or graph game in short)
has the form A = (V, E,*, A\, L) where (V, E,*,\) is a basic graph game and L C p(A) is
a prefix-closed set legal plays. We write LP and L° for resp. the set of legal P-plays and
O-plays of A.

Strategies o on A are required to play only legal plays (i.e. o C L for a P-strategy o).

Projections. Given graph games Ay,..., A, and a play t € p(A4; x---x A,), the projection
tlA;,,..., A

i is inductively defined as usual:
(kA osxa ) Ai, - Ay, = (*Ail"“’*Aik-)
and if j € {i1,...,4x} then
(=" (ury gy ) = (Uts sV, Un)) [ Ay, Ay =
(=" (ur,. . un ) Aiys o Ay = (Wags o0, UGy )
and otherwise

(t —* (ul,...7uj,...,un) — (ul,...,vj,...,un))[Ail,...,Aik =
(t —* (ul,...,un))[Ail,...,Aik

» Lemma 2.1. Ift € p(A; X - - x Ay) then t[A;, ..., A, € p(A;, X -+ X Ayp).

The Hyland-Schalk Map. Given graph games A and B, and following [11] (see also [2]),
we let

HS = ()4, (H)IB) : p(Ax B) = p(A) x p(B)

Polarized Plays and Strategies. The polarity of a proper play is that of its first move,
namely: a proper play is positive (resp. negative) if it begins with a P-move (resp. an O-
move).

Similarly, a strategy is positive (resp. negative) if all its proper plays are positive (resp.
negative).
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Arrow Type. Let A= (Va,Ea, %4, a,La)and B = (Vp, Ep,*5,Ap, Lp) be graph games.
We let:

A—oB = (Vaop, Faop,¥a-oB, \a—oB,La—oB)

where Ly _.p is the set of alternating and negative plays s € p(A —o B) such that HS(s) €
LA X LB.

Hence, a legal strategy o on A — B is alternating and negative: its plays begin with an
O-move, end with a P-move and in between alternate polarities.

» Lemma 2.2. L, ,p is closed under prefix.

» Definition 2.3. Given graph games A and B, write 0 : A — B if o is a legal (hence
negative) P-strategy on A —o B.

2.3 Conway-Like Games

We briefly review here Melliés’ presentation of Conway-like games [15, 16].

A Conway-like game is a basic graph game, but a morphism of Conway-like games
c:A— B, with A = (Va,Fa,%4,\4) and B = (Vg, Ep,*p,Ap) is a morphism of graph
games o : A% — BY where A% = (Va, Ea, %4, A, p(A)) and B = (Vp, Ep, *p, A\, p(B)).

A Conway game is a Conway-like game which is well-founded, in the sense that there
is no infinite path starting from the root. A morphism of Conway games o : A — B is a
morphism of Conway-like games, which is moreover total, in the sense that:

given t = x —* u € o, for every O-move u — v such that t — v is legal, there is a P-move

v — w such that t = v > w € 0.

We discuss in Sect. 5 (Prop. 5.3) the fact that totality is preserved by composition for
Conway games.

3 Composition of Strategies on Graph Games (with Legal Plays)

We gather here some usual and useful results on the composition of strategies on graph
games.

Consider graph games A, B and C and strategies 0 : A — B and 7 : B — C. Following
the usual pattern we let:

o|T {tep(AxBxC)|t[A,Beo A t|B,C e}
Too = {se€lf . |Fteo| T t|AC=s}

We now recall the usual way to show that 7 o ¢ is a strategy on A — C.

» Lemma 3.1. Lett € p(A x B x C) be such that t]A,B € La_.p, t|B,C € Lp_oc and
tIA,C € Lao_oc.

Then the word obtained from t by replacing each move by the name of its component
(A, B, or C), together with its polarity in that component (beware that we take A and
not At etc) is accepted by the following automaton (with initial state (O00) and all states
accepting), where the states correspond to the player allowed to play next in the corresponding
components:
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(B,0) (B,P)

» Lemma 3.2 (Zipping). Let s,t € o || 7 such that s|A,C and t[A,C have the same O-
moves. Then s =t.

Proof. Assume that s # ¢ and let p = *x s« pxc —* u be their maximal comon prefix. Hence

there are positions v # w in A x B x C such that p — v (resp. p — w) is a prefix of s (resp.

of t). We reason by cases on the last state on p of the diagram of Lem. 3.1.

(0O0O0) In this case, both u — v and © — w are O-moves in A — C' and we are done.

(OPP) In this case, v — v and u — w are both P-moves in B — C, so that (p — v)[B,C
and (p — u)[B, C are plays of 7 of the same length, hence u = v, a contradiction.

(POP) Similarly as in the case of (OPP), this case leads to a contradiction since v — v and
u — w are both P-moves in A — B. <

» Proposition 3.3. Given graph games A, B and C and strategieso : A — B and T : B — C,
the composite T o o is a strategy on A — B.

Proof. We have 7 oo C Lf,__ . by definition, and 7 o o contains the empty play since both
o and 7 contain the empty play.

We now show that 7o ¢ is P-prefix-closed. Let s — u — v € Too. If s is the empty play
€ :%4_p then we are done. Otherwise, let ¢ € o || 7 such that

tIA,C = s—u—v

Write ¢ :=#' — u —* v, so that #'[ 4, C = s. Now, since s € LF,__ -, by definition s ends with
a P-move and is alternating, hence the last state of the diagram of Lem. 3.1 on ¢’ is (000).
By alternation in Ls_.p and Lp_oc, it follows that ¢/[A, B € LY, and ¢'|B,C € LY, __..
By P-prefix closure of strategies, it follows that ¢'[A, B and t'[B,C are plays of o and 7
respectively. Hence t' € o || 7 and s € 70 0.

It remains to show that 7o ¢ is P-deterministic. Assume that s — u and s — v are two
plays of 7oo. Then they have the same O-moves, and it follows from the Zipping Lemma, 3.2
that u = v. | <

4 Simple Graph Games

Simple graph games are graph games with legal plays, which are required to satisfy altern-
ation and polarity conditions.

21



22

Fibrations of Tree Automata

4.1 Simple Graph Games
4.1.1 Simple Graph Games.

A simple graph game is a graph game with legal plays A = (V, E, x, A\, L) where L is subject
to the following two additional requirements:

Alternance: all plays in L are alternating, and

Polarization: all plays in L have the same polarity.

The polarity of A is the polarity of the plays of L.

» Example 4.1 (Linear Arrow of Graph Games with Legal Plays). If A and B are graph games
with legal plays, then the linear arrow game A —o B in the sense of Sect. 3 is a simple graph
game.

» Example 4.2 (Substituted Acceptance Games).

» Definition 4.3 (Total Strategies). Let o be a P-strategy on a game A, and consider an
O-play s. We say that s is an O-interrogation of o if either s = x4 and A is a polarized
positive game, or if s =t — u for some P-play t € o.

We say that o is total if for every O-interrogation s of o, we have s P v € o for some v.

4.1.2 The Category SGG of Simple Graph Games.

In the category SGG of simple graph games, we only consider morphisms between games

of the same polarity.

Objects of SGG are simple graph games.

Morphisms in SGGJ[A, B], with A and B of the same polarity are negative legal P-strategies
c:A— B.

4.1.3 The Hyland-Schalk Functor.

Given a strategy o : A — B, let
HS(o) := {HS(s)|se€o}

Recall that by definition, HS restricts to a map from L4 .5 to L4 X Lp, and that 0 C L4 _.p
by assumption. Hence HS(o) C La x Lp.

» Proposition 4.4 ([11]). HS is a faithfull functor from SGG to Rel, the category of sets
and relations.

It follows that strategies are faithfully represented by the corresponding spans in Set:

LA/ G \LB

where the arrows ¢ — L4 and 0 — Lp are given resp. by

(6)

1A —)IB
o C—)LA%BgLA and UC—>LAwBi>LB

We will detail the argument of Prop. 4.4, and show that composition in SGG is faithfully
represented in Set by pullbacks of spans of the form (6).
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4.2

Relational Decomposition of Strategies

We now discuss how the polarization and alternation assumptions in SGG imply that HS
is faithful.
We first recall the following well-known basic fact about SGG.

» Lemma 4.5 (Switching). Let A and B be simple graph games of the same polarity.

(i) Consider a legal play s = xa—op =" u = v — w € La_op. If the moves u —4_op v

and v —a—op w are not both in the same component, then Aa_op(v — w) = P.

1) Consider a legal play s = *4_op —* (u,v) € La_op. If there are moves u — 41 v’ and
(1) gal play : A

v —p v such that both plays s — (u',v) and s — (u,v’) are legal in A — B, then
A—op((u,v) 2 a—op (U,v)) = Aa—wp((u,v) 2a_op (u,v')) = P.

(iii) Consider two legal plays s,t € La_op:

S = ¥A_oB UL —7 ... = Up
t = %p_op = V] = ... = Uy

Assume that s # t but HS(s) = HS(t). Then for the least i < n such that u; 41 # Vit1,
we have Ag—op(u; = uiy1) = Aa—op (Vi = vi41) = P.

Proof. (i) Since s is alternating, the moves u —4_.p v and v —4_.p w have opposite

(iii)

polarity. Since moreover they are not in the same component, it follows that the
projections s[A+ and s[B end with moves of opposite polarity. Hence s[4 and s[B
end with moves of the same polarity.

Since A and B have the same polarity, and since s[A and s[B are alternating, we get
that the lengths of s[A and of s[B have the same parity. It follows that the length of
s is even, and since s is a negative alternating play, it ends with a P-move.

Since the plays s — (v/,v) and s — (u,v’) are both alternating and negative, the
moves (u,v) > ap (u',v) and (u,v) = a—p (u,v’) have the same polarity. It follows
that A s(u —4 u') = Ag(v —p v')*, and moreover that s[A and s[B end with moves
of opposite polarity since s[A —4 v’ and s|B — g v’ are both alternating.

Since A and B have the same polarity, and again since s[A and s[B are alternating,
we get that the lengths of s[A and of s|B have opposite parity. It follows that the
length of s is odd, and since s is a negative alternating play, it ends with an O-move.
We conclude by alternation of L4 _,p.

Note that since s and ¢ are both alternating and negative, the moves u; —4—p Ujt1
and v; — 4B ;41 have the same polarity. Since

¥A—oB —> UL — ... —> Uj = ¥A_oB VU]l — ... V;
we have
HS(*pg—op = u1 = ... 2 w;) = HS(xaop 2 v1 = ... > v;)

Since moreover HS(s) = HS(t) by assumption, it follows that u; — u;4+1 and v; = v;41
can not be both in the same component, and the result follows from Lem. 4.5.(i)). <«

» Remark (Definition of L4_,p for graph games in Sect. 3). Note that a play s € p(4 — B)
such that s[A € L and s|B € Lp needs not be negative nor alternating. Consider for
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instance the following plays where A and B are both negative:

A — B

A — B (4 . *p)

(¥a , *p) ) )

P \L (*A 5 bo)
(a,o 5 *B) P \L

ol | (@,  bo)

(a1 . *B) P N

(@, b1)

» Lemma 4.6. Let A and B be simple graph games of the same polarity.

(i) Given o : A — B, in Set we have HS(0) ~ 0.
(i) HS is injective on strategies: given o,7: A — B, if HS(o) = HS(7) then o = 7.

Proof. (i) By definition, we have in Set a surjective map

o — HS(o)
s — HS(s) = (s[A, s|B)

The injectivity of this map follows from the following property: Given legal plays
t € Ly and ¢ € Lp there is at most one play s € o such that HS(s) = (¢,¢'). This
property is a direct consequence of Lem. 4.5.(iii).

(ii) Let o and 7 be strategies on A — B such that HS(o) = HS(7). We show that ¢ C 7
by induction on plays s € o. First, both ¢ and 7 contain the empty play € : 4_p.
For the induction step, consider s € o of the form

Uy —> «oo = Up =7 Upt1 —7 Upt2

with ug = *4_.p and such that ug — ... > u, € cNT.
By assumption, HS(s) = HS(¢) for some ¢t € 7. Note that s and ¢ have the same length.
Hence ¢ is of the form

Vg —> ... > Up —> Upg1 — Upi2 with vg = *4_oB

If s # t, then by Lem. 4.5.(iii) they first differ at a P move, say u;11 # v;11. Since
ug —* u, and vg —* v, both belong to 7, we can not have i+1 < n, hence i+1 =n+2
since s and t are both alternating and negative.

But then
Ug—> oo = Uy = Uy —>...—Up
hence
HS(up — ... = un) = HS(vog— ... = vy)
and since HS(s) = HS(), it follows that w,12 = v,4o, contradicting s # t. <

4.3 Relational Composition of Strategies

Let A, B and C be simple games of the same polarity. Given 0 : A - Band 7: B — C,
consider the following composite, in the category Rel of sets and relations:

HS(r)oHS(0) = {(s,8')€LaxLc|3teLp. (s,t)€HS(0) A (t,5) € HS(r)}
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» Lemma 4.7. Assume that A, B and C have the same polarity. Given s € La_.p and
s’ € Lp_oc with s|B = §'|B, there ist € p(Ax BxC) such that t|A,B = s and t|B,C = §'.
Moreover, t is accepted by the state diagram:

A—oB B —oC

Proof. We build ¢ by induction on the sum of the lengths of s and s'.

In the base case, s and s’ are both empty, and we let ¢ be the empty play from *4x5xc.
By definition of Ls_.p and Lp_.c, the diagram is in state (0O).

For the induction step, there are three cases according to wether either s or s’ are empty
or s and s’ are both non-empty.

If s is non-empty and s’ is empty with say s = *4_.g —* u — v. Then by induction
hypothesis there is t € p(A x B x C) with t|A, B = %45 =" v and t|B,C = s =e.
Since s’ is empty, the move u — v must be in component A. Writing ¢t = x g4xgxc —* u/,
we extend it to ¢’ with the corresponding move v’ — v’ in A x B x C.

Moreover, the diagram must be either in state (OO) or (PO) on ¢ according to the polarity
of the length of ¢, and it goes either to state (PO) or (OO) on t'.

If s is empty and s’ is non-empty then we reason similarly, in component C' instead of A.

Otherwise, both s and s’ are non-empty. We first claim that at least one move of s and
s’ is in component B.

Proof. Assume that no move of s (and thus of s’) occurs in component B. Recall

that s and s’ are both non-empty. But their first moves are in component A and C

respectively, contradicting that s € Ly_.g and s’ € Lg_,¢ since A, B and C are of

the same polarity. <
Let by — by (resp. by — b}) be the last move of s (resp. s’) in component B. Note that
by assumption, these two moves project to the same B-move. Hence s and s’ are of the
form:

Si*A_oB —* bo*)bl —€ S1
s ikpec —F by = b = $)

Consider first the case where by —¢ s1 and b] —€ s} are both empty:
S:%4-0B =" by — by
st xkp_c = by — b}

Now, we have (x4—op —* bo)|B = (¥p—c —™* b)) B and by induction hypothesis, we
get tg € p(A X B x C) such that torA,B =%4_op —" bp and torB,C = *B_oc —F b6

Moreover tg is accepted by the state diagram. It can not be in state (OO) since the
B-move corresponding to by — by and b — b} has opposite polarities in A — B and
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B — C. Hence ¢ty must either be in state (OP) or in state (PO), according to the polarity
of bg — by (which is the opposite to that of b, — b}). We extend ty to t; with the B-move
corresponding to by — by and b, — b}. The state of the diagram is now either (PO) or
(OP).
Consider now the case of by —¢ s1 and b} —¢ s} not both empty. We obtain ¢; as above.
We claim that either by —€ 51 or b —¢ s is empty.
Proof. Assume that both are non-empty. Then they must respectively begin with
an A-move and a C-move. But either by — by or b, — b} is a P-move, contradicting
Switching (Lem. 4.5.(i)). <
We can thus extend ¢; by reasonning as in the case of s or s’ empty above. |

» Lemma 4.8. Lett € p(A x B x C) be such that t|A,B € Ly_op and t|B,C € Lg_¢.
Then t[ A, C is negative.

Proof. We consider two cases, according to the polarity of A, B and C.

A, B and C are negative. In this case, the first move in A of ¢ comes after its first move
in B, which itself comes after the first move in C of t. It follows that ¢t[ A, C' begins by
an initial move in C, hence a negative move in A — B.

A, B and C are positive. Similarly, the first move in C' of ¢ comes after its first move in
B, which itself comes after the first move in A of ¢. It follows that ¢[A, C' begins by an
initial move in A, hence a negative move in A — C. <

» Corollary 4.9. Given plays sa € La, sg € Lp and s¢c € L¢ such that (sa,sp) €
HS(0) and (sp,sc) € HS(7), there exists t € o || T such that HS(t[A, B) = (sa,sp) and
HS(t|B,C) = (sB, sc), and moreover t[!A,C € La_,c.

Proof. Take t € p(A x B x (') obtained by Lem. 4.7 from s € o and s’ € 7 such that
HS(s) = (sa, sp) and HS(s') = (sB, s¢)-

In order to show that t]|A4,C € L}, we first get that ¢[A, C is negative by Lem. 4.8.
Then, since the transition of the diagram in Lem. 4.7 respect the polarity in the A — C
part, we obtain that ¢ is accepted by the state diagram of Lem. 3.1. It then follows that
t[ A, C is alternating, since in the diagram of Lem. 3.1, all transitions in A and C' preserve
alternation in A — C, and transitions in B preserve polarity in A — C.

It remains to show that ¢[A, C ends by a P move. Note that both t[A, B and ¢[B,C
have even length. Hence the lengths of ¢[A, t[|B and ¢[C have the same parity, and t[A, C
has even length. It follows that it ends by a P-move since it is negative and alternating. <«

» Proposition 4.10 (Relational Composition of Strategies). Let A, B and C be simple games
of the same polarity. Given o : A — B and 7: B — C, we have HS(7 oo) = HS(7) o HS(0).

Proof. The inclusion HS(7 o o) C HS(7) o HS(0) is trivial.

For the other direction, let (sa,sc) € HS(7) o HS(o), so that there is sg € Lp such
that (sa,sp) € HS(0) and (sp, s¢) € HS(7). By Cor. 4.9, there is t € p(A x B x C) such
that t/A,B € o, t|B,C € 7, and t[A = sa, t|B = sp and t[C = s¢. We moreover get
t]A,C € Too since t[A,C € LF__ .. <

» Proposition 4.11. Given a simple game A, there is a unique strategy id such that HS(id) =
L %1, La, where, in Set, the following is a pullback:

id_I*>LA
b
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Proof. Consider the following pullback diagram in Set, where L4 X1, La >~ Lj:

s
Laxp,La—=>1Lj

La———>1La

We define id C LZ_OA such that HS(id) = L x5, La ~ L4 by induction on s € Ly as
follows:
For s = %4, we let x4_o4 € id, and we indeed have HS(*4—4) = (*a,%4) and 4.4 €
LY 4
Let now s = s’ = a € L4. By induction hypothesis, there is t € id such that HS(t) =
(s',5"). Write A — A= A1) — AQ),
If s — a is an O-move in A, then we extend ¢ with a in component A®) and then by a
in component AM) (hence a P-move in A —o A®)). Otherwise, s’ — a is a P-move in
A, and we first extend ¢ with a in component A®) (hence an O-move in A — A(?)
and then with a in component A®).
Let t' be the obtained extension of ¢. In both cases, we have HS(¢') = (s’ — a,s' — a)
and t’ ends by a P-move by construction. Alternation is preserved in A — A, hence by
induction hypothesis ¢’ is alternating. Moreover, t' is negative since either ¢t = %4 _,4
and ¢’ begins with an O-move, or t # *4_,4 is negative by induction hypothesis. We
thus get ¢’ € L, __ , since s’ — a € L4 by assumption.
We now check that id is a strategy. First, id is P-prefix-closed by construction. Moreover, id
is P-deterministic since its P-moves are uniquely determined by their immediately preceding
O-moves.

The fact that the diagram is a pullback as well as the unicity of id follows from the fact
that in Set, we have HS(id) ~ id thanks to Lem. 4.6.(i). <

» Remark. A direct definition of id as follows (where Ly X, La ~ L4)
id = HSYLaxp,La)NLY .,

does not work since there might be ¢ # ¢’ in L} __ , such that HS(¢) = HS(#').

» Remark (Associativiy of Composition in SGG). Proposition 4.10 can be read in two
direction. The original one [11], is that given the categories SGG and Rel, the map
HS : SGG — Rel is functorial.

The other one, is that together with the injectivity of the map HS (Lem 4.6.(ii)),
Prop. 4.10, can be used to show that composition in SGG is associative, and in partic-
ular that SGG is a category.

Indeed, from Prop. 4.10 and the associativity of composition in Rel we get:

HS(7 0 (0 00)) =HS(7) o (HS(0) o HS(0)) = (HS(7) o HS(0)) o HS(0) = HS((T 0 0) 0 0)
and it follows from Lem 4.6.(ii) that

T7o(cof) = (ro0)of
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4.4 Composition by Pullbacks

We now show that composition of strategies form pullback squares in Set based on the the
repsentation of strategies as spans (6):

TOEHTHLC
UHLB

|

Ly
where the arrows
TOO — O and TOO — T

are obtained thanks to the following unicity property (which follows form the usual Zipping
Lemma 3.2):

» Lemma 4.12 (Relational Zipping). Given sa € La and sc € L¢, there is at most one
sp € Lp such that (sa,sp) € HS(0) and (sp, s¢) € HS(7).

Proof. Let s,s’ € Lp such that (s4, ), (sa,s’) € HS(o) and (s, s¢), (¢, s¢) € HS(7).

Let t,t' € p(A x B x C) the corresponding plays obtained by Cor. 4.9. Then t]A, C' and
t'I A, C are two plays of Too with the same image under HS(—). It follows from Lem. 4.6.(i)
that t]A,C = t'| A, C and by Zipping (Lem. 3.2) that t =¢'. Hence s =t[B=t'|[B=3s". <«

Let now 700 — o map s € Too to (s[4,s’) where s’ is by Lem 4.12 unique in Lp
such that (s[A,s") € HS(o) and (s', s]C') € HS(7). The map 7 oo — 7 is defined similarly.
Note that this immediately implies the commutation of the diagram

TOO ——>T

P

oc——>Lp
» Proposition 4.13 (Composition as Pullback). The following is a pullback in Set:
T 1 a_|4> l— — L¢
oc——>Lp

|

Ly

Proof. We only have to show that 7 o ¢ is in bijection with

oxL, T = {(s;t)€ox7]|s/B=tIB}

But in Set, we have:

oxXr, T =~ {((sa,sn),(ts,tc)) € HS(o) x HS(7) | sp =tp} (by Lem. 4.6.(i))
= {(sa,sB,sc) | (sa,sp) € HS(o) A (sp,sc) € HS(7)}
~ {(sa,sc) | 3sp € Lp. (sa,sp) € HS(o) A (sp,sc) € HS(7)} (by Lem. 4.12)
= HS(r) o HS(0)
= HS(roo0) (by Prop. 4.10)
~ To0 (by Lem. 4.6.(i))

<
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5 Simple Graph Games with Winning

5.1 Graph Games with Winning

We discuss a notion of winning conditions on infinite plays in graph games. The basic
mechanism of this notion is very simple and well-known [1, 9], as well as the fact that
winning (including totality) is preserved by composition.

5.1.1 Graph Games with Winning
have the form A = (V, E, %, \, L, W) where (V, E,*, A\, L) is a graph game and W C V¥ is a

winning condition.
We let W+ be the union of W with the set of finite legal P-plays on A.

» Remark (Finite Winning). The finite part of winning conditions (here the finite part of the
sets WT) must be formulated in terms of the polarities of plays, and not in terms of their
lengths since we want to handle, in the composition of strategies (see Prop. 5.3) the case
of positive constituent games. This contrasts with [3], which is based on “negative” (i.e.
O-starting) HO-games.

5.1.2 Winning Strategies.

A P-strategy o on A = (V, E,*, A\, L, W) is winning if
it is total in the sense of Def. 4.3, and
all its infinite plays are winning: if (¢,),eN is a sequence of pairwise compatible plays of o

such that |J, oy tn is infinite, then J, oy tn € W.

Note that in the second condition above it is equivalent to require t¢,, € ¢ for infinitely many
n € N, instead of for all n € N.

5.1.3 Arrow Type with Winning.

Given games with winning A and B, the game with winning A — B is the graph game
A —o B equipped with the winning condition Wa_.g C (V4 x Vp)“ defined as follows.
Given an infinite sequence p € (V4 x Vp)¥, let

neN
Let now Wa_.p be the set of p € V{5 such that p[A € W:{ implies p[B € Wg.

» Lemma 5.1. Given simple graph games with winning A and B of the same polarity, and a
legal (hence negative) strategy o on A —o B, let (t,,)nen be a sequence of pairwise compatible
plays of o, and let p := |, cn tn-

Then p € Wi 5 iff (plA € WY implies p|B € Wi ).

Proof. If p is infinite, then p € WX_O 5 iff Wa_.p and the result follows by definition of
Wa—p. If p is finite, then p € o, hence p € W} __ ;. Moreover, p has even-length since it is
a negative alternating P-play, hence the lengths of p[A and p[B have the same parity, and
plA € WX implies p[B € Wg since A and B are simple games of the same polarity. <
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» Definition 5.2. Given graph games with winning A and B, write c IF A — B if o is a
winning legal (hence negative) P-strategy on A —o B.

» Proposition 5.3. Assume that A, B and C are graph games with winning which are either
all well-founded or all simple and of the same polarity.
IforA—=Band 7T+ B —=C thentoolF A— C.

Proof. Assume that 7o ¢ is not total. In this case, there is some t € ¢ || 7 and a position
vin A x B x C such that (t — v)[A4,C is a legal O-play in A — C and t[A,C is maximal
in 7 o 0. The last move of ¢t — v is either an O-move in component A — B or an O-
move in component B —o C. In either cases, since o and 7 are total, for some ug we have
(t >v—ug)A,Beoor (t—v—u)lB,C €. In the first case, v — g is a P-move in
component B, hence an O-move in component B —o C', and by totality of 7 there is a move
up — w1 in component B such that (t = v — ug — u1)[B,C € 7. Similarly, the second
case leads to a move uy — w1 in component B such that (t = v — ug — u1)[A4, B € 0. By
induction on n € N we thus obtain a sequence of moves u,, = u,+1 in component B. This
leads to a contradiction in case B is well-founded. Otherwise, let

t, = (t—=v—ou—ou— ... > uy)

Note that ¢,,[A, B and t,[B, C are plays for all n € N and ¢,,[A, B € o (resp. t,|B,C € 7)
for infinitely many n € N. Consider the infinite sequence of positions p := |J,,cn tn- Note
that p[B is infinite, so that p[A, B and p|B, C are also infinite. Since o and 7 are winning
and

plA,B=|Jt.JA,B and  p[B,C=|]Jt.[B,C

neN neN

it follows that p[A, B € Wa_op and p|B,C € Wp_,c. We therefore have
plA = (t = ug)[A € W} - plC = (t —= up)|C € WS

On the other hand, plA,C = (t = up)[A, C is a finite O-play in A — C directly extending
t[A, C, and its last move is either a P-move in component A or an O-move in component C.
Since t[A, C has even length, the projections t[A and ¢[C have length of the same parity.
Hence t]A € WX iff t|C € Wg since A and B are simple games of the same polarity. Now, if
the last move of (¢t — ug)[A, C is a P-move in component A, then (¢t — ug)[A € WJ. Since
A is a simple game, by alternation we get t[A ¢ W1, hence t]C = (t — ug)[C ¢ Wéf, a
contradiction. Hence the last move of (¢ — ug)[A, C must be an O-move in component C),
hence (t — ug)[C ¢ W{. But by alternation again we have t[C' € W[, hence t[A = (t —
ug)[A € WX, a contradiction again.

