
A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS ∗

PIERRE PRADIC AND COLIN RIBA

ENS de Lyon, Université de Lyon, LIP and University of Warsaw, Faculty of Mathematics,
Informatics and Mechanics
e-mail address: pierre.pradic@ens-lyon.fr

ENS de Lyon, Université de Lyon, LIP
e-mail address: colin.riba@ens-lyon.fr

Abstract. Church’s synthesis problem asks whether there exists a finite-state stream
transducer satisfying a given input-output specification. For specifications written in
Monadic Second-Order Logic (MSO) over infinite words, Church’s synthesis can theoretically
be solved algorithmically using automata and games. We revisit Church’s synthesis via
the Curry-Howard correspondence by introducing SMSO, an intuitionistic variant of MSO
over infinite words, which is shown to be sound and complete w.r.t. synthesis thanks to an
automata-based realizability model.

1. Introduction

A stream function F : Σω → Γω is synchronous (or causal) if it can produce a prefix of
length n of its output from a prefix of length n of its input:

B(0). · · · .B(n− 1) = C(0). · · · .C(n− 1) =⇒ F (B)(n) = F (C)(n) (for B,C ∈ Σω)

A synchronous function is finite-state if it is induced by a deterministic letter-to-letter stream
transducer (or deterministic Mealy machine, DMM). Church’s synthesis [Chu57] consists in
the automatic extraction of DMMs from input-output specifications, typically presented as
closed formulae of the form

∀X ∈ Σω ∃Y ∈ Γω ϕ(X;Y) (1.1)

where ϕ is a formula of some subsystem of Monadic Second-Order Logic (MSO) over ω-words.
A specification as in (1.1) is realized in the sense of Church by a (finite-state) synchronous
F : Σω → Γω when ϕ(B,F (B)) holds for all B ∈ Σω.

MSO over ω-words is a decidable logic (Büchi’s Theorem [Büc62]) which subsumes logics
used in verification such as LTL (see e.g. [Tho97, PP04, VW08]). Traditional approaches to
synthesis (see e.g. [Tho08, Tho09]) are based, via McNaughton’s Theorem [McN66], on the
translation of MSO-formulae to deterministic automata on ω-words (such as Muller or parity

∗ This work was partially supported by the ANR-14-CE25-0007 - RAPIDO and the ANR-BLANC-SIMI-2-

2011 - RECRÉ. This paper is an extended version of the conference article [PR17].
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France.
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Pierre Pradic and Colin Riba
Creative Commons

1

2 PIERRE PRADIC AND COLIN RIBA

automata).1 These automata are then turned into infinite two-player sequential games on
finite graphs, in which the Opponent (∀bélard) plays input letters to which the Proponent
(∃löıse) replies with output letters. Solutions to Church’s synthesis are then given by the
Büchi-Landweber Theorem [BL69], which states that in such games, (exactly) one of the two
players has a finite-state winning strategy (i.e. a strategy which only uses a finite memory).

Fully automatic approaches to synthesis suffer from prohibitively high computational
costs, essentially for the following two reasons. First, the translation of MSO-formulae
to automata is non-elementary (see e.g. [GTW02]), and McNaughton’s Theorem involves
a non-trivial powerset construction (such as Safra construction, see e.g. [Tho97, GTW02,
PP04, VW08]). Second, similarly as with other automatic verification techniques based on
model checking, the solution of parity games ultimately relies on exhaustive state exploration.
While they have had (and still have) considerable success for verifying concurrency properties,
such techniques hardly managed up to now to give practical algorithms for the synthesis of
large scale systems (even for fragments of LTL, see e.g. [BJP+12]).

In this work, we propose a Curry-Howard approach to Church’s synthesis. The Curry-
Howard correspondence asserts that, given a suitable proof system, any proof therein can be
interpreted as a program. This interpretation of proofs as programs (as well as the soundness
of many type systems) can be formalized using the technique of realizability, which tells how
to read a formula from the logic as a specification for a program. More precisely, realizability
can be seen as a relation between programs (the realizers) and formulae, usually defined by
induction on the latter (see e.g. [SU06, Koh08]). Typical clauses state e.g. that realizers of
conjunctions ϕ1 ∧ ϕ2 are pairs 〈R1, R2〉 consisting of a realizer R1 of ϕ1 and a realizer R2

of ϕ2, and that realizers of existential formulae ∃X ϕ(X) are pairs 〈B,R〉 consisting of a
witness B for the ∃X and a realizer R of ϕ(B).

Our starting point is the fact that MSO on ω-words can be completely axiomatized as a
subsystem of second-order Peano arithmetic [Sie70] (see also [Rib12]). From the classical
axiomatization of MSO, we derive an intuitionistic variant SMSO (for Synchronous MSO).
SMSO comes equipped with an extraction procedure which is sound and complete w.r.t.
Church’s synthesis: proofs in SMSO of formulae of the form ∃Y ϕ(X;Y) (with only X free)
can be translated to DMMs and such proofs exist for all solvable instances of Church’s
synthesis. Our approach is Safraless in the sense that while we do rely on McNaughton’s
Theorem for the correctness of the extraction procedure (i.e. for the “Adequacy Lemma” of
realizability), we never have to actually use McNaughton’s Theorem when extracting DMMs
from SMSO-proofs (so that the extracted DMMs never involve determinization of automata
on ω-words).2

The paper is organized as follows. We first recall in §2 some background on MSO and
Church’s synthesis. Our intuitionistic system SMSO is then presented in §3. We provide in §4
some technical material as well as detailed examples on the representation of DMMs in MSO,
and §5 presents our realizability model. Finally, in §6 we rephrase the realizability model in
terms of indexed categories (see e.g. [Jac01]), an essential step for further generalizations.

We also have included three appendices. They give detailed arguments and constructions
that we wished not to put in the body of the paper, either because they are necessary but
unsurprising technicalities (App. A and C), or because they concern important but side
results, proved with different techniques than those emphasized in this paper (App. B).

1A solution is also possible via tree automata [Rab72] (see also [KPV06, Tho09]).
2On the other hand, usual Safraless approaches to synthesis use McNaughton Theorem essentially to

bound the search space for potential finite-state realizers, see e.g. [KV05, KPV06, FJR11].

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 3

2. Church’s Synthesis and MSO on Infinite Words

2.1. Notations. Alphabets (denoted Σ,Γ, etc.) are finite non-empty sets. Concatenation
of words s, t is denoted s.t, and ε is the empty word. We use the vectorial notation both
for words and finite sequences, so that e.g. B denotes a finite sequence B1, . . . , Bn and a

denotes a word a1. · · · .an ∈ Σ∗. Given an ω-word (or stream) B ∈ Σω and n ∈ N we write
B�n for the finite word B(0). · · · .B(n − 1) ∈ Σ∗. For each k ∈ N, we still write k for the
function from N to 2 = {0, 1} which takes n to 1 iff n = k.

2.2. Church’s Synthesis and Synchronous Functions. Church’s synthesis consists in
the automatic extraction of deterministic letter-to-letter stream transducers (or deterministic
Mealy machines) from input-output specifications (see e.g. [Tho08]).

Example 2.1. As a typical specification, consider, for a machine which outputs streams
C ∈ 2ω from input streams B ∈ 2ω, the behavior (from [Tho08]) expressed by

Φ(B,C)
def.⇐⇒

 ∀n(B(n) = 1 =⇒ C(n) = 1) and
∀n(C(n) = 0 =⇒ C(n+ 1) = 1) and
(∃∞n B(n) = 0) =⇒ (∃∞n C(n) = 0)

In words, the relation Φ(B,C) imposes C(n) ∈ 2 to be 1 whenever B(n) ∈ 2 is 1, C not
be 0 at two consecutive positions, and moreover C to be infinitely often 0 whenever B is
infinitely often 0.

We are interested in the realization of such specifications by finite-state deterministic
letter-to-letter stream transducers or (deterministic) Mealy machines.

Definition 2.2 (Deterministic Mealy Machine). A deterministic Mealy machine (DMM)
M with input alphabet Σ and output alphabet Γ (notation M : Σ→ Γ) is given by a finite
set of states QM with a distinguished initial state qıM ∈ QM, and a transition function
∂M : QM × Σ→ QM × Γ.

We write ∂oM for π2 ◦ ∂M : QM × Σ→ Γ and ∂∗M for the map Σ∗ → QM obtained by
iterating ∂M from the initial state: ∂∗M(ε) := qıM and ∂∗M(a.a) := π1(∂M(∂∗M(a), a)).

A DMM M : Σ→ Γ induces a function F : Σω → Γω obtained by iterating ∂oM along
the input: F (B)(n) = ∂oM(∂∗M(B�n), B(n)). Hence F can produce a prefix of length n of its
output from a prefix of length n of its input. These functions are called synchronous (or
causal).

Definition 2.3 (Synchronous Function). A function F : Σω → Γω is synchronous if for all
n ∈ N and all B,C ∈ Σω we have F (B)�n = F (C)�n whenever B�n = C�n. We say that a
synchronous function F is finite-state if it is induced by a DMM.

We write F : Σ →S Γ when F is a synchronous function Σω → Γω, and F : Σ →M Γ
when F is finite-state synchronous.

Examples 2.4.

(1) The identity function Σω → Σω is finite-state synchronous as being induced by the
DMM with state set 1 = {•} and identity transition function ∂ : (•, a) 7−→ (•, a).

(2) The DMM depicted in Fig. 1 (left) induces a synchronous function F : 2ω → 2ω such
that F (B)(n+ 1) = 1 iff B(n) = 1.

4 PIERRE PRADIC AND COLIN RIBA

0 10|0
1|0

0|1
1|1 0 1

0|1 , 1|1
1|1

0|0

Figure 1: Examples of DMMs (where a transition a|b outputs b from input a).

(3) The DMM depicted in Fig. 1 (right), taken from [Tho08], induces a synchronous function
F : 2 →M 2 such that Φ(B,F (B)) holds for all B ∈ 2ω, where Φ is the relation of
Ex. 2.1.

(4) Synchronous functions are obviously continuous (taking the product topology on Σω and
Γω, with Σ,Γ discrete), but there are continuous functions which are not synchronous,
for instance the function P : 2ω → 2ω such that P (B)(n) = 1 iff B(n+ 1) = 1.

For the definition and adequacy of our realizability interpretation (§5), it is convenient to
note that alphabets and (finite-state) synchronous functions form a category.

Proposition 2.5. Synchronous functions form a category S whose objects are alphabets
and whose morphisms from Σ to Γ are the synchronous functions Σ→S Γ. The identity on
Σ is the synchronous function of Ex. 2.4.(1), and composition is usual function composition.
Moreover, if the S-maps F : Σ→S Γ and G : Γ→S ∆ are finite-state, then so is G ◦ F .

Proof. Since sets and functions form a category, S is a category as soon as composition of
functions preserves synchronicity. Consider synchronous G : Γω → ∆ω and F : Σω → Γω.
Assume B,C ∈ Σω and n ∈ N such that B�n = C�n. Then since F is synchronous it follows
that F (B)�n = F (C)�n, and since G is synchronous we deduce G(F (B))�n = G(F (C))�n,
that is

(G ◦ F)(B)�n = (G ◦ F)(C)�n

For the second part of the statement, assume that G and F are induced respectively by
N : Γ→ ∆ and M : Σ→ Γ. Then G ◦ F is induced by the DMM

(K : Σ→ ∆) :=
(
QM ×QN , (qıM, q

ı
N) , ∂K

)
whose transition function

∂K : (QM ×QN)× Σ −→ (QM ×QN)×∆

takes ((qM, qN) , a) to ((q′M, q
′
N) , d) with

(q′N , d) := ∂N (qN , b)
(q′M , b) := ∂M(qM, a)

Proposition 2.5 implies that S has a wide subcategory consisting of finite-state functions.

Definition 2.6 (The Category M). Let M be the category whose objects are alphabets
and whose morphisms from Σ to Γ are finite-state synchronous functions Σ→M Γ.

Note that for M to be a category (namely for the associativity and identity laws of
composition) it is essential that M-maps consist of functions rather than machines. The
following obvious fact is useful for our realizability model (§5).

Remark 2.7. Functions f : Σ→ Γ induce M-maps [f] : Σ→M Γ.

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 5

Atoms: α ::= x
.
= y | x ≤̇ y | S(x, y) | Z(x) | x ∈̇ X | > | ⊥

Deterministic formulae: δ, δ′ ::= α | δ ∧ δ′ | ¬ϕ
MSO formulae: ϕ,ψ ::= δ | ϕ ∧ ψ | ∃xϕ | ∃X ϕ

Figure 2: The Formulae of MSO and SMSO.

It is also worth noticing that the category M has finite products.

Proposition 2.8. The category M has finite products. The product of Σ1, . . . ,Σn (for
n ≥ 0) is given by the Set-product Σ1 × · · · × Σn (so that 1 is terminal in M).

2.3. Monadic Second-Order Logic (MSO) on Infinite Words. We consider a formu-
lation of MSO based on a purely relational two-sorted language, with a specific choice of
atomic formulae. There is a sort of individuals, with variables x, y, z, etc., and a sort of
(monadic) predicates, with variables X,Y, Z, etc. Our formulae for MSO, denoted ϕ,ψ, etc.,
are given in Fig. 2. They are defined by mutual induction with the deterministic formulae
(denoted δ, δ′, etc.) from atomic formulae ranged over by α.

MSO formulae are interpreted in the standard model N of ω-words as usual. Individual
variables range over natural numbers n,m, . . . ∈ N and predicate variables range over sets of
natural numbers B,C, . . . ∈ P(N) ' 2ω. The atomic predicates are interpreted as expected:
.
= is equality, ∈̇ is membership, ≤̇ is the relation ≤ on N, S is the successor relation, and
Z holds on n iff n = 0. We write N |= ϕ when the closed formula ϕ holds under this
interpretation.

We often write X(x) or even Xx for x ∈̇ X. We also use the following abbreviations.

Notation 2.9. Given formulae ϕ and ψ, we let

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ∀xϕ := ¬∃x¬ϕ
ϕ→ ψ := ¬(ϕ ∧ ¬ψ) ∀X ϕ := ¬∃X ¬ϕ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ) x <̇ y :=

(
x ≤̇ y ∧ ¬(x

.
= y)

)
∃x ≤̇ y ϕ := ∃x (x ≤̇ y ∧ ϕ) ∀x ≤̇ y ϕ := ∀x (x ≤̇ y → ϕ)
∃x <̇ y ϕ := ∃x (x <̇ y ∧ ϕ) ∀x <̇ y ϕ := ∀x (x <̇ y → ϕ)

We moreover let, for z not free in ϕ:

∃∞x ϕ := ∀z ∃x (z ≤̇ x ∧ ϕ) ∀∞x ϕ := ∃z ∀x (z ≤̇ x → ϕ)

MSO on ω-words is known to be decidable by Büchi’s Theorem [Büc62].

Theorem 2.10 (Büchi [Büc62]). MSO over N is decidable.

Following [Büc62] (but see also e.g. [PP04, VW08]), the (non-deterministic) automata
method for deciding MSO proceeds by a recursive translation of MSO-formulae to non-
deterministic Büchi automata (NBAs). An NBA is an NFA running on ω-words and for
which an (infinite) run is accepting if it has infinitely many occurrences of final states.

The crux of Büchi’s Theorem is the effective closure of NBAs under complement. Let us
recall a few known facts on the complementation of NBAs (see e.g. [Tho97, GTW02]). First,
the translation of MSO-formulae to automata is non-elementary. Second, its is known that
deterministic Büchi automata (DBAs) are strictly less expressive than NBAs. Finally, it is
known that complementation of NBAs is algorithmically hard: there is a family of languages

6 PIERRE PRADIC AND COLIN RIBA

(Ln)n>0 such that each Ln can be recognized by an NBA with n+ 2 states, but such that
the complement of Ln cannot be recognized by an NBA with less than n! states.

