
Proofs and Programs
Course Notes

Colin Riba
ENS Lyon, Université de Lyon, LIP∗

colin.riba@ens-lyon.fr

March 27, 2023

The main reference for these notes is the book [SU06]. However, we fre-
quently depart from the latter regarding presentation and notation, and also
on some technical choices. Other references are given within the text.

∗UMR 5668 CNRS ENS Lyon UCBL INRIA

1

Contents

Contents

1. Introduction 6

2. Propositional Logic 8
2.1. Natural Deduction for Intuitionistic Propositional Logic 8

2.1.1. Semantics with Truth Values . 10
2.1.2. Derivable and Admissible Rules . 11

2.2. Intuitionistic Negation . 12
2.2.1. Basic Classical Laws: Excluded Middle and Elimination of Double

Negation . 13
2.2.2. Reductio ad Absurdum and The Law of Peirce 14

2.3. Classical Propositional Logic . 16
2.4. Minimal Implicational Logic . 16
2.5. A Negative Translation . 17
2.6. Glivenko’s Theorem . 19

3. The Untyped Lambda-Calculus 22
3.1. Introduction . 22
3.2. Syntax . 24

3.2.1. The Terms of the Lambda-Calculus 24
3.2.2. Examples and Notational Conventions 24
3.2.3. Free and Bound Variables, Towards Alpha-Conversion 25
3.2.4. Alpha-Conversion via a Locally Nameless Representation 26

3.3. Beta-Reduction . 27
3.3.1. Capture-Avoiding Substitution . 28
3.3.2. The Notion of Beta-Reduction . 28
3.3.3. The Relation of Beta-Reduction 28

3.4. Reductions, Conversions and Confluence 29
3.4.1. Undecidability of Beta-Conversion 31
3.4.2. A Further Simple Fact on Confluence 32
3.4.3. Normalization and Newman’s Lemma 33

3.5. Confluence of Beta-Reduction . 34
3.5.1. Some Basic Properties . 34
3.5.2. Parallel Nested Beta-Reduction . 35
3.5.3. Proof of Confluence . 36
3.5.4. An Alternative Proof by Complete Developments 36

3.6. Eta-Conversion and Böhm’s Theorem . 36
3.7. Combinatory Logic . 38

3.7.1. Representation of Beta-Conversion 39

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic 40
4.1. Introduction . 40

2

Contents

4.2. The Simply-Typed Lambda-Calculus . 41
4.2.1. Syntax . 41
4.2.2. Main Properties . 43

4.3. Curry-Howard Correspondence for Intuitionistic Minimal Implicational
Logic . 44
4.3.1. Beta-Reduction and Curry-Howard 46

4.4. Full Intuitionistic Propositional Logic . 47
4.4.1. Intuitionistic Conjunctions and Products 47
4.4.2. Intuitionistic Disjunctions and Sums 48
4.4.3. A Simply-Typed Lambda-Calculus with Sums and Products 49
4.4.4. Main Properties . 51
4.4.5. Curry-Howard Correspondence . 54

5. Normalization for Simple Types 58
5.1. Introduction . 58
5.2. Notational Preliminaries . 58
5.3. A First Normalization Result: The Disjunction Property 59

5.3.1. Weak Head Reduction . 60
5.3.2. Type Interpretations and Adequacy 61
5.3.3. Proof of the Disjunction Property 62

5.4. Reducibility Candidates . 64
5.5. Strong Normalization . 66

5.5.1. Inductive Definition of Strong Normalization 67
5.5.2. Strong Normalization and Weak Head Reduction 67
5.5.3. Type Interpretations and Adequacy 69

6. First-Order Predicate Logic 70
6.1. Preliminaries . 71

6.1.1. First-Order Signatures . 71
6.1.2. The Language of First-Order Predicate Logic 72
6.1.3. Structures and Models . 73

6.2. Natural Deduction for First-Order Predicate Logic 74
6.2.1. Structural Properties . 77
6.2.2. Soundness and Completeness w.r.t. the Classical Semantics; Theories 77
6.2.3. Negative Translations . 79
6.2.4. Undecidability . 80
6.2.5. The Failure of Glivenko’s Theorem for Full First-Order Logic . . . 81
6.2.6. Extraction . 82

6.3. Proof-Terms for Intuitionistic First-Order Predicate Logic 83
6.3.1. Structural Properties . 86
6.3.2. Beta-Reduction . 86
6.3.3. The Full System and its Main Properties 88

6.4. First-Order Predicate Logic with Equality 90
6.4.1. The Language of First-Order Predicate Logic with Equality 90

3

Contents

6.4.2. Deduction for First-Order Predicate Logic with Equality 91
6.4.3. Models of First-Order Predicate Logic with Equality 92
6.4.4. Negative Translations for First-Order Predicate Logic with Equality 93
6.4.5. Proof-Terms for First-Order Predicate Logic with Equality 93
6.4.6. On Term Extraction and Classical Logic 94

6.5. Normalization . 95

7. First-Order Arithmetic 97
7.1. Theories of Natural Numbers with Induction 98
7.2. Peano Arithmetic . 100

7.2.1. Primitive Recursive Functions . 101
7.2.2. Representation of Computable Functions 102
7.2.3. The Language of First-Order Arithmetic 103
7.2.4. The Axioms of First-Order Arithmetic 104
7.2.5. First-Order Peano Arithmetic . 105
7.2.6. Representation and Incompleteness 107
7.2.7. A Classical Arithmetic of True Equalities 108

7.3. Heyting Arithmetic . 110
7.3.1. Examples and Basic Properties . 110
7.3.2. The Quantifier-Free Formulae of HA 112
7.3.3. Relation to PA and Extraction . 114
7.3.4. Friedman’s Translation . 116

8. Gödel’s System T 119
8.1. Proof-Terms for Induction . 119
8.2. Definition and Main Properties . 122

8.2.1. Structural Properties . 123
8.2.2. Normalization Properties . 123
8.2.3. Expressiveness and Representation 125
8.2.4. Arithmetization . 126
8.2.5. Strong Normalization . 129

8.3. Modified Realizability . 131
8.3.1. Proof of Adequacy . 134
8.3.2. Extension to Primitive Disjunctions 135
8.3.3. The Theory of Realized Formulae 136
8.3.4. Realizability with Truth . 137

9. Polymorphism 138
9.1. Church-Style System F . 139

9.1.1. Definition . 139
9.1.2. Structural Properties . 140
9.1.3. Examples of Impredicative Codings 141
9.1.4. Main Properties . 145

4

Contents

9.2. Curry-Style System F . 146
9.2.1. Erasing from Church-Style to Curry-Style System F 147
9.2.2. Examples of Polymorphic Typings of Pure Lambda-Terms 148
9.2.3. Main Properties . 150

9.3. Strong Normalization . 151
9.3.1. Erasing from Church-style to Curry-style System F 151
9.3.2. Strong Normalization of Curry-Style System F 152
9.3.3. Reducibility Candidates . 153
9.3.4. Adequacy . 154

A. Completeness of Classical Propositional Logic 160
A.1. A Semantically Reversible Sequent Calculus 160
A.2. Translation to NK0 . 161
A.3. Completeness of NK0 . 162
A.4. Comparison with other (Compactness and) Completeness Statements . . . 162

5

1. Introduction

1. Introduction

The main objective of this course is to provide some basics on parts of the theory under-
lying the Coqproof assistant,1 namely the Curry-Howard correspondence between
proofs and programs:

Prog. Languages Logic

Types ≡ Formulae
Programs ≡ Proofs

The underlying logic of the Coq system, as well as the core of the Curry-Howard cor-
respondence is intuitionistic (or constructive2). Let us try to explain what does this
mean. Consider the following simple fact:

Fact 1.1. Either (π + e) or (π − e) is irrational.

Proof. Assume toward a contradiction that (π+ e) and (π− e) are both rational.
Then 2π = (π + e) + (π − e) is rational, a contradiction.

However, the following questions are open:3

• is (π + e) irrational?

• is (π − e) irrational?

The guiding principles of intuitionistic reasoning are:

• from a proof of a disjunctive statement, say A∨B, one should be able to extract
either a proof of A or a proof of B; and

• from a proof of a statement of the form (∀x ∈ N)(∃y ∈ N)A(x, y), one should be
able to extract a computable function f : N→ N such that (∀x ∈ N)A(x, f(x)).

The argument we gave for Fact 1.1 obviously falls short of the first criterion above. This
is crucially due to the use of the non-constructive reasoning principle of reductio ad
absurdum (RAA). Roughly speaking, intuitionistic logic (IL) is defined from classical
logic (CL) by

(CL) = (IL) + (RAA)

Intuitionistic (or constructive) mathematics emerged progressively from the 19th century,
until their principles were formulated by Brouwer in the early 20th century. It is mainly
Heyting who (starting from the 30’s) translated Brouwer’s principles in logical terms,
thus establishing them as mathematical objects.

1https://coq.inria.fr/
2In this course, we use “intuitionistic” as a technical term qualifying some logical systems, while we

use the word “constructive” only informally.
3As of the 9th of Jan. 2023, see https://en.wikipedia.org/wiki/Transcendental_number.

6

https://coq.inria.fr/
https://en.wikipedia.org/wiki/Transcendental_number

1. Introduction

Our approach to intuitionistic logic in this course is to insist on proofs rather than on
truth of formulae. In other words, the important mathematical objects are proofs, which
(by the Curry-Howard correspondence) will be (mostly) seen as terms of some typed
λ-calculus. To summarize, our first main topic will be to investigate intuitionistic logics
and their relations to typed λ-calculi.

Our second main topic will be to compare intuitionistic systems with their classical
counterparts. At first sight, intuitionistic systems are blatantly more restrictive than
classical ones since they accept less reasoning principles.

However, there are important logical systems and families of statements for which
classical logic is no more powerful than intuitionistic logic. This is crucially the case of
formulae expressing program termination. Formulae expressing termination are typically
formulae of the form (∀x ∈ N)(∃y ∈ N)(t(x, y) = 0) where t(x, y) represents some prim-
itive recursive function. The latter are called Π0

2-formulae. In many important logical
systems containing arithmetic, classical reasoning does not prove more Π0

2-formulae than
intuitionistic reasoning. In other words, in such systems one can prove the termination
of the same programs with classical and intuitionistic reasonings.

Moreover (and this is one of the main messages of this course), we see intuitionistic
systems as being richer than classical ones. Intuitively, discarding (RAA) makes (most)
formulae A not (logically) equivalent to their double-negation ¬¬A. As a consequence,
there are (intuitively) two notions of disjunction in intuitionistic logic:

(1) the plain intuitionistic disjunction (A ∨B),

(2) the “classical” intuitionistic disjunction ¬¬(A ∨B).

For instance, (A ∨ ¬A) is in general not intuitionistically provable, but ¬¬(A ∨ ¬A) is
always intuitionistically provable.

Similarly, there are two existential quantifiers in intuitionistic logic: the plain intu-
itionistic one (∃x)A and the “classical” one ¬¬(∃x)A.

References. The main reference for this course is the book [SU06].
Concerning intuitionistic logic, a good historical account is given in [TvD88a, Chap. 1]

(see also the Notes of [SU06, Chap. 2]). As for general technical introductions, be-
sides [SU06, Chap. 2], the textbook [vD04] is very accessible, while [TvD88a, TvD88b]
form a more comprehensive account. Other interesting sources include [Bee85, Koh08].

Regarding typed λ-caluli, (besides [SU06]) a good synthetic but general account
is [Bar92], while [Pie02] is a gentle but comprehensive reference book from the point
of view of programming languages. An important complementary topic to this course is
the denotational semantics of programming languages, for which we refer to [AC98].

Beware however that we should consistently follow the notations and technical defini-
tions of none of these sources.

7

2. Propositional Logic

2. Propositional Logic

This §2 loosely follows [SU06, §2] (as well as parts of [SU06, §6]). Additional references
are given within the text.

We consider formulae given by the grammar:

A,B ::= p | A⇒ B | A ∧B | A ∨B | > | ⊥

where p ranges over some (unspecified) set of atomic propositions.
Note that there is no primitive notion of negation in the above grammar.

Notation 2.1 (Negation). We write ¬A for A⇒ ⊥.

We follow the same notational conventions as [SU06, 2.1.2].

Notation 2.2.

(1) We assume that implication (⇒) associates to the right, so that e.g. A ⇒ B ⇒ C
stands for A⇒ (B ⇒ C) (which is different from (A⇒ B)⇒ C).

(2) We assume that negation has the highest priority and implication the lowest, so that
e.g. A ∧ ¬B ⇒ C stands for (A ∧ (¬B))⇒ C.

Finally:

Notation 2.3. We write A⇔ B for (A⇒ B) ∧ (B ⇒ A).

2.1. Natural Deduction for Intuitionistic Propositional Logic

A sequent (for intuitionistic natural deduction) is a pair of the form ∆ ` A where
A is a formula and ∆ is a (possibly empty) list of formulae. In the literature, ∆ is
sometimes called the antecedent of ∆ ` A and A its succedent. We shall often call
∆ the context of ∆ ` A. The intended meaning of the sequent A1, . . . , An ` A is
(A1 ∧ · · · ∧An)⇒ A (see §2.1.1 below).

The system NJ0 of natural deduction for intuitionistic propositional logic is
given by the deduction rules of Fig. 1. These rules have the form

∆1 ` A1 . . . ∆n ` An
∆ ` A

(with possibly n = 0). We say that ∆ ` A is the conclusion, while the sequents
∆1 ` A1, . . . ,∆n ` An are the premises of the rule. The intended meaning of such a
rule is that the conclusion holds whenever so do all the premises.

A derivation in NJ0 is a finite ordered tree whose nodes are labeled by sequents and
which respects the rules of Fig. 1 in the following sense:

• given a node p with list of (immediate) children p1, . . . , pn, there is a rule

∆1 ` A1 . . . ∆n ` An
∆ ` A

such that ∆ ` A labels p and ∆i ` Ai labels pi for each i = 1, . . . , n.

8

2. Propositional Logic

(Ax)
∆ ` A

(A ∈ ∆) (>-I)
∆ ` >

(⊥-E)
∆ ` ⊥
∆ ` A

(⇒-I)
∆, A ` B

∆ ` A⇒ B
(⇒-E)

∆ ` A⇒ B ∆ ` A
∆ ` B

(∧-I) ∆ ` A ∆ ` B
∆ ` A ∧B

(∧1-E)
∆ ` A ∧B

∆ ` A
(∧2-E)

∆ ` A ∧B
∆ ` B

(∨1-I)
∆ ` A

∆ ` A ∨B
(∨2-I)

∆ ` B
∆ ` A ∨B

(∨-E)
∆ ` A ∨B ∆, A ` C ∆, B ` C

∆ ` C

Figure 1: Natural Deduction for Intuitionistic Propositional Logic (NJ0).

In particular, the leaves of a derivation must be labeled by sequents which are instances
of rules with no premise.

Example 2.4. The following are derivations in NJ0.

(1) A ` A, using the (Ax)-rule A ` A.

(2) A ∧B ` B, with the derivation tree

A ∧B ` A ∧B
A ∧B ` A

(3) A⇒ B,B ⇒ C ` A⇒ C, with the derivation tree

A⇒ B,B ⇒ C,A ` B ⇒ C

A⇒ B,B ⇒ C,A ` A⇒ B A⇒ B,B ⇒ C,A ` A
A⇒ B,B ⇒ C,A ` B

A⇒ B,B ⇒ C,A ` C
A⇒ B,B ⇒ C ` A⇒ C

Exercise 2.5. Show that the following are derivable in NJ0:

(1) A ∧ (B ∨ C) ` (A ∧B) ∨ (A ∧ C)

(2) (A ∧B) ∨ (A ∧ C) ` A ∧ (B ∨ C)

The following basic properties are proved by induction on derivations.

Lemma 2.6 (Structural Rules). The following properties hold in NJ0:

9

2. Propositional Logic

(weakening) if ∆ ` A then ∆, B ` A;

(contraction) if ∆, B,B ` A then ∆, B ` A;

(exchange) if ∆, B,∆′, C,∆′′ ` A then ∆, C,∆′, B,∆′′ ` A.

Lemma 2.7 (Substitution). In NJ0, if ∆ ` A then ∆[B/p] ` A[B/p].

Remark 2.8. In the following we shall informally speak of “intuitionistic proposi-
tional” logic for the deduction system NJ0. We insist on the fact that there are
different possible deduction systems for intuitionistic propositional logic (e.g. sequent
calculus, Hilbert systems etc.), while natural deduction systems exist for other logics
(classical, linear etc.). We refer to [SU06, §2, §5 & §6]. See also [TvD88a, Chap. 2] as
well as [Bus98a, GLT89].

The characteristic property of intuitionistic (propositional) logic is the following.

Theorem 2.9. In intuitionistic propositional logic (NJ0),

(1) ` ⊥ is not derivable;

(2) if ` A ∨B then either ` A or ` B;

(3) ` p ∨ ¬p is not derivable (where p is an atomic proposition).

Theorem 2.9.(2) is often called the Disjunction Property. We admit it until §4.4.5
(actually §5.3). On the other hand, item (3) (assuming item (2)) as well as item (1) are
fairly easy (see §2.1.1 below).

2.1.1. Semantics with Truth Values

Intuitionistic propositional logic is sound w.r.t. the classical semantics.

Definition 2.10 (Classical Semantics).

(1) A valuation v is a set of atomic propositions.

(2) We define the relation v |= A (read “v is a model of A” or “A is valid under v”)
by induction on A as follows:

v |= p iff p ∈ v
v |= A⇒ B iff (v |= A implies v |= B)
v |= A ∧B iff (v |= A and v |= B)
v |= A ∨B iff (v |= A or v |= B)
v |= >
v 6|= ⊥

(3) A formula A is valid when A is valid under all valuations.

(4) A sequent A1, . . . , An ` A is valid if the formula (A1 ∧ · · · ∧An)⇒ A is valid.

10

2. Propositional Logic

Remark 2.11 (Soundness w.r.t. Classical Semantics). It is easy to see that if NJ0 proves
∆ ` A then ∆ ` A is valid.

Beware that the converse of Rem. 2.11 fails: the formula p ∨ ¬p is valid but is not
provable in NJ0 (Thm. 2.9.(3)). See §2.3 for the case of classical logic.

Intuitionistic (propositional) logic is complete only w.r.t. weaker notions of validity,
relying on stronger semantics (see [SU06, §2.4 & 2.5], also [vD04, TvD88a, TvD88b]).
Such semantics in particular give the disjunction property (Thm. 2.9.(2)) without relying
on the Curry-Howard correspondence (in contrast with our approach in §4.4), see [SU06,
Prop. 2.5.9] (see also [vD04, Thm. 5.4.2]).

Remark 2.12. Soundness w.r.t. classical semantics (Rem. 2.11) trivially gives item (1)
of Thm. 2.9. It also easily gives item (3) assuming item (2).

Proof. Assume that ` p∨¬p is derivable in NJ0. Then Thm. 2.9.(2) implies that either
` p or ` ¬p is derivable in NJ0. But this is a contradiction since neither p nor ¬p is
valid in the classical semantics.

A result which is typically proved using (specific) truth values for intuitionistic proposi-
tional logic is the decidability of provability in NJ0. See [SU06, Thm. 2.4.12] (also [vD04,
Ex. 15]).

Theorem 2.13. Provability in NJ0 is decidable.

2.1.2. Derivable and Admissible Rules

We say that a rule
∆1 ` A1 . . . ∆n ` An

∆ ` A
is derivable in a given system (say NJ0) if there exists a (partial) derivation of ∆ ` A
in which leaves among ∆1 ` A1, . . . ,∆n ` An are allowed.

A rule as above is admissible if its conclusion is derivable whenever all its premises
are derivable.

Example 2.14 (Cut Rule). The rule

(Cut)
∆ ` A ∆, A ` B

∆ ` B

is derivable as

∆, A ` B
∆ ` A⇒ B ∆ ` A

∆ ` B
Remark 2.15. In the following, we use instances of Lem. 2.6 and of Ex. 2.14 without
explicit reference.

11

2. Propositional Logic

2.2. Intuitionistic Negation

Intuitionistic negation is an interesting connective, in particular because in general NJ0

does not prove ¬¬A ` A (where ¬A is defined in Notation 2.1).

Remark 2.16. In the following (and in accordance with e.g. [TvD88a, Chap. 2, §3]),
we record which properties use the (ExFalso) rule (denoted (⊥-E) in Fig. 1). Note that
removing (ExFalso) from NJ0 results in having no rule for ⊥.

Intuitionistic logic without (ExFalso) is called minimal logic ([SU06, 2.2.2], see
also [TvD88a, Chap. 2, Def. 3.2]). The implicational fragment of minimal logic is dis-
cussed in §2.4.

The following gathers simple basic but important properties of intuitionistic negation.

Lemma 2.17. The following are derivable in NJ0 (without (ExFalso)):

(1) B ⇒ ¬A ` A⇒ ¬B

(2) A ` ¬¬A

(3) A⇒ B ` ¬B ⇒ ¬A

(4) A⇒ B ` ¬¬A⇒ ¬¬B

(5) ¬¬¬A ` ¬A

Proof. We use the (Cut) rule (Ex. 2.14) without explicit reference.

(1) Since NJ0 (without (ExFalso)) proves B ⇒ ¬A,A,B ` ⊥.

(2) By (1) and the fact that NJ0 proves ` ¬A⇒ ¬A.

(3) By (2) we get A⇒ B ` A⇒ ¬¬B. Then conclude with (1).

(4) By (3) twice.

(5) By (2) twice we get A⇒ ¬¬¬¬A. Then conclude with (1).

Remark 2.18. In the following, we shall often refer to Lem. 2.17 for its combination
with Rem. 2.15 (§2.1.2), for instance resulting in the admissible rule

∆, A ` B
∆,¬¬A ` ¬¬B

obtained as

A⇒ B ` ¬¬A⇒ ¬¬B
` (A⇒ B)⇒ (¬¬A⇒ ¬¬B)

∆ ` (A⇒ B)⇒ (¬¬A⇒ ¬¬B)

∆, A ` B
∆ ` A⇒ B

∆ ` ¬¬A⇒ ¬¬B
∆,¬¬A ` ¬¬A⇒ ¬¬B ∆,¬¬A ` ¬¬A

∆,¬¬A ` ¬¬B

12

2. Propositional Logic

2.2.1. Basic Classical Laws: Excluded Middle and Elimination of Double Negation

We now discuss the extension of NJ0 with some classical principles. This §2.2.1 focuses
on the excluded middle and on the elimination of double negation. Reductio ad
absurdum (see §1) as well as the more general Peirce’s law are discussed in §2.2.2.
In both cases we refer to [SU06, §6.1].

Definition 2.19 (Basic Classical Laws).

• The law of excluded middle is the rule

(EM)
∆ ` A ∨ ¬A

• The double-negation elimination law is the rule

(DNE)
∆ ` ¬¬A⇒ A

Lemma 2.20. NJ0 (without (ExFalso)) proves ` ¬¬(A ∨ ¬A).

Proof. We give the proof tree:

¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A), A ` A
¬(A ∨ ¬A), A ` A ∨ ¬A

¬(A ∨ ¬A), A ` ⊥
¬(A ∨ ¬A) ` ¬A
¬(A ∨ ¬A) ` A ∨ ¬A

¬(A ∨ ¬A) ` ⊥
` ¬¬(A ∨ ¬A)

Corollary 2.21. NJ0 (without (ExFalso) but) augmented with (DNE) proves all in-
stances of (EM).

Lemma 2.22. NJ0 (with (ExFalso) and) augmented with (EM) proves all instances
of (DNE).

Proof. We give the proof tree:

` A ∨ ¬A ¬¬A,A ` A

¬¬A,¬A ` ¬¬A ¬¬A,¬A ` ¬A
¬¬A,¬A ` ⊥
¬¬A,¬A ` A

¬¬A ` A
` ¬¬A⇒ A

Corollary 2.23. The following systems prove the same sequents:

13

2. Propositional Logic

(i) NJ0 (with (ExFalso) and) augmented with (DNE);

(ii) NJ0 (with (ExFalso) and) augmented with (EM).

Remark 2.24 (Non Interdefinability of Connectives). Assuming that there is at least
one atomic proposition, in intuitionistic logic connectives are not interdefinable as in
classical logic. In each case below, there are formulae A,B such that the indicated se-
quents are not derivable in NJ0:

(i) (A⇒ B) ` ¬A ∨B

(ii) ¬(¬A ∧ ¬B) ` A ∨B

(iii) ¬(¬A ∨ ¬B) ` A ∧B

Proof. In each case, we find instances of A and B which contradict Thm. 2.9.(3).

(i) We take A = B = p, an atomic proposition. Then p ⇒ p is provable in NJ0 but
not ¬p ∨ p.

(ii) Assume that NJ0 proves ¬(¬A ∧ ¬A) ` A ∨ A for all A. Then NJ0 proves all
instances of (DNE) (since NJ0 proves A ⇔ (A ∧ A) and A ⇔ (A ∨ A)), which by
Cor. 2.23 implies that NJ0 proves all instances of (EM), a contradiction.

(iii) Similar.

2.2.2. Reductio ad Absurdum and The Law of Peirce

We now complete the investigation of classical principles initiated in §2.2.1. We still
refer to [SU06, §6.1].

Definition 2.25.

• The law of Peirce is the rule

(Peirce)
∆ ` ((A⇒ B)⇒ A)⇒ A

• The principle of reductio ad absurdum is the rule

(RAA)
∆ ` (¬A⇒ A)⇒ A

The principle (RAA) was discussed informally in §1. Its generalization to Peirce’s law
is crucial w.r.t. Minimal Logic (see §2.4 below).

Lemma 2.26. NJ0 (without (ExFalso) but) augmented with either (EM) or (DNE)
proves all instances of (RAA).

Proof. In the case of NJ0 + (EM), the proof tree is

14

2. Propositional Logic

` A ∨ ¬A ¬A⇒ A,A ` A
¬A⇒ A,¬A ` ¬A⇒ A ¬A⇒ A,¬A ` ¬A

¬A⇒ A,¬A ` A
¬A⇒ A ` A

` (¬A⇒ A)⇒ A

Together with Cor. 2.21, this also gives the result for NJ0 + (DNE).

Lemma 2.27. NJ0 (with (ExFalso) and) augmented with (RAA) proves all instances
of (Peirce), (DNE) and (EM).

Proof. In the case of (Peirce), we give the proof tree:

` (¬A⇒ A)⇒ A

(A⇒ B)⇒ A,¬A ` (A⇒ B)⇒ A

(A⇒ B)⇒ A,¬A,A ` ⊥
(A⇒ B)⇒ A,¬A,A ` B

(A⇒ B)⇒ A,¬A ` A⇒ B

(A⇒ B)⇒ A,¬A ` A
(A⇒ B)⇒ A ` ¬A⇒ A

(A⇒ B)⇒ A ` A
` ((A⇒ B)⇒ A)⇒ A

For the remaining cases, we only consider (DNE) (and conclude with Cor. 2.23):

` (¬A⇒ A)⇒ A

¬¬A,¬A ` ⊥
¬¬A,¬A ` A
¬¬A ` ¬A⇒ A

¬¬A ` A
` ¬¬A⇒ A

Corollary 2.28. The following systems prove the same sequents:

(i) NJ0 (with (ExFalso) and) augmented with (Peirce);

(ii) NJ0 (with (ExFalso) and) augmented with (RAA);

(iii) NJ0 (with (ExFalso) and) augmented with (DNE);

(iv) NJ0 (with (ExFalso) and) augmented with (EM).

It follows from Thm. 2.9 that the equivalent (w.r.t. provability) systems of Cor. 2.28 are
proper extensions of NJ0.

Remark 2.29. Note that some instances of seemingly classical principles are actually
intuitionistic. We have already seen in Lem. 2.17.(5) that NJ0 admits elimination of
double negation over negated formulae. The same is true for (RAA):

• NJ0 (without (ExFalso)) proves ` (¬¬A⇒ ¬A)⇒ ¬A.

Proof. Exercise!

15

2. Propositional Logic

2.3. Classical Propositional Logic

The system NK0 of natural deduction for classical propositional logic is NJ0 augmented
with the rule (EM). The system NK0 is complete w.r.t. the classical semantics (Def. 2.10,
§2.1.1).

Theorem 2.30 (Completeness of NK0). NK0 proves all valid sequents.

Theorem 2.30 can be obtained in different ways. We give a proof in Appendix A
(Thm A.9, §A.3), which uses a Gentzen-style sequent calculus (see [SU06, §7], [GLT89,
§5], [Bus98a, §1.2] or [Mel09, §1]).

Remark 2.31 (Compactness and Related Results). The reader is invited to look at
related results (including compactness), e.g. [SU06, Thm. 6.1.10] or [Bus98a, Thm.
1.1.3 & Thm. 1.1.5], also [vD04, Thm. 1.5.13]. See §A.4 for a discussion.

2.4. Minimal Implicational Logic

We make a detour via a very simple logic called minimal implicational logic (see
Rem. 2.16, §2.2). Its formulae are given by the grammar

A,B ::= p | A⇒ B

where p ranges over some (unspecified) set of atomic propositions.

Remark 2.32 (Terminology). Hence minimal implicational logic is the implicational
fragment of minimal logic as defined in Rem. 2.16. In the remaining of this §2.4 we
write “minimal logic” for “minimal implicational logic”.

Deduction for intuitionistic minimal (implicational) logic is given by the rules of NJ0

restricted to the connectives of minimal logic, namely:

(Ax)
A ∈ ∆

∆ ` A
(⇒-I)

∆, A ` B
∆ ` A⇒ B

(⇒-E)
∆ ` A⇒ B ∆ ` A

∆ ` B

Note in particular that (ExFalso) is not available, for the reason that there is no ⊥ in
minimal logic! Also, among the classical principles mentioned in Cor. 2.28, only Peirce’s
law is available for minimal logic. We thus define deduction for classical minimal logic
to consist of deduction for intuitionistic minimal logic augmented with the rule (Peirce)
of Def. 2.25 (§2.2.2):

(Peirce)
∆ ` ((A⇒ B)⇒ A)⇒ A

As we shall see in §4.3, minimal logic is the core of the Curry-Howard correspondence.
It is also of central importance for Second-Order Logic (see §??).

For the moment we only establish two basic facts about minimal logic.

Proposition 2.33. Assume that there is exactly one atomic proposition. Then classical
and intuitionistic minimal logics prove the same sequents.

16

2. Propositional Logic

Proof. Exercise!

Proposition 2.34. Assume that p and q are distinct atomic propositions. Then intu-
itionistic minimal logic does not prove ` ((p⇒ q)⇒ p)⇒ p.

Proof. Exercise!

Remark 2.35. Note that the proof of Prop. 2.34 apparently uses the classical (RAA).
But it is actually intuitionistic since we are proving a negated statement (see Rem. 2.29).

Remark 2.36. One can show that NJ0 is conservative over intuitionistic minimal
implicational logic ([SU06, Thm. 2.6.2]), so that the decidability of provability in NJ0

(Thm. 2.13, §2.1.1) implies the decidability of provability in intuitionistic minimal im-
plicational logic.

2.5. A Negative Translation

There are many translations of classical logic to intuitionistic logic in the literature.
We study here one such translation, which is a variant of the Gödel-Gentzen translation,
see [TvD88a, Chap. 2, §3.4–8]. See also [vD04, Def. 5.2.7], [SU06, §6.4] or [Koh08, §10.1].

Definition 2.37 (Negative Translation). The formula A¬ is defined by induction on A
as follows:

p¬ := ¬¬p
>¬ := >
⊥¬ := ⊥

(A⇒ B)¬ := A¬ ⇒ B¬

(A ∧B)¬ := A¬ ∧B¬
(A ∨B)¬ := ¬¬(A¬ ∨B¬)

Lemma 2.38. For each formula A, NJ0 proves ¬¬A¬ ` A¬.

Proof. The proof is by induction on A. The case of > is trivial since ∆ ` > is always
derivable with the rule (>-I). The cases of p and A ∨B follow from Lem. 2.17.(5). The
case of ⊥ is a kind of trick: we have

¬¬⊥ = ¬(⊥ ⇒ ⊥)
= (⊥ ⇒ ⊥)⇒ ⊥

Hence ¬¬⊥ ` ⊥ since ⊥ ⇒ ⊥ is provable in NJ0.
The remaining cases (A ∧B and A⇒ B) use the induction hypothesis:

Case of A ∧B. We have to derive ¬¬(A¬ ∧B¬) ` A¬ ∧B¬. We have A¬ ∧B¬ ` A¬ in
NJ0 and thus ¬¬(A¬ ∧ B¬) ` ¬¬A¬ by Lem. 2.17.(4). The induction hypothesis
then gives ¬¬(A¬ ∧ B¬) ` A¬. We similarly obtain ¬¬(A¬ ∧ B¬) ` B¬ and
conclude with (∧-I).

17

2. Propositional Logic

Case of A⇒ B. We have to derive ¬¬(A¬ ⇒ B¬) ` A¬ ⇒ B¬. By induction hy-
pothesis, we are done if we derive ¬¬(A¬ ⇒ B¬), A¬ ` ¬¬B¬. But it is easy
to see that A¬,¬B¬, A¬ ⇒ B¬ ` ⊥, so that A¬,¬B¬ ` ¬(A¬ ⇒ B¬) and thus
¬¬(A¬ ⇒ B¬), A¬,¬B¬ ` ⊥.

Theorem 2.39. If A1, . . . , An ` A is derivable in NK0, then A¬1 , . . . , A
¬
n ` A¬ is deriv-

able in NJ0.

Proof. By induction on derivations. We reason by case on the last applied rule. But
for each rule

∆1 ` A1 . . . ∆n ` An
∆ ` A

excepted those concerning disjunction ((∨1-I), (∨2-I), (∨-E) and (EM)) we have in NJ0

∆¬1 ` A¬1 . . . ∆¬n ` A¬n
∆¬ ` A¬

and the result follows from the induction hypothesis. We thus only discuss the remaining
rules:

Cases of (∨1-I) and (∨2-I):

(∨1-I)
∆ ` A

∆ ` A ∨B
(∨2-I)

∆ ` B
∆ ` A ∨B

We only discuss (∨1-I). The induction hypothesis gives ∆¬ ` A¬ and thus ∆¬ `
A¬ ∨B¬. We then conclude with Lem. 2.17.(2).

Case of (∨-E):

(∨-E)
∆ ` A ∨B ∆, A ` C ∆, B ` C

∆ ` C

The induction hypothesis (applied three times) gives ∆¬ ` ¬¬(A¬ ∨ B¬) and
∆¬, A¬ ` C¬ as well as ∆¬, B¬ ` C¬.

Note that NJ0 proves

A¬ ∨B¬, A¬ ⇒ C¬, B¬ ⇒ C¬ ` C¬

and thus (using Lem. 2.17.(4), see Rem. 2.18)

¬¬(A¬ ∨B¬), A¬ ⇒ C¬, B¬ ⇒ C¬ ` ¬¬C¬

We then obtain ∆¬ ` ¬¬C¬ and conclude with Lem. 2.38.

Case of (EM):
(EM)

∆ ` A ∨ ¬A

By Lem. 2.20.

18

2. Propositional Logic

Corollary 2.40. If NK0 proves ` A then NJ0 proves ` A¬.

Remark 2.41 (On Minimal Logic). Corollary 2.40 (i.e. Thm. 2.39) can be strengthened
to minimal logic (Rem. 2.16), in the sense that if ` A in NK0 then ` A¬ can be derived
in NJ0 without (ExFalso). To this end, it suffices to observe that the statement of
Lem. 2.38 actually holds in minimal logic and that ⊥ ` A¬ is provable in minimal logic
for each formula A. We refer to [TvD88a, Chap. 2, §3] for details.

Remark 2.42. As we shall see in §6.2.3 and §7.3.4, the translation (−)¬ generalizes to
stronger systems, and can be extended so as to provide extraction results (in the sense
outlined in §1).

Further, under the Curry-Howard correspondence, variants of (−)¬ extend to
continuation-passing style (CPS) translations for (extensions of) the λ-calculus. For
more on this, see [SU06, §6] (and also [Kri09] and [Sel01, §5–8]).

Remark 2.43 (On the Gödel-Gentzen and Kolmogorov Translations). The translation
(−)¬ devised in Def. 2.37 makes transparent the case of (EM) (and of (DNE)) via the
clause

(A ∨B)¬ := ¬¬(A¬ ∨B¬)

(and Lem. 2.38), in particular in view of Lem. 2.20 (§2.2.1). In contrast, the original
Gödel-Gentzen translation (see e.g. [TvD88a, Chap. 2, Def. 3.4] or [vD04, Def. 5.2.7])
assumes

(A ∨B)¬ := ¬(¬A¬ ∧ ¬B¬)

This however does not substantially change the proof of Lem. 2.38 and Thm. 2.39.
On the other hand, in view of Rem. 2.42 it is desirable to consider variants of (−)¬

which avoid Lem. 2.38. This is the case for instance of the following Kolmogorov
translation (−)¬¬ (see [TvD88a, Chap. 2, 3.7], and also [SU06, §6.4]):

p¬¬ := ¬¬p
>¬¬ := ¬¬>
⊥¬¬ := ¬¬⊥

(A⇒ B)¬¬ := ¬¬(A¬¬ ⇒ B¬¬)
(A ∧B)¬¬ := ¬¬(A¬¬ ∧B¬¬)
(A ∨B)¬¬ := ¬¬(A¬¬ ∨B¬¬)

(we differ from [TvD88a, Chap. 2, 3.7] in the case of >). The crucial difference
(with both variants of (−)¬) is that (−)¬¬ relies on the uniform proof of ¬¬¬A ` ¬A
(Lem. 2.17.(5), §2.2) instead of the inductive and (thus) non-uniform derivations of
Lem. 2.38.

2.6. Glivenko’s Theorem

We now discuss Glivenko’s Theorem, a well-known result which establishes that

NK0 proves ` A if and only if NJ0 proves ` ¬¬A

19

2. Propositional Logic

(see [SU06, Thm. 2.4.10] (proved by semantic methods), or e.g. [vD04, Thm. 5.2.10]). At
first sight, this result may seem to make the negative translation (−)¬ useless. Beware
that the situation is more subtle, chiefly because Glivenko’s Theorem does not extend
to (full) first-order logic, but also for reasons discussed in Rem. 2.50 below.