Let now (s, )nen be an infinite sequence of pairwise compatible plays of 7o o such that
7 := U, en Sn is infinite. Note that we are in the case of A, B and C' simple games of the
same polarity. Then there is a sequence (t,)nen € o || 7 such that ¢,[A,C = s,, and the
projections of t, on A — B and B —o C are resp. plays of ¢ and 7. By Zipping (Lem 3.2),
t; is compatible with t; for all 4,5 € N. Consider the sequence p := J,cntn- Note that
plA,C = m. Since p[A, B = J,,cn tn|A, B and since o is winning we have p[A, B € W:x:aa
Similarly, pIB,C € WE_OC since 7 is winning. It then follows from Lem 5.1 that

plA=7lAeWL = plBeEWE = p|C=nx|CeW,
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» Proposition 5.4. Given a simple graph game A, we have id IF A — A.

Proof. Totality directly follows from the definition of id (see Prop. 4.11).
Consider now a sequence (t,)nen of pairwise compatible plays of id such that p :=
Unen tn is infinite. Write A — A as A — A®). For all n € N, by Prop. 4.11 we have

(p(0) = ... = p(2n) A | p(0) = ... = p(2n)]AP) e HS(id)
hence
p(0) = ... = p(2n)[AD) = p(0) = ... = p(2n)]AP

It follows that p]AM) are both infinite p] A and moreover that

plAM = prA®
hence
pl AW e Wi, — plA® e wt,

5.1.4 The Category SGG"Y of Simple Graph Games with Winning.

Objects of SGG"Y are simple graph games with winning.
Morphisms in SGGW [A, B], with A and B of the same polarity are winning P-strategies
ocl-A— B.

5.2 Subgames

Consider a graph game with winning A = (V, E, *, A, L, W), and consider a set of legal plays
Lo C L. The graph game with winning Ay = (V, E, %, \, Lo, W) is a P-imposed subgame of
A if for all P-play s = * —* u € L and all O-move u — v such that s — v is legal in A, we
have s — v € Lg.

O-imposed subgames are defined similarly. The main point of these notions is the fol-
lowing;:

» Lemma 5.5. If Ay is a P-imposed subgame of A and o be a winning P-strategy on Ay,
then

(i) o is total on A,
(i) o is winning on A.

Proof. (i) Consider a play s = * —* u € ¢ and an O-move u — v such that s — v is legal
in A. Since s — v is also legal in Ay and since o is total on Ag, there is a P-move

v — w such that s - v — w € 0.
(ii) Since the winning condition of A is the same as that of Aj. <

» Example 5.6. Synchronized arrow games
G(A, M) —® G(B,N)
are P-imposed subgames of

G(A, M) — G(B,N)
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5.3 Reduction Games

In this Section we consider games equipped with a symmetric notion of winning. These
games are meant to be used for reductions (see Sect. 6.3).

5.3.1 Arrow Type with Symmetric Winning.

Given games with winning A and B, the game with symmetric winning A —o., B is the
graph game A — B equipped with the winning condition Wa_._p C (V4 x Vp)¥ defined
as follows. Given an infinite sequence p € (V4 x Vp)¥, let

neN

Let now Wa_._ g be the set of p € V{ 5 such that
plAeWr = pIBeW}

Note that W4 C Wa_oB.
We are now going to show that simple reduction games form a category. The method is
the same as in Sect. 5.1 above.

» Lemma 5.7. Given simple graph games with symmetric winning A and B of the same
polarity, and a legal (hence negative) strateqgy o on A —o B, let (tn)nen be a sequence of
pairwise compatible plays of o, and let p := |, cn tn-

Then p € Wi_,_ iff ()lA € W iff pIB € Wi).

The proof is a direct and straightforward adaptation of Lem. 5.1.

Proof. If p is infinite, then p € W} _, iff W4_._ p and the result follows by definition of
Wa—.. B. If p is finite, then p € o, hence p € WX_OQB. Moreover, p has even-length since
it is a negative alternating P-play, hence the lengths of p[A and p[B have the same parity,
and plA € Wj{ iff pIB € WE since A and B are simple games of the same polarity. <

» Definition 5.8. Given graph games with winning A and B, write 0 IF A —o., Bif o is a
winning legal (hence negative) P-strategy on A —o, B.

» Proposition 5.9. Assume that A, B and C' are simple graph games with symmetric winning
which are of the same polarity.
IfolFA—o, Band71lF B—o. C thenToolk A—. C.

Proof. Since Wi p € Wa_.p, the totality of Too can be proved exactly as for Prop. 5.3.

As for the winning condition, we again reason as in the proof of Prop. 5.3. Consider an
infinite sequence (sy)nen of pairwise compatible plays of 7o o such that 7 := J, ¢y
infinite. Similarly as in Prop. 5.3, we obtain an infinite sequence p such that p[A,C = =«
and plA, B € WX%@B and p[B,C € WEH:@G It then follows from Lem 5.7 that

S, 1S

plA=7lAeWL <<= p|BeEWS <+ plC=nx]CeW/

» Proposition 5.10. Given a simple graph game A, we have id I A <— A.

Proof. The proof of Prop. 5.4 actually gives the result. |
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5.3.2 The Category GR of Reduction Games.

Objects of GR are simple graph games with winning.
Morphisms in GR[A, B], with A and B of the same polarity are winning P-strategies o on
the symmetric arrow: o IF A —~ B.

33
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6 Categories of Substituted Acceptance Games

We define the categories SAGy;, SAGyY and SAGY. for each alphabet . The categor-
ies SAGy and SAG;V/ ® will have as objects substituted acceptances games X - G(A, M).
Morphisms in SAGy, will be synchronous strategies o : G(A, M) — G(B, M), while morph-
isms in SAG%v will synchronous strategies which are moreover total and winning in the
sense of Sect. 5.

As for SAG%, we consider an notion of symmetric winning, which leads to a notion of
synchronous reduction, while winning in SAG‘{;V correspond to a form of implication.

6.1 The Categories SAGy
6.1.1 Traces.
Given I' A and M € Tree[l', ], define

tr (A M) — (D+YD)*
follows:
tr(e : xgan) = €
tr(s = (p,a,7v)) = tr(s)-a
tr(s = (p-d,q)) = tr(s)-d

The image of tr is the set
Try = (-D)'+((X-D)"-%

Write (—)p and (—)yx for the projections

Try, — D* and Try, — ¥
and let
trp = (—)potr and try = (—)gotr

» Lemma 6.1.

trp(xgam) =" (0,0,7)) =p  and  trp(xganmy =" (p,@) =p

Proof. We show by induction on the length of s € px (A, M) that

[s =*gan) =" (p,a,7) = trp(s) =p]
and [s =*gann =" (p.g) = trp(s) =p]

In the base case, we have

s = e:ixguam = ¢£:(5¢")
and we are done since

trp(s) = ep = ¢

For the induction step we consider two cases:
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If
s = x="(pg) = (pa,7)
then
trp(s) = trp(x =" (p,q)) -trp(a) = trp(x =7 (p,q))

and we are done since by induction hypothesis

trp(x =" (p,q)) = p
Otherwise
s = x="(pa,y) = (pd,q)

and we have
trp(s) = trp(x =7 (p,a,7))-d
and we are done since by induction hypothesis

trp(x =* (p,a,y)) = p

6.1.2 Synchronous Strategies.
Given £+ G(A, M) and ¥ - G(B,N), and a strategy

0:G(A M) —G(B,N)
consider the following span:
o
/ \
pn(A, M) on(B,N)

where pxn(A, M) = p(X F G(A,M)) and, writting A for G(A, M), the arrow o0 —
px(A, M) is

0 e o (G(A, M) —o G(B, N)) 5 os(A, M)

and similarly for px (B, N) and 0 — px(B, N).
We say that o is synchronous, and write

YFo:G(A M) —®G(B,N) (or simply o:G(A, M) —® G(B,N))

when the following diagram commutes:
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6.1.3 Relations in Slice Categories Set/.].

Given a set J, define the category Rel(Set/.J) as follows:

Objects are indexed sets A % J, written simply A when ¢ is understood from the context.

Morphisms from A 23 J to B 28 J are given by relations R : A —— B such that the
following commutes:

o B (®)
A/ \B
D

Write
R (Aga) —,5 (B,gn)
when R € Rel(Set/J)[(A,g4), (B, g5)]
For the identity, note that
la = {(a,a)|a€e A} € Rel(Set/J)[(4,9),(A, g)]
since g(a) = g(a).
For composition, note that given R € Rel(Set/J)[A, B] and P € Rel(Set/J)[B,C] with

C %S J, we have P o R € Rel(Set/J)[A, C] since given (a,c) € P o R, by definition there is
b € B such that (a,b) € R and (b,c) € P, hence ga(a) = gp(b) = gc(c).

» Remark. We will see below that the relational structure in Set/Try, issued from SAGy
via HS(—) satisfies the stronger property:

PoR—>P-"25(C
lk
J

——J

™
1

h
s

T2
"

<~

|
|

~=<—

h
—_—
g

6.1.4 Composition and ldentities by Pullback in Set.

Substituted acceptance games are simple positive games, in the sense of Sect. 4. We now
recall some properties of the category SGG of simple games discussed.
First, Prop. 4.11 tells us that identities satisfy the following pullback square:

idg(A,M_)I*> o (A, M) 9)
| k
px(A, M) —— px(A, M)

Moreover, we know from Prop. 4.13 (see App. 4.4) that composition in SGG is given by
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the following pullback square in Set:
foo T px(C, P) (10)

where o0 — o map s € 0 oo to (s[(G(A, M)),s") where s’ is by Lem 4.12 unique in
ps(B, N) such that (s[(G(A, M)),s’) € HS(0) and the map 6 oo — 6, is defined similarly.

6.1.5 The Categories SAGy:

Objects are games ¥ F G(A, M)
Morphisms from G(A, M) to G(B, N) are synchronous strategies o : G(A, M) —® G(B, N).

We now discuss identities and composition in SAGy.
Write id( 4, ar) for idga,ar : G(A, M) —o G(A, M). Tt immediately follows from (9) that

ida, vy — px(A, M) (11)
i ltr
pE(A, M) TI‘E

tr

» Remark. We actually here only need the commutation of the diagram, not the fact that
it is a pullback. Hence the assumption that G(A, M) is a simple game is not necessary.

Consider now X o : G(A,M) -® G(B,N) and X+ 60 : G(B,N) —® G(C, P), so that

o px (B, N) and 0 px(C, P)
R
pE(A7 M) ir TI‘E pZ(B7N) ?Trz

It follows from (10) that

foo T p=(C, P)
)
0 ———>px(B,N) —"—>Try
| |

ps(A, M) Try =——="Try

tr

and by definition of § o 0 — ¢ and 0 o 0 — 6 we deduce that
oo :G(A M) —®G(C,P)

We thus have shown:

» Proposition 6.2. (i) ¥ Fid g ) G(A, M) —® G(B,N).
(it) If¥Fo:G(A M) —®GB,N) and X+ 0:G(B,N) —® G(C, P) then

Yrf0ooc:GAM)-®G(C,P)
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6.1.6 The HS Functor.

By definition of strategies in SAGy, given
Sto:G(A M) -® G(B,N)

we have
HS(0) € pxs(A, M) X1y px(C, N)

It follows that the HS functor from SGG to Rel (see Sect. 4.3) restricts to a functor from
SAGsy to Rel(Set/Try) (see Sect. 10.1):

» Proposition 6.3. HS restricts to a functor from SAGys to Rel(Set/Try).

6.2 Concrete Description of the Synchronous Arenas
We now concretely define the synchronous game arenas
YHGA,M)-® G(B,N)
as subgames of
G(A,M) — G(B,N)
so that strategies on
SFGA M) —®G(B,N)
are exactly the synchronous strategies on

G(A, M) — G(B,N)

6.2.1 The Synchronous Arrow _ —®

Consider

SkGAM) and  SFG(B,N)

where
T'oFA I's-B YXEM:T»y YXEN:I'p
Write
A = GAM) = (Va,Ea, x4, 4, Wa)

and B = G(B,N) = (Vg,EB,*B, g, Wg)
where

Vi := D* x (Ap + Ao) x4 = (g,q%)

Vg := D* x (Bp + Bo) *p = (£,qp)

AP = QA Ao = EX’P(QAXD)

BP = QB Bo = ZXP(QB XD)
The game

YFG(A M) —®G(B,N)
is the subgame of A — B

GA M) ®G(B,N) = (Vawon,E,%a-oB, Aa—B,Wa—oB)
where £ C E4_,p is defined in Fig. 2.
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GAM) —& G(B,N)
((p,qa) : (p,q8))

0 1

((p,a,va) (p.gg)) | if va € 6.4(qa, M(p)(a))
P 4

((p7 aa’YA) ’ (paav'yB)) if B € 53((]3,N(p)((l))
0 1

(pra,yva)  ,  (pd,qy)) | if (g5,d) € 8
P {

(pd,dy) .,  (pdyqp) | if (¢4,d) €ya

Figure 2 Moves of G(A, M) —® G(B,N)

6.2.2 Characterization of _ —®

We are now going to see that in Set,

(=)1G(B,N)

0% (G(A, M) —®Q(Z§N)) px(B,N)
(=) TQ(A,M)i \Ltr
pE(Av M) TI‘E

tr
First, an easy induction on t € p%(G(A, M) —® G(B, N)) shows that
» Proposition 6.4.

(=)1G(B,N)

P (G(A, M) —® G(B, N)) px(B, N)

(—)IQ(AyM)l ltr

s (A, M) Trs

tr

It follows that

HS : ps(G(AM)-®G(B,N)) — ps(AM)xps(B,N)
restricts to

HS : pL(G(AM) -®G(B,N)) —  ps(A M) Xy px(B,N)
» Lemma 6.5. The map

HS @ @B(G(A M) -®G(B,N)) — ps(A M) Xy ps(B,N)
is surjective.

Proof. Note that (s,t) € ps(A, M) X1vy, ps(B, N) implies |s| = [t].

By induction on |s| = |t| for (s,t) € ps(A, M) X px(B, N) with tr(s) = tr(t), we show
that there is w € P& (G(A, M) —® G(B, N)) such that HS(w) = (s, ).

In the base case |s| = |t| = 0, and we take w := ¢ : *. In the inductive step, by definition
of tr there are two cases:
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Assume s = s — (p,a,y4) and t =t — (p',d’,yB).
Since tr(s) = tr(¢), we have a = o’ and tr(s’) = tr(¢'). By Lem 6.1, we get p = p/.
Moreover, s’ and ¢’ are of the form:

s = x="(pqa) and ¥ = =" (pgs)
Let w’ be obtained by induction hypothesis applied to s’ and ¢'. Then we are done by
taking

w o= w = ((paya)®as) — (p.a,74), @, d,78))
Otherwise s = s’ — (p.d,qq) and t =t' — (p'.d’, q).
Since tr(s) = tr(t), we have p =p’, d = d’ and tr(s’) = tr(t'). Moreover, s’ and t’ are of
the form:

s = x="(pava) and t' = x="(p,a,B)

Let w’ be obtained by induction hypothesis applied to s’ and ¢'. Then we are done by
taking

w o= w = ((paav’y.A)a (pdv QB)) - ((pd7 Q.A)v(p'da qB))
<

» Lemma 6.6. The map

HS : pn(G(A M) ®G(B,N)) —  pn(A M) xps(B,N)
s injective.
Proof. We have to show that:

Vs,t € pn(G(A, M) =® G(B,N)), HS(s) =HS(t) = s=t
Note that if HS(s) = HS(t), then |s| = |[t|. We reason by induction on |s| = [].

In the base case, |s| = [t| = 0, hence s =t = ¢ : * and we are done.

Consider now the inductive step. First, since |s| = |t|, and since _ —® __is negative,
either both s and ¢ end with an O-move or they both end with a P-move. Moreover, by
definition of _ —® _, |s| = |t| implies that s and ¢ end by a move in the same component,

and hence by the same move since HS(s) = HS(¢). But then, writing
s = §—>m and t = t—>m
we must have HS(s") = HS(t'), hence s’ = t' by induction hypothesis and we are done. <

» Corollary 6.7 (Prop. 3.3). In Set,

(=)1G(B,N)

_l
(—)FQ(AM)i ltr

[@)>) (.A, M) TI'E

tr
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Proof. Commutation is given by Prop. 6.4. Moreover, thanks to Lemmas 6.6 and 6.5, HS
is a bijection in Set:

HS : @R(G(AM)®G(B,N)) — px(A M) Xny ps(B,N)

Since moreover by definition
P5(G(A, M) ~® G(B,N)) € p"(G(A M) —G(B,N))
it follows that we get:
» Corollary 6.8. Strategies on ¥ F G(A, M) —® G(B,N) are exactly the synchronous
strategies on G(A, M) — G(B, N).
6.2.3 Traces on the Synchronous Arrow.

Thanks to Prop. 6.4, that is commutation of

OB(G(A, M) —® G(B,N)) — 9ETD (B, N)

(—)rQ(AyM)l ltr

(25> (Av M) TI‘E

tr

we extend traces of plays on acceptance games (given by tr : pxn (A, M) — Try) to traces of
P-plays on synchronous arrow games.

» Definition 6.9. Define
tr@ : pll?‘(g(/h M) —® g(B7N)) — TrF

as any of two following maps, which coincide by Prop. 6.4:

PGAM) - GB,N)) T A M) T Ty
GB(G(AM) @ GB,N)) "TEY ooBN) T Ty

» Remark. Note that tr™® can only be defined on P-plays of G(A, M) —® G(B, N) since the
following diagram does not commute:

(=)1G(B,N)

ps(G(A, M) —® G(B,N))

(_)IQ(AM)i ltr

(2> (A7 M) T‘I‘E

tr

6.3 The Categories SAG)Y and SAG}
6.3.1 W.inning and Total Synchronous Strategies.

Consider

Yto:G(A M) —®G(B,N)
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Write
YFolFG(A M) -® G(B,N) (or simply o IFG(A, M) —® G(B,N))
if o is total and winning in the game
GAM) — G(B,N)
(.e. in sense of Sect.5.1), and write
Yol G(A M) @® G(B,N) (or simply o - G(A, M) &® G(B,N))
if o is total and winning in the game
G(A M) —o G(B,N)

(i.e. in sense of Sect.5.3).

6.3.2 The Categories SAGY':

Objects are games ¥ F G(A, M)
Morphisms from G(A, M) to G(B, N) are synchronous total and winning strategies o I-
G(A, M) —® G(B, N).

Since id(4,r) is total and winning (Prop. 5.4), and since winning total strategies are pre-
served by composition (Prop. 5.3), we obtain:

» Corollary 6.10. (i) id 4 ) IF G(A, M) —® G(B, N)
(ii) If o IF G(A, M) —® G(B,N) and 0 IF G(B,N) —® G(C, P) then

oo lFG(A M) —®G(C,P)

6.3.3 The Categories SAGy:

Objects are games X F G(A, M)
Morphisms from G(A, M) to G(B, N) are synchronous total and winning strategies o I+
G(A, M) ®® G(B,N).

Since id(4,ar) is total and winning for ~ ®-® _ (Prop. 5.10), and since _ ®® _-winning
total strategies are preserved by composition (Prop. 5.9), we obtain:

» Corollary 6.11. (i) id(a ) IF G(A, M) @® G(B,N)
(ii) If o IF G(A, M) @® G(B,N) and 0 IF G(B,N) ®® G(C, P) then

fool-G(A M)&® G(C,P)

6.4 Relational Lifting

We now describe how synchronuous relational isomorphisms (i.e. isos of Rel(Set/.J)) can
be lifted to strategies.



Colin Riba

» Proposition 6.12 (Prop 3.4). Consider ¥+ G(A, M) and ¥+ G(B,N).
Assume that, in Rel(Set/Try) we have an isomorphism

R : pz(A, M) —|—>/T1,Z pz([i N)
Then there is a (unique, total) isomorphism
o Q(A M) —SAGs, Q(B, N)

such that HS(o) = R.
Here, ps,(A,M) and px(B,N) are understood, as objects of Rel(Set/Try), as resp.
os (A, M) 5 Try, and px (B, N) 5 Ty,

In general we can not ask ¢ to be winning, and in particular to be a morphism of SAG;V/ R

Proof. First, note that since R is synchronous, for all (s,t) € R we have tr(s) = tr(¢), which
implies that s and ¢ have the same length, and finish by the same kind of moves.
By induction on |s| = [¢] for (s,t) € R we define a strategy o such that (s,t) € HS(o).
In the base case, we have

s = (g4q¢4) and t = (e,qp)

and we put

((e:44) s (e:q5)) €0
For the induction step, there are two cases:

P P
Case of s = x —* (p7 QA) — (pv a7'YA) and t = x >~ (plv qB) - (plva/97B)'

Since tr(s) = tr(t) we have a = a’ and it moreover follows from Lem. 6.1 that p = p’. By
induction hypothesis there is u’ € o such that HS(u') = (s,t). Hence we have

/

u' = x—="((p,ga), (p,as))

We can then extend ' to

u o= =" ((0,q4)  (1,48) 2 (prava) s (0,08) 2 (pra,va) , (0,a,78))

and we indeed have HS(u) = (s, ).
0 . )
Case of s = * —* (p7a7 'YA) - (p . da qA) and t = x — (p’aa/a'YB) - (pl : dl’ qB)'

Since tr(s) = tr(t) we have a = ¢/ and d = d’ and it moreover follows from Lem. 6.1 that
p = p’. By induction hypothesis there is v’ € o such that HS(v') = (s',t). Hence we
have

/

v = x="((pa,v4), (p,a,7B))

We can then extend v’ to

u o= %= ((0,a,74)  (0,a,78)) S ((Dyasva) s (0-dyas)) = ((p-d,qa) , (p-d,g5))

and we indeed have HS(u) = (s, t).

43
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We now have to check that o is indeed a strategy. P-prefix-closure follows from the
definition. P-determinism follows from the fact that R is an iso. Consider P-plays of o:

w k=" ((p,ga) s (0,8)) > (pa,74) s (Pras)) = ((9,a,74) 5 (P, a,78))

/!

u k=" (0,q4) s (Pras)) = (9,a,74)  (9ras) 2 ((,a,74) (P as7E))

Then by construction we have HS(u) = HS(u') € R. But HS(u) = (s,t) and HS(u') = (s, )
with s = ¢/, hence t = ¢’ since R is an iso. It follows that v = «' by Lem. ii.(ii).
For plays:

w k= ((p,a,74) 5 (0,0,78) > (a,v4) , (p-dyas)) > (- dyga) s (p-d,gs))
9 ®

u ok =t ((p7aa7A) ) (pvav'YB)) ((p;a,'Y_A) 3 (p d7 qB)) ((pdvq.A) ) (p d7 q;?))

Similarly as above, we have HS(u) = (s,t) € R and HS(v') = (¢/,¢') € R with t = ¢’ hence
s = s’ since R is an iso, from which it follows that u = u’.
We now show that o is total. Let u € o of the form

u ok =" ((paQA) ) (paQB))
and consider
w3 ((pa,va) s (pras))

By construction, we have HS(u) = (s,t) € R. Since t — (p,a,v4) € px(A, M) and since R
is a synchronous iso, for some vz € d5(gn, N(p)(a)) we have

(s = (p,a,y4) , t = (p,a,78)) € R=HS(o)
and follows that
u S (pa74) , (0.as) > ((P.a,74)  (pays) €0
Similarly, if
wix =" ((paa) s () and w S (para) s (p-dyas))
then there is some g4 such that (g4,d) € y4 and
(s> (p-diqa), t—(p-dygs)) € R=HS(o)
hence
u S ((p,a,74) (0 dias)) > (p-dida) , (p-dras)) €0

Finally, we chek that ¢ is an isomorphism. First, since R is a morphism, reasoning as
above we obtain from R™! a strategy

YFo ' :G(B,N)—® G(A M)
such that HS(o~!) = R~!. Now, by functoriality of HS (Prop. 4.10), it follows that

HS(coo™!) = 1 and HS(c™'oo) =

o(AM) B Trs o(B,N) 3 Trs

and Prop. 4.11 together with (11) give

go0o = 1Q(A,M) and g oo = lg(B,N)
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7 Change-of-Base

In this Section, we discuss the basic machinery behind to substitution functors to be define
in Sect. 8.

The main idea is that substitutions functors on strategies will be obtained from the effect
of substitution on plays, which, thanks to the synchronuous setting, can be expressed in a
way very similar to usual change-of-base in slice categories.

Our notion of change-of-base on plays is obtained by pullbacks along maps on traces
extending tree morphisms:

» Definition 7.1 (Trace Lifting). Consider a tree morphism L € Tree[3,T'] = Tree[X — T,
and define:

Tr(L) : Try — Tip
Tr(L)(e) = ¢
Tr(L)(w-a) = Tr(L)(w)- L{wp)(a)
Tr(L)(w-d) = Tr(L)(w)-d

On the other hand, write L*® for the change-of-base functor Set/Trr — Set/Try, induced
by Tr(L).
Recall that L® is given by pullbacks. In particular:

L.(pF(Av ]_\{)) - pF(Aa M)

L*® (tr) i itr
Tr(L)

Try ———Trr

Our notion of change-of-base will satisfy a similar property. In particuler we will get
(Cor. 7.14):

L*(pr(A,M) B Trp)  cgeyms oA, Mo L) 5 Try,
We briefly come back on this point in Sect. 7.4.