2.4. Church’s Synthesis for MSO. Church’s synthesis problem for MSO is the following.
Given as input an MSO-formula ϕ(X;Y) (with only free variables X = X1, . . . , Xp and

Y = Y1, . . . , Yq),

(1) decide whether there exist finite-state synchronous functions F = F1, . . . , Fq (with each

Fi : 2p →M 2, so that F : 2p →M 2q collectively) such that N |= ϕ(B;F (B)) for all
B ∈ (2ω)p ' (2p)ω, and

(2) construct such F whenever they exist.

Given a formula ϕ(X,Y) as above, we say that F : 2p →M 2q realizes ϕ(X;Y) in the
sense of Church (or Church-realizes ϕ(X;Y)) when ϕ(B,F (B)) holds for all B.

Example 2.11. The specification Φ of Ex. 2.1 can be officially written in the language of
MSO as the following formula φ(X;Y):

∀t
(
Xt → Y t

)
∧ ∀t ∀t′

(
S(t, t′) → ¬Y t → Y t′

)
∧
(
(∃∞t ¬Xt) → (∃∞t ¬Y t)

)
Church’s synthesis has been shown to be solvable by Büchi & Landweber [BL69], using
automata on ω-words and infinite two-player games (a solution is also possible via tree
automata [Rab72]): there is an algorithm which, on input ϕ(X;Y), (1) decides whether a
finite-state synchronous Church-realizer of ϕ(X;Y) exists, and if yes (2) provides a DMM
implementing it.

The standard algorithm solving Church’s synthesis for MSO (see e.g. [Tho08]) proceeds
via McNaughton’s Theorem ([McN66], see also e.g. [PP04, Tho97]), which states that Büchi
automata can be translated to equivalent deterministic finite-state automata, but equipped
with stronger acceptance conditions than Büchi automata. There are different variants of
such conditions: Muller, Rabin, Streett or parity conditions (see e.g. [Tho97, GTW02, PP04]).
All of them can specify states which must not occur infinitely often in an accepting run.
For the purpose of this paper, we only need to consider the simplest of them, the Muller
conditions. A Muller condition is given by a family of set of states T , and a run is accepting
when the set of states occurring infinitely often in it belongs to the family T .

Theorem 2.12 (McNaughton [McN66]). Each NBA is equivalent to a deterministic Muller
automaton.

There is a lower bound in 2Ω(n log(n)) on the number of states of a deterministic Muller
automaton equivalent to an NBA with n states [Yan08]. The best known constructions for
McNaughton’s Theorem (such as Safra’s construction or its variants) give deterministic

Muller automata with 2O(n log(n)) states from NBAs with n states.
The standard solution to Church’s synthesis for MSO starts by translating ϕ(X;Y)

to a deterministic Muller automaton, and then turns this deterministic automaton into a
two-player sequential game, in which the Opponent ∀bélard plays input bit sequences in
2p while the Proponent ∃löıse replies with output bit sequences in 2q, so that Proponent’s
strategies correspond to synchronous functions 2p →S 2q. The game is equipped with an
ω-regular winning condition (induced by the acceptance condition of the Muller automaton).
The solution is then provided by Büchi-Landweber Theorem [BL69], which states that
ω-regular games on finite graphs are effectively determined, and moreover that the winner
always has a finite-state winning strategy.

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 7

ϕ,ϕ ` ϕ
ϕ ` ψ ϕ,ψ ` ϕ

ϕ ` ϕ
ϕ ` ϕ ϕ ` ¬ϕ

ϕ ` ⊥
ϕ,ϕ ` ⊥
ϕ ` ¬ϕ

ϕ ` ϕ ϕ ` ψ
ϕ ` ϕ ∧ ψ

ϕ ` ϕ ∧ ψ
ϕ ` ϕ

ϕ ` ϕ ∧ ψ
ϕ ` ψ

ϕ ` ϕ[y/x]

ϕ ` ∃xϕ
ϕ ` ϕ[Y/X]

ϕ ` ∃X ϕ

ϕ ` ∃xϕ ϕ, ϕ ` ψ
ϕ ` ψ

(x not free in ϕ,ψ)
ϕ ` ∃X ϕ ϕ,ϕ ` ψ

ϕ ` ψ
(X not free in ϕ,ψ)

Figure 3: Logical Rules of MSO and SMSO.

ϕ ` ϕ
ϕ,ψ ` ϕ

ϕ ` ⊥
ϕ ` ϕ

ϕ,ϕ ` ψ
ϕ ` ϕ→ ψ

ϕ ` ϕ→ ψ ϕ ` ϕ
ϕ ` ψ

ϕ ` ϕ
ϕ ` ϕ ∨ ψ

ϕ ` ψ
ϕ ` ϕ ∨ ψ

ϕ ` ϕ ∨ ψ ϕ,ϕ ` θ ϕ, ψ ` θ
ϕ ` θ

ϕ ` ϕ
ϕ ` ∀xϕ

(x not free in ϕ)
ϕ ` ∀xϕ
ϕ ` ψ[y/x]

ϕ ` ϕ
ϕ ` ∀X ϕ

(X not free in ϕ)
ϕ ` ∀X ϕ

ϕ ` ψ[Y/X]

Figure 4: Admissible Rules of MSO.

Example 2.13. Consider the last conjunct φ2[X,Y] := (∃∞t ¬Xt) → (∃∞t ¬Y t) of
the formula φ(X;Y) of Ex. 2.11. When translating φ2 to a finite-state automaton, the
positive occurrence of (∃∞t ¬Y t) can be translated to a DBA. However, the negative
occurrence of (∃∞t ¬Xt) corresponds to (∀∞t Xt) and cannot be translated to a deterministic
Büchi automaton. Even if a very simple two-states Muller automaton exists for (∀∞t Xt),
McNaughton’s Theorem 2.12 is in general required for Boolean combinations of ∃∞t (−)’s.

2.5. An Axiomatization of MSO. Our approach to Church’s synthesis relies on the fact
that the MSO-theory of N can be completely axiomatized as a subsystem of second-order
Peano arithmetic [Sie70] (see also [Rib12]). For the purpose of this paper, it is convenient to
axiomatize MSO with the non-logical rules of Fig. 5 together with the following comprehension
and induction rules:

ϕ ` ϕ[ψ[y]/X]

ϕ ` ∃X ϕ

ϕ,Z(z) ` ϕ[z/x] ϕ,S(y, z), ϕ[y/x] ` ϕ[z/x]

ϕ ` ϕ
(2.1)

where z and y do not occur free in ϕ,ϕ, and where ϕ[ψ[y]/X] is the usual formula substitution,
which commutes over all connectives (avoiding the capture of free variables), and with
(x ∈̇ X)[ψ[y]/X] = ψ[x/y]. As for the logical rules of MSO, we consider the presentation of
two-sorted classical logic consisting of the rules of Fig. 3 together with the following rule of
double negation elimination:

ϕ ` ¬¬ϕ
ϕ ` ϕ

(2.2)

Definition 2.14 (Deduction for MSO). The deduction system of MSO is given by the rules
of two-sorted classical logic (Fig. 3 and (2.2)) together with the rules of Fig. 5 and (2.1).

8 PIERRE PRADIC AND COLIN RIBA

Equality Rules:

ϕ ` x .
= x

ϕ ` ϕ[y/x] ϕ ` y .
= z

ϕ ` ϕ[z/x]

Partial Order Rules:

ϕ ` x ≤̇ x
ϕ ` x ≤̇ y ϕ ` y ≤̇ z

ϕ ` x ≤̇ z
ϕ ` x ≤̇ y ϕ ` y ≤̇ x

ϕ ` x .
= y

Basic Z and S Rules (total injective relations):

ϕ ` ∃y Z(y)

ϕ ` Z(x) ϕ ` Z(y)

ϕ ` x .
= y

ϕ ` ∃y S(x, y)

ϕ ` S(y, x) ϕ ` S(z, x)

ϕ ` y .
= z

ϕ ` S(x, y) ϕ ` S(x, z)

ϕ ` y .
= z

Arithmetic Rules:

ϕ ` S(x, y) ϕ ` Z(y)

ϕ ` ⊥
ϕ ` S(x, y)

ϕ ` x ≤̇ y
ϕ ` S(y, y′) ϕ ` x ≤̇ y′ ϕ ` ¬(x

.
= y′)

ϕ ` x ≤̇ y

Figure 5: Arithmetic Rules of MSO and SMSO.

We write ϕ `MSO ϕ if ϕ ` ϕ is provable in MSO. We also write MSO ` ϕ for `MSO ϕ.

Remark 2.15. As usual with classical logic, the rules of Fig. 4 (where →,∨, ∀ are the
defined connectives of Notation 2.9) are admissible in MSO.

As announced, deduction for MSO is complete w.r.t. the standard model N.

Theorem 2.16 (Siefkes [Sie70]). For every closed formula ϕ, we have N |= ϕ if and only if
MSO ` ϕ.

Actually obtaining Thm. 2.16 from [Sie70] or [Rib12] requires some easy but tedious
work. We discuss here the latter option. The difference between [Rib12] and the present
system is that the axiomatization of [Rib12] is expressed in terms of the strict part of ≤̇
(written <̇, see Notation 2.9) and that comprehension is formulated with the following usual
axiom scheme (where X is not free in ϕ):

∃X ∀x
(
X(x) ←→ ϕ[x/y]

)
(2.3)

We state here the properties required to bridge the gap between [Rib12] and the present
axiomatization of MSO. Missing details are provided in App. A. First, the comprehension
scheme of the present version of MSO directly implies (2.3), since using

∀x
(
ϕ[x/y] ←→ ϕ[x/y]

)
= ∀x

(
X(x) ←→ ϕ[x/y]

)
[ϕ[y]/X]

we have

ϕ ` ∀x
(
ϕ[x/y] ←→ ϕ[x/y]

)
ϕ ` ∃X∀x

(
X(x) ←→ ϕ[x/y]

)
In order to deal with the <̇-axioms of [Rib12], we rely on a series of arithmetical lemmas of
MSO displayed in Fig. 6.

Lemma 2.17. MSO proves all the sequents of Fig. 6.

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 9

(1) ` ¬(x <̇ x)

(2) x <̇ y, y <̇ z ` x <̇ z

(3) S(x, y), x
.
= y ` ⊥

(4) ` ∀x∃y(x <̇ y)

(5) S(y, y′), x ≤̇ y, x .
= y′ ` ⊥

(6) Z(x) ` x ≤̇ y

(7) x ≤̇ y, Z(y) ` Z(x)

(8) ∀y(x ≤̇ y) ` Z(x)

(9) x <̇ y, S(x, x′) ` x′ ≤̇ y

(10) x ≤̇ y, S(x, x′), S(y, y′) ` x′ ≤̇ y′

(11) ` ∀x∀y
[
y <̇ x ←→ ∃z

(
y ≤̇ z ∧ S(z, x)

)]
(12) ` x <̇ y ∨ x .

= y ∨ y <̇ x

(13) ` ∀x∀y
[
S(x, y) ←→

(
x <̇ y ∧ ¬∃z(x <̇ z <̇ y)

)]
Figure 6: Some Arithmetic Lemmas of MSO.

Finally, the induction axiom of [Rib12] is the usual strong induction axiom:

∀X
[
∀x
(
∀y(y <̇ x→ Xy) −→ Xx

)
−→ ∀xXx

]
(2.4)

Lemma 2.18. MSO proves the strong induction axiom (2.4).

The detailed proofs of Lem. 2.17 and Lem. 2.18 are deferred to App. A.

3. SMSO: A Synchronous Intuitionistic Variant of MSO

We now introduce SMSO, an intuitionistic variant of MSO equipped with an extraction
procedure, which is sound and complete w.r.t. Church’s synthesis: proofs of existential
statements can be translated to finite-state synchronous Church-realizers, and such proofs
exist for each solvable instance of Church’s synthesis (Thm. 3.7, §3.2).

As it is common with intuitionistic versions of classical systems, SMSO has the same
language as MSO, and its deduction rules are based on intuitionistic predicate calculus
(Fig. 3). As expected, SMSO contains MSO via negative translation. Actually, our limited
vocabulary without primitive universal quantifications allows for a Glivenko Theorem, in
the sense that SMSO proves ¬¬ϕ iff MSO proves ϕ (Thm. 3.6, §3.1). In order for SMSO to
contain a negative translation of MSO while admitting a computational interpretation in the
sense of §5, one has to devise appropriate counterparts to the comprehension and induction
rules of MSO (2.1):

ϕ ` ϕ[ψ[y]/X]

ϕ ` ∃X ϕ

ϕ,Z(z) ` ϕ[z/x] ϕ,S(y, z), ϕ[y/x] ` ϕ[z/x]

ϕ ` ϕ

10 PIERRE PRADIC AND COLIN RIBA

(where z, y do not occur free in ϕ,ϕ). First, SMSO cannot have the comprehension rule of
MSO. The reason is that monadic variables are computational objects in the realizability
interpretation of SMSO (§5), while the comprehension rule of MSO has instances in which
the existential monadic quantification cannot be witnessed by computable functions from
the parameters of ϕ, ψ and ϕ. The situation is similar to that of higher-type intuitionistic
(Heyting) arithmetic, in which predicates, represented as characteristic functions, are com-
putational objects (see e.g. [Koh08]).3 The usual solution in that setting is to only admit
negative translations of comprehension. We take a similar approach for SMSO. In view of
Glivenko’s Theorem 3.6, this amounts to equip SMSO with the negative comprehension rule:

ϕ ` ϕ[ψ[y]/X]

ϕ ` ¬¬∃Xϕ
(3.1)

Second, for the extraction of finite-state synchronous functions from proofs, the induction
scheme of MSO also has to be restricted. Recall the deterministic formulae of Fig. 2:

δ, δ′ ::= α | δ ∧ δ′ | ¬ϕ
Deterministic formulae are to be interpreted by deterministic (not nec. Büchi) automata,
and thus have trivial realizers in the sense of §5. As a consequence, we can trivially realize
the following deterministic induction rule (where z, y do not occur free in ϕ, δ):

ϕ,Z(z) ` δ[z/x] ϕ,S(y, z), δ[y/x] ` δ[z/x]

ϕ ` δ
(3.2)

In addition, since deterministic formulae have trivial realizers, we can safely assume in SMSO
the elimination of double negation on deterministic formulae:

ϕ ` ¬¬δ
ϕ ` δ

(3.3)

Note that (3.3) would follow, using the rules of Fig. 3, by simply assuming elimination of
double negation for atomic formulae. Note also that (3.3) would follow from induction in a
setting like Heyting arithmetic.

Furthermore, SMSO is equipped with a positive synchronous restriction of the com-
prehension rule of MSO, which gives Church-realizers for all solvable instances of Church’s
synthesis. This synchronous restriction of comprehension asks the comprehension formula
to be uniformly bounded in the following sense.

Definition 3.1 (Relativized and Bounded Formulae).

(1) Given formulae ϕ and θ and a variable y, the relativization of ϕ to θ[y] (notation ϕ�θ[y])
is defined by induction on ϕ as usual:

α�θ[y] := α (ϕ ∧ ψ)�θ[y] := ϕ�θ[y] ∧ ψ�θ[y] (¬ϕ)�θ[y] := ¬(ϕ�θ[y])

(∃X ϕ)�θ[y] := ∃X ϕ�θ[y] (∃xϕ)�θ[y] := ∃x (θ[x/y] ∧ ϕ�θ[y])

where, in the clauses for ∃, the variables x and X are assumed not to occur free in θ.
(2) A formula ϕ̂ is bounded by x if it is of the form ψ�(y ≤̇ x)[y] (notation ψ�[− ≤̇ x]). It is

uniformly bounded if moreover x is the only free individual variable of ϕ̂.