Lemma 2.44. NJ0 proves ¬¬A,¬¬B ` ¬¬(A ∧B).

Proof. We give a proof tree:

¬¬A ` ¬¬A

¬¬B ` ¬¬B

¬(A ∧B) ` ¬(A ∧B) A,B ` A ∧B
¬¬A,¬¬B,¬(A ∧B), A,B ` ⊥
¬¬A,¬¬B,¬(A ∧B), A ` ¬B

¬¬A,¬¬B,¬(A ∧B), A ` ⊥
¬¬A,¬¬B,¬(A ∧B) ` ¬A

¬¬A,¬¬B,¬(A ∧B) ` ⊥
¬¬A,¬¬B ` ¬¬(A ∧B)

Lemma 2.45. NJ0 proves (¬¬A⇒ ¬¬B) ` ¬¬(A⇒ B).

Proof. First, note that (using (ExFalso)) we have ¬A ` A ⇒ B. It follows that
¬¬A⇒ ¬¬B,¬(A⇒ B) ` ¬¬B, with proof tree e.g.:

¬¬A⇒ ¬¬B ` ¬¬A⇒ ¬¬B

¬(A⇒ B) ` ¬(A⇒ B) ¬A ` A⇒ B

¬(A⇒ B),¬A ` ⊥
¬(A⇒ B) ` ¬¬A

¬¬A⇒ ¬¬B,¬(A⇒ B) ` ¬¬B
Since on the other hand B ` A⇒ B, we can conclude with the proof tree:

¬¬A⇒ ¬¬B,¬(A⇒ B) ` ¬¬B

¬(A⇒ B) ` ¬(A⇒ B) B ` A⇒ B

¬(A⇒ B), B ` ⊥
¬(A⇒ B) ` ¬B

¬¬A⇒ ¬¬B,¬(A⇒ B) ` ⊥
¬¬A⇒ ¬¬B ` ¬¬(A⇒ B)

Lemma 2.46. NJ0 proves the following:

(1) ` (¬¬A ∧ ¬¬B)⇔ ¬¬(A ∧B)

(2) ` (¬¬A⇒ ¬¬B)⇔ ¬¬(A⇒ B)

(3) ` ¬¬(A ∨B)⇒ (¬¬A⇒ ¬¬C)⇒ (¬¬B ⇒ ¬¬C)⇒ ¬¬C

Proof.

20

2. Propositional Logic

(1) We have ` (¬¬A ∧ ¬¬B) ⇒ ¬¬(A ∧ B) by Lem. 2.44. The other direction follows
from Lem. 2.17.(4) applied twice.

(2) First, by Lem. 2.45 we have ` (¬¬A⇒ ¬¬B)⇒ ¬¬(A⇒ B).

We now show ` ¬¬(A ⇒ B) ⇒ ¬¬A ⇒ ¬¬B. We show ` (¬¬(A ⇒ B) ∧ ¬¬A) ⇒
¬¬B. We trivially have ` ((A ⇒ B) ∧ A) ⇒ B, so that Lem. 2.17.(4) gives `
¬¬((A⇒ B) ∧A)⇒ ¬¬B, and we conclude by item (1).

(3) First, note that ` (A ∨B)⇒ (A⇒ C)⇒ (B ⇒ C)⇒ C, from which Lem. 2.17.(2)
gives ` ¬¬((A ∨ B) ⇒ (A ⇒ C) ⇒ (B ⇒ C) ⇒ C). We then conclude by iterated
applications of item (2).

Proposition 2.47. If A1, . . . , An ` A in NK0 then ¬¬A1, . . . ,¬¬An ` ¬¬A in NJ0.

Proof. We reason by induction on derivations and by cases on the last applied rule.

Case of

∆ ` A ∨ ¬A

We have ¬¬∆ ` ¬¬(A ∨ ¬A) by Lem. 2.20.

Case of
A ∈ ∆

∆ ` A

Trivial.

Case of

∆ ` >

We have ¬¬∆ ` > and we conclude with Lem. 2.17.(2).

Case of
∆ ` ⊥
∆ ` A

The induction hypothesis gives ¬¬∆ ` ¬¬⊥. Since ⊥ ` A we can conclude with
Lem. 2.17.(4).

Cases of
∆, A ` B

∆ ` A⇒ B

∆ ` A⇒ B ∆ ` A
∆ ` B

∆ ` A ∆ ` B
∆ ` A ∧B

∆ ` A ∧B
∆ ` A

∆ ` A ∧B
∆ ` B

By induction hypothesis and Lem. 2.46 (1) and (2).

21

3. The Untyped Lambda-Calculus

Cases of
∆ ` A

∆ ` A ∨B
∆ ` B

∆ ` A ∨B

By induction hypothesis and Lem. 2.17.(4).

Case of
∆ ` A ∨B ∆, A ` C ∆, B ` C

∆ ` C

By induction hypothesis and Lem. 2.46.(3).

Glivenko’s Theorem is an immediate consequence of Prop. 2.47.

Theorem 2.48 (Glivenko). NK0 proves ` A if and only if NJ0 proves ` ¬¬A.

An interesting consequence of Glivenko’s Theorem 2.48 is that NK0 and NJ0 negate the
same formulae.

Corollary 2.49. NK0 proves A ` ⊥ if and only if NJ0 proves A ` ⊥.

Proof. If NJ0 proves A ` ⊥ then obviously NK0 proves A ` ⊥. Conversely, if NK0

proves A ` ⊥ then NK0 proves ` ¬A. Hence NJ0 proves ` ¬¬¬A by Glivenko’s Theo-
rem 2.48, so that NJ0 proves ` ¬A by Lem. 2.17.(5). But it then easily follows that NJ0

proves A ` ⊥:

` ¬A A ` A
A ` ⊥

Remark 2.50. In comparison with negative translations (such as the translation (−)¬

discussed in §2.5 above), the main limitation of Glivenko’s Theorem 2.48 is that it does
not extend to full first-order logic (we shall discuss this point in §6.2.5).

Besides, the transformation of proofs underlying Thm. 2.48 lacks structure to be (as
such) directly exploitable under the Curry-Howard correspondence. The reason is that
Lem. 2.44 actually admits two canonical proofs which cannot be equated at the level
of the λ-calculus (without loosing the consistency of its equational theory). This phe-
nomenon has been analyzed in [Gir91], which led to a deep analysis of CPS translations
(Rem. 2.42). See [Mel17, §5.7] (in French) for more.

3. The Untyped Lambda-Calculus

3.1. Introduction

The λ-calculus was invented in 1936 by Alonzo Church, originally with the intent to
provide a foundational logical framework based on the notion of function. However,
the (pure) untyped λ-calculus turned out to be inconsistent as a logical system, due to
the presence of fixpoints. On the other hand, the latter make the untyped λ-calculus
a Turing-complete model of computation, which constitutes the (theoretical) core

22

3. The Untyped Lambda-Calculus

of functional traits of programming languages. Moreover, suitable restrictions on the
formation of λ-terms (most notably based on types) make it possible to recover (a
range of) logically consistent systems.

References. An excellent general but synthetic introduction to the (pure) untyped
λ-calculus is [Bar92, §2]. The standard reference book is [Bar84]. Other important
presentations are [AC98, Chap. 2] and [Kri93]. On the other hand, we shall hardly go
beyond the material covered in [SU06, Chap. 1].

Idea. The λ-calculus can be thought about as a formal system to represent and ma-
nipulate functions. For instance, the function

f : x 7−→ x+ 3

is represented by an expression of the form:

f := λx. x+ 3

Instead of f(4), the application of f to the argument 4 is written

(λx.x+ 3)4

Function evaluation is performed by a syntactic manipulation of expressions called
β-reduction, and which can be formulated as:

• substitution of “bound variables” by actual arguments.

For instance, it is expected that

(λx.x+ 3)4 evaluates to 4 + 3

This is formally achieved as:

(λx.x+ 3)4 evaluates to (x+ 3)[4/x]

where (x+ 3)[4/x] means “(x+ 3) in which x is replaced by 4”.
Moreover, we shall identify the two following expressions, which only differ by renam-

ing of their “bound variables”, and as such are just two different notations for the same
object (see §3.2.3 & §3.2.4 for details):

(λx.x+ 3) and (λy.y + 3)

An important aspect of the (pure) λ-calculus is the following:

• functions and values are manipulated at the same level, in the sense that they
belong to the same class of objects.

23

3. The Untyped Lambda-Calculus

Finally, in the λ-calculus there are also higher-order functions, i.e. functions which
take functions as arguments, for instance

λf.λx.fx3

Informally, the λ-calculus allows for the following form of computations:

(λf.λx.fx3)(λy.λz.y + z) evaluates to λx.(λy.λz.y + z)x3
λx.(λy.λz.y + z)x3 evaluates to λx.x+ 3

(where e.g. fx3 stands for (fx)3, see Notation 3.2 in §3.2 below).

3.2. Syntax

3.2.1. The Terms of the Lambda-Calculus

We assume given a countably infinite set X = {x, y, z, . . . } of variables. The terms of
the λ-calculus (or λ-terms) are given by the grammar

t, u ∈ Λ ::= x | λx.t | tu (where x ∈ X)

In the above grammar:

• Terms of the form tu are called applications. Formally, there is a binary term
constructor @, and tu stands for @(t, u).

• Terms of the form λx.t are called λ-abstractions. In λx.t, we say that λ is a
binder and that λx is the binding site of x. The variable x is said to be bound
in λx.t.

3.2.2. Examples and Notational Conventions

Example 3.1. The following usual λ-terms play an important role in this course:

id := λx.x
pair := λx.λy.λk.(kx)y

T := λx.λy.x
F := λx.λy.y
δ := λx.xx
Ω := δδ
S := λn.λx.λf.f(nxf)
n := λx.λf. f(. . . (f︸ ︷︷ ︸

n

x) . . .) = λx.λf.fnx (n ∈ N)

The λ-terms n representing n ∈ N above are called Church’s numerals.

24

3. The Untyped Lambda-Calculus

Notation 3.2. The usual notational convention is that application associates to the left,
so that

xyz stands for (xy)z (that is @(@(x, y), z))

With this convention, each λ-term is of the form

λx1.λxn.yt1 . . . tm
or λx1.λxn.(λy.u)tt1 . . . tm

This is called the Wadsworth’s notation.

3.2.3. Free and Bound Variables, Towards Alpha-Conversion

A variable x ∈ X is free in a λ-term t if it does not occur in the scope of an abstraction
λx in t. This is formalized with the following notion.

Definition 3.3 (Free Variable). The set FV(t) of free variables of t is defined by
induction as follows:

FV(x) := {x}
FV(tu) := FV(t) ∪ FV(u)
FV(λx.t) := FV(t) \ {x}

Definition 3.4 (Closed Term). A λ-term t is closed if FV(t) = ∅. We write Λ0 for the
set of closed λ-terms.

On the other hand, the notion of bound variable is much more subtle, because λ-
terms are identified up-to (consistent) renaming of their bound variables. Formally,
this identification is made via an equivalence relation on Λ called α-equivalence (or
α-conversion) and denoted =α. For instance we should have

λy.(λx.xy)(xy) =α λy.(λz.zy)(xy)

but not

λy.(λx.xy)(xy) =α λy.(λy.yy)(xy) nor λy.(λx.xy)(xy) =α λx.(λx.xx)(xx)

Intuitively, λ-terms quotiented by α-equivalence can be represented as directed graphs,
in which only free variables are named, while bound variables are represented by edges
from their occurrences to their binding site. For instance, the α-equivalence class of
λy.(λx.xy)(xy) could be represented as the graph depicted in Fig. 2 (left). In §3.2.4 we
define an algebraic (i.e. term) representation of such graphs.

Remark 3.5. A convention which is often adopted in practice, but not always so (easy
nor) convenient to maintain is Barendregt’s convention, namely:

(i) free and bound variables are always distinct, and

(ii) bound variables are pairwise distinct.

25

3. The Untyped Lambda-Calculus

λ

��
@

�� ��
λ

��

@

�� ��
@

��

x ·

hh

·

44

·

jj λ

��
@

�� ��
λ

��

@

�� ��
@

��

x 0

0 1

Figure 2: The Graph Representation of the α-Equivalence Class of λy.(λx.xy)(xy).

3.2.4. Alpha-Conversion via a Locally Nameless Representation

We define α-equivalence via an algebraic representation of the graphs such as the one
depicted in Fig. 2 (left). This representation uses the well-known de Bruijn indexes
to represent bound variables, but still uses names to represent free variables. Such
representations are called locally nameless (or sometimes mixed) representations.

The idea of de Bruijn indexes is that an occurrence of a bound variable is represented
by a natural number, which counts the number of binders between that occurrence
and its binding site. Hence, different occurrences of the same bound variable can be
represented by different indexes. For instance, the locally nameless representation of
λy.(λx.xy)(xy) is depicted in Fig. 2 (right).

Formally, we consider the following mixed de Bruijn terms, where n ranges over
natural numbers:

M,N ∈ λDB ::= x | n | λM | MN

The mixed de Bruijn representation of a λ-term t ∈ Λ is the mixed de Bruijn
term tdb ∈ λDB defined by induction as follows:

xdb := x
(λx.t)db := λ(tdb[x 7→ 0])

(tu)db := tdbudb

where the operation M [x 7→ n] is defined by induction as

x[x 7→ n] := n
y[x 7→ n] := y if y ∈ X and y 6= x
k[x 7→ n] := k if k ∈ N

(MN)[x 7→ n] := (M [x 7→ n])(N [x 7→ n])
(λM)[x 7→ n] := λ(M [x 7→ n+ 1])

26

3. The Untyped Lambda-Calculus

For instance, we have

(λx.x)db = λ((xdb)[x 7→ 0])
= λ0

so that
((λx.x)x)db = (λ0)x

and thus
(λx.(λx.x)x)db = λ(((λ0)x)[x 7→ 0])

= λ((λ0)0)

Similarly, it is easy to see that in accordance with Fig. 2 (right), we have

(λy.(λx.xy)(xy))db = λ((λ(0 1))(x0)) = (λy.(λz.zy)(xy))db

Definition 3.6 (α-Equivalence). Two λ-terms t, u are α-equivalent, notation t =α u,
if tdb = udb.

Notation 3.7. From now on, λ-terms will be always considered up-to α-equivalence. In
particular, we still write Λ for the set Λ quotiented by =α.

We refer to [Cha12] for further details and references on the locally nameless represen-
tation. For other approaches and references see e.g. [SU06, Chap. 1] or [Kri93, Chap. 1].

3.3. Beta-Reduction

Beta-reduction (written β-reduction) is the core computation mechanism of the λ-
calculus. The basic idea of β-reduction can be phrased as follows:

• (λx.t)u (read “function λx.t applied to argument u”) is evaluated by replacing the
formal parameter of the function (the bound variable x) by its actual parameter
(the argument u).

If we informally write

t�β u for t evaluates to u

then following are expected behaviours of β-reduction.

id id = (λx.x)id �β id

id δ = (λx.x)δ �β δ
δ id = (λx.xx)id �β id id �β id

Ω = δδ = (λx.xx)δ �β δδ �β . . .

27

3. The Untyped Lambda-Calculus

3.3.1. Capture-Avoiding Substitution

The key technical ingredient of β-reduction is the operation of capture-avoiding sub-
stitution.

Definition 3.8 (Capture-Avoiding Substitution). The capture-avoiding substitu-
tion t[u/x] is defined by induction on t as follows:

y[u/x] := y if y 6= x
x[u/x] := u

(t1 t2)[u/x] := t1[u/x] t2[u/x]
(λy.t)[u/x] := λy.t[u/x] if y 6= x and y /∈ FV(u)

Remark 3.9. Capture avoiding substitution is a total operation on λ-terms quotiented
by α-equivalence.

3.3.2. The Notion of Beta-Reduction

Definition 3.10 (Notion of β-reduction). The notion of β-reduction is the relation
�β defined as

(λx.t)u �β t[u/x]

Terms of the form (λx.t)u are called β-redexes.

3.3.3. The Relation of Beta-Reduction

The notion of β-reduction is actually too weak, since we may have to reduce β-redexes
which are not at top level. Consider for instance the terms:

id(λxy.yx)(λx.yx) λx.(λy.xx)id ((λx.xx)id)id

Definition 3.11 (Congruence). Let R be a binary relation on λ-terms.

(1) We say that R is compatible if it is closed under the rules

t R t′

t u R t′ u

u R u′

t u R t u′
t R t′

λx.t R λx.t′

(2) We say that R is a congruence if R is a compatible equivalence relation.

Definition 3.12 (Full (Strong) β-Reduction). The relation of full (strong) β-reduction
(still denoted �β) is the least compatible relation such that (λx.t)u �β t[u/x].

Remark 3.13. Note that α-conversion may need to be performed on the fly in a sequence
of β-reductions:

id(λxy.yx)(λx.yx) �β (λxy.yx)(λx.yx) =α (λxz.zx)(λx.yx) �β λz.z(λx.yx)

Recall that Λ0 stands for the set of closed λ-terms (Def. 3.4, §3.2.3).

Remark 3.14. Note that Λ0 is stable under β-reduction: if t ∈ Λ0 and t �β u then
u ∈ Λ0.

28

3. The Untyped Lambda-Calculus

3.4. Reductions, Conversions and Confluence

Let us look at some possibilities allowed by β-reduction.

Example 3.15. Recall the λ-terms from Ex. 3.1 (§3.2.2).

(1) Given n ∈ N we have

n id id �2
β id(. . . (id︸ ︷︷ ︸

n

id) . . .) �n
β id

So we may have to consider many consecutive steps of β-reduction.

(2) We have two ways for reducing (id id)(id id) to id, namely

(id id)(id id) �β id(id id) �β id id �β id

(id id)(id id) �β (id id)id �β id id �β id

This gives three ways for reducing δ (id id) to id id:

δ (id id) �β (id id)(id id) �β id(id id) �β id id �β id

δ (id id) �β (id id)(id id) �β (id id)id �β id id �β id

and
δ (id id) �β δ id �β id id �β id

Our goal in this §3.4 is to introduce notations for iterated β-reduction and to discuss
a simple (but not trivial) property of β-reduction on pure λ-terms, called confluence,
which says any two different (finite) iterations of β-reduction from a given λ-term can
always be joined by (finite) iterations of β-reduction (see Thm. 3.20 and Def. 3.19 below).

On our way we shall note some important well-known facts.
We begin with the following (usual) definitions, for which a good reference is the

textbook [BN98].

Definition 3.16 (Abstract Reduction System). An ARS (A,�) is set A equipped with
a binary relation � ⊆ A×A.

Let (A,�) be an ARS.

• The transitive closure of �, written �+, is the least relation closed under the
rules:

a � b

a �+ b

a �+ b b �+ c

a �+ c

• The reflexive and transitive closure of �, written �∗, is the least relation
closed under the rules:

a � b

a �∗ b a �∗ a

a �∗ b b �∗ c

a �∗ c

29

3. The Untyped Lambda-Calculus

• The symmetric, reflexive and transitive closure of �, written ��∗, is the
least relation closed under the rules:

a � b

a ��∗ b a ��∗ a

a ��∗ b

b ��∗ a

a ��∗ b b ��∗ c

a ��∗ c

Notation 3.17. In the case of β-reduction, we write t =β u for t ��∗β u.

Example 3.18. For instance, we have

id id �+
β id

δ id �+
β id

δ δ �+
β δ δ

id �∗β id

(id id)id =β id(id id)

Definition 3.19 (Confluence). Let (A,�) be an ARS.

• The relation � is confluent if whenever

a�∗ b and a�∗ c

there is d ∈ A such that
b�∗ d and c�∗ d

• The relation � is locally confluent if whenever

a� b and a� c

there is d ∈ A such that
b�∗ d and c�∗ d

• The relation � has the diamond property if whenever

a� b and a� c

there is d ∈ A such that
b� d and c� d

We can now state Thm. 3.20.

Theorem 3.20 (Confluence of β-reduction). The relation �β is confluent.

We shall prove Thm. 3.20 in §3.5.
A important consequence of Thm. 3.20 is that the equational theory =β is consistent,

in the sense that there terms t, u such that t 6=β u. This is given by the following simple
and well-known property. See e.g. [BN98, Thm. 2.1.5] for a proof.

30

3. The Untyped Lambda-Calculus

Proposition 3.21 (Church-Rosser and Confluence). Let (A,�) be an ARS. Then � is
confluent if and only if whenever

a ��∗ b

there is c ∈ A such that
a�∗ c and b�∗ c

Corollary 3.22. The equational theory =β is consistent.

Proof. Exercise!

Remark 3.23. Note that if R is congruence (Def. 3.11, §3.3.3) which contains =β and
such that T R F, then we have t R u for all λ-terms t, u.

Proof. Exercise!

3.4.1. Undecidability of Beta-Conversion

We mention here some important well-known results on the undecidability of β-conversion
for the (pure) untyped λ-calculus. Recall that Λ0 stands for the set of closed λ-terms
(Def. 3.4, §3.2.3).

Definition 3.24. The relation of closed β-conversion =β0 is the symmetric reflexive
transitive closure of (Λ0,�β).

Note that it follows from the confluence of β-reduction (Thm. 3.20) together with
Prop. 3.21 and Rem. 3.14 (§3.3) that given closed λ-terms t, u ∈ Λ0, if t =β u then
t =β0 u.

Definition 3.25.

(1) A β-equationally saturated set is a set S ⊆ Λ which is stable under β-conversion
(i.e. if t ∈ S and t =β u then u ∈ S).

A β-equationally saturated set S is non-trivial if S 6= ∅ and S 6= Λ.

(2) A β0-equationally saturated set is a set S0 ⊆ Λ0 which is stable under =β0.

A β0-equationally saturated set S0 is non-trivial if S0 6= ∅ and S0 6= Λ0.

Theorem 3.26.

(1) If S is β-equationally saturated and non-trivial then S is not recursive.

(2) If S0 is β0-equationally saturated and non-trivial then S0 is not recursive.

Theorem 3.26.(1) is [Bar92, Thm. 2.2.15] (see also [Bar84, Thm. 6.6.2]), and Thm. 3.26.(2)
is [Bar84, Cor. 6.6.4]. Both results follow from the Turing-completeness of the untyped
λ-calculus (see e.g. [Bar92, Thm. 2.2.12]) and from manipulation of suitable Gödel num-
bers (see e.g. [Bar92, §2.2]).

We are interested in Thm. 3.26 for its following corollaries.

31

3. The Untyped Lambda-Calculus

Corollary 3.27.

(1) The set following set of λ-terms is not recursive:

{t ∈ Λ | t =β T}

(2) The set following set of closed λ-terms is not recursive:

{t ∈ Λ0 | t =β0 T}

Corollary 3.27 is essentially due to Church (see [Bar84, §6.6] for references). The unde-
cidability of β-conversion is an immediate consequence.

Corollary 3.28. The following problems are undecidable:

• Given λ-terms t and u, decide whether t =β u.

• Given closed λ-terms t and u, decide whether t =β0 u.

3.4.2. A Further Simple Fact on Confluence

Returning to Def. 3.19, it is not difficult to show that

Diamond Property =⇒ Confluence =⇒ Local Confluence

We sketch here the proof of the fact that the diamond property implies confluence, since
this plays a crucial role in our proof of Thm. 3.20.

Notation 3.29. Given an ARS (A,�) and n ∈ N, let a�n b if there are c0, . . . , cn ∈ A
such that a = c0, b = cn and ci � ci+1 for all i < n.

Lemma 3.30. Let (A,�) be an ARS. Assume that � satisfies the diamond property.
Let a, b, c ∈ A and n,m ∈ N such that a�n b and a�m c. Then there is some d ∈ A such
that b�m d and c�n d.

Proof. Exercise!

The confluence of a relation with the diamond property is then given by the following.

Lemma 3.31. Let (A,�) be an ARS. We have

�∗ =
⋃
n∈N�n

Proof. Exercise!

Corollary 3.32. If (A,�) has the diamond property, then (A,�) is confluent.

32

3. The Untyped Lambda-Calculus

3.4.3. Normalization and Newman’s Lemma

We briefly discuss here a well-known method to prove the confluence of some ARS’s.
While this method is not applicable to prove the confluence of the untyped λ-calculus,
it is of some use for typed extensions of the pure λ-calculus (e.g. §4.4).

Definition 3.33 (Normal forms and Normalization). Let (A,�) be an ARS.

• We say that a ∈ A is a normal form if there is no b ∈ A such that a� b.

• We say that a ∈ A is weakly normalizing if there is a normal form b ∈ B such
that a�∗ b. In this case we say that b is a normal form of a.

We say that � is weakly normalizing if every a ∈ A is weakly normalizing.

• We say that a ∈ A is strongly normalizing if there is no infinite reduction
sequence starting from a.

We say that � is strongly normalizing if every a ∈ A is strongly normalizing.

When we just say “normalizing”, we usually mean weak rather than strong normaliza-
tion.

Example 3.34. For instance, w.r.t. β-reduction,

• the λ-terms id and (id id) are strongly normalizing,

• the λ-term (δ δ) is not (even weakly) normalizing,

• the λ-term (λxy.y)(δ δ) is not strongly normalizing, but it is weakly normalizing.

A strongly normalizing ARS is confluent whenever it is locally confluent. See e.g. [BN98,
Lem. 2.7.2] for a proof.

Lemma 3.35 (Newman). Let (A,�) be an ARS. If � is locally confluent and strongly
normalizing, then � is confluent.

Note that (a necessarily not strongly normalizing) (A,�) can be locally confluent and
(weakly) normalizing without being confluent.

Example 3.36. The ARS ({a, b, c, d},→), where

a b c d

is locally confluent, weakly normalizing but not confluent (since a and d are distinct
normal forms).

Remark 3.37. Newman’s lemma cannot be applied to prove the confluence of �β on
untyped λ-terms, since not every λ-term is strongly β-normalizing (e.g. Ω �β Ω).

33

3. The Untyped Lambda-Calculus

3.5. Confluence of Beta-Reduction

We now prove Thm. 3.20. We use a technique due to Tait and Martin-Löf (see e.g. [SU06,
§1.4]). The main idea is to target a diamond property. Note that �β does not have the
diamond property since the two one-step β-reducts of (δ(id id)), namely

(id id) (id id) �β δ (id id) �β δ id

can be joined, but not in one step of β-reduction.
The trick is to look for a relation �‖β with the diamond property and such that �β ⊆

�‖β ⊆ �∗β. The example of δ(id id) above suggests to allow for parallel β-reduction
steps in �‖β, Technically, we assume that �‖β is reflexive, compatible (Def. 3.11, §3.3.3),
and closed under the rule

t �‖β t′ u �‖β u′

tu �‖β t′u′

We can then close the case of δ(id id) above with

(id id)(id id) �‖β id id

Now, allowing for parallel β-reduction leads to the following one-step reducts:(
λy.(id id) (id id)

)
id �β

(
λx.((λy.xx)id)

)
(id id) �‖β δ id

The relation �‖β is further required to allow for the simultaneous reduction of nested
β-redexes, as expressed by the rule

t �‖β t′ u �‖β u′

(λx.t)u �‖β t′[u′/x]

We thus have (
λy.(id id) (id id)

)
id �‖β id id

and conclude the example with δ id �β id id.
As we shall see in §3.5.2 below, the above requirements lead to a relation �‖β with

the diamond property and such that �β ⊆ �‖β ⊆ �∗β.

3.5.1. Some Basic Properties

We begin with some basic properties of substitution and (usual) β-reduction. First, a
simple property of �∗β.

Lemma 3.38. The relation �∗β is closed under the two following rules

t �∗β t′

λx.t �∗β λx.t′
t �∗β t′ u �∗β u′

tu �∗β t′u′

Proof. Exercise!

34

3. The Untyped Lambda-Calculus

Remark 3.39. Otherwise said, �∗β is a compatible relation (Def. 3.11, §3.3.3). We
similalry obtain that =β is compatible, so that it is actually a congruence.

We now turn to a standard technical property on iterated substitutions. See e.g. [SU06,
Lem. 1.2.20] or [Bar92, Lem. 2.3.14].

Lemma 3.40. If x /∈ FV(v) and x 6= y then

t[u/x][v/y] = t[v/y][u[v/y]/x]

Proof. Exercise!

The following is an easy property of β-reduction.

Lemma 3.41.

(1) If t�β u then t[v/x] �β u[v/x].

(2) If t�∗β u then t[v/x] �∗β u[v/x] (and similarly for �+
β).

(3) If t�β u then v[t/x] �∗β v[u/x].

Proof. Exercise!

3.5.2. Parallel Nested Beta-Reduction

We shall prove Theorem 3.20 using an auxiliary notion of parallel and nested β-
reduction.

Definition 3.42 (Parallel Nested β-Reduction). The relation �‖β is the least binary
relation on λ-terms which is closed under the following rules

x �‖β x

t �‖β t′ u �‖β u′

tu �‖β t′u′
t �‖β t′

λx.t �‖β λx.t′
t �‖β t′ u �‖β u′

(λx.t)u �‖β t′[u′/x]

We begin with some easy basic properties of �‖β.

Lemma 3.43. The relation �‖β is reflexive (i.e. t�‖β t for all λ-terms t).

Proof. Exercise!

Lemma 3.44. We have �β ⊆ �‖β (i.e. if t�β u then t�‖β u).

Proof. Exercise!

Lemma 3.45. We have �‖β ⊆ �∗β (i.e. if t�‖β u then t�∗β u).

Proof. Exercise!

The key property of �‖β is the following.

Lemma 3.46. If t�‖β u and v �‖β w then t[v/x] �‖β u[w/x].

35

3. The Untyped Lambda-Calculus

Proof. Exercise!

The main interest of �‖β is that it satisfies the diamond property.

Proposition 3.47. The relation �‖β satisfies the diamond property.

Proof. Exercise!

3.5.3. Proof of Confluence

We can finally prove that �β is confluent (Thm. 3.20).

Proof. Exercise!

3.5.4. An Alternative Proof by Complete Developments

We briefly discuss here the proof of Prop. 3.47 presented in [SU06] (namely [SU06, Def.
1.4.3 & Lem. 1.4.4]), which relies on the notion of complete development. The idea
is to reduce in one step all the β-redexes present in a term.

Definition 3.48. The complete development of t, written t• is inductively defined
as:

x• := x
(λx.t)• := λx.t•

(tu)• := t•u• if t is not an abstraction
((λx.t)u)• := t•[u•/x]

Lemma 3.49. If t�‖β v then v �‖β t
•.

Proof. Exercise!

Corollary 3.50. The relation �‖β satisfies the diamond property.

Proof. Exercise!

3.6. Eta-Conversion and Böhm’s Theorem

We briefly discuss here a syntactic notion of extensionality for the λ-calculus. More
precisely, we are going to give an equational axiomatization of the relation ∼= on λ-terms
defined as the least equivalence relation closed under the rules

t =β u

t ∼= u

tx ∼= ux

t ∼= u
(x /∈ FV(t, u))

t ∼= t′ u ∼= u′

tu ∼= t′u′

The relation ∼= can be axiomatized as the least congruence (Def. 3.11, §3.3.3) contain-
ing β-reduction and the following notion of η-reduction:

λx.tx �η t
(x /∈ FV(t))

36

3. The Untyped Lambda-Calculus

Definition 3.51.

(1) We let �βη be the least compatible relation containing �β and �η.

(2) We let =βη be the least congruence containing �βη.

Example 3.52. Given λ-terms t and u, let t ◦ u := λx.t(ux). We have

t ◦ id = λx.t(id x) �β λx.tx �η t
id ◦ t = λx.id(t x) �β λx.tx �η t

We shall now see that the relation ∼= is precisely =βη. See [SU06, Prop. 1.3.10]
(also [Bar84, Prop. 3.3.2]). We first make the following simple observation.

Lemma 3.53. If t ∼= u then λx.t ∼= λx.u.

Proof. Exercise!

Proposition 3.54. Given λ-terms t, u, the following are equivalent:

(i) t ∼= u

(ii) t =βη u

Proof. Exercise!

The reduction relation �βη is confluent, see [Kri93, Thm. 1.30] or [Bar84, Thm. 3.3.9].

Proposition 3.55. The relation �βη is confluent.

In particular, the equational theory =βη is consistent (via Prop. 3.21). A striking
property of =βη is that it is a maximal consistent equational theory on normalizable
λ-terms. See [Bar84, Cor. 10.4.3] or [Kri93, §5].

Theorem 3.56 (Böhm). Let t, u be two βη-normal forms such that t 6=βη u. Let ∼=(t,u) be
the least congruence containing =βη and such that t ∼=(t,u) u. Then ∼=(t,u) is inconsistent,
i.e. v ∼=(t,u) w for all λ-terms v, w.

Note that Thm. 3.56 still holds if t and u are only assumed to be βη-normalizable.

Remark 3.57. The assumption that t and u are βη-normal(izable) is essential for
Thm. 3.56 since there are consistent extensions of =βη on non-normalizable λ-terms.
See [Bar84, Chap. 4].

Remark 3.58. The (restriction of the) relation =βη on typed λ-terms (§4) is essential
for denotational semantics.4

4See e.g. [AC98, §4.2–4.6] (outside the scope of this course).

37

3. The Untyped Lambda-Calculus

3.7. Combinatory Logic

We briefly discuss a presentation of Combinatory Logic, a simple framework with no
primitive notion of λ-abstraction, but in which λ-abstractions can be represented.

The terms of combinatory logic are given by

t, u ∈ C ::= x | t u | s | k

where x ∈ X (§3.2.1). Note that the closed terms of combinatory logic are given by

t, u ∈ C0 ::= t u | s | k

We write t[u/x] for the substitution of x by u in t. The conversion relation =sk is
the least binary relation on C which is closed under the following rules:

t =sk t

t =sk u

u =sk t

t =sk u u =sk v

t =sk v

t =sk t′ u =sk u′

t u =sk t′ u′ k t u =sk t s t u v =sk t v (u v)

We write =sk0 for the least relation on C0 closed under the above rules.

Lemma 3.59. For each term t, we have (s k k t) =sk t. Moreover, (s k k t) =sk0 t if t
is closed.

We now discuss a coding of lambda-abstractions using the combinators s and k. Given
a term t ∈ C and a variable x, define the term λx.t ∈ C by induction on t:

λx.x := s k k

λx.t := k t if x does not occur in t
λx.(tu) := s (λx.t) (λx.u)

Note that x does not occur in λx.t. Moreover, λx.t is closed if t has no other variable
than x.

Remark 3.60. The above definition of λx.t is consistent with [Bar84, Def. 7.1.5]. A
possible variant of λx.t is given by the following (see [Bar84, Def. 7.3.4]):

λx.x := s k k

λx.y := k y if y 6= x
λx.t := k t if t ∈ {s, k}

λx.(tu) := s (λx.t) (λx.u)

Lemma 3.61. For all terms t and u, we have (λx.t)u =sk t[u/x]. Moreover, (λx.t)u =sk0

t[u/x] if t and u are closed.

Proof. Exercise!

38

3. The Untyped Lambda-Calculus

k =skβ λx.λy.kx y k =skβ λx.λy.x

s =skβ λx.λy.λz.sx y z s =skβ λx.λy.λz.xy(yz)

λx.λy.s(kx)(k y) =skβ λx.λy.k(xy)

λx.λy.s(s(kk)x)y =skβ λx.λy.λz.xz

λx.λy.λz.s(s(s(ks)x)y)z =skβ λx.λy.λz.s(sx z)(s y z)

Figure 3: Additional Conversion Rules Combinatory Logic.

3.7.1. Representation of Beta-Conversion

In view of Lem. 3.61, it makes sense to consider the following translation C(−) of λ-terms
(see [Bar84, Def. 7.3.1]):

C(x) := x
C(t u) := C(t) C(u)
C(λx.t) := λx.C(t)

Note that C(t) is closed if t is a closed λ-term.
We would have liked to have C(t) =sk C(u) whenever t =β u, but this unfortunately

does not hold, essentially because =sk is too weak to be stable under the rule

t =sk u

λx.t =sk λx.u

Example 3.62. Consider the λ-term t := λx.id x. We obviously have t =β id, but we
dot not have C(t) =sk C(id). First, note that

C(id) = λx.x = s k k

so that
C(t) = λx.(s k k)x = s(k(s k k))(s k k)

However it can be shown that s(k(s k k))(s k k) 6=sk s k k. This follows from Prop. 3.21
(§3.4) and the confluence of the compatible closure (in C) of the relation �sk given by

s t u v �sk t v (u v) and k t u �sk t

(see e.g. [Bar84, 7.2.4]).

The following is [Bar84, Thm. 7.3.10], where =skβ (resp. =skβ0
) is the extension of =sk

(resp. of =sk0) with the rules of Fig. 3 (which actually only consist of closed terms).

39

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Theorem 3.63. Given λ-terms t and u, we have t =β u if and only if C(t) =skβ C(u).
If t and u are closed, then t =β0 u if and only if C(t) =skβ0

C(u).

Remark 3.64. Actually [Bar84, Thm. 7.3.10], only gives the part of Thm. 3.63 on open
λ-terms. Consider the case of t, u ∈ Λ0 with t =β0 u. Then we obviously have t =β u
and thus C(t) =skβ C(u). Now, since =skβ is closed under substitution, if the derivation
of C(t) =skβ C(u) involves some variables, then they can be substituted by closed terms,
and we indeed get C(t) =skβ0

C(u).

Our motivation for Thm. 3.63 is the following consequence of Cor. 3.28 (§3.4.1):

Corollary 3.65. The following problems are undecidable:

• Given t, u ∈ C, decide whether t =skβ u.

• Given t, u ∈ C0, decide whether t =skβ0
u.

We shall see in §6.2.4 (Thm. 6.35) that Cor. 3.65 gives a very simple proof of undecid-
ability of (intuitionistic) first-order logic.

