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Résumé

Nous présentons des travaux ayant pour objectif de proposer une approche Curry-Howard à la
Logique Monadique du Second-Ordre (MSO) sur les arbres infinis et les ω-mots.
Le Théorème de l’Arbre de Rabin, à savoir la décidabilité de MSO sur les arbres infinis, est

un outil puissant, qui a fourni des arguments de décidabilité pour de nombreuses logiques et
théories mathématiques. Alors que ce résultat date de la fin des années 60, il y a eu depuis un
travail considérable sur sa preuve, aboutissant à des arguments basés sur une correspondance
triangulaire entre logiques, automates et jeux infinis.
L’objectif des travaux présentés ici est de revisiter cette correspondance selon la perspective

de la correspondance peuves-programmes de Curry-Howard. Nous proposons un modèle de
réalisabilité pour des automates d’arbres alternants, dans lequel les automates sont assimilés à
des types et les stratégies d’acceptation sont vues comme des programmes. Nous observons, à
travers ce modèle, que les opérations naturelles sur les automates utilisées dans les traductions de
formules MSO en automates sous-jacentes au théorème de Rabin correspondent à des connecteurs
de la logique (des prédicats) linéaire intuitionniste (ILL). En d’autres termes, le langage de ILL
reflète des opérations sur les automates alternants ayant un grain plus fin que les connecteurs de
MSO. Ainsi, ILL peut-être utilisé comme un langage intermédiaire entre MSO et les automates
d’arbres.
Lorsque l’on restreint ce modèle au cas des ω-mots, on retrouve les équivalences usuelles

entre automates déterministes, non-déterministes, universels et alternants. En s’appuyant sur
l’axiomatisation complète par Siefkes de MSO sur les ω-mots en un sous-système de l’arithmétique
de Peano du second-ordre (PA2), nous obtenons, grâce à une variante de l’interprétation fonc-
tionnelle « Dialectica » de Gödel, une logique linéaire LMSO(C) complète et non-standard, qui,
via un système de polarités, est correcte et complète pour la synthèse de Church : il existe une
classe syntaxique d’énoncés ∀∃, extractibles et dont la prouvabilité correspond exactement aux
instances résolubles de la synthèse de Church. Nous discutons aussi brièvement des questions
reliées à l’axiomatisation de MSO sur les arbres infinis. Nos résultats dans cette directions nous
semblent en revanche plus préliminaires.
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Abstract

We present works aiming at proposing a Curry-Howard approach to Monadic Second-Order
Logic (MSO) on infinite trees and ω-words.
Rabin’s Tree Theorem, the decidability of MSO over infinite trees, is a powerfull tool, which

provided decidability proofs for many logics and mathematical theories. While the result dates
back to the late 60’s, there have been since then considerable work on its proof, culminating
in streamlined arguments based on a triangular correspondence between logics, automata, and
infinite games.
The goal of the works presented here is to revisit this correspondence from the perspective

of the Curry-Howard proofs-as-programs correspondence. We propose a realizability model for
(alternating) tree automata, based on usual categories of simple games, and following the slogan
“automata as types, strategies as programs”. Within this model, we observe that natural oper-
ations on automata used in the translations of MSO-formulae to automata underlying Rabin’s
Tree Theorem correspond to connectives of intuitionistic (predicate) linear logic (ILL). In other
words, the language of ILL reflects operations on alternating automata which are finer grained
than the connectives of MSO. As a consequence, ILL can be used as an intermediate language
between MSO and tree automata.
When we restrict this model to the case of MSO over ω-words, one recovers the usual equiv-

alence between determinisitc, non-deterministic, universal and alternating automata. Building
on Siefkes’s complete axiomatization of MSO over ω-words as a subsystem of Second-Order
Peano Arithmetic (PA2), we obtain, thanks to a variant of Gödel’s functional “Dialectica” inter-
pretation, a complete, non-standard, linear logic LMSO(C), which, via a polarization policy, is
sound and complete w.r.t. Church’s synthesis: there is a class of extractible ∀∃-statements whose
provability exactly corresponds to the solvable instances of Church’s synthesis. We also briefely
discuss questions related to the axiomatization of MSO on infinite trees, seen as a subsystem of
PA2. By contrast, we see our results in this direction as beeing more preliminary.
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1. Introduction

This document presents works aiming at proposing a Curry-Howard approach to Monadic
Second-Order Logic (MSO) on infinite trees and ω-words. It consists in two parts (I and II),
preceded by a preliminary Chapter 2. Part II, which develops the Curry-Howard approach in
itself is by far the largest, and has a specific technical introduction in Chap. 4. Part I, which
presents material related to axiomatizations of MSO, merely consists of Chap. 3.
The works covered by this document are [Rib12, Rib15, Rib18], together with [DR19] (in

collaboration with Anupam Das) and [PR17, PR18b, PR19, PR18a] (in collaboration with Pierre
Pradic). We wished not to formally include [DR15, Rib13] (which arguably could have been part
of the above list) for (distinct) reasons that we give in the introduction to Chap. 3.
The remaining of this Chapter outlines the components of Rabin’s Tree Theorem [Rab69] (the

decidability of MSO on infinite trees) which underlie the Curry-Howard approach developed
in Part II. While some of these components are also important for Part I, we do not really
cover the latter here because, even if it is instrumental to the Curry-Howard approach outlined
here, Part I is (by now) only instrumental, in that the two subjects are (yet) mostly technically
disconnected. We refer to §8.3 and §9.1 for directions of future work possibly involving more
interactions between these two aspects.
Chapter 2 contains some further preliminaries, which are relevant to both Part I and Part II

while being too technical to be discussed here. We also present in App. A a setting of simple
games on which most of Part II is based.

1.1. Basic Notations. We fix a finite non-empty set D of tree directions. We are interested
in labelings of the full D-ary tree D∗ over different alphabets. Alphabets (denoted Σ,Γ, etc) are
finite non-empty sets, and Σ-labeled D-ary trees are functions T : D∗ → Σ. Concatenation of
sequences s, t is denoted either s.t or s · t, and ε is the empty sequence. We denote with overlines
both vectors and finite words, so that e.g. T denotes a sequence T = T1, . . . , Tn, while a ∈ Σ∗

denotes a word a = a1. · · · .an where each ai is a letter of Σ. Given an ω-word (or stream)
B ∈ Σω and n ∈ N, we write B�n for the finite word B(0). · · · .B(n− 1) ∈ Σ∗.

1.2. Monadic Second-Order Logic (MSO). There are different expressively equivalent ways
of formulating MSO over infinite trees, each of them best suited for a specific situation. As
MSO is looked at from different points of view in this document, we shall unfortunately consider
different languages for MSO.
We believe that the simplest view is to see MSO as a two-sorted logic, with a sort of individuals

ranging over the positions of the full D-ary tree D∗ (that is over D∗ itself) and a sort of monadic
second-order variables ranging over sets of positions (that is over P(D∗)). Note that one can
identify sets of positions with labeled trees D∗ → 2. Conversely, a labeled tree T : D∗ → Σ can
be represented as a k-tuple

〈T1, . . . , Tk〉 : D∗ −→ 2k

for some suitable k depending on Σ. There are also different possible choices for this, and the
best option again depends on the context.
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On the other hand, when discussing translations of formulae to automata, it is actually cus-
tomary and convenient to only allow monadic variables, and to simulate quantifications over
individuals via a (definable) singleton predicate. This is the setting we shall adopt for now.
Assuming given a set At of atomic relations, we consider MSO formulae given by

ϕ,ψ ::= α | ¬ϕ | ϕ ∧ ψ | (∃X)ϕ (where α ∈ At)

These formulae are interpreted in the full D-ary tree D∗ as expected, assuming an interpretation
of the atomic predicates.
There are again different expressively equivalent choices for At. Maybe the simplest possibility

is to let At consist of the binary relation symbol (−) ⊆̇ (−) together with one binary relation
symbol Sd(−,−) for each d ∈ D. The symbol (−) ⊆̇ (−), interpreted as set inclusion, allows for
the definition of set equality, but also e.g. of “being the empty set” and “being a singleton set”.
The symbol Sd stands for the d-successor relation {({p}, {p.d}) | p ∈ D∗}. Using quantification,
one can define e.g. the prefix order (for singleton sets).

MSO on infinite trees is a rich system, which contains non trivial mathematical theories
(see e.g. [Rab69, BGG97]), and which subsumes many logics, in particular modal logics (see
e.g. [BdRV02]) and most logics used in verification (see e.g. [VW08]).
One of the central result around which this work is built is Rabin’s Tree Theorem.

Theorem 1.2.1 (Rabin [Rab69]). MSO over infinite trees is decidable.

The original proof of [Rab69] relied on an effective translation of formulae to finite state au-
tomata running on infinite trees. Since then, there have been considerable work on Rabin’s Tree
Theorem, culminating in streamlined decidability proofs, as presented e.g. in [Tho97, GTW02,
PP04]. Most current approaches to MSO on infinite trees (but with the notable exception
of [Blu13]) are based on translations of MSO-formulae to automata.

1.3. (Non-Deterministic) Tree Automata. There are two families of tree automata involved
in the interpretation of MSO formulae: non-deterministic tree automata and alternating tree
automata1. The simplest notion is that of non-deterministic automaton, and it is sufficient for
introducing the basic motivations and methodology of this work.
A tree automaton A consists of a finite set Q of states, with a distinguished2 initial state

qı ∈ Q, an acceptance condition given by an ω-regular3 set Ω ⊆ Qω, and a transition function
∂. A non-deterministic tree automaton A over Σ has a transition function of the form

∂ : Q× Σ −→ P(D −→ Q)

Acceptance for tree automata can equivalently be described by games or run trees. The
notion of run tree is simpler and sufficient at various places of this Chapter. A run tree of A on
T : D∗ → Σ is a tree ρ : D∗ → Q such that ρ(ε) = qı, and which respects the transitions of A,
in the sense that for each tree position p ∈ D∗, there exists a D-tuple (qd)d∈D ∈ ∂(ρ(p), T (p))
such that ρ(p.d) = qd for all d ∈ D. The run ρ is accepting if all its infinite paths belong to Ω.
We say that T is accepted by A if there exists an accepting run of A on T , and let L(A) be the
set of trees accepted by A. We moreover write A(T ) for the set of accepting runs of A on T .

1Alternating automata are not always made explicit (see e.g. [Tho97]).
2It is also customary (and equivalent in terms of expressiveness) to allow several initial states.
3See §2.1 if a definition is needed.
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1.4. Games and Alternating Automata. The main difficulty when translating MSO formulae
to tree automata is the interplay between negation and (existential) quantification. Historically,
Rabin [Rab69] translated MSO formulae to non-deterministic tree automata.
While non-deterministic automata are easily (and linearly in the number of states) closed

under projections ∃̃Σ(−), which implement the existential quantifications of MSO (see §1.6), the
major achievement of Rabin [Rab69] was to show that non-deterministic automata on infinite
trees are closed under complement.
Rabin’s original construction [Rab69] of a complement ∼A of A has been considerably simpli-

fied by Gurevich and Harrington [GH82] thanks to the notion of acceptance game. The idea is
to model the evaluation of an automaton A on an input tree T as an infinite two-players game
G(A, T ). In this game, the Proponent P (also called ∃loïse or Automaton) plays for acceptance
while its Opponent O (also called ∀bélard or Pathfinder) plays for rejection, and A accepts T
when P has a winning strategy.4 A typical (infinite) play χ in G(A, T ) has the form:

P O P O P O

(q0,d)d∈D · d0 · (q1,d)d∈D · d1 · · · · · (qn+1,d)d∈D · dn+1 · · · ·∈ ∈ ∈ ∈ ∈ ∈

∂(qı, T (ε)) D ∂(q0,d0 , T (d0)) D ∂(qn,dn , T (p)) D

where p = d0 · . . . · dn. Then χ is winning for P if the sequence of states qı, q0,d0 , q1,d1 , . . .
belongs to Ω; otherwise it is winning for O. Note that P chooses transitions (qd)d∈D while O
chooses tree directions d ∈ D. Hence, there is a bijection between accepting runs ρ ∈ A(T ) and
winning P-strategies in G(A, T ). Since acceptance games are determined,5 A does not accept T
precisely when O has a winning strategy in G(A, T ). Gurevich and Harrington [GH82] show that
in acceptance games, winning strategies can always be assumed to be finite state w.r.t. game
positions of the form (p, q) ∈ D∗ ×Q, that is to only depend on a finite memory in addition to
the game positions in D∗×Q.6 This makes it possible to devise an automaton ∼A which, using
a usual projection operation, non-deterministically checks the existence of winning O-strategies.
However, the construction of ∼A is still not trivial because the roles of P and O in acceptance

games are not symmetric, so that dualizing the acceptance game of a non-deterministic automa-
ton A does not directly give a non-deterministic automaton ∼A. Since [MS87, EJ91, MS95] it is
known that the construction of ∼A can be neatly decomposed using alternating automata. The
original idea, as stated in e.g. [MS87, MS95], is for an alternating automaton A with state set
Q to have transitions with values in the free distributive lattice over Q×D.7 Following [Wal02]
we simply assume that transitions are of the form:

∂ : Q× Σ −→ P(P(Q×D)) (1.1)

and we read ∂(q, a) as the disjunctive normal form∨
γ∈∂(q,a)

∧
(q′,d)∈γ

(q′, d)

This results in acceptance games where intuitively P plays from disjunctions while O plays from

4We refer to App. A for a formal presentation of the game setting we are using in this document.
5See §3.4 for some comments on game determinacy from an axiomatic perspective.
6This is trivial for P-strategies but not for O-strategies.
7Many authors speak of “positive Boolean formulae” over Q×D.
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conjunctions. A typical play in the acceptance game G(A, T ) with A alternating has the form

P O P O P

γ0 · (q0, d0) · γ1 · (q1, d1) · · · · · γn+1 · · · ·∈ ∈ ∈ ∈ ∈
∂(qı, T (ε)) γ0 ∂(q0, T (d0)) γ1 ∂(qn, T (p))

Hence, P chooses relations γk ∈ P(Q × D) instead of tuples (qk,d)d∈D while O chooses pairs
(qk, dk) ∈ γk instead of just tree directions dk ∈ D. The main consequence is that O may now
be allowed to choose between pairs (q′k, dk), (q

′′
k , dk) ∈ γk with different states q′k, q

′′
k for the same

tree direction dk ∈ D.
The extra possibility for O to choose states in addition to tree directions allows us to define a

complement of A which essentially simulates A while reversing the roles of P and O. This can
be implemented with an alternating automaton A‚ having the same states as A. The idea is
that since the double powerset P(P(Q ×D)) in (1.1) represents disjunctive normal forms over
Q×D, the transition function of A‚ can just take (q, a) ∈ Q×Σ to a disjunctive normal form
representing the dual of ∂(q, a). Then, if the acceptance condition of A‚ is the complement of
Ω, it follows from game determinacy that L(A‚) is the complement of L(A).
Every alternating automaton A can be simulated by a non-deterministic automaton !A of

exponential size (this is the Simulation Theorem [MS87, EJ91, MS95], see also §2.2), while
non-deterministic automata are linearly embedded into alternating automata via the obvious
mapping

(qd)d∈D ∈ QD 7−→ {(qd, d) | d ∈ D} ∈ P(Q×D) (1.2)

The situation can be pictured as follows:

Non-Deterministic
Automata

Alternating
Automata

!(−)

∃̃(−) (−)‚

(1.3)

Accordingly, in most modern approaches to MSO on infinite trees, the complementation of non-
deterministic tree automata can be decomposed as

∼A = !(A‚) (1.4)

It could be noted now that the actual logical connectives we took for MSO in §1.2 is in part
motivated by the indication from (1.3) that natural operations on automata are not too far from
(first-order) tensorial logic (see e.g. [Mel13] and [Mel17b, §5.6, p. 137]).

1.5. Toward Linear Logic. We believe that our main contribution is the observation that the
operations on tree automata used in the translations of MSO formulae to automata correspond
to the connectives of Intuitionistic Multiplicative Exponential Linear Logic (IMELL) [Gir87],
to the effect that the language of IMELL makes it possible to reflect, at the logical level, the
decomposition depicted in (1.3) and (1.4) of the translation of MSO formulae to non-deterministic
tree automata via alternating automata.
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Along the lines of the Curry-Howard “proofs-as-programs” correspondence (see e.g. [GLT89,
SU06]), we devise a realizability semantics on top of tree automata. It consists in categories
of games, based on usual categories of two-player sequential games called simple games (see
e.g. [Abr97, Hyl97]), and which generalize usual acceptance games of tree automata.8 Thanks
in particular to the notion of uniform automata (to be introduced in Chap. 7), this allows us to
give the following interpretation of (1.3) and (1.4):

• First, the usual direct synchronous product of alternating automata (which we denote
(−)⊗ (−)) has a symmetric monoidal structure (with unit denoted I). Moreover, uniform
automata have a monoidal-closed structure w.r.t. (−) ⊗ (−). In particular, the set of
morphisms from G(A, T ) to G(B, T ) is in bijection with the set of winning P-strategies in
the acceptance game of an automaton (A( B) over T . In particular, linear complements
are obtained with

A‹ ' A( ‹
(where ‹ is a particular automaton accepting no tree), with as expected T ∈ L(A‹) iff
T /∈ L(A).

• Second, we show that the simulation operation !(−) satisfies the deduction rules of the
usual modality !(−) of IMELL. Moreover, the symmetric monoidal product (−) ⊗ (−)
is Cartesian on non-deterministic automata, so that the picture (1.3) is similar to the
usual linear-non-linear adjunctions in models of IMELL. (Unfortunately, in our models the
operation !(−) is not a functor.9)

As a consequence, we can redraw (1.3) as follows:

Non-Deterministic
Uniform Automata

Uniform
Automata

!(−)

∃(−)
‹
(−)⊗ (−) (−)‹(−)⊗ (−)

(1.5)

In other words, IMELL can provide an intermediate language between MSO and automata. A
linear counterpart of MSO, call it LMSO, can be based on the following language:

ϕ,ψ ::= α | ⊥ | I | ϕ⊗ ψ | ϕ( ψ | !ϕ | (∃X)ϕ (for α ∈ At)

This language must be seen as a refinement of MSO with finer-grained connectives which directly
correspond to operations on automata. Given a deterministic automaton A(α) for each atomic
formula α ∈ At, we associate a uniform automaton A(ϕ) to each LMSO formula ϕ.10

It would have been be natural to also consider the additive connectives & (conjunction) and
⊕ (disjunction) of linear logic, which do correspond to known constructions on alternating

8However, the IMLL-structure underlying our model differs from the usual IMLL-structure of simple games.
9It does not preserves composition, because of issues with positionality of strategies. Possible workarounds, left
as future work, are discussed in §9.1.

10The usual projection operation ∃̃(−) can actually be extended to arbitrary automata, but is has its standard
meaning only on non-deterministic ones. We elaborate on this in §7.2.3 and §8.2.
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automata. However, the expected categorical properties of these connectives would require an
extension of our setting that we leave for further work. With this in mind, the translation of
MSO to non-deterministic automata induced by (1.4) factors via the map (−)nd : MSO→ LMSO
given by

αnd := !α
(¬ϕ)nd := !(ϕnd ( ⊥)
(ϕ ∧ ψ)nd := ϕnd ⊗ ψnd

((∃X)ϕ)nd := (∃X)ϕnd

while the translation of MSO to alternating automata factors via the map (−)alt : MSO→ LMSO
given by

αalt := α
(¬ϕ)alt := ϕalt ( ⊥
(ϕ ∧ ψ)alt := ϕalt ⊗ ψalt

((∃X)ϕ)alt := (∃X)!ϕalt

These factorizations are sound in the following sense, assuming the soundness of A(α) for each
atomic formula α ∈ At.

Proposition 1.5.1. Let (−)trans be either (−)nd or (−)alt. A closed MSO formulae ϕ is true in
the full D-ary tree if and only if A(ϕtrans) accepts the unique 1-labeled D-ary tree.

The image in (1.5) of the interpretation of LMSO formulae as automata gives rise to a polarized
fragment of LMSO. The deterministic (notation ϕ±, ψ±) and the (weakly) positive (notation
ϕ+, ψ+) formulae of LMSO are defined as

ϕ±, ψ± ::= I | α
ϕ+, ψ+ ::= ϕ± | ⊥ | ψ±( ϕ+ | ϕ+ ⊗ ψ+ | (∃X)ϕ+ | !ϕ

Hence positive formulae are interpreted as non-deterministic automata while deterministic for-
mulae are interpreted as deterministic automata. Note that ⊥ is positive since ‹ is actually
non-deterministic (see §7.2.2).

1.6. Computational Interpretation of Proofs. In our view, proposing LMSO as an intermedi-
ate system between MSO and automata should rely on a suitable computational interpretation
of proofs, along the lines of the Curry-Howard proofs-as-programs correspondence. This in par-
ticular requires to devise deduction systems for MSO and LMSO, a delicate point that we leave
for Part I (Chap. 3).
We explain here our view that runs of automata (or P-strategies in acceptance games) are

relevant objects for a computational interpretation of LMSO proofs. We shall content ourselves
for now with the deduction rules given in Fig. 1.1 for the purely logical part of LMSO (i.e. IMELL
with existential quantifiers). This deduction system manipulates sequents of the form

ϕ1, . . . , ϕn ` ϕ (1.6)

We see these sequents with two different levels of interpretation. The first level interprets prov-
ability. Assuming the free variables of ϕ1, . . . , ϕn, ϕ are among X1, . . . , Xk, if the sequent (1.6)
is provable, then the (uniform) automaton A(ϕ) accepts a tree T : D∗ → 2k as soon as the
(uniform) automata A(ϕ1), . . . ,A(ϕn) all accept T .
The second level is the computational interpretation of proofs of the Curry-Howard correspon-

dence. This is best exemplified with existential quantifications. The existential quantifications
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ϕ ` ϕ
ϕ ` ϕ ψ,ϕ ` ψ

ϕ,ψ ` ψ
ϕ,ϕ, ψ, ψ ` ϕ′

ϕ,ψ, ϕ, ψ ` ϕ′

ϕ,ϕ ` ψ
ϕ, !ϕ ` ψ

!ϕ ` ϕ
!ϕ ` !ϕ

ϕ ` ψ
ϕ, !ϕ ` ψ

ϕ, !ϕ, !ϕ ` ψ
ϕ, !ϕ ` ψ

ϕ ` I

ϕ,ϕ, ψ ` ϕ′

ϕ,ϕ⊗ ψ ` ϕ′
ϕ ` ϕ ψ ` ψ
ϕ,ψ ` ϕ⊗ ψ

ϕ,ϕ ` ψ
ϕ, (∃Z)ϕ ` ψ

ϕ ` ϕ[Y/X]

ϕ ` (∃X)ϕ

ϕ,ϕ ` ψ
ϕ ` ϕ( ψ

ϕ ` ϕ ψ,ψ ` ψ′

ϕ,ψ, ϕ( ψ ` ψ′

Figure 1.1.: Deduction Rules for LMSO (where Z is fresh).

of MSO are implemented by a projection operation on non-deterministic automata, that we
present here in the usual setting of §1.3. Consider a non-deterministic automaton A over the
alphabet Γ×Σ. Its projection ∃̃ΣA is the non-deterministic automaton over Γ defined as A but
with transition function

∂∃̃ΣA : QA × Γ −→ P(D→ QA)

(q, b) 7−→
⋃

a∈Σ ∂A(q, (b, a))

As expected, ∃̃ΣA accepts T : D∗ → Γ iff there exists U : D∗ → Σ such that A accepts
〈T,U〉 : D∗ → Γ× Σ.
Consider now a positive LMSO formula ϕ(X). By computational interpretation of proofs, we

mean that from a formal proof of the sequent

` (∃X)ϕ(X)

one should be able to extract a witness for the existential quantification (∃X)ϕ, that is a 2-labeled
tree accepted by A(ϕ) (seen for purposes of the current discussion as a usual non-deterministic
automaton). Such witnesses can actually be extracted from the runs of ∃̃2A(ϕ) on the unique
tree 1 : D∗ → 1. First note that a run ρ of a non-deterministic automaton B on a tree T defines
a function p ∈ D∗ 7−→ (qd)q∈D ∈ ∂B(ρ(p), T (p)). It follows that given an accepting run ρ of
∃̃ΣA(ϕ) on 1, then from the induced function

p ∈ D∗ 7−→ (qd)d∈D ∈
⋃
a∈2

∂A(ϕ)(ρ(p), a)

one can get a 2-labeled tree T such that ρ is an accepting run of A(ϕ) on T .
In other words, runs of automata convey the kind of information one is usually interested in

with computational interpretations of proofs. We will however rather rely on the more complex
notions of acceptance games and strategies. There are two reasons for this choice. First, as
discussed in §1.4 above, games give a smooth treatment of complementation of tree automata.
The second reason, which we motivate with more details in Chap. 4, is that games and strategies
are equipped with well-known categorical structures, which allow to easily define compositional
interpretations of proofs.
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1.7. Toward Realizability Interpretations of MSO. The ultimate motivation for our Curry-
Howard approach to automata on infinite trees, together with the underlying decomposition
of the translation of MSO formulae to tree automata via LMSO, is to provide realizability
interpretations of MSO (in the spirit of e.g. [SU06, Koh08]).
The methodology behind our realizability interpretation targets interactive proofs systems,

allowing possible human simplifications or decompositions of the goals given to automatic tools,
and moreover to combine the corresponding witnessing strategies. Our motivation is that even
if Rabin’s Tree Theorem proves the existence of a decision procedures for MSO on infinite trees,
there is (as far as we know) no working implementation of such procedures. The reason is that
all known translations of formulae to tree automata involve at some stage the determinization of
automata on ω-words (McNaughton’s Theorem [McN66]), which is believed not to be amenable
to tractable implementation (see e.g. [KV05]). We instead target semi-automatic approaches
in which the user can delegate sufficiently simple subgoals to automatic non-emptiness checkers
(solving parity games). The partial proof tree built by the user is then translated to a combinator
able to compose the strategies obtained by the algorithms.
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2. Preliminaries

This short Chapter gathers some well-known basic material on MSO, games and automata,
which will be implicitly and explicitly used in Part I as well as Part II.

2.1. Automata on ω-Words. We briefly discuss here the case of ω-words, i.e. when D = 1,
for which the decidability of MSO is much simpler than for infinite trees. The result in itself,
which actually was proved not too long before Rabin’s Theorem, is known as Büchi’s Theorem.

Theorem 2.1.1 (Büchi [Büc62]). MSO over ω-words is decidable.

The original proof method of Thm. 2.1.1 consists, similarly as for Rabin’s Tree Theorem,
in translating formulae to Büchi automata. A non-deterministic Büchi automaton is a non-
deterministic word automaton run over ω-words, and which accepts an ω-word if there exists an
infinite run with infinitely many final states. Checking the non-emptiness of a non-deterministic
Büchi automaton thus simply amounts to checking the existence of a reachable cycle containing
a final state.
The crux of Büchi’s Theorem 2.1.1 is the effective closure of Büchi automata under com-

plement. It is remarkable that complementation of non-deterministic Büchi automata can be
performed without going via intermediate deterministic automata. Besides, deterministic Büchi
automata are strictly less expressive than non-deterministic ones. On the other hand, Mc-
Naughton’s Theorem [McN66] states that non-deterministic Büchi automata can be translated
to equivalent deterministic finite state automata, but equipped with stronger acceptance condi-
tions. There are different variants of such conditions (Muller, Rabin, Streett or parity conditions,
see e.g. [Tho97, GTW02]). All of them can specify states which must not occur infinitely often in
an accepting run. Maybe the most widespread one are the parity conditions. A parity condition
assumes a coloring of states by natural numbers, and a run is accepting if the least color seen
infinitely often is even.

Theorem 2.1.2 (McNaughton [McN66]). Each non-deterministic Büchi automaton is effectively
equivalent to a deterministic parity automaton.

We say that a set of ω-words over a given alphabet is ω-regular if it is the language of a parity
automaton, or equivalently of a non-deterministic Büchi automaton. Via suitable representations
of alphabets, being an ω-regular language is of course equivalent to being the set ω-words which
satisfy a given MSO formula. McNaughton’s Theorem 2.1.2 gives the important fact that each
ω-regular language is a (finite) Boolean combination of Π0

2 sets.1 This property is not apparent
with non-deterministic Büchi automata (let alone MSO) because of the existential quantifications
over infinite runs imposed by non-determinism.

2.2. Games on Graphs. Let us come back to the general picture (1.3) on tree automata we
gave in §1.4:

1A Π0
2 set is a countable intersection of open sets.
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Non-Deterministic
Automata

Alternating
Automata

!(−)

∃̃(−) (−)‚

(2.1)

While complementation (−)‚ of alternating automata follows from determinacy of ω-regular
games, the operation

!(−) : Alternating Automata −−→ Non-Deterministic Automata

of the Simulation Theorem [MS87, EJ91, MS95] actually requires a stronger property. The
point is intuitively the following (we refer to e.g. [MS95, Wal02] for details). For an alternating
automaton A, the non-deterministic automaton !A has to check for the existence of accepting
P-strategies on A. With non-deterministic automata, since O only chooses tree directions, the
states appearing in a play of a P-strategy only depend on the tree positions and the strategy
itself. As a consequence, P-strategies correspond to run trees, that is to state-labeled D-ary
trees, so that existential quantifications over these can be expressed by the projection operation
of non-deterministic automata. This is not the case with alternating automata. Because O can
choose states as well as tree directions (i.e. choose among different possible states for the same
tree direction), a P-strategy may not be representable as a labeled D-ary tree, and in particular,
existential quantifications over these may not be expressible with the projection operation of
non-deterministic automata.
The usual solution is provided by a suitable positionality constraint on strategies. The idea

is that acceptance games are seen as graphs (actually dags), whose vertices are pairs of a tree
position and a state, and that strategies are asked to only depend on the current graph vertex.
This exactly amounts to ask strategies to be representable as D-ary trees on suitable alphabets.
We shall also be concerned with another (but related) aspect of games played on graphs,

namely the Büchi-Landweber Theorem [BL69], which states that ω-regular games played on
finite graphs are effectively determined (see §2.4).
We thus consider the following notion.

Definition 2.2.1 (Graph Games). A (rooted) graph game has the form G = (VP, VO, E, v
ı,W)

where VP and VO are disjoint sets of resp. P-positions and O-positions, E ⊆ (VP×VO)∪(VO×VP)
is the edge relation, and, for V := VP+VO, vı ∈ V is the game root and W ⊆ V ω is the winning
condition.

Given a game G and vertices v, w ∈ V , we often write v → w (or even v →G w or v →E w) to
mean (v, w) ∈ E. For simplicity, we sometimes (but not always) assume our games to have no
dead-end, in the sense that for each v ∈ V there is some w ∈ V such that v → w. Given a graph
game G and a vertex v ∈ V , we write Gv for the game defined as G but with initial position v:

Gv := (VP, VO, E, v, W)

When playing a graph game G with (say) vı ∈ VP is that, starting from P-position vı, P plays
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a move v0 ∈ VO with vı → v0, and then O plays a move v1 ∈ VP with v0 → v1, and so on:

P O P O P O

vı −−→ v0 −−→ v1 −−→ · · · −−→ v2n−1 −−→ v2n −−→ v2n+1 · · ·∈ ∈ ∈ ∈ ∈ ∈
VP VO VP VP VO VP

We see P as playing moves in VO from P-positions in VP, i.e. as actually playing O-positions.
This is made formal in the following construction of a simple game A(G) in the sense of App. A
from a graph game G. Given a graph game G = (VP, VO, E, v

ı,W), we define the simple game
with winning

A(G) := (VO, VP, L, W)

where L ⊆ (VP + VO)ω is the smallest set containing ε, such that v ∈ L whenever vı → v, and
such that v.v.w ∈ L whenever v.v ∈ L and v → w. Note that A(G) is positive if vı ∈ VP and
negative if vı ∈ VO, and that the P-moves of A(G) are the O-positions of G. In the following,
when speaking about (general) strategies on the graph game G, we always mean strategies in
the simple game A(G). As expected, if G has no dead-end then a P-strategy on G is winning
provided all its infinite plays (from vı) belong to W, while an O-strategy is winning if all its
infinite plays (from vı) avoid W.
In the context of MSO and automata on infinite words or trees, one is primarily interested in

ω-regular games. An ω-regular game is a graph game G equipped with a coloring c : V → C,
where C is a finite set, and such that W is induced by an ω-regular language W ⊆ C, in the
sense that (vn)n ∈ W iff (c(vn))n ∈ W . Since ω-regular sets are Boolean combinations of Π0

2-
sets, it follows from Davis’s Theorem [Dav64] that ω-regular games are determined (from every
position, either P or O has a winning strategy).
We now turn to positional strategies.

Definition 2.2.2 (Positional Strategy). Fix a graph game G. A positional P-strategy (resp.
positional O-strategy) on G is a function σ : VP → VO (resp. σ : VO → VP) such that v → σ(v)
whenever v → w for some w.

Positional winning strategies are known to exist for parity games, which are ω-regular games
where C is of the form {0, . . . , k} for some k ∈ N, and where W ⊆ V ω consists of those (vn)n
such that the least number occurring infinitely often in (c(vn))n is even.

Theorem 2.2.3 ([EJ91]). If G is a parity game, then either P or O has a positional winning
strategy.

Acceptance games are often defined as graph games (see e.g. [Tho97, GTW02, PP04]).

Example 2.2.4 (Acceptance Games). Consider an alternating automaton A : Σ and a tree
T : D∗ → Σ. The acceptance game G(A, T ) is the rooted graph game

G(A, T ) :=
(
VP, VO, E, (ε, qıA), W

)
whose positions are

VP := D∗ ×QA and VO := D∗ ×QA × P(QA ×D)

whose edges are given by

from VP to VO : (p, q)
P−→ (p, q, γ) iff γ ∈ ∂A(q, T (p))

from VO to VP : (p, q, γ)
O−→ (p.d, q′) iff (q′, d) ∈ γ
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and whose winning condition W is given by

(ε, q0) · (ε, γ0) · (p1, q1) · . . . · (pn, qn) · (pn, γn) · . . . ∈ W iff (qi)i∈N ∈ Ω

If A is a parity automaton, with acceptance condition ΩA ⊆ QωA generated from a coloring
c : QA → {0, . . . , k}, then G(A, T ) is a parity game for the coloring c̃ defined as

c̃(p, q) := c(q)
c̃(p, q, γ) := c(q)

The case of G(A, T ) for A a non-deterministic automaton in the sense of §1.3 is similar and
omitted.

Remark 2.2.5 (On Ex. 2.2.4 vs §1.4). The simple game A(G(A, T )) actually differs from the
acceptance game G(A, T ) sketched in §1.4. We have

A(G(A, T )) =
(
D∗ × P(QA ×D), D∗ ×QA, L, W

)
where L consists of sequences of the form

s = (ε, γ0) · (d1, q1) · (d1, γ1) · . . . · (d1 . . . dn, qn)
or s = (ε, γ0) · (d1, q1) · (d1, γ1) · . . . · (d1 . . . dn, qn) · (d1 . . . dn, γn)

where n ≥ 0, (qk+1, dk+1) ∈ γk and γk ∈ ∂A(qk, T (d1 · . . . · dk)) with q0 := qıA.
But there is some redundancy in L since sequences of tree positions d1, . . . , dk do not need to

be recorded in moves. This leads us to often prefer (as in §1.4) the positive simple game

G(A, T ) :=
(
P(QA ×D), QA ×D, LA(T ), WA(T )

)
whose legal plays s ∈ LA(T ) are sequences of the form

s = γ0 · (q1, d1) · γ1 · . . . · (qn, dn)
or s = γ0 · (q1, d1) · γ1 · . . . · (qn, dn) · γn

where n ≥ 0, (qk+1, dk+1) ∈ γk and γk ∈ ∂A(qk, T (d1 · . . . · dk)) with q0 := qıA. The winning
plays χ ∈ WA(T ) are generated from the acceptance condition ΩA in the expected way: WA(T ) ⊆
(P(QA ×D) · (QA ×D))ω consists of those infinite sequences

χ = γ0 · (q1, d1) · γ1 · . . . · (qn, dn) · . . .

such that (qk)k∈N ∈ ΩA (where q0 := qıA).
In some circumstances (in particular when positionality matters), we see the rooted graph

G(A, T ) as a quotient of the tree LA(T ) for the obvious graph morphism pos : LA(T ) → G(A, T ).

Remark 2.2.6 (On Ex. 2.2.4 vs [Wal02]). In the acceptance games of [Wal02], the set of O
positions is D∗×P(QA×D). Hence O positions do not contain state information, contrary the
formulation of Ex. 2.2.4 (which follows [DR19]). This difference is due to different positionality
assumptions when proving the correctness of the complementation operation (−)‚, i.e. that for
a labeled tree T , we have T ∈ L(A‚) iff T /∈ L(A).
The point occurs more precisely in the left-to-right implication, namely that a P strategy in

G(A‚, T ) induces an O strategy in G(A, T ). The setting of [Wal02] allows for non positional
strategies, so that the O strategy in G(A, T ) knows the current state of A from its history. On
the other hand, the formulation of Ex. 2.2.4 is tailored toward [DR19] and as such should restrict
to positional strategies. But a positional O strategy in G(A, T ) cannot know the current state of
A from its history, and thus should get it from its current position.
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Figure 2.1.: A Mealy machine.

2.3. Causal and Eager Functions. A stream function F : Σω → Γω is causal if it can produce
a prefix of length n of its output from a prefix of length n of its input. Hence F is causal if it is
induced by a map f : Σ+ → Γ as follows:

F (B)(n) = f(B(0) · . . . ·B(n)) (for all B ∈ Σω and all n ∈ N)

The finite-state (f.s.) causal functions are those induced by Mealy machines. A Mealy machine
M : Σ→ Γ is a DFA over input alphabet Σ, which is moreover equipped with an output function
λ : QM ×Σ→ Γ (where QM is the state set ofM). Writing ∂∗ : Σ∗ → QM for the iteration of
the transition function ∂ ofM from its initial state,M induces a causal function via the map
Σ+ → Γ, a.a 7→ λ(∂∗(a), a).
We write F : Σ →S Γ (resp. F : Σ →M Γ) to mean that F is a causal (resp. f.s. causal)

function from Σω → Γω.

Example 2.3.1. (a) Usual functions Σ → Γ lift to (pointwise, one-state) maps Σ →M Γ. For
instance, the identity Σ→M Σ is induced by the Mealy machine with 〈∂, λ〉 : (−, a) 7→ (−, a).

(b) Causal functions 1→S Σ correspond exactly to ω-words B ∈ Σω.

(c) The machineM : 2→ 2 displayed on Fig. 2.1 (where a transition a|b outputs b from input
a), taken from [Tho08], realizes the causal function F : 2→M 2 such that

F (B)(n) =

{
0 if n = 0 or F (B)(n− 1) = 1
B(n) otherwise

A causal function Σ →S Γ is eager if it can produce a prefix of length n + 1 of its output
from a prefix of length n of its input. More precisely, an eager F : Σ→S Γ is induced by a map
f : Σ∗ → Γ as

F (B)(n) = f(B(0) · . . . ·B(n− 1)) (for all B ∈ Σω and all n ∈ N)

Isolating eager functions allows a proper treatment of strategies in games, as a P-strategy σ
in a full positive game (U,X) (see Ex. A.0.2) is a function X∗ → U , and thus can be seen as an
eager function from X to U .
Finite-state eager functions are those induced by eager (Moore) machines (see also [FJR11]).

An eager machine E : Σ → Γ is a Mealy machine Σ → Γ whose output function λ : QE → Γ
does not depend on the current input letter. An eager machine E : Σ → Γ induces a f.s. eager
function via the map Σ∗ → Γ, a 7→ (λE(∂

∗
E(a)).