As we shall see in §4.3, bounded formulae correspond to the formulae of MSO over finite
words. We are now ready to define the system SMSO.

3This contrasts with second-order logic based on Girard’s System F [Gir72] (see also [GLT89]), in which
second-order variables have no computational content.

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 11

Definition 3.2 (The Logic SMSO). The logic SMSO has the same language as MSO. Its
deduction rules are those given in Fig. 3 together with the rules of Fig. 5, the rules (3.1),
(3.2), (3.3), and the following rule of synchronous comprehension in which ϕ̂ is uniformly
bounded by y:

ϕ ` ψ[ϕ̂[y]/X]

ϕ ` ∃X ψ

Similarly as with MSO, we write ϕ `SMSO ϕ if ϕ ` ϕ is provable in SMSO, and we write
SMSO ` ϕ for `SMSO ϕ.

Remark 3.3. As usual with natural deduction systems, SMSO satisfies the substitution
lemma, which gives the admissibility of the cut rule. We included that rule in SMSO because
it corresponds to the composition of realizers in the realizability model, and thus has a
natural computational interpretation.

Notation 3.4. In the following, we use a double horizontal line to denote admissible rules.
For instance, we freely use the weakening rule

ϕ ` ϕ
ϕ,ψ ` ϕ

with the notation
ϕ ` ϕ
ϕ,ψ ` ϕ

Remark 3.5. Note that SMSO has a limited set of connectives. In contrast with MSO,
which is based on classical logic, the derived connectives of Notation 2.9 do not define the
usual corresponding intuitionistic connectives. For example, with ψ → ϕ = ¬(ψ ∧ ¬ϕ) as in
Not. 2.9, while the usual →-introduction rule is admissible in SMSO:

ϕ,ψ ∧ ¬ϕ ` ψ ∧ ¬ϕ
ϕ,ψ ∧ ¬ϕ ` ψ

ϕ,ψ ` ϕ
ϕ,ψ ∧ ¬ϕ,ψ ` ϕ

ϕ,ψ ∧ ¬ϕ ` ϕ
ϕ,ψ ∧ ¬ϕ ` ψ ∧ ¬ϕ
ϕ,ψ ∧ ¬ϕ ` ¬ϕ

ϕ,ψ ∧ ¬ϕ ` ⊥
ϕ ` ψ → ϕ

the elimination rule of → is only admissible for implications with deterministic r.-h.s:

ϕ ` ψ
ϕ,¬δ ` ψ ϕ,¬δ ` ¬δ

ϕ,¬δ ` ψ ∧ ¬δ
ϕ ` ψ → δ

ϕ,¬δ ` ψ → δ

ϕ,¬δ ` ⊥
ϕ ` ¬¬δ
ϕ ` δ

On the other hand, usual ¬-rules are admissible in SMSO (even without using deterministic
double negation elimination):

ϕ,ϕ ` ¬ψ
ϕ,ψ ` ¬ϕ ϕ,ϕ ` ¬¬ϕ

ϕ,ϕ ` ψ
ϕ,¬ψ ` ¬ϕ

ϕ,¬¬¬ϕ ` ¬ϕ
ϕ,ϕ ` ψ

ϕ,¬¬ϕ ` ¬¬ψ
ϕ,ψ ` ¬ϕ

ϕ,¬¬ψ ` ¬ϕ

(3.4)

12 PIERRE PRADIC AND COLIN RIBA

Indeed, the second rule of the first line follows from the first one, and the third rule is
obtained from the first two ones. The rules of the second line all follow from the last two
rules of the first line. Finally, the first rule of the first line is obtained as usual:

ϕ,ϕ ` ¬ψ
ϕ,ψ, ϕ ` ¬ψ ϕ,ψ, ϕ ` ψ

ϕ,ψ, ϕ ` ⊥
ϕ,ψ ` ¬ϕ

3.1. A Glivenko Theorem for MSO. The limited vocabulary of MSO without primitive
universal quantifications allows for a Glivenko Theorem, in the sense that SMSO proves
¬¬ϕ iff MSO proves ϕ. While Glivenko’s Theorem is often stated for propositional logic,
it also holds in presence of existential quantifications (see e.g. [Kle52, Thm. 59.(b), §81]
or [Koh08, §10.1]), but does not extend to universal quantifications (see e.g. [Koh08, §11]).
In particular, we would have relied on usual recursive negative translations if MSO had
primitive universal quantifications.

Theorem 3.6 (Glivenko’s Theorem for MSO and SMSO). If MSO ` ϕ, then SMSO ` ¬¬ϕ.

Proof. By induction on MSO-derivations, we show that if ϕ ` ϕ is derivable in MSO, then
ϕ ` ¬¬ϕ is derivable in SMSO. This amounts to showing that for every MSO-rule of the
form

(ϕi ` ϕi)i∈I
ψ ` ψ

the following rule is admissible in SMSO:

(ϕi ` ¬¬ϕi)i∈I
ψ ` ¬¬ψ

The logical rules of MSO may be treated exactly as in the usual proof of Glivenko’s Theorem.
It remains to deal with the non-logical rules of MSO.

Comprehension: We have to prove that the following is admissible in SMSO:

ϕ ` ¬¬ψ[ϕ[y]/X]

ϕ ` ¬¬∃X ψ

But this directly follows from the negative comprehension scheme of SMSO together with
the last rule of (3.4):

ϕ ` ¬¬ψ[ϕ[y]/X]

ϕ,ψ[ϕ[y]/X] ` ψ[ϕ[y]/X]

ϕ,ψ[ϕ[y]/X] ` ¬¬∃X ψ

ϕ,¬¬ψ[ϕ[y]/X] ` ¬¬∃X ψ

ϕ ` ¬¬∃X ψ

Induction: We need to show that the following is admissible in SMSO:

ϕ,Z(z) ` ¬¬ϕ[z/x] ϕ,S(y, z), ϕ[y/x] ` ¬¬ϕ[z/x]

ϕ ` ¬¬ϕ
(z, y not free in ϕ,ϕ)

But this follows from deterministic induction together with the last rule of (3.4):

ϕ,Z(z) ` ¬¬ϕ[z/x]

ϕ,S(y, z), ϕ[y/x] ` ¬¬ϕ[z/x]

ϕ,S(y, z),¬¬ϕ[y/x] ` ¬¬ϕ[z/x]

ϕ ` ¬¬ϕ

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 13

Arithmetic Rules (Fig. 5): All these rules can be treated the same way. We only detail
the case of elimination of equality. We have to show that the following rule is admissible
in SMSO:

ϕ ` ¬¬ϕ[x/z] ϕ ` ¬¬(x
.
= y)

ϕ ` ¬¬ϕ[y/z]
(3.5)

First, note that elimination of equality in SMSO gives

ϕ,ϕ[x/z], x
.
= y ` ϕ[y/z]

from which (3.4) gives

ϕ,¬¬ϕ[x/z],¬¬(x
.
= y) ` ¬¬ϕ[y/z]

We then obtain the rule (3.5) by successively cutting ¬¬ϕ[x/z] and ¬¬(x
.
= y) with the

corresponding premise of (3.5).

3.2. The Main Result. We are now ready to state the main result of this paper, which says
that SMSO is correct and complete (w.r.t. its provable existentials) for Church’s synthesis.

Theorem 3.7 (Main Theorem). Consider a formula ϕ(X;Y) with only X,Y free.

(1) From a proof of ∃Y ϕ(X;Y) in SMSO, one can extract a finite-state synchronous Church-
realizer of ϕ(X;Y).

(2) If ϕ(X;Y) admits a (finite-state) synchronous Church-realizer, then ∃Y ¬¬ϕ(X;Y) is
provable in SMSO.

The correctness part (1) of Thm. 3.7 is be proved in §5 using a notion of realizability for
SMSO based on automata and synchronous finite-state functions. The completeness part (2)
is proved in §4.1, relying on the completeness of the axiomatization of MSO (Thm. 2.16)
together with the correctness of the negative translation ¬¬(−) (Thm. 3.6).

4. On the Representation of Deterministic Mealy Machines in MSO

This section gathers several (possibly known) results related to the representation of DMMs
in MSO. We begin in §4.1 with the completeness part of Thm. 3.7, which follows usual
representations of automata in MSO (see e.g. [Tho97, §5.3]). In §4.2, we then recall
from [Sie70, Rib12] the Recursion Theorem, which is a convenient tool to reason on runs
of deterministic automata in MSO. In §4.3 we state a Lemma for the correctness part of
Thm. 3.7, which relies on the usual translation of MSO-formulae over finite words to DFAs
(see e.g. [Tho97, §3.1]). Finally, in §4.4 we give a possible strengthening of the synchronous
comprehension rule of SMSO, based on Büchi’s Theorem 2.10.

We work with the following notion of representation. Recall from §2.1 that for k ∈ N,
we still write k for the function from N to 2 which takes n to 1 iff n = k.

Definition 4.1 (Representation). Let ϕ be a formula with free variables among z, x1, . . . , x`,
X1, . . . , Xp. We say that ϕ z-represents F : 2` × 2p −→M 2 if for all n ∈ N, all B ∈ (2ω)p,

and all k ∈ N` such that ki ≤ n for all i ≤ `, we have

F (k,B)(n) = 1 iff N |= ϕ[n/z, k/x,B/X] (4.1)

14 PIERRE PRADIC AND COLIN RIBA

For F : 2` × 2p →M 2 as in Def. 4.1, we write F : 2p →M 2 (resp. F : 2` →M 2) in case
` = 0 (resp. p = 0).

4.1. Internalizing Deterministic Mealy Machines in MSO. The completeness part (2)
of Thm. 3.7 relies on the following simple fact.

Proposition 4.2. For every finite-state synchronous F : 2p −→M 2, one can build a
deterministic uniformly bounded formula δ(X,x) which x-represents F .

Proof. The proof is a simple adaptation of the usual pattern (see e.g. [Tho97, §5.3]). Let
F : 2p →M 2 be induced by a DMM M. W.l.o.g. we can assume the state set of M to be
2q for some q ∈ N. The transition function ∂ of M is thus of the form

∂ : 2q × 2p −→ 2q × 2

Let I[s1, . . . , sq] be a propositional formula in the propositional variables s1, . . . , sq such that
for s ∈ 2q, I[s] holds iff s is the initial state of M. Further, let

H[s1, . . . , sq , a1, . . . , ap , b , s
′
1, . . . , s

′
q]

be a propositional formula in the propositional variables s1, . . . , sq, a1, . . . , ap, b, s
′
1, . . . , s

′
q

such that for s ∈ 2q, a ∈ 2p, b ∈ 2 and s′ ∈ 2q, we have H[s, a, b, s′] iff ∂(s, a) = (s′, b).
Then F is x-represented by the formula

δ(X,x) := ∀Q,Y
([
∀t ≤̇ x(Z(t)→ I[Q(t)]) ∧
∀t, t′ ≤̇ x (S(t, t′)→ H[Q(t), X(t), Y (t), Q(t′)])

]
−→ Y x

)
(4.2)

where X = X1, . . . , Xp codes sequences of inputs, Y codes sequences of outputs, and where

Q = Q1, . . . , Qq codes runs.

Remark 4.3. In the proof of Prop. 4.2, sinceM is deterministic, we can assume the formula
I[Q(t)] to be of the form

∧
1≤i≤q[Qi(t)↔ Bi] with Bi ∈ {>,⊥}, and, for some propositional

formulae O[−,−],D[−,−], the formula H[Q(t), X(t), Y (t), Q(t′)] to be of the form(
Y (t)←→ O[Q(t), X(t)]

)
∧

∧
1≤i≤q

(
Qi(t

′)←→ Di[Q(t), X(t)]
)

where O codes the outputs of M while the Di’s represent its transition relation on states.

Example 4.4. The function induced by the DMM of Ex. 2.4.(3) (depicted in Fig. 1, right),
is represented by a formula of the form (4.2) with Q = Q (since the machine has state set
2), X = X, and where I[−] := [(−)↔ ⊥] (since state 0 is initial) and (following Rem. 4.3)

O[Q(t), X(t)] = D[Q(t), X(t)] = (¬Q(t) ∨ [Q(t) ∧X(t)]) (4.3)

The completeness of our approach to Church’s synthesis is obtained as follows.

Proof of Thm. 3.7.(2). Assume that ϕ(X;Y) admits a realizer F : 2p −→M 2q. Using the
Cartesian structure of M (Prop. 2.8), we write F = F = F1, . . . , Fq with Fi : 2p →M 2.

We thus have N |= ϕ[B/X,F (B)/Y] for all B ∈ (2ω)p ' (2p)ω. Now, by Prop. 4.2 there
are uniformly bounded (deterministic) formulae δ = δ1, . . . , δq, with free variables among

X,x, and such that (4.1) holds for all i = 1, . . . , q. It thus follows that N |= ∀Xϕ[δ[x]/Y].
Then, by completeness (Thm. 2.16) we know that ` ϕ[δ[x]/Y] is provable in MSO, and by
negative translation (Thm. 3.6) we get SMSO ` ¬¬ϕ[δ[x]/Y]. We can then apply (q times)
the synchronous comprehension scheme of SMSO and obtain SMSO ` ∃Y ¬¬ϕ(X;Y).

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 15

Example 4.5. Recall the specification of Ex. 2.1 from [Tho08], represented in MSO by the
formula φ(X;Y) of Ex. 2.11. Write φ(X;Y) = φ0(X,Y) ∧ φ1(X,Y) ∧ φ2(X,Y) where

φ0(X,Y) := ∀t (Xt → Y t)
φ1(X,Y) := ∀t ∀t′

(
S(t, t′) → ¬Y t → Y t′

)
φ2(X,Y) := (∃∞t ¬Xt) → (∃∞t ¬Y t)

Note that φ0 and φ1 are monotonic in Y , while φ2 is anti-monotonic in Y . The formula
φ0 is trivially realized by the identity function 2 →M 2 (see Ex. 2.4.(1)), which is itself
represented by the deterministic uniformly bounded formula δ0(X,x) := (x ∈̇ X). For φ1

(which asks Y not to have two consecutive occurrences of 0), consider

δ1(X,x) := δ0(X,x) ∨ ∃t ≤̇ x
(
S(t, x) ∧ ¬X(t)

)
We have MSO ` φ0[X, δ1[x]/Y] since δ0 `MSO δ1 and moreover MSO ` φ1[X, δ1[x]/Y] since

S(t, t′) , ¬Xt , ¬∃u
(
S(u, t) ∧ ¬Xu

)
`MSO Xt′ ∨ ∃u′

(
S(u′, t′) ∧ ¬Xu′

)
The case of φ2 in Ex. 4.5 is more complex. The point is that φ2[δ1[x]/Y] does not hold

because if ∀∞t ¬Xt (that is if X remains constantly 0 from some time on), then we have
∀∞t δ1[x] (so that Y stays constantly 1 from some time on). On the other hand, the machine
of Ex. 2.4.(3) involves internal states, and can be represented using a fixpoint formula of the
form (4.2). Reasoning on such formulae is easier with more advanced tools on MSO, that we
provide in §4.2.