4. Curry-Howard Correspondence for Intuitionistic
Propositional Logic

4.1. Introduction

This Section presents the Curry-Howard correspondence for intuitionistic proposi-
tional logic:

Logic Prog. Languages

Formulae ≡ Types
Proofs ≡ Programs

We proceed in two steps. We present in §4.3 the Curry-Howard correspondence between
natural deduction for intuitionistic minimal implicational logic (§2.4) and the simply-
typed λ-calculus (STLC) (to be defined in §4.2). The simply-typed λ-calculus is a
restriction on the formation of λ-terms (§3.2) based on a notion of simple types, which
actually precisely amounts to:

Intuitionistic Simply-Typed
Min. ⇒-Logic λ-Calculus

Formulae ≡ Simple Types
Proofs ≡ Typed λ-Terms

We then consider in §4.4 the case of natural deduction for full intuitionistic proposi-
tional logic (NJ0). This amounts to extend the simply-typed λ-calculus with product
and sum types.

40

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Fundamental properties of intuitionistic logic (Thm. 2.9, §2.1) will be inferred from
normalization properties of the simply-typed λ-calculus (in the sense of §3.4.3), which
shall be discussed in §5.

On technical matters, besides [SU06, §3 & §4], we refer to [Gal95] and [GLT89, §3].
Again, beware that we should consistently follow the notations and technical definitions
of none of these sources.

We refer to [SU06, §4.8] and [Gal95] for historical aspects. Let us just mention that
an informal conceptual prequel of the Curry-Howard correspondence is the Brouwer-
Heyting-Kolmogorov (BHK) interpretation of proofs of intuitionistic propositional
logic. The BHK interpretation may be formulated as follows (where the term “proof”
should be understood as some informal notion of “witness of evidence”):

• a “proof” of A1 ∧A2 is a pair of a “proof” of A1 and a “proof” of A2;

• a “proof” of A1 ∨A2 is a (dependent) pair of an i ∈ {1, 2} and a “proof” of Ai;

• a “proof” of A⇒ B is a “function” taking a “proof” of A to a “proof” of B;

• there is no “proof” of ⊥.

In particular, the BHK interpretation does not specify what should be understood as a
“function” in the case of A⇒ B. We refer to [SU06, §2.1] and [TvD88a, Chap. 1, §3.1]
for more on the BHK interpretation.

4.2. The Simply-Typed Lambda-Calculus

We introduce here a restriction on the formation of λ-terms based on a notion of typ-
ing (or typing discipline). There are a lot of notions of typing for the λ-calculus.
Besides [SU06], a good synthetic but general account is [Bar92], while [Pie02] is a gentle
but comprehensive reference from the point of view of programming languages.5

We begin with the simplest notion, namely the (Curry-style) simply-typed λ-calculus,
which is at the basis (at least conceptually) of most of typing disciplines for λ-terms.

We shall show in §5 that the simply-typed λ-calculus is strongly normalizing (recall
from Ex. 3.34 (§3.4.3) that not every λ-term is normalizing). Under the Curry-Howard
correspondence, the types of the simply-typed λ-calculus will be identified with the
formulae of (intuitionistic) minimal implicational logic (§2.4); typed λ-terms will
then correspond to (natural deduction) intuitionistic proofs (see §4.3).

Good technical references are [SU06, §4] and [Bar92, §3] (yet again with different
notations and technical choices).

4.2.1. Syntax

We consider the following grammar of simple (function) types:

U, T, V ::= κ | U → T

where κ ranges over some (unspecified) set of base types.

5An other interesting reference (but mostly outside the scope of this course) is [AC98].

41

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

(Var)
E ` x : T

((x : T) ∈ E)

(→-I)
E , x : U ` t : T

E ` λx.t : U → T
(→-E)

E ` t : U → T E ` u : U

E ` t u : T

Figure 4: Typing Rules of the Simply-Typed λ-Calculus.

Notation 4.1. Similarly as for formulae (Notation 2.2, §2), we assume that the arrow
type constructor→ associates to the right, so that V → U → T stands for V → (U → T)
(which is different from (V → U)→ T).

Simple types will be used to restrict the formation of λ-terms (§3.2). Recall that the
latter are given by the grammar:

t, u ∈ Λ ::= x | λx.t | tu

where x ranges over the set X of variables.
A typing context (or typing environment) is a list E of the form x1 : U1, . . . , xn :

Un where x1, . . . , xn ∈ X and such that xi 6= xj whenever i 6= j. When E = x1 :
U1, . . . , xn : Un, we sometimes write dom(E) for the set {x1, . . . , xn}. The notation
E , x : U always assume x /∈ dom(E).

A typing judgment is a triplet of the form

E ` t : T

Figure 4 lists the typing rules of the simply-typed λ-calculus. We say that:

• t has type T in the context E when the judgment E ` t : T is derivable with
these rules;

• t is typable in the context E when there exists a type T such that E ` t : T is
derivable;

• t is typable when there exist some context E and some type T such that E ` t : T
is derivable;

• T is inhabited if there is some λ-term t such that ` t : T .

The following refer to λ-terms defined in Ex. 3.1 (§3.2.2).

Example 4.2.

(1) For each type T we have ` id : T → T with derivation tree:

x : T ` T
` λx.x : T → T

42

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

(2) For each types U, T, V , with have ` pair : U → T → (U → T → V) → V with the
following derivation tree (where E is the context x : U, y : T, k : U → T → V):

E ` k : U → T → V E ` x : T
E ` kx : T → V E ` y : T

x : U, y : T, k : U → T → V ` kxy : V

x : U, y : T ` λk. kxy : (U → T → V)→ V

x : U ` λy.λk. kxy : T → (U → T → V)→ V

` λx.λy.λk. kxy : U → T → (U → T → V)→ V

Exercise 4.3. Derive the following typing judgments:

(1) ` T : U → T → U

(2) ` F : U → T → T

(3) ` S : nat[T]→ nat[T], where nat[T] = T → (T → T)→ T .

Exercise 4.4. Show that for each n ∈ N, we have ` n : nat[T].

4.2.2. Main Properties

We gather here some important basic properties of the simply-typed λ-calculus. See [SU06,
§3] for more.6 In the following, the notation �β refers to the full relation of β-reduction
(Def. 3.12, §3.3.3).

We begin with simple basic properties, which are proved by induction on derivations.

Fact 4.5 (Inversion).

(1) If E ` x : T , then (x : T) ∈ E.

(2) If E ` λx.t : T , then T is of the form V → U and E , x : V ` t : U .

(3) If E ` tu : T then there is some U such that E ` t : U → T and E ` u : U .

Exercise 4.6. Show that δ (and thus Ω) is not typable.

Lemma 4.7 (Structural Properties).

(Weakening) If E ` t : T and x /∈ dom(E) then E , x : U ` t : T .

(Contraction) If E , x : U, y : U ` t : T then E , x : U ` t[x/y] : T .

(Exchange) If E , x : U, E ′, y : V, E ′′ ` t : T , then E , y : V, E ′, x : U, E ′′ ` t : T .

Example 4.8. Assuming E ` t : U → T and E ` u : V → U , we have E ` t ◦ u : V → T
(where t ◦ u := λx.t(ux)), with derivation tree:

6See also [AC98, §4.5] (beyond the scope of this course).

43

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

E ` t : U → T

E , x : V ` t : U → T

E ` u : V → U

E , x : V ` u : V → U E , x : V ` x : V

E , x : V ` ux : U

E , x : V ` t(ux) : T

E ` λx.t(ux) : V → T

The following two properties are required for essentially all type systems.7

Lemma 4.9 (Substitution). If E , x : U ` t : T and E ` u : U then E ` t[u/x] : T .

Proposition 4.10 (Subject Reduction). If E ` t : T and t�β u then E ` u : T .

Remark 4.11. In particular, for a typing context E and a type T , the relation �β is
confluent on the set

|E ` T | := {t | E ` t : T}

The following fundamental property of the simply-typed λ-calculus is admitted until §5
(Thm. 5.32, §5.5). Recall from Ex. 3.34 (§3.4.3) that the (non typable) λ-term Ω is not
normalizing for β-reduction.

Theorem 4.12 (Strong Normalization). If E ` t : T then t is strongly β-normalizing
(in the sense of Def. 3.33, §3.4.3).

Theorem 4.12 is a particular case of Thm. 4.31 (§4.4.4).

Remark 4.13 (Decidability of Typing). The following are decidable problems:

(1) Given a type T , a context E and a λ-term t, decide whether E ` t : T .

(2) Given a λ-term t, decide whether t is typable.

Decidability of type inhabitation is discussed in Rem. 4.20 (§4.3) below. We refer
to [SU06, §3.2] for details.

4.3. Curry-Howard Correspondence for Intuitionistic Minimal Implicational
Logic

Recall that the formulae of minimal implicational logic (§2.4) are given by

A,B ::= p | A⇒ B

where p is an atomic proposition.
On the other hand, the simple (function) types of §4.2.1 are given by

U, T ::= κ | U → T

where κ is a base type.
The Curry-Howard correspondence for intuitionistic minimal implicational logic

stems from the identification of simple (arrow) types with the formulae of minimal
implicational logic (see Tab. 1). Under this identification, we may consider that simple
types are formulae of minimal implicational logic.

7Type systems for variants of STLC with other notions of reduction would require different formulations.
A (non basic but) relevant example is [Lev03, Prop. 10, §2].

44

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Simple Types ≡ ⇒-Formulae

(base types) κ ≡ p (atomic propositions)
(function types) (−)→ (−) ≡ (−)⇒ (−) (implications)

Table 1: The Curry-Howard Correspondence: Simple Types and ⇒-Formulae.

Notation 4.14 (Types as Formulae). For the remaining of this §4.3 we assume that
types are given by the grammar of formulae:

A,B ::= p | A⇒ B

This leads to a strong analogy between typing rules on the one hand and deduction rules
on the other hand. More precisely, erasing terms (and variables) from the typing rules
of Fig. 4 (§4.2.1) exactly gives the deduction rules of §2.4:

x1 : A1, . . . , xn : An ` xi : Ai
;

A1, . . . , An ` Ai
(Ax)

x1 : A1, . . . , xn : An, x : A ` t : B

x1 : A1, . . . , xn : An ` λx.t : A⇒ B
;

A1, . . . , An, A ` B
A1, . . . , An ` A⇒ B

(⇒-I)

x1 : A1, . . . , xn : An ` t : A⇒ B
x1 : A1, . . . , xn : An ` u : A

x1 : A1, . . . , xn : An ` tu : B
;

A1, . . . , An ` A⇒ B
A1, . . . , An ` A

A1, . . . , An ` B
(⇒-E)

It follows that typed λ-terms can be identified with proofs:

Intuitionistic Simply-Typed
Min. ⇒-Logic λ-Calculus

Formulae ≡ Simple Types
Proofs ≡ Typed λ-Terms

In particular, we have the following obvious result, stated as a Theorem for emphasis.

Theorem 4.15 (Curry-Howard Correspondence). The sequent A1, . . . , An ` A is deriv-
able in intuitionistic minimal implicational logic if and only if there is a λ-term t such
that x1 : A1, . . . , xn : An ` t : A.

Remark 4.16. As a direct consequence of Thm. 4.15 (together with Prop. 2.34, §2.4),
note that if p, q are distinct atomic propositions, then there is no λ-term t such that
` t : ((p⇒ q)⇒ p)⇒ p.

On the other hand, Thm. 4.15 of course gives λ-terms for all intuitionistic tautologies of
minimal implicational logic.

45

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

We now consider examples inspired from §2.2. Since we have no proper ⊥ yet (and
thus no proper negation), we replace ⊥ by a chosen atomic proposition R and write ¬RA
for A ⇒ R. Note that the rule (ExFalso) is unavailable: we are indeed in minimal
logic (see Rem. 2.16).

Example 4.17. We have λa.λk.ka : A⇒ ¬R¬RA with the derivation

a : A, k : ¬RA ` k : A⇒ R x : A, k : ¬RA ` a : A

a : A, k : ¬RA ` ka : R

a : A ` λk.ka : ¬R¬RA

Exercise 4.18. In each case below, give a λ-term t of the prescribed type:

(1) ` t : ¬R¬R¬RA⇒ ¬RA

(2) ` t : (A⇒ B)⇒ (¬R¬RA⇒ ¬R¬RB)

(3) ` t :
(
(¬R¬RA⇒ ¬R¬RB)⇒ ¬R¬RA

)
⇒ ¬R¬RA

In contrast with Rem. 4.16, it is not too difficult to find λ-terms for the Kolmogorov
translation of Peirce’s law (Rem. 2.43, §2.5).

Exercise 4.19. Give a λ-term t such that ` t : ¬R¬R
(
¬R¬R(¬R¬RA ⇒ ¬R¬RB) ⇒

¬R¬RA
)
⇒ ¬R¬RA.

Remark 4.20 (Decidability of Type Inhabitation). Continuing Rem. 4.13 (§4.2), it
follows from Thm. 4.15 and the decidability of provability in intuitionistic minimal im-
plicational logic (Rem. 2.36, §2.4) that the following type inhabitation problem is
decidable:

• Given a type T , decide whether T is inhabited.

We refer to [SU06, §4.2] for more.

4.3.1. Beta-Reduction and Curry-Howard

Theorem 4.15 extends to a correspondence between β-reduction and a notion of com-
putation for natural deduction called proof normalization. The idea is that a step of
β-reduction

...
Π1

E , x : A ` t : B

E ` λx.t : A⇒ B

...
Π2

E ` u : A
E ` (λx.t)u : B

�β

...
Π1[Π2/x]

E ` t[u/x] : B

46

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

(where the derivation Π1[Π2/x] is obtained by the Substitution Lemma 4.9, §4.2.2)
corresponds to the reduction of redexes (⇒-I)/(⇒-E) in natural deduction:

...
Π1

∆, A ` B
∆ ` A⇒ B

...
Π2

∆ ` A
∆ ` B

�

...
Π1[Π2/A]

∆ ` B

Here, the proof

...
Π1[Π2/A]

∆ ` B
stands for the proof Π1 in which each (Ax) rule

∆′ ` A

(where ∆ is necessarily a prefix of ∆′) is replaced by a derivation of ∆′ ` A obtained
from Π2 by weakenings (Lem. 2.6, §2.1).

We shall not pursue this direction too far. We refer to [SU06, §4.4], [vD04, §6]
and [TS00, §6] for normalization of natural deduction proofs.

4.4. Full Intuitionistic Propositional Logic

We now turn to the Curry-Howard correspondence for the full system NJ0 of §2.1. This
requires an extension of the (simply-typed) λ-calculus that we introduce step by step.
We mainly refer to [SU06, §4.5] (see also [Gal95, §3]). See [Pie02, §11] for a programming
language perspective on the additional constructs introduced in §4.4.1–§4.4.3 below.

Notation 4.21. We step back from Notation 4.14 (§4.3) and consider for the moment
types and formulae as different entities.

4.4.1. Intuitionistic Conjunctions and Products

The natural deduction rules for conjunction (−) ∧ (−), namely

(∧-I) ∆ ` A ∆ ` B
∆ ` A ∧B

(∧1-E)
∆ ` A ∧B

∆ ` A
(∧2-E)

∆ ` A ∧B
∆ ` B

suggest to extend the simply-typed λ-calculus with product types (−)× (−) (and the
corresponding term formers), as in the following additional typing rules:

(×-I) E ` t : T E ` u : U

E ` 〈t, u〉 : T × U
(×1-E)

E ` t : T × U
E ` π1t : T

(×2-E)
E ` t : T × U
E ` π2t : U

The term former 〈−,−〉 is usually called pairing, while π1(−), π2(−) are projections.

47

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Moreover (reversing the approach of §4.3.1), the reduction of (∧-I)/(∧i-E)-redexes in
natural deduction, namely

...
Π1

∆ ` A1

...
Π2

∆ ` A2

∆ ` A1 ∧A2

∆ ` Ai

�

...
Πi

∆ ` Ai

suggests the following extension of β-reduction to cope with products and pairs:

π1〈t1, t2〉 �β t1
π2〈t1, t2〉 �β t2

Finally, the 0-ary form > of (−) ∧ (−), with its (unique) natural deduction rule

(>-I)
∆ ` >

suggests a 0-ary form of (−)× (−), i.e. a unit type unit with term former 〈〉 typed as

(unit-I)
E ` 〈〉 : unit

4.4.2. Intuitionistic Disjunctions and Sums

Consider now the natural deduction rules for (intuitionistic) disjunction (−) ∨ (−):

(∨i-I)
∆ ` Ai

∆ ` A1 ∨A2
(∨-E)

∆ ` A1 ∨A2 ∆, A1 ` B ∆, A2 ` B
∆ ` B

These rules correspond closely to the following rules for sum types (−) + (−):

(+i-I)
E ` t : Ti

E ` ini t : T1 + T2
(+-E)

E , x1 : T1 ` u1 : U
E ` t : T1 + T2 E , x2 : T2 ` u2 : U

E ` case t {in1 x1 7→ u1 | in2 x2 7→ u2} : U

The term formers in1(−), in2(−) are called coprojections.8 The case construction
(which comes under various names and notations in different settings) is a close relative
of the usual pattern matching constructs of (functional) programming languages, while
sum types are a form of variant type (see [Pie02, §11.8 & §11.9]).

The reduction of (∨i-I)/(∨-E)-redexes in natural deduction:

...
Π

∆ ` Ai
∆ ` A1 ∨A2

...
Π1

∆, A1 ` C

...
Π2

∆, A2 ` C
∆ ` C

�

...
Πi[Π/Ai]

∆ ` C

8An other usual name is “injection” (but it may wrongly suggest an injectivity property).

48

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

(where Πi[Π/Ai] is obtained similarly as in §4.3.1) closely corresponds to the usual
reduction rules for pattern matching:

case (in1 t) {in1 x1 7→ u1 | in2 x2 7→ u2} �β u1[t/x1]
case (in2 t) {in1 x1 7→ u1 | in2 x2 7→ u2} �β u2[t/x2]

(where that t is of type Ui when ini t is of type U1 + U2).
Consider now ⊥, the 0-ary case of (−) ∨ (−) with (unique) natural deduction rule

(⊥-E)
∆ ` ⊥
∆ ` A

This suggests a 0-ary version of (−) + (−), which is provided by the empty type void

with elimination form

(void-E)
E ` t : void

E ` case⊥ t {} : T

Note that the (void-E)-rule produces a term of any type T ! On the other hand there is
no introduction rule for void, so that (in the λ-calculus defined up to now) there is no
closed term of type void (see Cor. 4.34 §4.4.4 below). In particular, the (void-E)-rule
cannot be applied when the context E is empty.

Remark 4.22. Natural deduction is often equipped with stronger reduction rules for
(intuitionistic) disjunction than the above, see e.g. [Gal95] and [TS00, §6].

4.4.3. A Simply-Typed Lambda-Calculus with Sums and Products

To summarize, we end up with a type system for extended λ-terms given by the grammar:

t, u ::= x | λx.t | tu | 〈t, u〉 | π1t | π2t
| in1 t | in2 t | 〈〉 | case⊥ t {}
| case t {in1 x1 7→ u1 | in2 x2 7→ u2}

where x ∈ X (as in §3).

Warning 4.23. The case construct actually incorporates binders: the variables x1, x2

are bound in case t {in1x1 7→ u1 | in2x2 7→ u2}. We thus assume the corresponding
extension of α-conversion (§3.2.3 and §3.2.4).

The notions of free-variable (Def. 3.3, §3.2.3) and of capture-avoiding substitution
(Def. 3.8, §3.3) are adapted accordingly.

As for reduction, we consider the analogue of Def. 3.12 (§3.3.3) for the extended λ-
terms defined above. More precisely, we first define a basic reduction relation �0 with
the basic rules of Fig. 5. We then let the full (strong) reduction relation �β be the
closure of �0 under the congruence rules of Fig. 5.

Warning 4.24. What we call β-reduction here is often called differently in the literature,
because the reduction rules for products, sums etc. are often given specific names.

49

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Basic Rules:

(λx.t)u �0 t[u/x]
π1〈t, u〉 �0 t case (in1 t) {in1 x 7→ u1 | in2 x 7→ u2} �0 u1[t/x]
π2〈t, u〉 �0 u case (in2 t) {in1 x 7→ u1 | in2 x 7→ u2} �0 u2[t/x]

Congruence Rules: �β is the least relation containing �0 and closed under the rules

t �β t′

t u �β t′ u

u �β u′

t u �β t u′
t �β t′

λx.t �β λx.t′

t �β t′

π1t �β π1t′
t �β t′

π2t �β π2t′
t �β t′

〈t, u〉 �β 〈t′, u〉
u �β u′

〈t, u〉 �β 〈t, u′〉

t �β t′

case t {} �β case t′ {}
t �β t′

in1 t �β in1 t′
t �β t′

in2 t �β in2 t′

t �β t′

case t {in1 x 7→ u | in2 x 7→ v} �β case t′ {in1 x 7→ u | in2 x 7→ v}

u �β u′

case t {in1 x 7→ u | in2 x 7→ v} �β case t {in1 x 7→ u′ | in2 x 7→ v}

v �β v′

case t {in1 x 7→ u | in2 x 7→ v} �β case t {in1 x 7→ u | in2 x 7→ v′}

Figure 5: The Relation of Full (Strong) β-Reduction.

We consider types given by the grammar

T,U ::= κ | U → T | T × U | T + U | unit | void

where κ ranges over some (unspecified) set of base types. The typing relation E `
t : T is defined by the rules of Fig. 6.

Exercise 4.25 (Booleans). Let bool := unit + unit and

true := in1 〈〉 : bool

false := in2 〈〉 : bool

Define λ-terms neg : bool → bool and and : bool × bool → bool implementing resp.
Boolean negation and conjunction.

In particular, all Boolean functions are definable by λ-terms. This extends to any finite
“base type”.

50

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

(Var)
E ` x : T

((x : T) ∈ E) (unit-I)
E ` 〈〉 : unit

(void-E)
E ` t : void

E ` case⊥ t {} : T

(→-I)
E , x : U ` t : T

E ` λx.t : U → T
(→-E)

E ` t : U → T E ` u : U

E ` tu : T

(×-I) E ` t1 : T1 E ` t2 : T2

E ` 〈t1, t2〉 : T1 × T2
(×1-E)

E ` t : T1 × T2

E ` π1t : T1
(×2-E)

E ` t : T1 × T2

E ` π2t : T2

(+1-I)
E ` t : T1

E ` in1 t : T1 + T2
(+2-I)

E ` t : T2

E ` in2 t : T1 + T2

(+-E)
E ` t : T1 + T2 E , x1 : T1 ` u1 : U E , x2 : T2 ` u2 : U

E ` case t {in1 x1 7→ u1 | in2 x2 7→ u2} : U

Figure 6: Typing Rules with Sums and Products.

Exercise 4.26 (Finite Base Types). We define the type
∑n

i=1 Ti by induction on n ∈ N
as ∑0

i=1 Ti := void∑n+1
i=1 Ti := T1 +

∑n
i=1 Ti+1

Given a finite set A = {a1, . . . , an}, the type A is
∑n

i=1 unit. For each k = 1, . . . , n, let

ak := in2 · · · in2︸ ︷︷ ︸
k − 1 times

in1 〈〉 : A

Assume A = {a1, . . . , an} and B = {b1, . . . , bm}. Show that for each function f : A→ B
there is a λ-term f : A→ B such that

f(ak) �∗β b` if and only if f(ak) = b`

4.4.4. Main Properties

We now discuss the extension of §4.2.2 to product and sum types.
The following are proved exactly as their counterparts in §4.2.2.

Fact 4.27 (Inversion).

(1) If E ` x : T , then (x : T) ∈ E.

(2) If E ` λx.t : T , then T is of the form V → U and E , x : V ` t : U .

(3) If E ` tu : T then there is some U such that E ` t : U → T and E ` u : U .

(4) If E ` 〈t1, t2〉 : T then T is of the form U1 × U2 and E ` ti : Ui for each i = 1, 2.

51

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

(5) If E ` πit : Ti then there is some T3−i such that E ` t : T1 × T2.

(6) If E ` 〈〉 : T then T = unit.

(7) If E ` ini t : T then T is of the form U1 + U2 and E ` t : Ui.

(8) If E ` case t {in1 x1 7→ u1 | in2 x2 7→ u2} : T , then there are some U1, U2 such that
E ` t : U1 + U2 and E , xi : Ui ` ui : T for i = 1, 2.

(9) If E ` case⊥ t {} : T then E ` t : void.

Lemma 4.28 (Structural Properties).

(Weakening) If E ` t : T and x /∈ dom(E) then E , x : U ` t : T .

(Contraction) If E , x : U, y : U ` t : T then E , x : U ` t[x/y] : T .

(Exchange) If E , x : U, E ′, y : V, E ′′ ` t : T , then E , y : V, E ′, x : U, E ′′ ` t : T .

Lemma 4.29 (Substitution). If E , x : U ` t : T and E ` u : U then E ` t[u/x] : T .

Proposition 4.30 (Subject Reduction). If E ` t : T and t�β u then E ` u : T .

We now turn to normalization. Theorem 4.12 (§4.2.2) extends to sums and products.

Theorem 4.31 (Strong Normalization). If E ` t : T then t is strongly β-normalizing
(in the sense of Def. 3.33, §3.4.3).

Theorem 4.31 is admitted until §5 (Thm. 5.32, §5.5). Let us now discuss some of its
corollaries.

First, concerning confluence, in contrast with the pure λ-calculus we shall not be
concerned with the case of the untyped extended λ-calculus. We shall thus content
ourselves with confluence on typed terms, which can be obtained using Newman’s
Lemma 3.35 (§3.4.3) from Theorem 4.31 and local confluence (see [SU06, §4.5]). In the
following, the notation |E ` T | refers to the obvious adaptation of Rem. 4.11 (§4.2.2).

Theorem 4.32. For each typing context E and each type T , the relation �β is confluent
on |E ` T |.

Finally, we can state and prove the (relevant) analogue of Thm. 2.9 (§2.1). This relies
on the following crucial fact on the shape of (typed) normal forms.

Lemma 4.33 (Closed Typed Normal Forms). If t is a closed typable λ-term in β-normal
form, then t is of one of the following forms:

λx.u 〈〉 〈u, v〉 in1u in2u

Proof. By induction on t. If t is of one of the above form, then we are done. Moreover,
t cannot be a variable since it is closed. We inspect the other cases (implicitly relying
on Fact 4.27).

52

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Case of t = uv.

Then u would be a normal form since the relation �β is closed under the rule

u �β u′

u v �β u′ v

Since u is closed and typed, by induction hypothesis u would be of the form λx.w.
But this is impossible since t = (λx.w)v is assumed to be a normal form.

Cases of t = πiu (i = 1, 2).

Then u would be a normal form since the relation �β is closed under the rule

u �β u′

πiu �β πiu′

Since u is closed and typed, by induction hypothesis u would be of the form 〈v, w〉.
But this is impossible since t = πi〈v, w〉 is assumed to be a normal form.

Case of t = case u {in1 x 7→ v | in2 x 7→ w}.
Then u would be a normal form since the relation �β is closed under the rule

u �β u′

case u {in1 x 7→ v | in2 x 7→ w} �β case u′ {in1 7→ v | in2 x 7→ w}

Since u is closed and typed, by induction hypothesis u would be of the form ini v.
But this is impossible since t is assumed to be a normal form.

Case of t = case⊥ u {}.
Then u would be a normal form since the relation �β is closed under the rule

u �β u′

case⊥ u {} �β case⊥ u′ {}

Since u is closed, by induction hypothesis it must be of one of the form prescribed
in the statement of the Lemma. But this is impossible since no term of these form
can have type void.

Combining Lem. 4.33 with Strong Normalization (Thm. 4.31) and Subject Reduction
(Prop. 4.30) readily gives the following.

Corollary 4.34. In the simply-typed λ-calculus with sums and products,

(1) there is no λ-term t such that ` t : void;

(2) if ` t : T1+T2 then there are some i ∈ {1, 2} and some λ-term ui such that t�∗βini ui
and ` ui : Ti.

Corollary 4.34 is proven without relying on Strong Normalization (Thm. 4.31) in §5.3
(Cor. 5.11).

53

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Types ≡ Formulae of Intuitionistic Prop. Logic

(base types) κ ≡ p (atomic propositions)
(functions) (−)→ (−) ≡ (−)⇒ (−) (implications)
(products) (−)× (−) ≡ (−) ∧ (−) (conjunctions)

(unit) unit ≡ > (truth)
(sums) (−) + (−) ≡ (−) ∨ (−) (int. disjunctions)
(void) void ≡ ⊥ (falsity)

Table 2: The Curry-Howard Correspondence: Types and Formulae.

4.4.5. Curry-Howard Correspondence

We now proceed to the Curry-Howard correspondence for the full intuitionistic proposi-
tional logic NJ0.

We begin with the identification of types with formulae. First, recall their respective
grammars:

T,U ::= κ | U → T | T × U | T + U | unit | void

A,B ::= p | B ⇒ A | A ∧B | A ∨B | > | ⊥

Extending §4.3, we shall further identify:

• conjunctions (−) ∧ (−) with product types (−)× (−) (and > with unit);

• disjunctions (−) ∨ (−) with the sum types (−) + (−) (and ⊥ with void).

The resulting correspondence between types and formulae is summarized in Table 2.
We may thus consider that types are formulae of propositional logic.

Notation 4.35 (Types as Formulae). Extending Notation 4.14 (§4.3), for the remaining
of this §4.4.5 we assume that types given by the grammar of formulae:

A,B ::= p | A⇒ B | A ∧B | A ∨B | > | ⊥

As depicted in Fig. 7, erasing λ-terms from typing rules exactly gives the derivation rules
of NJ0. It follows that typed λ-terms can be identified with proofs:

Intuitionistic Simply-Typed
Logic (NJ0) λ-Calculus (with +,×)

Formulae ≡ Types
Proofs ≡ Typed λ-Terms

Remark 4.36 (Proof-Terms). Under the Curry-Howard correspondence, typed λ-terms
are often called proof-terms.

In particular, we have the following obvious extension of Thm. 4.15 (§4.3).

54

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

x1 : A1, . . . , xn : An ` xi : Ai
;

A1, . . . , An ` Ai
(Ax)

x1 : A1, . . . , xn : An ` 〈〉 : >
;

A1, . . . , An ` >
(>-I)

x1 : A1, . . . , xn : An ` t : ⊥
x1 : A1, . . . , xn : An ` case⊥ t {} : B

;
A1, . . . , An ` ⊥
A1, . . . , An ` B

(⊥-E)

x1 : A1, . . . , xn : An, x : A ` t : B

x1 : A1, . . . , xn : An ` λx.t : A⇒ B
;

A1, . . . , An, A ` B
A1, . . . , An ` A⇒ B

(⇒-I)

x1 : A1, . . . , xn : An ` t : A⇒ B
x1 : A1, . . . , xn : An ` u : A

x1 : A1, . . . , xn : An ` tu : B
;

A1, . . . , An ` A⇒ B
A1, . . . , An ` A

A1, . . . , An ` B
(⇒-E)

x1 : A1, . . . , xn : An ` t1 : B1

x1 : A1, . . . , xn : An ` t2 : B2

x1 : A1, . . . , xn : An ` 〈t1, t2〉 : B1 ∧B2
;

A1, . . . , An ` B1

A1, . . . , An ` B2

A1, . . . , An ` B1 ∧B2
(∧-I)

x1 : A1, . . . , xn : An ` t : B1 ∧B2

x1 : A1, . . . , xn : An ` πit : Bi
;

A1, . . . , An ` B1 ∧B2

A1, . . . , An ` Bi
(∧i-E)

x1 : A1, . . . , xn : An ` t : Bi
x1 : A1, . . . , xn : An ` ini t : B1 ∨B2

;
A1, . . . , An ` Bi

A1, . . . , An ` B1 ∨B2
(∨i-I)

x1 : A1, . . . , xn : An, x : B1 ` u1 : C
x1 : A1, . . . , xn : An ` t : B1 ∨B2 x1 : A1, . . . , xn : An, x : B2 ` u2 : C

x1 : A1, . . . , xn : An ` case t {in1 x 7→ u1 | in2 x 7→ u2} : C
(∨-E)

;

A1, . . . , An, B1 ` C
A1, . . . , An ` B1 ∨B2 A1, . . . , An, B2 ` C

A1, . . . , An ` C

Figure 7: The Curry-Howard Correspondence: Typing and Deduction Rules.

55

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

Theorem 4.37 (Curry-Howard Correspondence). The sequent A1, . . . , An ` A is deriv-
able in NJ0 if and only if there is a λ-term t such that x1 : A1, . . . , xn : An ` t : A.

Example 4.38. We have ` t : (A ∨ ¬A)⇒ (¬A⇒ A)⇒ A where

t : (A ∨ ¬A)⇒ (¬A⇒ A)⇒ A
:= λe. λc. case e {

in1 x1 7→ x1

| in2 x2 7→ c x2 }

since
e : A ∨ ¬A, c : ¬A⇒ A ` case e {

in1 x1 7→ x1

| in2 x2 7→ c x2 } : A

Together with Cor. 4.34 (§4.4.4), Thm. 4.37 gives the remaining part of Thm. 2.9 (§2.1).

Corollary 4.39. In intuitionistic propositional logic (NJ0),

(1) ` ⊥ is not derivable;

(2) if ` A ∨B then either ` A or ` B.

Similarly as in §4.3, we consider some examples from §2.

Exercise 4.40. In each case below, give a λ-term t of the prescribed type:

(1) ` t : ((¬A⇒ A)⇒ A)⇒ ¬¬A⇒ ¬A

(2) ` t : (A ∨ ¬A)⇒ ¬¬A⇒ A

(3) ` t : ¬¬(A ∨ ¬A)

Exercise 4.41. In each case below, give a λ-term t of the prescribed type:

(1) ` t : B ∧ (A1 ∨A2)⇒ (B ∧A1) ∨ (B ∧A2)

(2) ` t : (B ∧A1) ∨ (B ∧A2)⇒ B ∧ (A1 ∨A2)

Remark 4.42. The proof terms of Ex. 4.41 enforce a form of distributive law. Their
mere existence is already due to deep semantic reasons, related to the interaction of⇒/→
with ∧/× and ∨/+.

Let us say a few words on this, in a simple setting which actually forms the basis the
of algebraic semantics of intuitionistic propositional logic (see e.g. [SU06, §2.4]). The
following is somewhat beyond the scope of this course.

Define the preorder ≤ on formulae as A ≤ B if A ` B in NJ0. The relation ≤ becomes
a partial order on formulae quotiented by the equivalence relation

A ≡ B iff A ≤ B and B ≤ A

56

4. Curry-Howard Correspondence for Intuitionistic Propositional Logic

The poset of quotiented formulae is actually a lattice, i.e. it has all finite sups and infs
(see [SU06, Def. 2.3.1]) given resp. by the action of ∨ (with unit ⊥) and ∧ (with unit
>) on quotiented formulae.

Now, Ex. 4.41 says that this lattice is distributive ([SU06, Def. 2.3.5]) in the sense
that it satisfies the following law:9

(C ∨B) ∧A = (C ∧A) ∨ (B ∧A)

(we confuse formulae with their equivalence classes). But beware that not every lattice
is distributive! A well-known counter example is the lattice M3, which can be depicted
as follows:

>

a b c

⊥

The distributive law above may be read as the preservation of (−)∨ (−) by (−)∧A, and
actually follows from the following property of logical implication (⇒):10

B ∧A ≤ C iff B ≤ A⇒ C

Remark 4.43. Alternative syntaxes consider case’s of the following form (e.g. [Gal95]):

E ` t : A1 +A2 E , x1 : A1 ` u1 : B E , x2 : A2 ` u2 : B

E ` case t {in1 7→ λx1.u1 | in2 7→ λx2.u2} : B

Remark 4.44 (On the BHK Interpretation). The Curry-Howard correspondence can
be seen as an instance of the BHK interpretation (see §4.1). More precisely, under
the Curry-Howard correspondence, Thm. 4.31 and Lem. 4.33 (§4.4.4) give the following
(where by “proof” we understand “proof term in β-normal form”):

• a “proof” of A1 ∧A2 is a pair of a “proof” of A1 and a “proof” of A2;

• a “proof” of A1 ∨A2 contains an i ∈ {1, 2} and a “proof” of Ai;

• a “proof” of A⇒ B is a “function” taking a “proof” of A to a “proof” of B;

• there is no “proof” of ⊥.

Above, the word “function” can be understood to refer to those computable functions f
such that for some λ-term ` λx.t : A⇒ B, f takes a “proof” ` u : A to the “proof” of
B obtained by β-normalizing ` t[u/x] : B.

9The two laws mentioned in [SU06, Def. 2.3.5] are actually equivalent in any lattice.
10See e.g. [Awo10, §6.3] and [LS86, Ex. I.7.4 & §I.8] (outside the scope of this course).

57

5. Normalization for Simple Types

Remark 4.45 (Extension to Classical Logic). With further enrichment of the simply-
typed λ-calculus, the Curry-Howard correspondence actually extends to classical propo-
sitional logic, see [SU06, §6] (also [AC98, §8.5]). Beware that the resulting correspon-
dence does not extend Tab. 2. In particular, interpreting (classical) disjunctions as sum
types requires to switch to a call-by-value λ-calculus.11

5. Normalization for Simple Types

5.1. Introduction

In the case of the simply typed λ-calculus, most normalization properties are provable
by direct induction on typed terms (see e.g. [SU06, §3.5]). However, these proofs are
often difficult (and sometime impossible) to generalize.

We are going to discuss proofs using a method called reducibility. Reducibility
applies to (much) stronger type systems than simple types; it is actually the only known
way to prove the termination of any type system extending Girard’s System F12 §9.
Besides [SU06, §11], see [GLT89, Bar92, Kri93], as well as [Pie02, §23].

The reducibility method follows a general pattern issued from realizability. Realiz-
ability in particular gives (classes of) models of higher-order arithmetic and set theory,
in intuitionistic settings as well as in classical ones. It is even possible to validate axioms
compatible with intuitionistic logic but which are classically false (§8.3)! See [TvD88a,
Chap. 4, §4] and also [Kri09, Kri01].