We write F : Σ→E Γ when F : Σ→S Γ is eager and F : Σ→EM Γ when F is f.s. eager. All
functions F : Σ →M 1, and more generally, constants functions F : Σ →S Γ are eager. Note
also that a f.s. causal function which is additionally eager is a f.s. eager function. On the other
hand, if F : Σ →EM Γ is induced by an eager machine E then F is finite-state causal as being
induced by the Mealy machine with same states and transitions as E , and with output function
(q, a) 7→ λE(q).
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2.4. The Büchi-Landweber Theorem and Finite-State Strategies. The Büchi-Landweber
Theorem states that ω-regular games played on finite graphs are effectively determined, in the
sense that one can decide who is the winner, and moreover that the winner always has a finite
state winning strategy.
We rely on the Büchi-Landweber Theorem for two reasons. First, it gives Rabin’s Basis

Theorem, namely the decidability of non-emptiness for tree automata, witnessed by finite-state
accepting strategies and regular accepted trees. Second, Büchi-Landweber Theorem gives the
general theoretical solutions to Church’s Synthesis (see §8.2.2).
Consider a graph game G = (VP, VO, E, v

ı,W) with VP and VO finite. We assume w.l.o.g. G
to have no dead-end and vı ∈ VP. A P (resp. O) strategy in G is defined to be a P (resp. O)
strategy in A(G), and can be represented as a function

V ∗P −→ VO resp. V +
O −→ VP

Hence, P-strategies in G can be seen as eager functions VP →E VO, while O-strategies can be
seen as causal functions VO →M VP. As a consequence, it is natural to say that a finite-state
P-strategy (resp. O-strategy) on G is a finite-state eager function VP →EM VO (resp. causal
function) VO →M VP.

Theorem 2.4.1 (Büchi-Landweber [BL69]). Let G be an ω-regular game as above. It is decidable
whether P or O has a winning strategy in G. Moreover, the winner always has a finite-state
winning strategy.
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Part I.

Axiomatizations
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3. Axiomatizations

Part I of this document, which actually amounts to the present chapter, covers material con-
cerning axiomatizations of MSO.
This line of works was initiated by Büchi and Siefkes, who gave axiomatizations of MSO

on various classes of linear orders, including ω-words (see e.g. [Sie70, BS73]). These works
essentially rely on formalizations of automata in the logic. A major result in the axiomatic
treatment of logics over infinite structures is Walukiewicz’s proof of completeness of Kozen’s
axiomatization of the modal µ-calculus [Wal00] (see also [AL17] for an alternative recent proof of
this result and [Kai95, Dou17] for the case of ω-words). Another trend relies on model-theoretic
techniques. For instance [tCF10, GtC12] give complete axiomatizations of MSO and the modal
µ-calculus over finite trees, and [SV10] gives a model-theoretic completeness proof for the flat
fragment of the modal µ-calculus. An attractive feature of model-theoretic completeness proofs
for the aforementioned logics is that they allow elegant reformulations of algebraic approaches
to these logics. Unfortunately, in the case of MSO over infinite trees, the only known algebraic
approach [Blu13] seems yet too complex to be easily formalized, so that one has to directly
formalize a translation of formulae to automata in the axiomatic theory.
In the case of ω-words, the axiom system essentially consists of Second-Order Peano Arithmetic

(PA2) restricted the language of MSO [Sie70]. Thanks to the model theoretic setting used
in [GtC09] for the case of finite trees, we proposed in [Rib12] a much shorter and (we believe)
simpler argument than [Sie70] for the completeness of MSO on ω-words.
We attacked the case of infinite trees with Anupam Das in [DR15], which unfortunately

contains an important (and we believe irreparable) flaw in the positional determinacy argument.
Our analysis of the cause of the mistake is the following. The fact that MSO is decidable implies
that it does not allow for the usual primitive recursive codings, which make formal reasoning in
PA2 humanly feasible (see e.g. [Sim10]). To circumvent this, we proposed in [DR15] a syntactic
sugar, essentially allowing for the uniform manipulation of (hereditarily) finite sets, but the
version used in [DR15] was too rough to allow for proper checks of the statements written in it.
We hope to have resolved this problem with the system FSO (for Functional Second-Order Logic)
of [DR19]. While the results of [DR19] are deceptive in terms of axiomatizations (we basically
assume the positional determinacy of parity games as an axiom), we nevertheless believe that the
theory of games and automata formalized there could serve as a solid ground for further works
on this question. We do not know yet whether the axiomatization of MSO proposed in [DR15]
is complete or not.
This Chapter is organized as follows. We begin in §3.1 with MSO(D), an axiomatic version of

MSO inspired from PA2, which, as mentioned above, happens to be complete on ω-words (i.e.
when D = 1). We then survey the system FSO(D) of [DR19], as well as the key points of the
formalization (§3.2). The material of §3.3 and §3.4 is unpublished and completely prospective:
§3.3 covers a failed attempt to prove the incompleteness of MSO(2) (i.e. MSO over the infinite
binary tree), while §3.4 sketches some ongoing work aimed at improving the current complete
axiom system for MSO(D).
Excepted in §3.3 and §3.4, this Chapter contains few details. We also do not cover the approach

of [Rib13]. The idea, there, was to propose a forcing based approach namely to McNaughton’s
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Theorem [McN66] seen as the reduction of MSO on ω-words to weak MSO (where quantifications
are restricted to finite sets). The hope was, in the line of [Kri11, Miq11], to then obtain a Curry-
Howard approach to MSO. We do not discuss further this work here, since in our (current) view,
it is largely superseded, w.r.t. its original Curry-Howard motivation, by the approach developed
in Part II. We also do not detail the model-theoretic approach of [Rib12] because it is used
nowhere else in this document. As for [DR19], we just give a mere outline, since the work is too
long and technical to be presented here.

3.1. The Logic MSO(D)

We present here a formulation of MSO as a two-sorted logic, with, as mentioned in §1.2, one sort
of individuals (intended to range over D∗) and one sort of monadic predicates (intended to range
over P(D∗)). The language of the resulting system MSO(D) is defined in §3.1.1, while §3.1.2
gives a basic set of axioms for MSO(D) corresponding to those of [DR15]. The corresponding
notion of Henkin model is briefly presented in §3.1.3 (we do not technically require them, but
they provide the right setting for some discussions). Then §3.1.4 deals with the specialization
of MSO(D) to ω-words, which is known to be complete.

3.1.1. The Language of MSO(D). The language of MSO given in §1.2 is well adapted when
discussing translations to automata, but is less convenient when devising axiomatic systems. We
think such axiomatic systems as subsystems or variants of Second-Order Peano Arithmetic (see
e.g. [Sim10]), and as such, it is customary to have a primitive notion of individuals (intended
to range over tree positions p ∈ D∗). Also, as common when discussing axiomatic second-
order systems, we see second-order logic as a two-sorted first-order logic (see e.g. [Sha91, Sim10,
Rib12] for comments on this). So formally MSO(D) has one sort of individuals, with variables
x, y, z, etc., and one sort of monadic predicates, with variables X,Y, Z, etc.

MSO(D) should also be equipped with means of speaking, for d ∈ D, of the dth successor p.d
of a tree position p ∈ D∗. This can be done in two ways, either with unary function symbols
Sd(−) on individuals, or with binary relations symbols Sd(−,−). The former, which is in line
with the tradition of second-order arithmetic, is clearly more convenient when writing down
concrete formulae, and is indeed the format adopted in [Sie70, DR19]. On the other hand, it
induces a supplementary step when translating formulae to automata, and makes more difficult
the connection with the versions of MSO used in Chap. 8 We assume this latter option here, while
whenever convenient we shall use formulae containing terms with function symbols as defined
formulae. We follow the same policy for the root position ε ∈ D∗, and assume a primitive unary
predicate R(−) (for “root”). Using monadic second-order quantifications, we can have equality
on individuals and the (strict) prefix order as defined formulae. For the sake of convenience, we
take them as primitive connectives (this contrasts with [Rib12] for equality).
The choice of primitive logical connectives for MSO(D) is not crucial here, and we shall simply

assume a convenient set of connectives.

Definition 3.1.1 (The Language of MSO(D)). The formulae of MSO(D) are given by

ϕ,ψ ::= > | ⊥ | x ∈̇ X | x
.
= y | x <̇ y | R(x) | Sd(x, y) (for d ∈ D)

| ϕ ∧ ψ | ϕ ∨ ψ | ψ → ϕ
| (∃x)ϕ | (∀x)ϕ | (∃X)ϕ | (∀X)ϕ
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(∀x)(∀y)(∀z)
∧
d∈D

(
Sd(x, y) → Sd(x, z) → y

.
= z
)

(∀x)(∀y)(∀z)
∧
d6=d′

(
Sd(x, y) → Sd′(x, z) → ¬(y

.
= z)

)
(∀x)¬(x <̇ x) (∀x)(∀y)(∀z)

(
x <̇ y → y <̇ z → x <̇ z

)
(∀x)(∀z)(R(z) → z ≤̇ x) (∀x)(∀y)(∀z)

∧
d∈D

([
Sd(z, y) ∧ x <̇ y

]
↔ x ≤̇ z

)
Figure 3.1.: Tree Axioms of MSO(D).

We use the following notations and defined formulae:

X(y) := (y ∈̇ X)
(x ≤̇ y) := x <̇ y ∨ x

.
= y

ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

Notation 3.1.2. We shall use individual terms

t, u ::= x | ε̇ | Sd(x) (for d ∈ D)

whenever convenient. Formulae written with such terms are translated to MSO(D) formulae in
the obvious way. For instance, the formula t

.
= x is defined by induction on t as follows:

(ε̇
.
= x) := (∃z)(R(z) ∧ z .

= x)
(Sd(t)

.
= x) := (∃z)(t .

= z ∧ Sd(z, x))

3.1.2. The Theory MSO(D). We assume for MSO(D) deduction for two-sorted classical first-
order logic. The axioms of MSO(D) consist of the following:

• Equality on Individuals:

(∀x)(x
.
= x) and (∀x)(∀y)

(
x
.
= y −→ ϕ[x/z] −→ ϕ[y/z]

)
(for each ϕ)

• The Tree Axioms of Fig. 3.1.

• Comprehension Scheme:

(∃X)(∀y)
[
y ∈̇ X ←→ ϕ

]
(for each ϕ, with X not free in ϕ)

• Induction Axiom:

(∀X)

(
(∀y)

[
R(y) → X(y)

]
→

∧
d∈D

(∀y)(∀z)
[
Sd(y, z) → X(y) → X(z)

]
→ (∀y)X(y)

)

We write `MSO(D) for deduction in MSO(D).
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3.1.3. Henkin Models. We recall here Henkin models and completeness in the context of
MSO(D). An Henkin structure for the language of MSO(D) has the form

M = (Mι,Mo, RM, (SM,d)d∈D, <M)

where Mι is the set of individuals, Mo ⊆ P(Mι) is the set of (monadic) predicates, RM is an
element ofMι, and SM,d and <M are binary relations onMι.
In particular, the standard model of MSO(D) is

T := (D∗, P(D∗), R, (Sd)d∈D, <)

where R holds on p ∈ D∗ iff p is the empty sequence ε ∈ D∗, the relation Sd(p, q) (resp. p < q)
holds iff q = p.d (resp. iff p is a strict prefix of q).
The formulae of MSO(D) are interpreted in Henkin modelsM as expected: individuals range

overMι, (monadic) predicates range overMo, equality on individuals is interpreted as equality
inMι, membership ∈̇ is interpreted as usual set membership ∈, and Sd (resp. <̇) is interpreted
as SM,d (resp. <M).
An Henkin structure M is a model of MSO(D) if all the axioms of MSO(D) hold inM. As

usual (see e.g. [Sha91]), MSO(D) is complete w.r.t. its Henkin models:

Theorem 3.1.3 (Henkin Completeness). Given a closed MSO(D) formula ϕ, if ϕ holds in all
models of MSO(D), then `MSO(D) ϕ.

3.1.4. The Case of ω-Words. When D = 1, we write MSOω for MSO(D) and N for the
standard model T. Note that Nι = 1∗ ' N and No ' P(N) ; the atomic predicate R now
specifies the natural number 0, and we write it Z. It is known since [Sie70] that MSOω completely
axiomatizes N. In other words, all Henkin models of MSOω are equivalent and `MSOω is a
complete theory.

Theorem 3.1.4 (Siefkes [Sie70]). MSOω is complete.

The original proof of [Sie70] goes via a formalization of Büchi’s Theorem [Büc62] (Thm. 2.1.1)
in the formal system MSOω. While this approach is necessarily quite laborious, we noticed
in [Rib12] that by adapting the method of [GtC09, GtC12] (based on tools from finite-model the-
ory), it was possible to mimic the usual algebraic proof of decidability of MSO (see e.g. [PP04]),
resulting in a much shorter (and we believe simpler) argument than [Sie70]. In both cases, the
proofs follow from the fact that an infinite Ramsey’s Theorem for pairs is provable in MSOω (for
colorings defined by MSOω formulae). We refer to [KMPS16] for a calibration in second-order
arithmetic of the proof-theoretical strength of the decidability of MSOω.

3.2. A Functional Extension of MSO(D) on Infinite Trees

Devising a complete axiomatization of MSO on infinite trees is much more complex than for
ω-words. We developed a first approach in [DR19], that we outline here.
First, since the only known algebraic approach to MSO on infinite trees [Blu13] seems un-

fortunately too complex to be easily formalized, it seems currently not reasonable to try to
extend [GtC12, Rib12] to the case of infinite trees. As a consequence, we chose in [DR19] to
proceed similarly as [Sie70] did for ω-word, namely to formalize in MSO(D) a theory of automata
on infinite trees. Such a formalization, which is necessarily much heavier than [Sie70], would
be quite painful to be carried out in the language of MSO(D). This is why [DR19] introduced
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FSO(D) (for Functional Second-Order Logic), an extension of MSO(D) with built in facilities
to manipulate finite sets and labeled trees. Essentially, FSO(D) extends MSO(D) with a sort
of (hereditary) finite sets equipped with bounded quantification, and allows for the direct ma-
nipulation of D-ary trees labeled over (hereditary) finite sets. The formal definition of FSO(D)
in [DR19] is actually the result of a compromise between the flexibility of the system and the
transparency of its translation to MSO(D). This compromise leads us to some syntactic sub-
tleties for which we refer to [DR19], and we shall only give here an outline of the system in the
setting of §3.1.1.
The system FSO(D) is sketched in §3.2.1, while §3.2.2 outlines the formalization accomplished

in [DR19]. Recall that the set Vω of hereditarily finite sets (or HF sets) is defined as

Vω :=
⋃
n∈N

Vn

where V0 := ∅ and Vn+1 := P(Vn).

3.2.1. The Logic FSO(D). The language of FSO(D) has the following three sorts.

• The same sort of individuals as MSO(D) (§3.1.1).

• A sort of hereditarily finite sets with HF variables k, `, etc., and with one constant κ̇ for
each hereditarily finite set κ.

• A sort of “functions” with variables F,G,H, etc.

In addition, FSO(D) has the following terms for HF-sets, called the HF-terms:

K,L ::= k | κ̇ | F (x)

The formulae of FSO(D) are given by the grammar

ϕ,ψ ::= > | ⊥ | x
.
= y | x <̇ y | R(x) | Sd(x, y) (for d ∈ D)

| K
.
= L | K ∈̇ L

| ϕ ∧ ψ | ϕ ∨ ψ | ψ → ϕ
| (∃x)ϕ | (∀x)ϕ | (∃` ∈̇ K)ϕ | (∀` ∈̇ K)ϕ | (∃F : K)ϕ | (∀F : K)ϕ

The above language for FSO(D) is actually not the official language of FSO defined in [DR19],
but it is interpretable in it.
The language of FSO(D) has a standard interpretation, in which HF variables range over

hereditarily finite sets and function variables range over suitable labeled trees. The key is of
course that quantifications over HF sets and over functions are bounded. In a closed formula
(∃` ∈̇ K)ϕ or (∀` ∈̇ K)ϕ, the term K is interpreted as an HF set, say κ, and the HF variable `
ranges over the elements of κ. Similarly, in a closed formula (∃F : K)ϕ or (∀F : K)ϕ, the termK
is interpreted as an HF set κ, and the function variable F ranges over κ-labeled D-ary trees (i.e.
over D∗ → κ). Under this interpretation, closed FSO(D) formulae are interpretable as closed
MSO(D) formulae, essentially by expanding quantifications over HS sets using propositional
connectives and by representing quantifications over functions by suitable quantifications over
tuples of monadic variables. This translation is noted 〈−〉.
The philosophy underlying the axioms of FSO(D) is to incorporate as a much as possible of the

set theory of hereditarily finite sets.1 We refer to [DR19] for details on this point. In addition,
FSO(D) has the following adaptation of the axioms of MSO(D) (in the setting of §3.1.2):

1Recall that Vω is a model of all the axioms of ZFC excepted the axiom of infinity.
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• Equality. FSO(D) has the same equality axiom on individuals as MSO(D) (of course taken
for the language of FSO(D)). In addition, FSO(D) has the following equality axioms on
HF sets:

K
.
= K and (K

.
= L −→ ϕ[K/k] −→ ϕ[L/k])

• FSO(D) has the Tree Axioms of Fig. 3.1.

• Induction. Instead of a single induction axiom, FSO(D) has an induction scheme (for each
formula of its language).

• Functional Choice Axioms. Instead of the comprehension scheme, FSO(D) has a series
of functional choice axioms. We refer to [DR19, §3.4.5] for details, and just give as an
example the following axiom scheme of HF-bounded choice for function variables:

(∀x)(∃` ∈̇ K)ϕ(x, `) −→ (∃F : K)(∀x)ϕ(x, F (x))

Remark 3.2.1. We insist that functional choice axioms as above actually amount to compre-
hension in MSO(D). Such axioms do not create choice predicates for individuals, which are
known to be undefinable in MSO, and moreover to break decidability when added to the language
of MSO (see [GS83, BG00, CL07]).

The above mentioned translation 〈−〉 of FSO(D) formulae to MSO(D) formulae extends to
provability. But because quantifications over HF sets are required to be bounded, FSO(D) has
axioms which necessarily involve formulae with free HF variables (e.g. the equality axiom K

.
=

K). For a formula ϕ(k1, . . . , kn) with free variables as displayed, the soundness of the translation
〈−〉 is stated as follows: if FSO(D) proves ϕ(k1, . . . , kn), then MSO(D) proves 〈ϕ(κ̇1, . . . , κ̇n)〉
for each HF sets κ1, . . . , κn ∈ Vω. Of course, one also has to handle free function variables: for
a formula ϕ(F1, . . . , Fn) with free variables as displayed, if FSO(D) proves ϕ(F1, . . . , Fn), then
MSO(D) proves 〈(∀F1 : κ̇1) . . . (∀Fn : κ̇n)ϕ(F1, . . . , Fn)〉 for each HF sets κ1, . . . , κn ∈ Vω.

3.2.2. Games and Automata in FSO(D). Most of [DR19] consists in developing a basic setting
of games and automata in FSO(D). The main constraint imposed by the language of FSO(D)
(and eventually by that of MSO) is that strategies should be representable as labeled D-ary
trees. In view of Ex. 2.2.4, this means that one can only manipulate positional strategies (in the
sense of §2.2). By way of illustration, we give the corresponding external notion of game in the
setting of §2.2.

Definition 3.2.2. An MSO-Game is a graph game G of the form

G =
(
(D∗ × V �P), (D∗ × V �O), E, (ε, vı), W

)
where V �P and V �O are HF sets with vı ∈ V �P, and where the edge relation E is induced from
labeled trees

EP : D∗ −→
(
V �P −→ P(V �O)

)
and EO : D∗ −→

(
V �O −→ P(V �P×D)

)
as (p, u) −→E (p′, v) iff

either p′ = p and v ∈ EP(p)(u)
or p′ = p.d with (v, d) ∈ EO(p)(u)
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Note that a positional P-strategy in an MSO-game G as above is given by a labeled D-ary tree

σP : D∗ −→ (V �P −→ V �O)

while a positional O-strategy is given by a labeled D-ary tree

σO : D∗ −→
(
V �O −→ (V �P×D)

)
MSO-games are simply a generalization of Ex. 2.2.4 specifically tailored to fit in the language

of FSO(D). In this setting, the difficult operations on automata are complementation and the
Simulation Theorem.
For complementation, the construction of A‚ from A, as well as the usual correspondence

between O strategies in acceptance games for A and P strategies in acceptance games for A‚
are unproblematic. However, the general correctness statement of complementation, namely
that A‚ accepts exactly the trees rejected by A, relies on the determinacy of acceptance games,
which in the language of FSO(D) boils down the the positional determinacy of parity MSO-
games. We were unfortunately not able to prove this statement from the axioms of FSO(D).
We thus extended the axiomatization of FSO(D) with an axiom scheme (PosDet) stating the
positional determinacy of each parity MSO-game.
For the Simulation Theorem we formalized the construction of [Wal02] (which contrary to

e.g. [MS95] can be restricted to strategies represented as D-ary trees). The key point is that
the formulation of the parity acceptance condition of the automaton !A relies on McNaughton
Determinization Theorem [McN66] (Thm. 2.1.2). Each instance of this result can actually
be formulated in MSO over ω-words, and thanks to Siefkes’ Completeness Theorem [Sie70]
(Thm. 3.1.4), is provable in MSOω. In order to import the relevant constructions into FSO(D),
we then use the fact that for a fixed MSO-game G, the MSOω formulae over the (rooted) infinite
paths of G are interpretable in FSO(D), and moreover that via this interpretation, the MSOω

formulae which are true on the (rooted) infinite paths of G are provable in FSO(D).
Having formalized usual constructions on automata makes it possible to prove the correctness

of a translation of formulae to automata. The completeness of FSO(D) + (PosDet) is then
obtained essentially by formalizing in FSO(D) the usual proof of Rabin’s Basis Theorem [Rab72]
(see e.g. [Tho97, Thm. 6.18]). For each closed formula ϕ of FSO(D) we have an automaton
A(ϕ) : 1 such that

`FSO(D)+(PosDet) ϕ ←→ (∃F : 1)(F ∈ L(A(ϕ)))

Here, F ∈ L(A(ϕ)) is an FSO(D) formula stating the existence of a winning (positional) P
strategy in the acceptance game of A(ϕ) over the (unique) labeled tree F : D∗ → 1. Similarly
as in the usual (external) setting (see e.g. [Tho97, Ex. 6.12]), this acceptance game can be proved
in FSO(D) to be equivalent to a game on a finite graph. For such games, the Büchi-Landweber
Theorem [BL69] (Thm. 2.4.1) says that the winner always has a finite state (positional) strategy.
But finite state strategies on finite graphs can be represented by HF sets, so that infinite plays
(i.e. ω-words) are actually the only infinite objects we need when speaking about winning in
this case. As a consequence, the result of each instance of Büchi-Landweber Theorem can be
formulated in MSOω and thus (via Siefkes’ Theorem) be lifted to a provable FSO(D) statement.
It follows that FSO(D) proves either

(∃F : 1)(F ∈ L(A(ϕ))) or ¬(∃F : 1)(F ∈ L(A(ϕ)))

from which we obtain the completeness of FSO(D) + (PosDet):
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Theorem 3.2.3. For each closed FSO(D) formula ϕ, FSO(D) + (PosDet) proves either ϕ or
¬ϕ.

Writing 〈PosDet〉 for the axiom consisting of the 〈−〉 translation of each closed instance of
(PosDet), we obtain the corresponding result for MSO(D).

Corollary 3.2.4. For each closed MSO(D) formula ϕ, MSO(D) + 〈PosDet〉 proves either ϕ or
¬ϕ.

Even if obtained completeness by formally extending FSO(D) with the axiom (PosDet), we
nevertheless can say that the formal development of a theory of games and automata in FSO(D)
was already quite demanding.2 On the positive side, we can nevertheless say that Cor. 3.2.4
provides a theoretical algorithm for Rabin’s Tree Theorem [Rab69] (Thm. 1.2.1) and thus to
some extent “has” to be non trivial. On the other hand, as stated in the conclusion of [DR19],
our main motivation for this axiomatization was (and still is) the Curry-Howard approach to
MSO outlined in Chap. 1 and presented in Part. II of this document.

3.3. Is MSO(D) Complete?

We were not able to prove the positional determinacy of (parity) MSO-games in FSO(D). While
we strongly suspect FSO(D) (and thus MSO(D)) to be incomplete, neither were we able to prove
the incompleteness of MSO(D). We nevertheless find it interesting to report here an inconclusive
attempt.
The idea would have been to give a model-theoretic counterpart to the proof of [CL07, Thm. 6]

(see also [CLNW10, Thm. 3.7]), which, based on a pumping argument showing the undefinability
of choice over individuals in MSO(D), presents a game with decidable MSO-theory but with no
definable winning strategy. The proof of [CL07, Thm. 6] is based on a non-regular tree P which
lines up along its right branch a specific family of regular trees (Vn)n. This family is designed so
that for each automaton A : 2× 2, the language Vn for n large enough is counterexample for A
implementing a choice predicate. The proof of [CL07, Thm. 6] consists in assuming a definable
winning strategy σ in a game on P from which one can build a choice predicate ϕ for each of
the Vn’s (via their representation in P ), and then to “diagonalize” w.r.t. the automaton A(ϕ).
Then our plan would have been to generate an Henkin modelM(P ) from the parameter P ,

so that assuming the completeness of MSO(D) implies a definability property which leads to a
contradiction similarly as in the proof of [CL07, Thm. 6]. While the assumption we make for the
definition ofM(P ) may seem unreasonable, we find the adaptation of the argument of [CL07,
Thm. 6] worth the trouble of this Section, because it may give ideas and reasoning principles
for our context.
We assume in this section that D = 2 = {0, 1}.

3.3.1. On the Undefinability of Choice in MSO. It is known that choice over individuals is
not definable in MSO, in the sense that there is no MSO formula ϕ(x,X) which selects a unique
element x ∈ X provided X is non-empty, i.e. such that

T |= (∀X)
(

(∃x)(x ∈̇ X) −→ (∃!x)
(
x ∈̇ X ∧ ϕ(x,X)

))
This result, originally proved in [GS83], has numerous “useful” consequences e.g. the undefinabil-
ity of winning strategies in some games, or the undefinability of any well-order on tree positions.

2The courageous reader is warmly encouraged to look at [DR19].
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Such results, among others, can be found in [CL07], which also provides a direct pumping
argument for the undefinability of choice.
The basis of the pumping argument of [CL07] (see also [CLNW10]) is the following family of

regular languages, where N,M ∈ N:

UM,N := (0 + 1)∗(0N0∗1)M (0 + 1)∗

Undefinability of choice is a direct consequence of the following.

Theorem 3.3.1 ([CL07, Lem. 2 & Thm. 3]). Fix a non-deterministic automaton A : 2× 2 and
let M ≥ 2|QA| + 1 and N ≥ |QA| + 1, where |QA| is the number of states of A. If A accepts
〈UM,N , S〉 for some singleton set S ⊆ UM,N , then A also accepts 〈UM,N , S

′〉 for some singleton
S′ ⊆ UM,N different from S.

3.3.2. An Inconclusive Result. Similarly as in the proof of [CL07, Thm. 6], consider the set
of tree positions

P := {1n · 0 · p | n ∈ N and p ∈ Un,n}

So P contains each set Un,n, but located at “address” 1n · 0.
We can prove the following.

Proposition 3.3.2. Let P ⊆ 2∗ be defined as above. Assume that there exists a collection of
setsM(P )o ∈ P(P(2∗)) such that for all A ∈ P(2∗) we have A ∈M(P )o if and only if there is
an MSO(2) formula ϕ(X,x) (with free variables as displayed) such that

A = {p ∈ 2∗ | M(P ) |= ϕ(P, p)}

whereM(P ) is the Henkin model

M(P ) := (2∗,M(P )o, R, (Sd)d∈2, <)

Then MSO(2) (and thus FSO(2)) is incomplete.

The existence of modelM(P ) as required by Prop. 3.3.2 may seem quite dubious. Note that
it would have been trivial to defineM(P )o if only first-order definability had been required, i.e.
if the formulae ϕ(x,X) would contain no quantification over monadic predicates. We further
discuss this point in §3.3.3.
The rest of this §3.3.2 is devoted to a proof of Prop. 3.3.2. The argument is an adaptation to

our context of constructions and ideas of [CL07, Thm. 6] (see also [CLNW10, Thm. 3.7]).
Assume given an Henkin model M(P ) as indicated in Prop. 3.3.2. Note that M(P ) is a

model of MSO(2). Note also thatM(P ) and T have the same individuals, so that they satisfy
the same first order sentences. Since the individuals ofM(P ) and T are definable by first order
formulae, it moreover follows thatM(P ) and T satisfy the same closed formulae with individual
parameters.
Our strategy is to derive a contradiction from Thm. 3.3.1 under the assumption that FSO(2)

(and thus MSO(2)) is complete. In the following, relying on the provable translations between
MSO and FSO (see [DR19, §3.6]), we shall make no syntactic difference between MSO(2) and
FSO(2) formulae.
We now assume toward a contradiction that FSO(2) (and thus MSO(2)) is complete.
Let B := 1∗0. Note that B is definable (both inM(P ) and T) by a first-order formula (since

p ∈ B iff every strict prefix of p is either the root or a 0-successor and if moreover p itself is
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a 1-successor). Consider the following deterministic tree automaton B : 2 × 2, with state set
{qı, qP, qt}. When evaluated on a pair 〈S, T 〉, B begins by staying in state qı as long as O chooses
the tree direction 1, and goes to state qP whenever O chooses direction 0. Then B follows the
directions given by T : D∗ → 2 and goes (and stays forever) in state qt whenever it reaches
a tree position which belongs to S. The acceptance condition of B consists of those sequences
of states which contain qt whenever they contain qP. Of course, if every element of B has an
extension in S, then there is some T such that B accepts 〈S, T 〉. In symbols:

T |= (∀X)
(

(∀x ∈̇ B)(∃y ∈̇ X)(x ≤̇ y) −→ (∃Y )
(
〈X,Y 〉 ∈ L(B)

))︸ ︷︷ ︸
ϕB

It is tedious but easy to write down a formula ϕev(X,Y, y) which holds in the standard model
if and only if, provided y has a (unique) prefix x in B, y is (whenever it exists) the first element of
X reached by evaluating B on 〈X,Y 〉 while letting O play x. Then the following closed formulae
hold in the standard model:

ϕ! := (∀X)(∀Y )
(

(∀x ∈̇ B)(∃z ∈̇ X)(x ≤̇ z) −→ 〈X,Y 〉 ∈ L(B) −→ (∃!y)ϕev(X,Y, y)
)

ϕcor := (∀X)(∀Y )(∀y)
(
ϕev(X,Y, y) −→ y ∈̇ X

)
We now switch to the model M(P ). By completeness the formulae ϕB, ϕ! and ϕcor hold in
M(P ). In particular

M(P ) |= (∃Y )
(
〈P, Y 〉 ∈ L(B)

)
Let T ∈M(P )o such thatM(P ) |= 〈P, T 〉 ∈ L(B). Note that we have

M(P ) |= (∃!y)ϕev(P, T, y)

Moreover, since T ∈ M(P )o, it follows from our assumption on M(P ) that T is definable in
M(P ) by a formula, say ψ(Y, x):

M(P ) |= (∀x)
(
x ∈̇ T ←→ ψ(P, x)

)
Consider finally the formula

ϕ(X, y) := (∃Y )
(

(∀x)
(
x ∈̇ Y ↔ ψ(X,x)

)
∧ ϕev(X,Y, y)

)
We have

M(P ) |= (∃!y)ϕ(P, y) ∧ (∀y)
(
ϕ(P, y) −→ y ∈̇ P

)
Furthermore we can replace the individual argument y of ϕ by a singleton set Y , to the effect
that ϕ(X, y) is equivalent to a formula ϕ̃(X,Y ) in the sense that

(∀X)(∀Y )(∀y)
(

Sing(Y ) −→ y ∈̇ Y −→
(
ϕ(X, y) ←→ ϕ̃(X,Y )

))
(where Sing(−) is a first-order definition of “being a singleton”) holds both inM(P ) and T.
We momentarily switch back to the standard model T. Using Rabin’s Theorem [Rab69], let
A : 2× 2 be a total non-deterministic (parity) automaton equivalent to ϕ̃(X,Y ), i.e. such that

T |= (∀X)(∀Y )
(
ϕ̃(X,Y ) ←→ 〈X,Y 〉 ∈ L(A)

)
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By our completeness assumption, the automaton A is also correct for ϕ̃ in the modelM(P ), in
the sense that

M(P ) |= (∀X)(∀Y )
(
ϕ̃(X,Y ) ←→ 〈X,Y 〉 ∈ L(A)

)
We thus get

M(P ) |= (∀Y )(∀y)
(

Sing(Y ) −→ y ∈̇ Y −→
(
ϕ(P, y) ←→ 〈P, Y 〉 ∈ L(A)

))
The rest of the argument goes as follows. Take p := 1n0 with n ≥M,N for M,N as required

by Thm. 3.3.1 applied to A. Since p ∈ B, there is a unique element of P “above p”, say p.r,
such that in the sense of M(P ), the automaton A accepts the pair 〈P, {p.r}〉. We would like
to transfer this to the standard model, in order to reach a contradiction from Thm. 3.3.1. But
this requires to get rid of the undefinable parameter P .
The first step is to restrict P to P p≤̇, where Xx≤̇ is the predicate defined from X as

(∀y)
(
y ∈̇ Xx≤̇ ←→

(
y ∈̇ X ∧ x ≤̇ y

))
Fix a well order on the states of A. Recalling that individuals (i.e. tree positions) are definable,
the following is provable in FSO. Fix an arbitrary predicate X. Let q be the least state of A such
that for some extension p′ of p, there is a winning P-strategy in G(A, 〈X, {p′}〉) which reaches
position (p, q). Then there is a P strategy in the acceptance game G(A, 〈Xp≤̇, {p′}〉) which is
winning from position (p, q). Moreover, for each extension p′′ of p, there is a winning P strategy
in the acceptance game G(A, 〈X, {p′′}〉) whenever there is a P strategy in the acceptance game
G(A, 〈Xp≤̇, {p′′}〉) which is winning from position (p, q). As a consequence, now in the sense of
M(P ), there is a state q of A such that there is a unique extension p′ of p for which P has a
winning strategy in G(A, 〈P p≤̇, {p′}〉) from position (p, q).
It remains to get rid of P p≤̇, and we are done if we show that P p≤̇ is definable inM(P ) by

a formula δ(x) of one free individual variable x. But P p≤̇ = 1n0 ·Un,n (with n as above), which
is a regular subset of 2∗. It follows that in the standard model T, P p≤̇ is definable by a formula
δ(x):

N |= (∀x)
(
x ∈̇ P p≤̇ ←→ δ(x)

)
It is easy to see that P p≤̇ is also defined by δ(x) inM(P ). Indeed, note that for each s ∈ 2∗, it
follows from our completeness assumption that

N |= δ(s) if and only if M(P ) |= δ(s)

We thus obtain
M(P ) |= (∀x)

(
x ∈̇ P p≤̇ ←→ δ(x)

)
Thanks to the formula δ(x), there is a closed formula β which expresses, both inM(P ) and

T, that there is a unique extension p′ of p such that there is a P strategy in G(A, 〈P p≤̇, {p′}〉)
which is winning from position (p, q). By completeness, β holds in the standard model T. Now,
writing extensions of p as p.r, this obviously implies that there is unique r ∈ Un,n such that there
is a P strategy in G(A, 〈Un,n, {r}〉) which is winning from position (ε, q). We thus have reached
a contradiction from Thm. 3.3.1 since n ≥ M,N with M,N independent from the initial state
of A.
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3.3.3. Discussion. What makes the existence ofM(P ) look problematic is the apparent cir-
cularity in the requirement thatM(P )o consists exactly of the sets definable by formulae with
monadic quantifiers evaluated inM(P )o.
Consider for instance the usual definition of Gödel’s constructible sets from set theory (see

e.g. [Jec06]). Adapted to our context, it would amount to define a family (La)a of subsets of
P(2∗) by induction on ordinals a as follows:

• L∅ := {P};

• La :=
⋃

b<a Lb for a limit ordinal a;

• La+1 is the set of all A ∈ P(2∗) such that for some MSO(2) formula ϕ(X1, . . . , Xn, x)
(with free variables as displayed) and some A1, . . . , An ∈ La, we have

A = {p ∈ 2∗ | N�La |= ϕ(A1, . . . , An, p)}

Here T�So is the Henkin model with standard individuals and with monadic predicates So ⊆
P(2∗). As usual, La ⊆ Lb whenever a < b. Also, we have La`+1 = La` for some limit ordinal
a`, so that La = La` for each a > a`. Let L(P ) := N�La` (the choice of a` is irrelevant), so that
L(P )o = La` . The fact that L(P )o is a model of MSO(2) is trivial for the individual part, and
follows from the fact that La`+1 = La` for the comprehension scheme. However, L(P ) seems to
have no reason to satisfy the requirement of Prop. 3.3.2. The point is that each A ∈ L(P )o is
definable, of course from parameters in L(P )o, but relative to some La with possibly a < a`,
while there seems to be no reason for the theories of T�La and T�La` to coincide.
On the other hand, in the setting of (subsystems of) second-order arithmetic, for each set P ⊆

N, there exists a minimal β-model of comprehension containing P ([Sim10, Thm. VII.5.17]).3

This follows from the fact that the counterpart of “X ∈ Lo(P )” is definable in the language
of arithmetic (using transfinite recursion), so that thanks to absoluteness, all β-models of com-
prehension coincide on their constructible part. All this ultimately relies on the availability of
Gödel’s codings in the language of arithmetic, while in our setting nothing seems to ensure that
all “β-models” of MSO(2)-comprehension contain L(P ).4

An other possibility, that we did not investigate yet, is to use the fact that the set P of §3.3.2
belongs to the fourth level of the higher-order pushdown hierarchy (see [CL07, CLNW10] and
references therein). One might then consider Henkin models of MSO(2) whose predicates belong
to some (or all) levels of the higher-order pushdown hierarchy. Of course, the argument of
Prop. 3.3.2 is not likely to extend, since the set T would now be defined from P and other
pushdown parameters as well. On the other hand, the argument may lift to some extension of
MSO(2) with atomic predicates from the pushdown hierarchy.

3.4. An Axiom of Definition by Cumulative Unions

As requiring (PosDet) for the completeness of FSO(D) is not very satisfactory, together with
Anupam Das we investigated other axioms which may more closely target the aspects of the
language of MSO(D) which made us stuck when trying to prove positional determinacy. While
this is still work in progress, we give an informal account of it here.

3A β model is a model of arithmetic with standard individuals, and which validates all true Σ1
1 sentences (with

parameters) of second-order arithmetic.
4At least if these “β-models” are defined relative to the language of MSO(2).

40



Let us first briefly discuss the general case of positional determinacy of parity games in the
setting of Thm. 2.2.3. The original proof of [EJ91], as well as that of [Kla94], relies on ordinal
notations. While allowing for constructive arguments (see e.g. [Zie98]) ordinal notations for
uncountable ordinals seem unavailable within the language of MSO(D). Following [Zie98, Tho97]
one can avoid ordinals via the following Uniformization Lemma. We state it in the setting of §2.2.

Lemma 3.4.1 (Uniformization). Fix a graph game G such that v.χ ∈ W whenever χ ∈ W. For
J ∈ {P,O}, let WJ be the set of positions v ∈ V such that Player J has a winning positional
strategy in G from v. Then there is a positional strategy σ for Player J such that σ is winning
from every v ∈WJ.

In symbols, Lem. 3.4.1 can be presented as the following inversion of quantifiers:(
∃σ positional J-strategy

)
(∀v)

[(
∃τ positional J-strategy win. Gv

)
=⇒ σ wins Gv

]
Uniformization easily follows if one has access a well order on positional strategies (see

e.g. [Zie98, Tho97]). For the sake of completeness, we recall a well-known argument.