7.1 Change-of-Base on Acceptance Games

Consider A - A and M € Tree[l', A], so that T' - G(A, M). Given a morphism L €
Tree[X, I'] as above (so that ¥ F G(A, M o L)), a move

(pa) —» (pay) SEGAMoL) withy € dalg, (Mo L)(p)(a))

can be mapped to a move

(p.q) — (0 L(p)(a),y)  inTFG(A M) with~y € dalg Mp)(Lp)a)
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Similarly, a move
(p,a,”) 9, (p.d,q) in X +FG(A MolL) with (q,d) €y
can be mapped to a move
(rL0)@).7) > (pdg)  nTFGAM) with (q.d) €7
We homomorphically extend this to a map
(L) : ps(AMoL) —  pr(AM)

The map p(L) is formally defined as:

p(L)(e) = ¢
p(L)(s = (p,q) = p(L)(s) = (p,q)
o(L)(s — (p,a,7)) = p(L)(s) = (p,L(p)(a),7)

» Remark. For the correctness of the last case, remember that in ¥ F G(A, M o L) and
'+ G(A, M), P-moves are respectively of the form:

(pg) o (pay) i 5y €dalg (Mo L)(p)(a))
(pa) = (p,b,7) iff v € dalg, M(p)(b))

where (M o L)(p)(a) = M(p)(L(p)(a))-

In this Section, we elaborate on the connection between the map
(L) : ps(AMoL) — pr(AM)

and the usual change-of-base in Set™:
L* : Set/Trr — Set/Try,

defined by pullbacks, which in particular satisfies:

L.(pF(A7 M)) - pF(Aa M)

_
L*® (tr) i itr
Tr(L)

Try ———Trr

A crucial property, given by Prop. 7.7 is the following pullback:

(L)
on(A Mo L) . pr (A, M)
trl itr
Tr(L)
Trs Trr

This leads in particluar to the lifting property of Lem. 7.12, which is crucial for the func-
toriality of substitution (Prop. 8.4).
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7.2 Change-of-Base on the Synchronous Arrow

47

We now extend the map p(L) on Acceptance Games to a map p(L)_g on Synchronous

Arrow Games.
Given L € Tree[X, T, the map

pl)w = (@A MoL)®G(B,NolL)) —

er(G(A, M) —® G(B,N))

is defined inductivelly as follows:
o(L)slcie) = e
p(L)-e(s = ((p,a,74), (p,a8))) =
p(L)-w(s) = ((p, L(p)(a),74), (P, 45))

(L) w(s = ((p,a,74), (p,a,78))) =
o(L)-s(s) = ((p, L(p)(a),7.4), (p, L(p)(a),¥8))

(L) w(s = ((p,a,v4), (p.d,q5))) =
o(L) w(s) = ((p, L(p)(a),v4), (p.d, q5))

o(L)-a(s = ((p-d,qa), (p-d,q8))) = o(L)-w(s) = ((p.d,q4),(p.d,q5))

» Lemma 7.2.

o(L)-e

ps(G(A, Mo L) —® G(B,No L))

-

ps(A,MoL) X ps(B,NolL)

or(G(A, M) = G(B,N))

s

(L)xp(L)
el or(A, M) x px(B, N)

Proof. Let s € pxn(G(A, M o L) —=® G(B, N o L)) be the sequence:

GAMoL) —® G(B,NolL) where
((p,qa) ; (p,q5))

0 {

((p,a,v.4) ; (p,q5)) YA € 64(qa, (M o L)(p)(a))
P i

((psa,v.4) ; (p,a,v8)) V8 € d5(q5, (N o L)(p)(a))
0 {

((p,a,va) ; (p-d, q5)) (q5,d) € 78
P {

((p-d, qy) ; (p-d, q5)) (¢4 d) €74

We have HS(s) is the pair

((p,qa) = (p,a,v4) = (p-d,qy), (p,q8) = (p,a,v8) = (p.d, q5))

where

Ya € 6a(qa, (MoL)(p)(a)) and ~s € dp(gs, (NoL)(p)(a)) and (¢)y,d) € y4 and

(ng, d) €8
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It follows that (p(L) x (L)) o HS(s) is

((p,q4) = (0, L(p)(a),va) = (p-d;d4), (p,a8) — (p, L(p)(a),v8) — (p-d,q5))
where

Ya € 04(qa, M(p)(L(p)(a))) and ~s € d5(gs, N(p)(L(p)(a))) and (¢4,d) €va and (gz,d) € 5

On the other hand, p(L)_g(s) is

G(A, M) —® G(B,N) where
((p’ QA) y (pa QB))
0 1
((p, L(p)(a),ya) (p,a8)) YA € da(ga, M(p)(L(p)(a)))
P 1
((p, L(p)(a);va) ,  (p,L(p)(a),v8)) | 75 € dsles, N(p)(L(p)(a)))
0 1
((p; L(p)(a),yva) (p-d, q5)) (25,d) € 8
P {
((p-d,q'y) : (p-d, q5)) (@4, d) € va

It follows that we indeed have

HSop(L)-s(s) = (p(L)x p(L))oHS(s)

and same holds for prefixes of s. |

7.3 Universal Properties of Change-of-Base on Plays
7.3.1 Acceptance Games.
» Lemma 7.3.

L
o5 (A, Mo L) o(L)

trp trp

D*

Proof. By induction on s € px (A, MoL). In the base case s = ¢ : *, we have p(L)(s) = s =¢
and we are done.
For the induction step, we distinguish two cases:
If s =5 — (p,a,v), then p(L)(s) = p(L)(s") = (p, L(p)(a),~). By induction hypothesis
we have

trp(s’) = trp(p(L)(s")
and we are done since
trp(s) = trp(s) and  trp(p(L)(s)) = trp(p(L)(s))

Otherwise, s = s’ — (p.d,q). Then p(L)(s) = p(L)(s') — (p.d,q). By induction
hypothesis we have

trp(s’) = trp(p(L)(s)))
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and we are done since

trp(s) = trp(s’)-d and  trp(p(L)(s)) = trp(p(L)(s))-d

» Lemma 7.4.

Trs: Tr(L)

<k (o

D*

Proof. By induction on ¢ € Try.
In the base case, we have t = ¢ and we are done since

E@p = ¢ = T(L)(e)p

For the induction step, there are two cases.
Consider first the case of ¢ = ¢’ - a for some a € 3. In this case we are done by induction
hypothesis since

(tap = ) = (TOE)p = (GELE L)) )p = (T(L)(E-a)p

The other case is when t = ¢/ - d with d € D. In this case, we are also done by induction
hypothesis since:

¢ -dp = Wp-d = (RL)E)p-d = (L))o

» Lemma 7.5.

o(L)
ps(A, Mo L) — pr(A, M)
trl ltr
Tr(L)
Trsy Trp

Proof. We reason by induction on s € px (A, Mo L).
In the base case, s = € : x and we are done since

Te(L)(tr(e)) = e = tr(p(L)(e))

For the induction step, there are two cases:
If s=5 — (p,a,v) the we have

Te(L)(tr(s) = Te(L)(tx(s)) - Litrn(s))(a)
(recall that trp(s) = tr(s)p) and
tr(p(L)(s)) = tr(p(L)(s") - L(p)(a)
Now we are done since by induction hypothsis
Tr(L)(tr(s") = tr(p(L)(s))

and by Lem. 6.1 we have

trp(s) =p
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Otherwise s = s’ — (p.d, q) and we have

Tr(L)(tr(s)) = Tr(L)(tr(s))-d
and
tr(p(L)(s)) = tr(p(L)(s)) d
and we are done by induction hypothesis. |

» Lemma 7.6. The following map is a bijection:
(tr,o(L)) : pu(AMoL) — Trs Xmy pr(A, M)

where Trs X1y pr(A, M) is
{(w,s) € Try x pr(A, M) | Tr(L)(w) =tr(s)} < Try x pr(A, M)

» Remark (On the injectivity of (tr,(L))). Note that to get the injectivity of
(tr,p(L)) : pn(A,MoL) — Trgx pr(A M)

the synchronization by traces (i.e. given by the first component tr of the pair (tr, p(L)))
is required, since the tree map L € Tree[X, '] (hence the map p(L)) is not required to be
injective.

Proof. We first show the injectivity of
(tr,p(L)) : ps(A,MoL) — Tryxpr(A,M)

that is, for all s,t € ps(A, M o L),

(tr, o(L)(s) = (tr,p(L)(t) =  s=t
First note that since p(L) is length-preserving, we can w.l.o.g. assume |s| = [t|. We reason
by induction on n = |s| = |t|. If n =0, then s =t = ¢ and we are done.

For the inductive step, note that since games in SAGy, and SAGr are positive and
alternating, the plays s and ¢ must end with the same kind of move. There are two cases:

Assume s =" — (p,a,y) and t =t' — (p/,d',7').

Since p(L)(s) = p(L)(t), we have

P(L)(s") = p(L)(t') and p=p" and y=1

Moreover, since tr(s) = tr(t), we get tr(s’) = tr(t’) and a = &’ and we conclude by
induction hypothesis.

Otherwise s = s’ — (p,q) and t =t — (p/,¢).

Since p(L)(s) = p(L)(t), we have

p(L)(s") = p(L)(') and p=p' and ¢=¢

Moreover, since tr(s) = tr(t), we get tr(s") = tr(t') and we conclude by induction hypo-
thesis.

We now show the surjectivity of
(tr,p(L)) : ps(A,MoL) — Try Xm. pr(A, M) C Try x pr(A, M)

By induction on s € pr(A, M) we show that
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For all w € Try such that Tr(L)(w) = tr(s), there is a play t € px(A, M o L) such
that tr(t) = w, p(L)(t) = s and moreover, the projections of s and t on Q% and on
P(Qa x D)* coincide.

In the base case s = ¢ : x, we must have w = ¢ and we take t = ¢. For the induction
step, we consider two cases

Assume s = s — (p,b,7).

Given w € Try such that Tr(L)(w) = tr(s), we must have w = w' - ¢ and Tr(L)(w') =

tr(s") and L(w)p)(a) = b.

Let ¢’ be obtained by applying the induction hypothesis on s’ and w’, so that tr(¢') = s’

and p(L)(t') = s’ and s” and t' have the same projection on Q% and on P(Q4 x D)*.

Take

t = t' = (pa,7)

Note that s and ¢ have the same projection on Q% and P(Q4 x D)*. It remains to check
that ¢ is legal play on G(A, M o L). Let g be the last state of ¢ and s’. First, note
that v € §(¢, M (p)(b)) by assumption. Since trp(s) = p by Lem. 6.1, and w), = wp =
Tr(L)(w)p by Lem. 7.4, it follows from Tr(L)(w) = tr(s) that p = w},. We thus get
v € 6(g, (M o L)(p)(a)).

Otherwise, s = ' — (p.d, q).

Given w € Try, such that Tr(L)(w) = tr(s), we must have w = w’ - d. and Tr(L)(w’) =
tr(s’).

Let ¢’ be obtained by applying the induction hypothesis on s" and w’, so that tr(¢') = s’
and p(L)(t') = s’ and s’ and ¢’ have the same projection on Q% and on P(Q4 x D)*.
Take

t = t —=(pdyq)

which is legal since ¢’ and s’ have the same projection on P(Q4 x D)*. Moreover, s and
t have the same projection on Q% and on P(Q4 x D)*. <

» Proposition 7.7.

(L)
pn(A Mo L) —= pr(A, M)
trl ltr
Tr(L)
T‘I‘Z rI‘rl"

Proof. Commutation of the diagram is ensured by Lem. 7.5 and Lem. 7.6 gives the iso-
morphism in Set:

pn(A,MoL) =~ Trs Xmy pr(A, M)
<

» Remark (On the Definition of L* and Try). It is not clear wether it is interesting to extend
Tr(L) : Trs, — Trr to

L* : D*xY¥* — D"xTI*
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so that the following is a pullback:

©(L)

ps(A,M Oﬁ) or(A, M)
trl itr
D* x O L D* x I'*

7.3.2 Synchronous Arrow.

We are now going to see that the pullback property of Prop. 7.7 extends to the synchronous

arrow, in the sense that in Set:

P(G(A Mo L) 8 (BN o L) "B GR(G(A, M) — G(B, N))

tr® l ltr@
Tr(L)

TI“Z TI‘F

where the map

GR(GAM) -® G(B,N)) "5 Ty

is defined in Def. 6.9.

This property (actually Lem. 7.9, see (13) below) will lead to Lem. 7.12 and Cor. 7.13

which are crucial for the functoriality of substitution (Prop. 8.4).

We will use the pullback lemma (see e.g. [12, Exercise 1.5.5, p. 30]) via the two following

properties:

OB (G(A, M o L) —® G(B, N o L)) —“ 22 . (P(G(A, M) —® G(B, N))

Hsl B iHs

(L)xp(L)
o5 (A, M o L) X1yy px(B, N o L) "2 5 o (A, M) Xy, o1 (B, N)

and
(L)xp(L)
on(A Mo L) X1 pu(B.N o L) dlaisls or(A, M) X7y pr (B, N)
tr®l \Ltr@)
Tr(L)
TI'E TrF

Property (12) will be shown in Lem. 7.10. As for (13), first note that
» Lemma 7.8. In Set,

p(L)xp(L)

px(A, Mo L) X @z(BinVOL) or(A, M) x pr(B, N)

trXtr\L itr Xtr
Tr(L)xTr(L)

T\I‘EXT‘TZ T\I‘FXT\I‘F

(12)

(13)
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Proof. First, by Prop. 7.7 we have

(L)
pn(A Mo L) — pr(A, M)
trl ltr
Tr(L)
T‘I‘Z ’I‘rl—‘
and
o(L)

es(B, N o L) ————— pr(B, N)

_l
tri itr
Tr(L)

Try, Trp

Since limits commute (see e.g. [13, Sect. IX.2 & IX.8]) we have

Ax A ——-BxB" whenever A——>B and A ——= B’

- N

CxC ——=DxD C——=D C'——=1D
and we get
L L
on(A Mo L) x ox(B.N o L) A o (A M) x pr(B, N)
trxtrl ltrxtr
Tr(L)xTr(L)
Trsy, X Tryy Trp x Trp
» Lemma 7.9. In Set,
(L)xp(L)
9n(A M o L) xavs g5 (B, N o L) == pr(A, M) v or(B, N)
tr@l itr@
Tr(L)
TI‘Z TI‘F

Proof. We show

©(L)xp(L)
pu(A, Mo L) Xyy, QE(B,JNOL) or (A, M) X1y or(B, N)
trxtrl itrxtr
Tr(L)xTr(L)
’I‘IE X Trs, TI’Z T‘I‘F X Trp TI‘F

and then conclude by definition of the maps

OR(G(AM) = G(B,N)) "5 Trp
and  R(G(A,MoL) ®G(B,NoL)) "5 Try

We first check the commutation of the diagram. Given

(S’t) € pZ(AaMOL) X Tryy pZ(BaNOL)

53



54

Fibrations of Tree Automata

since tr(s) = tr(¢) we have
Tr(L)otr(s) = Tr(L)otr(t)
and by Lem. 7.5 we have
wop(I)(s) = trop(L))
hence
(p(L)(s), p(L)(t)) € pr(A, M) X1, pr(B,N)
For the pullback property, we show that ((tr x tr), p(L) X p(L)) is a bijection from
os(A, M o L) X1y, (B, N o L)
to
(Trs Xmvy, Trs) X1 e (90 (A, M) Xmup or (B, N))
Injectivity follows from the pullback property of Lem. 7.8. As for surjectivity, given
(w,w',s5,t) € (Trs Xmyy, Trs) XTup gy, Ter (910 (A, M) X1 pr(B, N))
by the pullback property of Lem. 7.8 there is some
(u,v) € ps(A, Mo L)X ps(B,NolL)
such that
) =w (o) =w p(L)w)=s p(L)() =t
But w = w' since (w,w’) € Trg X1y Try and it follows that

(u,v) € ps(A, Mo L) X1y, px(B,N o L)

We now turn to (12).
» Lemma 7.10.

OB(G(A, M o L) —® G(B, N o L)) — 222 (P (G(A, M) —® G(B, )

Hsl B le

(L)xp(L)
on(A, M o L) X1y pn(B, N o L) ——=2 or(A, M) x1y, or(B,N)

Proof. Commutation of the diagram is ensured by Lem. 7.2 together with Prop. 6.4.
As for the pullback property, we show that the map (HS, p(L)_g) is a bijection from
o2 (G(A, Mo L) —® G(B,N o L)) to

pZ(AaMOL) XTrg pZ(B7NOL) Xpr(.A,M)XTerF(B,N) p?‘(g(AvM) _®Q(BaN))
The injectivity follows from the injectivity of HS (Lem. 6.6):

HS : ps(GAMoL)®GB,NoL)) — ps(A, MolL)Xps(B,NolL)
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As for surjectivity, consider

(s,t) € ps(A, Mo L) X1y ps(B,NoL)  and  u€ pL(G(A M) —® G(B,N))
such that

HS(u) = (p(L)(s), p(L)(t))
Since (s,t) € px(A, M o L) X1y, (B, N o L), by Cor. 6.7 there is some

v e pR(G(A,MoL)—® G(B,NoL))

such that HS(v) = (s,t). Moreover, it follows from Lem 7.2 that

(0(L) x p(L)) o HS(v) = HSop(L) s (v)
hence
HSop(L) o(v) = HS()
and it follows from Lem. 6.6 (injectivity of HS) that p(L)_g(v) = u. <

» Proposition 7.11. We have, in Set,

VE(G(A Mo L) 8 (BN o L) P P(G(A, M) — G(B,N))
tr_®l ltr_@a
Tr(L)
TI”E Tl“F

Proof. By the pullback lemma (see e.g. [12, Exercise 1.5.5, p. 30]), applied to Lem. 7.9 and
Lem. 7.10. <

» Remark. Note that for O-plays we do not have

@E(g(Av M) —-® Q(BvN)) - pE(BvN)

l |

(&) (A7 M) TTZ

tr
and it follows that there is no sense to ask:

o(G(A Mo L) 8 G(B,N o L) P or(G(A, M) —® (B, N))

l l

T‘I‘E ’I‘rl—‘

7.3.3 A Lifting Property on Plays.

The pullback properties Prop. 7.7 and Prop. 7.11 lead in particluar to the following lifting
property, which is crucial for the functoriality of substitution (Prop. 8.4).

» Lemma 7.12. Given (s,t) € pr(A, M) X1y pr(B,N), if s = p(L)(u) for some u €
ps(A, Mo L), then there is v € px(B, N o L) such that t = p(L)(v) and

(u,v) € ps(A, Mo L) X1vy. ps(A, N o L)
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Proof. Let

w = tr(u) € Try
By Lem. 7.5, we have

o) = t(s) = wopl)w) = Tr(L)otr() = Tr(L)(w)
Lem. 7.9 gives

(s',t') € ps(A, Mo L) X1y, (B, N o L)
such that

tr(s) = tr(t) = w and p(L)(s)=s and  p(L){#) =t
In particular, we have

() = () and  p(L)(s) = (L))
and it follows that

s = u
from Prop. 7.7 (actually the injectivity of

(tro(L) :© ps(AMoL) — Trsx pr(A M)
in Lem. 7.6). Hence we are done by taking

v o=t

<

» Corollary 7.13. Assume given (s,t) € px(A, M o L) X1y, ps(C, Po L) and v’ € pr(B, N)
such that

(9(L)(s),u) € pr(A, M) x1ep pr(B,N) and (u',0(L)(t)) € pr(B,N) X, or(C, P)
There is u € ps(A, M o L) such that p(L)(u) = u' and

(s,u) € pu (A, MoL) Xy pu(B,NoL) and (u,t)€ ps(B,NoL) Xty p=(C,PolL)
Proof. We apply Lem. 7.12 to

(9(L)(s),u) € pr(A, M) X1 pr(B, N)
and get some u € px (B, N o L) such that p(L)(u) =« and

(s,u) € pu(A, Mo L) Xy, pn(B,No L)
Since

ww) = () = ()
we obtain

(u,t) € ps(B,No L) X1y ps(C,Po L)
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7.4 Relation with Change-of-Base in Plays.

Recall that the change-of-base functor L® : Set/Trr — Set/Try; satisfies:

L.(pF(Av M)) - pF(Aa M)

|
L* (tr)i itr
Tr(L)
Tl"z] TIF
where
L.(pF(Aa M)) = Try Xy @F(A7 M)

and L*(pr (A, M)) 9% Trp i
m  : Trs Xpyg pr(A,M) —  Try
and L*(pr(A,M)) — pr(A, M) is
mo  : Trs Xmg pr(A M) —  pr(A,M)
As an immediate consequence of Prop. 7.7 (pullbacks in Set), we get, in Set/Try:

» Corollary 7.14. In Set/Try:

L*(pr(A,M) 5 Trr) =~ ps(A,MoL) S Try
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8 Substitution Functors
This Section is devoted to the definition of substitution functors
L*sac : SAGr — SAGy  L*w:SAGY — SAGY  L*g : SAGE — SAGE

obtained from (synchronous) tree morphisms L € Tree[X, T'].
When no problematic ambiguity arises, we drop the subscripts and simply write

L sAacM™WR o sAG{VR

8.1 Substitution Functors on Games

Consider L € Tree[X,T7.
The action of L* on objects of SAGr is given by change-of-base, as described in Sect. 7:

L*TFGAM)) = SFGUAMolL)

where, according to Prop. 7.7:

(L)
on(A Mo L) — pr(A, M)
trl itr
Tr(L)
TI“E Tl"p

8.2 Definition of the Substitution Functors on Strategies

We shall now proceed to the definition of the substitution functor L* : SAG;W/ SN
SAG(EW/ B induced by L.

» Definition 8.1. Consider
'to:G(A M) —®G(B,N)

Define L*(0) C pn(G(A, Mo L) —® G(B,N o L)) as

L*(o) = (L) (o)
where
o(L)—s : ps(G(A,MoL)-®G(B,NoL)) — pr(G(A M)—®G(B,N))

» Proposition 8.2 (Prop. 4.2). (i) L*(0) is a strategy on G(A,M o L) -® G(B,N o L).
(ii) If moreover o is a morphism of SAGY (resp. SAGY ) then L*(o) is a morphism of
SAGY (resp. SAGy).

Proof. (i) First, L*(o) is a set of P-plays on G(A, M o L) —® G(B, N o L) since p(L)_g is
length-preserving by definition.
A play ¢ of L*(0) must be of one of the two following forms:

s %5 (), mas)  —— ((pa,74), (0, a,78))
N N

s ((pvaa’yA%(p'dv qB)) ((pdv Q.A)v(p'da qB))
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By definition of L*(0), there is a play u € o such that p(L)_g(t) = u. It follows that
u is of one of the two following forms

v % (b L) (@) va), (pas)  — ((p. L(p)(a),7a), (b L(D)(a), 75))

o P
v —  ((p,Lp)(a),va), (pd,q8)) —  ((p.d,qa), (p-d, q5))
with p(L)_g(s) = v. Since o is closed under P-prefix, we have v € o, and it follows

that s € L*(o).
As for P-determinism, consider a play ¢’ of L*(o), of one of the two following forms:

s 5 ((0a,74),(pas)  —+ (pra,7a), (pyas V)
s 5 ((na,74), (0dgs)  — ((p-did), (pd,a5))

Reasoning as above, we get a play u’ € o of one of the two following forms

v (0 L)) ), (as) = (0 L) (a), 1), (0, L) (a), 7))
v S (L)), 7a) (pdias) o (pdialy), (pd as)
and it follows that 73 = v and ¢/y = g4 by P-determinism of o.
(ii) It follows from the proof of (i) above that to any play of L(o) corresponds a play of o
with the same projections on Q4 and @Qg. So all infinite plays of L*(o) are winning
w.r.t. —® (resp. ®®) as soon as ¢ is winning w.r.t. —-® (resp. ®®).

As for totality consider the following two situations, where in both cases we assume
that the play is legal in G(A, M o L) —® G(B, N o L) and that s € L*(0)

((p7 a, ’7A)7 (pa qB))
((p7 CL,’Y_A), (pd7 QB))

Then, reasoning as in the proof of (i) above, we obtain in both cases a play v € o with

p(L) o(s) = v.
In both cases, we have y4 € 0.4(ga, (M oL)(p)(a)) and it follows that the two following
plays are legal in G(A, M) —® G(B, N):

S —
O
S —

v i) ((va(p)(a)v'YA)a(pvq{ﬁ’))
v % ((p, L(p)(a), ), (p-d, as))

By totality of o, we thus get in each case a play u € o of one of the two following
forms:

v % (b L) (@) ya), (pas)) > ((p.L(p)(a),7a), (b, L(D)(a), 75))

2 (0 L)), 74), (pdias)) = ((p.d,qa), (p-d, qs))

and it follows that in each case L*(o) contains a play of one of the two following forms:

((pa,74), (pras))  —+  ((pra,7a), (pyas75))

s —
o) P
s — ((p,a,74),(pd;gs)) — ((p-d,q4),(pd,q5))
<
Note that thanks to Lem. 7.2 we have
L)_
o) —H=e (14)
HS\L Hs
(L)X p(L)

HS(L* (o)) 222 gg(0)
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» Lemma 8.3. We have

L*(o) = HS™'((p(L) x p(L) " (HS(0))) = ((p(L) x p(L)) o HS) *(HS(0))
where the HS’s are maps:
HS PP (G(A, M) —® G(B, N)) pr(A, M) x pr(B,N)

—

HS : oR(GA,MoL)-®G(B,NoL)) —»

Proof. By definition of L*(o), we have
p(L)e(L*(0) C o

hence

ps(A,MoL) X ps(B,NolL)

HSop(L)-o(L*(s) C HS(o)
and it follows from (14) that
(p(L) x p(L)) o HS(L"(0)) < HS(0)
hence
L*(o) S HST'((p(L) x p(L)) " (HS(a)))
For the converse direction, let
t e HS™' ((p(L) x (L))~ (HS()))
that is
t € @L(GAMoL)—®G(B,NolL))
with
((p(L) x p(L)) o HS)(t) € HS(0)
We thus get by Lem. 7.2:
HS(p(L)-s(t)) = ((p(L) x p(L)) oHS)(t) € HS(o)
It follows that there is u € o such that
HS(u) = HS(p(L)-(t))
By Lem. 6.6 (injectivity of HS on pr(G(A, M) —® G(B,N))), we get p(L)_g(t) =u € o
hence t € p(L)"4 (o).
We deduce that t € L*(o) since t € p5(G(A, Mo L) —® G(B, N o L)) by assumption. <
8.3 Functoriality of Substitution
We shall now see that L* is functorial, i.e. L*(id(4,ar)) = id(4,m01), and moreover, given
'to:G(AM)—®G(B,N) and '+60:G(B,N)—®G(,P))
we have
L*(600) = L*(6) o L (o)
where

Tk L*(0): G(A, MoL) —® G(B,NoL) and T+ L*(0):G(B,NoL)—® G(C,PoL)
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» Proposition 8.4 (Functoriality of Substitution — Prop. 4.3). Given L € Tree[X,T], L* is a
functor from SAGr to SAGy:

(1) L*(id(a,ar)) = id(a,0r0L)-
(ii) L*(@oo) = L*(0) o L*(c) whenever

F'to:G(A, M) —®G(B,N) and '+60:G(B,N)—®G(,P))
Proof. (i) Thanks to Prop. 4.11 is is sufficient to show that
HS(L*(daan)) = {(5.9) | s € pu(A Mo L))
For the inclusion

HS(L*(id(a,01)))

N

{(s,8) | s € pu(A, Mo L)}
by Lem 8.3 we have
HS(L*(id(aa)) S (p(L) x (L))" o HS(id(a,0))

Let now (s,t) € HS(L*(id(4,ar))). We thus get p(L)(s) = p(L)(t) by Prop. 4.11 applied
to id(4,ar). Since moreover tr(s) = tr(t) we get

Tr(L)(tr(s)) = Tr(L)(tr(t)) and trop(L)(s) = trogp(L)(t)

and it follows from Prop. 7.7 (actually Lem. 7.6) that s = t.
Conversely, given s € px(A, M o L), by Prop. 4.11 we have

(p(L)(s), p(L)(s)) € HS(id(a,n1))
hence
(s,8) € (p(L) x (L)) ™" o HS(id(a,ar))

On the other hand, (s,s) € ida amor by Prop. 4.11, and it follows that there is w €
o%(G(A, M o L) —® G(A, M o L)) such that HS(w) = (s,s). We thus get (s,s) €
HS(L*(id(4,ar))) by Lem. 8.3.