Another version of realizability, called logical relations, is a widespread tool to prove
various properties of (models of) higher-order functional programming languages.13

We present the basic mechanisms of the technique, and illustrate it with proofs of
normalization results of increasing strengths. We introduce the ingredients steps by
steps. After some notational preliminaries (§5.2), we begin in §5.3 with a proof of
the Disjunction Property (in the form of Cor. 4.34, §4.4.4). In §5.4, we strengthen this
argument to a proof of Weak Normalization for the Weak Head Reduction (to be defined
in §5.3.1). We finally present in §5.5 the adaptations needed in order to obtain a proof
of Strong Normalization for the Full Strong Reduction.

Standard references include [GLT89, Bar92, Kri93].

5.2. Notational Preliminaries

The reference λ-calculus for this §5 is the simply-typed λ-calculus with sums and prod-
ucts described in §4.4.3. Extending §3.2.1 (actually Notation 3.7, §3.2.4) we write Λ for
the set of extended λ-terms of §4.4.3 (modulo α-conversion). Recall that X is the set of
variables for λ-terms.

We generalize the operation of capture-avoiding substitution (Def. 3.8, §3.3.1) to the
following notion of simultaneous capture-avoiding substitution.

11See [LS86, §I.8] and [Sel01] (outside the scope of this course).
12A.k.a. Reynolds’ Polymorphic λ-Calculus.
13See e.g. [AC98, §4.5] (outside the scope of this course).

58

5. Normalization for Simple Types

xσ := σ(x) if x ∈ dom(σ)
xσ := x if x /∈ dom(σ)

(λx.t)σ := λx.tσ if x /∈ dom(σ) ∪ FV(img(σ))
(tu)σ := tσ uσ
〈〉σ := 〈〉

〈t, u〉σ := 〈tσ, uσ〉
(πit)σ := πitσ for i = 1, 2

(ini t)σ := ini tσ for i = 1, 2
if x1, x2 /∈ dom(σ) ∪ FV(img(σ)),(
case t {in1 x1 7→ u1 | in2 x2 7→ u2}

)
σ := case tσ {in1 x1 7→ u1σ | in2 x2 7→ u2σ}(

case⊥ t {}
)
σ := case⊥ tσ {}

Figure 8: Simultaneous Capture-Avoiding Substitution.

Definition 5.1 (Simultaneous Substitution). Let σ be a partial function X ⇀ Λ.
The simultaneous capture-avoiding substitution tσ is defined by induction on t
in Fig. 8, where FV(img(σ)) stands for

⋃
x∈dom(σ) FV(σ(x)).

Notation 5.2.

(1) A σ : X ⇀ Λ as in Def. 5.1 is often called a substitution.

(2) When x /∈ dom(σ), we write σ[u/x] for the substitution taking x to u and equal to
σ everywhere else.

Note that t(σ[u/x]) = (tσ)[u/x] if x /∈ FV(img(σ)); we can thus unambiguously
write tσ[u/x] in this case.

(3) When dom(σ) = {x1, . . . , xn} we often write [σ(x1)/x1, . . . , σ(xn)/xn] for σ, and
thus t[σ(x1)/x1, . . . , σ(xn)/xn] for tσ.

In particular, [u1/x1, . . . , un/xn] stands for the substitution of domain {x1, . . . , xn}
which takes xi to ui.

Notation 5.3 (Types). For this §5, we write Ty for the set of simple types with sums
and products (§4.4.3), with base types κ ranging over a determined set K.

Finally, we use the notions related to normalization introduced in Def. 3.33 (§3.4.3).

5.3. A First Normalization Result: The Disjunction Property

In this §5.3, we present the basic mechanism of the reducibility technique, and illustrate
it with a proof of the Disjunction Property, in the form of Cor. 4.34 (§4.4.4). See Cor. 5.11
(§5.3.3) below.

59

5. Normalization for Simple Types

5.3.1. Weak Head Reduction

We begin by noting that in order to get Lem. 4.33 (4.4.4) on Closed Typed Normal Forms,
we actually do not need the full strong reduction relation �β but only the weaker (and
simpler) weak head reduction. This shall greatly simplify the proof of the disjunction
property.

Recall the basic reduction relation �0 from Fig. 5 (§4.4.3). If we inspect the proof
of Lem. 4.33, we remark that beside �0 ⊆ �β, we only use the closure of �β under the
following rules:

u �β u′

u v �β u′ v

u �β u′

πi u �β πi u′
u �β u′

case⊥ u {} �β case⊥ u′ {}

u �β u′

case u {in1 x 7→ v | in2 x 7→ w} �β case u′ {in1 x 7→ v | in2 x 7→ w}

The least relation containing �0 and closed under the above rules is the weak head
reduction. For the following, it will be convenient to define it by “plugging” the basic
reduction �0 into some term-contexts of a very constrained form, ensuring that reduction
steps can only occur in weak head position. These contexts are called elimination
contexts. They are the terms with a hole (noted []) inductively defined as follows:

E[] ∈ Elim ::= [] | E[] t | π1 E[] | π2 E[]
| case E[] {in1 x 7→ u | in2 x 7→ v} | case E[] {}

We write E[t] for the term obtained by substituting t for the (unique occurrence of) the
hole [] in E[]. Note that elimination contexts are stable by composition: if E[], F [] ∈
Elim, then E[F []] ∈ Elim.

Definition 5.4 (Weak Head Reduction). The relation �wh of weak head reduction
is defined as t �wh u if and only if there is an elimination context E[] and terms v, w
such that t = E[v], u = E[w] and v �0 w.

A direct consequence of the definition is that if t�wh u, then we also have E[t]�wh E[u]
for all elimination context E[]. This leads to a analogue of Lem. 4.33 for the closed
normal forms of �wh. A weak head normal form is a normal form for �wh.

Lemma 5.5 (Closed Normal Forms). If t is a closed typable term in weak head normal
form, then t is of one of the following forms:

λx.u 〈〉 〈u, v〉 in1 u in2 u

Proof. Exercise!

Remark 5.6. The weak head reduction a “call-by-name” reduction strategy since ar-
guments of β-redexes are only evaluated when they appear in head position, and never
before contracting the β-redex. This is also a strategy for weak reduction: no redex is
contracted under an abstraction. Such reduction strategies are very useful in practice,
since they can be easily implemented with abstract machines.

60

5. Normalization for Simple Types

5.3.2. Type Interpretations and Adequacy

The general idea is the following: Assume that we want to prove that all typable terms
` t : T satisfy a given property P . This property may be difficult to prove by a direct
induction on the term structure or on the typing derivations. This is typically the case
of termination.

Now, think of P as a subset of Λ, i.e. P ⊆ Λ. The idea to find a map J−K, mapping
each type T ∈ Ty to a set of terms satisfying P : JT K ⊆ P . If we achieve to show
that ` t : T implies t ∈ JT K, then we are done. We call J−K : Ty → P(Λ) a type
interpretation. If ` t : T implies t ∈ JT K, then J−K will be called adequate.

Definition 5.7 (Adequacy). Let J−K : Ty→ P(Λ).

(1) Given a substitution σ and a typing context E, we write σ |=J−K E if dom(E) ⊆
dom(σ) and σ(x) ∈ JT K for all (x : T) ∈ E.

(2) A type interpretation J−K is adequate if tσ ∈ JT K whenever E ` t : T and σ |=J−K E.

Let us now discuss some general conditions to get an adequate type interpretation. In
most (if not all) cases, type interpretations J−K : Ty → P(Λ) are defined by induction
on the type structure, and adequacy is proved by induction on typing derivations.

Without making any assumption on J−K, we can already look at what happens in the
base case of an adequacy proof. Consider thus the case of the rule

(Var)
(x : T) ∈ E
E ` x : T

But if σ |=J−K E then by definition we have σ(x) ∈ JT K. Hence, any type interpretation
validates the (Var) rule.

All other typing rules involve a type constructor. Let us be a bit more precise about
J−K. Assume that each base type κ ∈ K has a given interpretation JκK ∈ P(Λ). Assume
moreover that we have attributed an interpretation JunitK and JvoidK to the unit types
unit and void. The interpretation of an arbitrary type is then inductively defined using
an operator on P(Λ) per connective. The following operators � and � correspond to
the type constructors (−)→ (−) and (−)× (−).

Definition 5.8. Given A,B ∈ P(Λ), let

A� B := {t | (∀u ∈ A)(tu ∈ B)}
A � B := {t | π1t ∈ A and π2t ∈ B}

Assume now that J−K is such that for any types T,U , we have:

JU → T K = JUK� JT K
JT × UK = JT K � JUK

It is not difficult to see that such an interpretation validates the elimination rules of →
and ×. Consider for instance the case of

(→-E)
E ` t : U → T E ` u : U

E ` tu : T

61

5. Normalization for Simple Types

Let σ |=J−K E . By induction hypothesis tσ ∈ JUK� JT K and uσ ∈ JUK, and by definition
of � we get (tσ)(uσ) ∈ JT K. Then we are done since (tu)σ = (tσ)(uσ).

There is however a difficulty with the introduction rules. Consider for instance

(→-I)
E , x : U ` t : T

E ` λx.t : U → T

Let σ |=J−K E . Note that we can assume x /∈ FV(img(σ)). We thus have (λx.t)σ =
λx.(tσ). By definition of �, we must show that (λx.(tσ))u ∈ JT K whenever u ∈ JUK.
Let u ∈ JUK. By induction hypothesis, we have (tσ)[u/x] = tσ[u/x] ∈ JT K. Hence, in
order to conclude, we would like to deduce (tσ)[u/x] ∈ JT K from (λx.tσ)u ∈ JT K.

A slight generalization would lead us to require that for all T ∈ Ty, JT K satisfies the
following invariant:

(stability by expansion) if u ∈ JT K and t�0 u then t ∈ JT K.

Since J−K is defined by induction on types, we would like this invariant to be preserved
by � and �. Consider for instance the case of �, and let us look at what we need to
impose on A,B ∈ P(Λ) in order to ensure the stability by expansion of A� B. Let
u ∈ A� B and t�0 u. We have to show that for all v ∈ A, we have tv ∈ B under the
assumption that uv ∈ B. In other word, B must be stable by expansion not only for
�0, but also for a relation � containing �0 and closed under the context rule

t � u

t v � u v

By iterating the argument, we would (almost) arrive at the following: for all type T , we
ask JT K to be stable by weak head expansion:

• (WHE) if u ∈ JT K and t�wh u then t ∈ JT K.

5.3.3. Proof of the Disjunction Property

In order to complete the definition of an adequate type interpretation, we have to devise
interpretations for the unit types unit and void, as well as for the sum types constructor
(−) + (−). For the moment, assume that

JT + UK = JT K ⊕ JUK JunitK = 1 JvoidK = 0

where ⊕, 1 and 0 are defined as:

A ⊕ B :=
{
t | (∃u)

(
t�∗wh (in1 u) & u ∈ A

)
or (∃u)

(
t�∗wh (in2 u) & u ∈ B

)}
1 := {t | t�∗wh 〈〉}
0 := ∅

These definitions follow a pattern different from what we have already seen: they are by
introduction (or positive) rather than by elimination (or negative). We are thus
in a somehow dual situation w.r.t. the cases of� and �. In particular, it is easy to see
that ⊕ and 1 directly validate the introduction rules of (−) + (−) and unit, while we
rely on (WHE) for the elimination rule of (−) + (−):

62

5. Normalization for Simple Types

Proposition 5.9. Let A,B,C ∈ P(Λ) such that C satisfies (WHE). Let t, v, w such
that t ∈ A ⊕ B, v[u/x] ∈ C for all u ∈ A and w[u/x] ∈ C for all u ∈ B. Then
case t {in1 x 7→ v | in2 x 7→ w} ∈ C.

Proof. Exercise!

Consider now the case of 0. It trivially satisfies (WHE). Let us see that it also
validates the elimination rule of void

(void-E)
E ` t : void

E ` case t {} : T

Let σ |=J−K E . We have to show that case (tσ) {} ∈ JT K, while we have no assumption
on T ! It can be for instance void, while JvoidK = ∅. But the induction hypothesis
tells us that tσ ∈ JvoidK = ∅. This is a contradiction, from which follows anything; in
particular case (tσ) {} ∈ JT K for any type T .

Putting everything together, we have the following:

Theorem 5.10 (Adequacy). Let J−K be a type interpretation such that

(i) JκK satisfies (WHE) for all κ ∈ K, and

(ii) JunitK = 1 and JvoidK = 0, and

(iii) for all types T,U ,

JU → T K = JUK� JT K JT × UK = JT K � JUK JT + UK = JT K ⊕ JUK

Then,

(1) for all type T , JT K satisfies (WHE), and

(2) J−K is adequate.

Proof. Exercise!

Let us now look at what can be said from Thm. 5.10. At first sight, it may seem that
we have imposed very few properties on J−K. It is nevertheless enough to obtain the
Disjunction Property.

Corollary 5.11 (Cor. 4.34 (§4.4.4)). In the simply-typed λ-calculus with sums and prod-
ucts,

(1) there is no λ-term t such that ` t : void;

(2) if ` t : T1+T2 then there are some i ∈ {1, 2} and some λ-term ui such that t�∗βini ui
and ` ui : Ti.

Proof. Exercise!

We thus have proved the Disjunction Property. However, Thm. 5.10 gives no information
on the normalization of typed terms of arbitrary types.

63

5. Normalization for Simple Types

5.4. Reducibility Candidates

In this section, we adapt the basic material of §5.3 to prove (weak) normalization of typed
terms of arbitrary types. To keep things simple, we consider the weak normalization
of weak head reduction �wh.

Warning 5.12. In this §5.4, by weak normalization we mean weak normalization
w.r.t. �wh. Write WN for the set of weakly normalizable terms w.r.t. �wh.

In order to show that ` t : T implies t ∈ WN , we only have to find a type interpretation
J−K such that JT K ⊆ WN for all type T . First, note that requiring JT K ⊆ WN does not
conflict with (WHE).

Lemma 5.13. Let A ⊆ WN . Then {t | ∃(u ∈ A)(t�∗wh u)} is the least subset of WN
which contains A and satisfies (WHE).

Consider now a type interpretation J−K, which satisfies the hypotheses of Thm. 5.10
and such that moreover JκK ⊆ WN for all κ. Note that JunitK, JvoidK ⊆ WN .

Let us check whether the requirement JT K ⊆ WN is preserved by the (interpretations
of the) type constructors. The case of ⊕ is trivial since we have A ⊕ B ⊆ WN for
all A,B ∈ P(Λ). Moreover, it is not difficult to see that A � B ⊆ WN provided
A,B ⊆ WN .

Exercise 5.14. Show that A � B ⊆ WN whenever A,B ⊆ WN . What property of
�wh do you use?

However, there is a problem with � since

0� A = {t | (∀u)
(
u ∈ ∅ =⇒ tu ∈ A

)
} = Λ

More generally,

• in presence possibly empty types interpretations, there is no invariant
preserved by �.

We thus have to ensure that J−K maps types to non-empty sets of terms. In the case
of normalization properties, one usually requires JT K to contain variables. Similarly as
with the weak expansion requirement discussed in §5.3.2, in order to ensure that this
invariant is preserved by the (interpretations of) type constructors, we formulate it as
follows:

• E[x] ∈ JT K for all E[] ∈ Elim and all x ∈ X .

This invariant is designed to be preserved by the negative interpretations � and
�. It is however not satisfied by the positive interpretations 0, 1 and ⊕. These
interpretations could be adapted in order to satisfy our requirement. But we prefer to
take the opportunity to define their respective negative counterparts ⊥, > and �.

64

5. Normalization for Simple Types

Consider the case of (−) + (−). In order to get a negative interpretation, we follow
our methodology and look at the elimination rule

(+-E)
E ` t : T1 + T2 E , x : T1 ` u1 : U E , x : T2 ` u2 : U

E ` case t {in1 x 7→ u1 | in2 x 7→ u2} : U

There is a difficulty here: the type U to which case eliminates a term t : T1 + T2 has in
general no relation with T1 nor T2. A tentative definition of A � B could be to take the
set of all terms t such that

∀T ∈ Ty,
∀u s.t. u[w/x] ∈ JT K whenever w ∈ A,
∀v s.t. v[w/x] ∈ JT K whenever w ∈ B,

we have case t {in1 x 7→ u | in2 x 7→ v} ∈ JT K

However, such a definition would not be well-formed since the interpretation JT K may
itself use �.

The standard way to get rid of this circularity is to define � by quantifying not over
types, but rather over a predefined family of “candidate interpretations”. The family
presented here is the family of “saturated sets”.

Definition 5.15 (Saturated Sets). The set SAT WN of WN -saturated sets is the set
of all A ⊆ WN such that

(i) E[x] ∈ A for all E[] ∈ Elim, and

(ii) E[t] ∈ A if t�0 u for some E[u] ∈ A.

We first check that the family SAT WN is not empty.

Lemma 5.16. The set SAT WN is a complete lattice w.r.t. inclusion, whose top element
is > :=WN and whose least element is ⊥ := {t | (∃E[], x)

(
t�∗wh E[x]

)
}.

The complete lattice structure of SAT WN gives us negative interpretations of void and
unit.

• We take the negative interpretation of void to be ⊥. Note that

⊥ =
{
t | (∀A ∈ SAT WN)

(
case⊥ t {} ∈ A

)}
Proof. Exercise!

Hence, if t ∈ ⊥, then we have case⊥ t {} ∈ A for any A ∈ SAT WN . It follows
that JvoidK = ⊥ validates the rule (void-E).

• Similarly, we take the negative interpretation of unit to be >. It validates (unit-I)
since 〈〉 ∈ WN .

The negative interpretation of (−) + (−) is defined as follows.

65

5. Normalization for Simple Types

Definition 5.17. Given A,B ∈ P(Λ), let A �WN B be the set of all terms t such that

∀C ∈ SAT WN ,
∀u s.t. u[w/x] ∈ C whenever w ∈ A,
∀v s.t. v[w/x] ∈ C whenever w ∈ B,

we have case t {in1 x 7→ u | in2 x 7→ v} ∈ C

Note that �WN depends on SAT WN . Our connectives preserve saturated sets.

Lemma 5.18. Let A,B ∈ SAT WN . Then

A� B, A � B, A �WN B ∈ SAT WN

We thus get the analogue of the Adequacy Theorem 5.10.

Theorem 5.19 (Adequacy). Let J−K be a type interpretation such that

(i) JκK ∈ SAT WN for all κ ∈ K, and

(ii) JunitK = > and JvoidK = ⊥, and

(iii) for all types T,U ,

JU → T K = JUK� JT K JT × UK = JT K � JUK JT + UK = JT K �WN JUK

Then,

(1) JT K ∈ SAT WN for all type T , and

(2) J−K is adequate.

Proof. Exercise!

The weak normalization of typable terms immediately follows.

Corollary 5.20 (Weak Normalization). If E ` t : T then t ∈ WN .

Proof. Exercise!

5.5. Strong Normalization

We now extend the material of §5.4 in order to get the strong normalization of well-
typed terms. We begin in §5.5.1 and §5.5.2 with combinatorial properties on the notion
of strong normalization. The (then direct) adaptations to Saturated Sets and Adequacy
are discussed in §5.5.3.

66

5. Normalization for Simple Types

5.5.1. Inductive Definition of Strong Normalization

We momentarily step back from λ-terms to Abstract Reduction Systems (ARS’s, §3.4).
Let (A,�) be an ARS. We are interested in giving an inductive description of the

strongly normalizing elements of A. Recall that according to Def. 3.33 (§3.4.3), a ∈ A
is strongly normalizing if there is no infinite sequence (ai)i∈N of elements of A such
that a0 = a and ai � ai+1 for all i ∈ N. In the following it is convenient to say that an
infinite reduction sequence from a ∈ A is an infinite sequence (ai)i∈N of elements
of A such that a0 = a and ai � ai+1 for all i ∈ N.

Definition 5.21. Let SN be the least subset of A such that for all a ∈ A we have

(∀b ∈ A)
(
a� b =⇒ b ∈ SN

)
=⇒ a ∈ SN

Note that SN can be characterized as the least subset of A closed under the rule

(∀b ∈ A)
(
a� b =⇒ b ∈ SN

)
a ∈ SN

It is direct to see that all a ∈ SN are strongly normalizing.

Lemma 5.22. If a ∈ SN then a strongly normalizing.

Proof. Exercise!

Note that the proof of Lem. 5.22 is constructive, since it proves the negative statement
“there is no infinite reduction sequence [...]”.

On the other hand, the converse of Lem. 5.22 is not constructive.

Proposition 5.23. Given an ARS (A,�) and a ∈ A, we have a ∈ SN if and only if a
is strongly normalizing.

Proof. Exercise!

The proof of Prop. 5.23 relies on classical logic (as we reasoned by contradiction to
prove the positive statement “a ∈ SN”) moreover using a form of the Axiom of Choice
to ensure the existence of the infinite reduction sequence.14

Notation 5.24. For the remaining of this §5.5, we let SN stand for strong normaliza-
tion w.r.t. β-reduction.

5.5.2. Strong Normalization and Weak Head Reduction

The adaptation of the saturation clauses of Def. 5.15 to strong normalization is straight-
forward once we know how to connect strong normalization w.r.t. �β with weak head
expansion.

The connection is provided by the two following lemmas, and is best expressed by
using a notion of tuple reduction.

14Actually an instance of Dependent Choices, see e.g. [TvD88a, Chap. 4, §2.3].

67

5. Normalization for Simple Types

Notation 5.25. Write (t1, . . . , tn) �β (u1, . . . , un) when there is some i ∈ {1, . . . , n}
such that ti �β ui and tj = uj for all j 6= i.

Let us explain the idea in the case of the pure λ-calculus. We would like to adapt
Def. 5.15 to strong normalization. First, for a set A ∈ P(Λ) to be saturated, we shall
ask that A contains only strongly normalizing terms: A ⊆ SN . Now, we have to adapt
the two clauses Def. 5.15, in order to avoid conflict with the invariant A ⊆ SN . The
first clause

• E[x] ∈ A for all E[] ∈ Elim

is obviously adapted to

• E[x] ∈ A for all E[] ∈ Elim ∩ SN .

Consider now the second clause:

• E[(λx.t)u] ∈ A if E[t[u/x]] ∈ A.

This clause is problematic only in the following case: Assume that the variable x does
not occur free in t and that u is not normalizable. Then E[t[u/x]] = E[t] can be strongly
normalizing while E[(λx.t)u] is not. This is easily patched by asking u to be strongly
normalizing:

• E[(λx.t)u] ∈ A if E[t[u/x]] ∈ A and u ∈ SN .

This clause is correct, in the sense that E[(λx.t)u] is strongly normalizing if both
E[t[u/x]] and u are.

Let us look at this more precisely. Assume that E[t[u/x]] ∈ SN and u ∈ SN .
According to the definition of SN , we must show that for all v, if E[(λx.t)u] �β v then
v ∈ SN . Now, since we are in the pure λ-calculus, E[] is of the form []t1 . . . tn. Note
that t, u, t1, . . . , tn ∈ SN . The different possibilities for v can be depicted as follows:

(λx.t)ut1 . . . tn
�0 //

�β

��

t[u/x]t1 . . . tn

�∗β

��
(λx.t′)u′t′1 . . . t

′
n �0

// t′[u′/x]t′1 . . . t
′
n

Hence, there are schematically two possibilities for v. If v = t[u/x]t1 . . . tn then we are
done. Otherwise, v is of the form (λx.t′)u′t′1 . . . t

′
n with (t, u, t1, . . . , tn)�β(t′, u′, t′1, . . . , t

′
n).

In this case, we still have t′, u′, t′1, . . . , t
′
n ∈ SN and t′[u′/x]t′1 . . . t

′
n ∈ SN . This suggests

to reason by induction on t, u, t1, . . . , tn ∈ SN .
More generally, we can show by induction on E[], t, u ∈ SN that

• E[(λx.t)u] ∈ SN if E[t[u/x]] ∈ SN and u ∈ SN .

This reasoning easily generalizes to the other term constructors, as stated in the two
following lemmas.

68

5. Normalization for Simple Types

Lemma 5.26 (Weak Standardization). Let E[] ∈ Elim.

(1) If E[(λx.t)u] �β v, then either v = E[t[u/x]] or v is of the form E′[(λx.t′)u′] with
(E[], t, u) �β (E′[], t′, u′).

(2) Let i ∈ {1, 2}. If E[πi〈t1, t2〉] �β v, then either v = E[ti] or v is of the form
E′[πi〈t′1, t′2〉] with (E[], t1, t2) �β (E′[], t′1, t

′
2).

(3) Let i ∈ {1, 2}. If E[case (ini t) {in1 x 7→ u1 | in2 x 7→ u2}] �β v, then either
v = E[ui[t/x]] or v is of the form E[case (ini t

′) {in1 x 7→ u′1 | in2 x 7→ u′2}] with
(E[], t, u1, u2) �β (E[], t′, u′1, u

′
2).

Proof. Exercise!

The Weak Standardization Lemma 5.26 exhibits a very good behaviour of weak head
expansion w.r.t. strong normalization.

Lemma 5.27 (Weak Head Expansion). Let E[] ∈ Elim.

(1) If E[t[u/x]] ∈ SN and u ∈ SN then E[(λx.t)u] ∈ SN .

(2) Let i ∈ {1, 2}. If E[ti] ∈ SN and t3−i ∈ SN then E[πi〈t1, t2〉] ∈ SN .

(3) Let i ∈ {1, 2}. If E[ui[t/x]] ∈ SN and t, u3−i ∈ SN then E[case (ini t) {in1 x 7→
u1 | in2 7→ u2}] ∈ SN .

Proof. Exercise!

5.5.3. Type Interpretations and Adequacy

We can now give the adaptation of Def. 5.15 to strong normalization.

Definition 5.28 (Saturated Sets). The set SAT SN of SN -saturated sets is the set of
all A ⊆ SN such that

(i) E[x] ∈ A whenever E[] ∈ Elim ∩ SN , and

(ii) E[(λx.t)u] ∈ A whenever u ∈ SN and E[t[u/x]] ∈ A, and

(iii) for all i ∈ {1, 2}, E[πi〈t1, t2〉] ∈ A whenever t3−i ∈ SN and E[ti] ∈ A, and

(iv) for all i ∈ {1, 2}, E[case (ini t) {in1 x 7→ u1 | in2 x 7→ u2}] ∈ A whenever
t, u3−i ∈ SN and E[ui[t/x]] ∈ A.

The non-degeneracy of Def. 5.28 directly follows from Lem. 5.27. This leads to the
analogue of Lem. 5.16.

Lemma 5.29. The set SAT SN is a complete lattice w.r.t. inclusion, whose top element
is > := SN and whose least element is ⊥ := {t ∈ SN | (∃E[], x)

(
t�∗wh E[x]

)
}.

Proof. Exercise!

69

6. First-Order Predicate Logic

Recall that the negative interpretation of (−) + (−) depends on the family of candidate
interpretations over which we are quantifying. It has thus to be adapted. Given A,B ∈
P(Λ), let A �SN B be the set of all terms t such that

∀C ∈ SAT SN ,
∀u s.t. u[w/x] ∈ C whenever w ∈ A,
∀v s.t. v[w/x] ∈ C whenever w ∈ B,

we have case t {in1 x 7→ u | in2 x 7→ v} ∈ C

Lemma 5.30. Let A,B ∈ SAT SN . Then

A� B, A � B, A �SN B ∈ SAT SN

Proof. Exercise!

We thus get the analogue of Adequacy Theorem 5.19.

Theorem 5.31 (Adequacy). Let J−K be a type interpretation such that

(i) JκK ∈ SAT SN for all κ ∈ K, and

(ii) JunitK = > and JvoidK = ⊥, and

(iii) for all types T,U ,

JU → T K = JUK� JT K JT × UK = JT K � JUK JT + UK = JT K �SN JUK

Then J−K is adequate.

Proof. Exercise!

We finally obtain the strong normalization of typable terms (Thm. 4.12, §4.2.2 and
Thm. 4.31, §4.4.4).

Theorem 5.32 (Strong Normalization). If E ` t : T then t ∈ SN .

Proof. Exercise!

6. First-Order Predicate Logic

We now turn to first-order predicate logic.
The status of the Curry-Howard correspondence for intuitionistic first-order logic is

somehow ambiguous. On the one hand, everything works (almost) perfectly well at the
technical level. On the other hand, in proofs-assistants based on the Curry-Howard
correspondence, the setting of dependent types is often preferred to first-order logic
(see [SU06, §13] or [Uni13, §1], also Rem. 6.48, §6.3).15

15See also [Jac01, Hof97] (beyond the scope of this course).

70

6. First-Order Predicate Logic

We shall pay special attention to the specific properties of intuitionistic first-order
predicate logic (NJ1), most notably concerning the extraction of witnesses from proofs
of existential statements. Further, the already rich setting of NJ1 gives basic intuitions
on constructive reasoning, and is the basis of important stronger systems, such as In-
tuitionistic Arithmetic (7.3) and Second-Order Logic (??). Compared with dependent
types, one feature of first-order logic is that it is sufficiently simple for easily stating
(and proving) interesting non-trivial meta-theoretical properties (§7.3.3, §7.3.4, §8.3).

As shall see, the Curry-Howard correspondence for intuitionistic first-order logic is
based on proof-terms which are in essence simply-typed, so that in particular their
normalization is no more difficult than in the case of propositional logic (§5, §6.5).
Besides, while they are not particularly interesting from a programming point of view, the
proof-terms for NJ1 will play a crucial role in establishing the main extraction properties
of the latter.

We assume a working knowledge of first-order logic (essentially covered by [vD04]).
We however recall the relevant definitions and results.

6.1. Preliminaries

This §6.1 gathers definitions on many-sorted first-order logic. It essentially consists of
a mild extension of [vD04, §2.2 & §2.3] (see also [SU06, §8.1 & §8.4] and [Bus98a, §2.1]).

6.1.1. First-Order Signatures

Definition 6.1 (First-Order Signature). A (first-order) signature Σ consists of

(i) a set Sort(Σ) of sorts (ranged over by σ, τ, θ, . . .);

(ii) a collection of (sorted) function symbols

Fun(Σ) =
⋃

(τ1,...,τn;σ)∈Sort(Σ)n+1 Fun(Σ)(τ1, . . . , τn;σ)

(we sometimes write f : τ1 × · · · × τn → σ for f ∈ Fun(Σ)(τ1, . . . , τn;σ));

(iii) a collection of (sorted) predicate (or relation) symbols

Pred(Σ) =
⋃

(τ1,...,τn)∈Sort(Σ)n Pred(Σ)(τ1, . . . , τn)

(we sometimes write P ⊆ τ1 × · · · × τn for P ∈ Pred(Σ)(τ1, . . . , τn)).

Notation 6.2. Functions symbols c ∈ Fun(Σ)(;σ) (i.e. Fun(Σ)(τ1, . . . , τn;σ) with n =
0) are often called constants. We write c : σ instead of c : 1→ σ (i.e. τ1×· · ·× τn → σ
with n = 0).

Definition 6.3 (First-Order Terms). Let Σ be a signature. Assume given a collection
V =

⋃
σ∈Sort(Σ) V(σ) of Σ-sorted first-order variables, where V(σ) (also written Vσ)

is ranged over by xσ, yσ, zσ, etc.

71

6. First-Order Predicate Logic

(1) The set of first-order terms over (Σ,V) is the collection Ter(Σ,V) =
⋃
σ∈Sort(Σ) Ter(Σ,V)(σ)

inductively defined as follows:

• for each xσ ∈ V(σ), we have xσ ∈ Ter(Σ,V)(σ);

• given f ∈ Fun(Σ)(τ1, . . . , τn;σ) and a1 ∈ Ter(Σ,V)(τ1), . . . , an ∈ Ter(Σ,V)(τn),
we have f(a1, . . . , an) ∈ Ter(Σ,V)(σ).

(2) The set FV(a) is defined by induction on a as follows:

• FV(xσ) = {xσ};
• FV(f(a1, . . . , an)) = FV(a1) ∪ · · · ∪ FV(an).

Notation 6.4.

(1) When Σ and V are understood from the context, we often write aσ for a ∈ Ter(Σ,V)(σ).

(2) Given terms aσ and b and a variable xσ, the substitution of xσ by aσ in b, notation
b[aσ/xσ], is defined in the obvious way.

(3) When Σ is one-sorted, i.e. when Sort(Σ) is a singleton (say {σ}), we write

• Fun(Σ)(n) for Fun(Σ)(σ, . . . , σ︸ ︷︷ ︸
n

;σ);

• Pred(Σ)(n) for Pred(Σ)(σ, . . . , σ︸ ︷︷ ︸
n

);

• x ∈ V for xσ ∈ V(σ);

• a ∈ Ter(Σ,V) for aσ ∈ Ter(Σ,V)(σ).

6.1.2. The Language of First-Order Predicate Logic

Let Σ be a first-order signature and V be a collection of Σ-sorted first-order variables.
The formulae of first-order predicate logic over (Σ,V) are given by the grammar:

A,B ::= P(a1, . . . , an) | A⇒ B | A ∧B | A ∨B | > | ⊥
| (∀xσ)A | (∃xσ)A

where P ∈ Pred(Σ)(τ1, . . . , τn) and ai ∈ Ter(Σ,V)(τi) for each i = 1, . . . , n.
The set FV(A) of free variables of A is defined by induction on A as follows:

FV(P(a1, . . . , an)) :=
⋃

1≤i≤n FV(ai) FV(A⇒ B) := FV(A) ∪ FV(B)

FV((∀xσ)A) := FV(A) \ {xσ} FV(A ∧B) := FV(A) ∪ FV(B)
FV((∃xσ)A) := FV(A) \ {xσ} FV(A ∨B) := FV(A) ∪ FV(B)

FV(>) := ∅
FV(⊥) := ∅

Notation 6.5.

(1) A closed formula (i.e. a formula A such that FV(A) = ∅) is often called a sentence.

72

6. First-Order Predicate Logic

(2) When Σ is one-sorted, i.e. when Sort(Σ) is a singleton (say {σ}), we write (∀x)
and (∃x) for resp. (∀xσ) and (∃xσ).

(3) We often write A(xσ) to informally emphasize that the variable xσ occurs or may
occur free in the formula A (and similarly for first-order terms).

Warning 6.6 (Variable Binding). Universal quantifiers (∀xσ)A (“for all”) and existen-
tial quantifiers (∃xσ)A (“there exists”) bind xσ in A. We thus assume that first-order
formulae are quotiented by α-equivalence (w.r.t. the obvious adaptation of §3.2.4).

Given a term bσ and a variable xσ the capture-avoiding substitution of xσ by bσ in
A is defined by induction on A as follows:

>[bσ/xσ] := >
⊥[bσ/xσ] := ⊥(

P(a1, . . . , an)
)
[bσ/xσ] := P

(
a1[bσ/xσ], . . . , an[bσ/xσ]

)
(A⇒ B)[bσ/xσ] := A[bσ/xσ] ⇒ B[bσ/xσ]
(A ∧B)[bσ/xσ] := A[bσ/xσ] ∧ B[bσ/xσ]
(A ∨B)[bσ/xσ] := A[bσ/xσ] ∨ B[bσ/xσ](
(∀yτ)A

)
[bσ/xσ] := (∀yτ)

(
A[bσ/xσ]

)
if y 6= x and y /∈ FV(b)(

(∃yτ)A
)
[bσ/xσ] := (∃yτ)

(
A[bσ/xσ]

)
if y 6= x and y /∈ FV(b)

Notation 6.7. We extend the notations of §2 with the convention that quantifiers ((∀xσ)
and (∃xσ)) have the highest priority, so that e.g. (∃xσ)A ∧ (∀yτ)B ⇒ C stands for((

(∃xσ)A
)
∧
(
(∀yτ)B

))
⇒ C.

6.1.3. Structures and Models

Definition 6.8. A model of a signature Σ (or Σ-structure) M consists of

(i) for each sort σ ∈ Sort(Σ), a non-empty set M(σ) (also written Mσ, or even JσK
when M is clear from the context);

(ii) for each function symbol f ∈ Fun(Σ)(τ1, . . . , τn;σ), a functionM(f) :M(τ1)×· · ·×
M(τn) →M(σ) (we also write fM or fM for M(f), or even JfK when M is clear
from the context);

(iii) for each predicate symbol P ∈ Pred(Σ)(τ1, . . . , τn), a subsetM(P) ofM(τ1)×· · ·×
M(τn) (we also write PM or PM for M(P), or even JPK when M is clear from
the context).

Remark 6.9. A constant c ∈ Fun(Σ)(;σ) is interpreted as a functionM(c) : 1→M(σ)
(where 1 = {•}), equivalently as an elementM(c)(•) ∈M(σ) that we still denoteM(c).

Notation 6.10. When Σ is one-sorted, i.e. when Sort(Σ) is a singleton (say {σ}), we
write M for M(σ).

73

6. First-Order Predicate Logic

M, v |= P(a1, . . . , an) iff (Ja1Kv, . . . , JanKv) ∈ JPK
M, v |= A ∧B iff M, v |= A and M, v |= B
M, v |= A ∨B iff M, v |= A or M, v |= B
M, v |= A⇒ B iff M, v |= A implies M, v |= B
M, v |= (∀xσ)A iff for all a ∈M(σ), M, v[a/xσ] |= A
M, v |= (∃xσ)A iff there exists a ∈M(σ) such that M, v[a/xσ] |= A
M, v |= >
M, v 6|= ⊥

Figure 9: The Satisfaction Relation M, v |= A.

The notion of satisfaction of a formula A in a modelM under a valuation v (notation
M, v |= A) is standard. First, by a valuation v we mean a collection (vσ)σ∈Sort(Σ) where
vσ : V(σ) →M(σ). As usual, given xσ and a ∈ M(σ), we let v[a/xσ] be the valuation
which takes xσ to a and which is equal to v everywhere else. Given a valuation v, each
first-order term a ∈ Ter(Σ,V)(σ) induces an individual JaKv ∈M(σ) in the obvious way.

Definition 6.11. Let A be a first-order formula over a first-order Σ be a signature.

(1) Given a Σ-structureM and a valuation v, we say that A is satisfied inM under v
if M, v |= A, where the relation M, v |= A is defined in Fig. 9.

(2) Given a Σ-structure M, we say that A is satisfiable in M if M, v |= A for some
valuation v.