Proof sketch of Lem. 3.4.1. Fix a well order on the set of all positional J-strategies which are
winning in Gv for v ranging over WJ. Define a positional J-strategy σ by following, for each
v ∈ WJ, the move taken by the least positional winning J-strategy from v. Then, in an infinite
play χ of σ from some v ∈WJ, after a while the strategy followed by χ stabilizes. Hence a suffix
of χ is a winning play, which implies that χ is itself winning by our assumption on W.

It case the graph game G in Lem. 3.4.1 is finite, then there are only finitely many positional
strategies on G, and well ordering them comes at no axiomatic cost. On the other hand, for
infinite games (e.g. the acceptance games required for the complementing tree automata), a well
order on positional strategies is obtained via the Axiom of Choice, applied to a set of the same
cardinality as P(V ).
It may be worth recalling here some known fact about determinacy in the setting of second-

order arithmetic. First, recall that ω-regular sets belong to the finite levels of the difference
hierarchy on Π0

2 sets, while PA2 proves determinacy of all games of the finite levels of the
difference hierarchy on Π0

3 sets [MS11].5 Second, it has been shown in [KM16] that positional
determinacy of parity games can be proved in arithmetic using Π1

2 comprehension.
Actually, determinacy proofs usually rely on some form of choice, and the result of [MS11] does

appeal to the Π1
4-conservativity of the axiom of dependent choices (formulated in the language

of PA2) over PA2.6 As this conservativity result relies on absoluteness and thus ultimately on
coded constructible sets (see e.g. [Sim10]), it is likely that trying to prove a determinacy result
for ω-regular games in the setting of MSO(D) may lead to complications.

3.4.1. The Axiom (Def) of Definition by Cumulative Unions. Together with Anupam Das, we
are currently investigating an approach to Uniformization which amounts to a form of dependent
choices expressible in the language of MSO(D).
Working in the language of FSO(D), fix HF-sets K and L. We assume notations (see [DR19])

allowing us to manipulate function variables F : KL as if they were uncurried to functions
D∗ × L → K. We similarly assume notations to quantify over D∗ × L with variables u, v, etc

5See [Tan91] for the proof theoretic strength of Σ0
2 determinacy and [MT07] for ∆0

3 determinacy.
6This is phenomenon also occurs for Borel determinacy in set theory (see e.g. [Mar75, Mos09]).
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Lin(X) := (∀x ∈̇ X)(∀y ∈̇ X)
(
x ≤̇ y ∨ y ≤̇ x

)
S(x, y) :=

∨
d∈D y

.
= Sd(x)

Path(X) := Lin(X) ∧ (∀x ∈̇ X)(∃y ∈̇ X)S(x, y)

Tree(T ) := (∀x)(∀y)
(
x ∈̇ T −→ y ≤̇ x −→ y ∈̇ T

)
FT(T ) := Tree(T ) ∧ (∀X : 2)

(
Path(X) −→ (∃x ∈̇ X)¬(x ∈̇ T )

)
SFT(T,U) := FT(T ) ∧ FT(U) ∧ T ⊆̇ U ∧ (∃!y)

(
y ∈̇ U ∧ ¬(y ∈̇ T )

)
Figure 3.2.: Some defined formulae used in the axiom (Def).

(which of course are expanded as pairs of quantifications over individuals and L). With these
notations, the axiom (Def), schematic in K, L, ϕ(s, T ) and MC(s, T, u), is the following:

(∀s, s′ : KL)(∀FTT )
(
s =MC(s,T ) s

′ −→ ϕ(s, T ) −→ ϕ(s′, T )
)

∧ (∀s : KL)(∀FTT,U)
(
ϕ(s, T ) −→ U ⊆̇ T −→ ϕ(s, U)

)
∧ (∃s : KL)(∀FTT )

(
(∀x)

(
x ∈̇ T ↔ x

.
= R

)
−→ ϕ(s, T )

)
∧ (∀s : KL)(∀FTT, T ′)

(
ϕ(s, T ) −→ SFT(T, T ′) −→

(∃s′ : KL)
(
ϕ(s′, T ′) ∧ MC(s, T ) ⊆ MC(s′, T ′) ∧ s =MC(s,T ) s

′))


−→ (∃s : KL)(∀FTT )ϕ(s, T )

The relativized quantification (∀FTT )(−) stands for (∀T : 2)(FT(T ) → (−)) and the formulae
FT and SFT are defined in Fig. 3.2. Note that in the standard model, FT(T ) holds iff T : D∗ → 2
is the characteristic function of a finite subtree of D∗, and that for finite trees T , U , the formula
SFT(T,U) holds iff U extends T with exactly one node. The axiom (Def) uses in addition the
following defined formulae:

s =MC(t,T ) s
′ := (∀u ∈ D∗ × L)

(
MC(t, T, u) −→ s(u)

.
= s′(u)

)
)

MC(s, T ) ⊆ MC(s′, T ′) := (∀u ∈ D∗ × L)
(
MC(s, T, v) −→ MC(s′, T ′, v)

)
The intuition is that MC(s, T ) stands for a subset of D∗ × L (namely the set of all v ∈ D∗ × L
such that MC(s, T )), and that s =MC(t,T ) s

′ means that s, s′, seen as functions D∗ × L → K,
agree on MS(t, T ).
We read the axiom (Def) as follows:

(a) The first premise means that ϕ(−,−) is “continuous” in its first argument with “modulus of
continuity” MC.

(b) The second premise means that ϕ(−,−) is contravariant in its second argument.

(c) The third premise means that ϕ is satisfiable at the root.

(d) The fourth premise means that if ϕ holds at (s, T ) and if T ′ is a one-step extension of T
then ϕ holds at (s′, T ′) for some s′ : D∗ × L→ K which agrees with s on (s, T ).

In the following, we refer to the premises of (Def) as the above items (a)–(d)
It is easy (while a bit tedious) to check that (Def) holds in the standard model. We defer the

proof to App. B.

Proposition 3.4.2. All instances of (Def) hold in the standard model.

Remark 3.4.3. We believe (Def) to be provable in PA2 augmented with the axiom ACk0 (see [Sim10,
Def. VII.6.1]) for ϕ a Σ1

k formula and MC a ∆1
k formula.
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3.4.2. Uniformization in (FSO(D) + Def). It is a tedious ongoing work (in collaboration with
Anupam Das) to show that FSO(D) + (Def) proves (PosDet). The proof is split in two parts:

(1) Show that FSO(D) augmented with Uniformization for MSO-Games (see Def. 3.2.2) proves
(PosDet) by formalizing the argument of [Tho97].

(2) Show Uniformization from suitable instances of (Def).

In order to illustrate the axiom (Def), we give an argument for (2) in the standard model .
We see for now no reason for this argument not be formalizable in FSO(D), but this tedious
task has yet to be completed.
Consider an MSO(D)-game G = (V �P, V �O, E, qı,W) such that v.χ ∈ W whenever χ ∈ W.

Write V := (D∗ × V �P) + (D∗ × V �O) and V �PO := V �P + V �O. In the following, we reason
modulo

V ' D∗ × V �PO

For simplicity, we only consider the case of player P. So let W be the set of all v ∈ V such that
P has a (positional) winning strategy in

Gv := (V,E, v,W)

We are going to show that P has a (positional) strategy σ which is winning in each of the Gv
for v ∈W . To this end we will apply (Def) with the following MC and ϕ.

• For a finite tree T ⊆ D∗ and a function σ : D∗ −→ (V �PO → V �PO), we let MC(σ, T, v)
hold on v ∈ V if there is some (p, k) ∈ W with p ∈ T and such that v is reachable from
(p, k) by σ seen as a partial strategy D∗ −→ (V �P ⇀ V �O).

• For a finite tree T ⊆ D∗ and a function σ : D∗ −→ (V �PO→ V �PO), we let ϕ(s, T ) hold
if and only if σ induce a total strategy D∗ −→ (V �P → V �O) which is winning in each
G(p,k) with (p, k) ∈W and p ∈ T .

Remark 3.4.4. Note that in the language of second-order arithmetic, MC is representable by
an arithmetical formula while ϕ is representable by a Π1

1 formula.

In the following, we assume granted the following Finite Merging property:

• Fix p ∈ D∗ and an HF-set L ⊆ V . If for all ` ∈ L, P has a winning positional strategy in
G(p,`), then P has a positional strategy which is winning in each G(p,`) for ` ∈ L.

We expect Finite Merging to be provable in FSO(D). The reason is that FSO(D) is actually
equipped with axioms providing a well order for each HF-set (see [DR19, Rem. 3.17, §3.4.4]).
Note that if there is some P-strategy σ such that ϕ(σ, T ) holds for each finite tree T ⊆ D∗,

we easily get that σ wins each of the Gv for v ∈ W . It thus remains to check the premises of
(Def) with our MC and ϕ.

(a) Consider functions σ, σ′ and a finite tree T ⊆ D∗. Assume that σ =MC(σ,T ) σ
′ and that

ϕ(σ, T ) holds. Hence σ induces a (total) strategy D∗ −→ (V �P → V �O), and moreover we
have σ(v) = σ′(v) whenever there is some (p, k) ∈W with p ∈ T such that v is reachable from
(p, k) by σ. Note that this implies σ(p, k) = σ′(p, k) for each (p, k) ∈W with p ∈ T , and (by
induction and since σ is assumed to induce a total strategy) that MC(σ, T ) = MC(σ′, T ). But
now, assuming ϕ(σ, T ), we immediately get ϕ(σ′, T ), as a play of σ′ from some (p, k) ∈ W
with p ∈ T only consists of positions in MC(σ′, T ) = MC(σ, T ).
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(b) Trivial.

(c) Trivial.

(d) Let σ and T such that ϕ(σ, T ) holds, and consider some tree T ′ of the form T + {p} with
p ∈ D∗. Let K0 be the HF-set of all k ∈ V �PO such that (p, k) ∈W , and write K0 = K+L,
were K is the set of all k ∈ K0 such that (the strategy induced by) σ wins G(p,k). Now,
by Finite Merging, there is some strategy τ which is winning in G(p,`) for each ` ∈ L.
We define the strategy σ′ as playing as σ on MC(σ, T ) and as τ everywhere else. We have
MC(σ, T ) ⊆ MC(σ′, T ′) and σ =MC(σ,T ) σ

′ by construction of σ′. We moreover have ϕ(σ′, T ′)
since, as σ is winning from each (p̃, k) ∈W with p̃ ∈ T , no (p, `) with ` ∈ L is reachable by
σ from some (p̃, k) ∈W with p̃ ∈ T , so that {p} × L is disjoint from MC(σ, T ).
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Part II.

Toward Curry-Howard Approaches
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4. Introduction to Part II

This part surveys published and unpublished works developing the Curry-Howard approach to
MSO outlined in Chap. 1. Much of this material (but for §8.1 and §8.3) was already written
in [Rib15, Rib18, PR17, PR18b, PR19]. The linear variants LMSO of MSO are discussed in
Chap. 8, while Chapters 5–7 concern the corresponding automata-based realizability model.
The automata-based realizability model comes in two variants. The first one, described

in [Rib15] and surveyed in Chap. 5, is based on usual alternating automata. While this model
has some categorical limitations (see §5.5), it is nevertheless sufficient to sketch the connection
between linear logic and the interpretation of MSO in tree automata mentioned in §1.5. The
second variant, which was developed in [Rib18] (and reused in [PR17, PR18b, PR19]), comes
from a simplification of the underlying game model, namely to (total) zig-zag strategies. Chap-
ter 6 gathers (mostly unpublished) simple but technical basic material on a setting of zig-zag
games, while Chap. 7 presents its automata side, uniform automata, and how it inherits some
categorical structure of zig-zag games, leading to the situation described in §1.5.
Both variants of the automata-based realizability model follow the guidelines and axioma-

tizations provided by categorical logic and categorical approaches to the Curry-Howard corre-
spondence, for which we refer to [Jac01, LS86] and [AC98]. We moreover refer to [Mel09] for a
comprehensive presentation of categorical axiomatizations of models of (subsystems of) linear
logic. Technically, the realizability models are presented as monoidal categories indexed (or fi-
bred) over a base category T of trees, whose objects are alphabets and whose morphisms from
Σ to Γ induce functions from Σ-labeled trees to Γ-labeled trees (see §4.2 and §6.4.2).
The present chapter gives some background to Part II. First, in §4.1–4.3, we expose some

ingredients and methodology of our approach based on categorical logic. We state in §4.1 the
minimal requirements imposed by categorical semantics of proofs, and §4.2 presents some ba-
sic ideas and motivations on indexed categories for modeling free variables and quantifications.
Finally, in §4.3 we explain why it seems difficult to obtain a suitable categorical semantics of
implications using usual connectives on automata. Second, building on [Rib15], in §4.4 & §4.5 we
sketch the connection between linear logic and the interpretation of MSO in tree automata men-
tioned in §1.5. Third, we present some material on game semantics in §4.6-4.7. While §4.6 aims
at presenting what can make this technology a pertinent solution to the composition problem
raised in §4.3, we expose in §4.7 some basic well-known facts on the representation of strategies
as relations which underlie both realizability models.
It turns out to be conceptually convenient to think in terms of a deduction system at the level

of automata. For a start, let us think that such a deduction system manipulates sequents of the
form

T ; A1, . . . ,An ` B (4.1)

where T is an infinite tree labeled over (say) the alphabet Σ, and A1, . . . ,An,B are tree automata
over Σ. Extending the terminology of §1.6, the provability interpretation of such a deduction
system is that if the sequent (4.1) is provable, then the automaton B accepts the tree T as soon
as the automata A1, . . . ,An all accept T .
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4.1. Compositionality and Categorical Semantics. The method of categorical semantics of
proofs (see e.g. [LS86, AC98, Jac01, Mel09]) is to interpret proofs in a deduction system as
morphisms in a category C, such that C is equipped with some structure corresponding to the
connectives and rules of the deduction system. For the moment, let us step back from acceptance
games and consider run trees. Our task is thus to devise categories whose objects include all
sets of the form A(T ), for an automaton A and a tree T , and such that the proofs of a sequent
T ; A ` B can be interpreted as morphisms from A(T ) to B(T ).
The first requirement of categorical semantics is that the very notion of category already

imposes interpretations to be compositional. Recall that the sets of morphisms of a (locally
small) category C come with associative composition operations

(−) ◦ (−) : C[B,C]× C[A,B] −→ C[A,C] (for each C-objects A,B,C)

and with identity morphisms idA ∈ C[A,A] which are neutral for composition:

f ◦ idA = f = idB ◦ f for every f ∈ C[A,B] (4.2)

Composition and identities provide the interpretations respectively of the following instances of
the usual cut and axiom rules:

(Cut0)
T ; A ` B T ; B ` C

T ; A ` C T ; A ` A
(Axiom)

The identity laws (4.2) imply for instance that the three derivations below must be interpreted
by the same morphism:

T ; A ` A
D

T ; A ` B
T ; A ` B

D
T ; A ` B

D
T ; A ` B T ; B ` B

T ; A ` B
(4.3)

4.2. Indexed Structure: Substitution and Quantification Rules. Our categories actually in-
volve a slight generalization of the usual notion of acceptance (either with run trees or games)
of automata. This generalization is induced by the axiomatization of quantification and substi-
tution in categorical logic (see e.g. [Jac01, LS86]).
Let us briefly discuss the usual setting of first-order logic over a manysorted individual lan-

guage. The categorical semantics of existential quantifications is given by an adjunction which
is usually represented as

(∃x)ϕ(x) ` ψ
(x not free in ψ)

ϕ(x) ` ψ
(4.4)

This adjunction induces a bijection between (the interpretations of) proofs of the sequents
ϕ(x) ` ψ and (∃x)ϕ(x) ` ψ, that we informally denote

ϕ(x) ` ψ ' (∃x)ϕ(x) ` ψ

In general, the variable x occurs in ϕ. As a consequence, in order to properly formulate (4.4) one
should be able to interpret sequents of the form ϕ(x) ` ψ with free variables. More generally,
the formulae ϕ and ψ should be allowed to contain free variables distinct from x.
The idea underlying the general method (but see e.g. [Jac01] for details), is to first devise

a base category B of individuals, whose objects interpret products of sorts of the individual
language, and whose maps from say ι1 × · · · × ιm to o1 × · · · × on represent n-tuples (t1, . . . , tn)
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of terms ti of sort oi whose free variables are among xι1 , . . . , xιm with xιj of sort ιj . Then, for
each object ι = ι1 × · · · × ιn of B, one devises a category Eι whose objects represent formulae
with free variables among xι1 , . . . , xιn , and whose morphisms interpret proofs. Furthermore,
B-morphisms

t = (t1, . . . , tn) : ι1 × · · · × ιm −→ o1 × · · · × on
induce substitution functors

t? : Eo1×···×on −→ Eι1×···×ιm

The functor t? takes (the interpretation of) a formula ϕ with free variables among yo1 , . . . , yon to
(the interpretation of) the formula ϕ[t1/yo1 , . . . , tn/yon ] with free variables among xι1 , . . . , xιm .
Its action on the morphisms of Eo1×···×on allows us to interpret the substitution rule

ϕ ` ψ
ϕ[t1/yo1 , . . . , tn/yon ] ` ψ[t1/yo1 , . . . , tn/yon ]

In very good situations, the operation (−)? is itself functorial. Among the morphisms of B, one
usually requires the existence of projections, say

π : o× ι −→ o

Projections induce substitution functors, called weakening functors

π? : Eo −→ Eo×ι

which simply allow to see formula ψ(yo) with free variable yo as a formula ψ(yo, xι) with free
variables among yo, xι (but with no actual occurrence of xι). Then the proper formulation
of (4.4) is that existential quantification over xι is a functor

(∃xι)(−) : Eo×ι −→ Eo

which is left-adjoint to π?:
(∃xι)ϕ(xι, yo) ` ψ(yo)

ϕ(xι, yo) ` π?(ψ)(xι, yo)
(4.5)

(where xι does not occur free in ψ since ψ is assumed to be (interpreted as) an object of Eo, thus
replacing the usual side condition). Universal quantifications are dually axiomatized as right ad-
joints to weakening functors. In both cases, the adjunctions are subject to additional conditions
(called the Beck-Chevalley conditions) which ensure that they are preserved by substitution.
Returning to automata and infinite trees, we take as base category the following category T

of trees.

Definition 4.2.1 (The Base Category T). The objects of T are alphabets, and its morphisms
from Σ to Γ, denoted M,N,L, . . . , are functions of the form⋃

n>0

(
Σn ×Dn−1

)
−→ Γ

A T-morphismM ∈ T[Σ,Γ] thus takes for each n ∈ N a sequence of input letters a = a0 ·. . .·an ∈
Σn+1 and a sequence of tree directions p = d1 · . . . · dn ∈ Dn to an output letter M(a, p) ∈ Γ.
In particular, we have T[1,Σ] ' (D∗ → Σ), so each Σ-labeled D-ary tree T corresponds to
a morphism Ṫ ∈ T[1,Σ]. Moreover, (Σ → Γ)-labeled trees M : D∗ → (Σ → Γ) induce
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T-morphisms from Σ to Γ.1 T-morphisms are composed in the expected way (see §6.4 and
Prop. 6.4.3 for details and justification of this choice).
We therefore do not devise a single category C, but a T-indexed collection of categories EΣ,

one for each alphabet Σ. Let us sketch the general idea with runs of non-deterministic automata.
Given a non-deterministic automaton A over Γ and a morphism M ∈ T[Σ,Γ], a Σ-run of A on
M is a tree

ρ : D∗ −→ Σ×QA
such that ρ(ε) = (a0, q

ı
A) for some a0 ∈ Σ, and which respects the transition function

∂A : QA × Γ −→ P(D→ QA)

supplied with input letters b ∈ Γ computed byM from tree positions p = d1·. . .·dn and sequences
of input letters a = a0 · . . . · an where ak is given by the Σ-component of ρ(d1 · . . . · dk) ∈ Σ×QA
(so a0 is given by R(ε) and an is given by R(p)). Explicitly, ρ is a Σ-run tree when for p and
a as above, if ρ(p) is labeled with state q ∈ QA, then there exists a D-tuple (qd)d∈D ∈ ∂A(q, b)
with b = M(a, p) and such that for all d ∈ D, ρ(p · d) is labeled with state qd. Such a Σ-run ρ
is accepting if the QA-labeled tree

p ∈ D∗ 7−→ π(ρ(p)) ∈ QA

is accepting in the usual sense (where π : Σ×QA → QA is the second projection), that is if all
its infinite paths belong to ΩA. We let Σ ` A(M) be the set of accepting Σ-run trees of A on
M , and simply write A(M) for Σ ` A(M) when Σ is clear from the context.
Roughly speaking, for each Σ, the objects of the category EΣ includes all sets of the form

Σ ` A(M). Moreover, given L ∈ T[∆,Σ], the substitution functor

L? : EΣ −→ E∆

takes an EΣ-object Σ ` A(M) to the E∆-object ∆ ` A(M ◦L), where the T-mapM ◦L ∈ T[∆,Γ]
is the T-composition of L and M (assuming M ∈ T[Σ,Γ] as above).
This induces sequents generalizing (4.1). For instance, given M ∈ T[Σ,Γ], we have sequents

of the form
M ; A1, . . . ,An ` B (4.6)

where A1, . . . ,An and B are automata over Γ. Such sequents are to be thought about as our
version of “open sequents” or “sequents with free variables” (here of sort Σ), with the usual
implicit prenex universal quantification over these, and are to be interpreted as a morphism in
the category EΣ (the fibre over Σ). Substitution functors such as L? : EΣ → E∆ above act in
the deduction system via a substitution rule

(Subst)
M ; A1, . . .An ` B

M ◦ L ; A1, . . .An ` B
(where M ∈ T[Σ,Γ] and L ∈ T[∆,Σ]) (4.7)

Let us briefly sketch the most important instances of this construction.

(a) Consider a T-map Ṫ : T[1,Σ] representing a tree T : D∗ → Σ. Then the accepting runs of
A on T are in bijection with the accepting 1-run trees of A on Ṫ :

(1 ` A(Ṫ )) ' A(T )

1The morphisms from Σ to Γ of the base category of [Rib15] are restricted to (Σ→ Γ)-labeled trees.
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Sequents of the form (4.6) thus indeed generalize sequents of the form

T ; A1 , . . . , An ` B

with T : D∗ → Σ (as depicted in (4.1)), which are to be interpreted in the category E1 (the
fibre over 1), and are to be thought about as representing closed statements.

(b) Given a non-deterministic automaton A over Σ, we write Σ ` A (or even just A when no
ambiguity arises) for Σ ` A(IdΣ) where the T-identity IdΣ ∈ T[Σ,Σ] is given by

IdΣ(a · a, p) := a

Consider now another automaton B, also over Σ. Then we write

Σ ; A ` B (4.8)

(or even A ` B) for the sequent IdΣ ; A ` B. The provability interpretation of (4.8) is
that if (4.8) is provable, then L(A) ⊆ L(B). The computational interpretation of (4.8)
consists of a uniform simulation of A by B (generalizing the notion used with the guidable
automata of [CL08]). Moreover, given a Σ-labeled tree T seen as a morphism Ṫ ∈ T[1,Σ],
the interpretation of the substitution rule

Σ ; A ` B
Ṫ ; A ` B

takes a morphism σ ∈ EΣ[A,B] to a function Ṫ ?(σ) : A(T )→ B(T ).

(c) Any ordinary function f : Σ→ Γ induces a morphism [f] ∈ T[Σ,Γ] defined as

[f] : (a · a, p) 7−→ f(a)

The action of the substitution functor [f]? : EΓ → EΣ on EΓ-objects of the form Γ ` A can
be internalized in automata. We indeed have

[f]?(Γ ` A) = Σ ` A([f]) = Σ ` A[f]

where the automaton A[f] over Σ is defined as A but with transition function:

∂A[f] : QA × Γ −→ P(D→ QA)

(q, b) 7−→ ∂A(q, f(b))

In particular:

(i) T-maps from Σ× Γ to Σ indeed include projections [π] : D∗ → (Σ× Γ→ Σ) induced
by Set-projections π : Σ× Γ→ Σ.

(ii) Consider automata A1, . . . ,An and B, with Ai over Σi and B over Γ. Consider fur-
thermore T-morphisms Mi ∈ T[∆,Σi] and L ∈ T[∆,Γ]. Then we write

∆ ; A1(M1) , . . . , An(Mn) ` B(L)

for the sequent
〈M1, . . . ,Mn, L〉 ; A1[π1] , . . . , An[πn] ` B[π]
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where
〈M1, . . . ,Mn, L〉 ∈ T[∆, Σ1 × · · · × Σn × Γ]

is the T-tupling of M1, . . . ,Mn, L (see §6.4.2) and where the πi’s and π are suitable
projections:

πi : Σ1 × · · · × Σn × Γ −→ Σi

π : Σ1 × · · · × Σn × Γ −→ Γ

Unless otherwise stated, all the sequents seen up to now must from now on be thought about
as being of the more general form (4.8), that is a with a T-map M (of appropriate type) instead
of the labeled tree T .

4.3. Toward a Semantics for Implications. The provability interpretation of sequents tells us
that in sequents of the form

M ; A ` B (4.9)

the symbol ` is a form of implication. We shall see later on that this implication can be internal-
ized in automata, but this would lead us outside of non-deterministic automata (see Chap. 7).
For the moment let us sketch some salient consequences this imposes to the interpretation of
the symbol ` in sequents of the form (4.9).
Assume that proofs of our deduction system are interpreted in categories E(−) indexed over

T. Then, internalizing ` in automata will imply that given automata A and B over Σ there is
an automaton (A( B) over Σ such that for each tree T : D∗ → Σ there is a bijection

E1[A(Ṫ ), B(Ṫ )] ' 1 ` (A( B)(Ṫ )

that we informally write as

Ṫ ; A ` B ' 1 ` (A( B)(Ṫ )

In other words, morphisms in the interpretation of Ṫ ; A ` B will correspond to the runs of
an automaton (A ( B) on T . This could suggest to interpret Ṫ ; A ` B as the runs of an
automaton of the form ∼A∨B over T , where ∼A is the complement of A (in the sense of §1.3)
and (−) ∨ (−) is a disjunction on automata. Let us rule out this possibility, at least for the
natural implementation of (−) ∨ (−) with an additive disjunction (−) ⊕ (−). Given automata
A1 and A2, both over Σ and with Ai = (QAi , q

ı
Ai , ∂Ai ,ΩAi), the non-deterministic automaton

A1 ⊕A2 over Σ is

A1 ⊕A2 := (QA1 +QA2 + 1 , • , ∂A1⊕A2 , ΩA1⊕A2)

where, via the embedding of QD
A1

+QD
A2

into (QA1 +QA2)D, we let

∂A1⊕A2(q, a) :=

{
∂A1(qıA1

, a) + ∂A2(qıA2
, a) if q = • ∈ 1

∂Ai(q, a) if q ∈ QAi
and where •, q1, q2, . . . ∈ ΩA1⊕A2 iff either qıA1

, q1, q2, . . . ∈ ΩA1 or qıA2
, q1, q2, . . . ∈ ΩA2 .

Note that in Set, for every M : D∗ → (Γ→ Σ) we have

(A1 ⊕A2)(M) ' A1(M) +A2(M)

so in particular
L(A1 ⊕A2) = L(A1) ∪ L(A2)

Assume now that we take for E1[A(Ṫ ), B(Ṫ )] the set of runs of (∼A ⊕ B) on T , that is the
disjoint union ∼A(T ) + B(T ). Then one faces the following difficulties.
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• We have to devise identity morphisms, say

idA(Ṫ ) ∈ ∼A(T ) +A(T )

One may take for idA(Ṫ ) either an accepting run of A on T or an accepting run of ∼A
on T . But this raises two problems. First, it may be undecidable whether a possibly
non-recursive tree is accepted or rejected by a given automaton. So this precludes any
general and effective computational interpretation of the deduction system. Second, even
if we restrict to trees T for which acceptance is known to be decidable (e.g. trees generated
by higher-order recursion schemes [Ong06]), there seem to be no canonical choice of an
actual accepting run idA(Ṫ ) ∈ ∼A(T ) +A(T ).

• It is not clear how to define composition, say

(−) ◦ (−) : (∼B(T ) + C(T ))× (∼A(T ) + B(T )) −→ ∼A(T ) + C(T )

Given run trees, say

ρC(T ) ∈ C(T ) ⊆ ∼B(T ) + C(T ) and ρ∼A(T ) ∈ ∼A(T ) ⊆ ∼A(T ) + B(T )

there seems to be no obvious choice for ρC(T ) ◦ ρ∼A(T ) ∈ ∼A(T ) + C(T ). Both

ρC(T ) ◦ ρ∼A(T ) := ρC(T ) and ρC(T ) ◦ ρ∼A(T ) := ρ∼A(T )

may seem reasonable. But each of them breaks one of the equalities between the interpre-
tations of the derivations depicted in (4.3).

The methodology of linear logic may suggest here to devise a linear implication of the form

A( B := A‚ ` B
where ` is a dual of the direct product ⊗ (see §4.4 below and §1.5). relying on a Cartesian
product of states and evaluating its arguments in parallel, with acceptance given by a disjunction.
However, in contrast with ω-word automata [PR18b] (see §7.5), such a connective does not seem
to exist on tree automata. The reason is that the universal quantification on paths (in the
definition of acceptance) does not commute with disjunction.

4.4. The (Synchronous) Direct Product of (Non-Deterministic) Automata. Returning to
sequents of the form

M ; A1, . . . ,An ` B (4.10)

the provability interpretation tells us that the left commas in A1, . . . ,An correspond to a form
of conjunction. We now sketch how to interpret these commas with a direct product of non-
deterministic automata. Our aim here is to pave the way to §4.5, in which we discuss how Linear
Logic [Gir87] enters the picture.
The direct product A1⊗A2 of the non-deterministic automata Ai = (QAi , q

ı
Ai , ∂Ai ,ΩAi), both

over Σ, is the non-deterministic automaton over Σ

A1 ⊗A2 :=
(
QA1 ×QA2 , (qıA1

, qıA2
) , ∂A1⊗A2 , ΩA1⊗A2

)
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with

∂A1⊗A2((q1, q2), a) := {〈g1, g2〉 : D→ QA1 ×QA2 | gi ∈ ∂Ai(qi, a) for i = 1, 2}

and where ΩA1⊗A2 is ΩA1 × ΩA2 modulo (QA1 × QA2)ω ' QωA1
× QωA2

. For every tree T , the
(accepting) runs of A1⊗A2 on T are exactly2 the pairs 〈ρ1, ρ2〉 : D∗ → QA1×QA2 of (accepting)
runs of A1 and A2 over T . We therefore have, in the category Set

(A1 ⊗A2)(T ) ' A1(T )×A2(T ) (4.11)

from which we immediately get

L(A1 ⊗A2) = L(A1) ∩ L(A2)

For similar reasons, this direct product (−)⊗ (−) on is Cartesian in the categories of [Rib15]
provided one restricts to total ND automata.3 This implies that we can equip total ND au-
tomata with the deduction rules of a Cartesian product, such as the following (where I is a unit
automaton similar to that of Ex. 7.0.2.(i)):

(Left ⊗)
M ; A, A, B, B ` C
M ; A, A⊗ B, B ` C

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

(Right ⊗)

(Left I)
M ; A, B ` C
M ; A, I, B ` C M ; ` I

(Right I)

(4.12)

together with the structural exchange rule:

(Exchange)
M ; A, A, B, C ` C
M ; A, B, A, C ` C

(4.13)

as well as the structural weakening and contraction rules:

(Weak)
M ; A, B ` C

M ; A, A , B ` C
M ; A, A, A, B ` C
M ; A, A, B ` C

(Contr) (4.14)

and the following general (multiplicative) cut rule:

(Cut)
M ; A ` A M ; B, A, C ` C

M ; B, A, C ` C
(4.15)

To summarize, the left commas in sequents of the form (4.10) can be internalized as a product
(⊗, I). This product is Cartesian on total ND automata, and its deduction rules are induced by
this structure.

4.5. Alternating Automata and Linear Logic. With respect to our context, the basic insight
of Linear Logic [Gir87], is that having an explicit control on the weakening and contraction
structural rules (4.14) gives rise to a decomposition of the usual intuitionistic connectives ∧,→
into more refined ones (usually denoted ⊗,&, !,(). In a lot of cases this allows, thanks to the
Curry-Howard correspondence, for refined constructions of models of programming languages

2Because universal quantifications commute over conjunctions!
3A non-deterministic automaton is total if the empty set is not in the range of its transition function.
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based on (typed) λ-calculi (see e.g. [AC98]). Let us briefly discuss what this amounts to for the
conjunction ⊗.
First, when suppressing the structural rules (Weak) and (Contr), the rules (4.12) and (4.13)

only specify a symmetric monoidal structure (see e.g. [Mel09] for definitions), a notion weaker
than Cartesian products. This is pertinent in our context because the product (−)⊗(−) defined
in §4.4 on non-deterministic automata extends to (total4) alternating automata, but induces a
symmetric monoidal product which is not Cartesian.
Given alternating automata A and B over Σ, the automaton A ⊗ B over Σ has state set

QA × QB, and evaluates A and B along common paths p ∈ D∗ (see [Rib15] for details). Now,
recall that with alternating automata, O can choose states in addition to tree directions. Hence,
given a P-strategy on (A ⊗ B)(T ), and given a branch of this strategy following a given path
p ∈ D∗, it is possible for P to make different choices according to previous O-moves. In particular,
some choice of P in component A may depend on previous O-moves in B. So a P-strategy on
(A⊗B)(T ) may not uniquely determine a pair of strategies in A(T )×B(T ). Note that this was
not possible with non-deterministic automata, since p ∈ D∗ uniquely determines the previous
O-moves.
Second, the structural rules (Weak) and (Contr) are restored in Linear Logic for an expo-

nential modality !(−):

M ; A1, . . . , . . . , An ` B
M ; A1, . . . , !A, . . . , An ` B

M ; A1, . . . , !Ai, !Ai, . . .An ` B
M ; A1, . . . , !Ai, . . . , An ` B

(4.16)

The modality !(−) is itself subject to specific introduction rules, called dereliction and promotion:

M ; A1, . . . , Ai, . . . , An ` B
M ; A1, . . . , !Ai, . . . , An ` B

M ; !A1, . . . , !An ` B
M ; !A1, . . . , !An ` !B

(4.17)

Then (but see also [Gir87, AC98, Mel09] for details), the categorical interpretation of proofs
implies that the monoidal product (⊗, I) is Cartesian on objects of the form !A.5 This indicates
that non-deterministic automata behave as objects of the form !A, and it turns out that to
some extent, the powerset construction translating an alternating automaton to an equivalent
non-deterministic one (the Simulation Theorem [MS87, EJ91, MS95]), corresponds to an !(−)-
modality of intuitionistic linear logic. In particular, all the !(−)-rules (4.16) and (4.17) can be
interpreted in our categories.6 (But unfortunately, this interpretation is not compatible with
usual cut-elimination, because the operation !(−) fails to be a functor.)
This implies that an intuitionistic sequent

M ; A1, . . . , An ` B

where the left commas behave as a Cartesian product, corresponds to the linear sequent

M ; !A1, . . . , !An ` B

where the left commas behave as a symmetric monoidal product (−)⊗ (−).

4Total alternating automata were called complete in [Rib15].
5Technically, objects under a !(−) are commutative comonoids (see e.g. [Mel09]).
6(Weak) actually holds (in a non-canonical way) for total alternating automata (i.e. the ! is not strictly
necessary in the conclusion).
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4.6. Game Semantics: Linear Arrow Games and Copy-Cat. Our solution to the composition
problem discussed in §4.3 is based on the technology of Game Semantics, which provides by
now well understood ways of building categories of games, with strategies as morphisms. We
present here the usual notion of morphism of a basic game semantics called Simple Games (see
e.g. [Abr97, Hyl97]). Recall from §4.3 that a sequentM ; A ` B (forA,B usual non-deterministic
automata) should be thought as a form of implication, but that the runs of the automaton
∼A⊕B seemed not to convey the right information. The first encountered difficulty concerned
the existence of canonical identities idA(M) ∈ EΣ[A(M),A(M)] if the homset EΣ[A(M),A(M)]
were to be the set of accepting runs or winning P-strategies (∼A)(M) +A(M). The solution of
game semantics is to devise, from component games A and B of the same polarity, an implication
game A(SG B in which the game B is interleaved with a copy of A of reversed polarity.7 More
precisely:

Definition 4.6.1 (Linear Arrow Games). Given polarized simple games A and B of the same
polarity, the linear arrow game A(SG B is the negative game

A(SG B := (AO +BP, AP +BO, LA(SGB)

where LA(SGB consists of those negative plays s such that s�A ∈ LA and s�B ∈ LB, where s�A
is the restriction of s to AP +AO, and similarly for s�B.

Hence, O always begins in A (SG B, and then plays alternate between P and O. Note that
the roles of P and O are reversed in component A and are preserved in component B (i.e. P in
A(SG B plays as O in A and as P in B).
An important basic property of A(SG B, known as the switching condition, is that O must

stay in the same component as the previous move so that only P can switch between components
A and B:

• Switching Condition: Given a legal O-play s = t ·n ·m, either n,m are both in component
A, or they are both in component B.

Indeed, note that since A (SG B is negative, its legal O-plays are of odd-length. So if s is a
legal O-play, then the lengths of s�A and s�B cannot have the same parity. Assume now that
s = t ·n ·m with n and m in different components. Since A and B are assumed to be of the same
polarity, the moves n and m are of different polarities w.r.t. A and B, so they are of the same
polarity as moves of A(SG B (as s�A and s�B have lengths of opposite parity), contradicting
the legality of s.
Simple games and (winning) strategies form a category SG(W), whose objects are simple

games (with winning), and whose morphisms are (winning) P-strategies σ : A (SG B. We
refer to [Abr97, Hyl97, AC98] for full treatments, and in particular to [Abr97, Hyl97] for totality
and winning. Actually, the general notion of winning in games of the form A (SG B is a bit
technical. Fortunately, we only need to consider the case of infinite plays on A(SG B whose
projections on A and B are both infinite. We say that such a play is winning for P in A(SG B
iff its projection on B is winning for P whenever its projection on A is winning for P (with the
original polarity of A).
Consider now the definition of the identity strategy idA in A (SG A for A = (U,X) a full

positive game (see Ex. A.0.2). Since O must begin in A (SG A, but it is P who begins in
the right copy of A, it follows that O must begin in the left copy of A (taking the role of P in

7Noted A in App. A.
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A
idA
−(SG A

...
...

O u
u P
x O

P x
...

Figure 4.1.: A play of the copy-cat identity strategy id.

that component). It is then easy to define an identity “copy-cat” strategy for P, which always
switches component and copies the previous O-move from the other component. A play of this
strategy is depicted in Fig. 4.1 (where plays grow from top to bottom). Formally, idA is the
unique strategy in A(SG A such that

idA = {s ∈ LA0(SGA1 | s�A0 = s�A1} (4.18)

(where we have written A(SG A as A0 (SG A1 in order to distinguish the two copies of A).
In particular, the same (infinite) sequences of moves are produced by idA in both copies of A.

Assuming that A is equipped with a winning condition WA, such sequences are either winning
for P in A or are winning for O in A. So they are winning for P in A(SG A.
Let us finally say a few words on composition of strategies, referring to e.g. [Abr97, Hyl97] for

details. The idea is that given strategies σ : A(SG B and τ : B(SG C, their composite

τ ◦ σ : A −(DZ C

is obtained by letting σ and τ interact in their common component B. The crucial observation
is that in an interaction of σ and τ in component B, all the P-moves are played by σ and all
the O-moves are played by τ . It follows that the interactions of σ and τ in component B are
completely determined by σ and τ and the O-moves in A(SG C. The composite strategy τ ◦σ
is then obtained by hiding the interaction of σ and τ in their common component B.
In the particular case of full positive games A = (U,X), B = (V, Y ) and C = (W,Z), and

strategies σ : A(SG B and τ : B(SG C playing in the zig-zag way depicted in Fig. 4.2 (top),
an interaction of σ and τ is depicted in Fig. 4.2 (middle), and the composite strategy τ ◦σ plays
as in Fig. 4.2 (bottom).