(ii) Thanks to Lem. 4.6.(ii) it is sufficient to show that

HS(L*(@oo)) = HS(L*(#)o L*(0))

For the inclusion
HS(L*(§) o L*(0)) C HS(L*(6oo0))

let (s,t) = HS(w) for some w € L*(0) o L*(o). Since by Prop. 4.10
HS(L*(#) o L*(c)) = HS(L*(6)) o HS(L*(0)) ,

we get some u € px (B, N o L) such that
(s,u) € HS(L*(0)) and (u,t) € HS(L*(0))

Since by Lem 8.3 we have

(9(L) x p(L)) o HS(L*(#)) < HS(0)
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and

(p(L) x p(L)) e HS(L*(0)) < HS(o)
using Prop. 4.10 again, we get

(0(L)(s), 9(L)(t)) € HS(0) o HS(o) = HS(6 0 o)
hence

(s:t) € (p(L) x p(L)) ™ o HS(G 0 0)

Since HS(w) = (s,t) with w a legal P-play by assumption, it follows from Lem. 8.3
that (s,t) € HS(L*(0 o 0)).
For the converse inclusion, using Prop. 4.10 again, we show that

HS(L*(foo)) C HS(L*(A)) o HS(L* (o))

Given w € L*(foo) with HS(w) = (s, t), one has to exhibit some play u € px (B, No
L) such that

(s,u) € HS(L*(#)) and (u,t) € HS(L"(0))

By Lem 8.3, from w € L*(f o o) with HS(w) = (s, 1) for some s € px(A, M o L) and
t € ps(C,Po L), we have

(9(L)(s), p(L)(¢)) € HS(0 © o)
Hence there is some v’ € pr(B, N) such that
(p(L)(s),u’) € HS() and (u',0(L)(t)) € HS(0)

It follows from Cor. 6.7 that (p(L)(s),v’) € pr(A, M) X1 pr(B,N). Hence by
Cor. 7.13 there is u € px (B, N o L) such that p(L)(u) =« and

(s,u) € ps(A, MoL)xm.px(A, NoL) and (u,t) € px(B, NoL) X1 0x(C, PoL)
We thus get

(9(L)(s), p(L)(w)) € HS(0) and  (p(L)(u), p(L)(#)) € HS(0)
so that

(s,u) € (p(L) x o(L)) " (HS()) and (u,t) € (p(L) x p(L))~" (HS(0))
On the other hand, since
(s,u) € px(A, MoL) Xy px(B,NoL) and (u,t) € px(B, NoL)XT1y, px(C, PoL)
by Cor. 6.7 and by definition of _ —® _, there are
acph(GAMoL)—®G(B,NoL)) and be g% (G(B,NoL)—® G(C,PolL))
such that

HS(a) = (s, u) and HS(b) = (u,t)
Now we are done since it follows from Lem 8.3 that

(s,u) € HS(L*(0)) and (u,t) € HS(L* ()

. W/R W/R
» Corollary 8.5. L* is a functor from SAGy, B o SAGE/ .
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8.4 A Universal Property of Substitution
Consider L € Tree[Z,T']. Note that by definition of L*(0) as p(L)Z} (o), we have

o(L)
L*(O')_] o(L) - o

|

OB (G(A, Mo L) —® G(B, N o L)) 222 0P (G(A, M) —® G(B, N))

It thus follows from Prop. 7.11

GE(G(A Mo L) 8 G(B,N o L) P OR(GA, M) — G(B,N))
tr_®l J{tr_®
Tr(L)
T\I‘g ’I‘rl—‘

and the pullback lemma (see e.g. [12, Exercise 1.5.5, p. 30]) that we have, in Set:

o(L)-®
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9 Fibrations of Acceptance Games and Automata
In this Section, we briefely present the split fibrations of acceptance games
game : SAG — Tree game"V : SAGYW — Tree game® : SAGR — Tree
defined by Grothendieck completion of the split indexed categories
(=) sag : Tree’® — Cat (=) : Tree’” — Cat (=) R : Tree’” — Cat

issued from substitution.

9.1 The Split Indexed Category of Substitution

We show that substitution leads to a split indexed category
(=)* : Tree’® — Cat
(in the sense of [12, Def. 1.4.4, pp. 50-51]):
» Proposition 9.1 (Prop. 4.4). (i) With Idy € Tree[X, X], the functors
1y sAGY®M  —  sAGg{"/®
is the identity functor
SAGIWWH . sAG{/M
(ii) Given L € Tree[X, T and K € Tree[l', A}, we have
(KoL)* = L*oK*
where K o L € Tree[X, A] and
(KoL), L* o K* : SAGY\/® _ sAg{"/™

Proof. (i) Since p_g(Idys) is the identity on

ps(GAMoL) ®G(A MoL)) = ps(GAM)—®G(A,M))
we have
(o) = pelds) (o) = o

(ii) Since p(K o L)_g = p(K)_g o p(L)_g we have

(KoL) (0) = p(KoL)5(0) = (p(L)gopK)g)e) = L' (K*(0))

By combining Prop. 9.1 with Prop. 8.4, we thus obtain that

» Corollary 9.2. Substitution induces a functors

(—)*sac : Tree®® — Cat (=)*w : Tree®® — Cat (=)"g : Tree®® — Cat
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9.2 The Fibration of Acceptance Game
We now define the split fibrations
game (W/R) . S AGW/R) s Tree
by Grothendieck completion (see e.g. [12, §1.10]) of the corresponding split indexed category

(=) : Tree®” — Cat

9.2.1 The Total Categories SAGMW/M);

Objects are substituted acceptance games ¥+ G(A, M) where ' Aand ¥+ M : T
Morphisms from X + G(A, M) to I' b G(B,N) are given by pairs (L,0) of a tree L €
Tree[X,T] and a strategy

YFo:G(A M) -®G(B,NolL)

such that, for SAGY we additionally require:
Yol G(A M) —®G(B,NoL)

and for SAG® we additionally require:
Yol G(A M) ®&® G(B,NolL)

The total categories SAGMW/R) ig thus the Grothendieck completions of the correspond-
ing (—)* : Tree®® — Cat. Thanks to the functoriality of substituion (Prop 8.4), composition
is defined componentwise: if

(L o) (K 0)

YFGAM)—AFGB,N)—=T+G(C,P)

then

St o I GAM) —® G(B,NoL)
and A 60 I GB,N) —® G(C PoK)
hence X + L*(0) F G(B,NoL) -® G(C,PoKolL)

We let

(K,0)o0 (L,o):=(KoL,L*()o0)

9.2.2 The Functors game™/®) : SAGW/R) _; Tree
maps a game ¥ F G(A, M) to the alphabet X, and a morphism

S M) LT GB,N)

to L € Tree[X, T].
The fibre categories game™!(X) are isomorphic to the categories SAG(EW/ R, they have
games X F G(A, M) as objects and morphisms are of the form

(Idg,a‘)

YFGAM)—=XFG(B,N)
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9.2.3 Cartesian Liftings.

Given L € Tree[l', 3], we let L := (L,idr) where
T'kide Ik G(A, Mo L) —® G(A, Mo L)

is the identity strategy. We thus have, in SAGW/ R),

L*(X FG(A,M))

YFG(A M)

In other words, given ¥ - G(A, M) and

L : T —mee gameW/R(SEG(A M) (=)
we have

with game(L) = L and moreover for every
(K,0) : AFGB,N)—XFGA M)
with
game(K,0) =K =LoP

there is a unique 7 such that:

AFG(B,N) (K,0)

L*(XFG(A, M)) LEGA M)

The unique 7 claimed above is easily obtainable by unfolding the definitions: Since (by
Prop. 8.4.(i)) we have

Lo(P,7) = (LoP/L*(idr)or) = (LoP,7)
the equality
(K.6) = (LoP§) = TLo(Pr)

imposes T := 6.
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9.2.4 The Fibration of Acceptance Game.

Thanks to the functoriality of substitution (—)* : Tree®® — Cat (Cor. 9.2), we thus get
by [12, Prop. 1.10.2(i)]:

» Proposition 9.3. The functors gameW/R) : SAGW/R) _ Tree, together with L — L*,L
as above, forms a split fibration.

9.3 Fibration of Automata

We write X Fo: A —® B for
Yho:G(Aldy) —® G(B,1dx)

and X FolF A—® B for
YFol-G(ATds) —® G(B,1dx)

and finally, X o IF A ®® B for

SE ol G(A Idy) @® G(B,1dx)

9.3.1 The Categories Aut(EW/R)

Objects are automata X + A
Morphisms from ¥ F A to ¥ F B are strategies

YFo: A-®B

such that, for Aut" we additionally require:
YFolFA—®B

and for Aut®™ we additionally require:

YFolFA®® B

9.3.2 The Faithful Functor Emb : Alph — Tree

is the identity on objects and maps 5 € Alph[X, T'] to the constant tree Emb(5) € Tree[X, T']
with Emb(8)(p) := f for all p € D*.

We will often simply write 5 € Tree[X, '] for the morphism Emb(j3) induced by 8 €
Alph[Z, T].

According to Cor. 9.2, the functor Emb : Alph — Tree induces a split indexed category

(=)* : Alph°®? — Cat
where, for 8 € Alph[X,T'], we have

g SAGMM 5 sAG{Y
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9.3.3 Substitutions induced by Alphabet Morphisms.

Substitutions issued from alphabet morphisms can be internalized in automata. GivenI' - A
with A = (Q,q",6,Q) and 8 € Alph[X, T, define the automaton 3 - A[g] as

A = (Q.,q",05,Q)
where
op(q,b) = d(q,B(b))

» Proposition 9.4. Given I'+ A and 8 € Tree[X, T, we have
YEGABLIds) = XEG(AB)
Proof. We have

(pg) - (pasy) in Tk G(AB],1dy)

iff

v € dslglds(a)) = dslga) = 6(g,B(a))
iff

) — (pa)  nTkG(AR)
Moreover,

(pray) > (pdyg)  in T+ G(A[B]Idy)

iff (¢,d) € v iff

(Pay) > (pdg) inSEG(ARB)

» Corollary 9.5. Substitution along 8 € Alph[%, T induce functors

g o AutY o AutdY

9.3.4 The Total Category Aut"/®);

Objects are automata X+ A.
Morphisms from ¥ F A to I' - B are pairs (5,0) where 8 € Alph[X, T]and X o IF A —®

B[s).
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10 A Synchronous Symmetric Monoidal Product

In this section, we define a synchronous monoidal product _ & _ (and its variant _ ®=
_ for reduction games) and show its basic properties. This product will be equipped in
Sect. 11 with a symmetric monoidal structure, leading to symmetric monoidal fibrations.
The symmetric monoidal structre actually assumes automata to be complete. Moreover, the
symmetric monoidal structure on acceptance games is easier to describe starting from a first
partial version of _ @& __, which only allows products of games ¥ - G(A, M) and ¥ + G(B, M)
with the same substituted tree morphism M. This variant of ® is called uniform.

10.1 The Relational Tensorial Product in Set™

10.1.1 Symmetric Monoidal Categories.

Following [16, 13], a symmetric monoidal category is a category C equipped with a bifunctor
_ ® __ and an object I together with natural isomorphisms:

aspc : (A®B)eC — A®(B&CO)
Aa : I®A — A
pA : ARI — A
YA,B ¢ A®B — B®A

satisfying ya,p = ’715,1,4 and usual coherence diagrams (see e.g. [16, 13]).

10.1.2 The Monoidal Category Rel of Sets and Relations.

In Rel, the monoidal product _ ®ge) _ is given by:

On Objects: A ®Rre1 B := A x B.

On Morphisms: given R: A —+ C and P : B —+ D, we define R ®Rre1 P : A ®Re1 B —+
C ®Rre1 D as

Rera P := {((a,b),(c,d)) | (a,¢) € R and (b,d) € P}

The unit I is the singletton set I := {e}(= 1), and the natural isomorphisms are given by:

O?AqBJC = {(((a,b),¢), (a,(b,c))) |a€ Aand b€ B and c € C}
Aa = {((O,G) ) a) | a € A}
poA = {((aa .) ) a) | ac A}
Ya,B {((a,b) , (b,a)) | a € Aand b € B}

10.1.3 Monoidal Structure in Rel(Set/.J).

Define, in Rel(Set/.J) the operation _ ®gey(set/.s) _ (simply denoted @ _ when no con-
fusion arises):

On Objects: for (4, g) and (B, h) objects in Rel(Set/.J) the tensor product AQ Bis Ax ;B
with the corresponding map, that is

gomy=homy
—

A®B = {(a,b)eAxB|gla)=h(b)} J
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On Morphisms: given R € Rel(Set/J)[A,C] and P € Rel(Set/J)[B, D], we define RQP €
Rel(Set/J)[A® B,C ® D] as

ReP := {((ab),(c,d) e (A®B)x (C®D)]| (a,c) € R and (b,d) € P}

Note that given ((a,b), (¢,d)) € R® P, writing C K Jand D4 J, we have ((a,b), (c,d)) €
(A® B) x5 (C ® D), since (a,c) € R implies g(a) = k(c) and since (b,d) € P implies
h(b) = i(d).

The same holds for ((a,b),(c,d)) € R Qrel P, but ((a,b),(c,d)) € R ®re P does not
imply ((a,b), (¢,d)) € R® P since we may not have (a,b) € A® B nor (¢,d) € C ® D.

» Proposition 10.1. The product _ ® _ is a bifunctor on Rel(Set/J):

(Z) 1a®1g = 1A®B
(ii) Given

Ro Ry , Ry , R} ,
A—0—>/JB—0—>/JC and A—H/JB —0—>/JC
we have

(RioRo)® (RyoRy) = (Ri1®Ry)o(Ro® Ry)

Proof. (i) Write A % J and B 5.

We have
lu®lg = {((a,b),(a,b) e (A®B)x (A®B)|ac A&be B}
= {((a,b),(a,b)) € (A® B) x (A® B) | (a,b) € A® B}
= lags

(ii) Consider
((a,a"),(c;c)) € (A® A') x (C® )
Then we have
((a,a),(c,c")) € (R1 0 Ry) ® (R} o Ry)
if and only if
(a,c) € RyoRy and (d’,c) € R} o Ry
if and only if there are b € B and b’ € B’ such that
(a,b) € Ry (bye)e Ry (d,0)e R, (V,d)eR]
if and only if (since ((a,a’), (b,V')) € (A®A")x (B®B’), and similarly for ((b,b'), (¢,c)))
((a,a"),(b,b")) € Ro@ Ry, and ((b,b),(c,c')) € R1 @ R
if and only if

((a,d), (c,)) € (R1 ® Ry) o (Ro ® Rp)
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For the unit, we choose some

I = 1 L )
such that
7 - I=J

The natural isomorphisms are given by:

da,B,C {(((a,b),¢) , (a,(b,0))) | gala) = g5(b) = gc(c)}
Aa = A((e;a), a) | 5(e) = gala)}
pa = A{lla,e), a) | gala) =13(e)}
'?A,B {((aab) ) (b7 a)) | gA(a) = gB(b)}

We easily get:

» Lemma 10.2. We have isomorphisms

OcéA,Bo,c : (AeB)eC =,y A Be0)
Aa IoA —+,; A
pa AT ——,; A
Ya.B ¢ A®B —+»,; B®A

Proof. For &4 p.c, if ((a,b),c) € (A® B) ® C then we have ga(a) = gp(b) = gc(c), hence
((av b)7 C) OD‘A,B,C (a7 (b’ C)) and (av (bv C)) &Z}B,C ((av b)7 C)
and thus
((a;),¢) (a5, 0 0 da,B.c) ((a,b),¢)
It follows that
luspec S dipcodansc
Conversely, consider
((av b)a C) (&Z}B,C o &A,B,C) ((alv b/)a CI)
Then there are a”, b” and ¢” such that
((a,0),¢) da,pc (@, (b",")) and (a",(b",¢")) d4lp o ((a',0),¢)

But this impliesa =a” =a/,b=0"=b,and c = " = ¢/, as well as ga(a) = gg(b) = gco(c).
We thus have

o —1 o
Gppoedansc S lugsec
We similarly get

N o —1
GaBcoldype = lagmeo)

The case of ¥4 p is dealt-with similarly.
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For Aa, if (e,a) € I® A then we have ((e,a),a) € A4 and (a, (¢,a)) € 5\21, and it follows
that

liga € 5\21 o4

On the other hand, since 3 : I — J is surjective, for all a € A there is some e € I such
that ga(a) = j(e), hence (e,a) € I ® A, from which it follows that ((e,a),a) € A4, and
(a, (e,a)) € A" hence

1a CAaody?t
For the converse inclusions, consider
(e;a) (Ax" 0 Aa) (¢/,a))
hence there is a” € A such that
(e,a) Aaa” and o’ A7 (¢, a")
But this implies a = a” = a’, hence e = €’ since j(e) = j(¢’) and 3 is injective, and we get
Atoda Cliga
Similarly, if
a(Aaoizlh)d
then there are (e,a”) € I ® A such that
ar;l(e,a”) and (e,a”) Aad
which implies a = a” = @, and we get
S\A o )\;1 Cla
The case of p4 is dealt-with similarly. <

» Lemma 10.3. We have natural transformations:

ODZA,BQ,C : (A@B)®C -, A®(B®C)
)\A : I®A —l—>/!] A
/3A : A®I —|—>/J A
YaB A®B —++,; B®A

Proof. Assume given objects (4,g4), (A, ¢4/) etc
(i) Given
P:Aﬂ—>/JA' Q:Bﬂ—>/JB’ R:C’ﬂ—>/JC”
we have to check

dapco(PRQ)®R) = (PR(Q®R))odanc
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Proof. Consider ((a,b),c) € (A® B) ® C and (d/, (V/,c')) € A’ ® (B’ ® C’) such that
((av b)a C) OO‘A’,B/,C’ o ((P ® Q) ® R) (a’/a (b/a C/))
Note that

((a,;b),c) (P@Q)®R) ((d,V),c)

Since

ga(a) = ga(d) = gsl) = gp@®) = golc) = go(d)
we have

(aa(bac)) dA,B,C ((aab)ac)
and

((a7 b)’ C) (P 0y (Q ® R)) © &A,B,C (ala (blv cl))
We thus have
Gapco(PRQQR) C (PR®(Q®R))odapc

For the other direction, consider ((a,b),c) € (A®B)®C and (d’, (V',') € A/@(B'®C")
such that

((a,b),c) (P®(Q®R))o &a,B,C (a/a (blv cl))
We have

((a,0),¢) dapc (a,(b,¢)) and  (a, (b)) (PR(QOR) (da,(,c))

Now since

gala) = ga(d) = gpd) = gpl) = gclc) = go()
we have

((a,0),0) (P@Q)®R) ((d,b),c)
and

((a/) b/)’ CI) CQYA’,B’,C" (a'lv (blv Cl))
It follows that

(PR (Q®R)odapc C dap.co(PR®Q)®R)

(ii) For the naturality of Y4 g, given
P:A_'_>/JAI Q:B_'_>/JB/
we have to check
YapoPRQ = QRRodyap

and this can be done similarly as for &4, p,c above.
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(iii)

(iv)

As for 5\, given

P:A——,; A
we have to check

Aro(11®@P) = Poly
Proof. Consider

((e;a),a’) e I® A) x; A
Then we have

((e,a),d’) € Po Xy
if and only if

(a,a’) € P

But (a,a’) € P implies ((e,a), (e,a’)) € 11 ® P since ga(a) = gas(a’). We moreover
get ((e,a’),a’) € A and it follows that

Pols C Awo(L1®P)
Conversely, if
((e,a),a’) € Aar o (11 ® P)
then for some (¢/,a"”) € I® A" we get
((e,a),(e,a") € 11@ P and ((¢/,a"),a) € Aas
But we then get ¢’/ = a’ and j(¢’) = gas(a’), and since ga(a) = ga(a”) it follows that
2(e) = g(¢’), hence e = €’ since j is injective. Since moreover (a,a’) € P, we conclude

that

((e;a),a’) € Po Ay

<
For p4 given
P:A——,; A
we have to check
pao(PR1) = Pojpya
and this can be done similarly as for Aa. |

» Proposition 10.4. The category Rel(Set/J), equipped with the above data, is symmetric
monoidal.
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Proof. According to Prop. 10.1, Lem. 10.2 and Lem. 10.3, it remains to check the coherence
diagrams of symmetric monoidal categories. We follow [16]*.
Assume given objects (4, g4), (B,g5), (C,gc) and (D, gp) of Set/J. We have to show:

(i) &a,B,(cap)© dagB,c,p = (14 ® dp,c,p) © &a,(Boc),p © (Ga,B,c ®1p) in
(A®B)©C)®@ D) —,; A® (B® (C® D))
Proof. Consider

ac A be B ceC de D

with ga(a) = gp(b) = go(c) = gp(d).
We then have

(((a;b),¢),d) &aB(cop)©dags.op (a,(b,(c,d)))
and

(((a,b),¢),d) (1a® dp,o,p) o baBacy,p (GaBc ®@1p) (a,(b,(cd)))
Now we are done since both

(((a,0),¢),d) &a B cep)©bdagncp (a0, (,d))
and

(((a;b),¢),d) (1a® dp.cp)obdasac)p o (dapc®lp) (a, (¥, (c,d)))

separately imply

(i) (14 ®Aa)o da1,B = pa®1pin

Proof. Consider a, b and e such that ((a,e€),b) € (A®I) ® B.
We have (a,b) € A® B and

((a,e),b) pa®1lp (a,b)
On the other hand, we have
((a,€),b) darp (a,(eb))
and since ga(a) = 3(e) = gp(b) we get

(a,(e;0)) (1a®Aa) (a,b)

4 By [16, Prop. 3|, the diagram [13, VIL7.(2)] relating the braiding 4 with X and p is unnecessary.
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Now we are done since both

((a,e),b) pa@1lp (V)

and

((a,e),b) (1a®@Aa)odars (d,b)

separately imply

a=ad b=V
<
(iii) &B,c.a°(Ya,(Boc)) 0 dasc = (1p®@9Fac)odnaco(Jas®lc)in
(A®B)®C ——,; B®(C®A)
Proof. Can be check similarly as (i) above. |
(iv) 9,4 = (Ja,5)~" in
B®A —+,; A®B
Proof. Recall that
a8 = {((a,b), (b,a)) | a€ Aand b€ B and ga(a) = gp(b)}
We thus have
fa8)1 = {((bya), (a,b)) |a€ Aand b€ B and ga(a) =gp(b)}
= VB,A
<
<

» Remark (Rel(cod) : Rel(Set™) — Set as a monoidal fibration). Because of the definition
of (=)*® in Set™ by pullbacks, it seems that the monoidal product _ @Rel(Set/(~)) _ is not
preserved on the noise by substitution.

On the other hand, [19, Ex. 5.8] mentions, for C a regular category, the C-indexed mon-
oidal category A — Sub(A), which need not be strict, since relations over C form a bicategory
rather than a category.

10.1.4 Some Usefull Facts on Set and Rel(Set/.J)

We now state two usefull easy facts concerning some interactions of Set with Rel(Set/.J).

» Lemma 10.5. Consider, in Rel(Set/J), maps
P:A——,;C R:B——,; D
and consider, in Set/J, functions

fAIA—>/JA/ fB:B—>/JB/ fc:O—>/JC/ fDZD—>/JD/
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Then we have

(fax fo)(P)@ (f x fp)(R) = ((fax[B)*x(fox [p))(P®R)
where

(fax fo)(P) = {(fala), fc(0)) | (a,c) € P}

and similarly for (fs x fp)(R), and

(faxfB)x(fexfp))(PRR) = {((fa(a), fB(b)),(fc(c), fo(d))) ]| ((a,b),(c,d)) € PRR}
Proof. We first check that

fAXfB:A(X)B—)/JA/@B/ fcfo:C®D—>/JC/®D/
fAXfctA®C—>/JA/®C/ fBXfDZB®D—>/JB/®D/

It is sufficient to look at
faxfp:A®B—,; A @B
Recall that by definition A® B = A x ;7 B and similarly for A’ ® B’. Now, given a € A and

b € B with ga(a) = gp(b), by assumption on f4 and fp we get ga(a) = ga(fa(a)) and
similarly for fp, from which it follows that

gar(fa(a)) = gp (f5(0))

Now we have

((@',¥), (¢, d) € (fa x fe)(P)® (fp x fp)(R)
if and only if there are

((a,b), (c,d)) € (A® B) x (C ® D)
such that

fala)=d" fp(b) =V folc)=¢ [fp(d)=d
and

(a,c)eP  (bd)eR
that is

((a,b),(c,d)) e P& R
But this is equivalent to

((a",0), (¢, d)) € ((fa x fB) x (fc x fp))(P ® R)
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» Lemma 10.6. Consider composable relations
p:A—,; B R:B—,;C
and maps
farA—, A fp:B—, B fo:C—yC

such that fp is a bijection.
Then we have

(fax fe)(RoP) = [(f x fe)(R)]o[(fa x fB)(P)]
Proof. Given

(fa(a), fe(e)) € (fa x fe)(Ro P)

we have
(a,¢c) € Ro P
Hence there is some b such that
(ab)eP  (be)€R
It follows that
(fala), fB(b)) € (fa x fB)(P)  (fB(b), fc(c) € (fB x fo)(R)
Hence
(fala), fe(e) € [(fr x fe)(R)] o [(fa x f)(P)]
Conversely, given
(fala), fe(c) € [(fB x fo)(R)] o [(fa x fB)(P)]
there is b’ € f5(B) such that
(fala), V') € (fa x fe)(P) (¥, fc(c) € (fB x fo)(R)
Now since fz is a bijection, there ia unique b € B such that b’ = f5(b), and it follows that
(ab)eP  (be)€R
Hence

(fa(a), fc(c)) € (fa x fc)(Ro P)
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10.2 Complete Automata

Recall from Sect.2 that an automaton A is complete if for every (q,a) € Q x 3, the set
d(g,a) is not empty and moreover for every v € §(q,a) and every direction d € D, we have
(¢’,d) € v for some ¢’ € Q.

Given an automaton A with

A = (@469
its completion is the automaton
A = (Q.¢.0,9)
where

Q := Q + {true, false},

the transition function o is defined as follows:

S(true q) = {{(true,d) | d € D}}

(false q) = {{(false,d) | d € D}}
( a) = {{(false,d) | d € D}} if g€ @ and §(q,a) =0
(q7a) = {F1v€dlga)} otherwise

where, given v € d(q, a) we let
N = ~yU{(true,d) | there is no q € Q s.t. (¢,d) € v}
0 =0+ Q" ~true~@“’.

-~

» Proposition 10.7. £(A) = L(A).