We say that A is satisfiable if A is satisfiable in some Σ-structure M.

(3) Given a Σ-structure M, we say that A is valid in M (notation M |= A) if A is
satisfied in M under all valuations v.

We say that A is valid (notation |= A) if A is valid in all Σ-structures M.

Example 6.12. Assume that xσ is not free in B. Then the following formulae are valid:

(1)
(
∀xσ)(A(xσ)⇒ B

)
⇔
(
(∃xσ)A(xσ)⇒ B

)
(2)

(
∃xσ)(A(xσ)⇒ B

)
⇔
(
(∀xσ)A(xσ)⇒ B

)
6.2. Natural Deduction for First-Order Predicate Logic

Recall from§2.1 (resp. §2.3) the system NJ0 (resp. NK0) of natural deduction for intu-
itionistic (resp. classical) propositional logic. Natural deduction for intuitionistic (resp.
classical) first-order predicate logic is given by extending NJ0 (resp. NK0) with rules for
universal (∀) and existential (∃) quantifiers.

Formally, fix a first-order signature Σ and a set V of Σ-sorted first-order variables.
Natural deduction for intuitionistic first-order predicate logic (NJ1) over (Σ,V) is given
by the deduction rules for Fig. 1, where given ∆ = A1, . . . , An, we write FV(∆) for

74

6. First-Order Predicate Logic

(Ax)
∆ ` A

(A ∈ ∆) (>-I)
∆ ` >

(⊥-E)
∆ ` ⊥
∆ ` A

(⇒-I)
∆, A ` B

∆ ` A⇒ B
(⇒-E)

∆ ` A⇒ B ∆ ` A
∆ ` B

(∧-I) ∆ ` A ∆ ` B
∆ ` A ∧B

(∧1-E)
∆ ` A ∧B

∆ ` A
(∧2-E)

∆ ` A ∧B
∆ ` B

(∨1-I)
∆ ` A

∆ ` A ∨B
(∨2-I)

∆ ` B
∆ ` A ∨B

(∨-E)
∆ ` A ∨B ∆, A ` C ∆, B ` C

∆ ` C

(∀-I) ∆ ` A
∆ ` (∀xσ)A

(xσ /∈ FV(∆)) (∀-E)
∆ ` (∀xσ)A

∆ ` A[aσ/xσ]

(∃-I) ∆ ` A[aσ/xσ]

∆ ` (∃xσ)A
(∃-E)

∆ ` (∃xσ)A ∆, A ` B
∆ ` B

(xσ /∈ FV(∆, B))

Figure 10: Natural Deduction Rules for Intuitionistic First-Order Predicate Logic.

FV(A1)∪· · ·∪FV(An). Natural deduction for classical first-order predicate logic (NK1)
over (Σ,V) is NJ1 augmented with the excluded middle (EM) (Def. 2.19, §2.2.1).

Remark 6.13. Similarly as in §2.1 (Rem. 2.8) we shall informally speak of intuition-
istic and classical predicate logics for the deduction systems NJ1 and NK1. We again
insist on the fact that there are different possible deduction systems for these logics.

The remaining of this §6.2 is organized as follows. We state in §6.2.1 the expected
usual easy structural properties of NJ1 and NK1. The main results relating syntax and se-
mantics of (classical) first-order logic are surveyed in §6.2.2. In §6.2.3 we briefly indicate
the extensions to first-order logic of the negative translations from §2.5. The undecid-
ability of provability in NJ1 and NK1 is proven in §6.2.4, using material from §3.4.1
and §3.7 on the untyped λ-calculus and Combinatory Logic. The failure of the extension
of Glivenko’s Theorem 2.48 (§2.6) to the full language of first-order logic is discussed
in §6.2.5.

Last but not least, the distinctive properties of NJ1 over NK1, namely the Disjunc-
tion Property and the analogous Witness Property for existential quantifications, are
stated in §6.2.6, proved in §6.3.3 and further discussed in §6.4.6.

But before, let us look at some examples!

Example 6.14. In NJ1 we have ` (∀xσ)A⇒ (∃xσ)A with the proof tree

75

6. First-Order Predicate Logic

In Intuitionistic First-Order Predicate Logic (NJ1):

`
(
(∃xσ)A(xσ)⇒ B

)
⇔ (∀xσ)

(
A(xσ)⇒ B

)
` ¬(∃xσ)A(xσ) ⇔ (∀xσ)¬A(xσ)
` ¬¬(∃xσ)A(xσ) ⇔ ¬(∀xσ)¬A(xσ)

` (∃xσ)
(
A(xσ)⇒ B

)
⇒ (∀xσ)A(xσ)⇒ B

` (∃xσ)¬A(xσ) ⇒ ¬(∀xσ)A(xσ)
` (∃xσ)¬¬A(xσ) ⇒ ¬¬(∃xσ)A(xσ)

In Classical First-Order Predicate Logic (NK1):

` (∃xσ)
(
A(xσ)⇒ B

)
⇔

(
(∀xσ)A(xσ)⇒ B

)
Table 3: Some Laws of First-Order Predicate Logic, where xσ /∈ FV(B).

(∀xσ)A ` (∀xσ)A

(∀xσ)A ` A
(∀xσ)A ` (∃xσ)A

Exercise 6.15. Show that the following, where xσ /∈ FV(B), are derivable in NJ1:

(1) ` (∀xσ)
(
A(xσ)⇒ B

)
⇒
(
(∃xσ)A(xσ)⇒ B

)
(2) `

(
(∃xσ)A(xσ)⇒ B

)
⇒ (∀xσ)

(
A(xσ)⇒ B

)
(3) ` (∃xσ)

(
A(xσ)⇒ B

)
⇒
(
(∀xσ)A(xσ)⇒ B

)
Exercise 6.16. Assume that xσ is not free in B. Show that in NJ1 we have

`
(
(∀xσ)¬A(xσ)⇒ B

)
⇒ ¬¬(∃xσ)

(
¬A(xσ)⇒ B

)
Example 6.17. Combining Ex. 6.15 and Ex. 6.16, we obtain the laws summarized in
Table 3. In particular, NK1 proves the following well-known Drinker’s Paradox:

` (∃xσ)
(
A(xσ) ⇒ (∀xσ)A(xσ)

)
Table 4 displays some further usual laws (see e.g. [vD04, Lem. 5.2.1]).

Exercise 6.18. Show that in NJ1 we have ` ¬¬(∀xσ)A(xσ)⇒ (∀xσ)¬¬A(xσ)

76

6. First-Order Predicate Logic

In Intuitionistic First-Order Predicate Logic (NJ1):

` (∃xσ)
(
A(xσ) ∨B(xσ)

)
⇔

(
(∃xσ)A(xσ) ∨ (∃xσ)B(xσ)

)
` (∃xσ)

(
A(xσ) ∧ C

)
⇔

(
(∃xσ)A(xσ) ∧ C

)
` (∃xσ)

(
C ⇒ A(xσ)

)
⇒

(
C ⇒ (∃xσ)A(xσ)

)
` (∀xσ)

(
C ⇒ A(xσ)

)
⇔

(
C ⇒ (∀xσ)A(xσ)

)
` (∀xσ)A(xσ) ∧ (∀xσ)B(xσ) ⇔ (∀xσ)

(
A(xσ) ∧B(xσ)

)
` (∀xσ)A(xσ) ∨ C ⇒ (∀xσ)

(
A(xσ) ∨ C

)
In Classical First-Order Predicate Logic (NK1):

` (∃xσ)
(
C ⇒ A(xσ)

)
⇔

(
C ⇒ (∃xσ)A(xσ)

)
` (∀xσ)

(
C ∨A(xσ)

)
⇔

(
C ∨ (∀xσ)A(xσ)

)
Table 4: Further Laws of First-Order Predicate Logic, where xσ /∈ FV(C).

6.2.1. Structural Properties

Similarly as for NJ0, the following basic properties are proved by induction on derivations.

Lemma 6.19 (Structural Rules). The following properties hold in NJ1 and NK1:

(weakening) if ∆ ` A then ∆, B ` A;

(contraction) if ∆, B,B ` A then ∆, B ` A;

(exchange) if ∆, B,∆′, C,∆′′ ` A then ∆, C,∆′, B,∆′′ ` A.

We shall also make use of the following usual fact on stability of provability under
substitution of first-order terms.

Lemma 6.20 (Substitution). In NJ1 and NK1, if ∆ ` A then ∆[aσ/xσ] ` A[aσ/xσ].

6.2.2. Soundness and Completeness w.r.t. the Classical Semantics; Theories

Deduction in NK1 (and thus in NJ1) is sound w.r.t. the semantics of §6.1.3. Say that a
sequent A1, . . . , An ` A is valid if the formula (A1× · · · ×An)⇒ A is valid in the sense
of Def. 6.11.

Proposition 6.21. If ∆ ` A is derivable in NK1, then ∆ ` A is valid.

Proposition 6.21 fails without the side conditions in the rules (∀-I) and (∃-E) of Fig. 1.

77

6. First-Order Predicate Logic

Example 6.22. Replacing either of the rules (∀-I) and (∃-E) with

∆ ` A
∆ ` (∀xσ)A

or
∆ ` (∃xσ)A ∆, A ` B

∆ ` B

would result in unsound systems, since in each case we have (∃xσ)A(xσ) ` (∀xσ)A(xσ).
Indeed, the wrong ∀-rule gives

(∃xσ)A(xσ) ` (∃xσ)A(xσ)

(∃xσ)A(xσ), A(xσ) ` A(xσ)

(∃xσ)A(xσ), A(xσ) ` (∀xσ)A(xσ)
(∃-E)

(∃xσ)A(xσ) ` (∀xσ)A(xσ)

where the instance of (∃-E) respects the side condition xσ /∈ FV
(
(∃xσ)A(xσ), (∀xσ)A(xσ)

)
,

while the wrong ∃-rule gives

(∃xσ)A(xσ) ` (∃xσ)A(xσ) (∃xσ)A(xσ), A(xσ) ` A(xσ)

(∃xσ)A(xσ) ` A(xσ)
(∀-I)

(∃xσ)A(xσ) ` (∀xσ)A(xσ)

where the instance of (∀-I) respects the side condition xσ /∈ FV
(
(∃xσ)A(xσ), (∀xσ)A(xσ)

)
.

Similarly as with propositional logic, intuitionistic predicate logic is not complete w.r.t.
the classical semantics. But it is indeed complete w.r.t. weaker semantics, see [SU06,
§8.5] (see also [vD04, §5.3]).

On the other hand, classical predicate logic is complete w.r.t. the classical semantics.
We recall here the relevant statements.

Definition 6.23. Let Φ be an arbitrary set of sentences and let A be a sentence.

(1) We say that Φ is valid in M (or that M is a model of Φ), notation M |= Φ, if
M |= A for each A ∈ Φ.

(2) We write Φ |= A if M |= A whenever M |= Φ.

(3) We write Φ `NK1 A if there is a finite list ∆ ⊆ Φ (i.e. A ∈ Φ for each A ∈ ∆) such
that ∆ ` A is derivable in NK1.

Note that Φ ` A trivially implies Φ |= A.

Theorem 6.24 (Completeness [vD04, Thm. 3.1.3]). If Φ |= A then Φ `NK1 A.

Corollary 6.25 (Compactness). Fix a set of sentences Φ. If for every finite Φ0 ⊆ Φ
there is a model M such that M |= Φ0, then there is a model M such that M |= Φ.

Proof. Exercise!

We conclude with the notion of theory, which shall be of future use. Intuitively, a
classical (resp. intuitionistic) theory is a set of sentences which is closed under classical
(resp. intuitionistic) deduction.

78

6. First-Order Predicate Logic

Definition 6.26 (Theory). Let Φ be a set of sentences.

(1) We say that Φ is a classical theory if A ∈ Φ whenever Φ `NK1 A.

(2) We say that Φ is an intuitionistic theory if A ∈ Φ whenever Φ `NJ1 A, where
Φ `NJ1 A if there is a finite list ∆ ⊆ Φ such that ∆ ` A in NJ1.

A theory Φ is consistent if Φ 6`ND ⊥ (where ND is NK1 for a classical theory and ND
is NJ1 for an intuitionistic one).

In both cases (classical or intuitionistic), every set of sentences Φ is contained in a least
(classical or intuitionistic) theory th(Φ). Note that the Completeness Theorem 6.24 can
be rephrased as:

• Every consistent classical theory has a model.

6.2.3. Negative Translations

The negative translations discussed in §2.5 extend to first-order predicate logic.

Definition 6.27 (Negative Translation). Extending Def. 2.37, the formula A¬ is defined
by induction on A as follows:

P(aσ11 , . . . , aσnn)¬ := ¬¬P(aσ11 , . . . , aσnn)
>¬ := >
⊥¬ := ⊥

(A⇒ B)¬ := A¬ ⇒ B¬

(A ∧B)¬ := A¬ ∧B¬
(A ∨B)¬ := ¬¬(A¬ ∨B¬)(
(∀xσ)A

)¬
:= (∀xσ)A¬(

(∃xσ)A
)¬

:= ¬¬(∃xσ)A¬

The following are the respective extensions of Lem. 2.38 and Thm. 2.39.

Lemma 6.28. For each formula A, NJ1 proves ¬¬A¬ ` A¬.

Theorem 6.29. If A1, . . . , An ` A is derivable in NK1, then A¬1 , . . . , A
¬
n ` A¬ is deriv-

able in NJ1.

We shall discuss Lem. 6.28 and Thm. 6.29 as (almost) direct instances of Prop. 7.67
in §7.3.4 below (on Friedman’s Translation of classical to intuitionistic first-order
arithmetic).

Corollary 6.30. If ` A is derivable in NK1, then ` A¬ is derivable in NJ1.

Remark 6.31 (On Minimal Logic). Remark 2.41 extends to intuitionistic first-order
logic, in the sense that if ` A in NK1 then ` A¬ can be derived in NJ1 without (ExFalso).
It again suffices to observe that the statement of Lem. 6.28 actually holds in minimal
logic and that ⊥ ` A¬ is provable in minimal logic for each formula A. We again refer
to [TvD88a, Chap. 2, §3] for details.

79

6. First-Order Predicate Logic

(∀x)
(
x =skβ0

x
)

(∀x, y)
(
x =skβ0

y ⇒ y =skβ0
x
)

(∀x, y, z)
(
x =skβ0

y ⇒ y =skβ0
z ⇒ x =skβ0

z
)

(∀x, x′, y, y′)
(
x =skβ0

x′ ⇒ y =skβ0
y′ ⇒ x y =skβ0

x′ y′
)

(∀x, y)
(
k x y =skβ0

x
)

(∀x, y, z)
(
s x y z =skβ0

x z (y z)
)

Figure 11: Closed Formulae for Γ0.

Remark 6.32 (On the Gödel-Gentzen and Kolmogorov Translations). Extending Rem. 2.43,
the original Gödel-Gentzen translation (see e.g. [TvD88a, Chap. 2, Def. 3.4] or [vD04,
Def. 5.2.7]) assumes (

(∃xσ)A
)¬

:= ¬(∀xσ)¬A¬

The Kolmogorov translation (−)¬¬ (see e.g. [TvD88a, Chap. 2, 3.7]) extends with

P(aσ11 , . . . , aσnn)¬¬ := ¬¬P(aσ11 , . . . , aσnn)(
(∀xσ)A

)¬¬
:= ¬¬(∀xσ)A¬¬(

(∃xσ)A
)¬¬

:= ¬¬(∃xσ)A¬¬

6.2.4. Undecidability

A fundamental fact on (classical) first-order logic is the undecidability of provability (or
equivalently of validity, by the Completeness Theorem 6.24, §6.2.2). This result, known
as Church’s Theorem, can be proved in many ways. See e.g. [BBJ07, §11] or [vD04,
Cor. 7.7.12]. Note that Cor. 6.30 (§6.2.3) reduces the undecidability of provability in
NJ1 to the undecidability of provability in NK1 ([SU06, Cor. 8.3.2]).

We note here that having at hand the (pure) untyped λ-calculus (actually Combinatory
Logic, §3.7) allows for a quite direct proof of undecidability of NJ1 and NK1. See [Bar84,
7.4.11] for references on the following argument.

We consider the (one-sorted) finite first-order signature Σ(C0) whose closed terms are
the closed terms t ∈ C0 of combinatory logic (§3.7), i.e. the terms over the grammar:

t, u ∈ C0 ::= t u | s | k

Remark 6.33. Note that Σ(C0) actually has a binary function symbol for application
(similarly as in §3.2.1).

We also assume that Σ(C0) has one (infix) binary predicate symbol (−) =skβ0
(−). Let

Γ0 be the (finite) set of (closed) formulae consisting of the axioms of Fig. 3 (§3.7.1)
together with the formulae of Fig. 11.

Proposition 6.34. The following are equivalent for t, u ∈ C0:

(i) t =skβ0
u (in the sense of §3.7.1);

80

6. First-Order Predicate Logic

(ii) Γ0 ` t =skβ0
u in NJ1;

(iii) Γ0 ` t =skβ0
u in NK1.

Proof. First, if t =skβ0
u in the sense of §3.7, then it is clear that Γ0 ` t =skβ0

u is
provable in NJ1. Moreover, provability in NJ1 trivially implies provability in NK1.

Finally, note that C0 can be turned into a model of Σ(C0), in which the predicate
symbol (−) =skβ0

(−) of Σ(C0) is interpreted by the relation =skβ0
of §3.7.1 (so that

C0 |= Γ0). Assume now that Γ0 ` t =skβ0
u, where t, u ∈ C0. Note that t and u are closed

terms over Σ(C0). Hence, it follows from the Soundness of NK1 (Prop. 6.21, §6.2.2) that
C0 |= (t =skβ0

u), that is t =skβ0
u.

Since the set Γ0 is finite and since =skβ0
is undecidable (Cor. 3.65, §3.7.1), Prop. 6.34

gives the following.

Theorem 6.35 (Church). The following problems are undecidable:

• Given a finite first-order signature Σ and a first-order formula A over Σ, decide
whether ` A in NJ1.

• Given a finite first-order signature Σ and a first-order formula A over Σ, decide
whether ` A in NK1.

Note that the above argument for Thm. 6.35 also gives the undecidability of the (∀,⇒)-
fragment of (minimal) first-order logic. See also [SU06, §8.8] for a proof of undecidability
of NJ1 (actually also of its (∀,⇒)-fragment) relying on the normalization of proof-terms
(§6.3).

6.2.5. The Failure of Glivenko’s Theorem for Full First-Order Logic

As noted in Table 3, NJ1 proves

` (∃xσ)¬¬A(xσ) ⇒ ¬¬(∃xσ)A(xσ)

Recalling the proof of Prop. 2.47 (§2.6), it is easy to see that Glivenko’s Theorem 2.48
extends to the following.

Theorem 6.36. Let A be a first-order formula with no universal quantifier (∀xσ).
Then NK1 proves ` A if and only if NJ1 proves ` ¬¬A.

However, Thm. 6.36 does not extend to the full language of first-order logic. In partic-
ular:

Proposition 6.37. NJ1 proves neither of the following:

(1) ` ¬¬(∀xσ11 . . . xσnn)
(
P(xσ11 . . . xσnn) ∨ ¬P(xσ11 . . . xσnn)

)
(2) ` (∀xσ)¬¬A⇒ ¬¬(∀xσ)A

81

6. First-Order Predicate Logic

Proposition 6.37 has easy semantic proofs (outside the scope of this course), see [SU06,
Prop. 8.5.3] (also [vD04, 5.3(f), p. 170] or [TvD88a, Ex. 5.9, Chap. 2]). Note that
Prop. 6.37.(2) follows from Prop. 6.37.(1).

Remark 6.38. The formula of Prop. 6.37.(2) is called the Double Negation Shift
(DNS). It plays a crucial role in semi-constructive extensions of intuitionistic arith-
metic, in relation to arithmetic formulations of weak versions of the Axiom of Choice
(see e.g. [BBC98, BO05], also [Koh08, §11], outside the scope of this course).

Remark 6.39. We shall see in §7.3.3 (actually §8.3) that NJ1 is compatible with some
instances of

(¬∀-EM)
` ¬(∀xσ11 . . . xσnn)(A ∨ ¬A)

in the sense that NJ1 augmented with some instances of (¬∀-EM) is consistent (i.e. does
not prove ` ⊥). This can also be shown with semantic methods ([SU06, Prop. 8.5.3] or
e.g. [TvD88a, Ex. 5.9, Chap. 2]), see also [TvD88a, Prop. 3.4, Chap. 4].

6.2.6. Extraction

The distinctive properties of NJ1 over NK1 are the following. The proofs are deferred
to §6.3.3. A comparison with NK1 is sketched in §6.4.6.

Theorem 6.40. In intuitionistic first-order predicate logic (NJ1),

(1) ` ⊥ is not derivable;

(2) from a proof of ` A1 ∨ A2 one can effectively compute an i ∈ {1, 2} and a proof of
` Ai;

(3) ` P(x1, . . . , xn) ∨ ¬P(x1, . . . , xn) is not derivable (where P ∈ Pred(Σ)(n));

(4) from a proof of ` (∃xσ)A one can effectively compute a first-order term aσ and a
proof of ` A[aσ/xσ].

Theorem 6.40.(4) is often called the Witness (or Existence) Property. The following
consequence of Thm 6.40.(4) is one of the main properties of NJ1.

Corollary 6.41. From a proof of ` (∀xσ11 . . . xσnn)(∃yτ)A in NJ1 (where n ≥ 1 and A
has free variables among xσ11 , . . . , xσnn , yτ), one can effectively compute a first-order term
aτ = aτ (xσ11 , . . . , xσnn) and a proof of ` (∀xσ11 . . . xσnn)A[aτ/yτ] in NJ1.

Proof. We omit sorts. From a proof of ` (∀x1 . . . xn)(∃y)A in NJ1 one gets a proof of
` (∃y)A. Then Thm. 6.40.(4) provides a first-order term a = a(x1, . . . , xn) and a proof
of ` A[a/y] in NJ1 (note that the variables of a possibly not in A can be substituted by
variables among x1, . . . , xn). One thus obtains a proof of ` (∀x1 . . . xn)A[a/y].

82

6. First-Order Predicate Logic

The effective character of Thm. 6.40 and Cor. 6.41 should be contrasted with the unde-
cidability of provability in NJ1 (Thm. 6.35, §6.2.4).

We shall prove Thm. 6.40 with a normalizing λ-calculus of proof-terms in §6.3 below.
Corollary 6.41 is [SU06, Cor. 8.3.4 & Cor. 8.3.5], a particular case of [Bus98a, Thm. 3.1.3]
(see also [TS00, Thm. 4.2.3 & Thm. 4.2.4]), all obtained by normalization of Gentzen-
style sequent calculi. Weaker properties can be obtained by semantic methods (see
e.g. [vD04, Thm. 5.4.2 & Thm. 5.4.3]).

We come back on Cor. 6.41 in §6.4.6 below.

6.3. Proof-Terms for Intuitionistic First-Order Predicate Logic

We now turn to proof-terms for NJ1. Besides [SU06, §8.7], standard references in-
clude [Gal95], [TvD88b, Chap. 10, §8] and [TS00, §2.2].

Consider a first-order signature Σ. For simplicity we assume that Σ is one-sorted,
but the following is easily extended to many-sorted signatures. We use the notational
conventions of §6.1 for one-sorted signatures.

The proof-terms for NJ0 (§4.4) can be adapted to yield proof-terms for NJ1. The main
ideas come from the Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic
first-order predicate logic. Recall from §4.1 that the BHK interpretation is an informal
interpretation of intuitionistic proofs. The clauses given in §4.1 for propositional logic
may be extended as follows for (intuitionistic) first-order logic:

• a “proof” of (∀x)A is a “function” which takes a term a ∈ Ter(Σ,V) to a “proof”
of A[a/x];

• a “proof” of (∃x)A is a (dependent) pair of a term a ∈ Ter(Σ,V) and a “proof” of
A[a/x].

where the term “proof” should be understood as some informal notion of “witness of
evidence”, and where the term “function” is not fully specified. We refer to [SU06,
§8.2] and (again) to [TvD88a, Chap. 1, §3.1] for more on the BHK interpretation of
intuitionistic first-order logic.

In view of the Curry-Howard correspondence for NJ0, following Rem. 4.44 (§4.4.5) it
makes sense to think that the word “function” above refers to some λ-abstraction. We
shall extend the proof-terms of §4.4 with the following constructs:

• a λ-abstraction λx.t where x ∈ V is a first-order variable, and the corresponding
elimination ta where a ∈ Ter(Σ,V) is a first-order term;

• a pairing 〈a, t〉 where a ∈ Ter(Σ,V), and the corresponding elimination let 〈x, y〉 =
t in u, where x ∈ V (see Fig. 12).

83

6. First-Order Predicate Logic

(∀-I) E ` t : A

E ` λx.t : (∀x)A
(x /∈ FV(E)) (∀-E)

E ` t : (∀x)A
E ` ta : A[a/x]

(∃-I) E ` t : A[a/x]

E ` 〈a, t〉 : (∃x)A
(∃-E)

E ` t : (∃x)A E , y : A ` u : B

E ` let 〈x, y〉 = t in u : B
(x /∈ FV(E) ∪ FV(B))

Figure 12: Proof-Terms for Intuitionistic First-Order Predicate Logic: Quantifier Rules.

Formally, the proof-terms for NJ1 over (Σ,V) are given by the following grammar:

t, u ∈ Λ(Σ,V) ::= x | λx.t | tu | 〈t, u〉 | π1t | π2t
| in1 t | in2 t | 〈〉 | case⊥ t {}
| case t {in1 x1 7→ u1 | in2 x2 7→ u2}
| λx.t | t a
| 〈a, t〉 | let 〈x, y〉 = t in u

where a ∈ Ter(Σ,V) and x ∈ V.
Note that we thus have two universes of terms:

• the first-order terms a, b, . . . ∈ Ter(Σ,V), with variables x, y, z, . . . ∈ V;

• the proof-terms t, u, . . . ∈ Λ(Σ,V), with variables x, y, z, . . . ∈ X (§3.2.1).

Warning 6.42 (Variable Binding). The variable x is bound in λx.t. Moreover, the
construction let 〈x, y〉 = t in u binds x and y in u (but not in t). We thus assume the
corresponding extension of α-conversion (§3.2.3 and §3.2.4).

The notions of free-variable (Def. 3.3, §3.2.3) and of capture-avoiding substitution
(Def. 3.8, §3.3) are adapted accordingly.

Concerning typing, we take as types the formulae of first-order predicate logic over
(Σ,V), namely:

A,B ::= P(a1, . . . , an) | A⇒ B | A ∧B | A ∨B | > | ⊥
| (∀x)A | (∃x)A

where P ∈ Pred(Σ)(n) and ai ∈ Ter(Σ,V) for each i = 1, . . . , n.
The typing rules are those of §4.4.5 augmented with the additional typing rules of

Fig. 12, where given E = x1 : A1, . . . , xn : An, we let FV(E) stand for FV(A1) ∪ · · · ∪
FV(An) (not to be confused with dom(E) = {x1, . . . , xn}).

Theorem 4.37 (§4.4.5) trivially extends, with the erasure of proof-terms from typing
rules depicted in Fig. 13.

Theorem 6.43. The sequent A1, . . . , An ` A is derivable in NJ1 if and only if there is
a proof-term t such that x1 : A1, . . . , xn : An ` t : A.

84

6. First-Order Predicate Logic

x1 : A1, . . . , xn : An,` t : A

x1 : A1, . . . , xn : An ` λx.t : (∀x)A
;

A1, . . . , An ` A
A1, . . . , An ` (∀x)A

(∀-I)

x1 : A1, . . . , xn : An,` t : (∀x)A
x1 : A1, . . . , xn : An ` ta : A[a/x]

;
A1, . . . , An ` (∀x)A
A1, . . . , An ` A[a/x]

(∀-E)

x1 : A1, . . . , xn : An,` t : A[a/x]

x1 : A1, . . . , xn : An ` 〈a, t〉 : (∃x)A
;

A1, . . . , An ` A[a/x]

A1, . . . , An ` (∃x)A
(∃-I)

x1 : A1, . . . , xn : An ` t : (∃x)A x1 : A1, . . . , xn : An, y : A ` u : B

x1 : A1, . . . , xn : An ` let 〈x, y〉 = t in u : B
(∃-E)

;
A1, . . . , An ` (∃x)A A1, . . . , An, A ` B

A1, . . . , An ` B

Figure 13: Proof-Terms for NJ1: Typing and Deduction Rules.

The other important properties of NJ1 (essentially consequences of Thm. 6.43 together
with suitable normalization results) are presented in §6.3.3 and further discussed in §6.4.6.

Example 6.44. For instance ` λh.〈y, hy〉 : (∀x)A⇒ (∃x)A with typing derivation

h : (∀x)A ` h : (∀x)A
h : (∀x)A ` hy : A[y/x]

h : (∀x)A ` 〈y, hy〉 : (∃x)A
` λh.〈y, hy〉 : (∀x)A⇒ (∃x)A

Exercise 6.45. Give a proof term t such that ` t : ¬¬(∀x)A(x)⇒ (∀x)¬¬A(x).

Remark 6.46 (Open Terms and Assumption-Free Proofs). Recall the proof-term `
λh.〈y, hy〉 : (∀x)A ⇒ (∃x)A from Ex. 6.44. Note that λh.〈y, hy〉 is open (it contains y
free), while the formulae (∀x)A and (∃x)A may be closed. If Ter(Σ,V) contains some
closed term (i.e. if Σ has at least one constant), then we might replace y with such a
closed term, and obtain a closed proof-term for (∀x)A⇒ (∃x)A.

However (∀x)A⇒ (∃x)A is provable and thus valid without any such assumption on Σ.
This reflects the fact that models of first-order logic are always assumed to be non-empty
(see Def. 6.8, §6.1.3).

Remark 6.47 (On the Side Condition of (∃-E)). Note that in the rule

(∃-E)
E ` t : (∃x)A E , y : A ` u : B

E ` let 〈x, y〉 = t in u : B

the variable x is required not to occur free in E nor B, but it may occur free in the
proof-term u. For instance, the proof-term for the NJ1-derivation

85

6. First-Order Predicate Logic

(∃x)A ` (∃x)A
(∃x)A,A ` A

(∃x)A,A ` (∃x)A
(∃-E) (x /∈ FV((∃x)A))

(∃x)A ` (∃x)A
is

h : (∃x)A ` h : (∃x)A
h : (∃x)A, y : A ` y : A

h : (∃x)A, y : A ` 〈x, y〉 : (∃x)A
(∃-E) (x /∈ FV((∃x)A))

h : (∃x)A ` let 〈x, y〉 = h in 〈x, y〉 : (∃x)A
Remark 6.48. The major difference with the case of propositional logic is that first-
order terms and variables are incorporated into the world of proof-terms. But first-order
terms and proof-terms are still distinct entities. For instance, first-order variables are
not declared in typing contexts, which leads to the apparent “paradox” of Rem. 6.46.

This one of the reasons why we refrain from speaking of “Curry-Howard correspon-
dence” here. The second reason is that the λ-terms considered here have no other raison
d’être than being proof-terms for NJ1.

The formalism which is often considered to be more interesting for a Curry-Howard
perspective on predicate logic is the setting of dependent types. See [SU06, Chap.
13] or [Uni13, §1] (see also [Bar92, §5.4] for the representation of predicate logic with
dependent types). In particular, with dependent types all variables are declared in typing
contexts, and there are first-order signatures such that (the analogue of) (∀x)A⇒ (∃x)A
is the type of no proof-term in the empty context.

6.3.1. Structural Properties

We state some basic structural properties on proof-terms, proved by straightforward
induction on typing derivations.

Lemma 6.49 (Structural Properties).

(Weakening) If E ` t : A and x /∈ dom(E) then E , x : B ` t : A.

(Contraction) If E , x : B, y : B ` t : A then E , x : B ` t[x/y] : A.

(Exchange) If E , x : B, E ′, y : C, E ′′ ` t : A, then E , y : C, E ′, x : B, E ′′ ` t : A.

There are two relevant substitution properties on proof terms.

Lemma 6.50 (Substitution for Proof-Terms).

(1) If E , y : B ` t : A and E ` u : B, then E ` t[u/y] : B.

(2) If E ` t : A then E [a/x] ` t : A[a/x].

6.3.2. Beta-Reduction

We now discuss the extension of β-reduction to the proof-terms for NJ1. Similarly as
in §4.4, we shall derive reductions on λ-terms from expected syntactic transformations
of proofs.

86

6. First-Order Predicate Logic

Universal Quantifications. Consider the following reduction of a (∀-I)/(∀-E)-redex in
natural deduction

...
Π

∆ ` A (x /∈ FV(∆))
∆ ` (∀x)A
∆ ` A[a/x]

�

...
Π[a/x]

∆ ` A[a/x]

where Π[a/x] is obtained from the Substitution Lemma 6.20 (§6.2), since x /∈ FV(∆).
This suggests to allow for the following β-reduction on proof-terms

...
Π

E ` t : A (x /∈ FV(E))
E ` λx.t : (∀x)A
E ` (λx.t)a : A[a/x]

�β

...
Π[a/x]

E ` t[a/x] : A[a/x]

where Π[a/x] is obtained by the Substitution Lemma 6.50.(2) on proof-terms.
We shall just extend β-reduction on untyped λ-terms with

(λx.t)a �β t[a/x]

Existential Quantifications. Consider now the case of a (∃-I)/(∃-E) redex in natural
deduction:

...
Π1

∆ ` A[a/x]

∆ ` (∃x)A

...
Π2

∆, A ` B
(x /∈ FV(∆, B))

∆ ` B

�

...
Π2[a/x][Π1/A[a/x]]

∆ ` B

The derivation Π2[a/x][Π1/A[a/x]] is obtained as follows. First, by the Substitution
Lemma 6.20 (§6.2), since x /∈ FV(∆, B) we have a derivation

...
Π2[a/x]

∆, A[a/x] ` B

Then, Π2[a/x][Π1/A[a/x]] is obtained (similarly as in §4.3.1) by replacing in Π2[a/x] each
(Ax) rule

∆′ ` A[a/x]

(where ∆ is necessarily a prefix of ∆′) by a derivation of ∆′ ` A[a/x] obtained from Π1

by weakenings (Lem. 6.49, §6.3.1).

87

6. First-Order Predicate Logic

This suggests to allow for the following β-reduction on proof-terms

...
Π1

E ` t : A[a/x]

E ` 〈a, t〉 : (∃x)A

...
Π2

E , y : A ` u : B

E ` let 〈x, y〉 = 〈a, t〉 in u : B

�β

...
Π2[a/x][Π1/A[a/x]]

E ` u[a/x][t/y] : B

where x /∈ FV(E)∪FV(B). The typing derivation Π2[a/x][Π1/A[a/x]] is obtained similarly
as for the case of natural deduction (without proof terms) just described. First, since
x /∈ FV(E) ∪ FV(B) the Substitution Lemma 6.50.(2) on proof-terms gives a typing
derivation

...
Π2[a/x]

E , y : A[a/x] ` u[a/y] : B

We then conclude with Lem. 6.50.(1):

...
Π2[a/x][Π1/A[a/x]]

E ` u[a/x][t/y] : B

We shall therefore extend β-reduction on untyped λ-terms with

let 〈x, y〉 = 〈a, t〉 in u �β u[a/x][t/y]

6.3.3. The Full System and its Main Properties

Summarizing the discussion of §6.3.2, we consider on the proof-terms of NJ1 the relation
of β-reduction given by extending Fig. 5 (§4.4.3) with Fig. 14. More precisely, we first
define the relation �0 with the basic rules of Fig. 14 (and Fig. 5), and then let �β be
the closure of �0 under the congruence rules of Fig. 14 (and Fig. 5).

The main properties on (typed) β-reduction of §4.4.4 straightforwardly extend to the
proof-terms of NJ1.

Proposition 6.51 (Subject Reduction). If E ` t : T and t�β u then E ` u : T .

Theorem 6.52 (Strong Normalization). If E ` t : T then t is strongly β-normalizing.

Theorem 6.52 is proven in §6.5 (Cor. 6.71), by reduction to the strong normalization of
the simply-typed λ-calculus with sums and products (Thm. 4.31, §4.4.4, a.k.a. Thm. 5.32,
§5.5.3).

Theorem 6.53 (Confluence). For each typing context E and each type T , the relation
�β is confluent on |E ` T | (where |E ` T | is defined as in Rem. 4.11, §4.2.2).

88

6. First-Order Predicate Logic

Basic Rules: extension of �0 (Fig. 5) with

(λx.t)a �0 t[a/x] let 〈x, y〉 = 〈a, t〉 in u �0 u[a/x][t/y]

Congruence Rules: �β is the least relation containing �0 and closed under the rules of
Fig. 5 and

t �β t′

t a �β t′ a

t �β t′

λx.t �β λx.t′
t �β t′

〈a, t〉 �β 〈a, t′〉

t �β t′

let 〈x, y〉 = t in u �β let 〈x, y〉 = t′ in u

u �β u′

let 〈x, y〉 = t in u �β let 〈x, y〉 = t in u′

Figure 14: Extension of Fig. 5 (§4.4.3) for β-Reduction.

Lemma 6.54 (Normal Forms in the Empty Context). Let t be a (possibly open) proof-
term typable in the empty context and in β-normal form. Then t is of one of the following
forms:

λx.u 〈〉 〈u, v〉 in1u in2u λx.u 〈a, u〉

Proof. Similarly as for Lem. 4.33, the proof is by induction on t. We only discuss the
new cases.

Case of t = ua.

A direct inspection of the typing rules reveals that we must have

` u : (∀x)A
` ua : A[a/x]

where u is in β-normal form and typed in the empty context. It follows from the
induction hypothesis that u must be of the form λx.v, but this is impossible since
then t = (λx.v)a would not be in β-normal form.

Case of t = (let 〈x, y〉 = u in v).

A direct inspection of the typing rules reveals that we must have

` u : (∃x)A y : A ` v : B

` let 〈x, y〉 = u in v : B

where u is in β-normal form and typed in the empty context. It follows from the
induction hypothesis that u must be of the form 〈a, u′〉, but this is impossible since
then t would not be in β-normal form.