4.7. The Hyland & Schalk Functor. Hyland & Schalk have presented in [HS99] a faithful
functor, that we denote HS, from simple games to the category Rel of sets and relations:8

HS : SG(W) −→ Rel

The functor HS maps a simple game to its set of legal plays, and a strategy σ : A(SG B to

HS(σ) := {(s�A, s�B) | s ∈ σ} ⊆ LA × LB
8See also App. 4 in the full version of [Rib15].
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...
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...

A
τ◦σ
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...
...

O u
w P
z O

P x
...

...

Figure 4.2.: An interaction of strategies on full positive games.
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Hence strategies σ : A(SG B can be faithfully represented as spans of sets (where the arrow
are the obvious projections)

HS(σ)

vv ))
LA LB

and moreover, composition and identities in SG(W) can be recovered from composition and
identities in Rel. Indeed, the identity strategy idA is the unique strategy such that HS(idA) is
the identity relation on LA, namely

HS(idA) = {(s, s) | s ∈ LA}

while strategies can be composed as relations:

HS(τ ◦ σ) = HS(τ) ◦HS(σ)

Moreover, it is easy to check (and folklore) that identity strategies and composition of strate-
gies, when seen as relations, are given by pullbacks. First, HS(idA) is the pullback of the
Set-identity LA → LA with itself in Set:

HS(idA)

��

//
y LA

��
LA // LA

Second, given σ : A(SG B and τ : B(SG C we have the following pullback in Set:

HS(τ ◦ σ)

��

//
y HS(τ)

��

// LC

HS(σ) //

��

LB

LA

The description of HS(τ ◦ σ) by the above pullback amounts to the following relational version
of the usual Zipping Lemma of game semantics, stating that the interactions of σ : A(SG B
and τ : B (SG C in component B are completely determined by the O-moves in components
A and C (with the polarities of A(SG C).

Lemma 4.7.1 (Relational Zipping). Given total zig-zag σ : A(DZ B and τ : B (DZ C, and
given (tA, tC) ∈ HS(τ)◦HS(σ), there is exactly one legal play tB ∈ LB such that (tA, tB) ∈ HS(σ)
and (tB, tC) ∈ HS(τ).
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5. A First Model with Usual Automata

We review here the model of [Rib15]. While substantially superseded by [Rib18], this model is
nevertheless simpler to define, and uses structures underlying and refined in [Rib18]. It also has
the advantage of being available for usual (alternating) tree automata, not requiring the specific
presentation of [Rib18].

5.1. Substituted Acceptance Games. Since our solution to the composition problem discussed
in §4.3 is based on the linear arrow of simple games presented in §4.6, we shall recast the set
Σ ` A(M) of Σ-run trees of A : Γ over a T-morphism M : Σ→ Γ (defined in §4.2 above) as the
set of winning P-strategies in what we called a substituted acceptance game in [Rib15]. We do
not exactly follow the definition of [Rib15], and define substituted acceptance games as simple
(tree) games rather than as graph games in the sense of Def. 2.2.1 (see §1.4 and Rem. 2.2.5).
We directly give the definition for an alternating automaton A.

Definition 5.1.1 (Substituted Acceptance Game ([Rib15])). Consider an alternating tree au-
tomaton A = (Q, qı, ∂,Ω) on Γ and a morphism M ∈ T[Σ,Γ]. The substituted acceptance game
Σ ` A(M) is the positive simple game(

Σ× P(Q×D), Q×D, L, W
)

whose legal plays s ∈ L are sequences of the form

s = (a0, γ0) · (q1, d1) · (a1, γ1) · . . . · (qn, dn)
or s = (a0, γ0) · (q1, d1) · (a1, γ1) · . . . · (qn, dn) · (an, γn)

where n ≥ 0, (qk+1, dk+1) ∈ γk and γk ∈ ∂(qk,M(d1 · . . . · dk)(a0 · . . . · ak)) with q0 := qıA.
The winning plays χ ∈ W are generated from the acceptance condition Ω in the expected way.

We let W ⊆ (P(Q×D) · (Q×D))ω consist of the infinite sequences

χ = (a0, γ0) · (q1, d1) · (a1, γ1) · . . . · (qn, dn) · . . .

such that (qk)k∈N ∈ Ω (where q0 := qı).

The input alphabet of Γ ` A is Γ, and we use the tree morphismM ∈ T[Σ,Γ] in a contravariant
way to obtain a game with “input alphabet” Σ, that we emphasize by writing Σ ` A(M). Note
that input letters a ∈ Σ are chosen by P, while directions d ∈ D are chosen by O:

P O P O P

(a0, γ0) · (q0, d0) · (a1, γ1) · (q1, d1) · · · · · (an+1, γn+1) · · · ·

Write Σ ` σ  A(M) if σ is a winning P-strategy on Σ ` A(M), and Σ  A(M) if Σ ` σ 
A(M) for some σ.

Remark 5.1.2 (Correspondence with usual Acceptance Games). Substituted acceptance games
generalize usual acceptance games (see Ex. 2.2.4 and Rem. 2.2.5). Given a tree T : D∗ → Σ,
writing Ṫ for the corresponding T morphism 1 →T Σ, the set of P-moves of the substituted
acceptance game 1 ` A(Ṫ ) is 1× P(QA ×D) ' P(QA ×D), so that the positive simple games
1 ` A(Ṫ ) and G(A, T ) are isomorphic.
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5.2. Linear Synchronous Arrow Games. We now present the notion of linear synchronous
arrow games, which constitutes the morphisms of [Rib15]. Synchronous arrow games are a
restriction of the linear arrow of simple games between substituted acceptance games, in which
P has to play the same input letters a and the same tree directions d as proposed by O. Consider
substituted acceptance games Σ ` A(M) and Σ ` B(N) with

A =
(
QA, q

ı
A, ∂A, ΩA

)
and B =

(
QB, q

ı
B, ∂B, ΩB

)
We first define a synchronous strategy, notation

Σ ` σ : A(M) −−~ B(N)

as a strategy
σ : (Σ ` A(M)) −−→SG (Σ ` B(N))

satisfying some specific constraints. We will then informally speak of the synchronous game

Σ ` A(M) −−~ B(N)

to mean
(Σ ` A(M)) −−→SG (Σ ` B(N))

restricted to synchronous strategies. In any case, we drop the Σ in the above notations when
clear from the context.
Intuitively, synchronous strategies are strategies whose plays are synchronous, in the sense

that A and B are evaluated along the same path in Dω, while M and N read the same input
letters from Σ. The synchronous plays of A(M) (SG B(N) are defined using the following
notion of trace. Let

TrΣ := (Σ ·D)∗ + (Σ ·D)∗ · Σ

and define the trace function trA(M) : LA(M) −→ TrΣ inductively as follows

trA(M)(ε) := ε

trA(M)(s · (a, γ)) := trA(M)(s) · a
trA(M)(s · (q, d)) := trA(M)(s) · d

We let the trace of a play s ∈ LA(M) be the sequence trA(M)(s). The trace function trB(N) :
LB(N) −→ TrΣ is defined similarly. Note that both trA(M) and trB(N) have the same codomain
TrΣ, which only depends on the input alphabet of M and N .

Definition 5.2.1 (Synchronous (P-)Play). A legal play s ∈ LA(M)(SGB(N) is synchronous if

trA(M)(s�A(M)) = trB(N)(s�B(N))

Note that trace functions are length-preserving, so that the trace of a play s always has the
same length as s. Hence if s is a synchronous play in A(M) (SG B(N), then s�A(M) and
s�B(N) have the same length, so that s is even length. It follows that the synchronous plays of
A(M)(SG B(N) must be P-plays.
A typical synchronous play inA(M)(SG B(N) is depicted in Fig. 5.1. Note that synchronous

plays must have the same zig-zag shape as the copy-cat plays (see Fig. 4.1), and that O actually
chooses both the input letters a ∈ Σ and the tree directions d ∈ D. This follows from the
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Σ A(M) −−~ B(N)
(ε, ε, qıA) (ε, ε, qıB)

...
...

(p, a, qA) (p, a, qB)

O (a, γA)
(a, γB) P
(q′B, d) O

P (q′A, d)
(p · d, a · a, q′A) (p · d, a · a, q′B)

...
...

Figure 5.1.: A play of a synchronous strategy

fact that in the game A(M) (SG B(N), O must begin in the component A(M), choosing in
particular some a ∈ Σ. Then, by synchronicity, P must switch to component B(N) and play a
move containing the same a ∈ Σ. Since O cannot switch component, its next move must be in
component B(N), and so in particular contain some d ∈ D. But then, again by synchronicity,
P must switch to component A(M) and play a move containing the same d ∈ D.
We are now going to formally define what is synchronous strategy. Note the following pullback

in Set, where Leven
A(M)−~B(N) denotes the set of synchronous plays of A(M)(SG B(N):

Leven
A(M)−~B(N)y

//

��

LB(N)

tr

��
LA(M) tr

// TrΣ

(5.1)

Definition 5.2.2 (Synchronous Strategies). A strategy σ : (Σ ` A(M)) (SG (Σ ` B(N)) is
synchronous if the following commutes in Set:

HS(σ)

��

// LB(N)

tr
��

LA(M) tr
// TrΣ

It readily follows from §4.7 that the identity copy-cat strategy idA(M) : A(M)(SG A(M) is
synchronous, and that synchronous strategies are preserved by composition. We can thus define
categories of substituted acceptance games and synchronous strategies.

Definition 5.2.3 (The Categories SAG(−)). For each alphabet Σ, the category SAGΣ is defined
as follows:

• the objects of SAGΣ are games Σ ` A(M),

• the morphisms of SAGΣ are synchronous strategies Σ ` σ : A(M) −~ B(N).

The faithfulness of HS is actually trivial for synchronous strategies (see Lem. 6.1.2).
The game Σ ` A(M) −~ B(N) can be equipped with the winning condition mentioned in §4.6,

using the winning condition of Def. 2.2.1 on the component games A(M) and B(N). Hence,
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given an infinite play χ in A(M) −~ B(N) whose projections on A(M) and B(N) are both
infinite, we say that χ is winning for P if its projection on B(N) is winning for P whenever its
projection on A(M) is winning for P. We write

Σ ` σ  A(M) −−~ B(N)

to mean that the synchronous strategy σ : A(M) −~ B(N) is winning w.r.t. the winning
condition described above. Preservation of winning by composition of synchronous strategies1,
which is simpler than the general case of simple games, follows from the same property for
zig-zag strategies, which are discussed in §6.2.

Definition 5.2.4 (The Categories SAGW
(−)). For each alphabet Σ, the category SAGW

Σ is defined
as follows:

• the objects of SAGW
Σ are games Σ ` A(M),

• the morphisms of SAGW
Σ are synchronous winning strategies Σ ` σ  A(M) −~ B(N).

Remark 5.2.5 (Correspondence with usual Acceptance Games). Linear asynchronous arrow
games also generalize usual acceptance games. The idea is that given a tree T : D∗ → Σ, the
P-strategies in the substituted acceptance games 1 ` A(Ṫ ) are in bijection with the P-strategies
in the linear synchronous arrow game 1 ` I −~ A(Ṫ ) (where I is a unit automaton similar to
that of Ex. 7.0.2.(i)).

5.3. Substitution and Fibred Structure. We briefly discuss here the indexed structure of
the categories SAG(−) and SAGW

(−), as it underlies that of [Rib18]. According to the setting
sketched in §4.2, we are looking for (contravariant) substitution functors

(−)? : Top −−→ Cat

taking an alphabet Σ to a category SAG
(W)
Σ and a T-morphism L : Σ→ Γ to a functor

L? : SAG
(W)
Γ −→ SAG

(W)
Σ

Fix a T-morphism L : Σ→ Γ. On objects, L? acts as suggested in §4.2:

L?(Γ ` A(M)) := Σ ` A(M ◦ L)

The action of L? on strategies is not difficult but requires more work. The idea is that L : Σ→T Γ
extends to a function Tr(L) : TrΣ → TrΓ, from which the action of L? on objects can be recovered
as the following pullback in Set:

LA(M◦L)y
//

tr

��

LA(M)

tr

��
TrΣ

Tr(L) // TrΓ

In order to define the action of L? on strategies, one just has to note that the above pullback
extends to synchronous (P-)plays in arrow games:

Leven
A(M◦L)−~B(N◦L)y

//

tr−~

��

Leven
A(M)−~B(N)

tr−~

��
TrΣ

Tr(L) // TrΓ

1Recall that winning strategies are assumed to be total in Def. A.0.3.
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(where the trace functions tr−~ are obtained from (5.1) in the obvious way). It is then tedious
but easy to define a strategy L?(σ) so as to get

HS(L?(σ))y
//

tr−~

��

HS(σ)

tr−~

��
TrΣ

Tr(L) // TrΓ

For each T-morphism L : Σ→ Γ we thus obtain functors

L? : SAGΓ −→ SAGΣ and L? : SAGW
Γ −→ SAGW

Σ

The maps (−)? are actually themselves (contravariantly) functorial, in the sense that

(IdΣ)? = Id
SAG

(W)
Σ

and (L ◦K)? = K? ◦ L?

We refer to [Rib15] and its full version for details.

5.4. Some Further Structure. The categories SAG(−) and SAGW
(−) are actually equipped

with all the structure mentioned in the picture (1.5), which in the setting of usual tree automata
could be drawn as:

Non-Deterministic
Automata

Alternating
Automata

!(−)

q(−) (−)⊗ (−) (−)‚(−)⊗ (−)

The (symmetric) monoidal product ⊗ is the direct product alluded to in §4.4 and §4.5, and !(−)
is given by a usual powerset construction for the Simulation Theorem [EJ91, MS95]. As for
existential quantification, in order to get the expected categorical properties (mentioned in §4.2)
we devised a variant (written q) of the usual projection operation, with which at each step,
the next state is labeled with the hidden (projected) letter. Complementation of alternating
automata (−)‚ is the usual operation (linear in the number of states). All this structure is
detailed in [Rib15] and its full version, and we do note repeat it here since it involves some easy
but inconvenient technicalities w.r.t. totality of automata.
Our main motivation to switch to the setting of [Rib18] is to obtain a clean (monoidal) closed

structure on automata. We explain in §5.5 below the functoriality problem we had in the
particular case of the usual linear complementation operation (−)‚ on alternating automata.

5.5. On the Functoriality of the Usual Linear Negation of Alternating Automata. We ex-
plain here why it seems not obvious to turn the usual linear complementation (−)‚ of alternating
automata into a (contravariant) functor. The difficulty resides in the preservation of composi-
tion. Recall from §1.4 that we see the transition function

∂A : QA × Σ −→ P(P(QA ×D))
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of an alternating automaton A : Σ as taking (q, a) ∈ QA × Σ to a disjunctive normal form∨
γ∈∂A(q,a)

∧
(q′,d)∈γ

(q′, d)

so that the transition function of A‚ intuitively has to take (q, a) to a disjunctive normal form
representing the dual of ∂A(q, a). Following [Wal02], we thus let A‚ have the same states as A
and ∂A‚(q, a) be the set of all γ‚ ⊆ P(QA ×D) such that γ‚ ∩ γ 6= ∅ for all γ ∈ ∂A(q, a).
Consider a total (winning) P-strategy σ : A −~ B playing as in Fig. 5.1, and let us see how

to directly define a total (winning) strategy σ‚ : B‚ −~ A‚. The plays of σ‚ should have the
following shape:

Σ B‚ −−~ A‚
(ε, qıB) (ε, qıA)

...
...

(p, qB) (p, qA)

O (a, γB‚) with γB‚ ∈ ∂B‚(qB, a)
P (a, γA‚) with γA‚ ∈ ∂A‚(qA, a)
O (q′A, d) with (q′A, d) ∈ γA‚
P (q′B, d) with (q′B, d) ∈ γB‚

(p.d, q′B) (p.d, q′A)
...

...

Let us see how to directly define σ‚ from σ. Assume we are in position ((p, qB), (p, qA)) as above,
and fix a and γB‚ . We have to choose some γA‚ such that γA‚ ∩ γA 6= ∅ for all γA ∈ ∂A(qA, a),
and moreover, for each (q′A, d) ∈ γA‚ , we must choose some (q′B, d) from γB‚ . The only canonical
way to do this seems to use the fact that from position ((p, qA), (p, qB)), the strategy σ induces
functions

f : γA 7−→ γB

and F : (γA , (q′B, d) ∈ f(γA)) 7−→ (q′A, d) ∈ γA
as in:

Σ A
σ
−−~ B

(p, qA) (p, qB)
O (a, γA)
P (a, γB) f(γA) = γB
O (q′B, d)
P (q′A, d) F (γA, (q′B, d)) = (q′A, d)

Then we can let

γA‚ := {F (γA, (q
′
B, d)) | γA ∈ ∂A(qA, a) and (q′B, d) ∈ γB‚ ∩ f(γA)}

Moreover, for each (q′A, d) ∈ γA‚ , there are some γA and some (q′B, d) ∈ γB‚ ∩ f(γA) such that
(q′A, d) = F (γA, (q

′
B, d)). The difficulty here is that σ may play the same (q′A, d) from one γA but

from distinct (q′B, d), (q′′B, d) ∈ γB‚ ∩ f(γA), and it is not clear how to choose one. A possibility
would be to impose a linear order on states, and to always take the least available state. But
then it is not clear how to preserve composition, because σ may be precomposed with a strategy
τ : B −~ C where C is defined as B but with a different order on states, and τ plays as the
identity, but does not preserve the order of states.
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6. Zig-Zag Games

The purpose of this chapter is to give some conceptual and technical justification to the model
of [Rib18] (to be presented in an elementary way in Chap. 7). Besides with its improvement
over [Rib15] (Chap. 5) in terms of categorical structure, the model of [Rib18] comes from a
simplification of the underlying game model, namely to total zig-zag strategies. A consequence of
this simplification is that strategies now admit a very simple functional presentation. This gives
a further description of their basic categorical structure, as well as the basis of the Dialectica-like
approach of [PR18b, PR19].
This chapter is mostly technical and unpublished. Sections 6.1 and 6.2 present the category

DZ (resp. DZW) of full positive games (in the sense of Ex. A.0.2) and total zig-zag strategies
(resp. winning total zig-zag strategies). We show in §6.3 how the category DZ can be recon-
structed by combining, starting from the topos of trees S (see e.g. [BMSS12]), known recipes
for building models of linear logic [HS03] with a specific distributive law. This in particular gives
a conceptual approach to the monoidal structure of DZ. We then outline in §6.4 an indexed
structure on top of DZ similar to that of SAG(−) (Chap. 5), but this time built from a variant
of simple fibrations (see e.g. [Jac01]) based on comonoid indexing [HS99, HS03]. We thus “me-
chanically” obtain indexed categories with existential and universal quantifications, improving
on [Rib15]. Finally, we give in §6.5 a notion of finite-state total zig-zag strategy, essentially
obtained by instantiating the framework of §2.3 to the functional representation of total zig-zag
strategies.

6.1. Zig-Zag Strategies

Consider substituted acceptance games Σ ` A(M),B(N) as in §5.1. Recall that the synchronicity
constraint of §5.2 imposes a legal P-play s in A(M) −~ B(N) to satisfy

trA(M)(s�A(M)) = trB(N)(s�B(N))

Since the functions trA(M) and trB(N) are length-preserving, this imposes in particular s�A(M)

and s�B(N) to have the same length.
On the other hand, given simple games A and B of the same polarity, and a play s in

A(SG B, if
length(s�A) = length(s�B) (6.1)

then in s, each P-move must switch component w.r.t. the previous O-move. Let us discuss the
case where (say) A = (U,X) and B = (V, Y ) are full positive games (see Ex. A.0.2). Recall that
O begins in A (SG B and must play in component A since A and B are positive. In order
to maintain (6.1), P must then switch to component B. After the P-move in B, the switching
condition imposes O to stay in B, and then P has to switch to A, again to maintain (6.1). It
follows that s must have the zig-zag shape depicted in Fig. 6.1.
This leads to the following notion of zig-zag strategies in the setting of simple games. We

restrict to the case of full positive games (see Ex. A.0.2).
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A −( B
...

...
O u

v P
y O

P x
...

...

Figure 6.1.: A typical zig-zag play with A = (U,X) and B = (V, Y ) full positive games

Definition 6.1.1 (Zig-Zag Plays and Strategies). Given full positive games A and B, a play s
in A(SG B is a zig-zag play if

length(s�A) = length(s�B)

A P-strategy σ : A(SG B is a zig-zag strategy if all its plays are zig-zag plays.
We write A(DZ B for the game obtained by restricting A(SG B to (prefixes of) its legal

zig-zag plays (so the P-strategies on A(DZ B are exactly the zig-zag P-strategies on A(SG B).
Consider now games with winning A and B. Note that if σ : A (DZ B is total, then for

every χ ∈ ((AP +BO) · (AO +BP))ω, if χ has infinitely many finite prefixes in σ, then χ�A and
χ�B are both infinite. We therefore let WA(B ⊆ ((AP +BO) · (AO +BP))ω be the set of infinite
sequences χ such that (χ�A ∈ WA ⇒ χ�B ∈ WB).

We now briefly discuss the composition of zig-zag strategies, following §5.2 and §4.7. First,
note that zig-zag strategies σ : A(DZ B could have been defined similarly as the synchronous
ones (Def. 5.2.2) as being those strategies σ : A(SG B such that

HS(σ)

��

// LB
length
��

LA
length

// N

The faithfulness of HS : SG → Rel is actually trivial for zig-zag strategies, because HS is
already injective on zig-zag plays: given (t, t′) ∈ LA × LB, there is at most one zig-zag play s
such that HS(s) = (t, t′).

Lemma 6.1.2. (i) Given zig-zag plays s, t in A(SG B, if HS(s) = HS(t) then s = t.

(ii) The map HS is injective on zig-zag strategies: HS(σ) = HS(τ) implies σ = τ .

Similarly as for synchronous strategies in §5.2, it then follows from §4.7 that copy-cat strategies
are zig-zag and that zig-zag strategies are preserved by composition.

6.2. The Categories DZ and DZW

It follows from §6.1 that we could define a category of full positive games and zig-zag strategies.
We shall actually additionally require zig-zag strategies to be total.

Proposition 6.2.1. Full positive games (with winning) and (winning) total zig-zag strategies
form a category DZ(W).
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A
(f,F )
−−→ B

(u0, x0) (v0, y0)
...

...
(un, xn) (vn, yn)

O un+1

P vn+1 vn+1 = fn+1(u0. . . . .un.un+1 , y0. . . . .yn)
O yn+1

P xn+1 xn+1 = Fn+1(u0. . . . .un.un+1 , y0. . . . .yn.yn+1)
...

...

Figure 6.2.: Representation of total zig-zag strategies according to Prop. 6.2.2 (where A = (U,X)
and B = (V, Y )).

It must be noted here that simple games and total strategies do not form a category, unless
some winning conditions are assumed (see e.g. [Abr97]). The special case of DZ, to be detailed
below, can be thought about as relying in particular on the following very simple functional
representation of strategies (which was taken as a definition in [Rib18]).

Proposition 6.2.2. Consider full positive games A = (U,X) and B = (V, Y ). Total zig-zag
strategies σ : A(DZ B are in bijection with pairs of functions (f, F ) where

f :
⋃
n>0

(
Un × Y n−1

)
−→ V

F :
⋃
n>0 (Un × Y n) −→ X

(6.2)

Given pairs of maps (f, F ) as in (6.2), for each n > 0, we write fn and Fn for the induced maps

fn : Un × Y n−1 −→ V n and Fn : Un × Y n −→ Xn

The representation of strategies by Prop. 6.2.2 can be pictured as in Fig. 6.2.
Note that for each full positive game A = (U,X), there is a bijection

β = 〈βU , βX〉 : Leven
A −→ ∪n∈N(Un ×Xn)

defined as β(ε) := (ε, ε) and β(s.u.x) = (βU (s).u, βX(s).x). In the following, we often write
((u, x), (v, y)) ∈ HS(σ) for (β−1(u, x), β−1(v, y)) ∈ HS(σ).

Proof of Prop. 6.2.2. Fix A = (U,X) and B = (V, Y ) and consider a total zig-zag strategy
σ : A(DZ B. By induction on n ∈ N, it is easy to see that for all (u, y) ∈ Un × Y n, there is
a unique (s, t) ∈ HS(σ) such that u = βU (s) and y = βY (t). The property vacuously holds for
n = 0. Assuming it for n, given (u.u, y.y) ∈ Un+1 × Y n+1, by induction hypothesis, there is a
unique (s, t) ∈ HS(σ) such that u = βU (s) and y = βY (t). Now, since σ is total and zig-zag,
there is a unique v ∈ V such that (s.u, t.v) ∈ HS(σ). Similarly, there is a unique x ∈ X such
that (s.u.x, t.v.y) ∈ HS(σ), and the property follows. Furthermore, since u.u and y uniquely
determine v = βV (t) and v, and since u.u and y.y uniquely determine x = βX(s) and x, we
obtain a pair of functions (f, F ) as in (6.2) defined as

f(u.u, y) := v and F (y.y, u.u) := x
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Conversely, each pair (f, F ) as in (6.2) uniquely determines a total zig-zag strategy σ, with,
for all u.u ∈ Un+1, and all y ∈ Y n,

((u, x).u , (v, y).v) ∈ HS(σ)

where v.v = fn+1(u.u, y) and x = Fn(u, y); and moreover for all y,

((u, x).u.x , (v, y).v.y) ∈ HS(σ)

where x = F (u.u, y.y).

The representation of strategies by pairs of maps (f, F ) as given by Prop. 6.2.2 provides an
easy way to show that total zig-zag strategies are preserved by composition. Fix total zig-zag
strategies σ : A(DZ B and τ : B (DZ C. Thanks to Prop. 6.2.2, given pairs of maps (f, F )
and (g,G) representing resp. σ and τ , this amounts to provide a pair (h,H) representing τ ◦ σ.
Write A = (U,X), B = (V, Y ) and C = (W,Z). The relational composite HS(τ) ◦HS(σ) is such
that ((u, x), (w, z)) ∈ HS(τ) ◦HS(σ) if and only if there are (v, y) such that

((u, x) , (v, y)) ∈ HS(σ) and ((v, y) , (w, z)) ∈ HS(τ)

But by Prop. 6.2.2 this is possible if and only if the following equations are satisfied:

v = fn
(
u, next(y)

)
w = gn

(
v, next(z)

)
x = Fn(u, y) y = Gn(v, z)

(6.3)

(where next(ε) := ε and next(y.y) := y). The derived equation

y = Gn
(
fn(u, next(y)) , z

)
(6.4)

determines y = y(u, z) = y1. . . . .yn uniquely from u = u1. . . . .un and z = z1. . . . .zn, as

yk = Gk(fk(u1. . . . .uk, y1. . . . .yk−1) , z1. . . . .zk) (6.5)

We can thus define a pair of maps

h :
⋃
n>0

(
Un × Zn−1

)
−→ W

H :
⋃
n>0 (Un × Zn) −→ X

as follows:
hn(uu, z) := gn(fn(uu, y(u, z))) , z)

Hn(uu, zz) := Fn(uu, y(uu, zz))

Then, by construction of (h,H), the total strategy θ : A (DZ C it represents is such that
HS(θ) = HS(τ) ◦HS(σ). It follows that θ = τ ◦ σ, and that τ ◦ σ is total zig-zag.
We thus have shown that total zig-zag strategies compose. Hence DZ is a category, and we

have proved the first part of Prop. 6.2.1.
We now turn to the case of DZW, i.e. the case of winning total strategies. We rely on

the Relational Zipping Lemma 4.7.1. Consider total winning zig-zag strategies σ : A (DZ B
and τ : B (DZ C, where A = (U,X), B = (V, Y ) and C = (W,Z). Given an infinite play
χ ∈ ((X + W ) · (U + Z))ω of τ ◦ σ (i.e. such that χ(0) · . . . · χ(k) ∈ τ ◦ σ for infinitely many
k ∈ N), it follows from Lem. 4.7.1 that there are infinite plays χσ and χτ of resp. σ and τ such
that

(χσ)�A = χ�A and (χσ)�B = (χτ )�B and (χτ )�C = χ�C

from which we get

(χ�A ∈ WA) ⇒ ((χσ)�B = (χτ )�B ∈ WB) ⇒ (χ�C ∈ WC)

and we are done.
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6.3. A Reconstruction of DZ

We have seen that total zig-zag strategies, originally defined as a restriction of a strategies in
simple games, and can be given a direct construction via pairs of functions (Prop. 6.2.2). Our
purpose here is to give an algebraic refinement of Prop. 6.2.2. It relies on an instance of Dialectica
called simple self-dualization in [HS03], that we will perform it in the topos of trees S .
A benefit of this detour is a conceptual description of basic monoidal structure of DZ (Cor. 6.3.7),

which is instrumental in the model of [Rib18].

6.3.1. Simple Self Dualization. We describe here variants of well-known constructions of
Dialectica-like categories, for which we refer to [dP91, Hyl02, HS03]. Given a category C, its
simple self-dualization is G(C) := C×Cop (also written Cd in [HS03]). Its objects are pairs U,X
of objects of C, and a morphism from (U,X) to (V, Y ) is given by a pair of maps (f, F ) with
f : U → V and F : Y → X, denoted

(f, F ) : (U,X) −p→ (V, Y )

where U
f−→ V

X
F←− Y

Assume now that C is Cartesian closed. Then G(C) can be equipped with a comonad (T, ε, δ)
where T acts on objects as

T (U,X) := (U,XU )

We are interested in the Kleisli category DC(C) := Kl(T ). Explicitly, its objects are pairs
of objects of C, and a map from (U,X) to (V, Y ) is a G(C)-morphism (f, F ) from T (U,X) to
(V, Y ), that is

(f, F ) : (U,XU ) −p→ (V, Y )

where U
f−→ V

X
F←− U × Y

(modulo exponential transpose). The category DC(C) is symmetric monoidal closed with struc-
ture

(U,X)⊗ (V, Y ) = (U × V , X × Y ) with unit (1,1)
(U,X)( (V, Y ) = (V U ×XU×Y , U × Y )

6.3.2. The Topos of Trees. The topos of trees S is the presheaf category over the order
(N \ {0},≤) seen as a category. We refer to [BMSS12] for further background on the topos of
trees, and to [MLM92] for presheaf categories in general.
Explicitly, an object X of S is given by a family of sets (Xn)n>0 equipped with restriction

maps rXn : Xn+1 → Xn. A morphism from X to Y is a natural transformation, that is a
family of functions f = (fn : Xn → Yn)n compatible with restriction maps, in the sense that
rYn ◦ fn+1 = fn ◦ rXn , as in:

X

f

��

X1

f1

��

X2
rX1oo

f2

��

· · ·oo Xn

fn
��

oo Xn+1
rXnoo

fn+1

��

· · ·oo

Y Y1 Y2
rY1

oo · · ·oo Ynoo Yn+1
rYn

oo · · ·oo
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As a topos, S is Cartesian closed. The Cartesian product is computed pointwise, so that
(X × Y )n := Xn × Yn. Exponentials XY are computed with the usual formula

(XY )n := N[N[−, n]× Y,X]

Explicitly, (XY )n consists of sequences of functions (fk : Yk → Xk)k≤n which are compatible
with restriction. The restriction map of XY takes (fk)k≤n+1 ∈ (XY )n+1 to (fk)k≤n ∈ (XY )n.
We will use the “ later ” functor I : S → S of [BMSS12]. This functor shifts indices by 1 and

inserts a dummy singleton set 1 at the beginning:

X : X1 X2
rX1oo · · ·oo Xn

rXn−1oo Xn+1
rXnoo · · ·oo

IX : 1 X1
1oo · · ·

rX1oo Xn−1
oo Xn

rXn−1oo · · ·
rXnoo

The later functor is moreover equipped with a natural transformation next : Id⇒ I(−), whose
component nextX : X → IX can be pictured as:

X

nextX

��

X1

1

��

X2
rX1oo

rX1
��

· · ·oo Xn

rXn−1

��

oo Xn+1
rXnoo

rXn
��

· · ·oo

IX 1 X11
oo · · ·oo Xn−1

oo Xn
rXn−1

oo · · ·oo

This structure allows S to be equipped with fixpoint operators fixX : XIX → X, defined as

fixXn ((fk)k≤n) := (fn ◦ · · · ◦ f1)(•)

where (fk : (IX)k → Xk)k≤n, as in

1
f1 // X1

(IX)2
f2 // X2

(IX)3
f3 // · · ·

· · ·
fn−1 // Xn−1

(IX)n
fn // Xn

The maps fixX are natural in X. Moreover, fix induce unique fixpoints, in the sense that given
f : IX × Y → X, writing f t : Y → XIX for the exponential transpose of f , fixX ◦ f t is the
unique h : Y → X satisfying f ◦ 〈nextX ◦ h, idY 〉 = h (see [BMSS12, Thm. 2.4]).
Given a set M , write Str(M) for the object of S with Str(M)n := Mn and rn(m.m) := m.

Note that rn is surjective.

6.3.3. Rebuilding DZ. The topos of trees allows us to treat composition in DZ in a more
algebraic way than in §6.2. First, Prop. 6.2.2 can be reformulated as follows:

Proposition 6.3.1. Given positive full games A = (U,X) and B = (V, Y ), total zig-zag strate-
gies σ : A(DZ B are in 1-1 correspondence with G(S )-morphisms

(f, F ) : (Str(U),Str(X)Str(U)) −p→ (Str(V )IStr(Y ), Str(Y ))
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The interesting point is that the solution (6.5) of the recursive equation (6.4) can be obtained
using the fixpoint combinator fix of the topos of trees. Similarly as in §6.2, consider positive full
games A = (U,X), B = (V, Y ) and C = (W,Z), and G(S )-morphisms

(f, F ) : (Str(U),Str(X)Str(U)) −p→ (Str(V )IStr(Y ), Str(Y ))

(g,G) : (Str(V ), Str(Y )Str(V )) −p→ (Str(W )IStr(Z),Str(Z))

Write σ and τ for the total zig-zag strategies corresponding to resp. (f, F ) and (g,G). As in §6.2,
the relational composite

HS(τ ◦ σ) = HS(τ) ◦HS(σ)

must be such that ((u, x), (w, z)) ∈ HS(τ) ◦HS(σ) if and only if there are (v, y) such that

((u, x), (v, y)) ∈ HS(σ) and ((v, y), (w, z)) ∈ HS(τ)

This is equivalent to the system of equations (6.3), where next is now the action at index n of
the S -morphism next. As a consequence, equation (6.4) now uniquely defines y from u and z
as

y = y(u, z) = fixYn
(
λy.Gn(fn(u, y) , z)

)
(We have here tacitly used the fact that ξ ∈ (Str(M)IStr(M))n is completely determined by its
last component ξn.)
More generally, given G(S )-objects (U,X), (V, Y ), (W,Z), and G(S )-morphisms

(f, F ) : (U,XU ) −p→ (V IY , Y )
(g,G) : (V, Y V ) −p→ (WIZ , Z)

we can define their composite

(g,G) ◦ (f, F ) = (h,H) : (U,XU ) −p→ (WIZ , Z)

as follows (using the internal λ-calculus of S ):

h(u, z) := g
(
f
(
u, y(next(u), z)

)
, z
)

H(z, u) := F (u , y(u, z))

where y(u, z) := fixY (λy.G(f(u, y), z))

It is possible to directly check that this composition is associative and preserves identities. We
can actually do better: the operation

(−)I : (U,X) 7−→ (UIX , X) (6.6)

is the action on objects of a functor part of a monad, and the composition of G(S )-morphisms

(f, F ) : TA −p→ BI

(g,G) : TB −p→ CI

can be described by a distributive law of T over (−)I.
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MGA
MδA

**
GMA

ΛA

44

δMA %%

MGGA

GGMA
GΛA

// GMGA
ΛGA

88

GMA
ΛA

**
GMMA

GµA

33

ΛMA &&

MGA

MGMA
MΛA

//MMGA

µGA

88

MGA
MεA

$$
GMA

ΛA

99

εMA

//MA

GMA
ΛA

%%
GA

GηA
::

ηGA
//MGA

Figure 6.3.: Coherence for a Distributive Law of Comonad over a Monad.

6.3.4. A Distributive Law. Consider a category C equipped with a comonad (G, δ, ε) and
monad (M,µ, η). A distributive law (in the sense of e.g. [HHM07]) of G over M is a natural
transformation

Λ : G ◦M =⇒ M ◦G

which satisfies the coherence conditions of Fig. 6.3. These coherence conditions ensure in par-
ticular that we can define a category Kl(λ), whose objects are the objects of C, and whose
morphisms are given by Kl(λ)[A,B] := C[GA,MB].
In our case, the comonad is the comonad T of §6.3.1. For the monad, we equip the functor

(−)I of (6.6) with the unit and multiplication

(fη, Fη) : (U,X) −p→ (UIX , X)
(fµ, Fµ) : (UIX×IX , X) −p→ (UIX , X)

where Fη = Fµ = idX , fη(u, x) = u and fµ(h, x) = h(x, x) (modulo exponential transpose).
We now define the distributive law

ζ : T ◦I(−) =⇒ I(−) ◦ T
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Its component at object A = (U,X) is the morphism

ζA = (f ζ , F ζ) : (UIX , XUIX
) −p→ (UI(XU ), XU )

with f ζ : UIX × I(XU ) −→ U
F ζ : UIX × XU −→ X

defined as follows. Let f ζ1 (θ1, •) := θ1. Given ξ ∈ (XU )n, θ ∈ (UIX)n and θ′ ∈ (UIX)n+1, let

F ζn(θ, ξ) := fixXn (ξ ◦ θ)
f ζn+1(θ′, ξ) := θ′n+1(fixXn (ξ ◦ rn(θ′)))

= θ′n+1(Fn(rn(θ′), ξ))

Proposition 6.3.2 ([Rib18, App. F.5 & H]). The family of maps ζA : T (AI) −p→ (TA)I forms
a distributive law.

We write DZS for Kl(ζ),

Corollary 6.3.3. The category DZ is equivalent to the full subcategory of DZS whose objects
are of the form (Str(U), Str(X)).

6.3.5. Symmetric Monoidal Structure. A benefit of Cor. 6.3.3 is that DZ (and DZS ) can
be seen as inheriting the monoidal structure of DC(S ), which is itself given by the monoidal
product ⊗ of G(S ). First, it is well-known (see [HS03]) that for an SMC (C,⊗, I), the category
G(C) is symmetric monoidal with

(U,X)⊗ (V, Y ) = (U ⊗ V,X ⊗ Y ) with unit I = (I, I)

Moreover, it is easy to see that the monad T is lax symmetric monoidal and that the monad
(−)I is oplax symmetric monoidal (we refer to e.g. [Mel09] for definitions). Furthermore, the
following is easy to verify (see [Rib18, App. D.4.3 & D.5]).

Proposition 6.3.4. Consider a lax symmetric monoidal monad T and an oplax symmetric
monoidal comonad G on a symmetric monoidal category (C,⊗, I). Assume a distributive law
Λ : GT ⇒ TG such that

G(TA⊗ TB)

g2
TA,TB

��

G(m2
A,B)

// GT (A⊗B)

ΛA⊗B
��

GTA⊗GTB

ΛA⊗ΛB
��

TG(A⊗B)

T (g2
A,B)

��
TGA⊗ TGB

m2
GA,GB

// T (GA⊗GB)

(6.7)

where (m2,m0) is the strength of T and (g2, g0) is the strength of G.
Then Kl(λ) is symmetric monoidal, with, on objects, the same monoidal structure as (C,⊗, I).