4.2. The Recursion Theorem. Theorem 3.7.(2) ensures that SMSO is able to handle all
solvable instances of Church’s synthesis, but it gives no hint on how to actually produce proofs.
When reasoning on fixpoint formulae as those representing DMMs in Prop. 4.2, a crucial
role is played by the Recursion Theorem for MSO [Sie70] (see also [Rib12]). The Recursion
Theorem makes it possible to define predicates by well-founded induction w.r.t. the relation
<̇ (Notation 2.9). Given formulae ψ = ψ1, . . . , ψq and variables x and X = X1, . . . , Xq, we

say that ψ is x-recursive in X when the following formula Recx
X

(ψ) holds:

∀z∀Z∀Z ′
 ∧

1≤i≤q
∀y <̇ z

(
Ziy ←→ Z ′iy

)
−→

∧
1≤i≤q

(
ψi[Z/X, z/x]←→ ψi[Z

′
/X, z/x]

)
(where z, Z, Z

′
do not occur free in ψ). For ψ(X,x) x-recursive in X, the Recursion Theorem

says that, provably in MSO, there are unique X such that ∀x(Xix←→ ψi(X,x)) holds for
all i = 1, . . . , q.

Theorem 4.6 (Recursion Theorem [Sie70]). MSO proves the following:

Recx
X

(ψ),
∧

1≤i≤q ∀z
(
Ziz ←→ ∀X

[∧
1≤j≤q ∀x ≤̇ z(Xjx↔ ψj) → Xiz

])
`∧

1≤i≤q ∀x
(
Zix←→ ψi[Z/X]

)
Recx

X
(ψ),

∧
1≤i≤q ∀x(Zix↔ ψi[Z/X]) ∧ ∀x(Z ′ix↔ ψi[Z

′
/X]) `

∧
1≤i≤q ∀x (Zix↔ Z ′ix)

The following examples give instances of application of the Recursion Theorem in formal
reasoning on Mealy machines in MSO. The corresponding proofs in SMSO are then obtained
by Thm. 3.6.

Examples 4.7.

16 PIERRE PRADIC AND COLIN RIBA

(1) W.r.t. the representation used in Prop. 4.2, let θ(X,Q, Y, x) be

∀t ≤̇ x
(
Z(t) −→ I[Q(t)]

)
∧ ∀t, t′ ≤̇ x

(
S(t, t′) −→ H[Q(t), X(t), Y (t), Q(t′)]

)
so that δ(X,x) = ∀Q∀Y (θ(X,Q, Y, x) → Y x). The Recursion Theorem implies that,
provably in MSO, for all X there are unique predicates Q,Y s.t. ∀x θ(X,Q, Y, x).

Indeed, assuming I and H are as in Rem. 4.3, we have that θ(X,Q, Y, x) is equivalent
to θo(Q,X, Y, x) ∧

∧
1≤i≤q θi(Q,X, Y, x), where

θo(X,Q, Y, x) := ∀t ≤̇ x
(
Y (t) ←→ O[Q(t), X(t)]

)
θi(X,Q, Y, x) := ∀t ≤̇ x

(
Qi(t) ←→ ηi(Q,X, t)

)
with ηi(X,Q, t) := (Z(t) ∧ Bi) ∨ ∃u ≤̇ t

(
S(u, t) ∧ Di[Q(u), X(u)]

)
Now, apply Thm. 4.6 to η (resp. to O[Q(t), X(t)]) which is t-recursive in Q (resp. in Y).

(2) The machine of Ex. 2.4.(3) is represented as in item (1) with O and D given by (4.3)
(see Ex. 4.4, recalling that the machine as only two states). Hence MSO proves that for
all X there are unique Q, Y such that ∀x θ(X,Q, Y, x). Continuing now Ex. 4.5, let

δ2(X,x) := ∀Q∀Y
(
θ(X,Q, Y, x) → Y x

)
It is not difficult to derive MSO ` φ0[δ2[x]/Y] ∧ φ1[δ2[x]/Y]. The case of φ2[δ2[y]/Y]
amounts to showing ∃∞t (¬Xt) `MSO ∃∞t∃Q∃Y (θ(X,Q, Y, t) ∧ ¬Y t). Thanks to
Thm. 4.6, this follows from ∀x θ(X,Q, Y, x) , ∃∞t (¬Xt) `MSO ∃∞t (¬Y t) which itself
can be derived using induction.

4.3. From Bounded Formulae to Deterministic Mealy Machines. We now turn to
the extraction of finite-state synchronous functions from bounded formulae. This provides
realizers of synchronous comprehension for Thm. 3.7.(1). We rely on the standard translation
of MSO-formulae over finite words to DFAs (see e.g. [Tho97, §3.1]).

Lemma 4.8. Let ϕ̂ be a formula with free variables among z, x1, . . . , x`, X1, . . . , Xp, and

which is bounded by z. Then ϕ̂ z-represents a finite-state synchronous F : 2` × 2p →M 2
induced by a DMM computable from ϕ̂.

Proof. First, given a formula ϕ̂ with free variables among z, x1, . . . , x`, X1, . . . , Xp, if ϕ̂

is bounded by z then ϕ̂ is of the form ψ�[− ≤̇ z], where the free variables of ψ are
among z, x1, . . . , x`, X1, . . . , Xp. But note that ψ�[− ≤̇ z] is equivalent to the formula

(∃t(last(t) ∧ ψ[t/z]))�[− ≤̇ z], where last(t) := ∀x(t ≤̇ x → t
.
= x) and where t does not

occur free in ψ. We can therefore assume that ϕ̂ is of the form ψ�[− ≤̇ z] where ψ has free
variables among x1, . . . , x`, X1, . . . , Xp.

Then, for all n ∈ N, all k ∈ N` with ki ≤ n, and all B ∈ (2ω)p, we have N |=
ψ[k/x,B/X]�[− ≤̇ n] if and only if, in the sense of MSO over finite words, the formula
ψ holds in the finite word 〈k,B�(n+ 1)〉. Let A = (Q, qı, ∂, F) be a DFA recognizing the
language of finite words satisfying ψ [Tho97, Thm. 3.1]. Consider the DMMM = (Q, qı, ∂M)
with ∂M(q, a) = (q′, b) where q′ = ∂(q, a) and (b = 1 iff q′ ∈ F), and let F : 2` × 2p −→M 2
be the function induced by M. We then have

〈k,B�(n+ 1)〉 |= ψ�[− ≤̇ n] (in the sense of MSO over finite words)

⇐⇒ A accepts the finite word 〈k,B�(n+ 1)〉
⇐⇒ F (k,B)(n) = 1

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 17

Remark 4.9. There is a well-known non-elementary lower bound for translating MSO-
formulae over finite words to DFAs (see e.g. [GTW02, Chap. 13]). This lower bound also
applies to the DMMs which induce synchronous functions represented by bounded formulae
in the sense of Def. 4.1. Indeed, given F : 2` × 2p →M 2 z-represented by ψ�[− ≤̇ z] (with z
not free in ψ), for all n ∈ N, all B ∈ (2ω)p and all k ∈ N` with ki ≤ n, we have F (k,B)(n) = 1
if and only if 〈k,B�(n+ 1)〉 |= ψ (in the sense of MSO over finite words). It follows that if F
is induced by a DMMM = (Q, qı, ∂), then with the DFA A := (Q×2+{qı}, qı, ∂A, Q×{1})
where ∂A(qı, a) := ∂(qı, a) and ∂A((q, b), a) := ∂(q, a), we have F (k,B)(n) = 1 iff A accepts
the finite word 〈k,B�(n+ 1)〉. Since the size of A is in general non-elementary in the size of
ψ, it follows that the size of M is in general non-elementary in the size of ψ�[− ≤̇ z].

Example 4.10. Recall the continuous but not synchronous function P of Ex. 2.4.(4). The
function P can be used to realize a predecessor function, and thus is represented (in the
sense of (4.1)) by a formula ϕ(X,x) such that N |= ϕ(B,n) iff n+ 1 ∈ B. Note that ϕ is not
equivalent to a bounded formula, since by Lem. 4.8 bounded formulae represent synchronous
functions.

4.4. Semantically Bounded Formulae. The synchronous comprehension scheme of MSO
is motivated by Lem. 4.8, which tells that uniformly bounded formulae induce DMMs.
Recall from Def. 3.1 that a uniformly bounded formula is of the form ψ�[− ≤ x] with only
x as free individual variable. Uniform boundedness is a purely syntactic restriction on
comprehension, which has the advantage of being easy to check and conceptually simple
to interpret in a proof relevant semantics. We present here a more semantic criterion on
the formulae for which comprehension remains sound in a synchronous setting. We call a
formula ψ(X,x) with only X,x free semantically bounded if the following closed formula
Bx
X

(ψ(X,x)), expressing that the truth value of ψ(X,n) only depends on the values of X
up to n, holds:

∀z∀ZZ ′

 ∧
1≤i≤q

∀y ≤̇ z
(
Ziy ←→ Z ′iy

)
−→

(
ψ[Z/X, z/x]←→ ψ[Z ′/X, z/x]

)
We show in Thm. 4.11 below that semantically bounded MSO formulae are equivalent to

uniformly bounded formulae. Since all uniformly bounded formulae are obviously semantically
bounded, we have a semantic characterization of the formulae available for the synchronous
comprehension scheme.

Theorem 4.11. If MSO ` Bx
X

(ψ(X,x)) and the free variables of ψ are among x,X, then

there is a uniformly bounded formula ϕ̂(X,x) which is effectively computable from ψ and
such that MSO ` ∀X ∀x

(
ψ(X,x)←→ ϕ̂(X,x)

)
.

Note that Thm. 4.11 in particular applies if SMSO ` Bx
X

(ψ(X,x)). Moreover, if ψ(X,x)

is x-recursive in X (in the sense of §4.2), then BxX(ψ(X,x)) holds, but not conversely.
Theorem 4.11 makes it possible to derive realizers for additional instances of compre-

hension, namely for formulae which are semantically but not uniformly bounded. However,
the algorithm underlying Thm. 4.11 relies on Büchi’s Theorem 2.10, and computing ϕ̂ from
ψ can become quickly prohibitively expensive.

The proof of Thm. 4.11 relies on the decidability of MSO and on two preliminary lemmas.
The first one is the following usual transfer property (see e.g. [Rib12]). Given a set A ⊆ P(N),

18 PIERRE PRADIC AND COLIN RIBA

write N�A for the model defined as the standard model N, but with individuals ranging over
A rather than N.

Lemma 4.12 (Transfer). Let ϕ be a formula with free variables among x = x1, . . . , x` and
X = X1, . . . , Xp. Furthermore, let A ∈ 2ω ' P(N) be non-empty. Then for all a1, . . . , a` ∈ A
and all B ∈ (2ω)p we have

N�A |= ϕ[a/x,B ∩A/X] ⇐⇒ N |= (ϕ[a/x,B/X])�[A(−)]

The second result is the following Splitting Lemma 4.13, reminiscent of the composition
method from a technical point of view. The point of Lem. 4.13 is, given a formula ϕ and
a distinguished individual variable z, to express ϕ using an elementary combination of
formulae, each local either to the initial segment [− ≤̇ z] or to the final segment [− >̇ z].
Its proof is deferred to App. B. Write FVι(ϕ) for the set of free individual variables of the
formula ϕ.

Lemma 4.13 (Splitting). Consider a formula ψ and some individual variable z. For every
set of individual variables V with z ∈ V , one can produce a natural number N and two
matching sequences of length N of left formulae (Lj)j<N and right formulae (Rj)j<N such
that the following holds:

• For every j < N , FVι(Lj) ⊆ FVι(ψ) ∩ V and FVι(Rj) ⊆ FVι(ψ) \ V .
• If FVι(ψ) = {x, z, y} with V ∩ FVι(ψ) = {x, z}, then for all n ∈ N, all a ≤ n and all
b > n, we have

N |= ψ[a/x, n/z, b/y] ←→
∨
j<N

Lj [a/x, n/z]�[− ≤̇ n] ∧ Rj [b/y]�[− >̇ n]

We can now prove Thm. 4.11.

Proof of Thm. 4.11. We work in the standard model N of MSO and obtain the result by
completeness (Thm. 2.16). Using Lem. 4.13, we know that ψ(X,x) is equivalent to

ϕ(X,x) :=
∨
j

Lj(x,X)�[− ≤̇ x] ∧ Rj(X)�[− >̇ x]

Then, by our assumption that ψ(X,x) (and thus ϕ(X,x)) is semantically bounded, we have

ϕ(X,x) ←→ ϕ
(
X(−) ∧ − ≤̇ x, x

)
←→

∨
j Lj

(
x,X(−) ∧ − ≤̇ x

)
�[− ≤̇ x] ∧ Rj

(
X(−) ∧ − ≤̇ x

)
�[− >̇ x]

Again using Lem. 4.12, for every j < N and n ∈ N, Rj(X(−) ∧ − ≤̇ n)�[− >̇ n] is equivalent

to Rj(X(−) ∧ − ≤̇ n ∧ − >̇ n)�[− >̇ n]. By substitutivity, it is equivalent to R′j(n)�[− >̇ n],

where we set R′j := Rj(⊥). Because R′j is closed and N�[− >̇ n] ' N, Lem. 4.12 moreover
implies that

N |= ∀x
(
R′j ←→ R′j�[− >̇ x]

)
Since R′j is closed, it follows from the decidability of MSO (Thm. 2.10) that we can decide

whether N |= R′j or N |= ¬R′j . Define accordingly closed formulae R′′j :

R′′j :=

{
> if N |= R′j
⊥ if N |= ¬R′j

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 19

Notice in particular that, contrary to the R′j , the R′′j are invariant under relativization, i.e.,

the formulae R′′j and R′′j �[− ≤̇ x] are syntactically equal. It thus follows that our initial ψ is
equivalent to the following formula ϕ̂, which is effectively computable from ψ:

ϕ̂(X,x) :=
∨
j

Lj(x,X)�[− ≤̇ x] ∧R′′j

ϕ̂ is uniformly bounded since it is syntactically equal to
(∨

j Lj(x,X) ∧R′′j
)
�[− ≤̇ x].

5. The Realizability Interpretation of SMSO

We now present our realizability model for SMSO, and use it to prove Thm. 3.7.(1). This
realizability interpretation bears some similarities with usual realizability constructions for
the Curry-Howard correspondence (see e.g. [SU06, Koh08]). For instance, as in the usual
setting, a realizer of a formula ϕ1 ∧ ϕ2 is a pair 〈R1, R2〉 of a realizer of R1 of ϕ1 and a
realizer R2 of ϕ2. Similarly, a realizer of ∃X ϕ(X) is a pair 〈B,R〉 of an ω-word B ∈ 2ω and
a realizer R of ϕ(B). However, our construction departs from the standard one on negation
(for which we use McNaughton’s Theorem 2.12), and for the fact that there is no primitive
notion of implication in SMSO. In particular, in contrast with the usual settings, our notion
of realizability for sequents of the form ψ ` ϕ (see Thm. 5.10 and Def. 5.2) is not based on a
notion of implication internal to the logic under consideration.

Our approach to Church’s synthesis via realizability uses automata in two different ways.
First, from a proof D in SMSO of an existential formula ∃Y ϕ(X;Y), one can compute a
finite-state synchronous Church-realizer F of ϕ(X;Y). Second, the adequacy of realizability
(and in particular the correctness of F w.r.t. ϕ(X;Y)) is proved using automata for ϕ(X;Y)
obtained by McNaughton’s Theorem, but these automata do not have to be built during the
extraction procedure.