89

6. First-Order Predicate Logic

We now arrive at the main property of NJ1, namely Thm. 6.40 (§6.2.6). Theorem. 6.40
is actually an immediate consequence of the following.

Theorem 6.55. In intuitionistic first-order predicate logic (NJ1),

(1) there is no proof-term t such that ` t : ⊥;

(2) if ` t : A1 ∨ A2 then there is an i ∈ {1, 2} and a proof-term ui such that t�∗ ini ui
and ` ui : Ai;

(3) there is no proof-term t such that ` t : P(x1, . . . , xn) ∨ ¬P(x1, . . . , xn) (where P ∈
Pred(Σ)(n));

(4) if ` t : (∃x)A then there is some first-order term a and some proof-term u such that
t�∗β 〈a, u〉 and ` u : A[a/x].

Proof. Items (1), (2) and (4) are direct consequences of Normalization (Thm. 6.52),
Subject Reduction (Prop. 6.51) and Lem. 6.54.

Item (3) is proven similarly as for the analogous property for NJ0 (Rem. 2.12, §2.1.1).
Namely, if NJ1 proved P(x1, . . . , xn) ∨ ¬P(x1, . . . , xn) then item (2) would give either a
proof of P(x1, . . . , xn) or a proof of ¬P(x1, . . . , xn), contradicting the Soundness of NK1

(Prop. 6.21, §6.2.2).

Remark 6.56. Let us look at the shape of the proof-terms for Cor. 6.41 (§6.2.6).
Let t such that ` t : (∀x1 . . . xn)(∃y)A. By the results above, we can assume that t is of

the form λx1 . . . xn.u with u in β-normal form. Moreover, since the xi’s are first-order
variables, we must have ` u : (∃y)A, so that (since u is normal) u is of the form 〈a, v〉
with ` v : A[a/x]. It follows that Cor. 6.41 (§6.2.6) could have been obtained from the
following:

• A β-normal proof-term for (∀x1 . . . xn)(∃y)A is of the form ` λx1 . . . xn.〈a, v〉 :
(∀x1 . . . xn)(∃y)A where ` λx1 . . . xn.v : (∀x1 . . . xn)A[a/y].

6.4. First-Order Predicate Logic with Equality

The extension of the above to logic with equality holds no surprise. We review the
syntax and semantics of predicate logic with equality in §6.4.1–§6.4.5. Finally, in §6.4.6
we come back on the witness property of NJ1 (Cor. 6.41, §6.2.6), and briefly compare it
to classical logic.

6.4.1. The Language of First-Order Predicate Logic with Equality

Let Σ be a first-order signature and V be a collection of Σ-sorted first-order variables.
First-order predicate logic with equality over (Σ,V) simply extends first-order predicate
logic over (Σ,V) with one (binary) sorted atomic equality predicate (−)

.
=σ (−) for

90

6. First-Order Predicate Logic

(
.
=-I)

∆ ` aσ
.
=σ aσ

(
.
=-E)

∆ ` aσ
.
=σ bσ ∆ ` A[aσ/xσ]

∆ ` A[bσ/xσ]

Figure 15: Equality Rules.

each sort σ ∈ Sort(Σ). Formally, the formulae of first-order predicate logic with equality
over (Σ,V) are given by the grammar:

A,B ::= (aσ
.
=σ bσ) | P(a1, . . . , an)

| A⇒ B | A ∧B | A ∨B | > | ⊥
| (∀xσ)A | (∃xσ)A

where aσ, bσ ∈ Ter(Σ,V)(σ) and P ∈ Pred(Σ)(τ1, . . . , τn) with ai ∈ Ter(Σ,V)(τi) for
each i = 1, . . . , n.

Notation 6.57. In the one-sorted case, we write (−)
.
= (−) for the (unique) equality

predicate.

Remark 6.58. Similarly as [vD04, §2.6], we have defined first-order logic with equality
over arbitrary signatures Σ, but we could as well (similarly as [Bus98a, §2]) have de-
fined a notion of signature with equality (i.e. a signature Σ such that each Pred(Σ)(σ, σ)
contains a distinguished predicate symbol (−)

.
=σ (−)), and speak of logic with equality

only when considering signatures with equality.
Our choice stems from the fact that equality is (in general) assumed to satisfy some spe-

cific axioms (§6.4.2), which lead to specific interpretation in models (§6.4.3), as well as
specific behaviour under negative translations (§6.4.4) and specific proof terms (§6.4.5).

The other notions of §6.1.2 extend straightforwardly to logic with equality:

FV(aσ
.
=σ bσ) := FV(aσ) ∪ FV(bσ)

(aσ
.
=σ bσ)[cτ/yτ] :=

(
aσ[cτ/yτ]

.
=σ bσ[cτ/yτ]

)
6.4.2. Deduction for First-Order Predicate Logic with Equality

Natural deduction for intuitionistic (resp. classical) first-order predicate logic with equal-
ity is the extension of natural deduction intuitionistic (resp. classical) first-order predi-
cate logic with the additional equality rules of Fig. 15.

Exercise 6.59. Show that intuitionistic first-order predicate logic with equality proves
the following:

(1) ∆ ` (∀xσ)(xσ
.
=σ xσ)

(2) ∆ ` (∀xσ, ∀yσ)
(
xσ

.
=σ yσ ⇒ yσ

.
=σ xσ

)
(3) ∆ ` (∀xσ, ∀yσ, ∀zσ)

(
xσ

.
=σ yσ ⇒ yσ

.
=σ zσ ⇒ xσ

.
=σ zσ

)

91

6. First-Order Predicate Logic

It is important to make it clear that the rules of Fig. 15 are equivalent to more
usual axioms for equality. We refer to [vD04, §2.10] and [Bus98a, §2.2.1] for equivalent
presentations of the same theories.

Exercise 6.60. Show that over NJ1 and NK1, the equality rules of Fig. 15 are equivalent
to the following equality axioms:

∆ ` (∀xσ)(xσ
.
=σ xσ) ∆ ` (∀xσ, yσ) (xσ

.
=σ yσ ⇒ A[xσ/zσ] ⇒ A[yσ/zσ])

Remark 6.61. It is well-known (see e.g. [vD04, §2.10]) that the axiomatization of equal-
ity of Ex. 6.60 could as well have been presented in the (more refined but) equivalent
following form

∆ ` (∀xσ) (xσ
.
=σ xσ) ∆ ` (∀xσ, yσ)

(
xσ

.
=σ yσ ⇒ yσ

.
=σ xσ

)
∆ ` (∀xσ, yσ, zσ)

(
xσ

.
=σ yσ ⇒ yσ

.
=σ zσ ⇒ xσ

.
=σ zσ

)
f ∈ Fun(Σ)(σ1, . . . , σn; τ)

∆ ` (∀xσ11 . . . xσnn)(∀yσ11 . . . yσnn)
((∧

1≤i≤n x
σ1
i

.
=σi y

σi
i

)
⇒ f(~x)

.
=τ f(~y)

)
P ∈ Pred(Σ)(σ1, . . . , σn)

∆ ` (∀xσ11 . . . xσnn)(∀yσ11 . . . yσnn)
((∧

1≤i≤n x
σ1
i

.
=σi y

σi
i

)
⇒ P(~x)⇔ P(~y)

)
6.4.3. Models of First-Order Predicate Logic with Equality

A model of first-order predicate logic with equality over a signature Σ is simply a
model M of Σ in the sense of Def. 6.8 (§6.1.3). Satisfaction and validity (Def. 6.11) for
formulae with equality assume that the atomic formulae (−)

.
=σ (−) are interpreted as

plain equality over M(σ). Formally, the relation M, v |= A (Fig. 9) is extended with
the clause

M, v |= (aσ
.
=σ bσ) iff JaσKv = JbσKv

Deduction in (intuitionistic and) classical first-order predicate logic with equality is
sound w.r.t. the semantics of first-order predicate logic with equality.

Concerning completeness and compactness, (in the case of classical logic) Thm. 6.24
and Cor. 6.25 (§6.2.2) extend to the following, where Φ, A consist of sentences with
equality.

Theorem 6.62 (Completeness [vD04, Thm. 3.1.3]). If Φ |= A then Φ ` A.

Corollary 6.63 (Compactness). Fix a set of sentences Φ. If for every finite Φ0 ⊆ Φ
there is a model M such that M |= Φ0, then there is a model M such that M |= Φ.

92

6. First-Order Predicate Logic

(
.
=-I)

E ` eqI a : a
.
= a

(
.
=-E)

E ` t : a
.
= b E ` u : A[a/x]

E ` eqE a b t u : A[b/x]

Figure 16: Typing Rules for Equality.

Remark 6.64. It is fairly standard to obtain Thm. 6.62 from Thm. 6.24 (completeness
of first-order logic without equality, §6.2.2). The trick is the following. Given a first-
order signature Σ, let Σ(

.
=) be the extension of Σ with one additional predicate symbol

(−)
.
=σ (−) in Pred(Σ(

.
=))(σ, σ) for each sort σ ∈ Sort(Σ). Consider a model M of

Σ(
.
=) in the sense of Def. 6.8 (§6.1.3), which (may not interpret

.
=σ as equality but)

additionally validates all the following formulae:

(∀xσ)(xσ
.
=σ xσ) (∀xσ, yσ) (xσ

.
=σ yσ ⇒ A[xσ/zσ] ⇒ A[yσ/zσ])

Consider in each M(σ) the relation

a ∼=σ b iff M, [a/xσ, b/yσ] |= (xσ
.
=σ y

σ)

It easily follows from the above axioms on (
.
=σ)σ that (∼=σ)σ is a family of equivalence

relations on (M(σ))σ which is moreover compatible with all function and predicate sym-
bols of Σ. Then by quotienting each M(σ) with ∼=σ one obtains a model M/∼= such that
for each sentence A (with equality) we have M |= A (in the sense of Def. 6.11, §6.1.3)
iff M/∼= |= A (in the sense of first-order logic with equality). See e.g. [vD04, Proof of
Lem. 3.1.11] for details.

6.4.4. Negative Translations for First-Order Predicate Logic with Equality

The negative translations mentioned in §6.2.3 can be straightforwardly adapted to equal-
ity. In particular, extend (−)¬ (Def. 6.27) with

(aσ
.
=σ bσ)¬ := ¬¬ (aσ

.
=σ bσ)

Theorem 6.65. If ` A is derivable in NK1 with equality, then ` A¬ is derivable in NJ1

with equality.

Theorem 6.65 is (an almost direct instance of) Cor. 7.69 (§7.3.4 below).

6.4.5. Proof-Terms for First-Order Predicate Logic with Equality

Similarly as in §6.3, we restrict to one-sorted signatures (and generalization to many-
sorted signatures is straightforward).

A quite nice fact is that the equality rules of Fig. 15 (§6.4.2) admit decently behaved
proof-terms. The typing rules are given in Fig. 16. They amount to extend the proof-
terms for NJ1 over (Σ,V) with

t, u ::= . . . | eqI a | eqE a b t u

93

6. First-Order Predicate Logic

where a, b ∈ Ter(Σ,V).
Beta-reduction is defined from the following obvious proof-reduction:

E ` eqI a : a
.
= a

Π
E ` u : A[a/x]

E ` eqE a a (eqI a) u : A[a/x]

�β
Π

E ` u : A[a/x]

Technically it is actually convenient to let �β on untyped λ-terms be the contextual
closure of the extension of �0 (Fig. 14, §6.3.3) with

eqE a b (eqI c) u �0 u

Here, by “contextual closure”, we mean closure under the congruence rules of Fig. 5
(§4.4.3), Fig. 14 (§6.3.3) and

t �β t′

eqE a b t u �β eqE a b t′ u

u �β u′

eqE a b t u �β eqE a b t u′

All the statements of §6.3.3 remain true in NJ1 with equality, and we do not restate
them. Note however that one should add (eqI a) among the β-normal forms in the
empty context (Lem. 6.54). Normalization is discussed in §6.5.

6.4.6. On Term Extraction and Classical Logic

We come back on what is perhaps the most important property of NJ1, namely witness
extraction from NJ1-proofs of ∀∃-statements (Cor. 6.41, §6.2.6), and discuss some of its
salient aspects w.r.t. classical logic. We first restate the result for logic with equality.

Corollary 6.66. In NJ1 with equality, from a proof of ` (∀x1 . . . xn)(∃y)A one can
effectively compute a first-order term a = a(x1, . . . , xn) and a proof of ` (∀x1 . . . xn)A[a/y].

Intuitionistic logic is crucial for Cor. 6.66. If NJ1 proves ` (∀x1 . . . xn)(∃y)A, then
the latter is of course valid. But only assuming the validity of (∀x1 . . . xn)(∃y)A is not
enough. In particular, given a valid closed formula (∀x1 . . . xn)(∃y)A and a model M,
the Axiom of Choice gives a function f :Mn →M such that (∀x1 . . . xn)A[f(~x)/y] holds
in M. But there is no reason that f : Mn → M is the interpretation of some term
a = a(x1, . . . , xn) over the signature under consideration! Moreover, even if it were, there
is no reason to get the same term a for every model M.

Actually (essentially) the best that classical logic can say in this case is the follow-
ing version of the remarkable Herbrand’s Theorem ([Bus98a, 2.5.1], for which it is
essential that equality can be axiomatized as in Rem. 6.61, §6.4.2).

Theorem 6.67 (Herbrand). Let (∀x1 . . . xn)(∃y)A0 be a closed formula with equality,
where A0 is quantifier-free (i.e. A0 contains no quantifier). In NK1 with equality,
from a proof of ` (∀x1 . . . xn)(∃y)A0 one can effectively compute a number k ≥ 1 and
terms a1, . . . , ak with variables among x1, . . . , xn and such that

` (∀x1 . . . xn)
(
A0[a1/y] ∨ · · · ∨A0[ak/y]

)

94

6. First-Order Predicate Logic

(a
.
= b)◦ := unit

(P(a1, . . . , an))◦ := o
(A⇒ B)◦ := A◦ → B◦

(A ∧B)◦ := A◦ ×B◦
(A ∨B)◦ := A◦ +B◦

>◦ := unit

⊥◦ := void

((∀x)A)◦ := ι→ A◦

((∃x)A)◦ := ι×A◦

Figure 17: The Translation (−)◦ of Formulae to Types.

We again insist on the effective character of Cor. 6.66 and Thm. 6.67, while provability in
NJ1 and NK1 is undecidable (Thm. 6.35, §6.2.4). In particular, beware that the number
k ∈ N in Thm. 6.67 cannot be computed from (∀x1 . . . xn)(∃y)A0 alone ([Bus98a, 2.5.4],
essentially because of the undecidability of first-order logic).

6.5. Normalization

In this §6.5, we prove the strong normalization of the (typed) proof-terms for NJ1 with
equality. As announced, we shall devise a translation (−)◦ from (typed) proof-terms
to (typed) λ-terms with sums and products (§4.4.3) such that

t◦ �+
β u◦ whenever t �β u

The strong normalization for NJ1 with equality will then be inferred from the strong
normalization of the simply-typed λ-calculus with sums and products (Thm. 4.31, §4.4.4,
a.k.a. Thm. 5.32, §5.5.3). Different proofs can be found in e.g. [SU06, §8.7], [TvD88b,
Chap. 10, §8.4] or [Gal95].

The key idea in the definition of (−)◦ is to represent first-order terms by usual λ-terms,
and to represent first-order formulae by simple types (with sums and products). Hence
the translation (−)◦ depends on the first-order signature under consideration.

Fix a first-order signature Σ and a set of first-order variables V that (as for the proof-
terms of §6.3 and §6.4.5) we assume to be one-sorted.

The translation (−)◦ targets simply-typed λ-terms with types over the grammar

T,U ::= ι | o | U → T | T × U | T + U | unit | void

where

• ι is a base type, which shall be used to type the λ-terms representing first-order
terms over (Σ,V); and

• o is a base type, which shall be used to represent the P ∈ Pred(Σ).

95

6. First-Order Predicate Logic

x◦ := x
(λx.t)◦ := λx.t◦

(tu)◦ := t◦u◦

〈t, u〉◦ := 〈t◦, u◦〉
(π1t)

◦ := π1t
◦

(π2t)
◦ := π2t

◦

(in1 t)
◦ := in1 t

◦

(in2 t)
◦ := in2 t

◦(
case t {in1 x1 7→ u1 | in2 x2 7→ u2}

)◦
:= case t◦ {in1 x1 7→ u◦1 | in2 x2 7→ u◦2}

(case⊥ t {})◦ := case⊥ t
◦ {}

(λx.t)◦ := λx◦.t◦

(t a)◦ := t◦ a◦

〈a, t〉◦ := 〈a◦, t◦〉(
let 〈x, y〉 = t in u

)◦
:=

(
λp.u◦[π1p/x

◦][π2p/y]
)
t◦ (p /∈ FV(u◦))

(eqI a)◦ := 〈〉
(eqE a b t u)◦ := (λx.λy.y) t◦ u◦

Figure 18: The Translation (−)◦ on Untyped Proof-Terms.

Figure 17 defines the translation (−)◦ of first-order formulae of NJ1 with equality to
simple types over the above grammar. Note that A◦ contains no first-order term, so
that in particular (A[a/x])◦ = A◦.

We now turn to terms. We assume given

• for each first-order variable x ∈ V, a variable x◦ ∈ X ;

• for each f ∈ Fun(Σ)(n), a variable f◦ ∈ X together with a type

Tf := ι→ · · · → ι︸ ︷︷ ︸
n times

→ ι

It then follows that for each first-order term a ∈ Ter(Σ,V) we obtain a typed λ-term

I ` a◦ : ι

where I is a first-order context, i.e. a typing context which consists only of declarations
of the form x◦ : ι (where x ∈ V) or f◦ : Tf (where f ∈ Fun(Σ)). The λ-term a◦ is defined
by induction on a ∈ Ter(Σ,V) as

x◦ := x◦ and (f(a1, . . . , an))◦ := f◦ a◦1 · · · a◦n

For the translation of proof-terms, we proceed in two steps. We first define a transla-
tion (−)◦ on untyped proof-terms in Fig. 18. Second, an easy induction on derivations
shows that the translation (−)◦ preserves typing in the following sense, where given
E = x1 : A1, . . . , xn : An, we write E◦ for x1 : A◦1, . . . , xn : A◦n.

96

7. First-Order Arithmetic

Lemma 6.68. If E ` t : A in NJ1 with equality, then there is a first-order context I
such that E◦, I ` t◦ : A◦.

Proof. Exercise!

We shall now show that the translation (−)◦ preserves β-reduction, in the sense that

t◦ �+
β u◦ whenever t �β u

Lemma 6.69 (Substitution).

(1)
(
t[b/y]

)◦
= t◦[b◦/y◦]

(2)
(
t[v/y]

)◦
= t◦[v◦/y]

Proof. Exercise!

Proposition 6.70. If t�β u then t◦ �+
β u
◦.

Proof. Exercise!

We then obtain the strong normalization of the proof-terms of NJ1 with equality from the
strong normalization of the simply-typed λ-calculus with sums and products (Thm. 4.31,
§4.4.4, a.k.a. Thm. 5.32, §5.5.3).

Corollary 6.71 (Strong Normalization). If E ` t : A in NJ1 with equality, then t is
strongly normalizing.

7. First-Order Arithmetic

First-order classical (“Peano”) and intuitionistic (“Heyting”) arithmetic (denoted resp.
PA and HA) are fundamental systems, for reasons related to Gödel’s Incompleteness
Theorems.

The key fact is that primitive recursion (and in particular finite sequences) can be
represented in first-order arithmetic, which makes the latter a reference setting w.r.t. its
provable statements on recursive functions and finitary data-structures.

Moreover, the very representation of primitive recursion allows for the usual Gödel’s
coding of syntax, to the effect that proof-trees for first-order arithmetic can be repre-
sented within first-order arithmetic. The (usual) crucial consequence is that if first-order
arithmetic is consistent, then it cannot prove its own consistency. This last fact puts
first-order arithmetic at the basis of a hierarchy of systems (first-order, second-order
and higher-order arithmetics, type theories, set theories, and fragments thereof)16 which
(assuming their consistency) can be compared w.r.t. their proof-theoretic strength,
i.e. w.r.t. their ability to prove the consistency of weaker systems, as well as w.r.t.

16First-order arithmetic as considered in this course is actually not the weakest system which can be
taken as such a basis (see e.g. [Bus98b] for an introduction to weak systems of arithmetic).

97

7. First-Order Arithmetic

(∀xι)¬(Sx
.
=ι 0) (∀xι)(∀yι)

(
Sx

.
=ι Sy ⇒ x

.
=ι y

)
Figure 19: Basic Axioms on 0 and S.

(∀x) (x
.
=ι x) (∀xι)(∀yι)

(
x
.
=ι y ⇒ y

.
=ι x

)
(∀xι)(∀yι)(∀zι)

(
x
.
=ι y ⇒ y

.
=ι z ⇒ x

.
=ι z

)
(∀xι1 . . . xιn)(∀yι1 . . . yιn)

((∧
1≤i≤n xi

.
=ι yi

)
⇒ f(~x)

.
=ι f(~y)

)
(∀xι1 . . . xιn)(∀yι1 . . . yιn)

((∧
1≤i≤n xi

.
=ι yi

)
⇒ P(~x)⇔ P(~y)

)
Figure 20: Equality Axioms.

which partial recursive functions they are able to prove to be total (references on this
are [GLT89, TS00, Bee85]; see also [Sim10] for a different approach).

First-order arithmetics come under different presentations in the literature. For this
reason, we begin in §7.1 with some key facts which are to be waited from virtually any
intuitionistic first-order arithmetic.

We then discuss in §7.2 a presentation of classical first-order Peano Arithmetic (PA)
whose language contains one function symbol for each primitive recursive function.

The corresponding intuitionistic system, called Heyting Arithmetic (HA) is then
discussed in §7.3, with a particular emphasis on its relation to PA and on its extraction
results. Of particular importance is Kreisel’s Theorem 7.54 (§7.3.3), according to which
HA and PA prove the same “Π0

2-sentences” (i.e. ∀∃-sentences over primitive recursive
predicates), so that HA and PA prove the termination of the same algorithms.

In contrast with first-order logic (§6) we shall not look for a proper λ-calculus of
proof-terms for HA. But there is an extension of the simply-typed λ-calculus associated
to HA via a variant of the Curry-Howard correspondence. This typed λ-calculus, called
Gödel’s System T, shall be discussed separately in §8.

7.1. Theories of Natural Numbers with Induction

Recall from Def. 6.26 (§6.2.2) that a classical (resp. intuitionistic) theory is a set Φ
of sentences (i.e. closed formulae) of first-order predicate logic which is stable under
classical (resp. intuitionistic) deduction.

In this §7 we shall be concerned with theories which contain at least the following.

Definition 7.1.

(1) We say that a first-order signature Σ is a signature with natural numbers if
there is a sort ι ∈ Sort(Σ) such that Σ contains the constant symbol 0 : ι and the
function symbol S : ι→ ι.

98

7. First-Order Arithmetic

(2) By a (classical resp. intuitionistic) theory of natural numbers we mean a (classi-
cal resp. intuitionistic) theory TH on a signature Σ with natural numbers such that
TH proves all the formulae of Fig. 19 and of Fig. 20 (where f ∈ Fun(Σ)(ι, . . . , ι; ι)
and P ∈ Pred(Σ)(ι, . . . , ι)).

(3) We say that a (classical resp. intuitionistic) theory of natural numbers TH has in-
duction if TH proves all universal closures of the following, where A contains no
disjunction (∨):

A[0/x] ⇒ (∀xι)
(
A⇒ A[Sx/x]

)
⇒ (∀xι)A

Notation 7.2. The constant symbol 0 is intended to represent the natural number 0,
while the function symbol S(−) is intended to represent the successor function n ∈ N 7→
(n+ 1) ∈ N.

(1) We often write Sa instead of S(a) (as in Fig. 19).

(2) Given a natural number n ∈ N, the numeral n is the (closed) first-order term
defined by induction on n as 0 := 0 and n+ 1 := Sn.

Remark 7.3. The equality axioms of Fig. 20 are reminiscent from Rem. 6.61 (§6.4.2).
It is well-known (see e.g. [vD04, §2.10]) that these axioms are equivalent to the universal
closures of

a
.
=ι a and a

.
=ι b ⇒ A[a/xι] ⇒ A[b/xι]

What may seem strange in Def. 7.1 is the condition that A contains no disjunction in
the induction axiom

A[0/x] ⇒ (∀xι)
(
A⇒ A[Sx/x]

)
⇒ (∀xι)A

In the classical case, this is obviously not a restriction since disjunctions A ∨ B can be
defined as ¬(¬A∧¬B). In the intuitionistic case, this is due to the following well-known
fact (see e.g. [TvD88a, Chap. 3, §3.2], also [SU06, Prop. 9.5.1]).

Definition 7.4. Assuming a signature with natural numbers, let

A ∨̇ B := (∃zι)
[(

(z
.
=ι 0)⇒ A

)
∧
(
¬(z

.
=ι 0)⇒ B

)]
Proposition 7.5. Let TH be an intuitionistic theory of natural numbers. Then TH
proves the following:

(1) A⇒ A ∨̇ B

(2) B ⇒ A ∨̇ B

If furthermore TH has induction, then TH proves

(3) (A ∨̇ B) ⇒ (A⇒ C) ⇒ (B ⇒ C) ⇒ C

99

7. First-Order Arithmetic

(4) (A ∨̇ B) ⇔ (A ∨B)

Proof. Exercise!

We finally arrive at the fundamental fact that intuitionistic arithmetics prove the
decidability of equality, namely:

(∀xι)(∀yι)
(
x
.
=ι y ∨ ¬(x

.
=ι y)

)
This fact is at the basis of Kreisel’s Theorem 7.54 (§7.3.3) and of considerable further
developments (see e.g. [TvD88a, TvD88b, Koh08]).

Proposition 7.6. Let TH be an intuitionistic theory of natural numbers. Then TH
proves the following:

(1) (∀xι)
(
x
.
=ι 0 ∨̇ ¬(x

.
=ι 0)

)
If furthermore TH has induction, then TH proves

(2) (∀xι)
(
x
.
=ι 0 ∨̇ (∃yι)

(
x
.
=ι Sy

))
(3) (∀xι)(∀yι)

(
x
.
=ι y ∨̇ ¬(x

.
=ι y)

)
Proof. Exercise!

Corollary 7.7. Intuitionistic theories of natural numbers with induction prove

(1) (∀xι)
(
x
.
=ι 0 ∨ ¬(x

.
=ι 0)

)
(2) (∀xι)

(
x
.
=ι 0 ∨ (∃yι)

(
x
.
=ι Sy

))
(3) (∀xι)(∀yι)

(
x
.
=ι y ∨ ¬(x

.
=ι y)

)
7.2. Peano Arithmetic

Peano Arithmetic is usually defined as the (classical) first-order theory (denoted PA0

in the following) of natural numbers with induction (§7.1) and with function symbols
(−) + (−), (−)× (−) for resp. addition and multiplication on natural numbers, together
with their defining equations.

However, it is well-known (and it follows from results essentially due to Gödel) that PA0

can be conservatively extended with function symbols for primitive recursive functions.
This results in a system (denoted PA in the following) whose intuitionistic counterpart,
called Heyting Arithmetic (denoted HA and to be defined in §7.3), is often considered
to be the good version of intuitionistic first-order arithmetic (besides [SU06, §9.5], see
e.g. [TvD88a, Chap. 3, §3], [Tro73, §1.3] and [Koh08, §3.2]).

We shall thus begin in §7.2.1 with some reminder on primitive recursive functions, and
in particular on the representation of partial recursive functions (§7.2.2). The language
and axioms of first-order arithmetic are presented in §7.2.3 and §7.2.4 respectively. Our
version of Peano Arithmetic (PA) is then defined in §7.2.5, while §7.2.6 is a reminder on

100

7. First-Order Arithmetic

the main results toward Gödel’s Incompleteness Theorems, which also introduces
the concept of provably total function, an important notion for comparing the proof-
theoretic strength (i.e. provability) of theories containing arithmetic, in particular in
relation to normalization of typed λ-calculi (see e.g. [GLT89, TS00, Bee85]).

This §7.2 is mostly based on [SU06, §9], but we also refer to [vD04, BBJ07] for material
on primitive recursive functions and on Gödel’s Incompleteness Theorems. We also refer
to [Odi99] for the modicum of recursion theory we shall need.

7.2.1. Primitive Recursive Functions

We recall the definition of the primitive recursive functions. See [vD04, §7.1], [TvD88a,
Chap. 3, §1] or [SU06, §A3] (also [BBJ07, §6.1]).

Notation 7.8. We use the following notations.

(1) If f is a function from Nk to N (k ≥ 0), then we write f : Nk → N.

(2) Composition: Given f : Nm → N and, gi : Nk → N (1 ≤ i ≤ m), then define
f ◦ 〈g1, . . . , gm〉 : Nk → N as(

f ◦ 〈g1, . . . , gm〉
)
(n1, . . . , nk) := f(g1(n1, . . . , nk), . . . , gm(n1, . . . , nk))

(3) Primitive Recursion: Given f : Nk → N and g : Nk+2 → N, we write Iter〈f, g〉 :
Nk+1 → N for the function defined as

Iter〈f, g〉(n1, . . . , nk, 0) := f(n1, . . . , nk)
Iter〈f, g〉(n1, . . . , nk, n+ 1) := g(n1, . . . , nk, n, Iter〈f, g〉(n1, . . . , nk, n))

(4) The Zero function Zerok : Nk → N is

Zerok(n1, . . . , nk) := 0

(5) The Successor function Succ : N→ N is

Succ(n) := n+ 1

(6) If 1 ≤ i ≤ k, the Projection function πki : Nk → N is

πki (n1, . . . , nk) := ni

Definition 7.9 (Primitive Recursive Function). The set PR of primitive recursive

functions is the smallest subset of
⋃
k∈NNNk which is closed under the following rules:

Zerok ∈ PR(k) Succ ∈ PR(1) πki ∈ PR(k)

f ∈ PR(m) g1 ∈ PR(k) . . . gm ∈ PR(k)

f ◦ 〈g1, . . . , gm〉 ∈ PR(k)

f ∈ PR(k) g ∈ PR(k + 2)

Iter〈f, g〉 ∈ PR(k + 1)

where
PR(k) := {f ∈ PR | f : Nk → N}

101

7. First-Order Arithmetic

Example 7.10. Addition (+) and multiplication (×) on natural numbers are of course
primitive recursive:

n+ 0 = n n× 0 = 0
n+ (m+ 1) = (n+m) + 1 n× (m+ 1) = n+ (n×m)

Example 7.11. The following primitive recursive functions come in particularly handy
for intuitionistic arithmetic (see e.g. [vD04, §7.1] or [TvD88a, Chap. 3, §1.3]):

sg(0) = 1 sg(n+ 1) = 0
pred(0) = 0 pred(n+ 1) = n
n´ 0 = n n´ (m+ 1) = pred(n´m)

|n−m| = (n´m) + (m´ n)

Note that

n´m =

{
n−m if n ≥ m
0 otherwise

so that |n−m| = 0 iff n = m.

Example 7.12. Following [SU06, §A3] (also [TvD88a, Chap. 3, §1.8]) we assume a
given primitive recursive bijection 〈−,−〉 : N× N→ N with primitive recursive inverses
π1, π2 such that

π1〈n,m〉 = n and π2〈n,m〉 = m

Definition 7.13. A relation P ⊆ Nk is primitive recursive if its characteristic func-
tion

χP : (n1, . . . , nk) 7−→
{

1 if (n1, . . . , nk) ∈ P
0 otherwise

is primitive recursive.

Notation 7.14. We often write P(x1, . . . , xk) to mean P ⊆ Nk, and P(n1, . . . , nk)
(where n1, . . . , nk ∈ N) to mean (n1, . . . , nk) ∈ P.

7.2.2. Representation of Computable Functions

Primitive recursion allows for a neat treatment of Church-Turing computability.
Besides [SU06, §A3], we refer to e.g. [TvD88a, Chap. 2, §4 & §7], [vD04, §7.2] or [BBJ07,
§6 & §8].

Theorem 7.15 (Kleene’s T Predicate). There exist

(a) for each partial recursive function f : N → N, a natural number ef ∈ N (called the
Kleene index of f , [vD04, §7.2]) and

(b) a primitive recursive relation T(x, y, z, w)

such that

102

7. First-Order Arithmetic

• for every partial recursive f : N → N and every n,m ∈ N, we have f(n) = m if
and only if there is some k ∈ N such that T(ef , n,m, k).

Remark 7.16. Theorem 7.15 can be obtained from the usual correspondence between
partial recursive functions and Turing machines, together with the existence of a univer-
sal Turing machine (see e.g. [BBJ07, §6 & §8]). In particular, to each partial recursive
function f : N→ N corresponds a Turing machine Mf (see e.g. [BBJ07, Thm. 8.2]), and
instead of the predicate T(x, y, z, w) of Thm. 7.15, one may have considered a primitive
recursive predicate T (x, y, z) such that

• T (eM , n, k) holds if and only if k codes a terminating computation of the Turing
machine M on input n.

Theorem 7.17 (The Halting Problem (Turing)). The following problem is undecidable:

• Given a partial recursive function f and n ∈ N, decide whether there exists some
m ∈ N such that f(n) = m.

Corollary 7.18. The following problem is undecidable:

• Given a primitive recursive predicate P(x1, . . . , xk, y1, . . . , y`) and n1, . . . , nk ∈ N,
decide whether there exist some m1, . . . ,m` ∈ N such that P(n1, . . . , nk,m1, . . . ,m`).

Proof. Exercise!

7.2.3. The Language of First-Order Arithmetic

We consider a signature ΣPR for first-order arithmetic with one function symbol for each
primitive recursive function. In §7.2.4 below, we shall then postulate appropriate (equa-
tional) axioms on these function symbols. But doing this in an effective way requires
some care, essentially because testing equality of primitive recursive functions is unde-
cidable (see Prop. 7.38, §7.2.7 below). We shall actually not merely assume one function
symbol f for each primitive function f ∈ PR, but rather assume one function symbol fT
for each derivation tree T that ensures f ∈ PR according to the rules of Def. 7.9 (§7.2.1).
The equational axioms on fT will then correspond to the equalities naturally associated
to each rule of Def. 7.9 (see Notation 7.8).

We formally proceed as follows. Let TPR be the set of finite derivation trees built
according to the rules of Def. 7.9 (§7.2.1). Let T ∈ TPR be such a derivation tree. By
definition, T proves f ∈ PR(k) for some f : Nk → N and some k ∈ N. We associate to
T a function symbol fT of arity k.

We assume no predicate symbol besides equality (§6.4.1).

Definition 7.19. The signature ΣPR is the one-sorted signature with no predicate
symbol and with function symbols

Fun(ΣPR) :=
⋃
k∈N Fun(ΣPR)(k)

Fun(ΣPR)(k) := {fT | T ∈ TPR proves that f ∈ PR(k)}

103

7. First-Order Arithmetic

The language of first-order arithmetic is the language of (one-sorted) first-order logic
with equality over ΣPR (§6.4). In other words, assuming a set V of first-order variables,
the formulae of first-order arithmetic are given by:

A,B ::= (a
.
= b) | > | ⊥ | A ∧B | A ∨B | A⇒ B

| (∀x)A | (∃x)A

where a, b ∈ Ter(ΣPR,V).

Notation 7.20.

(1) If T is

Zero0 ∈ PR(0)

then fT is written 0.

(2) If T is

Succ ∈ PR(1)

then fT is written S.

(3) If T is

πki ∈ PR(k)

then fT is written πki .

Notation 7.21 (Numerals). Hence ΣPR is a signature with natural numbers in the
sense of §7.1. In particular, we assume Notation 7.2, and to each n ∈ N corresponds the
numeral n = S . . . S︸ ︷︷ ︸

n times

0.

7.2.4. The Axioms of First-Order Arithmetic

The axioms of first-order arithmetic AxPR consist of the following rules.

(1) Non-Confusion.

∆ ` (∀x)¬(Sx
.
= 0)

(2) Induction Scheme. For each formula A,

∆ ` A[0/x] ⇒ (∀y)(A[y/x]⇒ A[Sy/x]) ⇒ (∀x)A

(3) Equational Axioms. We associate equational axioms to trees T ∈ TPR as follows.

• If T is

Zerok ∈ PR(k)
(k ≥ 1)

then we have the axiom

∆ ` (∀x1, . . . , xk)
(
fT (x1, . . . , xk)

.
= 0
)

104

7. First-Order Arithmetic

• If T is

πki ∈ PR(k)

then we have the axiom

∆ ` (∀x1, . . . , xk)
(
πki (x1, . . . , xk)

.
= xi

)
• If T is

...
U

g ∈ PR(m)

...
V1

h1 ∈ PR(k) . . .

...
Vm

hm ∈ PR(k)

g ◦ 〈h1, . . . , hm〉 ∈ PR(k)

then we have the axiom

∆ ` (∀x1, . . . , xk)
(
fT (x1, . . . , xk)

.
= fU (fV1(x1, . . . , xk), . . . , fVm(x1, . . . , xk))

)
• If T is

...
U

g ∈ PR(k)

...
V

h ∈ PR(k + 2)

Iter〈g, h〉 ∈ PR(k + 1)

then we have the axioms

∆ ` (∀x1, . . . , xk)
(
fT (x1, . . . , xk, 0)

.
= fU (x1, . . . , xk)

)
∆ ` (∀x1, . . . , xk, y)

(
fT (x1, . . . , xk, Sy)

.
= fV(x1, . . . , xk, y, fT (x1, . . . , xk, y))

)
7.2.5. First-Order Peano Arithmetic

Definition 7.22 (First-Order Peano Arithmetic). First-order Peano Arithmetic
(PA) is NK1 with equality over (ΣPR,V) (§6.4.2) extended by all the rules of AxPR.

Notation 7.23. We also write PA for the theory induced by PA, i.e. the set of all closed
formulae A such that ` A in PA.