Proposition 6.3.5. The distributive law ζ : T ◦ (−)I ⇒ (−)I ◦ T satisfies (6.7).

Corollary 6.3.6. The category DZS is symmetric monoidal.

Since Str((M ×N)) ' Str(M)× Str(N), we also get:

Corollary 6.3.7. The category DZ is symmetric monoidal. On objects we have

(U,X)⊗ (V, Y ) = (U ⊗ V,X ⊗ Y ) with unit I = (I, I)
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6.3.6. Monoidal Closure. Recall from e.g. [Mel09] that a symmetric monoidal category (C,⊗, I)
is closed if for every object A, the functor A⊗(−) has a right adjoint (−)A. According to [ML98,
Thm. IV.1.2], it is sufficient to show that for every object C there is an object CA and map

evalC : A⊗ CA −→ C

such that for every f : A⊗B → C there is a unique Λ(f) : B → CA with

A⊗ CA evalC // C

A⊗B
f

88

idA⊗Λ(f)

OO

Proposition 6.2.2 gives a very simple way to describe the monoidal closed structure of (DZ,⊗, I)
(with ⊗, I given by Cor. 6.3.7). The idea is that the representation of DZ-morphisms as pairs
of functions (f, F ) : (U,X) −p→ (V, Y ) as in (6.2) can be read as:

f :
⋃
n∈N (Un × Y n) −→ (U −→ V )

F :
⋃
n∈N (Un × Y n) −→ (U × Y −→ X)

Proposition 6.3.8. The category DZ is symmetric monoidal closed. The linear exponent of
A = (U,X) and B = (V, Y ) is A(DZ B := (V U ×XU×Y , U × Y ).

6.4. Toward a Simple Approach to Synchronous Arrow Games

The material of §6.3 gives a very simple analogue of the indexed categories SAG(−) of Chap. 5.
We shall content ourselves with an outline since much of the details of this Section are provided
in [Rib18].
We fix the following objects of DZ:

D := (1,D) and Σ := (Σ,1) (for each alphabet Σ)

The idea is that one may consider a variant of SAGΣ consisting of those DZ-strategies

σ : Σ⊗ (A⊗D) −−(DZ Σ⊗ (B ⊗D)

which satisfy a synchronicity constraint obtained by the obvious adaptation of the trace func-
tions tr of §5.2. But such synchronous (total zig-zag) strategies can actually be equivalently
represented by DZ-maps

Σ⊗A −−(DZ B ⊗D

The key to make this work is to note the following. First, objects of the form Σ (resp. D) are
commutative comonoids (resp. monoids) in DZ. As a consequence, tensoring with Σ (resp. with
D) gives an oplax symmetric monoidal comonad Σ⊗ (−) of comonoid indexing with Σ (resp. a
lax symmetric monoidal monad (−)⊗D of monoid indexing with D) [HS99, HS03]. Then, it is
easy to see that the associativity structure maps of DZ induce a distributive law (in the sense
of [HHM07] and §6.3.4)

ΦΣ
(−) := α−1

Σ,(−),D : Σ⊗ ((−)⊗D) =⇒ (Σ⊗ (−))⊗D (6.8)

which moreover satisfies the additional requirement (6.7) of Prop. 6.3.4. We thus get:
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Proposition 6.4.1. For each alphabet Σ, the category DialZ(Σ) := Kl(ΦΣ) is symmetric
monoidal. On objects we have

(U,X)⊗ (V, Y ) = (U ⊗ V,X ⊗ Y ) with unit I = (I, I)

Hence, the objects of DialZ(Σ) are full positive games A = (U,X), B = (V, Y ) etc, and a
morphism of DialZ(Σ) from A to B is a total zigzag strategy

σ : Σ⊗A −−(DZ B ⊗D

In the following, we let DZD be the Kleisli category Kl(D) of the monad (−) ⊗ D on DZ.
Note that DZD is symmetric monoidal as (−)⊗D is lax symmetric monoidal.

6.4.1. Symmetric Monoidal Closed Structure. The monoidal closed structure of DZ lifts to
DZD and to DialZ(Σ). In the case of DZD, since

DZD[A⊗B , C] = DZ[A⊗B , C ⊗D] ' DZ[A , (B(DZ C ⊗D)]

we should have (A(DZD
B)⊗D ' (A(DZ B ⊗D). Given A = (U,X) and B = (V, Y ) this

leads to (A(DZD
B) = (W,Z) with

(W,Z ×D) ' (V U ×XU×Y×D , U × Y ×D)

We therefore let

(U,X)(DZD
(V, Y ) := (V U ×XU×Y×D , U × Y )

The closed structure of DZD directly lifts to DialZ(Σ) since

DialZ(Σ)[A⊗B , C] = DZD[Σ⊗ (A⊗B) , C] ' DZD[Σ⊗A , B(DZD
C]

Proposition 6.4.2. The categories DZD and DialZ(Σ) are symmetric monoidal closed.

6.4.2. Indexed Structure. Using a small amount of fibred category theory (for which we refer
to [Jac01]), we obtain a simple (strict) indexed structure on the categories DialZ(−), which may
be reminiscent from [MM15].
We follow the pattern of simple fibrations s : s(B)→ B over a category B with finite products

(see e.g. [Jac01, Chap. 1] but also [Hyl02, Hof11]). Recall that for a simple fibration s : s(B)→ B,
the fibre over I is the Kleisli category of the comonad of comonoid indexing with I.
Fix a symmetric monoidal category C. The category Comon(C) of commutative comonoids

of C has finite products. This gives a (strict) indexed category

(−)? : Comon(C)op −−→ Cat

taking each comonoid K to the Kleisli category Kl(K) of comonoid indexing with K. On maps,
(−)? takes a comonoid morphism u : K → L to the functor u? : Kl(L) → Kl(K) which is the
identity on objects and takes f : L⊗A→ B to f ◦ (u⊗ idA) : K ⊗A→ B.
In particular it would make sense to consider the above indexed category for the particular

case of Comon(DZD):
(−)? : Comon(DZD)op −−→ Cat
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We shall actually do this for a full subcategory of Comon(DZD)op corresponding to the base
category T of Def. 4.2.1. Note that for each alphabet Σ, the object Σ of DZ is still a commutative
comonoid in DZD (see e.g. [Rib18, Prop. D.11, App. D.6.5]), while the distributive law ΦΣ

of (6.8) implies that the comonad of comonoid indexing with Σ lifts to DZD. In particular, the
category DialZ(Σ) is the Kleisli category of comonoid indexing with Σ in DZD.
We moreover note the following.

Proposition 6.4.3. The base category T of Def. 4.2.1 is (isomorphic to) the full subcategory of
Comon(DZD) whose objects are of the form (Σ,1) for Σ an alphabet.

This induces a (strict) indexed structure

DialZ(−) := (−)? : Top −−→ Cat

Explicitly, this indexed category takes an alphabet Σ to the category DialZ(Σ) and a T-morphism
M : Σ→ Γ to the functor M? : DialZ(Γ)→ DialZ(Σ) defined as above.
Note that since objects of the form Σ = (Σ,1) are closed under ⊗ and are commutative

comonoids in DZD, and since the commutative comonoids of a symmetric monoidal category
have finite products, it follows that the base category T has finite products.

6.4.3. Quantifications. We easily get universal and existential quantifications (also called
resp. simple products and simple coproducts, see e.g. [Jac01, Chap. 1]) for the indexed cate-
gory DialZ(−).
Let (−)? : B → Cat be an indexed category. For each object I of B, we write EI for the

category I?. Recall from e.g. [Jac01, Chap. 1] (see also §4.2) that existential (resp. universal)
quantifications for (−)? are given given resp. by left adjoints

∐
I,J : EI×J → EI and right

adjoints
∏
I,J : EI×J → EI to the weakening functors π? : EI → EI×J induced by B-projections

π : I × J → I. The families of operations (
∐
I,J)I,J and (

∏
I,J)I,J are moreover required to

satisfy some coherence conditions, called the Beck-Chevalley conditions, which insure that they
are preserved by substitution.
It is well-known (see e.g. [Jac01, Chap. 1]) that the simple fibration s : s(B) → B always has

simple coproducts, and has simple products iff B is Cartesian closed. They are given by∐
I,J

(I × J,X) := (I, J ×X) and
∏
I,J

(I × J,X) := (I,XJ)

This directly extends to DialZ.

Proposition 6.4.4. The weakening functors [π]? : DialZ(Σ)→ DialZ(Σ× Γ) induced by projec-
tion functions π : Σ× Γ→ Σ have left and right adjoints given by∐

Σ,Γ

(U,X) := (Γ× U,X) and
∏
Σ,Γ

(U,X) := (UΓ,Γ×X) ' (Γ(DZD
(U,X))

The Beck-Chevalley conditions amount, for L ∈ T[∆,Σ], to the equalities

L?(
m

Σ,Γ

(U,X)) =
m

∆,Γ

(L× IdΓ)?(U,X) (for
e
∈ {
∐
,
∏
})

which follow from the fact that substitution functors are identities on objects.
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Figure 6.4.: A Mealy machine (left) and an equivalent eager (Moore) machine (right).

6.5. Finite State Strategies as Mealy Machines

We now provide some details on the representation of finite-state DZ morphisms. The key is to
simulate enough of the I and next operations of §6.3 in the setting of Mealy and eager Moore
machines (§2.3, see also [PR19, Pra19]).

6.5.1. Back to Causal and Eager Functions. Causal and f.s. causal functions form categories
with finite products. Let S be the category whose objects are alphabets and whose maps from
Σ to Γ are causal functions F : Σω → Γω.
Moreover, recall that the identity function Σω → Σω is f.s. causal, and note that the com-

position of f.s. causal functions is f.s. causal. We let M be the wide subcategory of S whose
maps are finite-state causal functions. Note that in order to obtain the required identity and
composition laws, it is crucial that M is a category of functions and not of machines.

Proposition 6.5.1. The Cartesian product of Σ1, . . . ,Σn (for n ≥ 0) in S,M is given by the
product of sets Σ1 × · · · × Σn (so that 1 is terminal).

Eager functions do not form a category since the identity of S is not eager. On the other
hand, eager functions are closed under composition with causal functions.

Proposition 6.5.2. If F is eager and G,H are causal then H ◦ F ◦G is eager.

Note the usual currying bijections

Σ+ → Γ ' Σ∗ × Σ→ Γ ' Σ∗ → ΓΣ

Hence, eager functions Σ →E ΓΣ are in bijection with causal functions Σ →S Γ. This easily
extends to machines. Given a Mealy machine M : Σ → Γ, let Λ(M) : Σ → ΓΣ be the eager
machine defined asM but with output map taking q ∈ QM to (a 7→ λM(q, a)) ∈ ΓΣ.

Example 6.5.3. Figure 6.4 (left) displays the Mealy machineM : 2→ 2 of Ex. 2.3.1.(c). Then
Λ(M) : 2→ 22 is the eager machine displayed in Fig. 6.4 (right, where the output is indicated
within states).

Notation 6.5.4. We use the following notations on eager functions.

• First, let @ be the pointwise lift to M of the usual application function ΓΣ × Σ → Γ. We
often write (F )G for @(F,G).

Consider a Mealy machine M : Σ → Γ and the induced eager machine Λ(M) : Σ → ΓΣ.
We have

FM(B) = @
(
FΛ(M)(B), B

)
(for all B ∈ Σω)

• Given an eager F : Γ→E ΣΓ, we write ev(F ) for the causal @(F (−),−) : Γ→S Σ.
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• Given a causal F : Γ →S Σ, we write Λ(F ) for the eager Γ →E ΣΓ such that F =
ev(Λ(F )).

• Given a (f.s.) causal F : Σ×Γ→S ∆, we say that F is eager in Γ if F can be represented
by a(n) (f.s.) eager function Λ(F ) : Σ× Γ→E ∆Σ as

F (B,C) = @
(
Λ(F )(B,C), B

)
(for all B ∈ Σω, C ∈ Γω)

Eager functions admit fixpoints similar to those of contractive maps in the topos of trees
(see [BMSS12, Thm. 2.4] and §6.3.2).

Proposition 6.5.5. For each F : Σ× Γ −→E ΣΓ there is a fix(F ) : Γ −→E ΣΓ s.t.

fix(F )(C) = F
(
ev(fix(F ))(C) , C) (for all C ∈ Γω)

If F is induced by the eager machine E : Σ × Γ → ΣΓ, then fix(F ) is induced by the eager
H : Γ→ ΣΓ defined as E but with ∂H : (q, b) 7→ ∂E

(
q, ((λE(q))b, b)

)
.

6.5.2. Representation of Total Zig-Zag Strategies. Fix full positive games A = (U,X) and
B = (V, Y ) with U,X, V, Y non-empty and finite. It follows from the monoidal closure of DZ
that a total zigzag P-strategy σ : A −( B can be represented as a P-strategy in the full
positive game A(DZ B of Prop. 6.3.8, and thus as an eager function. This induces a notion of
finite-state strategy for DZ. A more explicit formulation can be given as follows.
Recall from Prop. 6.2.2 that a total zig-zag strategy is given by a pair of functions (f, F ) with

f :
⋃
n>0

(
Un × Y n−1

)
−→ V

F :
⋃
n>0 (Un × Y n) −→ X

With the terminology of §2.3 and §6.5.1, this is amounts to say that F induces a causal function
U × Y →S X and that f induces a causal function U × Y →S V which is eager in Y .

Definition 6.5.6 (Finite-State Strategy). Given A and B as above, we say that a strategy
σ : A(DZ B is finite-state if, w.r.t. to its functional representation (f, F ) via Prop. 6.2.2, the
function F induces a finite-state function U×Y →M X and the function f induces a finite-state
function U × Y →M V which is eager in Y .

That finite-state strategies compose can be proved similarly as for total zig-zag strategies (§6.2
and §6.3.3), using the finite-state fixpoint operator of Prop. 6.5.5. Moreover, the categorical
structure of DZ presented in this Section, namely the monoidal closed structure and quantifica-
tions, restricts to finite-state strategies. This is easy to check (but quite tedious), and we refer
to [PR19, App. B] for details.
Recall from §6.4 that a morphism of DialZ(Σ) from A to B (with A, B as above) is a total

zig-zag strategy
σ : Σ⊗A −−(DZ B ⊗D

and that a morphism of the base category T (Def. 4.2.1 and Prop. 6.4.3) is a total zig-zag
strategy

M : Σ −−(DZ Γ⊗D

Hence, Def. 6.5.6 immediately gives a notion of finite-state morphism of DialZ(Σ) and of finite-
state T-morphism. Moreover, it is easy to see that the wide subcategory of T consisting of the
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finite-state morphisms has finite products (see also §6.4.2). Explicitly, recalling from Def. 4.2.1
that a morphism M : Σ→T Γ can be represented as a function

M :
⋃
n>0

(
Σn ×Dn−1

)
−→ Γ

that is, as a causal function M : Σ × D →S Γ which is eager in D, we say that M is a finite
state T morphism if M is a f.s. causal function. The explicit description of finite-state DialZ(Σ)
morphisms is similar and omitted.
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7. Categories of Uniform Tree Automata

This chapter presents the notion of “uniform” tree automata from [Rib18]. Uniform automata
are essentially a presentation of alternating automata whose categories of substituted acceptance
games are, when forgetting about winning, full subcategories of DialZ(−). As a consequence,
uniform automata inherit the structure on zig-zag games presented in Chap. 6, thereby solv-
ing the difficulty raised in §5.5 w.r.t. the functoriality of linear negation on usual alternating
automata.
We begin by giving the definition of uniform automata, while §7.1 presents the specialization of

DialAut to uniform automata. Then §7.2 presents a basic set of connectives on uniform automata,
mainly based on the corresponding structure for DialZ presented in Chap. 6. Non-deterministic
automata and the exponential modality !(−) induced by the Simulation Theorem [EJ91, MS95]
are briefly discussed in §7.3 and §7.4, with an emphasis on applications. Finally, we sketch in §7.5
the particular case of uniform automata on ω-words, which is further developed in [PR18b,
Pra19].

Definition 7.0.1 (Uniform Tree Automata). A uniform tree automaton A over Σ (notation
A : Σ) has the form

A = (QA , q
ı
A , U , X , ∂A , ΩA) (7.1)

where QA is the finite set of states, qıA ∈ QA is the initial state, U and X are finite non-empty
sets of resp. P and O-moves, the acceptance condition ΩA is an ω-regular subset of QωA, and the
transition function ∂A has the form

∂A : QA × Σ −→ U ×X −→ (D −→ QA) (7.2)

Following the usual terminology, an automaton A as in (7.1) is non-deterministic if X ' 1,
universal if U ' 1, and deterministic if U ' X ' 1.

Example 7.0.2. (i) The unit automaton IΣ : Σ is the unique uniform deterministic automa-
ton over Σ with state set 1 (with • initial) and acceptance condition 1ω. Explicitly,

IΣ := (1, •,1,1, ∂1,1
ω)

where ∂1 is the unique function

∂1 : 1× Σ −→ 1× 1 −→ (D −→ 1)

We write I for IΣ when Σ is clear from the context.

(ii) Each alternating automaton A can be translated to a uniform automaton A. The automaton
A simulates A as long as P and O respect the transition function of A, and switches to
an accepting (resp. rejecting) state as soon as O (resp. P) plays a move not allowed by A.
Assuming

∂A : QA × Σ −→ P(P(QA ×D))
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we let A be the uniform automaton

(A : Σ) := (QA + B , qıA , P(QA ×D) , QA , ∂A , ΩA)

where B := {t, f}, with transitions given by ∂A(b, a,−,−,−) := b if b ∈ B and for q ∈ QA:

∂A(q, a, γ, q′, d) :=


q′ if γ ∈ ∂A(q, a) and (q′, d) ∈ γ
t if γ ∈ ∂A(q, a) and (q′, d) /∈ γ
f if γ /∈ ∂A(q, a)

and with ΩA := ΩA +Q∗A.t
ω.

7.1. Indexed Categories of Uniform Tree Automata

We now define the analogue for uniform automata of substituted acceptance games and of
(linear) synchronous arrow games, respectively presented in §5.1 and §5.2.

7.1.1. Uniform Substituted Acceptance Games. Consider a uniform automaton A : Γ as
in (7.1), and a morphism M ∈ T[Σ,Γ]. The uniform substituted acceptance game Σ ` A(M) is
the full positive game with P-moves Σ × U and O-moves X ×D. So a play in Σ ` A(M) has
the form

P O P O P O

(a0, u0) · (x0, d0) · (a1, u1) · (x1, d1) · · · · · (an, un) · (xn, dn) · · · ·∈ ∈ ∈ ∈ ∈ ∈

Σ× U X ×D Σ× U X ×D Σ× U X ×D

Similarly as in a substituted acceptance game for a usual non-deterministic or alternating au-
tomaton [Rib15], P chooses input letters and O chooses tree directions.
We now equip Σ ` A(M) with a winning condition WA(M) ⊆ ((Σ × U) · (X × D))ω. Each

infinite play χ = ((ak, uk) · (xk, dk))k ∈ ((Σ × U) · (X ×D))ω generates an infinite sequence of
states (qk)k ∈ QωA as follows. We let q0 := qıA and

qk+1 := ∂A(qk , bk , uk , xk , dk)
where bk := M(a0 · . . . · ak , d0 · . . . · dk−1)

Then χ is winning (i.e. χ ∈ WA(M)) iff (qk)k is accepting (i.e. iff (qk)k ∈ ΩA).
Similarly as for usual alternating automata, acceptance for uniform tree automata can be

defined via substituted acceptance games (see Rem. 5.1.2).

Definition 7.1.1. Consider a uniform automaton A over Σ.

(i) A accepts the tree T : D∗ → Σ if there is a winning P-strategy in 1 ` A(Ṫ ).

(ii) Let L(A) ⊆ ΣD∗, the language of A, be the set of trees accepted by A.
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7.1.2. Uniform Linear Synchronous Arrow Games. The main idea is that a uniform automa-
ton A : Σ as in (7.1) generates a DialZ(Σ) object (U,X). It then follows from §6.4 that the
indexed category DialZ(−) contains as full subcategories the analogue of the indexed category
of synchronous arrow games (§5.3).
It remains to handle winning. We write

(−)↑ : DialZ(Σ) −→ DZ

for the canonical lifting functor obtained from the distributive law (6.8). This functor takes a
total zig-zag strategy

σ : Σ⊗A −−(DZ B ⊗D

to a total zig-zag strategy

σ↑ : Σ⊗ (A⊗D) −−(DZ Σ⊗ (B ⊗D)

Definition 7.1.2 (The Category DialAut(Σ)). Fix an alphabet Σ.

• The objects of the category DialAut(Σ) are tuples (U,X,WA) where U and X are non-empty
sets and where WA ⊆ ((Σ× U) · (X ×D))ω.

• The DialAut(Σ) morphisms from (U,X,WA) to (V, Y,WB) are total zig-zag strategies

σ : Σ⊗ (U,X) −−(DZ (V, Y )⊗D

whose lift σ↑ are winning strategies

σ↑ : (Σ× U,X ×D,WA) −−(DZW (Σ× V, Y ×D,WB)

Note that a DialAut(Σ) morphism from (U,X,WA) to (V, Y,WB) is in particular a DialZ(Σ)
morphism from (U,X) to (V, Y ). In order to equip the categories DialAut(−) with a (strict)
indexed structure, we simply extend the indexed structure of DialZ(−) with winning. It is easy
(but tedious) to do this directly “by hand” as in [Rib18], while a (better) abstract treatment is
provided in [Pra19].

Example 7.1.3. An automaton A : Γ as in (7.1) together with a tree morphism M ∈ T[Σ,Γ]
generates a DialAut(Σ) object

Σ ` A(M) := (U,X,WA(M))

where WA(M) is defined as in §7.1.1.

7.1.3. Substitution and Language Inclusion. We now check that DialAut(−) is correct w.r.t.
language inclusion. First, consider substituted acceptance games Σ ` A(M) and Σ ` B(N)
in the sense of §7.1.1. Following Ex. 7.1.3, We thus obtain DialAut(Σ) objects, that we still
write Σ ` A(M) and Σ ` B(N) (or simply A(M) and B(N)). Now, the indexed structure of
DialAut(−) gives, from

σ : A(M) −−(DialAut(Σ) B(N) and L ∈ T[Γ,Σ]

a morphism
L?(σ) : A(M ◦ L) −−(DialAut(Γ) B(N ◦ L)
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where (−)? is the substitution functor of DialAut. Hence, DialAut interprets all instances of the
(Subst) rule (4.7) of the form

M ; A ` B
M ◦ L ; A ` B

(where M ∈ T[Σ,∆] and L ∈ T[Γ,Σ])

In particular, given A,B : Σ, for all Σ-labeled tree T (and skipping the Ṫ notation of §4.2.(b))
we have

Σ ; A ` B
T ; A ` B

Assume given σ : A ( B. If T ∈ L(A), then there is some τ : I1 ( A(T ). It follows that
we obtain T ?(σ) ◦ τ : I1 ( B(T ), which implies T ∈ L(B). In other words, σ : A( B and T
induce a function (

I( A(T )
)
−→

(
I( B(T )

)
, τ 7−→ T ?(σ) ◦ τ

and we have shown:

Proposition 7.1.4. If P has a winning strategy in Σ ` A( B, then L(A) ⊆ L(B).

7.2. Connectives and Deduction Rules on Uniform Tree
Automata

This Section, together with §7.3 and §7.4, presents a basic set of connectives on uniform au-
tomata, namely the linear connectives ⊗ and(, falsity ‹, universal and existential quantifica-
tions, as well as an exponential modality !(−) induced by the Simulation Theorem [EJ91, MS95]
(see also §2.2). The corresponding deduction rules are presented in Fig. 7.1.
The fibrewise symmetric monoidal closed structure of DialZ(−), as well as the existential

and universal quantifications (see Chap. 6) directly lifts to DialAut and is easily reflected in
uniform tree automata. We present the constructions for uniform automata in §7.2.1 (and refer
to [Rib18] for details on DialAut). Then, a particular attention to falsity is given in §7.2.2,
where we devise an automaton ‹ such that (thanks to a usual determinacy result) A ( ‹ is
a (linear) complement of A in the usual sense. Quantifiers are briefly discussed in §7.2.3. We
defer important basic facts on non-deterministic automata to §7.3, and briefly discuss in §7.4
the exponential construction !(−) and some of its basic consequences.
The general correctness result is the following (where ⊗DA denotes the fibrewise monoidal

product of DialAut). We refer to §6.5.2 for details on finite-state strategies.

Proposition 7.2.1 (Adequacy). Let M ∈ T[Σ,Γ]. If the sequent M ; A1, . . . ,An ` B is
derivable using the rules of Fig. 7.1, then there is a winning finite-state winning P-strategy

σ : A1(M)⊗DA · · · ⊗DA An(M) −−(DialAut(Σ) B(M)

In particular, if A ` B is derivable, then by combining Prop. 7.2.1 with Prop. 7.1.4, we obtain
a strategy witnessing that L(A) ⊆ L(B). Note also that strategies in Prop. 7.2.1 are obtained
from derivations in a purely compositional way. Moreover, all the rules of Fig. 7.1 are compatible
with cut-elimination (see Rem. 7.2.3).
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(Exchange)
M ; A, A, B, C ` C
M ; A, B, A, C ` C

M ; A ` A
M ◦M ′ ; A ` A

(Subst)

(Cut)
M ; A ` A M ; B, A, C ` C

M ; B, A, C ` C M ; A ` A
(Axiom)

(Left ⊗)
M ; A, A, B, B ` C
M ; A, A⊗ B, B ` C

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

(Right ⊗)

(Left I)
M ; A, B ` C
M ; A, I, B ` C M ; ` I

(Right I)

(Left ()
M ; A ` A M ; B, B, C ` C

M ; B, A, A( B, C ` C
M ; A, B ` C
M ; A ` B( C

(Right ()

(Dereliction)
M ; A , A , B ` C
M ; A , !A , B ` C

M ; N ` A
M ; N ` !A

(Promotion)

(WeakND)
M ; A , B ` C

M ; A , N , B ` C
M ; A , N , N , B ` C
M ; A , N , B ` C

(ContrND)

(Left ∃) M × IdΓ ; A[π], B ` A[π]

M ; A, ∃ΓB ` A
M ×N ; A ` A

M ×N ; A ` (∃ΓA)[π]
(Right ∃)

(Left ∀) M ×N ; A, B ` A
M ×N ; A, (∀ΓB)[π] ` A

M × IdΓ ; A[π] ` A
M ; A ` ∀ΓA

(Right ∀)

Figure 7.1.: Deduction rules on uniform automata, whereM,M ′ are composable, N ,N are non-
deterministic, and where the weakening functor (−)[π] takes automata over Σ to
automata over Σ× Γ.
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7.2.1. Monoidal Closed Structure. The (fibrewise) symmetric monoidal closed structure of
DialZ (and DialAut) induces the corresponding connectives on uniform automata.

Definition 7.2.2 (Monoidal Product and Linear Implication on Uniform Automata). Consider
uniform automata

A = (QA , q
ı
A , U , X , ∂A , ΩA)

B = (QB , q
ı
B , V , Y , ∂B , ΩB)

so that
∂A : QA × Σ −→ U ×X −→ (D −→ QA)

and ∂B : QB × Σ −→ V × Y −→ (D −→ QB)

• We let A⊗ B be the automaton over Σ defined as

A⊗ B :=
(
QA ×QB , (qıA, q

ı
B) , U × V , X × Y , ∂A⊗B , ΩA⊗B

)
with transitions given by

∂A⊗B
(
(qA, qB) , a , (u, v) , (x, y) , d

)
:= (q′A , q

′
B)

where
q′A := ∂A(qA , a , u , x , d) and q′B := ∂B(qB , a , v , y , d)

and with acceptance condition given by(
(qn, q

′
n)
)
n
∈ ΩA⊗B iff

(
(qn)n ∈ ΩA and (q′n)n ∈ ΩB

)
(7.3)

• We let (A( B) be the automaton over Σ defined as

(A( B) :=
(
QA ×QB , (qıA, q

ı
B) , V U ×XU×Y×D , U × Y , ∂A(B , ΩA(B

)
with transitions given by

∂A(B
(
(qA, qB) , a , (f, F ) , (u, y) , d

)
:= (q′A , q

′
B)

where

q′A = ∂A
(
qA , a , u , F (u, y, d) , d

)
and q′B = ∂B

(
qB , a , f(u) , y , d

)
and with acceptance condition given by(

(qn, q
′
n)
)
n
∈ ΩA(B iff

(
(qn)n ∈ ΩA ⇒ (q′n)n ∈ ΩB

)
Note that ΩA⊗B as well as ΩA(B are ω-regular since ΩA and ΩB are both assumed to be ω-
regular. Note also that A⊗B is non-deterministic (resp. universal, deterministic) if both A and
B are non-deterministic (resp. universal, deterministic).

Remark 7.2.3 (On Cut-Elimination). Since we have monoidal closed categories, the interpreta-
tion of derivations as strategies for the rules of Fig. 7.1 (but for (Promotion) and (Dereliction))
is compatible with cut-elimination, in the sense that if a derivation D ′ is obtained from a deriva-
tion D by applying the proof transformation steps described in e.g. [Mel09, §3.3], then D and D ′

are interpreted by the same strategy. This in particular applies to the following two derivations:

D1

A ` B
I ` A( B

D2

I ` A B ` B
A( B ` B

I ` B

...
D1[D2/A]

I ` B
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Example 7.2.4. Proposition 7.2.1 yields a winning P-strategy in

B ⊗ B ⊗ (B( A) −( A⊗ B

obtained from the proof tree

B ` B A ` A
B,B( A ` A B ` B
B, (B( A),B ` A⊗ B
B,B, (B( A) ` A⊗ B

Note that in Fig. 7.1 we omitted the weakening and contraction rules (4.14):

(Weak)
M ; A , B ` C

M ; A , A , B ` C
M ; A , A , A , B ` C
M ; A , A , B ` C

(Contr)

Similarly as with usual automata, the contraction rule can be interpreted on non-deterministic
uniform automata but not on general uniform automata. This rule amounts to providing winning
P-strategies in the game

A −( A⊗A (7.4)

If A is non-deterministic (say with P-moves U), then a P-strategy in (7.4) simply takes an O-
move u ∈ U in component A to the pair (u, u) ∈ U × U in component A ⊗A. Note that such
strategy may not exist when A is a general uniform automaton, that is when it is equipped with
a set of O-moves X 6' 1, since O can play two different (x, x′) ∈ X×X in the component A⊗A,
that P may not be able to merge into a single x′′ ∈ X in the left component A.
On the other hand, the weakening rule, which asks for a winning P-strategy in

A −( I

can always be realized (since we required the set of P and O-moves to be always non-empty),
but in a non-canonical way for general uniform automata. More generally, given A and B over
the same input alphabet, there is always a winning P-strategy in

A⊗ B −( A (7.5)

Assuming A and B are as in Def. 7.2.2, such a strategy takes (u, v) ∈ U ×V to u ∈ U and takes
x ∈ X to (x, y) ∈ X × Y , where y is an arbitrarily chosen element of Y .
We shall come back on the connection between non-deterministic automata, the interpretation

of the (Weak) and (Contr) rules and IMELL in §7.3.

Example 7.2.5. Proposition 7.2.1 actually holds for any extension of the deduction system of
Fig. 7.1 with realizable rules, that is with rules

A ` B

such that there is a winning P-strategy in A −( B. In particular:

(i) We can extend the system with the following generalization of (7.5):

A1 , . . . , An ` Ai

We thus get
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A ` A B ` B
A,B ` A⊗B A⊗ B ` A

A,B ` A
A ` B( A

So there is a winning P-strategy on

A −( (B( A)

and by Prop. 7.1.4 we have
L(A) ⊆ L(B( A)

(ii) For B non-deterministic, we can extend the system with the following generalizations
of (7.4):

B ` B ⊗ . . .⊗ B

Continuing Ex. 7.2.4 with B non-deterministic, we thus have

B ` B ⊗ B

...
B,B, (B( A) ` A⊗ B
B ⊗ B, (B( A) ` A⊗ B

B, (B( A) ` A⊗ B

Finally, we note that the monoidal structure together with (7.5) imply that ⊗ indeed imple-
ments a conjunction on automata.

Proposition 7.2.6. Given A,B : Σ, we have L(A⊗ B) = L(A) ∩ L(B).

7.2.2. Falsity and Complementation. We have already seen in §1.4 that usual alternating
automata are equipped with a complementation construction (−)‚ linear in the number of
states. Using the monoidal closed structure a similar construction can be done with uniform
automata, but now with the expected functoriality.

Definition 7.2.7 (Falsity Automaton). For each alphabet Σ, the falsity (non-deterministic)
uniform automaton ‹ over Σ is

‹ := (B , f , D , 1 , ∂‹ , Ω‹)

where Ω‹ := B∗ · tω and where

∂‹(b , _ , d′ , • , d) :=

{
f if b = f and d = d′

t otherwise

Note that in the game Σ ` ‹, O looses as soon as it does not play the same tree direction as
proposed by P. On the other hand, ‹ accepts no tree since in an acceptance game ‹(T ), O can
always play the same d as P.
Thanks to the determinacy of ω-regular games (see e.g. [Tho97, PP04]), we get:

Proposition 7.2.8. Given A : Σ, we have L(A( ‹) = ΣD∗ \ L(A).
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7.2.3. Quantifications. Quantifications in DialZ (and in DialAut) induce quantifications on
uniform automata.

Definition 7.2.9. Given A : Σ× Γ with set of P-moves U and set of O-moves X, let

(∃ΓA : Σ) := (QA , q
ı
A , Γ× U , X , ∂∃ΓA , ΩA)

(∀ΓA : Σ) := (QA , q
ı
A , U

Γ , Γ×X , ∂∀ΓA , ΩA)

where
∂∃ΓA(q, a, (b, u), x, d) := ∂A(q, (a, b), u, x, d)

and ∂∀ΓA(q, a, f, (b, x), d) := ∂A(q, (a, b), f(b), x, d)

Quantifications on automata give an ∃∀-structure which is reminiscent from Gödel’s Dialectica
interpretation (see e.g. [AF98, Koh08]). This has been elaborated in [PR19] for the case of
ω-words (see also §8.2.6 and [Pra19]).

Example 7.2.10. Given A : Σ with set of P-moves U and set of O-moves X, let D be the
deterministic automaton

(D : Σ× U ×X) := (QA, q
ı
A, 1, 1, ∂D, ΩA)

whose transition function

∂D : QA × (Σ× U ×X) −→ D −→ QA

is obtained from ∂A in the obvious way. In DialAutΣ we have A ' ∃U∀XD.

Let us now discuss the connection between quantifications on automata and in DialZ (and
DialAut). First, given (A : Σ× Γ), we have, as objects of DialZ(Σ) (and DialAut(Σ))

(Σ `
∐
Σ,Γ

A) = (Σ ` ∃ΣA) and (Σ `
∏
Σ,Γ

A) = (Σ ` ∀ΣA)

It then follows that the Beck-Chevalley conditions in DialZ (and DialAut) imply∐
Σ,ΓA(M × IdΓ) = M?(

∐
∆,ΓA) = (∃ΓA)(M)∏

Σ,ΓA(M × IdΓ) = M?(
∏

∆,ΓA) = (∀ΓA)(M)

Thanks to the adjunctions
∐
a π? a

∏
in DialZ (and DialAut), we then have

Σ ` (∃ΓA)(M) ( B(N) ' Σ× Γ ` A(M × IdΓ) ( B(N ◦ [πΣ])
Σ ` B(N) ( (∀ΓA)(M) ' Σ× Γ ` B(N ◦ [πΣ]) ( A(M × IdΓ)

(7.6)

It follows that P has winning strategies in

Σ× Γ ` (∀ΓA)[πΣ] −( A and Σ× Γ ` A −( (∃ΓA)[πΣ] (7.7)

We thus get the following corollary to Prop. 6.4.4.

Corollary 7.2.11. Given uniform automata A,B : Σ, the game Σ ` A( B is equivalent to a
regular game on a finite graph. It is therefore decidable whether there exists a winning P-strategy
on Σ ` A( B, and if there exists such a winning P-strategy, then there exists a finite-state one,
which is moreover effectively computable from A and B.
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Proof. Note that P has a winning strategy in Σ ` A ( B iff it has a winning strategy in
1 ` I1 ( ∀Σ(A ( B). But since in that game O can only play • in the component I1, it
is equivalent to the acceptance game of the automaton ∀Σ(A ( B) : 1 on the unique tree
1 : D∗ → 1. Then conclude as in [Tho97, Ex. 6.12], using Büchi-Landweber Theorem [BL69]
(see also [Tho97, Thm. 6.18]).

We also get from (7.7) that existential quantifications are complete in the following sense:

Corollary 7.2.12. Given A : Σ× Γ, we have πΓ(L(A)) ⊆ L(∃ΓA).

The converse inclusion (the correctness of existential quantifications w.r.t. the standard se-
mantics) only holds for non-deterministic automata, and is detailed in §7.3. Dually, it follows
from (7.7) that universal quantifications are correct w.r.t. the standard semantics, but they are
complete only on universal automata (see Def. 7.0.1).

Corollary 7.2.13. Given A : Σ × Γ, if T ∈ L(∀ΓA), then for all Γ-labeled tree T ′ we have
〈T, T ′〉 ∈ L(A).

Remark 7.2.14 (On General Quantifications). For general uniform automata, existential and
universal quantification do not have their expected standard semantics. On the other hand,
their categorical properties (see also §6.4.3) imply that they satisfy the expected logical rules (see
Fig. 7.1 and (7.7)).
While this fact may seem surprising, it actually just indicates that automata are living in a

non-standard logical universe, differing from usual classical logic. As we shall see in Chap. 8
(and elaborate in §8.2.5 for the particular case of ω-words), a sound basis for this logic is provided
by Linear Logic [Gir87].

Example 7.2.15. Continuing Ex. 7.2.5, we can extend the deduction system with the rule

L(A : 1) 6= ∅
` A

This rule actually subsumes Ex. 7.2.5. Indeed, following the same reasoning as for Cor. 7.2.11,
assuming that

Σ ; A1 ⊗ · · · ⊗ An ` B

is realizable we get (leaving implicit some structural and cut rules)

L(∀Σ(A1 ⊗ · · · ⊗ An( B)) 6= ∅
1 ; ` ∀Σ(A1 ⊗ · · · ⊗ An( B)

Σ ; ` A1 ⊗ · · · ⊗ An( B
Σ ; A1 ⊗ · · · ⊗ An ` B

Σ ; A1, . . . ,An ` B

7.3. Non-Deterministic Automata

The key property of non-deterministic automata is that the monoidal product becomes Cartesian
when restricted to these. We refer to [Rib18] for details, and just sketch here the main facts.
Consider a substituted acceptance game N (L) with N non-deterministic and with set of P-

moves U . Hence, the underlying DialZ(Σ)-object of N (L) is of the form (U, I) with I ' 1, and
thus are commutative comonoids. This means that we have canonical realizers for

N (L) −( N (L)⊗N (L) and N (L) −( I (7.8)
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which, thanks to well-known results (see e.g. [Mel09, Cor. 18, §6.5]), implies that the monoidal
structure of uniform automata is Cartesian on non-deterministic automata.
Let us now sketch some consequences of this.

7.3.1. Deduction Rules for Non-Deterministic Automata. Similarly as with usual (total)
non-deterministic automata (see §4.4), the Cartesian structure on non-deterministic automata
is the reason why we could take, in the deduction system of Fig. 7.1, the following the structural
weakening and contraction rules:

(WeakND)
M ; A , B ` C

M ; A , N , B ` C
M ; A , N , N , B ` C
M ; A , N , B ` C

(ContrND) (7.9)

where N is required to be non-deterministic (while A, B and C can be arbitrary).