Full Subcategories and Fibrations. Restricting to complete automata gives rise to full

. =—=W) — (W) (W) . .
subcategories SAGy, = and Auty, ~ or resp. SAGy, and Aut'"’, and thus induces fibrations

game : SAG — Tree aut :  Aut — Tree

10.3 Synchronous Monoidal Product on Automata

Assume given complete automata ¥ - A and X F B. Define ¥ F A ® B as follows:

A®B = (QaxQB,(¢4:95) 0408, Laws)
where
dae8((qa,q8),a) = U YA ® B

YA € 04(qa,a)
8 € 05(qB, a)

and
YAa® = {((daqp):d) | d€ D and (¢y,d) € va and (g5,d) € 5}
and moreover

(¢4 45)neN € Qags iff ((@4)nen € Q24 and  (g5)nen € 2B)
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_—R —R
For synchronuous reductions (in categories SAGy, and Auty,), we will rather use the
product X + A ®= B defined as

-/4@5 B = (Q.A X QB7 (Qf47q;3)55A®B7Q.A®EB)

where

(4%, 4B)neN € Qas_B iff ((@4)nen € Q4 = (qB)neN € QB)

10.4 Action on Acceptance Games of the Synchronous Monoidal
Product

Given complete X+ A and ¥ - B as above, we define projections
wps(A®B, M) —  ps(AM) and wy:pn(A®B,M) —  ps(B,M)
Note that since A and B are complete:

> Lemma 10.8. v4 ® v =7y ® vi implies y4 = 'y and yg = 3.

Proof. Assume that (say) y.4 # 74 so that (say) we have
(ga,d) € a4\ V4

Then, since B is complete, there is g5 such that (gg,q) € v5. It follows that

((g.4,98),d) € Ya® B\ Y4 ® 75

Using Lem. 10.8, we now define the projections
w1 Zpg(A@B,M) — pE(A,M) and WQZQZ(AGBB,M) — pE(B,M)

The projection w; : ps(A® B, M) — ps(A, M) is defined by induction as follows:

wi(e: (6,(da:q5)) = ¢e:(e,d%)
731(5*> (p,a,'YA®’YB>) = wl(s) — (paaﬁ’YA)
wi(s = (p-d,(qa,q8)) = wi(s) = (p-d,qa)

Note that in the second case above, w; is well defined thanks to Lem. 10.8. The other
projection ws : px(A® B, M) — px(B, M) is defined similarly.
Note that it readily follows that the following diagram commutes:

w2

pos(A® B, M) px(B, M) (16)
@2(./4, M) o TI‘Z
We write

SP = (wiwm) : ps(A®BM) —  ps(A M) X1y px(B, M)
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» Proposition 10.9. We have, in Set:

px(A® B, M) — = o5(B, M)
WI\L ltr
px(A, M) Trs

tr

Proof. We show that we have a bijection
SP:ps(A®B,M) —  ps(A M) X1y ps(B, M)

For the injectivity, consider s,t € px(A & B, M) such that SP(s) = SP(¢). Note that since
wy and wo are length-preserving, we must have |s| = [t|. We thus reason by induction on
|s| = [t|. In the base case, we must have s =t = ¢ : (g, (¢%4,qp)) and we are done. For the

induction step, there are two cases:
If

s = §—=@aya®ys) and t = t'—(p,d, Yy @)

then we must have p = p’ and a = o’ and 74 = 7/4 and y3 = 73, and we are done by
induction hypothesis.
Otherwise, we must have

/

s = s —=(pdgg) and t = t'= @ -dd (¢4 ds)
and again, we are done thanks to the induction hypothesis.
For surjectivity, given
(s,t) € pu(A, M) X1ry, p5(B, M)
we must build
u € pn(A®B,M)
such that
wi(u) = s and wa(u) = ¢

Note that tr(s) = tr(t) implies |s| = [t|]. We thus reason by induction on |s| = [¢|. In the
case case s =t = € and we take

u = e:(e (g q5))
For the induction step, we consider two cases:
If
s = s —=@Paya) and t = ¢ = (@, d )

then tr(s) = tr(¢) implies p = p’ and a = @’. Moreover, we have tr(s’) = tr(¢') and thus,
by induction hypothesis, there is some v’ such that SP(u') = (¢',¢'). It follows that s’
and ¢’ are of the form:

s = x4—="(pga) and t' = x3—"(p,gB)

with 74 € 0.4(qa,a) and v5 € d5(gs, a). It follows that we extend ' as follows:

u' — (pv a,vA® ’YB)
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Otherwise, we must have
s = s —(p-dqa) and t = t'—= (@ -dq)

then we must have p = p’ and d = d’ since tr(s") = tr(t'). Moreover tr(s’) = tr(t') and
by induction hypothesis, we have (s’,t') = SP(u’) for some u'. On the other hand, since
tr(s’) = tr(t'), we must have, for some a € X,

s = x4—="(pa,ya)  and  t = g —="(p,a,yB)

with (qa,d) € v4 and (¢s,d) € 5. Note that we must have

/
u

*ae8 =" (P, 0,74 ®YB)

But we have ((qa,q5),d) € Y4 ® v and we are done by taking

u = u —(p-d(qa,q5))

10.5 Action on the Synchronous Arrow of the Synchronous Monoidal
Product

We now extend the projections w; and wy of Sect. 10.4 to the plays of the synchronous
arrow.

In the whole Section, we assume given complete automata A, B, C and D. Using
Lem. 10.8, define

w  ps(GA®BM)®GC®D,N)) — pn(GAM)-®G(C,N))

as follows:

w1 ((‘57 (Qfm Q%)) ’ (57 (qZC7qlD))) ((5#134) ) (57 qlc))
@i (s = ((p,a;74a®78) , (p,(gc.9p)))) = @i(s) = ((p.a,7v4) , (p,gc))
w1 (S_> ((p’av’%‘\@'YB) ; (paav'YC@'YD))) = ZU1<S) — ((p7aa’7A) ’ (pvaa’YC))
w1 (s = ((p,a,74®78) s (p-d.(qc.qp)))) = @i(s) = ((p.a,v4) . (p-dqc))
w1 (s = ((p-d,(qa,a8)) , (p-d,(qc,qp)))) wi(s) = ((p-d.qa) » (p-d,qc))
The second projection
wy : pu(GA®B M) —®GC®D,N)) — p=(GB,M)—®G(D,N))
is defined similarly.
» Lemma 10.10. We have, in Set,
0% (G(A® B, M) ~® G(C® D, N)) ————— ¢ (G(B, M) =® G(D, N)) (17)

tr®
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Proof. By induction on
s € %(G(A@B,M)—®G(C®D,N))

we show that

tr® tr®

owi(s) = o wa(s)

In the base case, we have

s = ((e.(da,ap) » (e, (¢, p)))
with
wl(s) = ((ang) ) (qué)) and w2(5) = ((qu%) ) (€7qu))

and we are done since

tr® tr®

owi(s) = e = o wa(s)

For the induction, there are two cases:

O P
Case of s =t —— ((p,a,Y4a ®v8) 5 (P,a,7c ® ¥D)).
In this case,

@i(s) = @i(t) 32 ((p.a,74) s (9.a,7))
and wa(s) = wa(t) oA ((p,a,v8) , (p,a,vD))
Hence
tr®owi(s) = tr®ow(t)-a
and tr®owy(s) = tr®Pows(t)-a

and we are done since tr™® oy (t) = tr™® o wy(t) by induction hypothesis.

O P
Caseof s =t —— ((p-d,(qa,q98)) , (p-d,(qc,qp)))-
In this case,

@) = @)D (p-daa), (- dac))
and  wo(s) = walt) 35 ((p-digs) . (- d.ap))
Hence
tr®owi(s) = tr®ow(t) -d
and tr®owa(s) = tr®owa(t)-d

and we are done since tr™® o @y (t) = tr™® o wy(¢) by induction hypothesis.
<

» Remark. Note that Lem. 10.10 can not be extended to all plays of (G(A ® B, M) —® G(C ® D, N))
since tr™® is only defined on P-plays (see Rem 6.2.3).

Consider now the structure isomorphism in Set:
m : (AxB)x(CxD) — (AxC)x(BxD)

Note that m restricts to a bijection in Set/J: Given objects (4, g), (B, k), (C,k) and (D,1)
of Set/J, we have, in Set/.J

m : (AX.]B)XJ(CXJD) i) (AXJC)XJ(BXJD)
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» Lemma 10.11. In Set, we have
(HS xHS)oSP_y = mo(SP x SP)oHS
m

(2 (g(A®B7M)_®g(C®D7N)) — (pﬁ(AvM)XWE((:'?N))X(WE(BvM) XWE(IDJV))

In diagram:
ps(G(A® B,M) ®G(C®D,N)) = p(A® B, M) x px(C® D, N)
SP®l lSPxSP
(23 (g(A’ M) —® g(ch)) X P (g(BvM) —® g(DvN)) (@E(Av M) X pZ(Bv M)) X (@E(CvN) X @E(D»N)

HSXHS\L /
m

(p2(A, M) x p5(C, N)) x (px(B, M) x ps(D, N))
Proof. By induction on
te€pn(GA®B,M)—® G(C®D,N))
In the base case, we have
t = ((e.(da,an)), (5,(ac,9p)))
and we have
(HSxHS)oSP_g(t) = (((e,44): (e, q0)),((e,95), (£,9p))) = mo(SPxSP)oHS(t)

For the induction step, there are four cases.

Caseof t = s — ((p7 a,yA® 'YB) ) (pa (QC> Q’D)))'
We have

SPg(t) = (@i(t) = ((p.a,v4), (P, ac)) » @w2(t) = ((p,a,78), (p.qp)))
Hence (HS x HS) o SP_g(t) is

( (wl(s) rg(Aa M) - (pvaa’YA) ’ wl(s) fg(C,N) - (p,(Jc)) )
(’{DQ(S) rg(Bv M) - (pv aa'VB) ) wQ(S) rg(Da N) - (pa qD)) )

and (HS x HS) o SP_g(s) is

( (@(s)IG(A, M), @i(s)IG(C,N))
(WQ(S)TQ(BaM) ) WQ(S)TQ(DaN)) )

On the other hand,
HS(t) = (slG(A®B,M)— (p,a,va®y8) , sIG(C®D,N) = (p,(qc,qp)))
Hence, (SP x SP) o HS(t) is

( (wl(srg(A@)Bv M)) — (pvavlyA) ) w2(3fg(A®B»M)) — (pﬂl,’}’g))
(@1(s1G(C® D, N)) = (p,qc) ; @a(s]G(C®D,N)) = (p,gp)) )
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and (SP x SP) o HS(s) is

( (@(slG(A®B,M)) , wa(s|G(A® B, M)))
(@1(sIG(C®D,N)) , wa(s|G(C®D,N))) )

Now we are done since by induction hypothesis
(HS x HS) oSP_g(s) = mo (SP x SP) o HS(s)

Case of t = s — ((p,a,va®v8) , (P;a,vc ® D))
We have

SP@(t) = (wl(t) — ((p, av’YA)v (p7 CL,’YC)) ) ’Wz(t) — ((pﬂ av’YB)? (p7 a, ’Y’D)))
Hence (HS x HS) o SP_g(¢) is

( ( ( ) ( ) (p a,’Y_A) ) wl(s) fg(C»N) - (p7a770)) )
(w@2(s)1G(B, M) = (p,a,v8) , @2(s)IG(D,N) = (p,a,7p)) )
(

and (HS x HS) o SP_g(s) is

( (@i(s)1G(A, M)
(w2(s)1G(B, M)

On the other hand,

| @(s)IG(D,N)) )

HS(t) = (sIG(A®B,M)— (p,a,v4®75), sIG(C®D,N) = (p,a,vc ®yp))
Hence, (SP x SP) o HS(t) is

( (wl(srg(AéEB’ M)) - (p,a,’yA) ) WQ(STQ(-A@&M)) — (p7 aﬁB))
(@1(s|G(C®D,N)) = (p,a,vc) , w2(slG(C®D,N))— (p,a,7p)) )

and (SP x SP) o HS(s) is

( (@(slG(A®B,M)) , wa(s|G(A&® B, M)))
(w1 (s][G(C®D,N)) , wa(s|G(C®D,N))) )

Now we are done since by induction hypothesis

(HS x HS) o SP_g(s) = mo (SP x SP) o HS(s)
Case of t = s — ((p,a,va ®~8) , (p-d,(qc,qp)))-
We have
SP@(t) = (wl(t) - ((p,CL’Y_A), (p : d> QC)) ’ w?(t) — ((p7aa75)7 (p : d7 QD)))
Hence (HS x HS) o SP_g(t) is
( (@(s)IG(A M) = (p.a,va) , @1(s)IG(C,N) — (p-d,qc))
(w@2(s)1G(B, M) = (p,a,v8) , w2(s)[G(D,N) = (p-d.qp)) )

) =
and (HS x HS) o SP_g(s) is

( (m(S) ( M), @i(s)1G(C, N))
M) -,
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On the other hand,
HS(t) = (sIG(A®B, M)~ (p,a,7a®78), sIG(C®D,N) — (p-d.(qc.qp)))
Hence, (SP x SP) o HS(¢) is

( (wl(srg(A@)Bv M)) - (Pa@»’YA) ) wz(sfg(A@@B,M)) — (pvav'YB))
(@1(sIG(C®D,N)) = (p-d,ge) , w2(s|G(C®D,N)) = (p-d,qp)) )

and (SP x SP) o HS(s) is

(w1(s]G(C®D,N)) , was|G(C®D,N))) )

Now we are done since by induction hypothesis
(HS x HS) o SP_g(s) = mo (SP x SP) o HS(s)

Case of t = s — ((p -d, (QAa QB)) ) (p - d, (QCaQ‘D)))-
We have

SPo(t) = (=)= ((p-d,qa),(p-d.qc)) , wa2(t) = ((p-d,q8), (p-d,qp)))
Hence (HS x HS) o SP_g(t) is

( (wl(s) rg(Av M) - (p . da QA) ) wl(s) fg(ch) - (p : da QC)) )
(w2(s)IG(B, M) = (p-d,q8) , w2(s)IG(D,N) = (p-d,qp)) )

and (HS x HS) o SP_g(s) is

( (wl(s)rg(A7M) ’ wl(s)rg(C?N)) )
(w2(s)[G(B, M), @2(s)[G(D,N)) )

On the other hand,
HS(t) = (sIG(A®B,M)— (p-d,(q4,48)), sIG(C®D,N) — (p-d,(qc,qp)))
Hence, (SP x SP) o HS(?) is

( (@(slG(A@B,M)) = (p-d,qa) , @2(s|G(A®B,M)) = (p-d,qs))
(@1(sIG(C®D,N)) = (p-dige) , wa(s|G(C®D,N)) = (p-d,qp)) )

and (SP x SP) o HS(s) is

(w1(s]G(C®D,N)) , was|G(C®D,N))) )

Now we are done since by induction hypothesis

(HS x HS) o SP_g(s) = mo (SP x SP) o HS(s)
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10.6 Action on Strategies of the Synchronous Monoidal Product

We now define the action of _ ® __ on strategies. As above, in the whole Section, we assume
given complete automata A, B, C and D. Consider

YFo:G(AM)-®G(C,N) and Y+HO:G(B,M)—®G(D,N)
By Lem. 10.10, we have
SPs (p5[G(A®@B.M) ®G(C®D,N)|) < pf(G(A M) —® G(C,N))xmy 0% (G(B, M) ~® G(D, N))
Now, since
o C PR(GAM)—®G(C,N)) and 6 C %GB, M)-®G(D,N))
we have
SP=l(o,7) C W3 (G(A®B,M)—®G(C®D,N))
» Definition 10.12. Given
YFo:G(AM)—®G(CC,N) and X+60:G(B,M)—-® G(D,N)
define
Yro®b:G(A®B,M)®G(C®D,N)
as
o®f := SP7i(0,0)
» Proposition 10.13. Consider
YFo:G(AM)—®G(C,N) and YHO:G(B,M)—® G(D,N)

(i) Sro®0:G(A®B,M)—®G(C®D,N)
(i) If o and T are both total then o ® T is total.
(iii) If o and T are both morphisms of m;v (resp. §A\G§), then o ® T is a morphism of
S/AE;V (resp. S/AES)
Proof. We show (i) that o ® 7 is a synchronous strategy, (ii) that ¢ ® 7 is total when o

and 7 are both total, and (iii) that o ® 7 is winning w.r.t. —® as soon as ¢ and 7 are both
winning w.r.t. —=® (resp. ®®).

(i) We have to show that o ® 7 is a P-deterministic P-prefix-closed set of negative P-plays.
The last point is ensured (via Lem. 10.10) by construction of o ®7, and P-prefix-closure
follows from the fact that w; and wy are length-preserving.

It remains to check that ¢ ® 7 is P-deterministic. There are two cases to consider.
Assume that o ® 7 contains the two following plays

(0] P

s = ((p,a,ya®8) , (p,(ac,ap))) = ((p;a,va ®¥8) , (D,a,7c ® D))
(0] P

s = ((pa,va®v8) , (p,(ge,9p))) = ((p,a, 4 ®5) , (a7 ® D))

By construction, the two following plays belong to o

@1(5) > ((pay74) 5 (prae)) = ((p,a,74)  (9,a,7¢))
@1(5) > ((pa,74) 5 (prae)) = (0, a,74) 5 (9,a,75))

hence ¢ = . by P-determinism of o.
We similarly get vp = v}, (using 7 instead of o).
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Assume that o ® 7 contains the two following plays

s S (pava®s), (0-d,(ac.ap)) > (p-d. (qa.a5)) , (0 d.(qc.ap)))

s S ((pava®s) s (0-d,(ac.ap)) 2 (p-d. (¢ as)) » (0 d. (ac.ap)))

By construction, the two following plays belong to o

@1(s) 3 ((pa,v4) , (p-drae)) = ((p-doqa) , (p-dyqc))
@1(s) S (0, 74) » (p-dge)) B ((p-doda) , (p-dsgc))

o Jo

hence g4 = ¢/, by P-determinism of o.
We similarly get gg = ¢jz (using 7 instead of o).
(ii) We check that o ® 7 is total as soon as o and 7 are total.
So consider a play s € 0 ® T extended by some O-move, say:

s 2 ((p,a,vya®v8) , (p,(gc.qp)))

By construction, we have

@i(s) 3 ((pava), (pae) €o
@a(s) > ((pas), (pap) €7

By totality of ¢ and 7, for some P-moves, we have

lo Jo

(pra,va) s (0ae) 5 ((payva) s (Bayye)) € o
(p.a.78) . (ap)) = ((pays) . (payp) € 7

By construction of o ® 7, we conclude:

O P
s = ((pa,ya®y8), (p;(gc,9p))) —  ((P;a,v74®78), (p,a,%c®yp)) € o®T

The other possiblity is that

s S (paya®ys), (p-d (g qp))

By construction, we have

@i(s) S (pava), (p-dige)) €0

@(s) 3 ((pas), (prdap) €7

By totality of ¢ and 7, for some P-moves, we have
@i(s) S ((paya). p-da)) > ((p-daa), (p-da) € o
@a(s) 5 ((paw). (-dap) & ((p-das), (p-dap) € 7

By construction of o ® 7, we conclude:

s % ((n,a,74®78) , (0d,(ac.ap)) = ((0°d,(aa,48)) , (0-d. (gc,qp))) € o®T

(iii) Consider now an infinite play = of o ® 7. By construction of —® and &-®, the pro-
jections of 7 on p(A® B, M) and p(C ® D, N) must be both infinite. Let (¢, ¢)nen
be the projection of 7 on the states of A® B (resp. A ®= B) and (¢7, ¢})nen be its
projection on the states of C ® D (resp. C ®= D).
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Consider first the case of ¢ and 7 morphisms of mg (i.e. both winning w.r.t.
—®). If (¢4, q%)nen € Qaen, then we have both (¢4)nen € Q4 and (¢g)nen € Q5.
By assumption on o and 7, this implies (¢3)nen € Q¢ and (¢B)nen € p, hence
(4¢+ ap)nen € Qeap,

_—R
Consider now the case of reduction games, that is of ¢ and 7 both morphisms of SAGy;.
We have to show

(04 aB)nen € Que_B <= (4¢,9p)nen € Qeco-p
that is
[(Ch)nen € Qa = (@B)nen €8] = [(@)nen € Qe = (¢D)nen € Qp]
under the assumptions
[()nen € = (@€)nen €] and  [(gg)nen €28 <= (¢p)nen € Qp]

But this is a propositional tautology. |

10.7 Universal Properties

As above, in the whole Section, we assume given complete automata A, B, C and D.
Similarly to what we have done with Prop. 7.11 in Sect. 7.3, we are now going to show
that diagram (17) of Lem. 10.10 is actually a pullback diagram. That is:

o8 (G(A® B, M) —® G(C @D, N)) —=—— o8 (G(B,M) —-® G(D, N)) (18)
p?} (g('A= M) —® Q(C, N)) P TIE

Simlarly as for Prop. 7.11, we will use the pullback lemma (see e.g. [12, Exercise 1.5.5, p.
30]).

» Lemma 10.14. [f

B_I—>F77F B F——F
D——F D——F
then
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Proof. By applying the pullback lemma to

A——C——=F and

.

B F T_,—>F
we get

P

and we conclude by a second application of the pullback lemma to

Il

In order to obtain (18) we will apply Lem. 10.14, with

tr®

o2 (G(A, M) —® G(C,N)) = Try  and & (G(B, M) —® G(D,N)) > o(B, M) x1vy, (D, N)

.| - |

(A, M) X1y, p(C, N) — Try, Try, Try;

for respectively

T—'*) F  and

D——F

F _—— F
It remains to show

OP (G(A® B, M) —® G(C ® D, N)) — == o(B, M) x1vy, (D, N) (19)

_
HSow i J{

9(A, M) X1y, 9(C, N) Try,

Thanks to Lem. 10.11, property (19) will follow from
» Lemma 10.15. SP? 0 HS is a bijection from

o5 (G(A® B,M) -® G(C®D,N))
to

(9(A, M) X1ry, (B, M)) X5 (9(C, N) Xy, 9(D, N))
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Proof. First, it follows from Cor. 6.7 that HS is a bijection from
o5 (G(A® B, M) — G(C® D, N))
to
p(A® B, M) X1y, p(C®D,N)
Then we are done since by Prop. 10.9 the following maps are bijections:

SP : pA®B, M) — (A M) Xy p(B,M)
SP : p({C®D,N) — p(C,N) X1vs (D, N)

» Lemma 10.16. In Set,

o (G(A® B, M) —® G(C ® D, N)) — 2~ (B, M) X1y, (D, N)

|
HSOWl\L l

p(Av M) XTrg p(cv N) Try

Proof. Commutation the diagram follows from Lem. 10.10 and Prop. 6.4.
We have to show that HS? o SP is a bijection from

% (G(A® B, M) —® G(C® D, N))
to

(9(A, M) X1ry 9(C, N)) X1y, (9(B, M) X1y, 9(D, N))
By Lem. 10.15 the map SP? o HS is a bijection from

9% (G(A® B,M) ~® G(C ® D, N))
to

(p(A, M) X1y, (B, M)) X1rs, (9(C, N) X1y (D, N))

Now we are done since the structure map m restricts to a bijection in Set/Try:

(9(A, M) Xmry, (B, M)) X1y, (9(C, N) X1, (D, N))  —
(@(Av M) X Trg @(C,N)) XTry (K)(Bv M) XTrg p(’DvN))

We thus have shown

» Proposition 10.17. In Set,
9% (G(A® B, M) —® G(C® D, N)) 9% (G(B, M) —® G(D, N))

_
wll \Ltr®

tr®

<
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10.8 Characterization of the action of _ ® _ on Strategies

As above, in the whole Section, we assume given complete automata A, B, C and D.
Thanks to the HS functor (see Prop. 6.3)

HS : SAGy — Rel(Set/Try)

we relate the action of _ ® _ on strategies to the tensorial product _ ®  of Rel(Set/Try).
Consider

YFo:G(AM)—®G(C,N) and X+0:G(B,M)—-®G(D,N)
Note that
HS(c@®1) C ps(A®B,M) X1y ps(C®D,N)
Recall that by Prop. 10.9 we have a bijection
SP : ps(A®@B,M) =  ps(A M) xny, ps(B, M)
We thus have, in Set,
(SPxSP)oHS(c®7) C [px(A M) XTry px(B, M)] X1vy; [p5(C, N) X1y, 052(D, N)]
In other words:
(SPxSP)oHS(c®7) : ps(AM)®ps(B, M) —+/my 9=(C,M)® ps(B,N)

On the other hand, we have

HS(o) : ps(A M) —+=/m, es(C,M) and  HS(r) : ps(B,M) —/my
hence

HS(o) @ HS(7) ' ps(AM)®@ps(B,M) —/my  os(C,M)® ps(B,N)
» Lemma 10.18. m ' o (HS x HS)oSP g(oc®7) = HS(0c)® HS(7)

Proof. Recall that
HS(o) @ HS(1) € (p=(A M) ® ps(B, M)) X1y (px(C, N) @ ps(D, N))
and consider
((s,1), (u,v)) € (pu(A, M) @ ps(B, M)) X1y, (92(C, N) © px(D, N))
Note that
tr(s) = tr(t) = tr(uw) = tr(v)
By definition of the action of _ ® _ on morphisms of Rel(Set/Try), we have
((s,1), (u,v)) € HS(0) @ HS(7)
if and only if

(s,u) € HS(o) and (t,v) € HS(7)

os(

D, M
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if and only if there are

a€ps(G(A M) —®G(C,N)) and be pxn(G(B,M)—® G(D,N))
such that

HS(a) = (s,u) and HS(b) =(t,v) and a€oc and beT

if and only if (by Prop. 10.17, by definition of o ® 7, and since tr(s) = tr(t) = tr(u) = tr(v))
there is

ceo®r C ol (G(A®B, M) —® G(C®D,N))
such that SP_g(c) = (a, b). <
» Proposition 10.19. (SP x SP) o HS(c ® 7) = HS(0) ® HS(7).
Proof. By Let. 10.18 we have
(HS x HS) o SP g(oc®7) = mo (HS(o)® HS(7))
On the other hand, by Lem. 10.11 we have
(HSx HS)oSP _g(c®7) = mo (SP xSP)oHS(c®T)

and we are done since m is a bijection. |

10.9 Uniform Bifunctoriality

- . . s . g =(W/R) =—=(W/R)
» Proposition 10.20 (Uniform Bifunctoriality of _ ® _ in SAGy, = ). In SAGy, :

(i) Given ¥+ G(A, M) and X+ G(B, M), we have
daa ®idsayy = 1duesm)
mn
YFGA®B M) — SFGA®B,M)
(i) Given
YFG(A, M) 2 E2FRG(ALN) % SEG(AyP)
and
YFGBy, M) % 2FGB,N) 5 XFG(B,,P)
we have
(o1000)®(T1079) = (01 ®71)0 (00 ® 7))
mn

SFG(Ao®Bo, M) — S FG(As® Bo, P)
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Proof. (i) By Prop. 10.19, we have

SP? o HS(id(,ar) ® id(s,0r)) =  HS(id(a,ar)) © HS(id(s,01))
By functoriality of HS (Prop. 4.11) we deduce
SP2 OHS(id(A7M) ®id(B,M)) = 1@2(A,M) ® 1@2(B,M)
where 1, a,a) and 1,3 ar) are the identity relations on px(A, M) and px(B, M).
By bifunctoriality of _ ® _ in Rel(Set/Try) (Prop. 10.1) we get
SP? o HS(ida ) ®ids.an) = low(Ad)@es(5.1)
On the other hand, again by functoriality of HS (Prop. 4.11) we have
SP2 o HS(id(A®B,M)) = SPQ(lp(A®B7M))
where
LoaeBm) € p(A® B, M) X1y, p(A® B, M)

is the identity relation.
Note that by definition of SP and of 1, 4es5,1r) We have

((Sat)7 (ua U)) € SPz(lp(A@QB,M))
if and only if there is a € p(A® B, M) such that SP(a) = (s,t) = (u,v). It then
follows from Prop. 10.9 that

SP2(1p(A®B,M)) = {((S,t), (S,t)) | (S7t) € Q(A7 M) X Tryy W(Bv M)}
{((5,2),(s,1)) | (5,1) € p(A, M) ® (B, M)}
= loameensm)

Hence we are done since

SP*(Lpaes.an) = loamneeB.an
By Prop. 10.19, we have
SP? o HS ((c1000)®(11079)) = HS(01000) ®HS(11 079)

By functoriality of HS (Prop. 4.10) we deduce
SP2oHS ((01000) ® (1 07)) = (HS(01) 0 HS(00)) @ (HS(r1) o HS(70))

and by bifunctoriality of _ ®__in Rel(Set/Try) (Prop. 10.1) we get (where composition
on the right is in Rel(Set/Try)):

SPQOHS((Jloo'())@(Tl OT())) = (HS(O’l)@HS(Tl))O(HS(Uo)®HS(T()))
By Prop. 10.19 again, we deduce
SP? 0 HS ((01 0 09) ® (11 0 70))

[SP2(HS(01 @® 71))] o [SP?(HS(00 ® 70))]

Since the maps SP are bijections (Prop. 10.9), it follows from Lem. 10.6 the family of
maps SP? = SP x SP preserves relational composition, hence

SP?oHS ((61009) ® (T1079)) = SP? (HS(0y ® 71) o HS(0p ® 7))
and again by functoriality of HS (Prop. 4.10) we obtain
SPQOHS((Uloao)@)(Tl OT())) = SPZOHS((O'1®T1)O(O'0®T0))

Now we are done since SP?oHS is bijective on plays of strategies, thanks to Lem. 4.6. (i)
and Prop. 10.9. <
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10.10 Structure Maps and Coherence

We now provide the synchronous product with symmetric monoidal structure.