Notation 7.24. Once the axioms of first-order arithmetic are set, we notationaly forget
about derivation trees Tf proving f ∈ PR, and directly write f instead of Tf . This in
particular applies to all primitive recursive functions of §7.2.1 and §7.2.2.

105

7. First-Order Arithmetic

Example 7.25. Recall the primitive recursive function pred : N → N of Ex. 7.11
(§7.2.1), with equations

pred(0) = 0 and pred(n+ 1) = n

The function pred can be represented in PA via the tree

0 ∈ PR(0) π2
1 ∈ PR(2)

Iter〈0, π2
1〉(x) ∈ PR(1)

so that the following rules are derivable in PA

∆ ` pred(0)
.
= 0

and
∆ ` (∀x)

(
pred(Sx)

.
= x
)

Remark 7.26. Note that AxPR does not include the rule

∆ ` (∀x)(∀y)
(
Sx

.
= Sy ⇒ x

.
= y
)

expressing the injectivity of the successor function. But this rule is derivable from the
equality axioms together with the rule

∆ ` (∀x)
(
pred(Sx)

.
= x
)

of Ex. 7.25. In particular, PA is a classical theory of natural numbers with induction in
the sense of §7.1.

Notation 7.27. If P ⊆ Nk is a primitive recursive relation (Def. 7.13, §7.2.1), we write
P(a1, . . . , ak) for a formula χP(a1, . . . , ak)

.
= 1 (where χP is the characteristic function

of P). We moreover call P(x1, . . . , xk) a primitive recursive predicate.

Definition 7.28. The standard model of PA is the set of natural numbers equipped with
the obvious interpretation of each function symbol of ΣPR (so that each term a(x1, . . . , xk)
induces a primitive recursive function JaK : Nk → N in the obvious way).

A (closed) formula A is true if A is valid (Def. 6.11 §6.1.3) in the standard model.

Remark 7.29. Our axiomatization of Peano Arithmetic is in accordance with [TvD88a,
Chap. 3, §3.4] (see also [Koh08, §3.2]). But other usual definitions of PA do not include
all primitive recursive functions from the start (besides [SU06, §9.2], see e.g. [vD04,
§7.4]). Typically one considers (classical) first-order logic with equality over a (one-
sorted) signature with natural numbers (§7.1) and binary function symbols (−) + (−),
(−) × (−) together with the axioms of Non-Confusion (7.2.4.(1)) and Induction
(7.2.4.(2)) as well as the defining equality axioms for +,× (as in Ex. 7.10, §7.2.1).
Write PA0 for the resulting system.

The difference is inessential since our version of PA is conservative over PA0, i.e.
for every formula A of PA0, we have ` A in PA0 if and only if ` A in PA (Thm. 7.32,
§7.2.6 below, see e.g. [SU06, Thm. 9.4.5]).

106

7. First-Order Arithmetic

7.2.6. Representation and Incompleteness

We now recall some well-known facts on the representation of functions in arithmetic. Of
crucial importance is the notion of provably total function (Def. 7.31). But we shall
also mention important facts of general interest, in particular Gödel’s Incompleteness
Theorems, and the conservativity of PA over PA0 (Thm. 7.32), see Rem. 7.29 (§7.2.5)
above. Most of this §7.2.6 is based on [SU06, §9], but we mention other pertinent
references in the text.

We begin with the following usual fact on the representation of total recursive functions
in (classical) arithmetic. Write (∃!z)B(z) for (∃z)

(
B(z) ∧ (∀w)(B(w)⇒ w

.
= z)

)
.

Theorem 7.30. The following are equivalent for a function f : Nk → N:

• The function f is total recursive.

• There exists a formula A(x1, . . . , xk, y) of PA0 (with free variables as displayed)
such that

(i) for all n1, . . . , nk,m ∈ N, we have f(n1, . . . , nk) = m if and only if PA0 proves
` A(n1, . . . , nk,m); and

(ii) PA0 proves ` (∀x1 · · · xn)(∃!y)A(x1, . . . , xn, y).

Theorem 7.30 is essentially due to Gödel, see [SU06, Prop. 9.4.2 & Thm. 9.4.3] (see
also [vD04, §7.5]).

Beware that Thm. 7.30 does not mean that the classically provable ∀∃!-statements
of arithmetic can be witnessed by computable functions! The most fruitful notion of
representation of function in arithmetic is the following. Recall Kleene’s T predicate of
Thm. 7.15 (7.2.2).

Definition 7.31 (Provably Total Function). Let TH be a (classical or intuitionistic)
theory over the signature ΣPR of arithmetic (Def. 7.19, §7.2.3). A partial recursive
function f : N→ N is provably total in TH if TH proves (∀x)(∃z)T(ef , x, π1z, π2z).

While the notion of representation of Thm. 7.30 is not very attractive from the per-
spective of witness extraction (because of condition (i)), it (almost directly) gives the
conservativity of PA0 over PA (Rem. 7.29, §7.2.5), see [SU06, Thm. 9.4.5]

Theorem 7.32 (Conservativity). PA is conservative over PA0.

Remark 7.33. Using [SU06, Thm. 9.4.4], Thm. 7.30 can be refined so as to attribute a
PA0-formula AfT (x1, . . . , xk, y) to each tree T proving f ∈ PR(k) in such a way that PA
proves

` (∀x1 . . . xk)(∀y)
(
fT (x1, . . . , xk)

.
= y ⇔ AfT (x1, . . . , xk, y)

)
This in particular implies that PA proves all true equalities of the form a

.
= b where a, b

are closed terms.

Theorem 7.30 is also crucial for Gödel’s (first) Incompleteness Theorem 7.35, essen-
tially because it implies that for every recursive R ⊆ Nk, there is a formula A(x1, . . . , xk)
of PA0 such that:

107

7. First-Order Arithmetic

• for every n1, . . . , nk ∈ N, we have (n1, . . . , nk) ∈ R if and only if PA0 proves
A(n1, . . . , nk).

Gödel’s Incompleteness also relies on the arithmetization of syntax, i.e. the represen-
tation of syntactic objects (terms, formulae, proofs, etc.) by natural numbers. Be-
sides [SU06, §9.3], see e.g. [vD04, §7.6] or [BBJ07, §15].

Theorem 7.34 (Gödel Numbers). There exist

(a) a primitive recursive predicate Proof(x, y), and

(b) for each formula A of PA0 a natural number pAq (called the Gödel number of A,
[SU06, §9.3])

such that

• for each formula A of PA0, we have ` A in PA0 if and only if Proof(k, pAq) for
some k ∈ N.

The following is Gödel’s First Incompleteness Theorem (see e.g. [vD04, §7.7]
or [BBJ07, §17]).

Theorem 7.35 (Gödel). Assuming that PA0 is consistent, there is a sentence Z such
that PA0 proves neither ` Z nor ` ¬Z.

Gödel’s Second Incompleteness Theorem is a non-trivial strengthening of Thm. 7.35
according to which the undecidable sentence Z can be taken to be (∀z)¬Proof(z, p⊥q),
where Proof(x, y) stands for the formula of PA0 which represents the primitive recursive
relation Proof via Thm. 7.34. We refer to [BBJ07, Thm. 18.1] (see also [SU06, Thm.
9.3.3]).

Theorem 7.36 (Gödel). Assuming that PA0 is consistent, neither (∃z)Proof(z, p⊥q)
nor ¬(∃z)Proof(z, p⊥q) is provable in PA0.

It is immediate from the conservativity of PA over PA0 (Thm. 7.32) that PA is also
incomplete.

Corollary 7.37. Assuming that PA is consistent, PA proves neither (∃z)Proof(z, p⊥q)
nor ¬(∃z)Proof(z, p⊥q).

7.2.7. A Classical Arithmetic of True Equalities

The definition of PA in §7.2.5 may seem a bit contrived because of the equational ax-
ioms 7.2.4.(3). It is tempting to rather consider the following system PA• of first-logic
with equality over the signature with one function symbol f of arity k for each primitive
recursive function f : Nk → N. The axioms of PA• are Non-Confusion (7.2.4.(1)) and
Induction (7.2.4.(2)), together with the following

JaK = JbK
∆ ` (x1, . . . , xk)

(
a
.
= b
)

108

7. First-Order Arithmetic

where a, b have variables among x1, . . . , xk and JaK, JbK stand for the obvious interpreta-
tions of a, b as primitive recursive functions Nk → N.

Systems defined in this way may be interesting for concrete applications of proof-
theory (see e.g. [Koh08, §3.5]). But beware that PA• is not conservative over PA0

(assuming the consistency of PA0), since PA• proves (∀z)¬Proof(z, p⊥q). Moreover, PA•

has a non-recursive set of axioms because of the following.

Proposition 7.38. The following problem is undecidable:

• Given primitive recursive functions f, g : Nk → N, decide whether f(n1, . . . , nk) =
g(n1, . . . , nk) for all n1, . . . , nk ∈ N.

Proposition 7.38 essentially follows from the undecidability of the Halting Problem (Thm.
7.17, §7.2.2). But note that this requires an effective representation of the primitive
recursive functions. Beware that Kleene’s indexes (in the sense of Thm. 7.15, §7.2.2) are
inappropriate for this since the set of Kleene’s indexes of primitive recursive functions is
not a recursive subset of the set of Kleene’s indexes of all partial recursive functions (a
direct consequence of Rice’s Theorem, see e.g. [AC98, Cor. A1.3.2], see also [Odi99,
Thm. II.2.9]). On the other hand, the construction of Gödel’s numbers of formulae in
Thm. 7.34 §7.2.6 (see e.g. [vD04, §7.6]) can readily be adapted to yield the following,
based on the signature ΣPR of Def. 7.19 (§7.2.3).

Assumption 7.39. We assume given

(a) for each fT ∈ Fun(ΣPR)(k), a natural number pfT q, and

(b) a primitive recursive function const : N→ N, and

(c) for each k, ` ∈ N a primitive recursive function compk,` : Nk+1 → N

such that

(i) we have const(n) = pfT q where T proves (− 7→ n) ∈ PR(1), and

(ii) we have compk,`(pfT q, pfU1q, . . . , pfUkq) = pfVq where V proves f ◦ 〈g1, . . . , gk〉 ∈
PR(`) assuming T proves f ∈ PR(k) and Ui proves gi ∈ PR(`) for i = 1, . . . , k.

We can now prove Prop. 7.38.

Proof. It clearly follows from Ex. 7.11 (§7.2.1) that we can consider the sub-problem of
deciding whether f(n1, . . . , nk) = 0 for all n1, . . . , nk ∈ N, in terms of the Gödel number
pfT q such that T proves f ∈ PR(k). Assume toward a contradiction that the problem
is decidable for k = 2, so that we have a total recursive function g : N → N such that
g(pfT q) = 0 iff T proves f ∈ PR(2) with f(n,m) = 0 for all n,m ∈ N.

Let t : N4 → N be the characteristic function of Kleene’s T predicate (Thm. 7.15,
§7.2.2). For each n,m ∈ N the function (k, `) 7→ t(n,m, k, `) is primitive recursive, and
it follows from our Assumption 7.39 that the following function is primitive recursive:

h : (n,m) 7−→ pfT q where T proves
(
(k, `) 7→ t(n,m, k, `)

)
∈ PR(2)

109

7. First-Order Arithmetic

Hence the function
(n,m) 7−→ (g ◦ h)(n,m)

is total recursive.
Given a partial recursive f : N→ N and n ∈ N, we have

(g ◦ h)(ef , n) = 0 iff t(ef , n,−,−) is everywhere null
iff for all m, k ∈ N we have (ef , n,m, k) /∈ T
iff for all m ∈ N, f(n) 6= m

But it is undecidable from ef and n whether there is somem ∈ N such that f(n) = m.

7.3. Heyting Arithmetic

We let Heyting Arithmetic (HA) be the intuitionistic version of Peano Arithmetic with
function symbols for primitive recursive functions (PA, §7.2.5). This follows [SU06, §9.5]
(see also [TvD88a, Chap. 3, §3], [Tro73, §1.3] and [Koh08, §3.2]).

Definition 7.40 (First-Order Heyting Arithmetic). First-order Heyting Arithmetic
(HA) is NJ1 with equality (§6.4.2) over the signature ΣPR (§7.2.3), extended by all the
rules of AxPR (§7.2.4).

Notation 7.41. Similarly as for Peano arithmetic (§7.2.5), we also write HA for the
theory induced by HA, i.e. the set of all closed formulae A such that ` A in HA.

Sections 7.3.1 and 7.3.2 present basic properties of HA, essentially extending §7.1 with
the benefits of having functions symbols for primitive recursive functions. The main
properties of HA are then discussed in §7.3.3, most notably Kreisel’s Theorem 7.54,
according to which HA and PA prove the same “Π0

2-sentences” (i.e. ∀∃-sentences over
primitive recursive predicates), and in particular prove the termination of the same
algorithms. Finally, a proof of Kreisel’s Theorem is presented in §7.3.4, using a technique
originally due to Friedman.

7.3.1. Examples and Basic Properties

First note that Rem. 7.26 (§7.2.5) applies to HA, so that HA proves the axiom

(∀x)(∀y)
(
Sx

.
= Sy ⇒ x

.
= y
)

of Fig. 19 (§7.1). Hence, HA is an intuitionistic theory of natural numbers with induction
(Def. 7.1, §7.1). We thus get the following Prop. 7.42 and Prop. 7.43 from resp. Cor. 7.7
and Prop. 7.5 (§7.1).

Proposition 7.42. HA proves the following:

(1) (∀x)
(
x
.
= 0 ∨ ¬(x

.
= 0)

)
(2) (∀x)

(
x
.
= 0 ∨ (∃y)

(
x
.
= Sy

))

110

7. First-Order Arithmetic

(3) (∀x)(∀y)
(
x
.
= y ∨ ¬(x

.
= y)

)
Proposition 7.43. Given formulae A,B, let

A ∨̇ B := (∃z)
[(

(z
.
= 0)⇒ A

)
∧
(
¬(z

.
= 0)⇒ B

)]
(where z /∈ FV(A) ∪ FV(B)). Then HA proves the following:

(1) A⇒ A ∨̇ B

(2) B ⇒ A ∨̇ B

(3) (A ∨̇ B) ⇒ (A⇒ C) ⇒ (B ⇒ C) ⇒ C

(4) (A ∨̇ B) ⇔ (A ∨B)

Example 7.44. HA has in particular function symbols for addition (−) + (−) and mul-
tiplication (−)× (−) (Ex. 7.10, §7.2.1), on which HA proves

x + 0
.
= x x× 0

.
= 0

x + S(y)
.
= S(x + y) x× S(y)

.
= x + (x× y)

Moreover, HA proves the following:

(1) (∀y)(0 + y
.
= y)

(2) (∀x)(∀y)(x + y
.
= y + x)

(3) (∀x)(∀y)(∀z)
(
(x + y) + z

.
= x + (y + z)

)
(4) (∀x)(∀y)

(
x + y

.
= 0 ⇒ y

.
= 0
)

(5) (∀x)(∀y)
(
x + y

.
= y ⇒ x

.
= 0
)

Proof. Exercise!

Definition 7.45. Let

(x ≤̇ y) := (∃z)(x + z
.
= y)

(x <̇ y) := (x ≤̇ y) ∧ ¬(x
.
= y)

Lemma 7.46. HA proves the following:

(1) (∀x)
(
x ≤̇ x

)
(2) (∀x)(∀y)(∀z)

(
x ≤̇ y ⇒ y ≤̇ z ⇒ x ≤̇ z

)
(3) (∀x)(∀y)

(
x ≤̇ y ⇒ y ≤̇ x ⇒ x

.
= y
)

(4) (∀x)¬
(
x <̇ x

)
(5) (∀x)(∀y)(∀z)

(
x <̇ y ⇒ y <̇ z ⇒ x <̇ z

)

111

7. First-Order Arithmetic

(6) (∀x)(∀y)
(
x ≤̇ y ⇔

(
x
.
= y ∨ x <̇ y

))
(7) (∀x)

(
x ≤̇ 0 ⇒ x

.
= 0
)

(8) (∀x)¬
(
x <̇ 0

)
(9) (∀x)

(
0 ≤̇ x

)
(10) (∀x)(∀y)

(
x ≤̇ y ⇔ Sx ≤̇ Sy

)
(11) (∀x)

(
x <̇ Sx

)
(12) (∀x)(∀y)

(
y <̇ Sx ⇔ y ≤̇ x

)
(13) (∀x)(∀y)

(
x ≤̇ y ∨ x

.
= y ∨ y ≤̇ x

)
Proof. Exercise!

Proposition 7.47 (Well Founded Induction). HA proves the following:

(∀x)
(
(∀y)

(
y <̇ x ⇒ Ay

)
⇒ Ax

)
⇒ (∀x)Ax

Proof. Exercise!

The following is [TvD88a, Chap. 3, §3.6] (see also the Mint-Orevkov Theorem [TvD88a,
Chap. 2, §3.26]).

Proposition 7.48. HA proves the following:

(1) (∃x)Ax ⇒ ¬¬(∃x)
(
Ax ∧ (∀z)

(
z <̇ x ⇒ ¬Az

))
(2) ¬¬

[
(∃x)Ax ⇒ (∃x)

(
Ax ∧ (∀z)

(
z <̇ x ⇒ ¬Az

))]
Proof. Exercise!

Corollary 7.49 (Minimum Principle). PA proves the following:

(∃x)Ax ⇒ (∃x)
(
Ax ∧ (∀z)

(
z <̇ x ⇒ ¬Az

))
7.3.2. The Quantifier-Free Formulae of HA

The following is essentially [Sim10, Def. I.7.8].

Definition 7.50 (The Arithmetical Hierarchy).

(1) The quantifier-free formulae of first-order arithmetic are given by the following
grammar:

A0, B0 ::= (a
.
= b) | > | ⊥ | A0 ∧B0 | A0 ∨B0 | A0 ⇒ B0

112

7. First-Order Arithmetic

(2) A formula is Π0
k (resp. Σ0

k) if it is of the form

(∀~x1)(∃~x2) · · · (Q~xk)A0 resp. (∃~x1)(∀~x2) · · · (Q~xk)A0

where A0 is quantifier-free and Q is either ∀ or ∃.

Remark 7.51.

(1) Following Notation 7.27 (§7.2.5), the quantifier-free formulae of arithmetic corre-
spond exactly to the primitive recursive predicates (since the latter are closed under
Boolean operations, see e.g. [vD04, Lem. 7.1.6]).

(2) Note that the parameter k in

(∀~x1)(∃~x2) · · · (Q~xk)A0 and (∃~x1)(∀~x2) · · · (Q~xk)A0

(where A0 is quantifier-free) refers to the number of quantifier alternations, and
is unrelated to the lengths of the vectors ~xi.

Actually, thanks to (primitive recursive) pairings (Ex. 7.12, §7.2.1), it would have
been (provably in HA) equivalent to define Π0

k-formulae (resp. Σ0
k-formulae) as the

formulae of the form

(∀x1)(∃x2) · · · (Qxk)A0 resp. (∃x1)(∀x2) · · · (Qxk)A0

(with A0 quantifier-free).

(3) The relevance of Def. 7.50 goes beyond first-order arithmetic (§??, see also e.g. [Sim10]
as a whole). Of particular importance are the Σ0

1-formulae and the Π0
2-formulae,

which are respectively of the form (∃~x)A0 and (∀~x)(∃~y)B0 with A0, B0 quantifier-
free, see §7.3.3 below.

Lemma 7.52. Recall the primitive recursive functions of Ex. 7.11 (§7.2.1). In HA, we
have

(1) (a
.
= b) ⇔ |a ´ b| .= 0

(2) (x
.
= 0 ∧ y

.
= 0) ⇔ x + y

.
= 0

(3) (x
.
= 0 ∨ y

.
= 0) ⇔ x× y

.
= 0

(4) (y
.
= 0 ⇒ x

.
= 0) ⇔ sg(y)× x

.
= 0

Corollary 7.53. Let A0 be a quantifier-free formula.

(1) There is a first-order term a such that HA proves

` A0 ⇔ (a
.
= 0)

(2) HA proves
` A0 ∨ ¬A0 and ` ¬¬A0 ⇒ A0

113

7. First-Order Arithmetic

7.3.3. Relation to PA and Extraction

Perhaps the most important property of HA is that it proves the same Π0
2-formulae as

PA. This result, originally due to Kreisel (see e.g. [TvD88a, Chap. 3, §10.6] or [SU06,
9.5.6]), shows in particular that HA proves the totality of the same partial recursive
functions as PA (§7.2.2 and Def. 7.31, §7.2.6). In words, as alluded to in §1, when it
comes to proving termination of algorithms, intuitionistic arithmetic is no weaker than
classical arithmetic.

Theorem 7.54 (Kreisel). Let (∀x)(∃y)A0 be a closed formula with A0 quantifier-free.
If PA proves (∀x)(∃y)A0 then HA proves (∀x)(∃y)A0.

Corollary 7.55. PA and HA proves the totality of the same partial recursive functions.

Theorem 7.54 is e.g. [SU06, Thm. 9.5.6] (see also [TvD88a, Chap. 3, §3.4]). We shall
prove it in §7.3.4 (Thm. 7.72).

Recall that since (primitive recursive) pairing and projections are available as first-
order terms of PA and HA (Ex. 7.12, §7.2.1), Thm. 7.54 extends to closed formulae
of the form (∀x1 . . . xn)(∃y1 . . . ym)A0. One often says that Thm. 7.54 states the “Π0

2-
conservativity of PA over HA”, i.e. that PA is conservative over HA for Π0

2-sentences.
Theorem 7.54 extends to much stronger theories. We shall look at the case of Second-

Order Arithmetic in §??. Harvey Friedman ([Fri78]) has shown that Cor. 7.55 also holds
for Set Theory, namely w.r.t. an intuitionistic version IZF of ZF, see e.g. [Bee85, Chap.
VIII XVI] (also [TvD88b, Chap. 11, §8.11, §9.6 & §9.7]).

Theorem 7.54 is often decomposed into the two following statements:

(1) For A0(x, y) quantifier-free, if PA ` (∀x)(∃y)A0(x, y) then HA ` (∀x)¬¬(∃y)A0(x, y).

(2) HA is closed under the rule

` ¬¬(∃x)A0

` (∃x)A0
(A0 quantifier-free)

The rule in item (2) above is Markov’s Rule (see e.g. [TvD88a, Chap. 3, §3.4] or [Koh08,
§14]). Beware that it has an empty context! See Rem. 7.60 below for comments on the
constructivity of Markov’s Rule.

Markov’s Rule and its close (but distinct) relative Markov’s Principle

(∀x)
(
Ax ∨ ¬Ax

)
⇒ ¬¬(∃x)Ax ⇒ Ax

(e.g. [Tro73, §1.11.5 §3.8]) have quite important roles in intuitionistic mathematics, see
e.g. [TvD88a, Chap. 4, §5] or [Koh08] (as a whole).

Item (1) above can be obtained from the correctness of the negative translation (−)¬

(§6.4.4) of PA to HA.

Theorem 7.56. If PA proves A then HA proves A¬.

114

7. First-Order Arithmetic

Theorem 7.56 easily gives Item (1) above. Indeed, from Thm 7.56 one gets that if PA
proves (∀x)(∃y)A0 with A0 quantifier-free, then HA proves (∀x)¬¬(∃y)A¬0 , from which
the decidability of quantifier-free formulae in HA (Cor. 7.53, §7.3.2) gives that HA proves
(∀x)¬¬(∃y)A0.

Note also that Thm. 7.56 reduces the consistency of PA to the consistency of HA.

Remark 7.57. Theorem 7.56 implies that HA (as well as PA) prove all the true (closed)
Σ0

1-formulae. Beware that this does not hold for Π0
1-formulae, because of Gödel’s Second

Incompleteness Theorem 7.36 (§7.2.6).

Proof. Exercise!

Theorem 7.56 is proven exactly as for the case of first-order logic with equality
(Thm. 6.65 §6.4.4 and Thm. 6.29 §6.2.3). See [SU06, Prop. 9.5.2] and [TvD88a, Chap.
3, §3.4] for variants (in the sense of Rem. 6.32, §6.2.3). We do not further comment on
this, since our way to prove Kreisel’s Theorem 7.54 in §7.3.4 will go via a generalization
of the negative translation (−)¬ called Friedman’s Translation (see Prop. 7.71).

Recall from §6.2.5 that Glivenko’s Theorem 2.48 (§2.6) does not extend to the full
language of first-order logic. In particular, we mentioned in Rem. 6.39 that not all
formulae of the form

¬¬(∀x1, . . . , xn)
(
A ∨ ¬A

)
are intuitionistically provable for the reason that there are consistent intuitionistic the-
ories which prove some formulae of the form

¬(∀x1, . . . , xn)
(
A ∨ ¬A

)
We can now make this precise. Recall Kleene’s T predicate from Thm. 7.15 (§7.2.2).

Proposition 7.58. The extension of HA with the rule

(¬∀-EMT)
` ¬(∀xy)

(
(∃zz′)T(x, y, z, z′) ∨ ¬(∃zz′)T(x, y, z, z′)

)
induces a consistent theory, i.e. the least intuitionistic theory containing HA and the rule
(¬∀-EMT) does not proves ⊥ (see Def. 6.26, §6.2.2).

In words, it is intuitionistically consistent to assume that not every computation either
terminates or never halts! We shall prove Prop. 7.58 in §8.3.3 below (see also [TvD88a,
Chap. 4, §3.4]). Note that Prop. 7.58 implies that there are instances of the Double
Negation Shift which are not provable in HA (Rem. 6.38 and Prop. 6.37, §6.2.5).

The possibilities of extraction from proofs in HA may seem at first sight modest
compared to the case of first-order logic (§6.2.6 and §6.4.6).

Theorem 7.59 (Extraction). In Heyting Arithmetic (HA),

(1) from a proof of ` A1 ∨ A2, with A1, A2 closed, one can effectively compute an
i ∈ {1, 2} and a proof of ` Ai;

115

7. First-Order Arithmetic

(2) there is a closed formula A such that ` A ∨ ¬A is not provable;

(3) from a proof of ` (∃x)A, with (∃x)A closed, one can effectively compute a natural
number n ∈ N and a proof of ` A[n/x].

The conditions that the formulae are closed in item (1) and item (3) cannot be omitted.
In contrast to the case of first-order logic (and recalling that disjunctions can be coded
by existentials in HA (Prop. 7.43, §7.3.1)), witness extraction from proofs in arithmetic
requires a proper extension of the term language. This is because the provably total
functions (Def. 7.31, §7.2.6) of HA (equivalently of PA) are exactly those definable in a
proper extension of the primitive recursive functions called Gödel’s System T (§8).

Note that assuming item (1), Gödel’s Incompleteness Theorems (in the form of Cor. 7.37,
§7.2.6) directly give sentences A such that HA does not prove A ∨ ¬A (item (2)).

We shall prove Thm. 7.59 in §8.3.4 (Cor. 8.50). We refer to [TvD88a, Chap. 3, §5.6–
5.10] (see also [SU06, Prop. 9.6.6]). See [TvD88a, Chap. 3, §10.5] for historical references.

Remark 7.60 (On Markov’s Rule). Remark 7.57 immediately gives the closure of HA
under the special case of Markov’s Rule

` ¬¬(∃y)A0(y)

` (∃y)A0(y)

where A0(y) has at most y free.
The constructivity of Markov’s Rule is often informally explained as follows (see

e.g. [TvD88a, Chap. 4, §5.1]). Recall from Rem. 7.51 (§7.3.2) that a quantifier-free
formula A0(~x) represents in the standard model (Def. 7.28, §7.2.5) a primitive recursive
(and thus decidable) predicate. Consider a quantifier-free A0(x, y) with at most x, y free.
From proof in HA of

` ¬¬(∃y)A0(x, y)

we get for each n ∈ N a proof of the closed the formula ¬¬(∃y)A0(n, y), from which we
know that there is some m ∈ N such that A0(n,m) is true (since we know it is impossible
that there is none!). But (in view of Thm. 7.59.(3)), we might have no effective witness
for the (∃y). However, since A0(x, y) is a decidable predicate, the function

N ⇀ N
n 7→ the least m ∈ N such that A0(n,m) is true

is total recursive. We can thus witness (∃y)A0(x, y) by a computable function of x, but
in general with no further property than the mere computability of this function.

7.3.4. Friedman’s Translation

Our goal in this §7.3.4 is to prove Kreisel’s Theorem 7.54 (§7.3.3). We shall use a tech-
nique originally due to Harvey Friedman, actually following the approach of [Miq11]. We
first consider a notion of parametrized negation, which then induces a parametrized neg-
ative translation. See e.g. [SU06, Lem. 9.5.5], [TvD88a, Chap. 3, §5.1 – §5.5] or [Koh08,
§14] for other presentations.

116

7. First-Order Arithmetic

Definition 7.61 (Parametrized Negation). Let R be a formula of HA. The R-parametrized
negation is

¬RA := A⇒ R

We begin with some simple and basic properties of the parametrized negation.

Lemma 7.62. The following are provable in HA.

(1) B ⇒ ¬RA ` A⇒ ¬RB

(2) A ` ¬R¬RA

(3) A⇒ B ` ¬RB ⇒ ¬RA

(4) A⇒ B ` ¬R¬RA⇒ ¬R¬RB

(5) ¬R¬R¬RA ` ¬RA

We now define the parametrized negative translation.

Definition 7.63 (Parametrized Negative Translation). Let R be a formula of HA. The
parametrized negative translation of a formula A of PA is the formula A¬R of HA
defined by induction on A as follows:

⊥¬R := R >¬R := >
(A ∧B)¬R := A¬R ∧B¬R (a

.
= b)¬R := ¬R¬R(a

.
= b)

(A ∨B)¬R := ¬R(¬RA¬R ∧ ¬RB¬R) ((∀x)A)¬R := (∀x)A¬R
(A⇒ B)¬R := A¬R ⇒ B¬R ((∃x)A)¬R := ¬R(∀x)¬RA¬R

Note that Def. 7.63 targets a fragment of HA without existential quantifiers nor dis-
junctions (except for those possibly occurring in R). Hence, Def. 7.63 is (syntactically)
independent from whether we take disjunctions as primitive or coded in HA (see §7.1
and Prop. 7.43, §7.3.1). For this reason, the remaining of this §7.3.4 is stated with a
possible difference between the languages of HA and PA.

We are going to prove important basic properties of (−)¬R . We begin with simple
facts. Note that (¬A)¬R = ¬RA¬R .

Lemma 7.64. The following are provable in HA, where A, B are formulae of PA:

(1) ` (A⇒ A ∨B)¬R

(2) ` (A ∨ ¬A)¬R

(3) ` (A[a/x]⇒ (∃x)A)¬R

Proof. Exercise!

We proceed with properties which require induction on formulae.

Lemma 7.65. The following are provable in HA, where A is a formula of PA:

117

7. First-Order Arithmetic

(1) R ` A¬R

(2) ¬R¬RA¬R ` A¬R

Proof. Exercise!

For the soundness of (−)¬R as a translation from classical to intuitionistic first-order
logic, it is convenient to consider separately the following two properties.

Lemma 7.66. The following are provable in HA, where A, B and C are formulae of
PA, with x not free in C nor in R:

(1) (A ∨B)¬R , A¬R ⇒ C¬R , B¬R ⇒ C¬R ` C¬R

(2) ((∃x)A)¬R , (∀x)(A¬R ⇒ C¬R) ` C¬R

Proof. Exercise!

It is now direct to obtain the following first soundness property. If ∆ is the context
A1, . . . , Am, then we write ∆¬R for the context A¬R1 , . . . , A¬Rm .

Proposition 7.67. If ∆ ` A is provable in NK1 then ∆¬R ` A¬R is provable in NJ1.

The proof of Prop. 7.67 is a direct extension of the corresponding property for the
translation (−)¬ from NK0 to NJ0 (Thm. 2.39, §2.5). Modulo Rem. 6.32 (§6.2.3), the
soundness of (−)¬ from NK1 to NJ1 (Thm. 6.29, §6.2.3) is essentially the instance of
Prop. 7.67 with R := ⊥.

We now turn to the Equality Rules of Fig. 15 (§6.4.2), namely:

(
.
=-I)

∆ ` a
.
= a

(
.
=-E)

∆ ` a
.
= b ∆ ` A[a/x]

∆ ` A[b/x]

Lemma 7.68. The following rules are admissible in NJ1 with equality (§6.4.2), where
x /∈ FV(R):

∆ ` ¬R¬R
(
a
.
= a
) and

∆ ` ¬R¬R(a
.
= b) ∆ ` A¬R [a/x]

∆ ` A¬R [b/x]

Proof. Exercise!

We thus get the extension of Prop. 7.67 to first-order logic with equality.

Corollary 7.69. If ∆ ` A is provable in NK1 with equality, then ∆¬R ` A¬R is provable
in NJ1 with equality.

The soundness of (−)¬ from NK1 with equality to NJ1 with equality (Thm. 6.65, §6.4.4)
is essentially the instance of Cor. 7.69 with R := ⊥.

We finally turn to the axioms (i.e. non-logical rules) of PA (§7.2.4).

Lemma 7.70. If ∆ ` A is the conclusion of a rule of AxPR (§7.2.4), where ∆, A are
made of formulae of PA, then ∆¬R ` A¬R is provable in HA.

118

8. Gödel’s System T

Proof. Exercise!

We now have everything we need to prove that A¬R is provable in HA whenever A is
provable in PA.

Proposition 7.71. If ∆ ` A is provable in PA then ∆¬R ` A¬R is provable in HA.

Modulo Rem. 6.32 (§6.2.3), the soundness of the negative translation (−)¬ from HA to
PA (Thm. 7.56, §7.3.3) is Prop. 7.71 with R := ⊥.

We can finally obtain Kreisel’s Theorem 7.54 (§7.3.3): PA is conservative over HA for
Π0

2-formulae.

Theorem 7.72 (Kreisel’s Theorem 7.54). If (∀x)(∃y)(a
.
= b) is provable in PA, then it

is provable in HA.

The trick is to find a suitable (open) formula R for ((∀x)(∃y)(a
.
= b))¬R ⇒ (∀x)(∃y)(a

.
= b)

to be provable in HA. Since formulae of the form A¬R contain no existential quantifiers
(except possibly those of R), it makes sense to think that R should contain one.

Proof. Exercise!

8. Gödel’s System T

When it comes to arithmetic, it is customary to give up looking for proof-terms in the
sense of §6.3, and in particular for an exact representation of proofs as λ-terms as in
Thm. 6.43. As discussed in §8.1 below, the difficulty comes from Non Confusion
(7.2.4.(1)).

On the other hand, handling induction is not problematic, but leads to a proper
extension of the simply-typed λ-calculus. The resulting calculus, known as Gödel’s
System T, actually characterizes exactly the provably total functions of HA (and thus
of PA) (§8.2), and moreover leads to a BHK interpretation of HA thanks to a notion of
Realizability (§8.3).

References to the literature are given within §8.2 and §8.3.

8.1. Proof-Terms for Induction

Let us look at possible proof-terms for intuitionistic arithmetic. For simplicity we con-
sider the least intuitionistic theory of natural numbers with induction (§7.1), in which
we moreover assume that disjunction is not primitive but coded using existentials as
A ∨̇ B (Prop. 7.5, §7.1).

So we might start from the following adaptation of §6.3 (and §6.4.5):

t, u ::= x | λx.t | tu | 〈t, u〉 | π1t | π2t
| 〈〉 | case⊥ t {}
| λx.t | t a
| 〈a, t〉 | let 〈x, y〉 = t in u
| eqI a | eqE a b t u

119

8. Gödel’s System T

where a, b are given by the grammar

a, b ::= x | 0 | Sa

It follows from §6.4.5 and §6.4.2 that via eqI and eqE we obtain suitable proof terms
for the equality axioms of Fig. 20 (§7.1). So it remains to deal with the following:

∆ ` (∀x)¬(Sx
.
= 0) ∆ ` (∀x)(∀y)

(
Sx

.
= Sy ⇒ x

.
= y
)

∆ ` A[0/x] ⇒ (∀x)
(
A⇒ A[Sx/x]

)
⇒ (∀x)A

We begin by the last one (i.e. the Induction Scheme 7.2.4.(2)), which we momentarily
reformulate as the rule

∆ ` A[0/x] ∆ ` (∀x)
(
A⇒ A[Sx/x]

)
∆ ` (∀x)A

Following the methodology of §4.4 and §6.3.2, consider the following possible reductions
in Natural Deduction.

Base Case:

...
Π1

∆ ` A[0/x]

...
Π2

∆ ` (∀x)
(
A⇒ A[Sx/x]

)
∆ ` (∀x)A
∆ ` A[0/x]

�

...
Π1

∆ ` A[0/x]

Induction Step:

...
Π1

∆ ` A[0/x]

...
Π2

∆ ` (∀x)
(
A⇒ A[Sx/x]

)
∆ ` (∀x)A

∆ ` A[Sa/x]

�

...
Π2

∆ ` (∀x)
(
A⇒ A[Sx/x]

)
∆ ` A[a/x]⇒ A[Sa/x]

...
Π1

∆ ` A[0/x]

...
Π2

∆ ` (∀x)
(
A⇒ A[Sx/x]

)
∆ ` (∀x)A
∆ ` A[a/x]

∆ ` A[Sa/x]

120

8. Gödel’s System T

This suggests to introduce a specific construction for induction at the level of proofs-
terms. Recall the simple type A◦ associated to a formula A in §6.5 (on normalization of
proof-terms for NJ1). The simple types involved in the above induction rule are

(A[0/x])◦ = A◦(
(∀x)

(
A⇒ A[Sx/x]

))◦
= nat→ (A◦ → A◦)(

(∀x)A
)◦

= nat→ A◦

where we write nat for the base type ι of §6.5. The proof-terms for induction shall be
given by the recursor Rec, with (simple) typing

E ` u : T E ` v : nat→ T → T E ` t : nat

E ` Rec(u, v, t) : T

with reductions
Rec(u, v, 0) �β u
Rec(u, v,St) �β v t Rec(u, v, t)

and with the following intended typing for proof-terms:

E ` u : A[0/x] E ` v : (∀x)
(
A⇒ A[Sx/x]

)
E ` λx.Rec(u, v, x) : (∀x)A

We now come back to the two remaining axioms above, namely:

∆ ` (∀x)¬(Sx
.
= 0) and ∆ ` (∀x)(∀y)

(
Sx

.
= Sy ⇒ x

.
= y
)

Still following §6.5, the simple types involved are

((∀x)¬(Sx
.
= 0))◦ = nat→ unit→ void(

(∀x)(∀y)
(
Sx

.
= Sy ⇒ x

.
= y
))◦

= nat→ nat→ unit→ unit

While it is not unreasonable to look for a proof-term for the injectivity of S, namely a
closed λ-term of type

nat→ nat→ unit→ unit

there is no direct extension of proof-terms which would provide a closed λ-term of type

nat→ unit→ void

without making the type void inhabited in the empty context, thus breaking consistency
of the logical information carried-over by proof-terms (see Thm. 6.43, §6.3 and Thm. 6.55,
§6.3.3).