7.3.2. Existential Quantifications and Extraction. An other nice consequence of the Carte-
sian structure on non-deterministic automata is the fact that existential quantifications behave
similarly as the usual sum types of Type Theory (see e.g. [Jac01, Chap. 10]). Consider a non-
deterministic automaton N : Σ×Γ with set of P-moves U , and let T be a Σ-labeled tree (so that
T : D∗ → Σ). It directly follows from Prop. 6.2.2 that a winning P-strategy in 1 ` I( (∃ΓA)(Ṫ )
is given by a function ⋃

n∈N

Dn −→ Γ× U

hence by a pair of functions(⋃
n∈N

Dn −→ Γ

)
×

(⋃
n∈N

Dn −→ U

)

and therefore by a tree T ′ : D∗ → Γ together with a winning P-strategy in 1 ` I ( A〈Ṫ , Ṫ ′〉.
We thus have shown

Proposition 7.3.1. Given a non-deterministic automaton N : Σ × Γ, a winning P-strategy
σ : 1( ∃ΣN is of the form σ = 〈T, τ〉 where T is a Σ-labeled tree and τ is a winning P-strategy
in 1( N (T ) (so in particular T ∈ L(N )).

In particular, we get the following fact, which completes Cor. 7.2.12 and mirrors the well-
known situation with usual non-deterministic automata.

Corollary 7.3.2. If N : Σ× Γ is non-deterministic then L(∃ΓN ) = πΓ(L(N )).

Moreover, it follows from Prop. 7.3.1 that our computational interpretation makes it possible
to effectively extract witnesses from (interpretations of) proofs, in the sense of §1.6 and §1.7. Let
N : Σ be non-deterministic with set of P-moves U , and consider a derivation D of the sequent

1 ; ` ∃ΣN

using the rules of Fig. 7.1. Ex. 7.2.5. Then adequacy (Prop. 7.2.1) gives a strategy

σ : I −( ∃ΣN

(effectively computed by induction on D), and which by Prop. 7.3.1 is of the form

〈T, τ〉 :
⋃
n∈N Dn −→ Σ× U

where τ : I −( N (T )
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7.3.3. Effective Realizers from Witnesses of Non-Emptiness. Similarly as with usual non-
deterministic automata (see e.g. [Tho97]), thanks to the Büchi-Landweber Theorem [BL69],
Cor. 7.3.2 implies the decidability of emptiness for non-deterministic automata as well as the
Rabin Basis Theorem [Rab72], stating that if L(N ) 6= ∅, then its contains a regular tree T and
a finite state winning P-strategy on N (T ) (both effectively definable from N ).

Corollary 7.3.3. Given a non-deterministic automaton N : Σ, one can decide whether L(N )
is empty. Moreover, if L(N ) 6= ∅ then one can effectively build from N a regular tree T ∈ L(N )
together with a finite state winning P-strategy on I( N (T ).

More generally, strategies witnessing (non-)emptiness obtained via Cor. 7.3.2 can be lifted
to winning strategies in games of the form A ( B‹, for A and B non-deterministic. In the
setting of Ex. 7.2.15, if L(A) ∩ L(B) = ∅, then an O-strategy witnessing L(A ⊗ B) = ∅, which
corresponds via Prop. 7.2.81 to a P-strategy witnessing 1 ∈ L((∃Σ(A ⊗ B))‹), can be lifted to
a winning P-strategy in A ( B‹. Indeed, from L((∃Σ(A ⊗ B))‹) 6= ∅, we can derive (again
leaving implicit some structural and (Cut) rules):

L
(
∃Σ(A⊗ B)( ‹) 6= ∅

1 ; ` ∃Σ(A⊗ B)( ‹
1 ; ∃Σ(A⊗ B) ` ‹

Σ ; A⊗ B ` ‹
Σ ; A , B ` ‹
Σ ; A ` B‹

from which Adequacy (Prop. 7.2.1) gives a (finite-state) realizer of A( B‹.

Proposition 7.3.4. Given non-deterministic A,B : Σ, if L(A) ∩ L(B) = ∅, then there are
winning P-strategies in A⊗ B( ‹ and A( B‹. Moreover, these P-strategies can be assumed
to be finite state and can be effectively obtained from A and B.

Proposition 7.3.4, together with Ex. 7.2.5.(ii), implies the following extension of Ex. 7.2.5.(i).

Corollary 7.3.5. If A,B : Σ are non-deterministic and such that L(A) ∩ L(B) = ∅, then
L(A) ⊆ L(B( A) ⊆ L(B‹).

7.4. Simulation and the Exponential Modality of IMELL

Recall that similarly as in the usual setting, uniform automata have linear complements (§7.2.2),
and that non-deterministic automata have correct existential quantifications (§7.3.2). On the
other hand, we mentioned in §1.4 that in the usual setting, the Simulation Theorem [MS87,
EJ91, MS95] (see also §2.2) says that each alternating automaton A can be simulated by a
non-deterministic automaton !A (of exponential size) with L(!A) = L(A).
One can show that in our setting, an easy adaptation of the construction used in [Wal02] gives

a similar simulation operation !(−), taking a uniform automaton A : Σ to a non-deterministic
automaton !A : Σ with L(!A) = L(A), thus completing the picture (1.5) of §1.5 for our notion

1More precisely, this is direction (⇐) in the proof of Prop. 7.2.8.
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of uniform automata:

Non-Deterministic
Uniform Automata

Uniform
Automata

!(−)

∃(−)
‹
(−)⊗ (−) (−)‹(−)⊗ (−)

(7.10)

Moreover, we can show that the operation !(−) satisfies the deduction rules of the exponential
modality !(−) of IMELL:

M ; !A ` A
M ; !A ` !A

M ; A, B ` A
M ; A, !B ` A

M ; A, ` A
M ; A, !B ` A

M ; A, !B, !B ` A
M ; A, !B ` A

(7.11)

It follows that the exponential ! makes it possible to define, using Girard’s decomposition, an
intuitionistic implication (−)→ (−) as A → B := !A( B.
We shall not detail the construction of !(−) nor its correctness proofs, for which we refer

to [Rib18], and rather only make couple of remarks on these. First, for a uniform automaton

A = (QA, q
ı
A, U, X, ∂A, ΩA)

the exponential automaton !A has shape

!A = (Q!A, q
ı
!A, U

QA , 1, ∂!A, Ω!A)

A simple but important observation (to our knowledge due to [MS95] for usual alternating
automata) is that !A is deterministic whenever A is a universal automaton (i.e. with U ' 1).
We elaborate on this in the case of ω-words (§7.5).
The rules (7.11) are an obvious adaptation to our context of the rules displayed in (4.16)

and (4.17) of §4.5. Since !A is non-deterministic, adequacy of the weakening and contraction
rules

M ; A1, . . . , An ` A
M ; A1, . . . , An, !B ` A

M ; A1, . . . , An, !B, !B ` A
M ; A1, . . . , An, !B ` A

directly follow from the rules (WeakND) and (ContrND) displayed in (7.9). The rule

(Dereliction)
M ; A1, . . . , An, B ` A
M ; A1, . . . , An, !B ` A

follows from the existence of “co-unit” maps !A( A, which, when A is in state qA, simply take
an O move f ∈ UQA to the P move f(qA) ∈ U . The difficult rule is

(Promotion)
M ; !A1, . . . , !An ` A
M ; !A1, . . . , !An ` !A

We have seen in §7.3 above that the symmetric monoidal structure of DialAutΣ is Cartesian on
non-deterministic automata, in other words that non-deterministic automata have a canonical
comonoid structure (7.8). It follows that similarly as with usual IMELL-exponentials (see §4.5
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but also [Mel09]), the simulation operation !(−) adds to an arbitrary automaton A the structure
allowing !A to be equipped with canonical maps:

!A −( !A⊗ !A and !A −( I

On the other hand, recall from §7.2.1 that for a uniform automaton A with set of O-moves X,
realizers of

A −( A⊗A

may not exist because O can play two different (x, x′) ∈ X ×X in the right component A⊗A,
that P may not be able to merge into a single x′′ ∈ X in the left component A.
Usual solutions to this merging problem for IMELL-exponentials (see e.g. [Mel09, AC98,

Mel04]) amount to equip objects of the form !A with some duplication and memory abilities,
essentially allowing !A to run several copies of A. However (and this is via (1.4) §1.4, the crux
of Rabin’s Theorem [Rab69]), such recipes cannot (at least in an obvious way) be applied to au-
tomata on infinite trees, because !A must be a finite-state automaton, while plays in acceptance
games (which are infinite) would require an infinite memory.
Phrased in modern terms, the solution is given by the existence of positional winning strategies

in parity games (see §2.2). In our case, we resort on a notion of positionality for game graphs
similar to those of [Rib15] (see also Rem. 2.2.5 and Chap. 5). Thanks to usual operations on
automata, we turn A to an isomorphic parity automaton A† (with possibly more states than
A). As a result, all automata in the premise of the rule are equipped with parity conditions.
Since parity conditions are closed under complement, it follows that the game

!A1 ⊗ · · · ⊗ !An −( A†

is equipped with a disjunction of parity conditions, also known as a Rabin condition (see
e.g. [Tho97]). We then rely on the known fact that in Rabin games, if P has a winning strategy,
then P has positional winning strategy [Kla94, KK95, Jut97, Zie98] (this in general also hold
for O only if the Rabin condition is itself equivalent to a parity condition).2 Unfortunately, po-
sitionality is not preserved by composition, and the interpretation of the (Promotion) rule is
not preserved by cut-elimination (in the sense of Rem. 7.2.3).

Remark 7.4.1 (On (Non) Standard Semantics (Continuing Rem. 7.2.14)). In (7.10), we have
only displayed existential quantifications for non-deterministic automata, because as with usual
alternating automata, they are correct (in the sense of Cor. 7.3.2) only on non-deterministic
automata. Similarly, we have not displayed universal quantifications because they are only com-
plete on universal automata (see Def. 7.0.1). Moreover, we displayed linear negations but not
general linear implications, since besides Ex. 7.2.5 and Cor. 7.3.5 we do not know much on their
standard meaning.
On the other hand, these connectives have the expected categorical properties and thus the

deduction rules of Fig. 7.1 hold on general uniform automata. We refer to §8.2.5 for further
comments in the case of ω-words.

We now gather consequences of the rules (7.11), thus extending §7.3.1-7.3.3. First, the rule
(Dereliction) implies that L(!A) ⊆ L(A), while the rule (Promotion) gives the converse
inclusion L(A) ⊆ L(!A). We thus have, as expected:

Corollary 7.4.2. L(A) = L(!A).
2A property analyzed using the notion of split trees in [Zie98] (see also [PP04]). We leave for further work to
give logical account of this notion.
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Corollary 7.4.2 gives the extension of Cor. 7.3.3 to general uniform automata.

Corollary 7.4.3. Given a uniform automaton A, one can decide whether L(A) is empty. More-
over, if L(A) 6= ∅ then one can effectively build from A a regular tree T ∈ L(A) together with a
finite state winning P-strategy on 1 ` I( A(Ṫ ).

We also obtain the following lifting property, extending Prop. 7.3.4. Let ?A := (!A‹)‹.

Proposition 7.4.4 (Weak Completeness). Given automata A,B : Σ, if L(A) ⊆ L(B) then there
is an effective winning P-strategy in Σ ` !A( ?B.

Proposition 7.4.4 is a completeness result on realizability w.r.t. language inclusion. It is only
a weak converse to the soundness of realizability w.r.t. language inclusion (Prop. 7.1.4, §7.1.3),
because it imposes constraints on the shape of automata for the implication to be realizable
(while it imposes no constraint on the languages involved as L(A) = L(!A) and L(B) = L(?B)).
Note that since non-determinism is preserved by ⊗, Prop. 7.4.4 can be extended to:

L(A1) ∩ · · · ∩ L(An) ⊆ L(B) =⇒ !A1 ⊗ . . .⊗ !An( ?B is realized.

As an example of use of the exponential rules, we mention a negative translation of the law
of Peirce ((A → B) → A) → A. The law of Peirce gives full classical logic when added to
intuitionistic logic. Recall that A → B := !A( B.

Example 7.4.5. One can derive ((?A → ?B)→ ?A)→ ?A thanks to the exponential rules (see
also Ex. 8.1.3).

7.4.1. Further Examples. Weak Completeness (Prop. 7.4.4), namely that L(A) ⊆ L(B) im-
plies the existence of (finite-state) realizers of !A ( ?B, seems related to a similar universal
property of the guidable automata of [CL08]. Besides, we show in [Rib18, App. C] that the
construction of [CL08] (which is based on the complementation construction of [Tho97, Proof
of Thm. 6.9] rather than on the Simulation Theorem) can be reproduced in our setting, with
the same universal property. Furthermore, we also show in [Rib18, App. C] how this universal
property combined with our linear arrow makes it possible to reproduce the construction used
for the separation property of [SA05, Thm. 2.7].

7.5. Uniform Automata on Infinite Words

We now briefly discuss the (much simpler) case of uniform automata on ω-words, i.e. the case
of D ' 1. We refer to [PR18b, Pra19] for details.
The simple but fundamental phenomenon on ω-words is that when D ' 1, the falsity automa-

ton ‹ of §7.2.2 becomes deterministic, so that linear negation (−)( ‹ turns non-deterministic
automata to universal ones and vice-versa. Further, since !A is deterministic whenever A is
universal, it follows that taking ?A := !(A ( ‹) ( ‹, the automaton ?A is deterministic
whenever A is non-deterministic (a basic observation, to our knowledge due to [MS95]). In par-
ticular, the Simulation Theorem (together with linear complementation) implies McNaughton’s
Determinization Theorem [McN66], and the classes of general automata, non-deterministic, uni-
form and deterministic automata all have the same expressive power.
Moreover, uniform automata on ω-words can be equipped with a multiplicative disjunction

`, defined exactly as ⊗, but with acceptance condition given by a disjunction rather than a
conjunction as in (7.3). In addition, since the class of universal automata is as expressive as
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the other classes of automata on ω-words, the universal quantifier on automata may now be
thought about as providing a real primitive universal quantification at the level of automata.
The situation can be summarized with the following refinement of (7.10) (§7.4, see also (1.5),
§1.5), in which for simplicity we do not display general uniform automata, nor the contravariant
action of( on the polarity of its first argument:

Deterministic
Uniform Automata

Non-Deterministic
Uniform Automata

Universal
Uniform Automata

(−)‹

(−)‹

?(−) !(−)

(−)⊗ (−)

(−) ` (−)

(−)⊗ (−)

(−) ` (−)
∃(−) ∀(−)

(−)⊗ (−)

(−) ` (−)
(−)( (−)

(7.12)
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8. A Curry-Howard Interpretation of a
Linear Variant of MSO

This Chapter presents the logical counterpart of the realizability model of Chap. 7, namely
the logics LMSO and their relations to MSO. In consists of three Sections. We begin in §8.1
with the case of infinite trees. The focus is on the general setting and on general soundness
properties, of the realizability model w.r.t. LMSO, but also of syntactic translations of MSO to
LMSO. Then §8.2 discusses the case of ω-words, which was explored in collaboration with Pierre
Pradic. It turns out that the corresponding linear system has good properties for Church’s Syn-
thesis (see §8.2.2–8.2.4 for a presentation), as well as good completeness properties (in relation
to §3.1.4). We finally come back to infinite trees in §8.3, with a brief discussion of the axiomatic
aspects of MSO(D) (Chap. 3) w.r.t. the realizability model.

8.1. A Linear Monadic Second-Order Logic over Infinite Trees

This Section presents a version of LMSO over infinite trees, which essentially results from the
picture (1.5) (§1.5) of the realizability model:

Non-Deterministic
Uniform Automata

Uniform
Automata

!(−)

∃(−)
‹
(−)⊗ (−) (−)‹(−)⊗ (−)

(8.1)

As we have seen in Chap. 3 that giving a complete axiomatization to MSO over infinite
trees is not yet done in a completely satisfactory way, we shall content ourselves here with
the structural aspects of factorizing the translations of MSO to automata through LMSO. In
particular, we shall depart from the setting of MSO(D) (§3.1) and only consider many-sorted
logics with equality, respectively MSO(T) and LMSO(T). These logics are based on a many-
sorted term language for finite-state T morphisms (§6.5.2) that we present in §8.1.1. Then §8.1.2
presents the logic MSO(T) itself. Its language is based on the logical connectives of MSO given
in §1.2 (which themselves followed a structure suggested by (8.1)). We also give a deduction
system for MSO(T), which is merely many-sorted classical first-order logic with equality, with
the proviso that we adopt sequent with exactly one formula on the right of the `, ultimately
because (as noted in §4.3) there is no multiplicative disjunction (`) on tree automata. LMSO(T)
itself is discussed in §8.1.3–8.1.7. The language of LMSO(T) (§8.1.3) follows the connectives on
uniform automata devised in Chap. 7, and is thus slightly richer than (8.1). Deduction for
LMSO(T) (§8.1.5) is essentially given by the rules for LMSO presented in Fig. 1.1. Perhaps
the most important part of this Section is §8.1.7, which discusses syntactic translations from
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MSO(T) to LMSO(T) based on the usual T and Q translations of classical logic to classical
linear logic [DJS97]. On the other hand, §8.1.4 and §8.1.6 contain mainly bureaucratic material
concerning respectively the interpretation of LMSO formulas and proofs as automata and finite-
state realizers.

8.1.1. A Term Language. Following the approach of [PR18b, PR19] (see also [Pra19]), when
devising proof-relevant translations of MSO to the automata-based realizability model of Chap. 7,
it is convenient to start from a version of MSO with a term language for finite-state T-morphisms.
For inessential technical reasons, we shall restrict to binary alphabets, which are finite non-

empty sets of the form 2p for some p ∈ N, with 1 = 20. Note that binary alphabets are closed
under Cartesian products and set-theoretic function spaces. It follows that taking JoK := 2, we
have a binary alphabet JτK for each simple type τ ∈ ST, where

σ, τ ∈ ST ::= 1 | o | σ × τ | σ → τ

We often write (τ)σ for the type σ → τ .
The idea is simply to have one function symbol for each f.s. T morphism. More precisely,

we have a many-sorted signature, with one sort for each simple type τ ∈ ST, and with one
function symbol of arity (σ1, . . . , σn; τ) for each finite-state morphism Jσ1K× · · · × JσnK→T JτK.
A term t of sort τ (notation tτ ) with free variables among xσ1

1 , . . . , xσnn (we say that t is of arity
(σ1, . . . , σn; τ)) thus induces a finite-state JtK : Jσ1K × · · · × JσnK →T JτK. Given a valuation
xi 7→Mi ∈ JσiKD

∗ ' T[1, JσiK] for i ∈ {1, . . . , n}, we then obtain a labeled D-ary tree

JtK ◦ 〈M1, . . . ,Mn〉 ∈ T[1, JτK] ' JτKD
∗

8.1.2. The Logic MSO(T). The logic MSO(T) is “simply” classical first-order logic on top of
the term language of §8.1.1. While the choice of connectives may seem irrelevant at first sight, it
is actually quite crucial to respect picture (8.1) together with the two interpretations of negation
discussed in §1.5:

(¬ϕ)nd := !(ϕnd ( ⊥) and (¬ϕ)alt := ϕalt ( ⊥ (8.2)

the former living in the world of non-deterministic automata, the latter in that of (alternating)
uniform automata. The moral of (8.1) and (8.2) is that it may be wise to think that we are
living not so far from (first-order) tensorial logic (see e.g. [Mel13] and [Mel17b, §5.6, p. 137]),
and to take the basic connectives proposed in §1.2, namely

ϕ,ψ ::= tτ
.
= uτ | > | ⊥ | ¬ϕ | ϕ ∧ ψ | (∃xτ )ϕ

MSO(T) has an obvious standard interpretation, obtained by letting ∃xτ range over T[1, JτK] '
JτKD∗ , and by interpreting sorted equalities tτ .

= uτ by equality over T[1, JτK] ' JτKD∗ . Given
a formula ϕ(xσ1

1 , . . . , xσnn ) with free variables a displayed and a valuation xi 7→ Mi ∈ JσiKD
∗ '

T[1, JσiK] for i ∈ {1, . . . , n}, we write |= ϕ(M1, . . . ,Mn) when ϕ holds under the standard
interpretation, with xi interpreted by Mi. We let L(ϕ) be the set of all 〈M1, . . . ,Mn〉 ∈
T[1, Jσ1K× · · · × JσnK] such that |= ϕ(M1, . . . ,Mn). In the following, we often confuse T[1, JσK]
with JσKD∗ .
The logic MSO(T) (w.r.t. this standard interpretation) is of course definable in MSO(D) w.r.t.

its standard model (see §3.1.3).
In order for our Curry-Howard approach to make sense, also need a deduction system for

MSO(T). As we have seen in Chap. 3 that giving a complete axiomatization to MSO over
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ϕ ` ϕ
ϕ ` ϕ ψ,ϕ ` ψ

ϕ,ψ ` ψ
ϕ,ϕ, ψ, ψ ` ϕ′

ϕ,ψ, ϕ, ψ ` ϕ′
ϕ ` ψ
ϕ,ϕ ` ψ

ϕ,ϕ, ϕ ` ψ
ϕ,ϕ ` ψ

ϕ ` > ⊥ ` ϕ
ϕ,ϕ ` ⊥
ϕ ` ¬ϕ

ϕ ` ϕ
ϕ,¬ϕ ` ψ

ϕ,ϕ, ψ ` ϕ′

ϕ,ϕ ∧ ψ ` ϕ′
ϕ ` ϕ ψ ` ψ
ϕ,ψ ` ϕ ∧ ψ

ϕ,ϕ ` ψ
ϕ, (∃zτ )ϕ ` ψ

ϕ ` ϕ[tτ/xτ ]

ϕ ` (∃xτ )ϕ

Figure 8.1.: Deduction Rules for MSO(T) (where zτ is fresh).

infinite trees is not yet done in a completely satisfactory way, we shall content ourselves from
the moment with classical deduction for first-order many-sorted logic, augmented with all true
equations between finite-state T-morphisms. We defer to §8.3 a discussion of the basic axioms
of FSO (§3.1.2). The much simpler case of infinite words is addressed in §8.2.

Definition 8.1.1 (Deduction for MSO(T)). Deduction for MSO(T) is given by the rules of
Fig. 8.1 augmented with the following axiom schemes.

• Equality Axioms. Given terms tτ and uτ of the same arity (σ1, . . . , σn; τ):

` tτ
.
= tτ tτ

.
= uτ , ϕ[tτ/xτ ] ` ϕ[uτ/xτ ]

Jtτ K = Juτ K
` tτ

.
= uτ

• Classical Logic. For each formula ϕ:

ϕ, ¬ϕ ` ϕ

ϕ ` ϕ

Note that the rules of Fig. 8.1 involve (intuitionistic) sequents with exactly one formula on
the right of the `. This is because we do not have a multiplicative disjunction on tree automata
(see §4.3-4.4). As a consequence, classical logic is obtained via an additional axiom, which is
actually an instance of the usual Peirce’s Law :(

(ϕ→ ψ)→ ϕ
)
→ ϕ

Elimination of double negation is of course derivable in our system (we leave exchange rules
implicit):

¬ϕ ` ¬ϕ
¬¬ϕ, ¬ϕ ` ϕ

¬¬ϕ ` ϕ

Note also that MSO(T) proves the following equations (thanks to finite products w.r.t. finite-
state T-morphisms):

πi(〈t1, . . . , tn〉)
.
=σi ti and t

.
=σ1×···×σn 〈π1(t), . . . , πn(t)〉 (8.3)

Hence each formula ϕ(aσ1
1 , . . . , aσnn ) can be seen as a formula ϕ(aσ1×···×σn).
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8.1.3. The Language of LMSO(T). For the linear variant LMSO(T) of MSO(T), we consider
connectives exactly mirroring those of Chap. 7 on uniform automata. The formulae of LMSO(T)
are given by the grammar:

ϕ,ψ ::= tτ
.
= uτ | I | ⊥ | ϕ⊗ ψ | ψ( ϕ | !ϕ | (∃xτ )ϕ | (∀xτ )ϕ

Note that we do not impose polarity constraints on existential quantifiers and that we allowed
universal quantifiers as well as general linear implications, so that LMSO(T) should be thought
about has having a non-standard semantics (see Rem. 7.2.14 and Rem. 7.4.1). We elaborate on
this in the case of ω-words in §8.2.5.

8.1.4. Interpretation of LMSO(T) Formulae as Uniform Automata. The connectives of
LMSO(T) exactly correspond to the connectives on uniform tree automata devised in Chap. 7.
In order to interpret formulae as automata, it thus only remains to properly handle free variables.
Consider an LMSO(T) formula ϕ(xσ1

1 , . . . , xσnn ) with free variables as shown. This formula is
interpreted as a uniform automaton A(ϕ)(xσ1

1 , . . . , xσnn ) over the alphabet Jσ1K×· · ·× JσnK. But
note that a formula ϕ with free variables among xσ1

1 , . . . , xσnn as above is also a formula with
free variables among, say, xσ1

1 , . . . , xσnn , yτ11 , . . . , y
τk
k . Hence, the interpretation of ϕ is formally

parametrized with a list of free variables containing all the free variables of ϕ, and with this
convention, the automata A(ϕ)(xσ1

1 , . . . , xσnn ) and A(ϕ)(xσ1
1 , . . . , xσnn , yτ11 , . . . , y

τk
k ) are different

(provided n, k > 0).
The interpretation is by induction on formulae. Consider first the case of the atomic formulae

I and ⊥, with the list of free variables xσ1
1 , . . . , xσnn . We let, as expected

A(I)(xσ1
1 , . . . , xσnn ) :=

(
I : Jσ1K× · · · × JσnK

)
A(⊥)(xσ1

1 , . . . , xσnn ) :=
(‹ : Jσ1K× · · · × JσnK

)
where I and ‹ are the automata of resp. of Ex. 7.0.2.(i) and §7.2.2, taken over the alphabet
Jσ1K× · · · × JσnK.
Consider now the case of an equality tτ

.
= uτ and a list of variables xσ1

1 , . . . , xσnn containing
all the variables of t and u. Then both t and u can be seen as terms of arity (σ1, . . . , σn; τ).
We let A(t

.
= u)(xσ1

1 , . . . , xσnn ) by the (deterministic) automaton over Σ := Jσ1K × · · · × JσnK
which stays in an accepting state as long as JtK(a, p) and JuK(a, p) agree on inputs a ∈ Σk+1 and
p ∈ Dk, and which goes to a rejecting sink state as soon as they differ.
The multiplicative connectives ⊗ and( are interpreted using the corresponding constructions

on uniform automata of §7.2.1, while the exponential !(−) is interpreted with the exponential
construction mentioned in §7.4.
As for quantifications (∃xτ )ϕ and (∀xτ )ϕ, given a list of variables xσ1

1 , . . . , xσnn (in which xτ

is assumed not to occur), we let

A
(
(∃xτ )ϕ

)
(xσ1

1 , . . . , xσnn ) := ∃JτK
(
A(ϕ)(xσ1

1 , . . . , xσnn , xτ )
)

A
(
(∀xτ )ϕ

)
(xσ1

1 , . . . , xσnn ) := ∀JτK
(
A(ϕ)(xσ1

1 , . . . , xσnn , xτ )
)

where ∃JτK(−) and ∀JτK(−) are the operations devised in §7.2.3.
The image in (8.1) of the interpretation of LMSO(T) formulae as automata gives rise to a

polarized fragment of LMSO(T). The deterministic (notation ϕ±, ψ±) and the weakly positive
(notation ϕ+, ψ+) formulae of LMSO(T) are defined as

ϕ±, ψ± ::= I | tτ
.
= uτ

ϕ+, ψ+ ::= ϕ± | ⊥ | ψ±( ϕ+ | ϕ+ ⊗ ψ+ | (∃xτ )ϕ+ | !ϕ
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ϕ ` ϕ
ϕ ` ϕ ψ,ϕ ` ψ

ϕ,ψ ` ψ
ϕ,ϕ, ψ, ψ ` ϕ′

ϕ,ψ, ϕ, ψ ` ϕ′

ϕ,ϕ ` ψ
ϕ, !ϕ ` ψ

!ϕ ` ϕ
!ϕ ` !ϕ

ϕ ` ψ
ϕ, !ϕ ` ψ

ϕ, !ϕ, !ϕ ` ψ
ϕ, !ϕ ` ψ

ϕ,ϕ ` ψ
ϕ ` ϕ( ψ

ϕ ` ϕ ψ,ψ ` ψ′

ϕ,ψ, ϕ( ψ ` ψ′
ϕ,ϕ[tτ/xτ ] ` ψ
ϕ, (∀xτ )ϕ ` ψ

ϕ ` ϕ
ϕ ` (∀zτ )ϕ

ϕ ` I

ϕ,ϕ, ψ ` ϕ′

ϕ,ϕ⊗ ψ ` ϕ′
ϕ ` ϕ ψ ` ψ
ϕ,ψ ` ϕ⊗ ψ

ϕ,ϕ ` ψ
ϕ, (∃zτ )ϕ ` ψ

ϕ ` ϕ[tτ/xτ ]

ϕ ` (∃xτ )ϕ

Figure 8.2.: Deduction Rules for LMSO(T) (where zτ is fresh).

Hence positive formulae are interpreted as non-deterministic automata while deterministic for-
mulae are interpreted as deterministic automata. Note that ⊥ is positive since ‹ is non-
deterministic. We call these polarities weak because in the positive !ϕ we do not ask ϕ to
be positive. This is due to the fact that ‹ is not deterministic, which is unavoidable since
deterministic tree automata are less expressive than non-deterministic ones (see also §7.5).

8.1.5. The Theory LMSO(T). Deduction for LMSO(T) is defined by analogy with deduction
for MSO(T), taking the usual rules for the linear connectives.

Definition 8.1.2 (Deduction for LMSO(T)). Deduction for MSO(T) is given by the rules of
Fig. 8.2 augmented with the following axiom scheme.

• Equality Axioms. Given terms tτ and uτ of the same arity (σ1, . . . , σn; τ):

` tτ
.
= tτ tτ

.
= uτ , ϕ[tτ/xτ ] ` ϕ[uτ/xτ ]

Jtτ K = Juτ K
` tτ

.
= uτ

Note that there is no specific rule for ⊥ (and in particular no Ex Falso rule), so that ⊥ is not
really considered as logical connective. This reflects the specific nature of the automaton ‹,
which is not dual to I.
Similarly as with automata in §7.4, we shall heavily rely on the ?(−) exponential modality

of Linear Logic. In classical settings, ?(−) is a (linear) De Morgan dual of !(−), so that both
are interdefinable. In our intuitionistic setting, while ?(−) can be thought about (and will be
defined) as a primitive connective for automata on ω-words, it is a derived connective in the
case of infinite trees. We let

?ϕ := !(ϕ( ⊥)( ⊥
We insist that the above definition of ?(−) is a mere macro, not intended to reflect the usual clas-
sical duality with !(−). As shown in Fig. 8.3, we can nevertheless derive the usual introduction
rules of ?(−):

ϕ ` ϕ

ϕ ` ?ϕ

!ϕ, ϕ ` ?ψ

!ϕ, ?ϕ ` ?ψ
(8.4)

as well as the usual multiplicative unit law for falsity:

⊥ ` ?ϕ (8.5)
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...
ϕ ` ϕ ⊥ ` ⊥
ϕ, ϕ( ⊥ ` ⊥
ϕ, !(ϕ( ⊥) ` ⊥

ϕ ` ?ϕ

⊥ ` ⊥
⊥, !(ϕ( ⊥) ` ⊥

⊥ ` ?ϕ

...
!ϕ, ϕ ` ?ψ !(ψ( ⊥) ` !(ψ( ⊥)

!ϕ, !(ψ( ⊥), ϕ ` ⊥
!ϕ, !(ψ( ⊥) ` ϕ( ⊥

!ϕ, !(ψ( ⊥) ` !(ϕ( ⊥) ⊥ ` ⊥
!ϕ, !(ϕ( ⊥)( ⊥, !(ψ( ⊥) ` ⊥

!ϕ, ?ϕ ` ?ψ

Figure 8.3.: The Derived Rules (8.4) and (8.5) of the Defined Modality ?(−).

In LMSO(T) we write ψ → ϕ for !ψ( ϕ.

Example 8.1.3 (Peirce’s Law). The negative translation of Peirce’s law ((?ϕ→ ?ψ)→ ?ϕ)→
?ϕ (mentioned in Ex. 7.4.5 in the setting of automata) can be derived as in Fig. 8.4.

8.1.6. Interpretation of LMSO(T) Proofs as Strategies. Thanks to the deduction system
on automata of §7.2, we then get an interpretation of LMSO(T) proofs as strategies, thereby
extending Prop. 7.2.1 to LMSO(T). Again, we must take care of free variables.

Proposition 8.1.4 (Adequacy). Consider an LMSO(T) sequent

ϕ1, . . . , ϕk ` ϕ (8.6)

and a list of variables xσ1
1 , . . . , xσnn containing all the free variables of ϕ1, . . . , ϕk and ϕ. Each

proof of (8.6) induces a finite-state strategy in

A(ϕ1)(xσ1
1 , . . . , xσnn )⊗ . . .⊗A(ϕk)(x

σ1
1 , . . . , xσnn ) −(DialAut(Jσ1K×···×JσnK) A(ϕ)(xσ1

1 , . . . , xσnn )

8.1.7. Translations of MSO(T) to LMSO(T). There are different possible approaches when
devising translations of MSO(T) formulae to LMSO(T) formulae. The first (naive) possibility is
to factorize translations of MSO(T) to automata via LMSO(T). This leads in particular to the
translations (−)nd and (−)alt considered in §1.5

>nd := I >alt := I
⊥nd := ⊥ ⊥alt := ⊥
(tτ

.
= uτ )nd := tτ

.
= uτ (tτ

.
= uτ )alt := tτ

.
= uτ

(¬ϕ)nd := !(ϕnd ( ⊥) (¬ϕ)alt := ϕalt ( ⊥
(ϕ ∧ ψ)nd := ϕnd ⊗ ψnd (ϕ ∧ ψ)alt := ϕalt ⊗ ψalt

((∃xτ )ϕ)nd := (∃xτ )ϕnd ((∃xτ )ϕ)alt := (∃xτ )!ϕalt

We now have all the material we need to properly state Prop. 1.5.1, the correctness of (−)nd

and (−)alt. We state the result in the setting of MSO(T) and LMSO(T).
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!(?ϕ→ ?ψ)( ?ϕ ` !(?ϕ→ ?ψ)( ?ϕ

!((?ϕ→ ?ψ)→ ?ϕ) ` !(?ϕ→ ?ψ)( ?ϕ

!(ϕ( ⊥), ?ϕ ` ⊥
!(ϕ( ⊥), !?ϕ ` ⊥

!(ϕ( ⊥), !?ϕ, !(ψ( ⊥) ` ⊥
!(ϕ( ⊥), !?ϕ ` ?ψ

!(ϕ( ⊥) ` ?ϕ→ ?ψ

!(ϕ( ⊥) ` !(?ϕ→ ?ψ)

!((?ϕ→ ?ψ)→ ?ϕ), !(ϕ( ⊥) ` ?ϕ !(ϕ( ⊥), ?ϕ ` ⊥
!((?ϕ→ ?ψ)→ ?ϕ), !(ϕ( ⊥), !(ϕ( ⊥) ` ⊥

!((?ϕ→ ?ψ)→ ?ϕ), !(ϕ( ⊥) ` ⊥
!((?ϕ→ ?ψ)→ ?ϕ) ` ?ϕ

` ((?ϕ→ ?ψ)→ ?ϕ)→ ?ϕ

Figure 8.4.: A Proof of a Negative Translation of Peirce’s Law.

Proposition 8.1.5 (Prop. 1.5.1). Consider a closed MSO(T) formulae ϕ, and let (−)trans be
either (−)nd or (−)alt. Then ϕ is true (in the standard model) if and only if A(ϕtrans) accepts
the unique 1-labeled tree.

We now briefly discuss (−)nd and (−)alt. Let us begin with (−)nd. First, looking in details at
possible implementations of !(−) (e.g. following [Wal02, Rib18]), for A non-deterministic, !A is
equivalent to A, in the sense that the (Dereliction) counit map !A( A has a right inverse
(so that A is a retract of !A in the sense of [Bor94, Def. 1.7.3]). As a consequence, in terms of
realizability one might instead of (−)nd consider the following translation:

>v := !I
⊥v := !⊥
(tτ

.
= uτ )v := !(tτ

.
= uτ )

(¬ϕ)v := !(ϕv ( ⊥)
(ϕ ∧ ψ)v := !(ϕv ⊗ ψv)
((∃xτ )ϕ)v := !(∃xτ )ϕv

Hence the non-deterministic translation (−)nd can be seen as a variant of the usual call-by-value
translation of intuitionistic logic to intuitionistic linear logic (see e.g. [LLW08]).1

Let us now turn to (−)alt. First, recall that universal tree automata are strictly less expressive
than non-deterministic ones, so that (with (8.1) and §8.1.4 in mind), one cannot hope for a
real dual of our discussion on (−)nd v.s. (−)v. On the other hand, recall from Chap. 7 that
alternating automata are not final objects in translations from MSO, since non-emptiness checks
have generally to be performed on non-deterministic automata. Hence, the “good” automata
returned by (−)alt could be !ϕalt instead of ϕalt, and one may think of doing this replacement

1 We recall here alternating automata are equipped with a natural notion of additive disjunction (defined
similarly as ⊕ in §4.3) that we skipped from start in DZ for the sake of technical simplicity.
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recursively in the translation. This may lead to

>n := I
⊥n := ⊥
(tτ

.
= uτ )n := tτ

.
= uτ

(¬ϕ)n := !ϕn ( ⊥
(ϕ ∧ ψ)n := !ϕn ⊗ !ψn

((∃xτ )ϕ)n := (∃xτ )!ϕn

which is reminiscent of the usual call-by-name translation of intuitionistic logic to intuitionistic
linear logic (see also Rem. 8.1.7 below).
We shall however adopt neither of these possibilities. Because MSO(T) is intrinsically a

classical logic, we shall instead look for translations of classical logic to intuitionistic linear logic.
Two canonical possibilities are the “call-by-name” (or “negative”) T -translation and the “call-by-
value” (or “positive”) Q-translation of [DJS97] (see also [LR03, LLW08]). These translations are
usually formulated for classical sequents with multiple conclusions and assume in their target
the dualities of full classical logic. On the other hand, when restricting to sequents with a single
conclusion, both T and Q target linear sequents of the form

!(−), . . . , !(−) ` ?(−)

while (in view of §8.1.6) we know from Weak Completeness (Prop. 7.4.4) that linear implications
of the form !(−) ⊗ . . . ⊗ !(−) ( ?(−) are complete for language inclusion w.r.t. our automata
based realizability model. Besides, we have seen in Ex. 8.1.3 that LMSO(T) proves a suitable
?-decorated version of Peirce’s Law. We shall therefore devise suitable adaptations of the usual
T and Q translations.