5.1. Uniform Automata. The adequacy of realizability relies on the notion of uniform
automata (adapted from [Rib16]). In our context, uniform automata are essentially usual
non-deterministic automata, but in which non-determinism is expressed via an explicitly
given set of moves. This allows for a simple inheritance of the Cartesian structure of
synchronous functions (Prop. 2.8), and thus to interpret the strictly positive existentials of
SMSO similarly as usual (weak) sums of type theory. In particular, the set of moves M(A)
of an automaton A interpreting a formula ϕ exhibits the strictly positive existentials of ϕ as
M(A) = M(ϕ) where

M(α) 'M(¬ϕ) ' 1 M(ϕ ∧ ψ) 'M(ϕ)×M(ψ) M(∃(−)ϕ) ' 2×M(ϕ) (5.1)

Definition 5.1 ((Non-Deterministic) Uniform Automata). A (non-deterministic) uniform
automaton A over Σ (notation A : Σ) has the form

A = (QA , q
ı
A , M(A) , ∂A , ΩA) (5.2)

where QA is the finite set of states, qıA ∈ QA is the initial state, M(A) is the finite non-empty
set of moves, the acceptance condition ΩA is an ω-regular subset of QωA, and the transition
function ∂A has the form

∂A : QA × Σ×M(A) −→ QA

20 PIERRE PRADIC AND COLIN RIBA

A run of A on an ω-word B ∈ Σω is an ω-word R ∈M(A)ω. We say that R is accepting
(notation R A(B)) if (qk)k∈N ∈ ΩA for the sequence of states (qk)k∈N defined as q0 := qıA
and qk+1 := ∂A(qk, B(k), R(k)). We say that A accepts B if there exists an accepting run
of A on B, and we let L(A), the language of A, be the set of ω-words accepted by A.

Following the usual terminology, an automaton A as in (5.2) is deterministic if M(A) ' 1.
Let us now sketch how uniform automata are used in our realizability interpretation

of SMSO. First, by adapting to our context usual constructions on automata (§5.2), to
each formula ϕ with free variables among (say) X = X1, . . . , Xp, we associate a uniform
automaton JϕK over 2p (Fig. 7). Then, from an SMSO-derivation D of a sequent (say)
ϕ ` ψ, with free variables among X as above, we extract a finite-state synchronous function
FD : 2p ×M(JϕK) −→M M(JψK) such that FD(B,R) JψK(B) whenever R JϕK(B). In
the case of ` ∃Y φ(X;Y), the finite-state realizer FD is of the form 〈C,G〉 with C and
G finite-state synchronous functions C : 2p −→M 2 and G : 2p −→M M(φ) such that
G(B) JφK(B,C(B)) for all B. This motivates the following notion.

Definition 5.2 (The Category AutΣ). For each alphabet Σ, the category AutΣ has automata
A : Σ as objects. Morphisms F from A to B (notation A F : B) are finite-state synchronous
maps F : Σ×M(A) −→M M(B) such that F (B,R) B(B) whenever R A(B).

The identity morphism A IdA : A is given by IdA(B,R) := R, and the composition
of morphisms A F : B and B G : C is the morphism A G ◦ F : C given by
(G ◦F)(B,R) := G(B,F (B,R)). It is easy to check the usual identity and composition laws
of categories, namely:

Id ◦ F = F F ◦ Id = F (F ◦G) ◦H = F ◦ (G ◦H)

Remarks 5.3.

(1) Note that if B F : A for some F , then L(B) ⊆ L(A).

Proof. Assume B F : A and B ∈ L(B) so that R B(B) for some R ∈M(B)ω. Then
by definition of B F : A, we have F (B,R) A(B) and thus B ∈ L(A).

(2) One could also consider the category AUTΣ defined as AutΣ, but with maps not required
to be finite-state. All statements of §5 hold for AUTΣ, but for Cor. 5.11, which would
lead to non necessarily finite-state realizers and would not give Thm. 3.7.(1).

(3) Uniform automata are a variation of usual automata on ω-words, which is convenient for
our purposes, namely the adequacy of our realizability interpretation. Hence, while it
would have been possible to define uniform automata with any of the usual acceptance
conditions (see e.g. [Tho97]), we lose nothing by assuming their acceptance conditions
to be given by arbitrary ω-regular sets.

(4) Given automata A,B : Σ, checking the existence of a realizer A F : B can be reduced
(e.g. using the tools of [PR18, Rib16]) to checking the existence of a winning strategy
for the Proponent (∃löıse) in an ω-regular game on a finite graph, which can in turn be
decided by the Büchi-Landweber Theorem [BL69].

5.2. Constructions on Automata. We gather here constructions on uniform automata
that we need to interpret formulae. First, automata are closed under the following operation
of finite substitution.

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 21

Proposition 5.4. Given A : Σ and a function f : Γ → Σ, let A[f] : Γ be the automaton
identical to A, but with ∂A[f](q, b, u) := ∂A(q, f(b), u). Then B ∈ L(A[f]) iff f ◦B ∈ L(A).

Example 5.5. Assume A interprets a formula ϕ with free variables among X, so that
B ∈ L(A) iff N |= ϕ[B/X]. Then ϕ is also a formula with free variables among X,Y , and
we have BB′ ∈ L(A[π]) iff N |= ϕ[B/X/B′/Y], where π : X × Y → X is a projection.

The Cartesian structure of M lifts to AutΣ. This gives the interpretation of conjunctions.

Proposition 5.6. For each Σ, the category AutΣ has finite products. Its terminal object is
the automaton I = (1, •,1, ∂I,1ω), where ∂I(−,−,−) = •. Binary products are given by

A× B := (QA ×QB , (qıA, q
ı
B) , M(A)×M(B) , ∂ , Ω)

where ∂((qA, qB), a, (u, v)) := (∂A(qA, a, u) , ∂B(qB, a, v))

and where (qn, q
′
n)n ∈ Ω iff ((qn)n ∈ ΩA and (q′n)n ∈ ΩB). Note that Ω is ω-regular since

ΩA and ΩB are ω-regular. Moreover, L(I) = Σω and L(A× B) = L(A) ∩ L(B).

Proof. The Cartesian structure is directly inherited from M and is omitted. Moreover, we
obviously have L(I) = Σω. Let us show that L(A1 ×A2) = L(A1) ∩ L(A2). The inclusion
(⊆) follows from Rem. 5.3.(1) applied to the projection maps A1 ×A2 $i : Ai induced by
the Cartesian structure. For the converse inclusion (⊇), note that if Ri Ai(B) for i = 1, 2,
then 〈R1, R2〉 (A1 ×A2)(B).

Uniform automata are equipped with the obvious adaptation of the usual projection
on non-deterministic automata, which interprets existentials. Given a uniform automaton
A : Σ× Γ, its projection on Σ is the automaton

(∃ΓA : Σ) := (QA , q
ı
A , Γ×M(A) , ∂ , ΩA) where ∂(q, a, (b, u)) := ∂A(q, (a, b), u)

Proposition 5.7. Given A : Σ × Γ and B : Σ, the realizers B F : ∃ΓA are exactly the
M-pairs 〈C,G〉 of finite-state synchronous functions

C : Σ×M(B) −→M Γ G : Σ×M(B) −→M M(A)

such that G(B,R) A〈B,C(B,R)〉 for all B ∈ Σω and all R B(B).

Proof. Consider a realizer B F : ∃ΓA for some B : Σ. Then F is a finite-state synchronous
function from Σω ×M(B)ω to (Γ×M(A))ω ' Γω ×M(A)ω, and is therefore given by a pair
〈C,G〉 of finite-state synchronous functions

C : Σ×M(B) −→M Γ G : Σ×M(B) −→M M(A) (5.3)

Moreover, given B ∈ Σω and R B(B), since F (B,R) ∃ΓA(B), it is easy to see
that G(B,R) A(〈B,C(B,R)〉). Conversely, given C and G as in (5.3), if G(B,R)
A(〈B,C(B,R)〉) for all B ∈ Σω and all R B(B), then we have B 〈C,G〉 : ∃ΓA.

The negation ¬(−) on formulae is interpreted by an operation ∼(−) on uniform automata
which involves McNaughton’s Theorem 2.12.

Proposition 5.8. Given a uniform automaton A : Σ, there is a uniform deterministic
automaton ∼A : Σ such that B ∈ L(∼A) iff B /∈ L(A).

Proof. Let U := M(A) and consider the (usual) deterministic automaton S over Σ×U with
the same states as A and with transition function ∂S defined as ∂S(q, (a, u)) := ∂A(q, a, u).
Then R A(B) iff S accepts 〈B,R〉. Since ΩA is ω-regular, it is recognized by a non-
deterministic Büchi automaton C over QA. We then obtain a non-deterministic Büchi

22 PIERRE PRADIC AND COLIN RIBA

JαKx,X := A(α)[π] J¬ψKx,X := ∼JψKx,X J∃X ψKx,X := ∃2(JψKx,X,X)

Jψ1 ∧ ψ2Kx,X := Jψ1Kx,X × Jψ2Kx,X J∃xψKx,X := ∃2(Sing[π′]× JψKx,x,X [σ])

Figure 7: Interpretation of SMSO-Formulae as Uniform Automata.

automaton B over Σ × U with state set QA × QC and s.t. L(B) = L(S). It follows that

B ∈ L(A) iff B ∈ L(∃̃UB), where ∃̃UB is the usual projection of B on Σ (see e.g. [Tho97]).

By McNaughton’s Theorem 2.12, ∃̃UB is equivalent to a deterministic Muller automaton D
over Σ. Then we let ∼A be the deterministic uniform automaton defined as D but with
Ω∼A the ω-regular set generated by the Muller condition S ∈ T iff S /∈ TD (see e.g. [PP04,
Thm. I.7.1 & Prop. I.7.4]).

5.3. The Realizability Interpretation. We are now going to define our realizability
interpretation. This goes in two steps:

(1) To each formula ϕ we associate a uniform automaton JϕK.
(2) To each derivation D of a (closed) sequent ϕ1, . . . , ϕn ` ϕ in SMSO, we associate a

finite-state synchronous FD such that Jϕ1K× · · · × JϕnK FD : JϕK.
We first discuss step (1). Consider a formula ϕ with free variables among x = x1, . . . , x` and
X = X1, . . . , Xp. Its interpretation is a uniform automaton JϕKx,X over 2` × 2p, defined by

induction on ϕ, and such that JδKx,X is deterministic for a deterministic δ. We thus have to

devise a deterministic uniform automaton A(α) for each atomic formula α of SMSO. The
definitions of the A(α)’s are easy and follow usual constructions (see e.g. [Tho97]). They
are deferred to App. C. Moreover, in order to handle individual variables, the interpretation
also uses a deterministic uniform automaton Sing : 2 accepting the language of ω-words
B ∈ 2ω ' P(N) such that B is a singleton. App. C also presents a possible definition for
Sing. The interpretation JϕKx,X is defined in Fig. 7, where π, π′ are suitable projections and

σ is a suitable permutation. We write JϕK when x,X are irrelevant or understood from the
context. Note that the set of moves M(ϕ) of JϕK indeed satisfies (5.1), so in particular JδK
is indeed deterministic for a deterministic δ.

As expected, the interpretation J−K is correct in the following sense. For k ∈ N, we keep
on writing k for the function from N to 2 which takes n to 1 iff n = k.

Proposition 5.9. Given a formula ϕ with free variables among x = x1, . . . , x` and X =
X1, . . . , Xp, for all k ∈ N` and all B ∈ (2ω)p ' (2p)ω we have (k,B) ∈ L(JϕKx,X) iff

N |= ϕ[k/x,B/X].

We now turn to step (2). Let ϕ1, . . . , ϕn, ϕ be formulae and consider variables x =
x1, . . . , x` and X = X1, . . . , Xp containing all the free variables of ϕ1, . . . , ϕn, ϕ. Then we
say that a synchronous function

F : 2` × 2p × 1` ×M(ϕ1)× · · · ×M(ϕn) −→M M(ϕ)

x,X-realizes the sequent ϕ1, . . . , ϕn ` ϕ (notation ϕ1, . . . , ϕn x,X F : ϕ or ϕ x,X F : ϕ) if

Sing`[π]× Jϕ1Kx,X × · · · × JϕnKx,X F : JϕKx,X
where π are suitable projections.

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 23

Theorem 5.10 (Adequacy). Let ϕ,ϕ be formulae with variables among x,X. From an
SMSO-derivation D of ϕ ` ϕ, one can compute an M-morphism FD s.t. ϕ x,X FD : ϕ.

Adequacy of realizability, together with Prop. 5.7, directly gives Theorem 3.7.(1).

Corollary 5.11 (Thm. 3.7.(1)). Consider a formula ϕ(X;Y) with only X,Y free, where
X = X1, . . . , Xp and Y = Y1, . . . , Yq. Given a derivation D in SMSO of ` ∃Y ϕ(X;Y), we

have FD ' 〈C,G〉 where C = C1, . . . , Cq with Ci : 2p −→M 2 and N |= ϕ(B,C(B)) for all

B ∈ (2ω)p ' (2p)ω.

The proof of Thm. 5.10 goes by induction on derivations. Most of the rules of SMSO are
straightforward, except the synchronous comprehension rule, that we discuss first. Adequacy
for synchronous comprehension follows from the existence of finite-state characteristic
functions for bounded formulae (Lem. 4.8) and from the following lemmas, which allow
us, given a synchronous function C y-represented by ϕ̂, to lift a realizer of ψ[ϕ̂[y]/Y] to a
realizer of ∃Y ψ.

Lemma 5.12 (Substitution Lemma for Synchronous Comprehension). Let x = x1, . . . , x`
and X = X1, . . . , Xp. Let ϕ̂ be a formula with free variables among y,X, and which y-

represents C : 2p −→M 2. Then for every formula ψ with free variables among x,X, Y , for
all k ∈ N` and all B ∈ (2ω)p ' (2p)ω we have

(k,B) ∈ L(Jψ[ϕ̂[y]/Y]Kx,X) ⇐⇒ (k,B,C(B)) ∈ L(JψKx,XY)

Proof. By induction on ψ.

• If ψ is an atomic formula not of the form (x ∈̇ Y), then ψ[ϕ̂[y]/Y] = ψ and the result is
trivial.
• If ψ is of the form (xi ∈̇ Y), then ψ[ϕ̂[y]/Y] = ϕ̂[xi/y]. Since ϕ̂ y-represents C, by (4.1)

(Def. 4.1), for all k ∈ N` and all B ∈ (2ω)p we have

C(B)(ki) = 1 iff N |= ϕ̂[ki/z,B/X]

that is
N |= ki ∈̇ C(B) iff N |= ϕ̂[ki/z,B/X]

Then we are done since it follows from Prop. 5.9 that

N |= ϕ̂[ki/z,B/X] iff (k,B) ∈ L(Jϕ̂[xi/y]Kx,X)

• If ψ = ψ1 ∧ ψ2, then by Prop. 5.6 we have

L
(
J(ψ1 ∧ ψ2)[ϕ̂[y]/Y]K

)
= L

(
Jψ1[ϕ̂[y]/Y]K

)
∩ L

(
Jψ2[ϕ̂[y]/Y]K

)
and L

(
Jψ1 ∧ ψ2K

)
= L

(
Jψ1K

)
∩ L

(
Jψ2K

)
and we conclude by induction hypothesis.
• The cases of ψ of the form ∃X ϕ or ∃xϕ are similar, using Prop. 5.7 instead of Prop. 5.6.
• The case of ψ of the form ¬ϕ follows from Prop. 5.8 and the induction hypothesis.

24 PIERRE PRADIC AND COLIN RIBA

Lemma 5.13 (Lifting Lemma for Synchronous Comprehension). Let x = x1, . . . , x` and
X = X1, . . . , Xp. Let ϕ̂ be a formula with free variables among y,X, and which y-represents

C : 2p −→M 2. Then for every formula ψ with free variables among x,X, Y , there is a
finite-state synchronous function

H : M(ψ[ϕ̂[y]/Y]) −→M M(ψ)

such that for all k ∈ N`, all B ∈ (2ω)p and all R ∈M(ψ[ϕ̂[y]/Y])ω, we have

R Jψ[ϕ̂[y]/Y]Kx,X(k,B) =⇒ H(R) JψKx,X,Y (k,B,C(B)) (5.4)

Proof. By induction on ψ.