As explained above, for the moment we only discuss the first partial variant of _ —® _,
which only deals-with acceptance games ¥ + G(A, M) and ¥ + G(B, M) with the same
substituted tree M. As above, we only consider complete automata.

We build on the monoidal structure of Rel(Set/.J) (see Sect. 10.1, in part. Lem. 10.3
and Prop. 10.4).

The natural structure maps of _ & __ will be defined from those of Rel(Set/J) in a way
similar to the definition of the identity strategy via from the identity synchronuous relation
in Prop. 4.11.

10.10.1 Monoidal Unit.

For the monoidal unit of alphabet ¥ we will take the game
Y FG(Z,1dy)

Recall that

1= (QI7qZIa6I7QI)

where the state set if Q7 = 1 = {o}, the initial state is ¢% = e, the transition function is
dr(qz,a) = {{(¢7,d) | de D}} forall a € ¥

and the acceptance condition is Qz := {¢%}*.
In the following, it will be at some point notationally convenient to use the game ¥ F
G(Z, M) as monoidal unit (rather than ¥ F G(Z,1ds). We actually have:

» Lemma 10.21. X+ G(Z, M) = S+ G(Z,1d)

Proof. The positions of the two games are the same, as well as the O-labelled edges. The
same holds for the P-labelled edges, since the transition function of Z is constant. |

Recall from Sect. 10.1 that in Rel(Set/Try), the unit of the monoidal product — ®
must be an object of the form I —» Try,. The corresponding property holds for Z, namely
tr: pu(Z, M) ~ Try, in Set.

» Proposition 10.22. Given M € Tree[X, T, we have, in Set,

tr : ps(Z,M) = Try
Proof. We first show that tr is injective. Note that if tr(s) = tr(t), then s and ¢ must have
the same length and end by the same kind of moves. We thus show by induction on |s| = |¢|
that tr(s) = tr(¢) implies s = ¢.

In the case case, we have |s| = |¢t| = 0 and we are done since we must have

s = (g¢7) =

For the inductive step, there are two cases:
Case of s = s’ — (p,a,y) and t =t' — (p',a’,v")

Then tr(s) = tr(t) implies @ = @/, and by Lem. 6.1 we also get p = p'.
We moreover have v = +/ since dz(¢%,b) is always a singletton, and we conclude by
induction hypothesis, since tr(s) = tr(¢) implies tr(s’) = tr(t’).

95
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Caseof s=s"— (p-d,qg%) andt =t' — (p’-d’,q%)
Then tr(s) = tr(¢) implies d = d’ and by Lem. 6.1 we moreover get p = p'.
We can then conclude by induction hypothesis, since tr(s) = tr(¢) implies tr(s’) = tr(¢').

We now show that tr is surjective, i.e. that for all trace
teTry, = (2-D)+(X-D)"-%

there is s € px(Z, M) such that tr(s) = ¢t. We reason by induction on ¢. For the base case
t = ¢, we take s := (e,¢%). For the induction step, there are two cases:

Case of t = t’ - a. By induction hypothesis, there is s’ such that tr(s’) = ¢’. But in this
case, s’ must be of the form

s 2= (p,dy)

Since d7 is constant, it follows that we are done by taking
s = 5 (paav")/) € @E(I, M)

Case of t = t’ - d. By induction hypothesis, there is s’ such that tr(s’) = ¢'. Then s is of
the form

!

s %= (pya,”)
Now, by definition of dz, we have (g%, d) € v, hence we are done by taking:
s = §—=(p-dgr)eps(Z,M)
<

» Remark. Note that Prop. 10.22 fails for the unit automata X - L (see also Sect. 13.2): tr
is not injective since we can have two distinct v and " in d.(_, ).

Moreover, w.r.t. surjectivity, for the case of t = t’-d, not every play s’ of L with tr(s’) =¢
can be extended to a play s such that tr(s) = t.

10.10.2 Symmetric Monoidal Structure Maps.

Consider X - G(A, M), ¥+ G(B,M), and ¥ + G(C, M), where A, B and C are complete
auotmata.

Proposition 10.4 provides us with a symmetric monoidal structure in Rel(Set/Try) for
_ ® __ with (thanks to Prop. 10.22) unit p(Z, M):

Oeé.A,l;ﬁ’,C : (@(th)@p(B,M))@p(C,M) ——Try @(AvM)(X)(@(BvM)@p(C»M))
Aa (I, M) p(A,M)  —ny  p(A M)
pa PAM) @ (I, M)  —ny oA M)
'?.A,B : @(A’M)®W(B7M) 7 Trs p(B,M)@p(A,M)

Recall that by construction we have
(EFGAM))®(XFGB M) e (XFG(C M) = X-G(AeB)®C, M)

and similarly for G(A® (B®C), M).
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Moreover by Prop. 10.9 we have bijections

((SP x 1) x (1 x SP)) o (SP x SP)
p@((A@B)®C,M)) x p(GA®(B®C),M)) —
(p(A, M) @ p(B,M)) @ p(C,M) x (A, M) (p(B, M) pC,M))

(SP x 1)
p(GZ®A M) x p(G(A M) —
(I, M) @ p(A, M) x  p(A M)

(SP x 1)
p(GASI M) x p(G(A M) —
W(Av M) ® p(Z, M) x @(A’ M)

(SP x SP)
pGA®B,M)) x p(GB®A M) —
p(A,M)@p(B,M) X p(B,M)@p(.A,M)

Now, thanks to Lem. 10.2, Prop. 6.12 gives us total isomorphisms

aase  G(A®B)®C,M) —gza G(A®B&C),M)
Aa GI®AM) —gzg, YWAM)
pPA GA®LM) —gzg, YGAM)
YAB GA®B M) —gzg, Y9B®AM)
such that
&aBC ((SP x 1) x (1 x SP)) o (SP X SP) oHS(OzA’B’c)
A = (SPx1)oHS(A4)
pa = (SPx1)oHS(pa)
Ya,8 (SP x SP) o HS(7.4,5)

R
» Lemma 10.23. The above strategies are isomorphisms of SAGZ W ).

Proof. Since totality was ensured by Prop. 6.12, we only have to check that these strategies

_— W _—R
are winning w.r.t. their respective winning conditions in SAGy, and SAGy,. Similarly as
with Prop. 10.13, expanding the winning conditions gives propositionnal tautologies. Note

_—R
that for the associativity maps &, winning w.r.t. SAGy, requires classical logic.

10.10.3 Naturality and Coherence.

» Lemma 10.24. The maps aapc, Aa, pa and ya are natural in A, B and C (when

applicable).
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Proof. For
asge : G(AeB)®C,M) — GA®B®C),M)
given
o:G(A M) — GA',M") T:G(B,M)— G(B', M) 6:G(C,M)— G(C',M")
we have to show that
aprpco(lc@®r)®l) = (c®(T®0)oaanc
By Cor. 6.7 and Prop. 10.9 we have a bijection
((SP x 1) x (1 x SP)) o (SP x SP) o HS

Hence, by Prop. 4.10 it suffices to show (where the outer compositions are taken in Set/J
and the inner in Rel(Set/J))

((SP x 1) x (1 x SP)) o (SP x SP) (HS(cvar grc/) oHS((c®7) ® 0)) =
((SP x 1) x (1 x SP)) o (SP x SP) (HS(c ® (T ® 0)) o HS(awa 5,c))

We now perform four applications of Lem. 10.6 (relational composition by maps with central
bijections), with central bijections. The first two ones are consecutively performed in the 1.-
h.s., with central bijections SP and then (SP x 1). The last two are consecutively performed
in the r.-h.s., with central bijections SP and then (1 x SP).

By defintion of a_ _ _, we are left to show (where the outer compositions are taken in
Rel(Set/.J) and the inner in Set/.J)

aqp e o[((SPx1)x (SPx1))o(SPxSP)oHS((c®7)®0)] =
[((1 xSP) x (1 xSP))o (SP xSP)oHS(c ® (T ®80))] o vanc

But now, by Prop. 10.19, and because Cartesian products of maps of Set/Try commute
over _ ® _ (Lem. 10.5) we have

(SPx1) x (SPx1))o(SP xSP)oHS((c®T1)®¥0)
(SP x 1) x (SP x 1)) [HS(c ® 7) @ HS(9)]

SP x SP)oHS(c ® 7) ® (1 x 1) o HS(0)

HS(0) ® HS(7)) ® HS(0)

PR

and

((1 xSP) x (1 x SP)) o (SP x SP) o HS(¢0 ® (T ® 6))
= ((1 x SP) x (1 x SP)) [HS(0) ® HS(T ® 6)]

(1 x1)oHS(0)® (SP x SP) o HS(T ® 0)
= HS(o) ® (HS(7) ® HS(0))

and we conclude by Lem. 10.3.
The case of

YAB : g(A®B7M) — g(B®A7M)

can be handled similarly.
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For
Aa : GZ®AM) — GAM)
given
o:G(A M) — G(A', M)
we have to show
Ago(idz®o) = ocola
We proceed similarly as with o above. Thanks to the bijection
(SP x 1) o HS

it is sufficient to show

(SPx 1)oHS(Agr 0o (idz ®0)) = (SPx1)oHS(coAa)
that is
(SP x 1)(HS(\u) o HS(idz ® ) = (SP x 1)(HS(o) o HS(Aa'))

We now apply Lem. 10.6, with, as central bijections, SP on the l.-h.s. and 1 on the r.-h.s.
By defintion of A_, we are left to show

A o (HS(idz) @ HS(0)) = HS(0)oAa

And we are done by Prop. 4.11 and Lem. 10.3.
The case of p4 can be dealt-with similarly. |

Can be shown using the same techniques as for Lem. 10.24, but relying on Prop. 10.4 instead
of Lem. 10.3, we can show that the expected coherence digrams are satisfied by the maps
Q=) (=), (=) AM(=)s P(—) and vy (). As in Prop 10.4 above, we only discuss the diagrams
required by [16].

» Lemma 10.25.

(1) aaB,cep) © tasB,c,p = (ida ® asep) o a4 Bec),p © (@a,5c ®idp)
mn

G((A®B)®C) @ D), M) —gzen  G(A® (B®(C®D)),M)

(it) (ida ® Aa) o aaz,B = pa®idp

m

G(A®I)® B, M) —>S<AE;W> GA®B,M)

(iii) ap.c.a° (VaBec)) o aasc = (ids ®vac) o as.aco (Va8 ®ide)
mn

Gl(A®B)®C, M) —gaal" GB®(C®A),M)

() v8,4 = (van)™"
mn

G(B® A, M) —>m(2w) GA® B, M)
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11 Symmetric Monoidal Fibrations of Games and Automata

In this section, we define a synchronous product _ ® _ and show that substitutions restrict
to split indexed symmetric monoidal categories (in the sense of [21]):

(=) : Alph”® — SymMonCat
(=) : Tree®® — SymMonCat

leading to symmetric monoidal fibrations.

11.1 Symmetric Monoidal Categories of Automata

— (W
We first discuss the symmetric monoidal structure of the categories Aut(z )

The bifunctoriality of _ ® _ directly follows from Prop. 10.13 and Prop. 10.20. The

— (W
monoidal unit of Aut(z ) is ¥ F Z, and the symmetric monoidal structure maps are as
follows, following Sect. 10.10.2:

asse : G((A®B)®C,M) —SAGs GA® (B®C), M)
A GZ®AM) —gag, GAM)
pa GASI,M) —gag, GAM)
YAB GA®B M) —gra, GB®AM)

Hence, using Lem. 10.23, Lem. 10.24 and Lem. 10.25 we get

—_— _ W
» Proposition 11.1 (Symmetric Monoidal Structure in Auty). The categories Aut(E ), equipped
with the above data, are symmetric monoidal.

11.2 Compatibility of the Synchronuous Product with Substitution

In this Section, we discuss the compatibility with substitution of the partial version of the
monoidal product _ ® . This will give the symmetric monoidal structure of the categories
of acceptance games, as well as the strict symmetric monoidality of substitution.

Recall that a (strong) symmetric monoidal functor F : (C,®,u) — (D, e, e) comes with
natural isomorphisms

m®:e— F(u) and m2A7B :F(A)e F(B) — F(A® B)
subject to some coherence diagram (see e.g. [16]). Note that naturality means that for all
f €C[A,C], g € C[B, D], we have

2

F(A) e F(B) — 2" F(A B)

F(f)oF(g)l lF(f®g)
m2
F(C)e F(D) —=2+ F(C ® D)
In our cases, we will define, for ¥ + G(A, M) and X F G(B, M), the action of synchronous
product as

EFGAM))®EFGB,M) = XFGA®B,M)
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from which we immediatelly get, for L € Tree[l, 3]
L*ECFGAM)®XHGB, M) = L'EFGAM)®L (XFGB,M))

It will follow that the mediating maps mQ_’_ are identities.
As for the units, recall from Lem. 10.21 that we have

L*(SFG(IZ, M) = THGEI MoL) = TFG(ZIdp)

Moreover, the strategies a— _ _, v— _, A_ and p_, from which structure maps will be
defined, are preserved by substitution.

The following gathers all the relevant properties we will need to obtain strong symmetric
monoidal fibrations:

» Proposition 11.2. Consider L € Tree[l', X].
(i) We have

L*(S+G(Z,1d) = TF+G(Z,1dr)
(ii) We have

L(SFGA M) ®(SHGB,M)) = L*(SFG(A M) ®L* S+ G(B,M))
(iii) Given

Sko:GAM)-®GC,N) and SF0:G(B,M)—®G(D,N)

we have

L'o®0) = L*(o)®L*(0)

(iv) Given

SEGA M)  SEGB,M) SEGC M)

we have
L (ova,nn) B M),(C,M)) = Q(AMoL),(B,MoL),(C,MoL)
()\(A M)) = )‘(.A,JVIOL)
(P(A M) = P(AMoL)
L*(va,m),8,m)) = V(AMoL),(B,MoL)

Proof of Prop. 11.2.(i). Recall from Lem. 10.21 that we have

L*(SFG(IZ, M) = TrGEI MoL) = TFG(ZIdr)

Proof of Prop. 11.2.(ii). By definition we have

LY((SFGAM)®(SFG(B,M)) = L*(SFGA®B M)
I'HG(A®B,MoL)

(TFG(A,MoL)® T+ G(B, Mo L))

= L*(SFGUMoL)®LSFG(B,MoL))

|

101



102 Fibrations of Tree Automata

11.2.0.1 Poof of Prop. 11.2.(iii).

For Prop. 11.2.(iii) we rely on the following simple property:

» Lemma 11.3. We have in Set (and similarly for ws):
pr(A®B,MoL)—® (C®D,M o L))

S

o(L) e or (A, MoL)—® (C,MoL))

ps (A®B,M) - (C® D, M)) (L)
\
s (A, M) —& (C, M))

Proof. By induction on

sepr((A®@B,MoL)-® (C®D,Mo L))
For the base case, we have

s = (&g ) 5 (5 (ae 9p)))
and we are done since

mop(l)wls) = ((&dd), () = ol)eoml(s)

For the inductive step, there are four cases:
o) i
Caseof s =1 — ((p’ a,YA® '73) ) (p7 (QCa Q’D)))

We have
p(L)w(s) = L)) — ((p,Lp)(a),va®8), (p,(qc,9D)))
mop(l)e(s) = wmop(l)w)— ((p Lk (a)ra), (pq))
and
wi(s) = @)= ((pa,v4), P ac))
p(L)gowi(s) = p(L)-gow(t)— ((p,Lp)(a),v4), (p.qc))

and we conclude by induction hypothesis.

P
Case of s =t — ((p,a,Y4a ®v8) 5 (P,a,7c ® vD))-

We have
p(L)-s(s) = L)) = ((p,L(p)(a),ya®8) , (p,L(p)(a),7c ® D))
wiop(l)w(s) = wop(l)w)— ((p,Lp)(a),v4), (p,Lp)(a), )
and
wi(s) = wi(t) = (p,a;74)  (pa,c))
p(L)gowi(s) = p(L)-gowi(t)—= ((p,L(p)(a),74), (p,L(p)(a),c))

and we conclude by induction hypothesis.
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o
Case of s =t — ((p7 a,YA® 73) ’ (p ° d7 (qCv Q’D)))
We have
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( )( )7’7./4@'73)7 (p'dv (QC7QD)))

p(L) - (s) p(L)-s(t) = ((p,
10p(L)-g(s) = w@iop(Ll)wt)— ((pLp(a)va), (p-dqc))
and
wi(s) = @)= ((pa,va), (p-dqc))

pl)eowm(s) = p(L)eom(t)—

and we conclude by induction hypothesis.

P
Case of s =t — ((p : da (qA7 qB)) ’ (p : d7 (q07qD)))'
We have

p(L)-s(t
@1 0 p(L)-e(t) =

w1(t) = ((p-d,qa) ,
o(L) @ o w1(t) —

wi(s) =
p(L)-gowi(s) =

and we conclude by induction hypothesis.
Proof of Prop. 11.2.(iii). We show that
seL*(o®0) iff seL*(o)® L*(0)
for all
seph(GA®B MoL)-®G(C®D,NolL))

By definition of L*(o & 7), we have

sel*(o®0) iff p(L)g(s)co®b
iff  SPop(L)e(s) € (0,0)
On the other hand, we have:

se L*(o)® L*(0) iff
iff (L)%

SP(s) € (L* (o), L*(6))
0 SP(s) € (0,0)

and we are done since it follows from Lem. 11.3 that
o SP(s)

SPop(L) s(s) = ¢(L)

11.2.0.2 Poof of Prop. 11.2.(iv).

We rely on the following simple commutation lemma:

(p-d,qc))
((p-d,qa),

((p, L(p)(a),va) , (p-d,qc))

)= ((p-d,(qa,q8)) , (p-d,(qc,qp)))
((p-d;qa) , (p-d;qe))

(p-d,qc))
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» Lemma 11.4. Consider L € Tree[l', X].

r(A®B,Mo L) pr(B,MoL)
AMOL A®3M4>923M
w1 tr
o(L)
pE(AaM) o TTZ
Proof. We show
©(L)
pr(A@B,MOL) pg(A@B,M)
pF(A7MOL) o(L) pZ(A7M)

The other diagram (involving B instead of A) is shown similarly. Commutation of the
lower-left diagramm, which is not essential here, follows from Prop10.9.
We reason by induction on

s€pr(A®B,MolL)
The base case
s = (6(daap)
is trivial since
pL)owi(s) = (5.q4) = @iop(L)(s)

For the induction step, there are two cases:
Caseof s = t > (pya,va ®vg).
By definition of A ® B, we have

Y4 € 64(qa, M o L(a)) and 75 € d5(qs, M o L(a))
with

t = &e—="(p(qa q8))
It follows that

YA ® 5 € daw5((q4,98), M (p)(L(p)(a)))

hence

o(L)(s) = L)) S (p, L(p)(a), 74 ® 15)
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and

@rop(L)(s) =
On the other hand, we have

p(L)owi(s) =

w o p(L)(t) 9

p(L) 0w (t)

(p, L(p)(a),va)

2 (p, L(a), qa)

and we are done since by induction hypothesis we have

w@iop(L)(t) =

P(L) o w1 (s)

P
Caseof s = t — (p-d,(qa,qn))-
We directly conclude from the induction hypothesis since

wiop(L)(s) =

and

p(L)owi(s) =

wy o p(L)(t) 9

p(L) 0wy (t) S

(p -d, q.A)

(p : da q.A)

Proof of Prop. 11.2.(iv). We have to show that given

YHG(AM) SHG(B,M

we have

L* (o a,m),(8,Mm),(C,M))
L*(Na,nn))
L*(panmy) =
L*(y(a,m),8,Mm))
By Lem.4.6.(ii) (or Cor. 6.

HS(L* (o, nry, (B, (C,0)

7)

)

HS(L* (Aaan)

)

HS(L" (v )

By Lem. 8.3 this is equivalent to
(L) L)1) o BS) o

) Y EGCC,M)

Q(A,MoL),(B,MoL),(C,MoL)
)‘(.A,MOL)

P(A,MoL)
Y(A,MoL),(B,MoL)

it is sufficient to show
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= HS( (A,MoL),(B, MoL),(C,MoL))

()‘(.A MoL))
= (P(A MoL))
HS(y( )i

Y(A,MoL),(B MoL))

QU(A,MoL),(B,MoL),(C,MoL))

(c.0)) HS(
((p(L)~! x p(L)~ ) oH )()‘(A M) = ()‘(A MoL))
(L)t x p(L)~") o HS)(pany) = HS(peamor))
((p(L)~" x p(L ) 1) o HS) ((a,a1),(8,01)) HS(Y(a,MoL),(B,MoL))
We now claim that in this situation we have
SPop(L)™' = (p(L)~' x p(L)"!)oSP

Proof. The inclusion SP o p(L)™! C (p(L)™! x p(L)~1) o SP

directly follows from the commutation of the diagram of Lem. 11.4.

For the other incusion (p(L)™! x p(L)™1) o SP C SP o p(L)~! we rely on the universal
properties Prop. 7.7 and Prop. 10.9 and the fact that SP preserves the traces. |

We can then conclude using the definition of the maps a(_) ) ), A, p—) and
Y(=),(~), and again using Prop. 7.7.
<
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11.3 Symmetric Monoidal Fibrations of Acceptance Games
W)

We now give the symmetric monoidal structure to the categories m;
On objects, we let
(S+GAM)® (EFGBN) = TGl B[], (M,N))
where X4 A and ¥ - B and 7 and 7’ are suitable projections:
m € Alph[X 4 X X5, ¥ 4] 7' € Alph[¥ 4 X ¥, 5]
For the action on morphisms, consider
S G(Ag, My) = X FG(AL M)
and
Y FG(By,No) - SEG(Bi,N)
where, in Tree,
My: ¥ — 3 My : ¥ — 3 No:¥ =Ty Ny : ¥ =Ty
We define
o®T = (EFG(Ao, Mo))®(EH G(Bo, No)) — (B G(ALM))®(EF G(B1, N1))

as follows.
First, note that we actually have

S EG(Aglmo), (Mo, No))  — Sk G(Ax[m], (M, Ny))
and
S EG(Bolmgl, (Mo, No))  —— S+ G(By[m], (M1, N1))

where 7, 71, ), and 7} are suitable projections.
On the other hand, we must actually have

o®T (X FG(Aglmo] ®Bolmgl, (Mo, No)))  — (2 F G(Ai[m]®Biy[m], (M1, N1)))

Hence we are done by defining ¢ ® 7 as in Def. 10.12.
For the unit, according to Lem. 10.21 can we take ¥ - G(Z,1dy).
For the structure map, we have to give

Q(A,M),(BN),(C,L) : (GAM)®G(B,N))®G(C,L) TSAGs GAM)® (G(B,N)®G(C,L)))
AaM) G(Z.1ds) ® G(A, M)  —gza, G(AM)
P(A,M) : Q(.A M) ®Q(I Idz) —>SAG)3 g(.A, M)
Y(A,M),(B,N) : g(-A M)®g(8 N) —>SAG>3 g(B?N)@)g(A’M)
For
am),BN)en ¢ (GAM)®GB,N)®G(C, L) —

G(A,M)® (9(B,N)®G(C,L)))
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Note that, for suitable projections 7y, o, 7} and 75 we have
GAM)®G(B,N))®G(C, L)
= G((Alm om]® Blrj om]) ®C[my] , ((M,N), L))
and for suitable projections 73, 73, 7 and 7; we have
GAM)® (G(B,N)®G(C,L))
= G(Alm]® (Blmg oma] ® Clmg o my]) , (M, (N, L)))
But
G(A[momo], ((M,N), L)) = G(Alr,(M,(N,L)) = G(AM)
and similarly for B and C. It follows that we actually have
G(A,M)® (G(B,N)®G(C, L))
= G(A[m om]® (B[r om] ®Clmy)) , ((M,N),L))

and we can take a suitable o_y ) (—) as defined in (20) (Sect. 10.10). The same holds for
the other structure maps, and we get:

———=(W/R)
» Proposition 11.5. The categories SAGy, are symmetric monoidal.

11.4 Symmetric Monoidal Fibrations of Acceptance Games and
Automata

In order to get symmetric monoidal fibrations, we follow [21, Thm. 12.7], and show that for
each L € Tree[l', 3], the functors

——(W/R W/R
. saay’M — sag.M

is strong symmetric monoidal. But according to the defintion of the structure maps in
Sect. 11.3, this is provided by Prop. 11.2.

We thus get
» Proposition 11.6. Given L € Tree[l', Y], the functors
§ _——— (WR) _— (W/R)
L* : SAGy —  SAGr

are strict symmetric monoidal.
In particular, we have a split indexed symmetric monoidal category

(=)* : Tree’® - SymMonCat
The case of

— — (W/R
aut(W/R) : Aut( o — Alph

is simpler, adn we get

» Proposition 11.7. Given € Alph[l',X], the functors

— (WR — (W/R
g Aut(z ) — Aut;/)

are strict symmetric monoidal.
In particular, we have a split indexed symmetric monoidal category

(=)* : Alph°® - SymMonCat
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12  Correctness w.r.t. Language Operations

This Section gathers the proofs of Sect. 6.1.