Definition 8.1.6. The translations (−)T and (−)Q from MSO(T)-formulae to LMSO(T)-formulae
are defined as

ϕT := ?ϕT and ϕQ := !ϕQ

where ϕT and ϕQ are inductively defined as follows:

>T := I
⊥T := ⊥

(t
.
= u)T := (t

.
= u)

(ϕ ∧ ψ)T := !ϕT ⊗ !ψT

(¬ϕ)T := !ϕT ( ?⊥
((∃xτ )ϕ)T := (∃xτ )!ϕT

>Q := I
⊥Q := ⊥

(t
.
= u)Q := (t

.
= u)

(ϕ ∧ ψ)Q := ϕQ ⊗ ψQ
(¬ϕ)Q := ϕQ( ?!⊥

((∃xτ )ϕ)Q := (∃xτ )ϕQ

Note that ϕQ is always (weakly) positive in the sense of §8.1.4. Moreover, both translations are
semantically correct w.r.t. the standard semantic, in the sense that for all MSO(T) formulae ϕ
we have

L(A(ϕT )) = L(ϕ) and L(A(ϕQ)) = L(ϕ)

Remark 8.1.7. The translation (−)T is an adaptation of the usual T -translation of [DJS97].
Our version differs from the usual one in the treatment of conjunctions. The T -translation
usually assumes an additive conjunction & in the linear system and puts

(ϕ ∧ ψ)T := ϕT & ψT

106



!(ϕT ( ⊥), ϕT ` ?⊥
!(ϕT ( ⊥), ?ϕT ` ?⊥
!(ϕT ( ⊥), !ϕT ` ?⊥

!(ϕT ( ⊥) ` !ϕT ( ?⊥
!(ϕT ( ⊥) ` ?(!ϕT ( ?⊥)

!(ϕT ( ⊥) ` !?(!ϕT ( ?⊥)

...
!ϕT , !?(!ϕT ( ?⊥) ` ϕT

!ϕT , !?(!ϕT ( ?⊥), !(ϕT ( ⊥) ` ⊥
!ϕT , !(ϕT ( ⊥), !(ϕT ( ⊥) ` ⊥

!ϕT , !(ϕT ( ⊥) ` ⊥
!ϕT ` ϕT

!(ϕQ( ⊥), !ϕQ ` ⊥
!(ϕQ( ⊥), !ϕQ ` !⊥
!(ϕQ( ⊥), !ϕQ ` ?!⊥

!(ϕQ( ⊥) ` ϕQ( ?!⊥
!(ϕQ( ⊥) ` !(ϕQ( ?!⊥)

...
ϕQ, !(ϕQ( ?!⊥) ` ?ϕQ

ϕQ, !(ϕQ( ?!⊥), !(ϕQ( ⊥) ` ⊥
ϕQ, !(ϕQ( ⊥), !(ϕQ( ⊥) ` ⊥

ϕQ, !(ϕQ( ⊥) ` ⊥
ϕQ ` ?ϕQ

Figure 8.5.: The (−)T and (−)Q Translations of a Rule for Classical Logic (Ex. 8.1.8).

In presence of the usual isomorphism

!(ϕ& ψ) ' !ϕ⊗ !ψ

our version amounts to
(ϕ ∧ ψ)T ' !(ϕT & ψT )

The (−)T and (−)Q translations target linear sequents of the form

!ϕT1 , . . . , !ϕTn ` ϕT and ϕQ1 , . . . , ϕ
Q
n ` ?ϕQ

that is
!?(ϕ1)T , . . . , !?(ϕn)T ` ?ϕT and !(ϕ1)Q, . . . , !(ϕn)Q ` ?!ϕQ

Example 8.1.8. We can derive the (−)T and (−)Q translations of the rule for classical logic

ϕ, ¬ϕ ` ϕ

ϕ ` ϕ

The derivations are given on Fig. 8.5.

The soundness of the translations is then obtained as usual.

Proposition 8.1.9 (Soundness of (−)T and (−)Q). If

ϕ1, . . . , ϕn `MSO(T) ϕ

then
!ϕT1 , . . . , !ϕTn `LMSO(T) ϕT and ϕQ1 , . . . , ϕ

Q
n `LMSO(T) ?ϕQ

107



Proof. The proof is as usual by induction on derivations, using (8.5) for the Ex Falso rule and
Ex. 8.1.8 for the rule for classical logic. The rules for negation of MSO(T) are particular cases
of the usual left rule (combined with Ex Falso) and right rule for implication, and are handled
as such. We only explicate the unusual remaining cases, namely the equality rules and the cases
of (ϕ ∧ ψ)T . We use (8.4).

• Equality Rules.

` tτ
.
= tτ

Jtτ K = Juτ K
` tτ

.
= uτ tτ

.
= uτ , ϕ[tτ/xτ ] ` ϕ[uτ/xτ ]

The first two rules are immediate in the case of both (−)T and (−)Q. The substitutivity
rule is trivial for (−)Q. In the case of (−)T , the result follows from

t
.
= u, ?ϕT [t/x] ` ?ϕT [u/x]

t
.
= u, !?ϕT [t/x] ` ?ϕT [u/x]

?(t
.
= u), !?ϕT [t/x] ` ?ϕT [u/x]

!?(t
.
= u), !?ϕT [t/x] ` ?ϕT [u/x]

• (−)T -Translation of the Left ∧-Rule:

ϕ, ϕ0, ϕ1 ` ψ

ϕ, ϕ0 ∧ ϕ1 ` ψ

The result follows from

...
!?ϕT , !?(ϕ0)T , !?(ϕ1)T ` ?ψT

!?ϕT , !?(ϕ0)T ⊗ !?(ϕ1)T ` ?ψT

!?ϕT , ?(!?(ϕ0)T ⊗ !?(ϕ1)T ) ` ?ψT

!?ϕT , !?(!?(ϕ0)T ⊗ !?(ϕ1)T ) ` ?ψT

• (−)T -Translation of the Right ∧-Rule

ϕ ` ϕ ψ ` ψ

ϕ, ψ ` ϕ ∧ ψ

The result follows from

...
!?ϕT ` ?ϕT
!?ϕT ` !?ϕT

...
!?ψT ` ?ψT

!?ψT ` !?ψT

!?ϕT , !?ψT ` !?ϕT ⊗ !?ψT

!?ϕT , !?ψT ` ?(!?ϕT ⊗ !?ψT )
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8.2. The Case of Infinite Words

This Section essentially concerns the specialization of §8.1 to the case of ω-words. If we step
back to the realizability model defined in Chap. 7, we might recall from §7.5 that when D = 1,
picture (8.1) can be refined to (7.12), in which the exponential modality ?(−) amounts to
McNaughton’s Determinization Theorem [McN66] (Thm. 2.1.2):

Deterministic
Uniform Automata

Non-Deterministic
Uniform Automata

Universal
Uniform Automata

(−)‹

(−)‹

?(−) !(−)

(−)⊗ (−)

(−) ` (−)

!(−)

∃(−)

(−)⊗ (−)

(−) ` (−)

?(−)

∀(−)

(−)⊗ (−)

(−) ` (−)
(−)( (−)

(8.7)

In particular, the classes of deterministic, non-deterministic and universal automata all have the
same expressive power, and as we shall see below, we can factor translations of MSO to automata
in a system which obeys a strong polarity policy. A important consequence of this is that we can
devise a version of LMSO in which exponentials are restricted to the polarities depicted in (8.7).
But now recall from §7.4 that for an automaton A with set of P moves U , the automaton !A
has set of P moves UQA . Hence, if in (8.7) the modality !(−) is interpreted as the identity
on non-deterministic automata (and dualy for ?(−)), we can avoid the states of automata to
appear in the moves of realizers. In other words, realizers can then be extracted from proofs
without any concrete appeal to McNaughton’s Theorem. Building on Siefkes Theorem [Sie70]
(the complete axiomatization of MSO on ω-words, see §3.1.4), it follows that we can give a
“Safraless” approach to Church’s Synthesis.
This Section is organized as follows. We first define in §8.2.1 the logic MSO(M), a version

of “MSO(T) on ω-words” but with slight modifications essentially motivated by (8.7). Then,
§8.2.2–8.2.4 are devoted Church’s Synthesis. Church’s Synthesis problem is stated in §8.2.2,
while §8.2.2 presents the historical solution based on the Büchi-Landweber Theorem [BL69]
(Thm. 2.4.1), that we reformulate in the setting of MSO(M), and §8.2.4 presents by now well-
established alternative approaches to Church’s Synthesis. We then present in §8.2.5 the system
LMSO(M), the linear counterpart of MSO(M), and recapitulates its main properties in terms of
extraction of realizers from proofs. Finally, §8.2.6 is concerned with completeness. We first briefly
discuss a system MSO(M)ω, which is essentially the union of MSO(M) and MSOω (§3.1.4), as
well as its linear counterpart LMSO(M)ω. In this setting Siefkes’s Theorem has two important
consequences. The first one is that LMSO(M)ω is complete w.r.t. Church’s Synthesis. The
second one is the fact that thanks to an adaptation of a usual linear variant [dP87] of Gödel’s
“Dialectica” functional interpretation (see e.g. [AF98, Koh08]), one can show that LMSO(M)ω
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is actually a complete theory, in the sense that for all closed formula ϕ, it either proves ϕ or
ϕ( ⊥ (a result which by now relies on the restriction of LMSO(M) to polarized exponentials).
The material presented in this Section is detailed in [PR18b, PR19, Pra19], and we shall only

outline these developments.

8.2.1. The Logic MSO(M). When specializing the base category T (Def. 4.2.1, §4.2) to ω-
words (i.e. when D ' 1), we obtain the category S of alphabets and causal functions (§2.3). As
a consequence, finite-state T morphisms (§6.5.2) are now finite-state causal “Mealy” functions,
i.e. morphisms of the category M (§2.3). We assume a corresponding term language, obtained
from the obvious modifications to §8.1.1.
We may have called MSO(M) the corresponding version of MSO(T). Actually, following §7.5

and [PR18b, PR19], it makes sense to also assume implication →, disjunction ∨ and universal
quantifications (∀xτ ) as primitive connectives of MSO(M). We thus officially take the following
formulae for MSO(M):

ϕ,ψ ::= tτ
.
= uτ | > | ⊥ | ϕ ∧ ψ | ψ → ϕ | ϕ ∨ ψ | (∃xτ )ϕ | (∀xτ )ϕ

Similarly as for MSO(T) v.s. MSO(D), the logic MSO(M) is definable in MSOω w.r.t. its
standard model (see §3.1.4). We briefly discuss this point in §8.2.6 below.

Notation 8.2.1. From now on, we shall assume that MSO(M) is equipped with a notion of
quantification over individuals (i.e. positions in ω-words, aka natural numbers), denoted ∀xι
and ∃xι. As usual with automata (see e.g. [Tho97, Wal02]), individuals are actually singleton
predicates, i.e. streams B ∈ 2ω ' P(N) which happen to be characteristic maps of singletons
subsets of N.
There are different ways of representing such individuals in MSO(M). One possibility (that we

followed in [PR18b, PR19] for technical reasons), is to assume a specific atomic predicate N(xo)
such that N(B) holds iff B ∈ 2ω ' P(N) is a singleton. An other possibility is to note that set
containment xo ⊆ yo is definable in MSO(M) as an atomic formula of the form Incl(xo, yo)

.
= 0ω,

and then (following e.g. [Wal02]) to represent singletons sets as those non-empty sets which have
no non-empty proper subsets.
We similarly assume available a membership predicate xo ∈̇ yo where xo is intended to be

relativized to individuals, and may write x(k) for k ∈̇ x.

8.2.2. Church’s Synthesis. Church’s synthesis [Chu57] consists in the automatic extraction of
Mealy machines from input-output specifications, typically presented as MSO(M) sentences of
the form

(∀xσ)(∃yτ )ϕ(x; y) (8.8)

A specification as in (8.8) is realized in the sense of Church’s Synthesis by a (finite-state) causal
F : JσK→M JτK when ϕ(B,F (B)) holds for all B ∈ JσKω.

Example 8.2.2. As a typical specification, consider, for a machine which outputs streams C ∈
2ω from input streams B ∈ 2ω, the behavior (from [Tho08]) expressed by

Φ(B,C)
def.⇐⇒


∀nι(n ∈̇ C → n ∈̇ B)

∧ ∀nι(n ∈̇ C → n+ 1 6∈̇ C)
∧ (∃∞n)(n ∈̇ B) → (∃∞n)(n ∈̇ C)

In words, the relation Φ(B,C) imposes C ∈ 2ω ' P(N) not to contain n whenever B does not
contain n, C not to contain two consecutive positions, and moreover C to be infinite whenever
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so is B. It is easy to see that this specification is realized in the sense of Church’s Synthesis by
the finite-state causal function of Ex. 2.3.1.(c) (see also Ex. 6.5.3, §6.5.1), that we repeat here:

F (B)(n) =

{
0 if n = 0 or F (B)(n− 1) = 1
B(n) otherwise

It is important to note here that there are true MSO(M) sentences of the form (8.8) which
can be realized by no continuous (and hence no computable) stream functions. For instance,
take ϕ(xo; yo) to hold if either y = 0ω and x is empty or if y = 1ω and x is non-empty. Hence,
we can see Church’s Synthesis as a decision problem for a form of constructivity in MSO. This
is made technically precise in §8.2.5 and §8.2.6 thanks to linear logic.

8.2.3. Büchi-Landweber Theorem. Traditional solutions to Church’s synthesis turn specifi-
cations to infinite two-player games with ω-regular winning conditions (see e.g. [Tho08, Fin16]).
Consider an MSO(M) formula ϕ(uτ , xσ) with no free variable other than u, x. We see this for-
mula as defining a full positive game G(ϕ)(uτ , xσ) with P moves u ∈ JτK and O moves x ∈ JσK.
Hence P begins, and then the two players alternate, producing an infinite play of the form

χ := u0x0 · · · unxn · · · ' ((uk)k, (xk)k) ∈ JτKω × JσKω

The play χ is winning for P if ϕ((uk)k, (x)k) holds. Otherwise χ is winning for O. Similarly as
in §2.3, strategies for P resp. O in this game are functions

JσK∗ −→ JτK resp. JτK+ −→ JσK ' JτK∗ −→ JσKJτK

and finite-state strategies are represented by f.s. eager functions. In particular, a realizer of
(∀xσ)(∃uτ )ϕ(u, x) in the sense of Church is a f.s. P-strategy in

G
(
ϕ((u)x, x)

)(
u(τ)σ, xσ

)
Most approaches to Church’s synthesis reduce to Büchi-Landweber Theorem [BL69] (see

Thm. 2.4.1). In the context of this Section, we consider the Büchi-Landweber Theorem in
following form. Note that an O-strategy in the game G(ϕ)(uτ , xσ) is a P-strategy in the game
G
(
¬ϕ(u, (x)u)

)(
x(σ)τ , uτ

)
.

Theorem 8.2.3 ([BL69]). Let ϕ(uτ , xσ) be an MSO(M)-formula with only u, x free. Then either
there is an eager term u(x) of arity (σ; τ) such that |= (∀x)ϕ(u(x), x) or there is an eager term
x(u) of arity (τ ; (σ)τ) such that |= (∀u)¬ϕ(u, ev(x)(u)). It is decidable which case holds and the
terms are computable from ϕ.

8.2.4. Some Other Approaches to Church’s Synthesis. An other general solution to Church’s
Synthesis for MSO(M) goes via infinite trees [Rab72] (see also [KPV06]), noting that an eager
causal function from say JσK to JτK can be represented by an infinite JτK-labeled JσK-ary tree.
However, the historical approaches to these solutions (either directly using Büchi-Landweber

or going via MSO on infinite trees) do not directly lead to applicable algorithms. The reason
is that in both cases, one relies on McNaughton’s Determinization Theorem [McN66]. The
best known (and possible) constructions for McNaughton’s Theorem (such as Safra’s trees, see
e.g. [GTW02]) give deterministic Muller automata with 2O(n log(n)) states from non-deterministic
Büchi automata (NBA) with n states. This is actually the same asymptotic complexity as
for Büchi’s Theorem [Büc62] (see e.g. [Tho97]), but while the latter is amenable to tractable
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implementations (see e.g. [FL12]), this is to our knowledge not yet the case for McNaughton’s
Theorem (see e.g. [KPV06, FJR11, BJP+12, Fin16]). Also, the states of automata obtained from
McNaughton’s Theorem have a complex structure, making it difficult to implement subsequent
algorithms (e.g. game solving). These difficulties are worsened by the theoretical complexity of
translating MSO formulae to automata, which is known to be non-elementary (see e.g. [GTW02]).
A well studied particular case of Church synthesis starts from formulae of LTL, a modal

logic corresponding to an expressive first-order fragment of MSO. The translation of LTL-
formulae to NBA’s is exponential (see e.g. [BK08]), and Church’s synthesis for LTL is known to
be 2EXPTIME complete [Ros92].
Several approaches (coined “Safraless”) considered synthesis procedures which avoid Mc-

Naughton’s Theorem. First, let us mention [BJP+12], who reduces synthesis for a fragment
of LTL (including past formulae) to solving so-called GR(1) conditions, which are of the form:∧

1≤i≤n
∃∞k.Ai(y(k)) −→

∧
1≤j≤m

∃∞k.Gj(z(k)) (8.9)

where each Ai (resp. Gj) is a propositional formula with p (resp. q) variables, representing a
subset of Σ (resp. Γ). It is shown in [BJP+12] that conditions of the form (8.9) can be solved
in time O(nm(2p+q)2).
An other trend of Safraless approaches is to use upper bounds on the size of automata provided

by McNaughton’s Theorem in order to bound the search space for finite-state realizers. Such
approaches were pioneered by [KV05, KPV06] using tree automata, and have been developed
for automata on ω-words e.g.in [FJR11].
The idea of [KV05, KPV06, FJR11] is to reduce specifications to formal duals of NBA’s,

namely universal automata equipped with a co-Büchi acceptance condition (i.e. specifying a set
of states which should not be visited infinitely often in an accepting run), that we call UCAs.
Formally, a UCA U over Σ (notation U : Σ) has the form

U =
(
QU , q

ı
U , 1 , UO , ∂U , FU

)
where UO is the alphabet of O moves and FU ⊆ QU is the set of final states. A run ρ ∈ UωO
is accepting over B ∈ Σω if there are at most finitely many final states in the corresponding
sequence of states (qn)n ∈ QωU . U accepts B ∈ Σω if every run of U is accepting on B. So, as an
MSO(M) formula, acceptance of a UCA U over B ∈ Σω is expressed by a formula of the form

(∀ρUO)(∀∞n)¬F[t(B, ρ)(n)]

We say that a f.s. causal F : Γ →M Σ realizes a UCA U : Γ × Σ if U accepts the each pair
〈B,F (B)〉 for B ∈ Γω.
The method underlying [FJR11] is to translate the negation of a specification into an NBA
B, and then take as UCA the dual of B. In our setting, following §7.5, the universal co-Büchi
U is obtained from a non-deterministic Büchi B by taking as O-moves the set of P-moves of B.
The crucial observation is [FJR11, Thm. 2], that we state as follows in our setting:

Theorem 8.2.4 ([FJR11]). Consider simple types σ, τ and universal co-Büchi automaton U :
JσK× JτK. For each K ≥ 0, consider the following MSO(M)-formula ϕK(xσ; yτ ):

(∀ρUO)
(
∀n ∈̇ {m | m ≥ K}

)
¬F[t(x, y, ρ)(n)] (8.10)

Then every realizer of ϕK(xσ; yτ ) is a realizer of U . Moreover, there is some K exponential in
the size of U such that U is realizable iff ϕK(xσ; yτ ) is realizable.
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The interest of Thm. 8.2.4 is that for fixed K ≥ 0, the formula ϕK(xσ, yτ ) can be turned,
thanks to a simple powerset construction, to a deterministic automaton specifying a safety game,
which is in general much simpler to solve than a parity game.
An other trend of approaches to solving games for Church’s Synthesis goes via “Good-for-

Games” automata [HP06]. We come back on this in Ex. 8.2.10 below.

8.2.5. The Logic LMSO(M). A first possible definition of LMSO(M) could be the direct
adaptation of LMSO(T) to ω-words. In addition, since automata on ω-words are equipped with
a multiplicative disjunction `, we might as well assume this connective in LMSO(M). This
might lead to

ϕ,ψ ::= I | ⊥ | tτ .
= uτ | ϕ( ψ | ϕ⊗ ψ | ϕ` ψ | !ϕ | (∃xτ )ϕ | (∀xτ )ϕ

However, as discussed in §7.5, since the automaton ‹ on ω-words is deterministic, picture (8.1)
can be refined to (8.7). In particular, the classes of deterministic, non-deterministic and universal
automata all have the same expressive power, and as we shall below, we can factor translations
of MSO(T) to automata in a system which obeys a strong polarity policy.
The idea is to have three categories of polarized formulae, namely the positive formulae

(ϕ+, ψ+, . . . ), the negative formulae (ϕ−, ψ−, . . . ) and the deterministic formulae (ϕ±, ψ±, . . . )
corresponding respectively to non-deterministic, uniform and deterministic automata. Moreover,
recall from §7.5 that on non-deterministic automata, the exponential modality ?(−) amounts
to McNaughton’s Determinization Theorem [McN66]. We consider ?(−) as a primitive in this
case (and so replaced the dashed arrow in (7.12) by a solid one in (8.7)). In addition, since !ϕ+

and ?ϕ− are always respectively positive and negative, it makes sense to officially allow these
formulae in our polarized fragment, having in mind the following interpretation:

A(!ϕ+)(x) := A(ϕ+)(x) and A(?ϕ−)(x) := A(ϕ−)(x)

We thus arrive at the following polarized fragment of LMSO(T):

ϕ±, ψ± ::= I | ⊥ | tτ .
= uτ | !(ϕ−) | ?(ϕ+) | ϕ± ⊗ ψ± | ϕ± ` ψ± | ϕ±( ψ±

ϕ+, ψ+ ::= ϕ± | !(ϕ+) | (∃xσ)ϕ+ | ϕ+ ⊗ ψ+ | ϕ+ ` ψ+ | ϕ−( ψ+

ϕ−, ψ− ::= ϕ± | ?(ϕ−) | (∀xσ)ϕ− | ϕ− ⊗ ψ− | ϕ− ` ψ− | ϕ+ ( ψ−

Note that in contrast with the case of infinite trees (§8.1.4) this fragment is “strongly” or hered-
itarily polarized as exponentials are only applied to polarized formulae. Moreover, making the
aforementioned modifications to §8.1.4, as expected:

• if ϕ is positive then the automaton A(ϕ) is non-deterministic,

• if ϕ is negative then the automaton A(ϕ) is universal,

• if ϕ is deterministic then the automaton A(ϕ) is deterministic.

Let us now reconsider the interpretations (−)T and (−)Q in this context. First, we have to
extend Def. 8.1.6 to the language of MSO(M). Following [LLW08] (but keeping our specific
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interpretations of ∧ and ∨), we arrive at

>T := I
⊥T := ⊥

(t
.
= u)T := (t

.
= u)

(ϕ ∧ ψ)T := !ϕT ⊗ !ψT

(ϕ ∨ ψ)T := ϕT ` ψT

(ϕ→ ψ)T := !ϕT ( ψT

((∃xτ )ϕ)T := (∃xτ )!ϕT

((∀xτ )ϕ)T := (∀xτ )ϕT

>Q := I
⊥Q := ⊥

(t
.
= u)Q := (t

.
= u)

(ϕ ∧ ψ)Q := ϕQ ⊗ ψQ
(ϕ ∨ ψ)Q := ?ϕQ ` ?ψQ

(ϕ→ ψ)Q := ϕQ( ?ψQ

((∃xτ )ϕ)Q := (∃xτ )ϕQ

((∀xτ )ϕ)Q := (∀xτ )?ϕQ

where ϕT = ?ϕT and ϕQ = !ϕQ. A crucial observation is that (−)T and (−)Q are now both
polarized:

Proposition 8.2.5. Given an MSO(M) formula ϕ, the LMSO(M) formula ϕT is negative and
the LMSO(M) formula ϕQ is positive.

Proof. A trivial induction on formulae. Note that ϕT and ϕQ can be either deterministic,
positive of negative, while ?ϕT is always negative (or deterministic) and !ϕQ is always positive
(or deterministic).

We thus have a semantically well-behaved polarized fragment of LMSO(M). Following [PR18b,
PR19], we shall actually officially define LMSO(M) as the extension of the polarized fragment
with multiplicative connectives and quantifications:

ϕ,ψ ::= ϕ+ | ϕ− | ϕ( ψ | ϕ⊗ ψ | ϕ` ψ | (∃xτ )ϕ | (∀xτ )ϕ

We insist that we do not allow unpolarized exponentials in LMSO(M). To each LMSO(M)
formula ϕ we associate an MSO(M) formula bϕc obtained by replacing the linear connectives
by their classical counterpart:

bIc := > b⊥c := ⊥ btτ .
= uτc := tτ

.
= uτ

bϕ⊗ ψc := bϕc ∧ bψc bϕ` ψc := bϕc ∨ bψc bψ( ϕc := bψc → bϕc
b!ϕc := bϕc b(∃xτ )ϕc := (∃xτ )bϕc
b?ϕc := bϕc b(∀xτ )ϕc := (∀xτ )bϕc

Polarized LMSO(M) formulae have their expected classical meaning, in the following sense.

Proposition 8.2.6. If ϕ is a polarized formula of LMSO(M), then

L(A(ϕ)) = L(bϕc)

Note that LMSO(M) allow non-standard quantifier alternations, as in

(∀xτ )(∃yσ)ϕ(x; y)

Such unpolarized formulae are particularly relevant in the context of Church’s Synthesis. We
say that an LMSO formula ϕ(xσ) is realizable if there is a winning P-strategy in the game

I −(DialAutJσK A(ϕ)(xσ)

or equivalently if L(A(ϕ)(xσ)) = JσKD∗ .
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Proposition 8.2.7. Given an MSO(M) formula ϕ(xτ ; yσ) (with free variables as shown), the
following are equivalent:

• The Church’s Synthesis problem for (∀xτ )(∃yσ)ϕ(x; y) is realizable.

• The LMSO(M) formula (∀xτ )(∃yσ)!ϕT (x; y) is realizable.

• The LMSO(M) formula (∀xτ )(∃yσ)?ϕQ(x; y) is realizable.

Recall that since MSO(M) has true but unrealizable ∀∃-statements, we cannot deduce any-
thing w.r.t. Church’s Synthesis from the validity of ∀∃-statements of MSO(M). Hence LMSO(M)
allows to speak of realizability for Church’s Synthesis in a much more precise manner than
MSO(M). Besides, the realizability semantics of LMSO(M) is necessarily non-standard, as wit-
nessed by the following.

Example 8.2.8 (Functional Linear Choice ([PR18b])). The following scheme is realizable:

(∀xσ)(∃yτ )ϕ(x, y) −( (∃f (τ)σ)(∀xσ)ϕ(x, (f)x) (LAC)

Note that the formulae of Ex 8.2.8 are not polarized. In particular, the b−c translation of
Ex. 8.2.8 is in general false. The following surprising fact is due to Pierre Pradic.

Example 8.2.9 ([PR18b]). The following scheme is realizable

((ϕ( ⊥)( ⊥) −( ϕ

Example 8.2.10 (Good-for-Games Automata). Good for Games automata were introduced
in [HP06] as a particular class of non-deterministic automata having good compositionality prop-
erties with games. Several equivalent definitions have been introduced then, see e.g. [BL19].
In particular history determinism [Col09] (actually a variation of the notion of guidable au-
tomata [CL08], see also §7.4.1), is the property for a non-deterministic automata that non-
determinism can solved by a causal (and thus f.s. causal) function of the input.
Good-for-Games automata are interesting for Church’s Synthesis because they allow to avoid

McNaughton’s Determinization Theorem when solving games. Besides, Good-for-Games coBüchi
automata are exponentially smaller than their deterministic counterparts [KS15, BL19].
In the case of non-deterministic uniform automata, this property can be expressed within the

language of LMSO(M). Consider a non-deterministic automaton A : JσK with alphabet of P
moves U . Following Ex. 7.2.10, we can represent A as an LMSO(M)-formula (∃uU )δ±(xσ, uU ),
where δ± is deterministic. Then, A is history deterministic if and only if the following LMSO(M)
formula is realizable:

(∀xσ)
(
?(∃uU )δ±(xσ, uU ) −( (∃uU )δ±(xσ, uU )

)
Note that ?(∃u)δ± is deterministic, so that witnesses for (∃uU ) in the conclusion actually only
depend on xσ.

To summarize, LMSO(M) has a semantically well-behaved polarized fragment, surrounded by
a non-standard part with a relevant semantics for Church’s Synthesis. We thus find it interesting
to devise a deduction system for LMSO(M). But this comes with a caveat. LMSO(M) is an
intuitionistic logic (similarly as LMSO(T)), which is nevertheless equipped with a multiplicative
disjunction, together with a primitive ?(−) exponential. Hence we would like deduction for
LMSO(M) to use sequents with multiple conclusions on the right of the `. But for such a
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ϕ ` ϕ
ϕ ` γ, ϕ′ ψ, γ ` ψ′

ϕ,ψ ` ϕ′, ψ′
ϕ,ϕ, ψ, ψ ` ϕ′

ϕ,ψ, ϕ, ψ ` ϕ′
ϕ ` ϕ′, ϕ, ψ, ψ′

ϕ ` ϕ′, ψ, ϕ, ψ′

ϕ ` ψ
ϕ, I ` ψ ` I

ϕ,ϕ0, ϕ1 ` ϕ′

ϕ,ϕ0 ⊗ ϕ1 ` ϕ′
ϕ ` ϕ,ϕ′ ψ ` ψ,ψ′

ϕ,ψ ` ϕ⊗ ψ,ϕ′, ψ′
ϕ,ϕ ` ψ
ϕ ` ϕ( ψ

⊥ `
ϕ ` ψ
ϕ ` ⊥, ψ

ϕ, ϕ ` ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ` ψ ` ϕ′, ψ′
ϕ ` ϕ0, ϕ1, ϕ

′

ϕ ` ϕ0 ` ϕ1, ϕ′
ϕ ` ϕ,ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ( ψ ` ϕ′, ψ′

ϕ,ϕ ` ϕ′

ϕ, (∃zτ )ϕ ` ϕ′
ϕ ` ϕ[tτ/xτ ], ϕ′

ϕ ` (∃xτ )ϕ,ϕ′
ϕ,ϕ[tτ/xτ ] ` ϕ′

ϕ, (∀xτ )ϕ ` ϕ′
ϕ ` ϕ, ?ψ

ϕ ` (∀zτ )ϕ, ?ψ

ψ ` ψ′

ψ, !ϕ ` ψ′
ψ, !ϕ, !ϕ ` ψ′

ψ, !ϕ ` ψ′
ϕ,ϕ ` ϕ′

ϕ, !ϕ ` ϕ′
!ϕ ` ϕ, ?ψ
!ϕ ` !ϕ, ?ψ

ϕ, !ϕ ` ψ, ?ψ
ϕ ` !ϕ( ψ, ?ψ

ψ ` ψ′

ψ ` ?ϕ,ψ
′

ψ ` ?ϕ, ?ϕ,ψ
′

ψ ` ?ϕ,ψ
′

ϕ ` ϕ,ψ
ϕ ` ?ϕ,ψ

!ϕ,ϕ ` ?ψ

!ϕ, ?ϕ ` ?ψ

Figure 8.6.: Deduction Rules for LMSO(M) (where zτ is fresh).

logic to be intuitionistic, one has to restrict the right ( and ∀ rules to sequents with a single
conclusion, while it is known (see e.g. [HdP93, Bie96, BH18]) that this restriction is problematic
w.r.t. cut-elimination. On the other and, we can nevertheless adopt such a system since we dot
not formally rely on cut-elimination for witness extraction as our realizability model already
carries all the computational information we need.
Deduction for LMSO(M) consists of the rules of Fig. 8.6, together with the Equality Axioms

of LMSO(T) (Def. 8.1.2) restricted to the language of LMSO(M). Note that our right rules for
( and ∀ are quite specific:

ϕ,ϕ ` ψ
ϕ ` ϕ( ψ

ϕ, !ϕ ` ψ, ?ψ
ϕ ` !ϕ( ψ, ?ψ

ϕ ` ϕ, ?ψ
ϕ ` (∀zτ )ϕ, ?ψ

Proposition 8.1.9 easily extends, assuming a usual two-sided classical sequent calculus for MSO(M).

Proposition 8.2.11 (Soundness of (−)T and (−)Q). If

ψ1, . . . , ψm `MSO(M) ϕ1, . . . , ϕn

then

!ψT1 , . . . , !ψTm `LMSO(T) ϕT1 , . . . , ϕ
T
n and ψQ1 , . . . , ψ

Q
m `LMSO(T) ?ϕQ1 , . . . , ?ϕQn

Adequacy of realizability (Prop. 8.1.4) is easily adapted from LMSO(T) to LMSO(M).

Proposition 8.2.12 (Adequacy). Consider an LMSO(M) sequent

ψ1, . . . , ψk ` ϕ1, . . . , ϕm (8.11)
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and a list of variables xσ1
1 , . . . , xσnn containing all free the variables of ψ1, . . . , ψk and ϕ1, . . . , ϕm.

Each proof of (8.11) induces a finite-state strategy in

A(ψ1)(xσ1
1 , . . . , xσnn )⊗ . . .⊗A(ψk)(x

σ1
1 , . . . , xσnn ) −(DialAut(Jσ1K×···×JσnK)

A(ϕ1)(xσ1
1 , . . . , xσnn ) ` · · ·`A(ϕm)(xσ1

1 , . . . , xσnn )

(where DialAut is understood with D = 1).

We immediately deduce the expected result on witness extraction.

Corollary 8.2.13 (Extraction). Consider a closed LMSO(M) formula ϕ := (∀xτ )(∃yσ)δ(x, y)
with δ deterministic. From a proof of ϕ in LMSO(M), one can extract a term t(x) such that
|= (∀xτ )bδ(x, t(x))c.

Following Prop. 8.2.7, Cor. 8.2.13 applies to δ := !ψT (xτ , yσ) and to δ := ?ψQ(xτ , yσ) for
ψ an MSO(M) formula. In such cases, the conclusion of Cor. 8.2.13 can be replaced with
|= (∀xτ )ψ(x, t(x)).
An important feature of the restricted exponentials of LMSO(M) is that realizer extraction

in Prop. 8.2.12 (and thus also in Cor. 8.2.13) do not appeal to McNaughton’s Determinization
Theorem.

8.2.6. A Complete Axiomatization of the Realizability Model. While some choices made in
LMSO(M) may seem odd (in part. the absence of unpolarized exponentials), it turns out that
we can completely axiomatize its realizability model, with an axiomatization similar to that of
MSOω (§3.1.4). This result was published in [PR19].
We start from a complete axiomatization of MSO(M), based on the complete axiomatization

MSOω of §3.1.4. As noted in §3.1.1, we see our axiomatizations of MSO as subsystems of second-
order Peano arithmetic, and as such, we shall assume a sort of individuals intended to range
over ω-words positions n ∈ N. As mentioned in Not. 8.2.1, the option we adopted in [PR19]
(and also [PR18b]) is to extend the language of MSO(M) with suitable atomic predicates and
relations. In particular, we define individuals by relativization to an atomic predicate N(xo). We
also extend MSO(M) with the atomic predicates of MSOω (§3.1.4), in which the individuals of
MSOω are replaced by MSO(M) variables of sort o relativized to N, and the monadic predicate
variables of MSOω are replaced by MSO(M) variables of sort o. We shall call MSO(M)ω the
resulting system. MSO(M)ω has in addition other atomic predicates, mainly devised to have
technically smoother translations between the different systems, and is unfortunately not very
elegant. We shall thus not repeat it here and refer to [PR19, §4.1] for its full definition (see
also [PR17, PR18b] for systems in the same spirit).
We are now going to sketch the axioms of MSO(M)ω. The main difference with MSOω is

that we have to handle the term language for f.s. causal functions. To this end, we shall give
a defining axiom for each f.s. causal function. First, thanks to the Cartesian structure on the
term language (8.3), each term tτ can be seen as a tuple of terms of sort o with free variables
also of sort o. Then, we use the fact that for each term to with free variables xo1, . . . , xok, there
is an MSOω formula δt(x,X1, . . . , Xk) such that

to(B1, . . . , Bk)(n) = 1 ⇐⇒ N |= δt(n,B1, . . . , Bk) (for B1, . . . , Bk ∈ 2ω and n ∈ N)

Remark 8.2.14. This is essentially what gives the interpretation of MSO(M) in MSOω (over
their standard models) mentioned in §8.2.1. Again using the Cartesian structure on the term
language (8.3), we reduce each equality tτ

.
= uτ to a conjunction of equalities of the form

to1
.
= uo1 ∧ . . . ∧ ton

.
= uon
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and then turn each of these equalities to a logical equivalence between the corresponding δti and
δui . We refer to the appendices of [PR18b, PR19] for details.

The axioms of MSO(M)ω extend those of MSO(M) with a bunch of axioms similar to the
(adaptation to MSOω of the) axioms of Fig. 3.1 (§3.1.2), together with the following:

• Induction.

ϕ, Z(z) ` ϕ[z/x], ϕ′ ϕ, S(y, z), ϕ[y/x] ` ϕ[z/x], ϕ′

ϕ ` (∀xι)ϕ, ϕ′
(y, z fresh)

• Comprehension.

` (∃yo)(∀xι) (x ∈̇ y ↔ ϕ)
(y fresh)

• Definition of Mealy Machines.

` (∀yo)(∀xι) (x ∈̇ to(y) ↔ δt(x, y))

The formulation of induction in MSO(M)ω is intended to allow for a smoother translation
to the corresponding extension LMSO(M)ω of LMSO(M). We of course have the expected
extension of Siefkes’ Theorem [Sie70] (Thm. 3.1.4, the completeness of MSOω).

Theorem 8.2.15. MSO(M)ω is complete.

In particular, we can now strengthen the statement of Büchi-Landweber Theorem given in
Thm. 8.2.3 as providing provability in MSO(M)ω.
The logic LMSO(M)ω is intended to be to LMSO(M) what MSO(M)ω is to MSO(M). This

implies that there should be translations from MSO(M)ω to LMSO(M)ω. But while the (−)T

and (−)Q translations were perfectly fine with MSO(M) and LMSO(M), this is not longer the
case for MSO(M)ω. The reason is that in the Comprehension scheme of LMSO(M)ω, we will have
(for the adequacy of realizability) to assume that the comprehension formula is deterministic.
As a consequence, we look for variants of (−)T and (−)Q targeting deterministic formulae.
In addition, for the complete axiomatization of the realizability model of LMSO(M), we shall
actually require a translation (−)L such that the following equivalences

?ϕ+ ˛ bϕ+cL δ± ˛ bδ±cL !ψ− ˛ bψ−cL (8.12)

are provable, possibly using extra axioms that we require to be realizable. It is easy to see
that (8.12) implies the following scheme (DEXP):

δ −( !δ and ?δ −( δ (δ deterministic)

and that (−)L should yield deterministic formulae. While (−)T and (−)Q can be adapted accord-
ingly, (8.12) induces axioms which make the resulting translations equivalent to the deterministic
(−)L-translation of [PR18b]:

(tτ
.
= uτ )L := tτ

.
= uτ

>L := I
⊥L := ⊥

(ψ → ϕ)L := ψL( ϕL

(ϕ ∧ ψ)L := ϕL ⊗ ψL
(ϕ ∨ ψ)L := ϕL ` ψL

(∀xσ.ϕ)L := !(∀xσ)ϕL

(∃xσ.ϕ)L := ?(∃xσ)ϕL
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Proposition 8.2.16 ([PR19]). The scheme (8.12) is equivalent in LMSO(M) to (DEXP) +
(PEXP), where (PEXP) are the following polarized exponential axioms, with polarities as shown:

?(ϕ+) −( ?!(ϕ+) !?(ψ−) −( !(ψ−)
!(ϕ−)( ?(ψ+) −( ?(ϕ−( ψ+) ?(ϕ+)( !(ψ−) −( !(ϕ+ ( ψ−)
?(ϕ+)⊗ ?(ψ+) −( ?(ϕ+ ⊗ ψ+) !(ϕ− ⊗ ψ−) −( !(ϕ−)⊗ !(ψ−)
?(ϕ+) ` ?(ψ+) −( ?(ϕ+ ` ψ+) !(ϕ− ` ψ−) −( !(ϕ−) ` !(ψ−)

The soundness of (−)L from MSO(M) to LMSO(M) + (DEXP) is easy to prove. Also, the ax-
ioms (DEXP) and (PEXP) are trivially realized, so that Adequacy (Prop. 8.2.12) and Extraction
(Cor. 8.2.13) extend to LMSO(M) + (DEXP) + (PEXP). Note that the deterministic formula δ
assumed for Extraction can in particular be of the form ψL for ψ an MSO(M) formula.
We can now turn to LMSO(M)ω. We refer to [PR19, §4.2] for details. The language of

LMSO(M)ω is that of LMSO(M) with the same atomic predicates and relations as MSO(M)ω.
The axioms of LMSO(M)ω have the same structure as those of MSO(M)ω. We just indicate the
counterparts of Induction, Comprehension and Definition of Mealy Machines:

• Induction.