• If ψ is an atomic formula not of the form (x ∈̇ Y), then ψ[ϕ̂[y]/Y] = ψ. So we take the
identity for H and the result trivially follows.
• If ψ is of the form (xi ∈̇ Y), then ψ[ϕ̂[y]/Y] = ϕ̂[xi/y]. Since ψ is deterministic, we can

take for H the unique map M(ϕ̂[xi/y])→M M(xi ∈̇ Y) = 1, and the result follows from
Lem. 5.12.
• If ψ is of the form ϕ1 ∧ ϕ2 (resp. ∃X ϕ, ∃xϕ) then we conclude by induction hypothesis

and Prop. 5.6 (resp. Prop. 5.7).
• If ψ = ¬ϕ, then we have M(ψ) = M(ψ[ϕ̂[y]/Y]) = 1, and H is the identity. We then

conclude by Lem. 5.12.

Adequacy for synchronous comprehension follows easily.

Lemma 5.14 (Adequacy of Synchronous Comprehension). Let ψ with free variables among
x,X, Y and let ϕ̂ be a formula with free variables among y,X and which is uniformly bounded
by y. Then there is a finite-state realizer ψ[ϕ̂[y]/Y] x,X F : ∃Y ψ, effectively computable
from ψ and ϕ.

Proof. Let C y-represented by ϕ̂ be given by Lem. 4.8, and let H satisfying (5.4) be given
by Lem. 5.13. It then directly follows from Prop. 5.7 and Lem. 5.13 that ψ[ϕ̂[y]/Y] x,X
〈C ◦ [π], H ◦ [π′]〉 : ∃Y ψ, where π, π′ are suitable projections.

We can finally prove of Thm. 5.10.

Proof of Thm. 5.10. The proof is by induction on derivations. Note that if ϕ `SMSO ϕ, then
the universal closure of the implication ∧ϕ→ ϕ holds in the standard model N. In particular,
for all rules whose conclusion is of the form ϕ ` δ with δ deterministic, it follows from
Prop. 5.9 and (5.1) that the unique M-map with codomain M(δ) ' 1 (and with appropriate
domain) is a realizer. This handles the rules of negative comprehension (3.1), deterministic
induction (3.2) and of elimination of double negation on deterministic formulae (3.3). This
also handles all the rules of Fig. 5, excepted the rules of elimination of equality

ϕ ` ϕ[y/x] ϕ ` y .
= z

ϕ ` ϕ[z/x]

as well as the rules ϕ ` ∃y Z(y) and ϕ ` ∃y S(x, y). For the latter, we use the DMM depicted
in Fig. 1 (left) (Ex. 2.4.(2)) together with the fact that S(−,−) is deterministic. The case
of the former is similar and simpler. As for elimination of equality, we take as realizer of
the conclusion the realizer of the left premise. This realizer is trivially correct if there is no
realizer of the assumptions ϕ. Otherwise the result follows from Prop. 5.9 since the right
premise ensures that the individual variables y and z are interpreted by the same natural
number. Adequacy for synchronous comprehension is given by Lem. 5.14. It remains to deal

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 25

with the rules of Fig. 3. The first two rules follow from the fact that each AutΣ is a category
with finite products (Prop. 5.6). The rules for ¬/⊥ are trivial since their conclusions are of
the form ϕ ` δ. The rules for conjunction follow from Prop. 5.6 and those for existential
quantifications follow from Prop. 5.7.

6. Indexed Structure on Automata

In §5 we have defined one category AutΣ for each alphabet Σ. These categories are actu-
ally related by substitution functors arising from M-morphisms, inducing an indexed (or
fibred) structure. Substitution functors are a basic notion of categorical logic, which allows
for categorical axiomatizations of quantifications. We refer to e.g. [Jac01, Chap. 1] for
background.

We present here the fibred structure of the categories Aut(−) and show that the existential
quantifiers ∃(−) and Cartesian product (−) × (−) of §5.2 satisfy the expected properties
of existential quantifiers and conjunction in categorical logic. These properties essentially
correspond to the adequacy of the logical rules of Fig. 3 that do not mention negation (¬)
nor falsity (⊥). Although the fibred structure is not technically necessary to prove the
adequacy of our realizability model, following such categorical axiomatization was a guideline
in its design. Besides, categorical logic turns out to be an essential tool when dealing with
generalizations to (say) alternating automata.

6.1. The Basic Idea. Before entering the details, let us try to explain the main ideas in
the usual setting of first-order logic over a manysorted individual language. The categorical
semantics of existential quantifications is given by an adjunction

∃xϕ(x) ` ψ
(x not free in ψ)

ϕ(x) ` ψ
(6.1)

This adjunction induces a bijection between (the interpretations of) proofs of the sequents
ϕ(x) ` ψ and ∃xϕ(x) ` ψ, that we informally denote

ϕ(x) ` ψ ' ∃xϕ(x) ` ψ
Now, in general the variable x occurs free in ϕ. As a consequence, in order to properly
formulate (6.1) one should be able to interpret sequents of the form ϕ(x) ` ψ with free
variables. More generally, the formulae ϕ and ψ should be allowed to contain free variables
distinct from x.

The idea underlying the general method (see e.g. [Jac01] for details), is to first devise a
base category B of individuals, whose objects interpret products of sorts of the individual
language, and whose maps from say ι1×· · ·×ιm to o1×· · ·×on represent n-tuples (t1, . . . , tn)
of terms ti of sort oi whose free variables are among xι1 , . . . , xιm , with xιj of sort ιj . Then,
for each object ι = ι1 × · · · × ιm of B, one devises a category Eι whose objects represent
formulae with free variables among xι1 , . . . , xιm , and whose morphisms interpret proofs.
Furthermore, B-morphisms

t = (t1, . . . , tn) : ι1 × · · · × ιm −→ o1 × · · · × on
induce substitution functors

t? : Eo1×···×on −→ Eι1×···×ιm

26 PIERRE PRADIC AND COLIN RIBA

The functor t? takes (the interpretation of) a formula ϕ whose free variables are among
yo1 , . . . , yon to (the interpretation of) the formula ϕ[t1/yo1 , . . . , tn/yon] with free variables
among xι1 , . . . , xιm . Its action on the morphisms of Eo1×···×on allows us to interpret the
substitution rule

ϕ ` ψ
ϕ[t1/yo1 , . . . , tn/yon] ` ψ[t1/yo1 , . . . , tn/yon]

In very good situations, the operation (−)? is itself functorial. Among the morphisms of B,
one usually requires the existence of projections, say

π : o× ι −→ o

Projections induce substitution functors, called weakening functors

π? : Eo −→ Eo×ι
which simply allow us to see formula ψ(yo) with free variable yo as a formula ψ(yo, xι)
with free variables among yo, xι (but with no actual occurrence of xι). Then the proper
formulation of (6.1) is that existential quantification over xι is a functor

∃xι (−) : Eo×ι −→ Eo
which is left-adjoint to π?:

∃xι ϕ(xι, yo) ` ψ(yo)

ϕ(xι, yo) ` π?(ψ)(xι, yo)

(where xι does not occur free in ψ since ψ is assumed to be (interpreted as) an object of Eo,
thus replacing the usual side condition). Universal quantifications are dually axiomatized as
right adjoints to weakening functors. In both cases, the adjunctions are subject to additional
conditions (called the Beck-Chevalley conditions) which ensure that they are preserved by
substitution.

6.2. Substitution. So far, for each alphabet Σ we have defined a category AutΣ of uniform
automata over Σ. Following §6.1, different categories AutΣ, AutΓ can be related by means of
M-morphisms F : Σ→ Γ. This relies on a very simple substitution operation on automata,
generalizing the substitution operation presented in Prop. 5.4.

Definition 6.1 (Substitution). Given a DMM M : Σ→ Γ as in Def. 2.2 and an automaton
A : Γ as in Def. 5.1, the automaton A[M] : Σ is defined as follows:

A[M] := (QA ×QM, (qıA, q
ı
M), M(A), ∂A[M], ΩA[M])

where
∂A[M] : QA ×QM × Σ×M(A) −→ QA ×QM

is defined as

∂A[M]((qA, qM), a,m) := (∂A(qA, b,m), q′M) with (q′M, b) := ∂M(qM, a)

and where (qk, q
′
k)k∈N ∈ ΩA[M] iff (qk)k∈N ∈ ΩA.

Note the reversed direction of the action of M : Σ → Γ: the substitution operation
(−)[M] takes an automaton over Γ to an automaton over Σ. Substitutions of the form A[M]
can be seen as generalizations of the substitutions presented in Prop. 5.4: Given a function
f : Σ → Γ, the automaton A[f] of Prop. 5.4 is isomorphic (in AutΣ) to the automaton
A[Mf] obtained by applying Def. 6.1 to the one-state DMM inducing the M-morphism
[f] : Σ→M Γ of Rem. 2.7.

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 27

We now characterize the language of A[M]. To this end, it is useful to note that Σω is
in bijection with the set of synchronous functions 1ω → Σω.

Proposition 6.2. Given a DMM M : Σ → Γ and an automaton A : Γ, for B ∈ Σω we
have:

B ∈ L(A[M]) iff FM ◦B ∈ L(A)

where FM ◦ B is the composition of the synchronous function FM induced by M with B
seen as a synchronous function 1ω → Σω.

Given M : Σ→ Γ, an important property of the substitution operation (−)[M] is that
it induces a functor AutΓ → AutΣ. The action of this functor on objects of AutΓ has just
been defined. Given a morphism A F : B of AutΓ, the morphism A[M] F [M] : B[M] is
the finite-state synchronous function

F [M] : Σ×M(A) −→M M(B)

taking (B,R) to F (FM(B), R), where FM is the finite-state synchronous function induced
by M. It is easy to see that the action of (−)[M] on morphisms preserves identities and
composition.

6.3. Categorical Existential Quantifications. Recall from §5.2 that uniform automata
are equipped with existential quantifications, given by an adaption of the usual projection
operation on non-deterministic automata. Given A : Σ× Γ, we defined ∃ΓA : Σ as

∃ΓA := (QA , q
ı
A , Γ×M(A) , ∂ , ΩA) with ∂(q, a, (b, u)) := ∂A(q, (a, b), u)

We are now going to see that ∃(−) is an existential quantification in the usual categorical
sense of simple coproducts (see e.g. [Jac01, Def. 1.9.1]). First, the weakening functors

(−)[π] : AutΣ −→ AutΣ×Γ

alluded to in §6.1 are the substitution functors induced by projections (see also Ex. 5.5):

[π] : Σ× Γ −→M Σ

We can now state the first required property, namely that ∃Γ induces a functor left adjoint
to (−)[π].

Proposition 6.3. Each existential quantifier ∃Γ induces a functor AutΣ×Γ → AutΣ which
is left-adjoint to the weakening functor (−)[π] : AutΣ → AutΣ×Γ.

Proof. Fix alphabets Σ and Γ. According to [ML98, Thm. IV.1.2.(ii)], we have to show that
for each automaton A : Σ× Γ, there is an AutΣ×Γ-morphism

ηA : A −→ (∃ΓA)[π]

satisfying the following universal property: for each automaton B : Σ and each AutΣ×Γ-
morphism

F : A −→ B[π]

there is a unique AutΣ-morphism

H : ∃ΓA −→ B

28 PIERRE PRADIC AND COLIN RIBA

such that we have

A
ηA //

F

��

(∃ΓA)[π]

H[π]

{{
B[π]

Note that ηA must be an M-morphism

ηA : (Σ× Γ)×M(A) −→M Γ×M(A)

We let ηA be the M-morphism induced by the usual projection Σ×Γ×M(A)→ Γ×M(A).
Given A F : B[π], we are left with the following trivial fact: there is a unique ∃ΓA H : B
such that

∀B ∈ Σω, ∀C ∈ Γω, ∀R ∈M(A)ω, F (〈B,C〉, R) = H(B, 〈C,R〉)

The Beck-Chevalley condition of [Jac01, Def. 1.9.1] asks for the following isomorphism
in Aut∆, where A : Σ× Γ and F : ∆→M Σ:

(∃ΓA)[MF] ' ∃Γ(A[MF×idΓ
])

This isomorphism follows from the fact that the two above automata have the same set of
moves (namely Γ×M(A)).

6.4. Categorical Conjunction. Recall from §5.2 that each category AutΣ has Cartesian
products, which interpret conjunction, a necessary feature to interpret a sequent as a
morphism from the conjunct of its premises to its conclusion. In the setting of categorical
logic, it remains to be shown that these products are fibred in the sense of [Jac01, Def. 1.8.1],
i.e. that they are preserved by substitution.

Proposition 6.4. Given automata A,B : Γ and a DMM M : Σ→ Γ, the product A[M]×
B[M] is isomorphic to (A× B)[M] in AutΣ.

Proof. The isomorphism trivially follows from the fact that

M(A[M]× B[M]) = M(A)×M(B) = M((A× B)[M])

6.5. Indexed Structure. Thanks to the substitution operation discussed in §6.2, each
M-morphism F : Σ→ Γ induces a functor (−)[MF] : AutΓ → AutΣ, where MF is a chosen
DMM inducing F . As usual in categorical logic, we would like to extend substitution to
a functor (−)? : Mop → Cat taking alphabets Σ to categories AutΣ, and M-morphisms
F : Σ→ Γ to functors AutΓ → AutΣ. In order for (−)? to be a functor, it should preserve
identities and composition. In particular, given an automaton A : Σ, for all M-maps
G : ∆→ Γ and F : Γ→ Σ we should have

A = A[MIdΣ
] and (A[MF])[MG] = A[MF◦G] (6.2)

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 29

A[MF]
ηΓ,A[MF]

tt

ηΣ,A[MF]

**
A[MF][MIdΓ

] µIdΓ,F,A
// A[MF] A[MIdΣ

][MF]µF,IdΣ,A
oo

A[MF][MG][MH]
µG,F,A[MH]

//

µH,G,A[MF]

��

A[MF◦G][MH]

µH,F◦G,A
��

A[MF][MG◦H] µG◦H,F,A
// A[F ◦G ◦H]

Figure 8: Coherence Diagrams for the Structure Maps of (−)? : Mop → Cat.

But we see no reason for this to be possible. In particular there is no reason for the DMM
MF◦G chosen to induce F ◦ G to be a product of MF and MG. However, since A[M]
always has the same moves as A, we actually get (6.2) modulo isomorphisms.

This is a usual situation in categorical logic. It is indeed customary to relax the
requirement of (−)? to be a functor, and only ask it to be a pseudo functor, i.e. a functor
for which identities and composition are only preserved up to natural isomorphisms, subject
to some specific coherence conditions (see e.g. [Jac01, Def. 1.4.4]). The required natural
isomorphisms have the form

ηΣ : IdAutΣ
'−→ (−)[MIdΣ

]

µG,F : (−)[MF][MG]
'−→ (−)[MF◦G]

(6.3)

Since A and A[M] have the same moves, we can take for each components of ηΣ and µF,G
synchronous functions acting as identities on runs. It then follows that all the required
diagrams commute.

We now proceed to the formal construction. Fix for each M-morphism F : Σ→M Γ a
chosen DMM MF inducing F . For each A : Σ, and each M-morphisms G : ∆→M Γ and
F : Γ→M Σ, we let

A ηΣ,A : A[MIdΣ
] and A[MF][MG] µG,F,A : A[MF◦G]

be given by

ηΣ,A : Σ×M(A) −→ M(A)
(B,R) 7−→ R

and
µG,F,A : Σ×M(A) −→ M(A)

(B,R) 7−→ R

The following says that the coherence conditions required for structure maps of pseudo-
functors (see e.g. [Jac01, Def. 1.4.4]) are met by ηΣ,A and µF,G,A. The proof is trivial.