Sections 12.1 and 12.2 assert the correctness of the synchronous arrow _ —® _ w.r.t.
language inclusion. The main point is the proof of Prop. 6.1. Proposition 6.2 is then an
immediate corollary of substitution (Prop. 4.3).

12.1 Correspondence with Acceptance Games

Consider ¥ F A and ¢t € Tree[X]. In this Section, we describe a bijection between total
winning strategies 1 - G(A,{) and total winning strategies on 1 - G(Z,#) —® G(A, ), thus
proving Prop 6.1.

The main point is that G(Z, ) provides a monoidal unit in the fibered sense. According
to Sect. 10.1, in Rel(Set/Trq) this is provided by Prop. 10.22, that is

tr: p1(Z,F) = T

12.1.1 Monoidal Lifting of Strategies
We define a map taking a total® 1 - 7 : G(A,7) to a total
1T ®71:G(Z,1) —-® G(A,{)
The map is defined by induction on plays. By construction we will have
T -enIgAl) = I (21)

where | denotes prefix-closure.
For the base case, let ((¢,q%), (g,44)) € T —® 7 and by definition of a strategy, we have

((e,4%), (&, @)IGAE) = (e,q4) € 7

For the induction step, assume given

s = ((e,q7), (e:d) =" ((par), (pyga)) € IT-®7
with
sIGA D) = (e,d4) =" (pqa) € I

It is O’s turns to play in G(Z,) —® G(A,{) and P’s turns to play in G(A, ).
Since T is total by assumption, it makes a P-move in G(A, f), say:

*

P
« =" (pqa) = (pey4) €T
On the other hand, the only possible O-move in G(Z,#) —® G(A,{) is

*

. o
« =7 ((par), (pga)) = ((pe72), (P,ga))
(where vz := {(¢%,d) | d € D}), after which we make Z —® 7 copy 7’s move, that is we let

*

£ =" ((ne1), (haa)) > (o), (0,e74) € I-®7

5 Totality is not required, but makes the presentation simpler.
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Note that this P-move of Z —® 7 is completely determined by 7’s reaction to the projection
of the corresponding play. only depends on
Now, consider an O-move in G(Z,t) —® G(A, 1), say

*

£ =" ((0ez), (pera) > ((pe72), (p-dida))

We make 7 —® 7 play the only possible P-move, that is:

*

« =0 (o) (poday) B (podigh) (podigy) € T-®7
and we get (21) since by assumption

=" (p-d,az), (p-d, )] IG(AT) = *="(p-ddy) € I
This completes the definition of Z —® 7. Note that Z —® 7 is total and P-deterministic.
» Proposition 12.1. If 1+ 7 I G(A,{) then T —® 7 is a morphism of SAG) /%,

Proof. Given any infinite play 7 of Z —® 7, it follows from (21) that 7[G(A,{) is an infinite
play of 7, hence 7|G(A, ) € Wg(a,iy> so that T —® 7 is winning w.r.t.  —®
Moreover, by definition of {2z, we have

TI1G(Z,1) € Wrigz.i)

and it follows that Z —® 7 is also winning w.r.t. _ &® _. <

12.1.2 Completeness of the Monoidal Lifting.
» Lemma 12.2. The map T —® (—) is injective.
Proof. If 7 —® 6§ = T —® T, we have
T -2 0I9AH) = (T —o7)I6(AD)
hence 6 = 7 by definition of Z —® (). <
We now define an inverse to Z —® (—).
» Lemma 12.3. Given a strategy
1+ o:G(I,i) —® G(A,f)
the set of plays
olG(A P = {sep’(A)|sealGAD} = olGALD)NET(AT)
is a strategy on 1+ G(A,f).

Proof. By definition, o [G(A, )P is a set of P-plays. Moreover, closure under P-prefix follows
from the closure under P-prefix of o.
It remains to show that o[G(A, )P is P-deterministic. This crucially rely on Prop. 10.22.
Consider two plays of o[G(A,{)P

5= (p,e,v4) and s — (p,e,7))
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and let u,v € ¢ with

ulG(A, 1) = s—(pe,ya) and  wIGAT) = s (p,e7)
Then, since o is synchronous, we must have

tr(ulG(Z,1)) = tr(s = (p,e,74)) = tr(vIG(Z,1))
But by Prop. 10.22 this implies

ulG(Z,t) = v|G(Z,1)

We thus have HS(u) = HS(v), which implies u = v by Cor. 6.7 (the more general Lem. i.(i)
would also have done the job since u,v € o). |

For the preservation of totality we strongly rely on the completeness of Z.

» Lemma 12.4. If
alG(A D" = 01G(A D)
then o = 6.

Proof. Reasoning as in the proof of Lem. 12.3, by Prop. 10.22 and Cor. 6.7, for every
s € 97 (A, 1), there is a unique

u € py(G(Z,4) —® G(A, 1))
such that v = HS(v, s) for some v. <
» Lemma 12.5. o[G(A,{)" is total if o is total.

Proof. Write 7 := o[|G(A,)P. Let s be an O-interrogation of 7. There are two cases:
Case of s = (g, g’ ). We have

((e,47),(e,d)) €@

Since o is total, it must answer the O-move given by 7 € 6z(qz,%(¢)(e)). Hence, for
some Y4 € 6.4(qa,t(c)(e)) we have

] 1 O 2 P
((53 qI)a (E’ qA)) - ((67 e, 71)7 (6’ qA)) - ((67 o, 71)7 (67 o, ’YA)) €0
and it follows that
P
5= (c,0,74) €T
Case of s = t > (p-d,qga). We have by assumption ¢ € 7. Let v be a play such that

u:= (v,t) € HS(o).
By construction of Z, the play

u2 ((p,®,7z), (p-d,qa)

is an O-interrogation of o, and by totality of o, we have

u S ((p,0,72), (p-d,qa) & ((p-dygb), (p-diqa)) € 0
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Again by construction of Z, the play

u S ((p0,72), (0 d,q) 5 (- dyg), (p-diqa)) S (- dy o, 72), (- d, ga))

is an O-interrogation of o, and by totality of o again, for some ~v4 we have

(0] P )
u — ((pa .771')5 (p : d7 q.A) - ((p : d7 qI>7 (p : d7 q.A))
O P
— ((p : d?'u’yl-)v (p : d7 CIA)) — ((p : da .7'\/1)3 (p : d7 .77.»4)) co
It follows that

o) P
t—>(p~d,qA)—>(p~d,0,’yA) €T

» Proposition 12.6. Let
10:G(Z,1) —® G(A,)

If o is a morphism of SAGWV/R then
1Fo[G(A D7 IF G(A, )

Proof. The totality part follows from Lem. 12.5.

As for winning note that any infinite play of o[G(A,#)P is the projection on G(A,%) of
an infinite play 7 of o. But by definition of €7, for such a m we have

TIG(Z,t) € Wyig(z.i)

It follows that m is winning for P w.r.t. ~ —® _ iff 7 is winning for P w.r.t. _ ®® _ , iff its
projection on G(A,t) is winning for P. <

12.1.3 Correspondence with Acceptance Games

We now prove Prop. 6.1:
» Proposition 12.7 (Prop. 6.1). Given ¥+ A and t € Tree[X], the map 0 — I —® o gives
bijections

{o | olFG(A )} {0 1F0IFG(Z,i) —®G(A 1)}

{01+01FG(Z,f) ®® G(A, D)}

Proof. We first prove that Z —® — is a bijection. According to Lem. 12.2 it remains to show
that 7 —® — is surjective. Consider

1+0:G(Z,1) —® G(A,f)
and
T —® (a1G(A,D)7)
Then by (21) (construction of Z —® —), we have

1R

LI -® (01G(ADD)] 16(A) = LoIG(AD)
and in particular

T - (01G(A, D] 1G(A,D)" = alG(A, D)
But by Lem. 12.4 this implies

T-® (olG(ADP) = o

The part concerning winning (and totality) follows from Prop. 12.1 and Prop. 12.6. <«
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12.2 Correctness of the Synchronous Arrow w.r.t. Language Inclusion

We can now check that the arrow G(A, M) —® G(B, N) is correct w.r.t. language inclusion:
if

SIF G(A, M) —® G(B, N)
then
vVt € Tree[X], M(t) e L(A) = N(t) <€ L(B)
» Proposition 12.8 (Correctness of the Arrow). Assume given ¥+ o IF G(A, M) —® G(B, N).

(i) For allt € Tree[X], we have t*(o) IF G(A, M (t)) —® G(B, N(t)).
(ii) If 0 IF G(A, M (1)) then oo (T —® 0) IF G(B, N(t)).
(iii) For all tree t € Tree[X], if M(t) € L(A) then N(t) € L(B).

Proof. (i) Since t* : SAGy — SAG)’ Prop. 8.2.(ii) (Prop. 4.3).
(ii) By (i) and Prop. 12.7 (actually Prop. 12.1).
(iif) By (ii), by definition of £(—) and Prop. 12.7 (actually Prop. 12.6). <

12.3 Correctness of the Synchronous Product

We now check that the synchronous product _ ® _ implements the intersection on the
languages recognized by automata. Consider complete automata ¥+ A4 and ¥ + B.
We first show that

LA)NLB) < L(A®B)

Let t € L(A) N L(B). By definition, there are strategies
174 1FG(A, %) and 1+ 75l G(B,)

By Prop. 12.7 (ak.a. Prop. 6.1), we get

1T -®74IFG(Z, 1) —® G(A,f)
1-7 —® 74 IF G(Z,%) —® G(B, )

and since Z, A and B are complete, by Prop. 10.13 and Prop. 10.23 we obtain
11-G(Z,) —® G(A® B, f)

and thus, by Prop. 12.7 (Prop. 6.1) again, t € L(A ® B).
The converse direction is a bit more technical. We have to go from

1-7IFG(A® B,
to
174 IFG(A, %) 1+ 75 IF G(B,1)

We only discuss the case of 74. The point is that the direct projection of 7 (using the
projections of Sect. 10.4) need not be a strategy. It will be total, winning and P-prefix-
closed, by P-determinism may fail: since A and B need not be non-deterministic, given a
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P-play
S : * —* (pa'57A®75) € pP(AGBB’t)

and an O-move in G(A,{):

(pora) 3 (p-dqa)

there might be several gz € Qp such that (gg,d) € 4, i.e. such that, in G(A ® B, ), the
play s can be extended as

s 2 (p-d (qa,95))

In other words, a choice has to be made, for all (g4,d) € Q4 X D and all vz in the codomain
of 0p, of some (gp,d) € y5. Note that this choice is always possible since B is assumed to
be complete. We assume that this choice is made by a map

ta : (QaxD)xP(@sxD) — Qp
Now equipped with £ 4, given a total
1-7:G(A®B,f)
we build
1174 :G(A, 1)

The strategy 74 is defined by induction on plays. It is defined together with a map u — s,
where

u€ Ty C pp(.A, t)
and

s, €T C o (A®B,1)
are such that

u = wi(sy)

and moreover, if v extends u, then s, extends s,.
For the base case, we let

u = (g,d4) €ETa
and
Su = (57 (Q.zA’qu))

For the first step, since 7 is total, for some 7.4, 75 we have

v P
S = (ga(Q.Aan)) - (65.?7./4@75) € T

P
u = (57(]34) - (57.77A) S TA
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Since s is unique (by P-determinism of 7), we let

Us = S
For the induction step, by induction hypothesis we have u € 74, of the form
*

u ok =" (p,e,4)

and s, € 7, with @ (s,) = u, hence of the form:
*

S5 ox =" (p,e,74®YB)

Consider now some O-move extending u, say
0
u = (p-d,qa)
Since B is complete we have (¢g,d) € vz for

s = La(ga,d),78)

We then extend s, with the corresponding O-move, and let 7 answer (by completeness of A
and totality of 7), say

o) P
sl = S — (p . d’ (QA,qg)) — (p ) da ®,7A ® ’YB) € T
We then put
li 0 P
o o= u = (prdiga) = (p-d,eya) € Ta

Thanks to £4, the play s’ is uniquely determined from v’ and s,,, and moreover extends s,,.
We let

/ /

Sy = s

This completes the construction of 74. Note that 74 is total and P-prefix-closed by con-
struction. As for P-determinism given P-plays:

O P
u : v = (p7 q.A) - (pa .?'7./4) €TA
v 5

! (p,qa) = (p,®,7y)  €7a

by construction we have y4 = /4.

As for winning, since the map u +— s, respects the prefix order, infinite plays of 74 are
projections of infinite plays of 7. Hence 74 is winning as soon as 7 is winning. We thus have
shown:

» Proposition 12.9. If A and B are complete automata, then L(A® B) = L(A) N L(B).
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13 Complementation of Alternating Automata

This Section gathers the proofs of Sect. 6.2.

13.1 The Operation of Complementation

Given sets S, 5" C P(P), write

S s whenever Va € S, Va' € 9, ana’ # 0
and let

St = {deP(P)|VacS, ald}
Given an automaton ¥ - A with

A = (@469

define X + ~A as

~A = Q4 0mas Q)
where

bralga) = d(ga)t
and

Qea = Q“\Q

Note that if A is complete, then ~.A4 is not necesserarily complete. However, d. 4 is always
not empty, and so are the 4’s in its codomain (given ¢ € @ and a € ¥, d(g, a) is not empty,

and moreover if v € §(q, a), then v is not empty as well).
Thanks to Borel determinacy [14], we have:

» Proposition 13.1 ([23]). Given ¥+ A with Q4 a Borel set, we have L(~A) = Tree[X] \

L(A).

13.2 The Falsity Automaton L
We define X - L as

L= ({aadgu, 00, 0)
where:

6.(qu,a) = {{(qu,d)}|de D}
and

Qu = 0

Note that Z = ~.L.

115



116 Fibrations of Tree Automata

13.3 Dialogue Properties
» Proposition 13.2. Let A and B be complete automata on X. Then

(i) S A —® ~B implies S+ A® B —® L.
(i) SFA® B —-® L implies ¥ IF A —® ~B.

» Corollary 13.3. Let A and B be complete automata on X.
(i) SIFA-® ~B iff SIF B —® ~A.

(i) - A —® ~~A. -
(iii) if S - A —® B then S IF ~B —® ~A.

(i) Use Prop. 13.2.(i) twice together with the monoidal braiding v (Lem. 10.23).
(if) Use (i) twice.

—

(iii) Apply (i) to 3 IF A —® ~~A obtained by composition and (ii).

» Corollary 13.4. Given a complete automaton 1+ A,
1F~A S 1FA-® L
Proof. First, by Prop. 10.7 we have
1F~A = 1IF~A
Then, by Prop. 12.7 we have
1F~A = 172 -®~A
It follows from Prop. 13.2 that
1F~A iff 1FZ®e AL

and we conclude using the monoidal structure isomorphisms (Lem. 10.23).

13.4 Proof of Prop. 13.2.(i)
13.4.1 Construction of the Strategy

Given a total strategy
Sko:A-®~B
we define a total strategy
SHG:A®B—® L
We inductively map positions
(1. (¢4, 95)), (.07)) €5 Cp(A®B L)
to positions
((p.0.4). (.75)) €0 C (Ao ~B)

such that gz = gz whenever ¢ = q..
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13.4.1.1 Base Case.

For the base case, we let

((53 (Qjéla Q%)), (57 q;)) €0

and we have

((e,q4), (e:95)) €0

13.4.1.2 Inductive Step.

For the induction step, we proceed as follows. Consider some O-interrogation of 5:

| A®B —% L |5
((p, (qa,98)) . (p.qy))
0] !
(pya,ya®y8) (1) | 74®75 € 0aes((q4,98),a)

There are two cases, according to whether gL = ¢ € Q.. If g = true, then we complete
& by completeness of A and B, regardless of 0. Then & will be winning since all its infinite
plays will be winning on L.

Consider now the case of ¢ = ¢ € Q. By induction hypothesis, we have ¢5 = ¢5 € Q5.
Since B is complete and o is total by assumption, we let o answer some .. on the corres-
ponding O-interrogation in .A:

A —® ~B o
(P, qa) ; (p.qB))
¢ 1
((pya,va) (P, qB)) YA € 04(qa,a)
P {
((pv a, ’7./4) ’ (pv a, ’V/N\B)) Y~B € 5~B(CIB7 a)

By construction, y5 Ny~ # 0. We thus build s response from some (¢, d) € v N Y5,
and consider a further O-interrogation:

~

A®B —® L G
((p, (ga,a8)) ; (P, qv))

o) 1
((p7a77.4®78) ) (p7QL))

P {
(pa,ya®ys)  ,  (pa,{(qL,d)}))

0 L
((p7a77¢4®78) ’ (pdvq,/l,))

But now again there are two cases, again according to whether &I =qL €EQuL.

Assume first that ‘;Z = qL € Q.. In order to build ¢’s response, we interrogate o on
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(g3, d) (recall that (g, d) € 8 NY~B):

A —® ~B o
(p7 CIA) ) (p> (IB))

0 i

((p,a,va) , (p,aB)) Y4 € 04(qa,a)
P {

((p,a,va) ) (p,a,v~B)) Y~B € 05(qB,a)
0 {

((pa a, 'Y.A) ) (p : da qIB)) (q/Ba d) € Y~B
P i

(p-d.ds) , (p-d,qp)) (¢4, d) €74

Since (g4, d) € 7.4 and (gfs, ) € 75, we get (¢4, af),d) € 7.4 ® 75 and let & play this move:

o~

((pa ((IAa%’)) ) (p7 qab))
0 i
((pva7’7A®’VB) ) (p7q,L,))
P 1
((p,a,v408) » o (pa{(ge,d)}))
0 I
((p7a77¢4®73) ) (pdaqi,))
P \
((p-d.(dssa8) (p-d.qu))}

In the other case, O plays (true, d’) for some d’ # d. We can then conplete & by completeness
of A® B, and the play will be winning since it will be winning on L.

13.4.2 Proof of Correctness

The totality of & follows easily from the totality of o.
As for winning, if at the some point the state true of L is seen in a play of &, then all
further plays see no other state of L than true, and the corresponding infinite play is winning

for &.

Otherwise, the inductive invariant ensures that given an infinite play of &, the projections
on the states of A and B (which has the same states as ~B) are the same as those of the
corresponding play of o. Hence if the projection on A ® B is winning, then the projection
on ~B is loosing, contradicting the assumption that ¢ is winning.

13.5 Proof of Prop. 13.2.(ii)
13.5.1 Construction of the Strategy

Given a total strategy
Sho:A®B-® L
we define a total strategy

YHé:A-—®~B
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We inductively map positions
to positions

((p. (a4, 98)), (.q%)) €0 CpA®B-® L)

with either gz = g5 and ¢, = q., or gz = gL = true.

13.5.1.1 Base Case.

For the base case, we let

((e,d), (e,q5)) €0

and we have
((e;(darap)), (e.qu)) €@

13.5.1.2 Induction Step.

For the induction step, we proceed as follows. Consider some O-interrogation:

| A —e ~B |
(P, qa) . (par))
o) 1
((p,a,va) ,  (paB)) | 74 €dalqa,a)

There are two cases, according to whether g5 = g5 € Q. If g5 = true, then we let & play
arbitrarily, relying on the completeness of A, and regardless of o. Then all further plays on
~B will be on state true.

Otherwise, we have by induction hypothesis g8 = ¢ € Qp. In order to build &’s
response, we first build a map

¢ : g €dplgs,d) — (q5,d) €75

Definition of ¢. Let vz € d5(gg, d), and consider ¢’s response to the O-interrogation y4®vys,
followed by the unique O-move staying in L and o’s response to that second move:

A®B —® 0 o
((p, (g4, 98)) ; (p,qL))

0 il

((p,a,va®v8) (pyqu)) YA ® V5 € 04ws((qa,q5),a)
P 4

o (22)

((pvav A®’YB) ) (pva7{(QA,ad)}))
0 {

((p7a, A®76) ) (pd7qv"]v))
P {

Now, we have (g, d) € y5 by definition, so we let
g(rYB) = (qgvd)

This completes the definition of 4. <
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Write .5 for the image of £. By definition of ~B, we have y.5 € d.5(gs,a), and we let &
play the corresponding move:

A —® ~B G
(P, qa) , (P, qB))
o) l
((pya,va) (P, qB)) YA € 94(qa,a)
P 1
((paav’YA) ) (pvaa’y/N\B))

Consider now some further O-move:

A —® ~B G
(pa Q.A) ) (paQB))

0 {

((p,a,va) (p,q5)) YA € 64(qa,a)
P 1

(pra,v4) 5 (pa,9<B))
0] i/\

((p,a,’yA) ’ (pda qz%))

Once again there are two cases, according to whether ¢;; € @g.

Case of &;\3 = g € Qp. By construction, (¢z,d) is in the image of £, and it follows that
there are vz and ¢/4 such that, in (22), o answers

((p : d7 (QlAa q;s)) ’ (p ' da QL»

Note that (¢'4,d) € v4. We let & answer the corresponding move:

A —® ~B G
(P, qa) : (p,as))

0 1

((p,CL,")/A) s (pa QB)) YA € 5.»4(‘]./470‘)
P 1

((pvaa’y.A) ) (p,a,'V/N\B))
0 il

((pya,va) 5 (p-d,qp))
P 1

(p-didy) »  (p-d.gp))

Case of (;; = true. In this case, by defintion of ¢, there is no state ¢j such that, in (22), ¢

answers

((p-d,(dasa5)) > (P-d,qu))
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We therefore interrogate o on the O-move (true, d):

o~

A®B —® L o
((p, (qa,98)) : (p,q1))
O 1
(pa;,ya®v8) (p,q1)) Y4 ® 75 € da05((q4,98),a)
P {
(pa,ya®y8) 5 (pa,{(qu,d)}))
O il
(p,a,va®y8) (p - d, true))
P 1
((p : da (Q:47 q/B)) ) (p . d,true))
And let 6 copy o’s response in A:
A —® ~B &
(pv (J.A) ) (p7 QB))
O 1
((p,a,va) (p,q5)) YA € 64(qa,a)
P {
((p7a=’YA) ) (p,a7'7/~\8))
0 {
((paaa’Y.A) ’ (p . da true))
P {
((p-d.dy) . (p-d,true))

13.5.2 Proof of Correctness

The totality of & follows easily from the totality of o. If at some point true is played in :E,
then no other state of ~B than true will be seen on further moves. Then the corresponding

infinite play is winning for & since its projection on ~B is winning.

Otherwise, the inductive invariant ensures that given an infinite play of &, the projections
on the states of A and B (which has the same states as ~B) are the same as those of the

corresponding play of . Hence the projections on A and B can not be both winning,

ensuring winning for &.

121



122

Fibrations of Tree Automata

14  Existential Quantification on Complete Automata

In this Section, we show that the fibrations aut : Aut — Alph have existential

quantifications, in the sense of the simple coproducts of [12]: Given alphabets ¥ and T', the
weakening functor

— (W/R — (W/R
i Auty ) — Aubyay

induced (by Prop. 8.4) by the left projection
72" € Alph[Z x T, 3]

has a left adjoint:

— (W/R — (W/R
Usr : Autgyy — Aty

and the Beck-Chevalley condition holds.
Recall (from e.g. [13]) that an adjunction IT 4 7 as above is given by a natural isomorph-
ism

— (W/R)

A = Auty.r [A Bl

—(
oA  Auty

(We drop the subscripts and superscript from II and 7 when convenient.)
Recall also from [13, Thm. IV.1.2.(ii)] that an adjunction as above is completely determ-
ined by the functor 7* together with, for each ¥ x I' - A, an object

YFOsrA
and a map
na : IxI'FA — XIxTF grA)r]
satisfying the following universal lifting property: For every
c : YxTFA — X xTF Bn]
there is a unique

T : EFHEVFA — YFB

. (W/R)
such that in Auty,,

A o (I, A) 7] (23)
\ lw*m
B[~]

In this setting, the natural isomorphisms

(W/R)

0 mA B = Autgye A, Blr]]

QSA,B . Autz
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are defined as

pap(t) = w(1)ona

Using the universal lifting property of 74, its inverse ¢~!(o) is the unique 7 satifying (23).
The Beck-Chevalley condition reads as follows (see e.g. [12, 1.8.9]). Consider § €
Alph[A¥], so that

—— (W/R — (W/R
(BxIdr)* : Auterr’ —  Autarr’
Then we have
(BxIdr)*(na) : AxTFABxIdr] — AxTF (IIgrA)r][s xIdr]

Note that, for 7’ € Alph[A x T', A],

AxTFsrA)r]BxIdr] = AxTF (g rA)ro (8 xIdr)]
= AxTF(IIgrA)for]
= AxT'F (IIgrA)G]r]

Then, the Beck-Chevalley condition is that the natural maps
(B x1dr)*(na)) : AFHar(ABxIdr]) — AR (IsrA)[b]

are the identity.
But by definition of ¢!, this means that the unique

T AFIApABxIdr] —  AF (IIgrA)b]

such that

TA[Bx1dp]

A[B x Idr] (ITa pA[B x Idp])[7']

(s A) 8]

is the identity.
This amounts to showing

Ak (HZ,F-A) [B] = AN HA,F(A[ﬁ X Idr]) (24)

and

napxiar] = (B x1dr)"(n4)
AxTHAPBxIdr] — AxTFE(OarA[SxIdr])[r] (25)

14.1 The Lifted Projection 11
Consider ¥ x I' = A with

'A = (Q? qu 55 Q)
Define ¥ HE,I"A as

HE,FA = (Q x T + {ql}7 q17 6]_[./4’ QH.A)
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where

6LLA(an a) = Uber{7+b | € 5(‘]17 (aa b))}
5H.A((Qv_)a a’) = UbeF{’7+b | Y € 5((]7 (a’ b))}

and, given v € P(Q x D) and b €T,

v = {((¢™d) | (¢.d) €}
q+b = (q7b)
and
ql(q()?bo)(Qn,bn) € QH.A
iff
¢ qQ - Gn... € Q

14.2 Action on Acceptance Games of the Lifted Projection

Let m:=mnr € Alph[X x I', 3], and ¥ x I' F A. Write ¥ - II(A) for ¥ F Iy pA.
We now define a map

p(Il) : psxr(4) —  px(lsrA)

such that if

s = (64¢)=" (9
then
p)(s) = (e.d") =" (p.a™)
where
either gt =q=¢" or ¢t =q** =(¢,b) for somebel

Consider the map

p) : psxr(A) —  ps(IsrA)
defined as
p()(e: (e,q") = e:(eq")
e(I)((e,q") =* (p,q) = (p, (a,0),7)) = I)((e,¢") =* (@) = (p,a,7™)
o(I)((e,q") =* (p, (a,b),7) = (p.d,q)) = e(M)((c,q") =* (p,(a,b),7)) = (p.d,¢"?)