!ϕ, Z(z) ` ϕ−[z/x], ?ϕ′ !ϕ, S(y, z), !ϕ−[y/x] ` ϕ−[z/x], ?ϕ′

!ϕ ` (∀xι)ϕ−, !ϕ′

(y, z fresh and ϕ− negative)

• Comprehension.

` ?(∃yo)!(∀xι) (x ∈̇ y ˛ δ±)
(y fresh and δ± deterministic)

• Definition of Mealy Machines.

` (∀yo)(∀xι)
(
x ∈̇ to(y) ˛ δLt (x, y)

)
The soundness of (−)L, as well as Adequacy and Extraction of course extend to LMSO(M)ω+

(DEXP) + (PEXP), interpreting the additional atomic predicates of LMSO(M)ω by suitable
deterministic automata. But now, thanks to the completeness of MSO(M)ω (Thm. 8.2.15), more
is true: Witness extraction from proofs in LMSO(M)ω + (DEXP) is complete w.r.t. Church’s
Synthesis.

Proposition 8.2.17. If ϕ is provable in MSO(M)ω then LMSO(M)ω + (DEXP) proves ϕL.

In particular, for a closed deterministic LMSO(M)ω formula δ, if bδc is true then δ is provable
in LMSO(M)ω + (DEXP).

Proposition 8.2.18 (Adequacy). Consider an LMSO(M)ω sequent

ψ1, . . . , ψk ` ϕ1, . . . , ϕm (8.13)

and a list of variables xσ1
1 , . . . , xσnn containing all free the variables of ψ1, . . . , ψk and ϕ1, . . . , ϕm.

Each proof of (8.13) in LMSO(M)ω + (DEXP) + (PEXP) induces a finite-state strategy in

A(ψ1)(xσ1
1 , . . . , xσnn )⊗ . . .⊗A(ψk)(x

σ1
1 , . . . , xσnn ) −(DialAut(Jσ1K×···×JσnK)

A(ϕ1)(xσ1
1 , . . . , xσnn ) ` · · ·`A(ϕm)(xσ1

1 , . . . , xσnn )
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Corollary 8.2.19 (Extraction). Consider a closed LMSO(M)ω formula ϕ := (∀xτ )(∃yσ)δ(x, y)
with δ deterministic. From a proof of ϕ in LMSO(M)ω + (DEXP) + (PEXP), one can extract a
term t(x) such that |= (∀xτ )bδ(x, t(x))c.

Corollary 8.2.20 (Soundness and Completeness w.r.t. Church’s Synthesis). Given a closed
MSO(M)ω formula ϕ := (∀xτ )(∃yσ)ψ(x, y), the following are equivalent:

• ϕ is realizable in the sense of Church’s Synthesis.

• (∀xτ )(∃yσ)ψL(x, y) is provable in LMSO(M)ω + (DEXP).

Corollary 8.2.20 improves on Prop. 8.2.7 in that not only the language of LMSO(M) is well
adapted to Church’s Synthesis, but also its axiomatization provides a sound and complete
method for Church’s Synthesis. In principle, this approach is entirely syntactic and Safraless
(as it avoids McNaughton Theorem).
We now turn to the axiomatization of the realizability model of LMSO(M). The main idea,

developed in [PR19], is to use a variant of Gödel’s functional “Dialectica” interpretation in order
to internalize the (f.s. part) of the realizability model of LMSO(M). Actually, this internalized
interpretation could be presented (as in [PR19]) as a purely syntactic way to obtain the soundness
of witness extraction in LMSO(M)ω w.r.t. Church’s Synthesis (Cor 8.2.19).
Gödel’s Dialectica interpretation associates to a formula ϕ(a) a formula ϕD(a) of the form

(∃uτ )(∀xσ)ϕD(u, x, a). In usual versions formulated in higher-types arithmetic (see e.g. [AF98,
Koh08]), the formula ϕD is quantifier-free, so that ϕD is a prenex form of ϕ. This prenex form
is constructive, and a constructive proof of ϕ can be turned to a proof of ϕD with an explicit
(closed) witness for ∃u. We call such witnesses Dialectica realizers of ϕ. Even if Dialectica
originally interprets intuitionistic arithmetic, it is structurally linear: in general, Dialectica
realizers of contraction

ϕ(a) −→ ϕ(a) ∧ ϕ(a)

only exist when the term language can decide ϕD(u, x, a), which is possible in arithmetic but
not in all settings. Besides, linear versions of Dialectica were formulated at the very beginning
of linear logic [dP87, dP89, dP91] (see also [Hyl02, Shi06]).
The essence of [PR19] is to use a variant of Dialectica as a syntactic formulation of the real-

izability model of LMSO(M). The formula ϕD essentially represents a deterministic automaton
on ω-words and is in general not quantifier-free. Moreover, we extract f.s. causal functions, while
the category M is not closed. As a result, a Dialectica realizer of ϕ with ϕD(a) of the form
(∃uτ )(∀xσ)ϕD(u, x, a) is an open (eager) term u(x) of arity (σ; τ) such that LMSO(M)ω proves
ϕD(u(x), x).
Our Dialectica-like interpretation of the multiplicative (i.e. exponential free) fragment of

LMSO(M)ω roughly follows the DC interpretation of [dP87, dP91]. In order to keep nota-
tions simple, we reason modulo the Cartesian structure on terms (8.3) and assume formulae
to have at most one free variable (which is thus in general of product type). For atomic
formulae we let ϕD(a) := ϕD(a) := ϕ(a). The inductive cases are given in Fig. 8.7, where
ϕD(a) = (∃u)(∀x)ϕD(u, x, a) and ψD(a) = (∃v)(∀y)ψD(v, y, a). Note that we leaved the types
implicit in Fig. 8.7. They are however easy to reconstruct from the corresponding constructions
on automata of §7.2. The soundness statement of (−)D is that from a proof of a closed ϕ, one
can extract a Dialectica realizer of ϕ. In the case of an open formula, say ϕ(a), we extract
realizers of (∀a)ϕ(a). In general, given an LMSO(M)ω sequent

ψ1, . . . , ψk ` ϕ1, . . . , ϕm (8.14)
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and a list of variables xσ1
1 , . . . , xσnn containing all free the variables of ψ1, . . . , ψk and ϕ1, . . . , ϕm,

from a proof of (8.14) we extract a realizer of

(∀xσ1
1 ) · · · (∀xσnn )

(
ψ1 ⊗ · · · ⊗ ψk −( ϕ1 ` · · ·` ϕm

)
Having in mind our specific extraction of open eager terms, note that the interpretation of the

linear arrow follows the representation of strategies as pairs of functions (Prop. 6.2.2 and §6.5.2).
Indeed, consider closed exponential free formulae ψ and ϕ, with ϕD = (∃uτ )(∀xσ)ϕD(u, x) and
ψD = (∃vκ)(∀yυ)ψD(v, y). Then, modulo (8.3), (ψ( ϕ)D is of the form

(∃f (κ)τ )(∃F (σ)τυ)(∀uτ )(∀yυ)
(
ψD(u, (F )uy) ( ϕD((f)u, y)

)
Hence, a Dialectica realizer of ψ( ϕ is a pair of eager terms v(uτ , yυ) of sort (κ)τ and x(uτ , yυ)
of sort (κ)τυ. But these terms induces eager f.s. functions

JvK : JτK× JυK −→EM JκKJτK and JxK : JτK× JυK −→EM JκKJτK×JυK

that is, a finite-state P strategy in the game

(JτK, JσK) −(DZ (JκK, JυK)

in the sense of §6.5.2. As a consequence, the adequacy of (−)D essentially amounts to a formal-
ization within LMSO(M) of the adequacy of the automata-based realizability model. The only
non-trivial case is that of the cut rule, which amounts to a formal treatment of composition of
finite state strategies (see §6.3.3). We refer to [PR19, App. B] for details.
More generally, for an exponential free closed formula ϕ with ϕD = (∃uτ )(∀xσ)ϕD(u, x), JτK

and JσK are respectively the sets of P and O moves of the uniform automaton A(ϕ). In particular,
the polarities of LMSO(M)ω can be read off from the interpretation (−)D, as for a formula ϕ as
above:

• ϕ is positive iff JσK ' 1,

• ϕ is negative iff JτK ' 1, and

• ϕ is deterministic iff JτK ' JσK ' 1.

We now turn to the exponentials of LMSO(M)ω. Actually, the reason for the restriction to
polarized exponentials comes from the fact that we do not have a good syntactic interpretation
of the general exponentials in our Dialectica-like interpretation. But let us begin by remarking
that for closed formulae, the Büchi-Landweber Theorem implies, via Completeness of MSO(M)ω

and Prop. 8.2.17 that contraction for closed formulae can be Dialectica realized.

Example 8.2.21. Realizers of ϕ( ϕ⊗ϕ for a closed ϕ are given by eager terms U1(u, x1, x2),
U2(u, x1, x2), X(u, x1, x2) representing P-strategies in the game G(Φ)(〈U1, U2, X〉, 〈u, x1, x2〉),
where Φ is

bϕD(u, (X)ux1x2)c −→ bϕD((U1)u, x1)c ∧ bϕD((U2)u, x2)c

By the Büchi-Landweber Theorem 8.2.3, either there is an eager term U(x) such that bϕD(U(x), x)c
holds, so that

bϕD(u, x1)c −→ bϕD(ev(U)(x1), x1)c ∧ bϕD(ev(U)(x2), x2)c
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(ϕ⊗ ψ)D(a) := ∃〈u, v〉∀〈x, y〉. (ϕ⊗ ψ)D(〈u, v〉, 〈x, y〉, a) :=
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a)⊗ ψD(v, y, a)

(ϕ` ψ)D(a) := ∃〈u, v〉∀〈x, y〉. (ϕ` ψ)D(〈u, v〉, 〈x, y〉, a) :=
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a) ` ψD(v, y, a)

(ϕ( ψ)D(a) := ∃〈f, F 〉∀〈u, y〉. (ϕ( ψ)D(〈f, F 〉, 〈u, y〉, a) :=
∃〈f, F 〉∀〈u, y〉. ϕD(u, (F )uy, a)( ψD((f)u, y, a)

(∃w.ϕ)D(a) := ∃〈u,w〉∀x. (∃w.ϕ)D(〈u,w〉, x, a) := ∃〈u,w〉∀x. ϕD(u, x, 〈a,w〉)

(∀w.ϕ)D(a) := ∃f ∀〈x,w〉. (∀w.ϕ)D(f, 〈x,w〉, a) := ∃f ∀〈x,w〉. ϕD((f)w, x, 〈a,w〉)

Figure 8.7.: A Dialectica-like Interpretation of the Exponential Free Fragment of LMSO(M)ω.

or there is an eager term X(u) such that ¬bϕD(u, ev(X)(u))c holds, so that

bϕD(u, ev(X)(u))c −→ bϕD(u, x1)c ∧ bϕD(u, x2)c

Since ϕD(u, ev(X)(u)) ( ϕD(u, x1) ⊗ ϕD(u, x2) is deterministic, it follows that ϕ ( ϕ ⊗ ϕ is
Dialectica realized provably in LMSO(M)ω.

However, contraction is in general not realized for open formulae.

Example 8.2.22. Consider the open formula ϕ(ao) := (∀xo)(t(x, a)
.
= 0ω) where JtK(B,C) =

0n+11ω for the first n ∈ N with C(n+ 1) = B(0) if such n exists, and such that JtK(B,C) = 0ω

otherwise. The game induced by ((∀a)(ϕ( ϕ⊗ ϕ))D is G(Φ)(X, 〈x1, x1, a〉), where Φ is

t((X)x1x2a, a)
.
= 0ω −→ t(x1, a)

.
= 0ω ∧ t(x2, a)

.
= 0ω

In this game, P begins by playing a function 23 → 2, O replies in 23, and then P and O keep on
alternatively playing moves of the expected type. A finite-state winning strategy for O is easy to
find. Let P begin with the function X. Fix some a ∈ 2 and let i := X(0, 1, a). O replies (0, 1, a)
to X. The further moves of P are irrelevant, and O keeps on playing (−,−, 1− i) (the values of
x1 and x2 are irrelevant after the first round). This strategy ensures

t((X)x1x2a, a)
.
= 0ω ∧ ¬(t(x1, a)

.
= 0ω ∧ t(x2, a)

.
= 0ω)

Consider now exponential formulae !ϕ and ?ψ of LMSO(M)ω. In the case of ϕ positive and ψ
negative, we can let

(!(ϕ+))D(a) := (∃u)(!(ϕ+))D(u,−, a) := (∃u)!ϕD(u,−, a)
(?(ψ−))D(a) := (∀y)(?(ψ−))D(−, y, a) := (∀x)?ψD(−, y, a)

(8.15)

Note that this respects the correspondence between the types in Dialectica and moves in au-
tomata, and so in particular the polarities of formulae.
The interesting case for exponentials is that of ?ϕ and !ψ for ϕ positive and ψ negative.

Assume ϕD(a) = (∃u)ϕD(u,−, a) and ψD(a) = (∀y)ψD(−, y, a). Recall that ϕD (resp. ψD) is
thought about as representing the non-deterministic (resp. universal) automaton A(ϕ) (resp.
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A(ψ)). Then the Dialectica interpretation of the operation ?ϕ (resp. !ψ) should correspond to
McNaughton’s Determinization (resp. to co-determinization). We let

(?(ϕ+))D(a) := (?(ϕ+))D(−,−, a) := ?(∃u)ϕD(u,−, a)
(!(ψ−))D(a) := (!(ψ−))D(−,−, a) := !(∀y)ψD(−, y, a)

(8.16)

The interpretation of exponentials given in (8.15 and (8.16) completes the definition of (−)D.
As usual, Dialectica is such that ϕD is equivalent to ϕ via possibly non-intuitionistic but

constructive principles. The tricky connectives are implication and universal quantification.
Similarly as in the intuitionistic case (see e.g. [Koh08, AF98, Tro73]), (ψ( ϕ)D is a prenex
form of ψD ( ϕD obtained using (LAC) together with linear variants of the Markov and
Independence of premises principles. In our case, the equivalence ϕ ˛ ϕD also requires the
following additional axioms (LSIP), with polarities as displayed:

(∀a)(ϕ−(a)⊗ ψ−) −( (∀a)ϕ−(a)⊗ ψ−
(∀a)(ϕ−(a) ` ψ−) −( (∀a)ϕ−(a) ` ψ−

(∃a)ϕ−(a) ` ψ −( (∃a)(ϕ−(a) ` ψ)
(ψ−( (∃a)ϕ−(a)) −( (∃a)(ψ−( ϕ−(a))
((∀a)ϕ±(a)( ψ±) −( (∃a)(ϕ±(a)( ψ±)

(LSIP)

Proposition 8.2.23 (Characterization). For ϕ(a) an LMSO(M)ω formula, LMSO(M)ω+(LAC)+
(LSIP) + (DEXP) proves ϕ(a) ˛ ϕD(a)

We write LMSO(C) for the system LMSO(M)ω + (LAC) + (LSIP) + (DEXP) + (PEXP). It
is clear the Adequacy and Extraction hold for this system, so that the theory of LMSO(C) is
realized and is thus coherent, in the sense that ⊥ is not provable. What is remarkable is that
LMSO(C) is complete in the following sense:

Theorem 8.2.24 (Completeness of LMSO(C)). For each closed LMSO(M)ω formula ϕ, either
`LMSO(C) ϕ or `LMSO(C) ϕ( ⊥.

Hence LMSO(C) completely axiomatizes the theory if its realizability model. Note that since
ϕ and !ϕ are equiprovable, we in particular have the alternative `LMSO(C) ϕ or `LMSO(C) !ϕ( ⊥.
Theorem 8.2.24 follows from a couple of facts. First, elimination linear double negation

(Ex. 8.2.9) lifts from the realizability model to LMSO(C). Combined with (LAC), this in partic-
ular gives a form of classical linear choice:

`LMSO(C) (∀f)(∃x)ϕ(x, (f)x) −( (∃x)(∀y)ϕ(x, y)

Second, thanks to the existence of fixpoints of eager machines (Prop. 6.5.5, §6.5.1), we then
obtain the following quantifier inversion.

Lemma 8.2.25. `LMSO(C) (∀xσ)ϕ(tτ (x), x) −( (∃uτ )(∀xσ)ϕ(u, x), where t(x) is eager.

The assumption that t(x) is eager in Lem. 8.2.25 is crucial. Completeness of LMSO(C) then
follows via (−)D, Proposition 8.2.16, completeness of MSO(M) and the Büchi-Landweber The-
orem. We give the full argument as it is a simple combination of the preceding results.

Proof of Thm. 8.2.24. Let ϕ be a closed LMSO(M)ω formula and write ϕD = (∃uτ )(∀xσ)ϕD(u, x).
We apply Büchi-Landweber Theorem in the form of Thm. 8.2.3 to the MSO(M)ω formula
bϕD(uτ , xσ)c. There are two cases.
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• Either there exists an eager term u(x) of sort (σ, τ) such that |= (∀xσ)bϕD(t(x), x)c. We
then proceed as follows.

MSO(M)ω ` bϕD(u(x), x)c (Completeness of MSO(M)ω)
LMSO(C) ` bϕD(u(x), x)cL (Proposition 8.2.17)
LMSO(C) ` ϕD(u(x), x) (Proposition 8.2.16)
LMSO(C) ` (∀xσ)ϕD(u(x), x) (∀-right)
LMSO(C) ` (∃uτ )(∀xσ)ϕD(u, x) (Lemma 8.2.25, since u(x) is eager)
LMSO(C) ` ϕD (Definition of ϕD)
LMSO(C) ` ϕ (Characterization)

• Otherwise, there exists a term x(u) of sort (τ ;σ) such that |= (∀uτ )¬bϕD(x(u), u)c. Note
that

¬bϕD(x(u), u)c = bϕD(x(u), u)( ⊥c

We then conclude as follows.

MSO(M)ω ` bϕD(u, x(u))( ⊥c (Completeness of MSO(M)ω)
LMSO(C) ` bϕD(u, x(u))( ⊥cL (Proposition 8.2.17)
LMSO(C) ` ϕD(u, x(u))( ⊥ (Proposition 8.2.16)
LMSO(C) ` (∃xσ)(ϕD(u, x)( ⊥) (∃-right)
LMSO(C) ` (∀uτ )(∃xσ)(ϕD(u, x)( ⊥) (∀-right)
LMSO(C) ` (∃g(σ)τ )(∀uτ )(ϕD(u, (g)u))( ⊥) (LAC)
LMSO(C) ` (ϕ( ⊥)D (Definition of (ϕ( ⊥)D)
LMSO(C) ` ϕ( ⊥ (Characterization)

8.3. Back to Infinite Trees

We now come back to the case of infinite trees. In §8.1 we have discussed the systems MSO(T)
and LMSO(T) from the point of view of soundness and adequacy. In this Section, which is
purely exploratory, we briefly discuss what could lead to complete systems, in the same spirit
as the systems MSO(M)ω and LMSO(M)ω of §8.2.6 for ω-words.
We assume an extension MSO(T)+ of the language of MSO(T) which syntactically contains

the language of MSO(D) (§3.1), similarly as we did for MSO(M)ω v.s. MSO(M). We assume
the language of LMSO(T) to be similarly extended to LMSO(T)+. The atomic predicates of
MSO(T)+ and LMSO(T)+ can be interpreted as deterministic automata, so that the Tree Axioms
of MSO(D) (Fig. 3.1, §3.1.2) are trivially realized. Similarly as with MSO(M)ω and LMSO(M)ω,
one has to devise appropriate versions of Induction, Comprehension (as well as of the counterpart
of the defining axiom for Mealy machines see §8.2.6). We can ultimately rely here on the Weak
Completeness of the realizability model (Prop. 7.4.4, §7.4) and assume for LMSO(T)+ the (−)T

or ?(−)Q translations of these axioms (see §8.1.7).
However, as discussed in Chap. 3, it is unlikely that the resulting axiomatization of MSO(T)+

is complete, and we might have, in some way or the other, to extend MSO(T)+ (and LMSO(T)+)
with means of proving the positional determinacy of parity games (see §3.2.2). It is not clear to us
what could be the best option. We nevertheless mention here possibility, that we unfortunately
did not explore yet. As discussed in §3.4, the main difficulty for the positional determinacy
of parity games in MSO is the Uniformization Lemma 3.4.1, and in particular the “merging”
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of (potentially infinitely many) strategies (see §3.4.2). Taking a point of view similar to that
of §8.2.6, we might target an axiomatization of the realizability model of LMSO(T)+. In the
realizability model, positionality of strategies is in general not assumed, but for the adequacy of
the rule

(Promotion)
!ϕ1, . . . , !ϕn ` ϕ

!ϕ1, . . . , !ϕn ` !ϕ

As discussed in §7.4, the adequacy of (Promotion) relies on the fact that if the premise of
the rule is realized, then it is realizable by a positional strategy (realization of the conclusion
is then easy). A possibility that we did not explore yet, but which seems natural to us, would
be to extend LMSO(T)+ with an axiom stating that there are “enough positional P-strategies
for (Promotion)”. This could be formulated with a non-standard rule expressing a form of
reflection, as e.g. the following (in the language of LMSO):

ϕ1, . . . , ϕn ` ϕ
` (∃σ)

(
σ  A(ϕ1)⊗ · · · ⊗ A(ϕn)( A(ϕ)

) (ϕ1, . . . , ϕn (weakly) positive)
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9. Conclusion

This document proposed what we see as a possible first step toward a Curry-Howard approach
to MSO on infinite words and trees. To our opinion the result is contrasted.
On the positive side, we were surprised that, starting from a simple operational model as that

of Chap. 5 and Chap. 7, linear logic so easily enters the picture as a natural setting to reason on
automata, at least from the point of view of translations from MSO. In other words, there is a
logical world at the level of automata, which is different from the classical world of MSO, and for
which linear logic might provide a general setting. This is, to our opinion, stressed by the fact
that the natural polarities of (a linear variant of) the Dialectica interpretation correspond to the
usual polarities of automata (§7.5 and §8.2.6). While this has been worked out only in the case
of ω words for now, we see no reasons why the Dialectica interpretation of LMSO(M) could not
lift to LMSO(T) (excepted for completeness matters). As other examples we could mention the
Weak Completeness of the realizability model (Prop. 7.4.4), which reduces (via Prop. 7.3.4) to a
syntactic reasoning on linear implication, or the fact that natural translations of MSO formulae
to tree automata are easily adapted to fit close to the usual call-by-name vs call-by-value setting
(§8.1.7).
On the negative side, to our opinion the present work cannot be considered as a definitive

answer to the initial objective. In the case of infinite trees, on the one hand we do not properly
understand the axiomatics of MSO on infinite trees, while on the other hand we do not properly
understand the notion of MSO positionality, at least when it comes to the adequacy of the
(Promotion) rule of linear logic. In the case of ω-word, this results in a lack of structural
results on game solving for Church’s Synthesis. Some of the perspectives given below concern
these questions.

9.1. Perspectives. First of all, it is clear to us that when it comes to linear logic, we pay the
price of having the additive connectives, which are natural connectives on automata, with the
expected polarities. While we plan to remedy this at some moment or the other, the reason for
our initial choice was to have a setting which is sufficiently simple to give a broad overview.
Concerning the axiomatic part, while we conjecture that MSO(2) is incomplete, we have yet

no any concrete idea on how to attack the problem, maybe by lack of knowledge on model
construction for second order logic. The incompleteness of MSO(D) may also follow from some
simple argument that we haven’t seen yet... It seems however that some improvements are
possible regarding the axiom (PosDet). We think that the axiom (Def) of §3.4, which may
look at bit rough, may lead to something reasonable with suitable reworking and refinement.
Besides, it is also possible that when thought about in the setting of the realizability model, some
specific but natural rules can give a complete (linear) system. In the direction of the reflection
rule mentioned in §8.3, let us recall that [Möl02] has analyzed, in the setting of second-order
arithmetic, the levels of the fixpoint hierarchy as reflection schemes. On the positive side, we
may say that the formalization of Rabin’s Tree Theorem in FSO(D) may be valuable as it gives
some ground on what we know to be provable in FSO(D) without requiring further axioms.
As for the compositionality problem with the (Promotion) rule, there are more or less

obvious things to look at from the perspective of exponentials in game semantics, even if this
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leads outside of MSO. The conclusion of [Rib18] contains some ideas in this direction. We do
not repeat them here, but simply mention that a natural infinitary exponential in the setting of
zigzag games is used in an interesting way in Pierre Pradic’s PhD Thesis [Pra19]. Of course, the
fundamental question is to gain a better understanding of MSO positionality, and in particular as
to whether it is related to innocence (as reformulated in [Mel06]). The slight structure added by
uniform automata to the usual setting, while pertinent to have good quantifications to reflect the
usual polarities of automata, seems unrelated to the problem of positionality, which rather lives
at the level of states of automata and propositional logic. As a result, it seems natural to think
that a possibility would be to add structure on states of automata, so as to recover some form of
arena games. This might lead to an odd setting from the point of view of automata theory, since
one feature of automata is precisely to assume no structure on states. But from the point of view
of MSO, maybe some insight can be gained from such approaches, in particular in presence of a
logical setting at the level of automata. Concerning questions related to positionality, we must
however say that from our point of view, one of the big mysteries remains the structure of the
acceptance conditions resulting from McNaughton Determinization Theorem, as computed with
any of the constructions we are aware of. On the other hand, the notion of Split Tree [Zie98]
may provide some hints on how to manipulate the logical structure of acceptance conditions
w.r.t. positionality matters.
Besides, note that uniform automata could very well be looked at from the usual perspective

of the usual algebraic setting for recognizability, in the following sense. For a uniform automaton
A with set of P moves U and set of O moves X, we have

∂A : QA × Σ −→ U ×X −→ (D −→ QA) ' Σ× U ×X ×D −→ (QA −→ QA)

so that the transition structure of A might described as an action on the monoid of functions
QA → QA.
An other trend concerns the relaxation of the realizability model to more liberal notions of

transductions. We have began to look at what can be said in the setting of rational relations
(see e.g. [Ber79]). An important point here is that as soon as we give up on causality, it
seems much more difficult to keep a Cartesian structure w.r.t. alphabet multiplication, on which
crucially rely quantifications. So such approaches may lead to two level models, with one notion
of transduction for indexing and quantification, and a different notion of transduction for the
realizers, thus requiring some explicit logical control on (existential) quantifications. In this
direction, let us mention that continuous language reductions (i.e. the Wadge hierarchy)1 play
an important role in the study of the topological complexity of tree languages.2

A related question, concerning the burden of Notation 8.2.1, is the fact that our categorical
models do not axiomatize the membership predicate, while known notions (see e.g. [Jac01, §5.2],
[Pit02]) may be pertinent w.r.t. our setting. Actually, in the case of finite words (and forbidding
universal automata) we can have a “generic object”, namely the DFA ε : 2 which accepts when
it reads a 1. Then for any DFA A : Σ, there is an eager Moore function f : Σ→EM 2 (see §2.3)
such that there is a Cartesian map A → f?(ε). Note that this does not directly lift to ω-words,
where we may rather have generic objects ε(ι,κ) : {ι, . . . , κ} for each parity condition with range
{ι, . . . , κ} (and hence have one total category of deterministic automata for each pair (ι, κ)).3

This might suggest that suitable adaptations of our setting might be interesting to look at in
1Continuous reductions amount to causal reductions with ω words (see e.g. [PP04]) but not with infinite trees.
2We shall not give a bibliography, by lack of expertise on this evolving area.
3The languages of such ε(ι,κ) are variants of the usual game languages (used to describe the hierarchy of parity
conditions in the case of infinite trees) which form a hierarchy w.r.t. continuous reductions which exhausts
ω-regular languages (see e.g. [AN07] and references therein).
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the case of finite words, at least for the structure it may uncover. We didn’t followed this path
in the work presented in this document because we thought that the inherent non-constructivity
of MSO on infinite structures could provide a pertinent guiding principle.
In the setting of ω-words, an obvious question is whether LMSO(C) could be complete if

unrestricted exponentials were allowed.
Further interesting questions concern the extraction of realizers, taking inspiration from in-

tuitionistic arithmetic (see e.g. [Koh08]). For instance, the realizability model of LMSO(C)
validates (for trivial reasons) a Fan Rule of the form

` (∀xo)(∃yι)δ±(x, y) ⇒ ` (∀xo)(∃y ≤ N)δ±(x, y) for some N ∈ N (δ± deterministic)

This suggests to look at variants of Dialectica allowing to extract bounds instead of witnesses.
Further, we plan to look at whether, variants of Safra’s Construction for McNaughton’s Deter-
minization Theorem can allow to preserve some witnessing or bounding information, in suffi-
ciently simple cases, in order to obtain variants of Markov Rule or of the Fan Rule.
An important direction of future research concerns (semi)automated proof search for (L)MSO.

As far as full automation is targeted, this is fairly outside our area of expertise and we refer to
the conclusion of [DR19] for a discussion.
In a similar vein, one may look at polarized fragments of LMSO from a syntactic perspective.

On the first hand, in the setting of automata on infinite trees, the expressive power of deter-
ministic automata is well known (see e.g. [AJFN08]). On the other hand, in the case of ω words
(and assuming parity conditions), non-deterministic, deterministic, universal and alternating
automata all have the same expressive power, so that the negative fragment of MSO(M) is as
expressive as the full language.4 This fact is in particular exploited in some Safraless approach to
Church’s Synthesis [KV05, KPV06, FJR11] (see §8.2.4). In both cases, it may be interesting to
look precisely at inductively defined polarized fragments of LMSO, in particular because LMSO
allows for an explicit control of the uses of Simulation (and McNaughton’s Determinization in
the case of ω-words).
At a more concrete level, interactive proof systems for MSO (as well as LMSO) could be

implemented. The experience of [DR19] shows that it might indeed be humanly feasible to
formally represent and prove things in suitable versions of MSO. In this direction, an important
step is to have a suitable representation of Mealy machines (both at the level of the language of
(L)MSO(T) or (L)MSO(M) and for implementing extraction). To this end, an interesting way
to represent Mealy machines by means of a few simple combinators is proposed in [Pra19].
Last but not least, a remaining open question on the works presented in this document is

their relation to Ong’s Theorem [Ong06] (the decidability of Higher-Order Model Checking, see
also [SW15, Mel17a]).

4The M is important there.
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A. A Setting of Simple Games

We present here the basic setting of games on which most of this document (and all of Part II) is
based. It consists of tree games, essentially corresponding to the games known as simple games
in the litterature (see e.g. [Abr97, Hyl97]). We shall not provide any genral introduction to
game semantics in the realm of the Curry-Howard correspondance, but jsut mention that simple
games stem from Berry & Curien’s sequential data structures (see e.g. [AC98, Chap. 14]) and
refer to [Mel05] for further references and discussions.

Definition A.0.1 (Simple Games).

• A simple game A has the form

A = (AP, AO, LA)

where AP is the set of P-moves, AO is the set of O-moves and LA ⊆ (AP + AO)∗ is a
non-empty prefix-closed set of legal plays.

We let s, t, . . . range of over plays and m,n, . . . range over moves.

We often write Leven
A for the set of even-length legal plays of A.

• A simple game with winning is a simple game A equipped with a set of winning plays (or
winning condition) WA ⊆ (AP +AO)ω.

• The sets ℘P
A and ℘O

A of resp. positive and negative plays on A are

℘P
A := (AP ·AO)∗ + (AP ·AO)∗ ·AP

℘O
A := (AO ·AP)∗ + (AO ·AP)∗ ·AO

The game A is positive (resp. negative) if all its legal plays are positive (resp. negative),
that is if LA ⊆ ℘P

A (resp. LA ⊆ ℘O
A). So P starts in a positive game and O starts in a

negative one. A game is polarized if it is either positive or negative.

• A play for player J ∈ {P,O} (also called a J-play) is either the empty play or a non-empty
play in which J played last (i.e. which ends with a J-move).

Example A.0.2 (Full Postitive Games). Full positive games are positives games A whose pos-
itive plays are all legal, that is such that

LA = ℘P
A = (AP ·AO)∗ + (AP ·AO)∗ ·AP

Hence, a full positive game A is completely characterized by its set of P and O-moves. We can
thus simply omit legal plays in the description of full positive games. We moreover often write
U (resp. X) for the set of P-moves (resp. of O-moves) of a full positive game A.
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We now come to the definition of strategies in simple games. A strategy for player P or O
is what one expects. The formal definition of strategy below emphasizes P (strategies for O
are defined by duality), because in categories of games, composition and identities are only
defined for the strategies of the negative player P. Moreover, the manipulation of strategies
as morphisms is more convenient when strategies are presented as sets of plays rather than as
functions on plays.

Definition A.0.3 (Strategies). A P-strategy on A is a non-empty set of legal P-plays σ ⊆ LA
which is

• P-prefix-closed: if s.t ∈ σ and s is a P-play then s ∈ σ, and

• P-deterministic: if s.n ∈ σ and s.m ∈ σ then n = m.

Consider now a polarized game with winning A. Given a P-strategy σ on A and an O-play
s ∈ LA, we say that s is an O-interrogation of σ if either s = ε and A is positive, or if s = t.m
for some t ∈ σ. We say that σ is total if for every O-interrogation s of σ, we have s.n ∈ σ for
some n. A winning (P-)strategy on A is a total strategy σ s.t. for all χ ∈ (AP +AO)ω, we have
χ ∈ WA whenever ∃∞k ∈ N. χ(0) · . . . · χ(k) ∈ σ.

The notion of (total, winning) O-strategy is defined by duality. Each game A has a dual
A = (AO, AP, LA), where we moreover letWA := (AP +AO)ω \WA if A is a game with winning.
Note that A is polarized iff A is polarized, and that A is positive (resp. negative) iff A is negative
(resp. positive). Then, we say that a (total, winning) O-strategy on A is a (total, winning) P-
strategy on A.

Example A.0.4 (Strategies in Full Postitive Games). Consider a total full positive game A =
(U,X). A P-strategy σ in A is a non-empty set of sequences of the form

s = u0 · x1 · u1 · . . . · xn−1 · un−1

such that
s · xn · un ∈ σ ⇒ s ∈ σ

and
s · xn · un , s · xn · u′n ∈ σ ⇒ un = u′n

Hence, as expected, in a play

u0 · x1 · u1 · . . . · xn · un ∈ σ

the moves ui are uniquely determined by the O-moves x1, . . . , xi−1. Moreover, σ is total iff for
every

u0 · x1 · u1 · . . . · xn · un ∈ σ

and for every O-move xn+1, there is some un+1 such that

u0 · x1 · u1 · . . . · xn · un · xn+1 · un+1 ∈ σ

In other words, total P-strategies in a total full positive game A = (U,X) are given by functions
X∗ → U .
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B. Proof of Proposition 3.4.2

Consider HF-sets K, L and fix MC and ϕ as required for axiom (Def). Let

S := KD∗×L

Given n ∈ N, let Tn be the finite tree D≤n. We build a sequence (sn)n∈N ∈ S, with for each
n ∈ N,

• ϕ(sn, Tn),

• sn =MC(sn,Tn) sn+1,

• MC(sn, Tn) ⊆ MC(sn+1, Tn+1).

First, since T0 = {ε}, thanks to assumption (c) of (Def), we take s0 ∈ S such that ϕ(s0, T0)
holds. Assume now that sn has been defined. Let U0, . . . , Uk be finite trees with

U0 = Tn and (∀i < k)(∃p ∈ D∗)(Ui+1 = Ui + {p}) and Uk = Tn+1

We inductively define u0, . . . , uk ∈ S with

• ϕ(ui, Ui),

• u0 =MC(u0,U0) ui,

• MC(u0, U0) ⊆ MC(ui, Ui),

For the base case, we let u0 := sn. Let now i < k and assume that ui has been defined. Since
ϕ(ui, Ui) holds, by assumption on Ui+1 it follows from assumption (d) of (Def) that there is
ui+1 ∈ S such that ϕ(ui+1, Ui+1) holds and

MC(ui, Ui) ⊆ MC(ui+1, Ui+1) and ui+1 =MC(ui,Ui) ui

We have
MC(u0, U0) ⊆ MC(ui, Ui) ⊆ MC(ui+1, Ui+1)

and furthermore

ui+1�MC(u0, U0) = (ui+1�MC(ui, Ui))�MC(u0, U0)
= (ui�MC(ui, Ui))�MC(u0, U0)
= ui�MC(u0, U0)
= u0�MC(u0, U0)

This completes the definition of u0, . . . , uk.
We now take sn+1 := uk. We therefore have sn+1 ∈ S, as well as ϕ(sn+1, Tn+1) and

sn+1 =MC(sn,Tn) sn and MC(sn, Tn) ⊆ MC(sn+1, Tn+1)

This completes the definition of (sn)n∈N. An easy induction shows the following claim.
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Claim B.0.1. For k ≤ n, we have

MC(sk, Tk) ⊆ MC(sn, Tn) and sn =MC(sk,Tk) sk

Proof. The first part can be proved by induction on n ≥ k (for fixed k) using the fact that
MC(sn, Tn) ⊆ MC(sn+1, Tn+1).
Consider now the second part. Fix k and reason by induction on n ≥ k. The base case n = k

is obvious. For the induction step, by induction hypothesis we have

sk =MC(sk,Tk) sn

But by the first part, we have

MC(sk, Tk) ⊆ MC(sn, Tn)

Hence
sn�MC(sk, Tk) = (sn�MC(sn, Tn))�MC(sk, Tk)

= (sn+1�MC(sn, Tn))�MC(sk, Tk)
= sn+1�MC(sk, Tk)

We are now going to define some s ∈ S such that ϕ(s, T ) holds for each finite tree T . First,
let

s̃ :=
⋃
n∈N

sn�MC(sn, Tn)

It follows from Claim B.0.1 that given x ∈ MC(sk, Tk), for all n ≥ k we have x ∈ MC(sn, Tn) and
sk(x) = sn(x). Hence s̃ is a function from

⋃
n∈N MC(sn, Tn) to K. We extend it to a total map

s ∈ S by putting s(x) := s0(x) for x /∈
⋃
n∈N MC(sn, Tn). It easily follows from the definition of

s that its restriction to MC(sn, Tn) agrees with sn:

Claim B.0.2. For all n ∈ N we have s =MC(sn,Tn) sn.

Proof. Fix n ∈ N and consider x ∈ MC(sn, Tn). Then s(x) = κ ∈ K iff sj(x) = κ for some
j ∈ N such that x ∈ MC(sj , Tj). But for all ` ≥ n we have x ∈ MC(s`, T`) and Claim B.0.1
implies sn(x) = s`(x). Moreover, for all i ≤ n, if x ∈ MC(si, Ti) then Claim B.0.1 also implies
sn(x) = si(x). Hence for all j ∈ N, if x ∈ MC(sj , Tj) then sj(x) = sn(x) and the result
follows.

It then follows that

Claim B.0.3. ϕ(s, T ) holds for each finite tree T ⊆ D∗.

Proof. Let T be a finite tree and let Tn ⊇ T . By assumption (b) it is sufficient to show ϕ(s, Tn).
But by assumption (a), we are done since ϕ(sn, Tn) holds and since s =MC(sn,Tn) sn by the above
Claim B.0.2.
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