Proposition 6.5. The morphisms ηΣ and µF,G defined above are natural isomorphisms as
in (6.3). Moreover, for each automaton A : Σ and each M-maps F,G,H of appropriate
domains and codomains, the two diagrams of Fig. 8 commute.

The assignment (−)? : Mop → Cat taking the alphabet Σ to the category AutΣ and the
morphism F : Γ→M Σ to the functor (−)[MF] : AutΣ → AutΓ is thus a pseudo-functor.

30 PIERRE PRADIC AND COLIN RIBA

7. Conclusion

In this paper, we revisited Church’s synthesis via an automata-based realizability interpre-
tation of an intuitionistic proof system SMSO for MSO on ω-words, and we demonstrated
that our approach is sound and complete, in the sense of Thm. 3.7. As it stands, this
approach must still pay the price of the non-elementary lower-bound for the translation of
MSO formulae over finite words to DFAs (see Rem. 4.9) and the system SMSO is limited by
its set of connectives and its restricted induction scheme.

Further Works. First, the indexed structure (§6.5) induced by the substitution operation
of §6.2 suggests that in our context, it may be profitable to work in a conservative extension
of (S)MSO, with one function symbol for each Mealy machine together with defining axioms
of the form (4.2). In particular, this could help mitigate Rem. 4.9 by giving the possibility,
in the synchronous comprehension scheme of SMSO, to give a term for a Mealy machine
rather than the MSO-formula representing it. We expect this to give better lower bounds
w.r.t. completeness (for each solvable instance of Church’s synthesis, to provide proofs with
realizers of a reasonable complexity).

Second, following the approach of [Rib16], SMSO could be extended with primitive
universal quantifications and implications as soon as one goes to a linear deduction system.
Among outcomes of going to a linear deduction system, following [Rib16] we expect similar
proof-theoretical properties as with the usual Dialectica interpretation (see e.g. [Koh08]),
such as realizers of linear Markov rules and choices schemes. Also, having primitive universal
quantifications may allow us to take benefit of the reductions of MSO to its negative fragment,
as provided by the Safraless approaches to synthesis [KV05, KPV06, FJR11].

Obtaining a good handle of induction in SMSO is more complex. One possibility to
have finite-state realizers for a more general induction rule would be to rely on saturation
techniques for regular languages. Another possibility, which may be of practical interest, is
to follow the usual Curry-Howard approach and allow for possibly infinite-state realizers.

Another direction of future work is to incorporate specific reasoning principles on Mealy
machines. For instance, a possibility could be to base our deduction system on a complete
equational theory for Mealy machines.

Acknowledgment

The authors would like to thank to anonymous referees for their thorough readings of
previous versions of this paper, which helped a lot in raising its quality.

References

[BJP+12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive (1) designs.
Journal of Computer and System Sciences, 78(3):911–938, 2012. 2

[BL69] J. R. Büchi and L. H. Landweber. Solving Sequential Conditions by Finite-State Strategies.
Transation of the American Mathematical Society, 138:367–378, 1969. 2, 6, 20

[Büc62] J. R. Büchi. On a Decision Methond in Restricted Second-Order Arithmetic. In E. Nagel et al.,
editor, Logic, Methodology and Philosophy of Science (Proc. 1960 Intern. Congr.), pages 1–11.
Stanford Univ. Press, 1962. 1, 5

[Chu57] A. Church. Applications of recursive arithmetic to the problem of circuit synthesis. In Summaries
of the SISL, volume 1, pages 3–50. Cornell Univ., 1957. 1

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 31

[FJR11] E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional algorithms for LTL synthesis.
Form. Method. Syst. Des., 39(3):261–296, Dec 2011. 2, 30

[Gir72] J.-Y. Girard. Interprétation Fonctionnelle et Élimination des Coupures de l’Arithmétique d’Ordre
Supérieur. PhD thesis, Université Paris 7, 1972. 10

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1989. 10

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide to
Current Research, volume 2500 of LNCS. Springer, 2002. 2, 5, 6, 17

[Jac01] B. Jacobs. Categorical Logic and Type Theory. Studies in logic and the foundations of mathematics.
Elsevier, 2001. 2, 25, 27, 28, 29

[Kle52] S.C. Kleene. Introduction to Metamathematics. North Holland, 1952. 12
[Koh08] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer

Monographs in Mathematics. Springer, 2008. 2, 10, 12, 19, 30
[KPV06] O. Kupferman, N. Piterman, and Y. Vardi, M. Safraless Compositional Synthesis. In T. Ball and

R. B. Jones, editors, Proceedings of CAV’06, pages 31–44. Springer, 2006. 2, 30
[KV05] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In Proceedings of FOCS’05, pages

531–542, Washington, DC, USA, 2005. IEEE Computer Society. 2, 30
[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information and

Control, 9(5):521 – 530, 1966. 1, 6
[ML98] S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition, 1998. 27

[PP04] D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and Games. Pure and
Applied Mathematics. Elsevier, 2004. 1, 2, 5, 6, 22

[PR17] P. Pradic and C. Riba. A Curry-Howard Approach to Church’s Synthesis. In Proceedings ot
FSCD’17, volume 84 of LIPIcs, pages 30:1–30:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2017. 1

[PR18] P. Pradic and C. Riba. LMSO: A Curry-Howard Approach to Church’s Synthesis via Linear Logic.
In Proceedings of LICS’18. ACM, 2018. 20

[Rab72] M. O. Rabin. Automata on infinite objects and Church’s Problem. Amer. Math. Soc., 1972. 2, 6
[Rib12] C. Riba. A model theoretic proof of completeness of an axiomatization of monadic second-order

logic on infinite words. In Proceedings of IFIP-TCS’12, 2012. 2, 7, 8, 9, 13, 15, 17, 31, 32, 36
[Rib16] C. Riba. Monoidal-Closed Categories of Tree Automata. To appear in Mathematical Structures in

Computer Science. Available on HAL (hal-01261183), 2016. 19, 20, 30
[Sie70] D. Siefkes. Decidable Theories I : Büchi’s Monadic Second Order Successor Arithmetic, volume

120 of LNM. Springer, 1970. 2, 7, 8, 13, 15, 38
[SU06] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149 of

Studies in Logic and the Foundations of Mathematics. Elsevier Science Inc., 2006. 2, 19
[Tho97] W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa, editors, Handbook

of Formal Languages, volume III, pages 389–455. Springer, 1997. 1, 2, 5, 6, 13, 14, 16, 20, 22
[Tho08] W. Thomas. Solution of Church’s Problem: A tutorial. New Perspectives on Games and Interaction,

5:23, 2008. 1, 3, 4, 6, 15
[Tho09] W. Thomas. Facets of Synthesis: Revisiting Church’s Problem. In L. de Alfaro, editor, Proceedings

of FOSSACS’09, pages 1–14. Springer, 2009. 1, 2
[VW08] M. Y. Vardi and T. Wilke. Automata: from logics to algorithms. In Logic and Automata, volume 2

of Texts in Logic and Games, pages 629–736. Amsterdam University Press, 2008. 1, 2, 5
[Yan08] Q. Yan. Lower Bounds for Complementation of omega-Automata Via the Full Automata Technique.

Logical Methods in Computer Science, 4(1), 2008. 6

Appendix A. Completeness of MSO (Thm. 2.16)

In this Appendix, we provide the missing details to deduce the completeness of our axioma-
tization of MSO (Thm. 2.16) from [Rib12]. The arithmetic axioms of [Rib12] expressed with
<̇ and S are presented in Fig. 9, where

(x <̇ y) :=
(
x ≤̇ y ∧ ¬(x

.
= y)

)

32 PIERRE PRADIC AND COLIN RIBA

S is the Successor for <̇:

∀x, y
[
S(x, y) ←→

(
x <̇ y ∧ ¬∃z(x <̇ z <̇ y)

)]
Strict Linear Order Axioms:

¬(x <̇ x) (x <̇ y <̇ z → x <̇ z) (x <̇ y ∨ x
.
= y ∨ y <̇ x)

Predecessor and Unboundedness Axioms:

∀x
[
∃y(y <̇ x) −→ ∃yS(y, x)

]
∀x∃y(x <̇ y)

Figure 9: The Arithmetic Axioms of [Rib12].

The axioms of Fig. 9 follow from Lem. 2.17 (Fig. 6) that we prove now.

Proof of Lem. 2.17. Let us recall the non-logical rules of MSO (omitting equality):

• ≤̇ is a partial order:

ϕ ` x ≤̇ x
ϕ ` x ≤̇ y ϕ ` y ≤̇ z

ϕ ` x ≤̇ z
ϕ ` x ≤̇ y ϕ ` y ≤̇ x

ϕ ` x .
= y

• Basic Z and S rules (total injective relations):

ϕ ` ∃y Z(y)

ϕ ` Z(x) ϕ ` Z(y)

ϕ ` x .
= y

ϕ ` ∃y S(x, y)

ϕ ` S(y, x) ϕ ` S(z, x)

ϕ ` y .
= z

ϕ ` S(x, y) ϕ ` S(x, z)

ϕ ` y .
= z

• Arithmetic rules:

ϕ ` S(x, y) ϕ ` Z(y)

ϕ ` ⊥
ϕ ` S(x, y)

ϕ ` x ≤̇ y
ϕ ` S(y, y′) ϕ ` x ≤̇ y′ ϕ ` ¬(x

.
= y′)

ϕ ` x ≤̇ y
We now proceed to the proof of the properties listed in Fig. 6.

(1) ` ¬(x <̇ x)

Proof. From reflexivity of equality.

(2) x <̇ y, y <̇ z ` x <̇ z

Proof. We have x <̇ y, y <̇ z ` x ≤̇ z and x <̇ y, y <̇ z, x
.
= z ` ⊥ by the partial order

rules for ≤̇.

(3) S(x, y), x
.
= y ` ⊥

Proof. By induction on y, we show

φ(y) := ∀x(S(x, y)→ ¬(x
.
= y))

We have Z(y) ` φ(y) by the first arithmetic rule. We now show φ(y), S(y, y′) ` φ(y′),
that is

φ(y),S(y, y′), S(x, y′), x
.
= y′ ` ⊥

Note that
S(y, y′), S(x, y′), x

.
= y′ ` x .

= y ∧ y
.
= y′ ∧ S(x, y)

From which follows that

φ(y),S(y, y′), S(x, y′), x
.
= y′ ` ⊥

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 33

(4) ` ∀x∃y(x <̇ y).

Proof. The basic and arithmetic rules above ensure that every x has a successor y, and
that the successor satisfies x ≤̇ y. Thus, in combination with (3), we get that x <̇ y.

(5) S(y, y′), x ≤̇ y, x .
= y′ ` ⊥

Proof. We have
S(y, y′), x ≤̇ y, x .

= y′ ` y′ ≤̇ y
and by the partial order rules for ≤̇ together with the second arithmetic rule, we have

S(y, y′), x ≤̇ y, x .
= y′ ` y′ .= y

and we conclude by (3).

(6) Z(x) ` x ≤̇ y
Proof. By induction on y.

(7) x ≤̇ y,Z(y) ` Z(x)

Proof. By (6), we have Z(y) ` y ≤̇ x and we conclude by the partial order rule for ≤̇.

(8) ∀y(x ≤̇ y) ` Z(x)

Proof. We have
∀y(x ≤̇ y),Z(z) ` x ≤̇ z

Hence by (7) we get
∀y(x ≤̇ y),Z(z) ` Z(x)

and we conclude by the basic rules for Z.

(9) x <̇ y,S(x, x′) ` x′ ≤̇ y
Proof. By induction on y, we show

φ(y) := ∀x, x′
(
x <̇ y → S(x, x′)→ x′ ≤̇ y

)
First, the base case Z(y) ` φ(y) follows from the fact that Z(y), x <̇ y ` ⊥ by (7). For
the induction step, we show

S(y, y′), φ(y), x <̇ y′,S(x, x′) ` x′ ≤̇ y′

We use the excluded middle on x
.
= y, and we are left with showing

S(y, y′), φ(y), x <̇ y′,¬(x
.
= y),S(x, x′) ` x′ ≤̇ y′

But by the arithmetic rules, S(y, y′), x <̇ y′ ` x ≤̇ y, so that

S(y, y′), φ(y), x <̇ y′,¬(x
.
= y),S(x, x′) ` x <̇ y

But
φ(y), x <̇ y,S(x, x′) ` x′ ≤̇ y

and we are done.

34 PIERRE PRADIC AND COLIN RIBA

(10) x ≤̇ y,S(x, x′),S(y, y′) ` x′ ≤̇ y′

Proof. By induction on z we show

φ(z) := ∀x, x′, y
(
x ≤̇ y → S(x, x′)→ S(y, z)→ x′ ≤̇ z

)
We trivially have Z(z) ` φ(z). We now show S(z, z′), φ(z) ` φ(z′), that is

S(z, z′), φ(z), x ≤̇ y,S(x, x′),S(y, z′) ` x′ ≤̇ z′

By the basic Z and S rules, this amounts to show

φ(z), x ≤̇ z,S(x, x′), S(z, z′) ` x′ ≤̇ z′

Now, using the excluded middle on x
.
= z, we are left with showing

φ(z), S(x, x′), S(z, z′), x <̇ z ` x′ ≤̇ z′

But by (9) we have
x <̇ z,S(x, x′) ` x′ ≤̇ z

and we are done.

(11) ` ∀x∀y
[
y <̇ x ←→ ∃z(y ≤̇ z ∧ S(z, x))

]
Proof. The right-to-left direction follows from (3). For the left-to-right direction, by
induction on x, we show

φ(x) := ∀y
(
y <̇ x −→ ∃z(y ≤̇ z ∧ S(z, x))

)
For the base case Z(x) ` φ(x), by (7) we have Z(x), y ≤̇ x ` Z(y) and we conclude by
the basic rules for Z. For the induction step, we have to show

S(x, x′), φ(x), y <̇ x′ ` ∃z(y ≤̇ z ∧ S(z, x′))

By the last arithmetic rule,

S(x, x′), y <̇ x′ ` y ≤̇ x
and we are done.

(12) ` x <̇ y ∨ x .
= y ∨ y <̇ x

Proof. By induction on x, we show

φ(x) := ∀y (x <̇ y ∨ x .
= y ∨ y <̇ x)

The base case Z[x] ` φ(x) follows from (6). For the induction step, we have to show

S(x, x′), φ(x) ` ∀y(x′ <̇ y ∨ x′ .= y ∨ y <̇ x′)

By induction on y we show S(x, x′), φ(x) ` ψ[y, x′] where

ψ[y, x′] := x′ <̇ y ∨ x′ .= y ∨ y <̇ x′

The base case follows again from (6). For the induction step, we have to show

S(x, x′), S(y, y′), φ(x), ψ[y, x′] ` ∀y(x′ <̇ y′ ∨ x′ .= y′ ∨ y′ <̇ x′)

and we are done since (10) gives

∀x, x′, y, y′
(
x <̇ y → S(x, x′)→ S(y, y′)→ x′ <̇ y′

)

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 35

(13) ` ∀x, y [S(x, y) ←→ (x <̇ y ∧ ¬∃z(x <̇ z <̇ y))]

Proof. For the left-to-right direction, thanks to (3) we are left with showing

S(x, y), x <̇ z, z <̇ y ` ⊥
But the last arithmetic rule gives z ≤̇ x from S(x, y) and z <̇ y, which together with
x <̇ z gives z

.
= x by antisymmetry of ≤̇, contradicting x <̇ z.

Conversely, assume that x <̇ y without any intermediate z. By the basic rules for S,
we have S(x, z) for some z. Note that x <̇ z by (3). Since x <̇ y it follows from (9) that
z ≤̇ y. But this implies z

.
= y as ¬(z <̇ y).

This concludes the proof of Lem. 2.17.