» Lemma 14.1. (i) If

s = (5¢) =" (p9)
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where

either T =q=¢" or "t =q" =(q,b) for somebel
and if

s = (54') =" (p(a,0),7)
then

p()(s) = (,¢') =" (p,a,7"")

(i) (1) : prxr(A) — ps(ls rA)

Proof. (i) By induction on s.
(ii) By induction on s. In the base case s = ¢ : (g, ¢") and we are done since p(IT)(s) = ¢ :
(¢,¢"). For the induction step we consider two cases:

If s = (e,q") =" (p,a) = (p, (a,b),7), then

p(I)(s) = () ((e,q") =" (,0) = (p,a,7™")
By induction hypothesis, we have

P ((e,q") =" (p,q) € pu(lInrA)

Moreover, by (i)

pM)((e.q") =" (0,0) = (e.4") =" (p.a™)
where
either gt =q=¢" or gt =q*t°=(q,c) forsomecel
Since v € d(q, (a,b)), we have y** € 611.4(q,a) in both cases, hence p(II)(s) €
px (s rA).
Otherwise, s = (g,¢") —=* (p, (a,b),7) — (p.d,q). Hence
p(I)(s) = (I)((e,q") =" (p:(a,b),7)) = (p-d.g™")

By induction hypothesis, we have

P ((e,q") =" (p, (a,0),7)) € px(xnrA)

and moreover, by (i)

p(I)((e,4") =* (p, (a,0),7)) = (&,4) =" (p,a,7™")
hence (¢*°,d) € v and we are done. <
» Lemma 14.2.

p(1I)

psxr(A) ps (s rA)
trl ltr
Trexr Trs
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Proof. We show that for all s € psxr(A), we have
Tr(m)otr(s) = trop(ll)(s)

We reason by induction on s. In the base case, s = ¢ : (¢,¢") and we are done since:
T(m(te(s) = & = tr(p()(s)

For the induction step, we consider two cases:
If s=(e,4") =* (p,q) — (p,(a,b),7), then

tr(s) = tr((e,q") =" (p,q)) - (a,0)
hence, by definition of m € Alph[X x T', ¥, we have
Tr(m)(tr(s)) = Tr(m)(tr((e,q") =7 (p,9))) - a

On the other hand,

p(I)(s) = p)((e,q") =" (n,9) = (p,a,7™")
hence
tr(p()(s)) = tr(p()((s,q") =" (p.9)) - a
and we are donce since by induction hypothesis we have
Tr(m)(tr((e,¢") =" (@) = tr(pD)((e,q") = (p,9)))
Otherwise, s = (g,q¢") =* (p, (a,b),v) — (p.d,q). Hence
tr(s) = tx((e,q") =7 (p,(a,0),7)) - d
and thus
Tr(m)(tr(s)) = Tr(m)(tr((e,q") =7 (p,(a,),7))) - d
On the other hand,
p()(s) = p()((s.q") =" (p,(a,0),7) = (pd,q*")
hence
tr(p)(s)) = tr(p()((e,q") = (p,(a,b),7))) - d
and we are done, since by induction hypothesis
Tr(m)(tr((e,¢") =" (p, (a,0),7))) -d = tr(p()((e,¢") =" (p, (a,0),7)))

» Lemma 14.3. If A is a complete automaton, then the map
p() : psxr(4) —  ps(UsrA)

18 an injection.
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Proof. For injectivity, we have to check that given s,t € pxnxr(A), if P(II)(s) = p(II)(¢)
then s = t. Since p(II) is length-preserving, o(I1)(s) = p(I1)(¢) implies |s| = |t|. We reason
by induction on |s| = [t|. In the base case |s| = [t| = 0, and we must have s =t = ¢ : (g,q").
For the induction step, there are two cases:

In the first case, we have

s = (g¢) =" (p,q) = (p,(a,b),7)
t o= (eq") =" (\q)— @ (d,V),Y)

Hence
pM(s) = (&¢"") =" ™) = par™)
pD)(t) = (e,¢H) =" @, ¢ = @ a7

Now, p(IT)(s) = p(II)(t) implies

p= p/ q++ _ q/++ a—=a ’Y+b _ 7/+b

It follows that

!

=4 ~v=+

Moreover, since A is complete, ¥ = 7/ is non-empty, hence b = ¥'.
Now we are done since moreover

(E’qz++) ¥ (p’q-i--&-) _ (€7qz++) N (p/,q/++)
by induction hypothesis.
In the second case we have
s = (5q) =" (p(a,b),7) = (p.d,q)
= (5¢) =", (@ V),y) = (p'.d,q)
Hence
p(s) = (64" " (ar™) > (pdig™)
p()(t) = (™) = @y > @d.q™)

Now, p(IT)(s) = p(I1)(t) implies

It follows that
b=V =9 q=¢
and we are done since moreover

2++) /+b/)

S =" (p'd\y

(S,q —* (paa7’y+b) = ({':aq

by induction hypothesis.

» Lemma 14.4. The map
p(l) : puxr(4) —  ps(UsrA)

18 a surjection.



128

Fibrations of Tree Automata

Proof. We show by induction on t € px(llgxr.A) that there is s € pynxr(A) such that
p(I)(s) = t.

In the base case t = ¢ : (g,¢") we are done by taking s := t. For the induction step, we
consider two cases:

Ift = (e,q4") =* (p,¢"") = (p,a,v""), then by induction hypothesis, there is s’ €

pxxr(A) such that

p)(s) = (e,¢") =" (p,q")

By definition of p(IT), we have either ¢ = ¢* = ¢™* or ¢ = (¢, ¢) for some ¢ € T'. By
defintion of the transition function dy 4 of ITA, there is b € I and v € d(qg, (a,b)) such
that

T o= " = {((g0),d) | (¢,d) €7}
It follows that by taking
s = s —(p(a,b),7)

we have s € psxr(A) and p(II)(s) = t.
Otherwise, t = (¢,¢*) —=* (p,a,7y"") — (p.d,q+). Then by induction hypothesis, there
is ¢ € pyxr(A) such that

p)(s) = (e.¢") =" (p,a,7™)

By definition of (IT), there is b € " such that

s = (e,¢") =" (p(a,b),7)
and
’Y++ = ’7+b = {((qu b)7d) | (q, d) € 7}

Moreover gt+ = ¢*t* = (¢,b) with (q,d) € v, and it follows that by taking
s = s = (pd,q)
we have s € pnxr(A) and p(IT)(s) = t. <
We thus obtain:
» Corollary 14.5 (Prop. 7.1). If A is a complete automaton, then the map
() + psxr(A)  —  ps(lsrA)
is a bijection.

Proof. Injectivity is given by Lem. 14.3 and surjectivitty by Lem. 14.4. |

14.3 The Universal Lifting Property

In this Section, we define the unit maps
na : (ExTFA) — (SxTF (IgrA)(r)

and show that they satisfy the unique lifting property (23).
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14.3.1 The Units 7,
Recall from Cor. 14.5 that we have a bijection:
p)  : psxr(4) —  ps(srA)

We show that there is moreover an injection:

tsr 0 px(llsrA) — psxr((Us,pA)r])
We define ¢5; 1 by induction on plays:
vxr((e, QA)) = (e,4%)
izr(s — (pa, 7 ) = mr(s) = (p(a,0),7)
wr(s = (p.g™) = wmr(s) = (p.q™)
Note that for all t € ps(IIsxr.A), we have

p(m)owsr(t) = t
and for all ¢’ € ps«r(A),
tr(esrop(t)) = tx(t)
We now define 74 as the (necessarily unique) strategy such that

HS(na) = A{(tmrop)(t)) [t € psxr(A)}
We define it by induction on plays

s € Sy (A —® (ILA)[7))
We let

((&;da) > (£,44) € ma

and the property (26) is satisfied.
Assume now

S : * —* ((pa QA) ) (pa QA++)) € A

Then for all (a,b) € ¥ x T" and all v4 € d4(qu4, (a,d)), we let

s % =

*

((prga) s (raa™) % (0 (a,0),74) 5 (p,ga™))
P

= (((a,0),74) , (p,(a,0),74™") € na
Furthermore, for all (¢/y,d) € va, we let

s « =" ((pga), (pgat™h)

o
> ((p’ (a,b),v4) ; (p,(a,b), ’YAer)) 9
%

((pv (a7b)77¢4) ’ (pv QA++))
((pv (a,b),’}/A) ’ (p d q/ +b))

(p-d,qy), (p-d.dy +b)) € N4
» Lemma 14.6.

na : A —>K'\(W/R) (HA) [7‘(}

Uty r
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14.3.2 The Unique Lifting Property (23)

We now discuss the lifting property (23). Consider some
o : ExT'FA — X xTFBn

We will define

T : YHFIOA — XEB
such that
HS(r) = {(p)(s),p(m)(t)) | (s,t) € HS(0)}

We define 7 by induction on plays
s €0 C S r(A—® Blr])
For the base case, we let
((e;q4) > (eq5)) € 7
Consider now

. —* ((pan) ) (pan)) € g
5 0 % = ((pga™), (pas) € 7

with HS(5) = (p(I1)(u), p(7)(v)) for HS(s) = (u,v).
Assume

(’LL - (p7 (avb)77A) y U (pv (aab)7’78)) € HS(U)

so that
s o o ((paa), mas) 2 (0 (a,b),74) s (pra8)
B (b (ab),74) s (0, (asb),78)) € o
We put

=" ((naa™), as) > ((0a,74%) L (p.as))

P
= ((pa,va™), (pa,78) € 7

Assume moreover
b
(= 0. (@.0),70) = - dau™) s v (b, (a,0),78) = (- dyas)) € HS(0)
so that

"

x5 ((paa) s mas) S (b (ab),v4) s (pras))
B (0 (@b),74) , (0, (a,0),78) 2 (9, (a,0),74) 5 (p-d,q}))
B (p-ddy), -dds) € o
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We then put

~I1 *
g .

= ((paa™), as) > (paa™), (p,gs))

B (pava™)  peas) S (peavat?) . (0-digs))
5 (p-ddi™), (p-dgy) € T

This completes the definition of 7. It easy to see that 7 is indeed a strategy. For P-
determinism, note that if 7 contains

s oF (Pt w) Do
S = (el ) S
then since A is complete, we have
+b _ l+b/ I d b_b/
14T = A = (ya=19p and b=1V)
Moreover,

» Lemma 14.7. [f

o A — —wm B[ﬂ']
Ulyxr
then
T o II(A) —)m(ZW/R) B

We now check that 7 satisfies the lifting property (23):

» Lemma 14.8. 0 =7*(7)ona

Proof. Thanks to Lem.4.6.(ii) (or Cor. 6.7), Prop. 4.10 and Lem. 8.3 we just have to check
HS(0) = ((p(m) x p(m))~" o HS(7)) 0 HS(14)

Where (p() x p(7))~1 is defined as in Lem. 8.3.
If (t,u) € HS(0), then by construction (p(I1)(¢), p(7)(u)) € HS(7) hence for all ¢ such
that p(m)(t') = e(I1)(¢) and tr(¢') = tr(u), we have
(

(t',u) € (p(m) x p(m)) ™" o HS(7)
On the other hand,

(t,enp 0 p(I)(t)) € HS(n4)
And we are done by taking ¢ := tx r o p(I1)(t) since
p(m)owrop)(t) = () and  trleerop()(t)) = tr(t) = tr(u)
Conversely, assume
(t,u) € ((p(m) x p(m))~" o HS(7)) 0 HS(n.4)
so that

(t, im0 0 p(I)(1)) € HS(n.4)

131
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and

(ezr 0 p(I)(t), u) € ((p(m) x p(m))~" o HS(7))
It follows that

(p(I)(8), p(m)(u)) € HS(7)
Hence there are (¢',u') € HS(0) such that

pI(t) = () p(m)(u) = p(m) ()

But by Lem. 14.3 this implies ¢ = ¢’ and since tr(¢) = tr(u) and tr(t') = tr(u’), we also get
tr(u) = tr(u’), hence u = v/ by Lem. 7.6 and we are done. <

For the unicity part of the lifting property of 74, it is sufficient to check:
» Lemma 14.9. If () ong = 7*(0') ona then 0 = 0.

Proof. Reasonning as in the proof of Lem. 14.8, thanks to Lem.ii.(ii) (or Cor. 6.7), Prop. 4.10
and Lem. 8.3, we just have to check

((p(m) x p(m)) "t o HS(0)) o HS(na) = ((po(m) x p(m)) "' 0 HS(6')) 0 HS(1)
—  HS() = HS@®)

where (p(7) x @(m))~! is defined as in Lem. 8.3.
Let (¢,u) € HS(0), so that, for all ¢/, u" € pyxr(I(A)[r] —® B[r]|) with

we have
(t',0') € ((p(m) x p(m)) " o HS(6))

On the other hand, for all # € pyr(A), we have
(", tzr 0 p(I)(t")) € HS(n.4)

Taking " := p(I1)~*(t) we get
(D)~ (t), t2,r(t)) € HS(n.4)

Let now ¢’ := vy p(t). Note that tr(p(m)(t')) = tr(t) = tr(u) since p(7)(t') = ¢, and then
Tr(rm) o tr(t') = tr(u) by Lem. 7.5. Hence, thanks to Lem. 7.6, there is v’ € p(m)~!(u) with
tr(u') = tr(t’). Since p(7) oty r(t) =t we obtain

(p(I) (1), w') € ((p(m) x p(m)) " o HS(6)) 0 HS(1.4)
Hence

()~ (1),u") € ((p(r) x p(m)) "t o HS(0")) o HS(n4)
It follows that

(") € ((p(m) x p(m)) ™" o HS(9))
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for some t" such that
t" = s o p(Il) 0 p(I1) 7' (t) = wx,r(t)
It follows that
(p(m) 0 1x,r0(t), p(m)(u)) € HS(P)
and thus (¢,u) € HS('). <

Thanks to [13, Thm. IV.1.2.(ii)], we thus get:

— (W/R
» Proposition 14.10. For each projection m € Alph[X x T, %], we have in Aut( /R a

adjunction

n

HE,F —Hm

14.4 The Beck-Chevalley Condition

We now check that the adjunction II 4 7* is preserved by substitution, in the sense of the
Beck-Chevalley condion. We therefore have to check (24) and (25),

AF [grA)ps] = AFIAr(AS xIdr])
and
Napxidy] = (Bx1Idr)*(na)

AxTHABxIdr] — AxTDF (IarA]S xIdr])[r]
given § € Alph[A, Y] and ¥ x ' F A.
» Lemma 14.11.
A (Mg rA)Bl = AFIar(AB xIdr])

Proof. It is sufficient to check the equality of the corresponding transition functions. We
have

7 € Oy r)(p) (45 €)
iff

7V € Oty r) (¢, 5(0))
iff

v € 6.alq, (B(c), b)) for some b’ € I' and 7' s.t. v = 7l+b/
iff

7" € dapxiar) (¢, (¢, b)) for some ' € " and ¥ s.t. v = 'y’+b/
iff

vEe 5HZ,F(A[5x1dF]) (g,c)

133



134 Fibrations of Tree Automata

For the equation (25) (preservation of n by substitution), we use the following preliminary
lemma:

» Lemma 14.12.

toxrop(Il)op(f xIdr) = (B xIdr) owaxr o p(II)
Proof. By induction on plays s € paxr(A[S x Idr]). The only non-trivial case is that of
s oox =" (pg) = (p (b))
with

7 € 6(g, (B(c), b))

But then we have

tsxr o o(IT) o (B x Idr)(s)
=  sxrop()op(B xIdr)(x = (p,q)) —  tuxr o) (p, (B(c),b),7)
=  sxrop()op(B xIdr)(x— (p,q)) — sxr(p, B(c),y™)
=  sxrop()op(B xIdr)(x = (p,q) —  (p,(B(c),b),7"")
and
p(8 x Idr) o taxr o p(L)(s)
p(8 x Idr) o taxr o p(I1)(x = (p,q)) — (B x Idr) o taxr(p,c,7y™)
= p(BxIdr)owaxrop(ID)(x = (p,q)) — (B x Idr)(p, (c,b),7")
p(B xIdr) oiaxr o p(I)(x = (p,q)) —  (p,(B(c),b),7*")
and we are done by induction hypothesis. <

» Lemma 14.13.

Napxidy] = (B x1dr)*(na)

Proof. Thanks to Lem.4.6.(ii) (or Cor. 6.7) and Lem. 8.3 we just have to check

HS(nagsxtar) = ((p(B x 1dr) x p(8 x Idr)) ™" o HS(1.4))

where (p(3 x Idr) x (8 x Idr))~! is defined as in Lem. 8.3.
Assume (s,u) € HS(n4(gx1d,]), SO that

u = arop)(s)
We must show
(p(B x Idr)(s) , (8 x Idr)(u)) € HS(n.4)
that is
p(B xIdr)(u) = tsrop(ll)op(s xIdr)(s)

and we conclude by Lem. 14.12.
Conversely, consider

(s,u) € ((p(B x Idr) x p(B x Idr))~" o HS(n4))
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that is

p(Bx1dr)(u) = xrop(l)op(sxIdr)(s)
We must show

u = arop()(s)
By Lem. 14.12 we have

p(Bx1dr)(u) = (B x1Idr)ewarop(l)(s)
Moreover, we have tr(u) = tr(s), and since

tr(s) = tr(earop(I)(s))
by Lem. 7.6 we get

u = arop()(s)

14.5 Relation with Existential Quantification in Set™
Let m:=mgr € Alph[¥ x T, X]. Following Sect. 7.4, the map

Tr(r) : Trgxr —  Try
induces a change-of-base functor

7 : Set/Try — Set/Truxr

Recall from Cor. 7.14 that 7* is actually isomorphic to the action of the substitution functor

T*:

7 (ps(A) i Try) =~ 7%(psA) N Try where 7 (psA) = psxr(A[r])

Consider, in Set™, existential quantification along
7 : Set/Trys, — Set/Truxr
It is given by the functor
I, : Set/Trsxr — Set/Trs
whose action on objects is
Tr(m)of

(AL Treyr) = A Ty

and on morphisms

A h B +—» A— " B

A b B
\\ / TY(?T)OX* Af)og

Trexr Try,
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It is well known (see e.g. [12, Prop. 1.9.8, p. 99]) that II, is an existential quantification for
the codomain fibration cod : Set™ — Set. In particular, IT, is left adjoint to 7* (and hence

to m*):

I, 4=*
and moreover the Beck-Chevalley condition is satisfied (we come back on this point in
Sect. 14.4).

The action on plays of the lifted projection of automata Iy,  is very close to that of I1.
First,

p() : psxr(A) —  ps(UsrA)

is a bijection by Cor. 14.5. Thanks to Lem. 14.2, we thus have, in Set/Try,

sy rA)

px(
s

pzxr(A

=
) e(II)
o
TI‘Z
Hence:

» Corollary 14.14. In Set/Try:

Hﬂ(@EXF(A) i> TerF) ~ pg(Hgﬂp(A)) i) TI‘E

14.6 Non-Functoriality of Usual Projection

Given ¥ x I' - A, the usual projection (see e.g. [23]) ¥ ﬁzyF.A is defined as follows (we
leave the subscript implicit):

IIA has the same states, initial state and acceptance condition as A.

Given a state ¢ and a € X,

bia@a) = Jdale.(@b)

ber
Let us now discuss the possible action of II on morphisms. Given
YxT'ko: A-® B[n] where 7 € Alph[X x T, ]
with ¥ x I' - A and X F B we would like to define
Y F o : LA —® T1(B[r])

Consider the two following plays:

((praa), (mas) 2> (0 (a,b),74), (mas) = (0, (a,5),74), (p,(a,b),78))

0 P
((p.qa), (pa)) = ((p,(a,V),74), (pas)) = ((p(a,0),74), (p.(a,b),75))
When projecting these two plays on the alphabet ¥, one obtains

(pq4)s (Poas)) S ((a7a)s has)) = ((pra,ya), (p,a,78))

(pg4)s (poas)) S ((1a7a)s (as)) = (pra,7a),s (0ya,7k))
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But there two plays are no longer part of a strategy.

A (bad) idea to remedy to this would be to fix a total order on states and P(Q x D), and
force projection to always take the least available choice. This this is not functorial, since
one can compose o with a strategy X F 7 I B —® C which is insensitive to I' but swaps
priorities.

» Example 14.15. Consider
YxT'ko:A-® B[n]
as above, and assume that g has priority over 7%, and that
S+ 1lo : TLA —® T(B[x))
contains the play
(P.ga)s Pas) S (o), (as) 5 (a7), (a78))
Consider now
YXF7:B-®B
with plays
((pa8), (pa8)) = ((pay8), (pa8))  —  ((pa,78), (pa,7B))
(P.as). (n.98)) 2 ((pa7p). (poas)) = (0.0.7), (pra,7s))
so that
ExTFx*(r): Blr] -® Bin] where 7 € Alph[E x I, ¥]
contains

((pyas), (1as)) > (0, (a,0),98), (Dras))  — (s (a,b),78)s (b, (a,0), 7))

(pyas), (1a)) 2> (0, (a,0),7%%), (poas)) = (s (a,b),7p)s (P, (a,b),75))

as well as

((pv qB)’ (pv QB)) - ((pa (aab/)7’73)7 (pv qB)) 3 ((pv (a,b/),’}/g), (p’ (avb,)a’ﬁi’))

/

((pras), (pras)) > (0, (@), 7p), (poas)) = (B (a,0),7p)s (py(a,b),78))

We thus have, in
SxTka*(r)oo : A—® B[r]
the plays
((p.qa), (psa8)) = ((,(a,0),74), (pa8) = ((p,(a,b),74), (p,(a,b),75))

((pv QB)v (pv QB)) 2) ((p7 (avb/)a’yA)v (pv QB)) £> ((p7 (avb/)»IYA)a (p7 (aabl)a'VB))



138

Fibrations of Tree Automata

which project to

(p:q4)s (Poas)) S ((a7a)s (ras)) = ((pra,ya), (0,a,78))

(praa)s (0a5) 2 ((ava), bas) —  ((payva), (a,7))

so that, since 3 has priority over 74, the strategy
SEIO(r*(r)oo) : I(A) —® 1(B[x])
should only contain
(p.g), (Pas) 2 (Paa), Bas) 5 (ara), (p.as)
On the other hand, again since v has priority over 74, the strategy
Sk : I(A) —» H(Bx])
also contains

(praa)s (0a5) 2 ((ava), bas) —  ((payva), (0,a,75))
so that

SEO(r*(r) olle : I(A) —® II(B[x])
contains

(praa), (0a8) 3 (Bava), bas) - ((pa,va), (a,7))

Hence

I(r*(t)oo) # ML(x*(r))olo

14.6.1 On (23) w.r.t. IL.

Also when looking at unique lifting property (23), it seems that I would not have been
sufficient. In particular, the counter-example Ex. 14.15 might be adapted to the present
situation.

» Example 14.16 (Adapted from Ex. 14.15). Assume that
ExT'ko: A-® B[n]

contains the plays

(pg4)s Pras) 3 (0 (@0),74), (mas)) = (0, (a,0),74), (P, (a,b),78))

(1qa), (1a8)) S (0 (@ V) va), has) = (0 (@, 6),74), (B, (1), 7))

Then, via n4, 7 would only see

((p,q0), (na5) S ((prasva), (p,a5))

0
((p,qa), (p,a)) = ((p.a,v4), (p.as))
hence, while they should be played by 7, the following plays can not be part of a strategy:

(pg4)s (poas)) S ((na7a)s (mas)) = ((pra,7a), (pya,78))

(pg4)s ras) 3 (1a74), (Bras)) 2 (pra,74)s (0ya,7k))
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15 The Synchronous Arrow and Language Inclusion

In this section, we discuss the completeness of the synchronous arrow w.r.t. language inclu-
sion.

15.1 Correctness of Projection on Non-Deterministic Automata

We now check that, on non-deterministic automata, the projection defined in Sect. 14
HE,F : Autgxp — Autg

implements the operation of projection on languages. Recal that the first projection 7x r €
Alph[¥ x T', Y] induces a tree map

ST € Tree[E x I, E]
Given an automaton ¥ x I' - A, we write
me,r(L£(A))

for the action of 7y r on L(A)

We now check that the projection operation Ils; r implements existential quatification on
non-deterministic automaton, 7.e. that for a complete non-deterministic automaton ¥ x I" F
N, we have

ﬁ(HE’FN) = WE,F(L(N))
The inclusion

FZ,F(AC(N)) - AC(HE,F./\/‘)

directly follows from the categorical properties of II established in Sect. 14 and doest not
require N to be non-deterministic. Consider a complete automaton ¥ x I' = A. The unit
1.4 of the adjunction of Prop. 14.10 gives

YxTIFA-—-® (HE’FMTF]
By Prop. 12.7 (a.k.a. Prop. 6.1), it follows that

L(A) C L(Igr)[n]

Hence
msr(L(A) € L(lgrA)

Conversely, consider a complete non-deterministic automaton ¥ x I' = A/, a tree t and a
strategy o such that

1Fol-G(lls N, i)

Then, since Iy, p A is non-deterministic and complete, and since o is total, for each tree
position p € D*, there is exactly one non-empty play s of o such that trp(s) = (p). Note
that s is of the form

*

s 1 ox =" (pg) B (peth)  where 7€ dn(g, (t(p),b)) (27)
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We therefore define the tree
u : peD — (tp),b)

It is then easy, following the usual pattern for projection (see e.g. [23]) to build a strategy
7 such that

17l GWN, %)

We inductivelly associate to each s € ¢ as in (27) above a play

. » P
§ o« =" (pg — (pey) € 7T
First, we let (e,¢} ) € 7. Then given s’ € o of the form

/

(o] P
s 1 s > (pg) o (e where 7€ dn(q, (t(p),b))
with § € 7, we put

~/ ~

(@] P
5 = (g — (o) € 71

Note that we then have v € dar(q, u(p)) by definition of u.
We thus have shown:

» Proposition 15.1 (Prop. 7.5). If ¥ x I' - N is a non-deterministic complete automaton,
then

LOgrN) = 7wsp(LWN))

15.2 Completeness w.r.t. Language Inclusion

We now give a result stating that for automata of a specific form, the synchronous arrow
_ —® __is complete w.r.t. language inclusion. Specifically, we show that given automata
Y+ Aand X F B,

LA)CLB) =  XIFND(A) —® ~ND(~B)

» Proposition 15.2 (Prop. 7.6). Consider regular automata ¥+ A with ¥ + B
If L(A) C L(B) then X I ND(A) —® ~C for C := ND(~B)

Note that according to the definition of L given in Sect. 13.2, given = € Alph[¥ x T', ¥]
we have

dIexr = Asl7]

Proof. Assume £(A) C £(B). It follows from Prop. 6.4 that £(A) N L(~B) = 0, and we
get from Prop. 7.4 that L(ND(A)) N L(ND(~B)) = 0. By Prop. 6.3, we get L(ND(A) ®
ND(~B)) = 0.

Since ND(A) ® ND(~B) is non-deterministic (Rem. 7), it follows from Prop. 15.1 that
L(II; »(ND(A) ® ND(~B))) = 0. By Prop. 6.4, we obtain

1|k ~ (1,5 (ND(A) ® ND(~B)))
and by Cor. 13.4, since ND(A) ® ND(~B) is complete, we get

11113 5(ND(A) ® ND(~B)) —® L,
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It then follows from the adjunction IIy 5, 4 7* (Prop. 14.10) that
Y - (ND(A) ® ND(~B)) —® L1[n]

and Prop. 13.2.(ii) gives
S IF ND(A) —® ~C)

for C := ND(~B) <
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