The linear order axioms ((1), (2), (12)), the successor axiom (13), the unboundedness (4)
and predecessor (11) axioms are thus proved in our axiomatic.

Finally, we have to prove Lem. 2.18, namely that strong induction is derivable in MSO.
The proof holds no surprise.

Proof of Lem. 2.18. We have to show

∀x
(
∀y(y <̇ x → Xy) −→ Xx

)
` ∀xXx

By induction on x we show

∀x
(
∀y(y <̇ x → Xy) −→ Xx

)
` φ(x)

where
φ(x) := ∀y(y ≤̇ x → Xy)

The base case
∀x
(
∀y(y <̇ x → Xy) −→ X(x)

)
, Z(x) ` φ(x)

is trivial since by (6),
Z(x) ` ¬∃y(y <̇ x)

For the induction step, we have to show

∀x
(
∀y(y <̇ x → Xy) −→ Xx

)
, S(x, x′), φ(x), z ≤̇ x′ ` Xz

Notice that φ(x) is equivalent to φ′(x′) := ∀y(y <̇ x′ → Xy) thanks to (11). By (12), we
have three subcase according to:

z <̇ x′ ∨ z
.
= x′ ∨ x′ <̇ z

The first case enables us to use φ′(x′) directly, and the second one follows from the assumption
∀x(∀y(y <̇ x→ Xy)→ Xx together with φ′(x′). The last one leads to a contradiction using
the antisymmetry of ≤̇.

36 PIERRE PRADIC AND COLIN RIBA

Appendix B. Internally Bounded Formulae (§4.4)

We prove here the Splitting Lemma 4.13, used in the proof of Thm. 4.11. We consider
formulae over the vocabulary of [Rib12], that is formulae given by the grammar

ϕ,ψ ∈ Λ ::= > | ⊥ | x ∈̇ X | x <̇ y | ¬ϕ | ϕ ∨ ψ | ∃X ϕ | ∃xϕ
Following §2.5 (see also §A), defining the atomic formulae

.
=, S(−,−), ≤̇ and Z(−) as

x
.
= y := ∀X (x ∈̇ X → y ∈̇ X)

S(x, y) := (x <̇ y ∧ ¬∃z(x <̇ z <̇ y))
x ≤̇ y := (x <̇ y) ∨ (x

.
= y)

Z(x) := ∀y (x ≤̇ y)

we obtain for each formula in the sense of Fig. 2 an equivalent formula in Λ (w.r.t. the standard
model N). Note that the Transfer Lemma 4.12 gives in particular that if B0, B1 ∈ 2ω ' P(N)
are disjoint, then

N |= ∃X(ϕ0�B0 ∧ ϕ1�B1) ←→
(
∃X(ϕ0�B0) ∧ ∃X(ϕ1�B1)

)
(B.1)

Lemma B.1 (Splitting (Lem. 4.13)). Let ψ be a formula in Λ and let z be an individual
variable. For every set of individual variables V with z ∈ V , one can produce a natural
number N and two matching sequences of length N of left formulae (Lj)j<N and right
formulae (Rj)j<N such that the following holds:

• For every j < N , FVι(Lj) ⊆ FVι(ψ) ∩ V and FVι(Rj) ⊆ FVι(ψ) \ V .
• If FVι(ψ) = {x, z, y} with V ∩ FVι(ψ) = {x, z}, then for all n ∈ N, all a ≤ n and all
b > n, we have

N |= ψ[a/x, n/z, b/y] ←→
∨
j<N

Lj [a/x, n/z]�[− ≤̇ n] ∧ Rj [b/y]�[− >̇ n]

Proof. The proof proceeds by induction on ψ. The cases of > and ⊥ are trivial and omitted.

Case of (x <̇ y): We take N := 1 and we define suitable left and right formulae according
to V . In each case the choice of z is irrelevant.
• If x, y ∈ V , then L0 := ψ and R0 := >.
• If x, y /∈ V , then L0 := > and R0 := ψ.
• If x ∈ V and y /∈ V , then L0 := R0 := >.
• If y ∈ V and x /∈ V , then L0 := R0 := ⊥.

Case of (x ∈̇ X): We take N := 1. Then one of the produced formula is ψ and the other
one is > according to whether x ∈ V or not.

Case of (ψ ∨ ψ′): Let (Lj , Rj)j<N and (L′k, R
′
k)k<N ′ be obtained by applying the induction

hypothesis on ψ and ψ′ respectivelly. Then for ψ ∨ ψ′ we take N ′′ := N +N ′ and the
sequence (L′′i , R

′′
i)i<N ′′ given by

L′′j := Lj R′′j := Rj (for j < N)

L′′N+k := L′k R′′N+k := R′k (for k < N ′)

Case of (∃xψ): Note that we can assume x /∈ V . We apply the induction hypothesis on ψ
twice: once with V ∪ {x} and once with V . This gives sequences resp. (Lj , Rj)j<N and
(L′k, R

′
k)k<N ′ . For ∃xψ we take N ′′ := N +N ′ and the sequence (L′′i , R

′′
i)i<N ′′ given by

L′′j := ∃xLj R′′j := Rj (for j < N)

L′′N+k := L′k R′′N+k := ∃xR′k (for k < N ′)

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 37

The disjunction is then seen to be equivalent to ∃xψ by making a case analysis over
whether x ≤̇ n holds.

Case of (∃X ψ): Let (Lj , Rj)j<N be obtained by induction hypothesis on ψ. Then for ∃X ψ
we keep the same N and it directly follows from (B.1) that we can take the sequence
(L′j , R

′
j)j<N given by L′j := ∃XLj and R′j := ∃XRj .

Case of (¬ψ): By induction hypothesis, we have a natural number N and two sequences
of formulae (Lj , Rj)j<N such that ψ ←→

∨
j<N Lj�[− ≤̇ n] ∧Rj�[− >̇ n]. Hence all we

need to do is to add the negation, push it through the disjunction and conjunctions using
De Morgan laws and make the disjuncts commute over the conjunction in the obtained
formula. More explicitly (leaving the parameters implicit), we have:

¬ψ ←→
∧
j<N

¬Lj�[− ≤̇ n] ∨ ¬Rj�[− >̇ n]

←→
∨

f∈2{0,...,N−1}

∧
j∈f−1(0)

¬Lj�[− ≤̇ n] ∧
∧

j∈f−1(1)

¬Rj�[− >̇ n]

Remark B.2. Note that there is a combinatorial explosion in the case of ¬ψ in Lem. B.1
since N¬ψ = 2Nψ . It follows that the sizes of the formulae computed in Lem. B.1 and the
subsequent Thm. 4.11 are non-elementary in the size of ψ.

Appendix C. Automata for Atomic Formulae (§5.3)

We give below the automaton Sing (of §5.3) and automata for the atomic formulae of Fig. 2.
These automata are presented as deterministic Büchi automata (with accepting states circled).
As uniform automata, each of them has set of moves 1. Note that automata for atomic
formulae involving individual variables do not detect if the corresponding inputs actually
represent natural numbers. This is harmless, since all statements of §5 actually assume
streams representing natural numbers to be singletons, and since in Fig. 7, quantifications
over individuals are relativized to Sing.

• Sing :

0 1 2

0

1

0

1 ∗

• (x1
.
= x2) :

0 1

(i, i)

(i, 1− i)
(∗, ∗)

• (x1 ∈̇X1) :

0 1

(0, ∗)(1, 0)

(1, 1)
(∗, ∗)

38 PIERRE PRADIC AND COLIN RIBA

• (x1 ≤̇ x2) :

0 1 2

(0, ∗)

(1, 0)

(1, 1)

(∗, 0)

(∗, 1)
(∗, ∗)

• S(x1, x2) :

0

1

2

3

(0, ∗)
(1, 0)

(1, 1)

(∗, 1)

(∗, 0)

(∗, ∗)

(∗, ∗)

• Z(x1) :

0

1

2

1

0

∗

∗

• > and ⊥:

0 ∗ and 0 ∗

Appendix D. Proof of the Recursion Theorem 4.6

We recall the statement of the Recursion Theorem 4.6, where for formulae ψ = ψ1, . . . , ψq
and variables x and X = X1, . . . , Xq, the formula Recx

X
(ψ) is

∀z∀Z∀Z ′
 ∧

1≤i≤q
∀y <̇ z

(
Ziy ←→ Z ′iy

)
−→

∧
1≤i≤q

(
ψi[Z/X, z/x]←→ ψi[Z

′
/X, z/x]

)
Theorem D.1 (Recursion Theorem [Sie70]). MSO proves the following:

Recx
X

(ψ),
∧

1≤i≤q ∀z
(
Ziz ←→ ∀X

[∧
1≤j≤q ∀x ≤̇ z(Xjx↔ ψj) → Xiz

])
`∧

1≤i≤q ∀x
(
Zix←→ ψi[Z/X]

)
Recx

X
(ψ),

∧
1≤i≤q ∀x(Zix↔ ψi[Z/X]) ∧ ∀x(Z ′ix↔ ψi[Z

′
/X]) `

∧
1≤i≤q ∀x (Zix↔ Z ′ix)

A CURRY-HOWARD APPROACH TO CHURCH’S SYNTHESIS 39

Proof. Consider ψ = ψ1, . . . , ψq and variables x and X = X1, . . . , Xq, and assume Recx
X

(ψ).

We begin with the second part of the statement, namely the uniqueness part. Fix Y , Z. By
strong induction on z (Lem. 2.18), we show that MSO proves each of the following formulae
ϕi(z) = ϕi(Z, Y , z)∧

1≤j≤q
∀x ≤̇ z(Zjx↔ ψj [Z/X]) ∧ ∀x ≤̇ z(Yjx↔ ψj [Y /X]) −→ ∀x ≤̇ z (Zix↔ Yix)

Let z and assume the premise of ϕi(z), as well as ϕi(y) for all y <̇ z. The premise of ϕi(z)
implies that of ϕi(y) for y <̇ z, so that we have (Ziy ↔ Yiy) for all y <̇ z. Hence, given
x ≤̇ z, if x <̇ z then we are done. It thus remains to show (Ziz ↔ Yiz). Thanks to the
premise of ϕi(z), this amounts to showing ψi(Z, z) ↔ ψi(Y , z), which itself follows from
Recx

X
(ψ), since (Zjy ↔ Yjy) for all y <̇ z and all j = 1, . . . , q.

We now turn to the first part of the statement. For each i = 1, . . . , q let Zi such that

Ziz ←→ ∀X

 ∧
1≤j≤q

∀x ≤̇ z(Xjx↔ ψj) −→ Xiz

By strong induction on z, we show that MSO proves θ(z) := θ1(z) ∧ · · · ∧ θq(z) where

θi(z) := (∀x ≤̇ z)
(
Zix ←→ ψi(Z, x)

)︸ ︷︷ ︸
ϑi(x)

So let z and assume θ(y) for all y <̇ z. Fix i ∈ {1, . . . , q}. Given x ≤̇ z, if x <̇ z then
ϑi(x) follows from θi(x). It thus remains to show ϑi(z). We consider the two implications
separately.

Case of ψi(Z, z) −→ Ziz: Assume ψi(Z, z). By definition of Zi, we are done if we show

∀X

 ∧
1≤j≤q

∀x ≤̇ z(Xjx↔ ψj) −→ Xiz

(∀U)

[
(∀u ≤̇ v)

(
Uu ↔ ϕ(U, u)

)
−→ Uv

]
Given X such that

(
Xjx ↔ ψj(X,x)

)
for all x ≤̇ z and all j = 1, . . . , q, we obtain

Xiz from ψi(X, z), which itself follows from ψi(Z, z) and Rec(ψ). The premise of Rec(ψ)
follows from the conjunction of the (∀x <̇ z)ϕj(Z,X, x), whose premises are in turn

given resp. by the conjunction of the (∀y <̇ z)ϑj(x) and by the assumption on X.

Case of Ziz −→ ψi(Z, z): Assume Ziz. By comprehension let X such that

Xjx ←→
[
(x <̇ z ∧ Zjx) ∨

(
x
.
= z ∧ ψj(Z, z)

)]
We obtain ψi(Z, z) from Xiz, which in turn by def. of Zi follows from the conjunction
of the (∀x ≤̇ z)

(
Xjx ↔ ψj(X,x)

)
. In order to show the latter, note that by definition

of X we have (Xkx ↔ Zkx) for all x <̇ z and all k = 1, . . . , q. Hence Rec(ψ) gives
ψj(X, z) ↔ ψj(Z, z) and we get (Xjz ↔ ψj(X, z)) from the definition of X. In the

case of x <̇ z, namely (Xjx↔ ψj(X,x)), we have (∀y ≤̇ x)(Xjy ↔ Zjy) so that Rec(ψ)

implies ψj(X,x)↔ ψj(Z, x) and the result follows from ϑj(x).

40 PIERRE PRADIC AND COLIN RIBA

Contents

1. Introduction 1
2. Church’s Synthesis and MSO on Infinite Words 3
2.1. Notations 3
2.2. Church’s Synthesis and Synchronous Functions 3
2.3. Monadic Second-Order Logic (MSO) on Infinite Words 5
2.4. Church’s Synthesis for MSO 6
2.5. An Axiomatization of MSO 7
3. SMSO: A Synchronous Intuitionistic Variant of MSO 9
3.1. A Glivenko Theorem for MSO 12
3.2. The Main Result 13
4. On the Representation of Deterministic Mealy Machines in MSO 13
4.1. Internalizing Deterministic Mealy Machines in MSO 14
4.2. The Recursion Theorem 15
4.3. From Bounded Formulae to Deterministic Mealy Machines 16
4.4. Semantically Bounded Formulae 17
5. The Realizability Interpretation of SMSO 19
5.1. Uniform Automata 19
5.2. Constructions on Automata 20
5.3. The Realizability Interpretation 22
6. Indexed Structure on Automata 25
6.1. The Basic Idea 25
6.2. Substitution 26
6.3. Categorical Existential Quantifications 27
6.4. Categorical Conjunction 28
6.5. Indexed Structure 28
7. Conclusion 30
Further Works 30
Acknowledgment 30
References 30
Appendix A. Completeness of MSO (Thm. 2.16) 31
Appendix B. Internally Bounded Formulae (§4.4) 36
Appendix C. Automata for Atomic Formulae (§5.3) 37
Appendix D. Proof of the Recursion Theorem 4.6 38

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Church's Synthesis and MSO on Infinite Words
	2.1. Notations
	2.2. Church's Synthesis and Synchronous Functions
	2.3. Monadic Second-Order Logic (MSO) on Infinite Words
	2.4. Church's Synthesis for MSO
	2.5. An Axiomatization of MSO

	3. SMSO: A Synchronous Intuitionistic Variant of MSO
	3.1. A Glivenko Theorem for MSO
	3.2. The Main Result

	4. On the Representation of Deterministic Mealy Machines in MSO
	4.1. Internalizing Deterministic Mealy Machines in MSO
	4.2. The Recursion Theorem
	4.3. From Bounded Formulae to Deterministic Mealy Machines
	4.4. Semantically Bounded Formulae

	5. The Realizability Interpretation of SMSO
	5.1. Uniform Automata
	5.2. Constructions on Automata
	5.3. The Realizability Interpretation

	6. Indexed Structure on Automata
	6.1. The Basic Idea
	6.2. Substitution
	6.3. Categorical Existential Quantifications
	6.4. Categorical Conjunction
	6.5. Indexed Structure

	7. Conclusion
	Further Works

	Acknowledgment
	References
	Appendix A. Completeness of MSO (Thm. 2.16)
	Appendix B. Internally Bounded Formulae (§4.4)
	Appendix C. Automata for Atomic Formulae (§5.3)
	Appendix D. Proof of the Recursion Theorem 4.6