121

8. Gödel’s System T

(0)
E ` 0 : nat

(S)
E ` t : nat

E ` S t : nat

(Rec)
E ` u : T E ` v : nat→ T → T E ` t : nat

E ` Rec(u, v, t) : T

Figure 21: Additional Typing Rules for System T.

8.2. Definition and Main Properties

This §8.2 focuses on the definition of Gödel’s System T and on its main properties.
Our main references are [SU06, §10] and [GLT89, §7]. Related material can be found
in [TvD88b, Tro73, Koh08].

There are quite a lot of different variants of Gödel’s System T considered in the
literature (besides [SU06, GLT89], see e.g. [TvD88b, Tro73, Koh08]). We shall consider
a version with (extended) λ-terms

t, u ::= x | λx.t | tu | 〈t, u〉 | π1t | π2t | 〈〉
| 0 | S t | Rec(u, v, t)

As for typing, we consider types over the grammar

T,U ::= nat | U → T | T × U | unit

The typing rules consist of the rules of Fig. 6 (§4.4.3) for the above λ-terms and types,
together with the additional typing rules of Fig. 21.

Notation 8.1.

(1) We often write t : T for ` t : T .

(2) Similarly as for the first-order terms of arithmetic (Notation 7.2, §7.1 and Nota-
tion 7.21, §7.2.3), to each n ∈ N corresponds as numeral n = S . . . S︸ ︷︷ ︸

n times

0.

Remark 8.2. Our choice of types (without void) implies that for each type T there is
a closed term tT of type T .

Proof. Exercise!

Concerning reduction, we consider the relation of β-reduction given by extending Fig. 5
(§4.4.3) with Fig. 22. More precisely, we first define the relation �0 with the basic rules
of Fig. 22 (and Fig. 5), and then let �β be the closure of �0 under the congruence rules
of Fig. 22 (and Fig. 5).

The expressive power of System T is quite non-trivial. We come back on this in §8.2.3.

122

8. Gödel’s System T

Basic Rules: extension of �0 (Fig. 5) with

Rec(u, v, 0) �0 u
Rec(u, v,St) �0 v t Rec(u, v, t)

Congruence Rules: �β is the least relation containing �0 and closed under the rules of
Fig. 5 and

t �β t′

S t �β S t′
u �β u′

Rec(u, v, t) �β Rec(u′, v, t)

v �β v′

Rec(u, v, t) �β Rec(u, v′, t)

t �β t′

Rec(u, v, t) �β Rec(u, v, t′)

Figure 22: Additional Reduction Rules for System T.

8.2.1. Structural Properties

System T enjoys the same basic structural properties as the typed λ-calculi seen earlier.

Lemma 8.3 (Structural Properties).

(Weakening) If E ` t : T and x /∈ dom(E) then E , x : U ` t : T .

(Contraction) If E , x : U, y : U ` t : T then E , x : U ` t[x/y] : T .

(Exchange) If E , x : U, E ′, y : V, E ′′ ` t : T , then E , y : V, E ′, x : U, E ′′ ` t : T .

Lemma 8.4 (Substitution). If E , x : U ` t : T and E ` u : U then E ` t[u/x] : T .

Proposition 8.5 (Subject Reduction). If E ` t : T and t�β u then E ` u : T .

8.2.2. Normalization Properties

The normalization properties of System T are to all appearances similar to those of the
typed λ-calculi seen earlier.

Theorem 8.6 (Strong Normalization). If E ` t : T then t is strongly β-normalizing.

Theorem 8.7 (Confluence). For each typing context E and each type T , the relation
�β is confluent on |E ` T | (where |E ` T | is defined as in Rem. 4.11, §4.2.2).

Lemma 8.8 (Closed Typed Normal Forms). If t is a closed typable term of System T
in β-normal form, then t is of one of the following forms:

λx.u 〈〉 〈u, v〉 n

Proof. Exercise!

123

8. Gödel’s System T

Corollary 8.9. If ` t : nat, then there is a (unique) n ∈ N such that t�∗β n.

However, there is a crucial difference w.r.t. the λ-calculi seen earlier: the normal-
ization of System T (actually already Cor. 8.9) cannot be proved in PA. We elaborate
on this in §8.2.4 below. See [Tro73, §2.3.11] (see also [SU06, Cor. 10.4.11] for a re-
lated result). Just recall from §5.1 that the (strong) normalization of the simply-typed
λ-calculus admits an arithmetic proof (see [SU06, §3.8] for references).

We now briefly discuss the adaptation of §5.3 to obtain Cor. 8.9. Strong Normalization
(Thm. 8.6) is discussed separately in §8.2.5.

Corollary 8.9 follows from the adequacy of the following type interpretation. Given a
type T , we write | ` T | for the set of (closed) terms t such that ` t : T .

Definition 8.10 (Type Interpretation). For each type T we define a set JT K ⊆ | ` T |
by induction on T as follows:

JnatK := {t ∈ | ` nat| ; t�∗β n for some n ∈ N}
JU → T K := {t ∈ | ` U → T | ; (∀u ∈ JUK)(tu ∈ JT K)}
JT × UK := {t ∈ | ` T × U | ; π1t ∈ JT K and π2t ∈ JUK}

Lemma 8.11. If t ∈ JT K and u�∗β t with u : T , then u ∈ JT K.

Note that

• 0 ∈ JnatK;

• St ∈ JnatK for all t ∈ JnatK;

• and thus n ∈ JnatK for all n ∈ N.

The following seemingly obvious property is essentially the cause of the unprovability of
Cor. 8.9 in PA.

Lemma 8.12. Assume u ∈ JT K and v ∈ Jnat→ T → T K. Then:

(1) Rec(u, v, n) ∈ JT K for all n ∈ N.

(2) Rec(u, v, t) ∈ JT K for all t ∈ JnatK.

The adequacy of the type interpretation of Def. 8.10 is then an easy adaptation of §5.3.2
and §5.3.3.

Remark 8.13. Similarly as in §5.3.1, Cor. 8.9 already holds for a weak variant of �β,
namely the (deterministic) relation �T given by E[t]�TE[u] if t�0u (where �0 is given
by Fig. 22) and E[] is a context on the grammar

E[], F [] ::= [] | E[] t | π1 E[] | π2 E[]
| SE[] | Rec(u, v, F [])

where F [] is not of the form SE[].

Proof. Exercise!

124

8. Gödel’s System T

8.2.3. Expressiveness and Representation

Maybe the most important property of Gödel’s System T is that it exactly characterizes
the provably total functions of HA (equivalently of PA).

We begin with some easy consequences of Cor. 8.9 (§8.2.2).

Notation 8.14 (Representation in System T).

(1) Given t : nat, we write [t] ∈ N for the unique natural number such that t�∗β [t].

(2) Given t : natk → nat, we write [t] : Nk → N for the function

N× · · · × N −→ N
(n1, . . . , nk) 7−→ [t〈n1 . . . nk〉]

(3) We say that a function f : Nk → N is represented by a term t : natk → nat if
f = [t].

All primitive recursive functions (§7.2.1) are representable in System T.

Exercise 8.15. Give a System T term add : nat×nat→ nat which represents addition
on natural numbers.

Proof. Exercise!

Proposition 8.16. If f : Nk → N is primitive recursive, then there is a System T term
t : natk → nat which represents f .

Proof. Exercise!

However, System T represents more than the primitive recursive functions. We refer
to [SU06, §10] and [GLT89, §7].

Exercise 8.17 (Ackermann Function). A typical function which is representable in Sys-
tem T but not primitive recursive is the well-known Ackermann function. We follow
the presentation of [SU06, Ex. 10.3, 10.5 & 10.6], but see also [GLT89, §7.3.2].

Consider the function f : n 7→ fn(n), where the functions (fk : N→ N)k∈N are defined
as

f0(n) = n+ 1
fk+1(n) = fnk (n) (fk applied n times to n)

The function f : n 7→ fn(n) is not primitive recursive. Show that it is representable in
System T.

Proof. Exercise!

The main extraction result relating HA and System T is the following.

125

8. Gödel’s System T

Theorem 8.18. From a proof of ` (∀x1 . . . xk)(∃y)A(x1, . . . , xk, y) in HA (where A has
free variables among x1, . . . , xk, y), one can effectively compute a System T term t :
natk → nat such that for all n1, . . . , nk ∈ N, the formula A

(
n1, . . . , nk, [t〈n1, . . . , nk〉]

)
is provable in HA.

Corollary 8.19. From a proof of (∀x)(∃y)P(x, y) in HA (where P(x, y) is a primitive
recursive predicate), one can effectively compute a System T term t such that ` t : nat→
nat and P(n, [tn]) for all n ∈ N.

Corollary 8.19 of course extends to PA by Kreisel’s Theorem 7.54 (§7.3.3). We shall
prove Thm. 8.18 and Cor. 8.19 in §8.3 (Cor. 8.51 and Cor. 8.37 respectively) using a
notation of Realizability.

Corollary 8.19 implies that the provably total functions of PA and HA (Def. 7.31,
§7.2.6) are all representable in System T. The converse is actually true, as stated in the
following.

Theorem 8.20 (Representation). The following are equivalent for a partial recursive
function f : N→ N:

(i) f is provably total in PA;

(ii) f is provably total in HA;

(iii) f = [t] for some term t such that ` t : nat→ nat.

Theorem 8.20 is essentially [Tro73, Thm. 3.4.29]. It relies on tedious manipulations
of Gödel’s numbers representing System T terms in HA. We briefly comment on this
in §8.2.4 below, but we refer to e.g. [Tro73, Thm. 3.4.29] for details (and to [GLT89,
§7.4.2] for an informal account).

Let us finally mention that products types ((−) × (−), unit) are not required for
Cor. 8.19 and Thm. 8.20 (see Rem. 8.38, §8.3).

8.2.4. Arithmetization

This §8.2.4 overviews aspects of Gödel’s System T related to its representation in first-
order arithmetic via suitable Gödel’s numbers. We use notations for these similar to
those of §7.2.2 and §7.2.6 (see also §7.2.7). However, we shall not define the codings in
full detail, and only loosely follow the approach of [vD04, §7.6] (on the representation of
PA0 in PA0). We target two results:

(1) Proposition 8.23, namely the unprovablity in PA of the Normalization of System T
(in the form of Cor. 8.9, §8.2.2), which is essentially a diagonalization argument
based on extraction for Π0

2-formulae (Cor. 8.19, §8.2.3) and using suitable Gödel
numbers. (See [Tro73, §2.3.11], see also [SU06, Cor. 10.4.11] for a related result.)

(2) A sketch of the remaining part of Thm. 8.20 (§8.2.3), namely that the functions
representable in System T are provable total in PA [Tro73, Thm. 3.4.29].

126

8. Gödel’s System T

We consider a typed syntax for System T. First we assume for each type T a countably
infinite set of variables X T = {xT , yT , zT , etc}. The typed terms are then given by the
following grammar, where types are indicated as superscripts:

tT , uU ::= xT | (λxU .tT)U→T | (tU→TuU)T

| (〈tT , uU 〉)T×U | (π1t
T×U)T | (π2t

T×U)U

| 0nat | (Stnat)nat | (Rec(uT , vnat→T→T , tnat))T

Notation 8.21. When possible, we drop the type superscript and write t for tT . We
also often write t : T (or ` t : T) for tT .

Assumption 8.22. We assume given

(a) for each term t a Gödel number ptq ∈ N, for each type T a Gödel number pTq ∈ N,
and

(b) primitive recursive functions app(x, y), succ(x), num(x) and

(c) primitive recursive predicates Typing(x, y, z), Norm(x, y, z)

such that

(i) app(ptq, puq) = ptuq, succ(ptq) = pStq, num(n) = pnq, and

(ii) Typing(ptq, pTq) if and only if ` t : T , and

(iii) Norm(ptq, n, k) if and only if t�k
β n.

Following e.g. [vD04, §7.6], we can assume that Gödel’s numbers for types consist of pairs
〈x1, x2〉 where x1 ranges among predefined integer values]c for each constructor c of
the syntax of types of System T, and where x2 is a tuple whose length is the arity of the
corresponding constructor and whose components are the codes of the corresponding sub-
expressions. For terms, we assume a similar coding but this times as triples 〈x1, x2, x3〉
where x1 is ranges over predefined codes]c for term constructors c, x2 is a tuple whose
components are the codes of the sub-terms and where x3 is the type. For instance:

pnatq = 〈]nat, 〈〉〉
pU → Tq = 〈]→, 〈pUq, pTq〉〉
p0q = 〈]0, 〈〉, pnatq〉
pStq = 〈]S, 〈ptq〉, pnatq〉
p(tu)T q = 〈]@, 〈ptq, puq〉, pTq〉

Moreover the primitives recursive functions app, succ and num are such that

succ(x) = 〈]S, 〈x〉, pnatq〉
num(0) = 〈]0, 〈〉, pnatq〉

num(S(x)) = 〈]S, 〈num(x)〉, pnatq〉
app(x, y) = 〈]@, 〈x, y〉, (π2 ◦ π2 ◦ π3)(x)〉

127

8. Gödel’s System T

The predicate Typing(x, y) can be defined from the function typeof(x) with

typeof(x) = π3(x)

As for Norm(x, y, z), we can rely on Rem. 8.13 (§8.2.2) and instead of �β consider the
deterministic relation �T represented as a primitive recursive function.

Proposition 8.23. PA does not prove (∀x)(∃z)
(
Typing(x, pnatq) ⇒ Norm(x, π1z, π2z)

)
.

Proof. Assume toward a contradiction that PA proves the formula. Consider the prim-
itive recursive relation

P(x, a, b, z) := Norm
(
succ(app(x,num(a))), b, z

)
It follows from our Assumption 8.22 that

P(puq, n,m, k) iff Norm
(
succ(app(puq,num(n))), m, k

)
iff Norm

(
succ(app(puq, pnq)), m, k

)
iff Norm

(
succ(punq), m, k

)
iff Norm

(
pS(un)q, m, k

)
iff S(un) �k

β m

Our assumptions on Gödel numbers easily implies that PA proves the following

` Typing
(
num(x), pnatq

)
Typing(x, pnat→ natq) ` Typing(app(x,num(x)), pnatq)
Typing(x, pnat→ natq) ` Typing(succ(app(x,num(x))), pnatq)

It follows that PA proves

(∀x)(∃z)
(
Typing(x, pnat→ natq) ⇒ P(x, x, π1z, π2z)

)
Since the above relation is primitive recursive (as primitive recursive relations are closed
under Boolean operations, see e.g. [vD04, Lem. 7.1.6]), it follows from Cor. 8.19 (§8.2.3)
and from our Assumption 8.22 that there is a term ` t : nat → nat such that for
all ` u : nat → nat and all n ∈ N, we have S(u puq) �k

β m for some k ∈ N, where

m = [t puq]. But this implies that S(t ptq) �k
β [t ptq] for some k ∈ N, a contradiction

since S(t ptq) �∗β S[t ptq].

Extending Assumption 8.22 where necessary, we finally note here that we can define for
each type T a formula NormJT K which represents in PA the set JT K (Def. 8.10, §8.2.2).
Typical clauses are

NormJnatK(x) := Typing(x, pnatq) ∧ (∃y)(∃z)Norm(x, y, z)
NormJU → T K(x) := Typing(x, pU → Tq)

∧ (∀y)
(
NormJUK(y) ⇒ NormJT K(app(x, y))

)
Note that (under Assumption 8.22) PA proves

NormJnat→ natK(x) ` (∀y)(∃z)(∃w)Norm
(
app(x, num(y)), z, w

)

128

8. Gödel’s System T

We can similarly write clauses expressing a form of higher-type computability. Possible
clauses are

ComputJnatK(x) := >
ComputJU → T K(x) := (∀y)

(
ComputJUK(y) ⇒ (∃z)(∃w)

(
T(x, y, z,w) ∧ ComputJT K(z)

))
where T is Kleene’s predicate (Thm. 7.15, 7.2.2). Note that ComputJnat → natK(x)
amounts to

(∀y)(∃z)(∃w)T(x, y, z,w)

The missing part of the Representation Theorem. 8.20 (§8.2.3) is obtained essentially by
showing that for every t : nat → nat, there is a partial recursive function f : N → N
such that [t] = f and such that PA proves ComputJnat → natK(ef). See [Tro73, Thm.
3.4.29] for details.

8.2.5. Strong Normalization

We briefly discuss here the adaptation of §5.5 to the strong normalization of (typed)
System T terms (Thm. 8.6, §8.2.2).

We consider the following elimination contexts:

E[], F [] ∈ Elim ::= [] | E[] t | π1 E[] | π2 E[]
| Rec(u, v, E[])

where (in contrast with Rem. 8.13, §8.2.2), we do not allow elimination contexts of the
form SE[].

We consider the notion Weak Head Reduction �wh given by the direct application of
Def. 5.4 (§5.3.1) to the above elimination contexts.

Recall the notion of tuple reduction of Notation 5.25 (§5.5.2). The analogue of the
Weak Standardization Lemma 5.26 (§5.5.2) is the following:

Lemma 8.24 (Weak Standardization). Let E[] ∈ Elim.

(1) If E[(λx.t)u] �β v, then either v = E[t[u/x]] or v is of the form E′[(λx.t′)u′] with
(E[], t, u) �β (E′[], t′, u′).

(2) Let i ∈ {1, 2}. If E[πi〈t1, t2〉] �β v, then either v = E[ti] or v is of the form
E′[πi〈t′1, t′2〉] with (E[], t1, t2) �β (E′[], t′1, t

′
2).

(3) If E[Rec(u, v, 0)] �β w, then either w = E[u] or w is of the form E′[Rec(u′, v′, 0)]
where (E[], u, v) �β (E′[], u′, v′).

(4) If E[Rec(u, v, S t)] �β w, then either w = E[v t Rec(u, v, t)] or w is of the form
E′[Rec(u′, v′, St′)] where (E[], u, v, t) �β (E′[], u′, v′, t′).

Proof. Exercise!

The Weak Head Expansion Lemma 5.27 is then adapted to the following.

129

8. Gödel’s System T

Lemma 8.25 (Weak Head Expansion). Let E[] ∈ Elim.

(1) If E[t[u/x]] ∈ SN and u ∈ SN then E[(λx.t)u] ∈ SN .

(2) Let i ∈ {1, 2}. If E[ti] ∈ SN and t3−i ∈ SN then E[πi〈t1, t2〉] ∈ SN .

(3) If E[u] ∈ SN and v ∈ SN then E[Rec(u, v, 0)] ∈ SN .

(4) If E[v t Rec(u, v, t)] ∈ SN then E[Rec(u, v, Rec(u, v, S t))] ∈ SN .

Proof. Exercise!

This leads to the following notion of Saturated Set (Def. 5.28, §5.5.3).

Definition 8.26 (Saturated Sets). The set SAT of saturated sets is the set of all
A ⊆ SN such that

(i) E[x] ∈ A whenever E[] ∈ Elim ∩ SN , and

(ii) E[(λx.t)u] ∈ A whenever u ∈ SN and E[t[u/x]] ∈ A, and

(iii) for all i ∈ {1, 2}, E[πi〈t1, t2〉] ∈ A whenever t3−i ∈ SN and E[ti] ∈ A, and

(iv) E[Rec(u, v, 0)] ∈ A whenever v ∈ SN and E[u] ∈ A, and

(v) E[Rec(u, v, S t)] ∈ A whenever E[v t Rec(u, v, t)] ∈ A.

Lemma 8.27. Saturated sets are stable under weak head expansion: given A ∈ SAT
and t ∈ A, if u�wh t with u ∈ SN then u ∈ A.

Proof. Exercise!

Lemma 8.28. The set SAT is a complete lattice w.r.t. inclusion, whose top element is
> := SN and whose least element is ⊥ := {t ∈ SN | (∃E[], x)

(
t�∗wh E[x]

)
}.

We have the obvious analogue of Lem. 5.30 (§5.5.3).

Lemma 8.29. Let A,B ∈ SAT . Then

A� B, A � B ∈ SAT

Proof. Exercise!

The interpretation of types shall follow §5 for (−)→ (−) and (−)× (−). The type nat

requires a specific fixpoint.

Definition 8.30. We let N be the least fixpoint (in the complete lattice SAT) of the
(monotone) function

SAT −→ SAT
X 7−→ ⊥ ∪ {t ∈ SN | t�∗wh 0} ∪ {t ∈ SN | (∃u ∈ X)(t�∗wh Su)}

130

8. Gödel’s System T

It is clear that 0 ∈ N and that S t ∈ N whenever t ∈ N . Moreover,

Lemma 8.31. Let A ∈ SAT . Assume u ∈ A, v ∈ (N � A� A) and t ∈ N . Then
Rec(u, v, t) ∈ A.

Proof. Exercise!

We thus get an adequate type interpretations with

JnatK := N JU → T K := JUK� JT K JT × UK := JT K � JUK

Strong normalization of the (typed) terms of System T (Thm. 8.6, §8.2.2) immediately
follows.

8.3. Modified Realizability

Realizability is a technique introduced by S. C. Kleene as a formal counterpart to the
informal Brouwer-Heyting-Kolmogorov (BHK) of intuitionistic arithmetic. Let us reca-
pitulate the clauses of the BHK interpretation given in §4.1 and §6.3, but adapted to
arithmetic (where the term “proof” should be understood as some informal notion of
“witness of evidence”):

• there is no “proof” of ⊥;

• a “proof” of A1 ∧A2 is a pair of a “proof” of A1 and a “proof” of A2;

• a “proof” of A1 ∨A2 is a (dependent) pair of an i ∈ {1, 2} and a “proof” of Ai;

• a “proof” of A⇒ B is a “function” taking a “proof” of A to a “proof” of B;

• a “proof” of (∀x)A is a “function” which takes a natural number n ∈ N to a “proof”
of A[n/x];

• a “proof” of (∃x)A is a (dependent) pair of a natural number n ∈ N and a “proof”
of A[n/x].

Kleene’s original formulation of realizability was based on partial recursive functions,
and interpreted intuitionistic arithmetic (which in particular allowed for the extraction
of computable witnessing function from proofs of ∀∃-formulae).

Nowadays, realizability exists in various forms. Besides Kleene’s original version (for
which we refer to [TvD88a, Chap. 4, §4], also [SU06, §9.6], and [Bee85, §VII]), the general
methodology of realizability has been adapted to different computational models, e.g.
computable functions on streams of natural numbers (see e.g. [Tro73, §3] or [KV65]),
λ-calculi (or Combinatory Logics) either typed (e.g. [Tro73, §3.4] or [Koh08, §5]) or
untyped (see e.g. [Kri93, §9]), as well as to different logics (we shall see the case of
Second-Order Arithmetic in §?? below). One of the most important development is
Krivine’s work on realizability for classical logic [Kri09], which actually goes as far as
ZF set theory [Kri01].

131

8. Gödel’s System T

(a
.
= b)◦ := unit

>◦ := unit

⊥◦ := unit

(A⇒ B)◦ := A◦ → B◦

(A ∧B)◦ := A◦ ×B◦
((∀x)A)◦ := nat→ A◦

((∃x)A)◦ := nat×A◦

Figure 23: Erasure Map from (Open) Formulae to Types.

t
 (a
.
= b) iff JaK = JbK

t
 >
t 6
 ⊥
t
 A⇒ B iff for all u
 A, we have tu
 B
t
 A ∧B iff π1t
 A and π2t
 B
t
 (∀x)A iff for all n ∈ N, tn
 A[n/x]
t
 (∃x)A iff there exists n ∈ N such that π1t�

∗
β n and π2t
 A[n/x]

Figure 24: The Realizability Relation t
 A (where t, A are closed and ` t : A◦).

In any case, realizability is a very interesting computation-based tool to generate
logical theories. We shall see in §8.3.3 below an example of a coherent intuitionistic
theory which validates non-classical principles. But we also (again) refer to Krivine’s
work on models of ZF [Kri12].

In this §8.3, we concentrate on a simple variant of Kleene’s Realizability, known as
Kreisel’s Modified Realizability, and which is based on System T. Besides [SU06,
§10.4] (whose presentation largely differs from ours), we refer to [Koh08, §5] and [Tro73,
§3.4] (which consider an internalized notion of (typed) realizability, based on Combina-
tory Logic).

The basic idea is a refinement of the above BHK interpretation, where a “proof” is
taken to be a (closed) typed term of System T. We thus first associate to each (possibly
open) formula A a type A◦. We begin by only considering formulae of HA without
disjunction (recall from §7.1 and Prop. 7.43, §7.3.1 that this is not a restriction in
terms of expressiveness). The clauses for A◦ are given in Fig. 23. They should be
strongly reminiscent from those of Fig. 17 (for the normalization of the proof-terms of
NJ1, §6.5). But beware that we now take

⊥◦ = unit

Definition 8.32 (Modified Realizability). The realizability relation t
 A, where A
is a closed formula and t : A◦, is defined by induction on A with the clauses of Fig. 24.

We say that t realizes A when t
 A and that A is realized when t
 A for some t.

132

8. Gödel’s System T

Example 8.33 (Non-Confusion). Taking ⊥◦ = unit solves the problem raised in §8.1
with the Non-Confusion axiom 7.2.4.(1)

(∀x)¬(S x
.
= 0)

Indeed, we have
λx.λy.〈〉
 (∀x)

(
(S x

.
= 0) ⇒ ⊥

)
First, note that

λx.λy.〈〉 :
(
(∀x)

(
(S x

.
= 0) ⇒ ⊥

))◦
= nat→ unit→ unit

Second, we have

λx.λy.〈〉
 (∀x)
(
(S x

.
= 0) ⇒ ⊥

)
iff for all n ∈ N, (λx.λy.〈〉)n

(
(Sn

.
= 0) ⇒ ⊥

iff for all n ∈ N, for all u
 (Sn
.
= 0), (λx.λy.〈〉)nu
 ⊥

But given n ∈ N, we have (λx.λy.〈〉)nu
 ⊥ for all u : unit such that u
 Sn
.
= 0, since

there is no u : unit such that u
 Sn
.
= 0 (as JSnK = n+ 1 6= 0 = J0K).

We now turn to a couple of customary properties of (modified) realizability.

Lemma 8.34. Let a, b be closed first-order terms such that JaK = JbK. Then t
 A[a/x]
if and only if t
 A[b/x].

Lemma 8.35. If t
 A and u�β t with u : A◦ then u
 A.

The main result on (modified) realizability is that intuitionistically provable formulae
are realized.

Theorem 8.36 (Adequacy). From a proof of ` A in HA (with A closed), one can
effectively compute a term t of System T such that t
 A.

The extraction of witnessing functions from proofs of Π0
2-formulae (Cor. 8.19, §8.2.3) is

a direct consequence of the Adequacy Theorem 8.36.

Corollary 8.37 (Cor. 8.19). From a proof of (∀x)(∃y)P(x, y) in HA (where P(x, y) is a
primitive recursive predicate), one can effectively compute a System T term t such that
` t : nat→ nat and P(n, [tn]) for all n ∈ N.

Proof. By Def. 7.13 (§7.2.1), there is a first-order term p(x, y) such that HA proves
(∀x)(∃y)p(x, y)

.
= 1. By the Adequacy Theorem 8.36, there is a term ` u : nat→ nat×

unit such that for all n ∈ N, we have π2(un)
 p(n, [π1(un)])
.
= 1. Let t := λx.π1(ux).

By definition of realizability for equalities, we get that p(n, [tn]) = 1 for all n ∈ N, and
the result follows by Lem. 8.35.

Remark 8.38. Products types ((−)× (−), unit) are actually not required for Cor. 8.37.
This can be seen via an appropriate notion of (modified) realizability, as presented in
e.g. [Koh08, §5].

133

8. Gödel’s System T

The remaining of this §8.3 is organized as follows. First, we prove Thm. 8.36 in §8.3.1.
An extension of modified realizability which handles (primitive) disjunctions is discussed
in §8.3.2. Note that Thm. 8.36 means that (modified) realizability is compatible with
intuitionistic deduction. In other words, the set of realized formulae is a (consistent)
intuitionistic theory. We elaborate on this in §8.3.3. Finally, we discuss in §8.3.4 a vari-
ation on (modified) realizability which gives the extraction properties of HA (Thm. 7.59,
§7.3.3 and Thm. 8.18, §8.2.3).

8.3.1. Proof of Adequacy

The inductive invariant of the Adequacy Theorem 8.36 is the following, where we use
a vectorial notation for simultaneous substitution (§5.2), e.g. if ~y = y1, . . . , yn and ~u =
u1, . . . , un, then t[~u/~y] stands for t[u1/y1, . . . , un/yn].

Proposition 8.39. Assume that A1, . . . , An, A have free (first-order) variables among
x1, . . . , xk. From a proof of A1, . . . , An ` A in HA, one can effectively compute a term t
of System T such that

(i) x1 : nat, . . . , xk : nat, y1 : A◦1, . . . , yn : A◦n ` t : A◦, and

(ii) for all m1, . . . ,mk ∈ N and all u1
 A1[~m/~x], . . . , un
 An[~m/~x], we have t[~m/~x, ~u/~y]

A[~m/~x].

Notation 8.40. We write y1 : A1, . . . , yn : An ` t
 A when t satisfies conditions (i)
and (ii) of Prop. 8.39. Beware that in contrast with Def. 8.32, this assumes neither t
nor A1, . . . , An, A to be closed.

Proposition 8.39 is proven by induction on derivations. We begin with the case of NJ1

(without disjunction).

Lemma 8.41. From a proof of A1, . . . , An ` A in NJ1 (without disjunction), one can
effectively compute a term t of System T such that y1 : A1, . . . , yn : An ` t
 A

Proof. Exercise!

We now turn to the Equality Rules of Fig. 15 (§6.4.2), namely:

(
.
=-I)

∆ ` a
.
= a

(
.
=-E)

∆ ` a
.
= b ∆ ` A[a/x]

∆ ` A[b/x]

Via Ex. 6.60 (§6.4.2), we are done with the following.

Lemma 8.42. Let a, b be closed first-order terms and let A be a formula with at most
x free.

(1) 〈〉
 a
.
= a

(2) λe.λx.x
 a
.
= b⇒ A[a/x]⇒ A[b/x]

134

8. Gödel’s System T

Proof. Exercise!

It remains to deal with the non-logical rules of HA (§7.2.4). The case of Non-Confusion
7.2.4.(1) was handled in Ex. 8.33, while each Equational Axiom 7.2.4.(3) is realized
by a term of the form λ~x.〈〉, where ~x has the same length as the corresponding prenex
universal quantifier. We handle the Induction Scheme 7.2.4.(2) separately.

Lemma 8.43. Let A be a formula with at most x free. Then

λy.λz.λx. Rec(y, z, x)
 A[0/x] ⇒ (∀y)(A[y/x]⇒ A[Sy/x]) ⇒ (∀x)A

Proof. Exercise!

This concludes the proof of Prop. 8.39 (and thus of Thm. 8.36 as well).

8.3.2. Extension to Primitive Disjunctions

It is actually possible to directly handle the full language of HA, without relying on the
coded disjunction

A ∨̇ B := (∃z)
[(

(z
.
= 0)⇒ A

)
∧
(
¬(z

.
= 0)⇒ B

)]
(neither at the level of formulae nor at the level of realizability). To this end, one can
consider a version of System T with sum types. Its terms are given by

t, u ::= x | λx.t | tu | 〈t, u〉 | π1t | π2t | 〈〉
| in1 t | in2 t
| case t {in1 x1 7→ u1 | in2 x2 7→ u2}
| 0 | S t | Rec(u, v, t)

The types are

T,U ::= nat | U → T | T × U | T + U | unit

The erasure map (−)◦ is extended to

(A ∨B)◦ := A◦ +B◦

and realizability for disjunctions is given by

t
 A ∨B iff there are i ∈ {1, 2} and ui
 Ai with t�∗β ini ui and ui
 Ai

The extension of Adequacy (§8.3.1) is given by the following.

Lemma 8.44. Given closed formulae A1, A2, B, we have

(1) λx. ini x
 Ai ⇒ A1 ∨A2

(2) λd.λf1.λf2. case d {in1 x1 7→ (f1x1) | in2 x2 7→ (f2x2)}

 A1 ∨A2 ⇒ (A1 ⇒ B) ⇒ (A2 ⇒ B) ⇒ B

Proof. Exercise!

Lemma 8.44 easily gives the extension of Prop. 8.39 (as well as Thm. 8.36) to formulae
with primitive disjunctions. Note that the realizers in Lem. 8.44 depend only on A◦i , B

◦.

135

8. Gödel’s System T

8.3.3. The Theory of Realized Formulae

An important consequence of the Adequacy Theorem 8.36 is that the set of closed
formulae which are realized by (closed) terms of System T forms an intuitionistic theory
in the sense of Def. 6.26 (§6.2.2). This theory is consistent since ⊥ is not realized
(by definition). But we shall see that (as claimed in Prop. 7.58, §7.3.3) it nevertheless
validates principles which are classically false!

First note the following.

Lemma 8.45.

(1) If A is a closed formula, then either A or ¬A is realized, but not both.

(2) If A is a closed Σ0
1-formula (§7.3.2), then A is realizable if and only if A is true.

Proof. Exercise!

As a consequence of Lem. 8.45, we have that A ∨ ¬A is always realized for a closed
formula A. One may thus think that the intuitionistic theories induced by realizability
are in fact classical. But this is not the case, because Lem. 8.45 in general fails for open
formulae, so that the universal closure of A∨¬A is in general not realized, in the sense
that assuming FV(A) ⊆ {x1, . . . , xn}, we may have that

(∀x1, . . . , xn)
(
A ∨ ¬A

)
has no realizer. In this case, by Lem. 8.45, the following formula is realized:

¬(∀x1, . . . , xn)
(
A ∨ ¬A

)
Proposition 8.46 (Prop. 7.58). The following formula is realized by a (closed) term of
System T:

¬(∀xy)
(
(∃zz′)T(x, y, z, z′) ∨ ¬(∃zz′)T(x, y, z, z′)

)
Proof. By definition of realizability for negated formulae, it is sufficient to show that
the formula

(∀xy)
(
(∃zz′)T(x, y, z, z′) ∨ ¬(∃zz′)T(x, y, z, z′)

)
is not realized. Assume toward a contradiction that it admits a realizer t in System T.
Hence, given n,m ∈ N,

• either tnm reduces to in1 u1, and u1 in turns give k, ` ∈ N such that T(n,m, k, `);

• or tnm reduces to in2 u2 where u2 realizes ¬(∃zz′)T(n,m, z, z′). But it follows from
Lem. 8.45 that (∃zz′)T(n,m, z, z′) is realized if and only if it is true, so that (by
Lem. 8.45 again), the formula ¬(∃zz′)T(n,m, z, z′) is realized if and only if it is
true.

As a consequence, the function which takes ef and m to the (weak head) normal form
of tefm decides the Halting Problem, a contradiction.

136

8. Gödel’s System T

Corollary 8.47. The following instance of the Double Negation Shift is not realized:

(∀x)¬¬
(
(∃zz′)T(π1x, π2x, z, z

′) ∨ ¬(∃zz′)T(π1x, π2x, z, z
′)
)
⇒

¬¬(∀x)
(
(∃zz′)T(π1x, π2x, z, z

′) ∨ ¬(∃zz′)T(π1x, π2x, z, z
′)
)

Proof. Exercise!

8.3.4. Realizability with Truth

It follows from Prop. 8.46 (§8.3.3) that not every realizable formula is provable. One can
nevertheless obtain the Extraction Theorems for HA (Thm. 7.59, §7.3.3 and Thm. 8.18,
§8.2.3) using a variant of (modified) realizability called (modified) realizability with
truth, and denoted t
t A. The relation t
t A is defined in the same way as t
 A
(Fig. 24), but for the following clauses:

t
t A⇒ B iff HA ` A⇒ B and for all u
t A, we have tu
t B
t
t (∀x)A iff HA ` (∀x)A and for all n ∈ N, tn
t A[n/x]

(recall that the involved formulae are all closed).

Lemma 8.48. If t
t A then HA proves ` A.

Proof. Exercise!

The extension of Adequacy (Thm. 8.36 and §8.3.1) is almost direct, but for the cases of
of the rules (⇒-I) and (∀-I) and of the non-logical rules of HA (§7.2.4).

Proposition 8.49 (Adequacy). From a proof of ` A in HA (with A closed), one can
effectively compute a term t of System T such that t
t A.

Proof. Exercise!

Corollary 8.50 (Extraction for HA (Thm. 7.59, §7.3.3)). In Heyting Arithmetic (HA),

(1) from a proof of ` A1 ∨ A2, with A1, A2 closed, one can effectively compute an
i ∈ {1, 2} and a proof of ` Ai;

(2) from a proof of ` (∃x)A, with (∃x)A closed, one can effectively compute a natural
number n ∈ N and a proof of ` A[n/x].

Proof. Exercise!

Corollary 8.51 (Extraction in System T (Thm. 8.18, §8.2.3)). From a proof of `
(∀x1 . . . xk)(∃y)A(x1, . . . , xk, y) in HA (where A has free variables among x1, . . . , xk, y),
one can effectively compute a System T term t : natk → nat such that for all n1, . . . , nk ∈
N, the formula A

(
n1, . . . , nk, [t〈n1, . . . , nk〉]

)
is provable in HA.

Proof. Exercise!

An internalized version of (modified) realizability with truth is discussed in [Koh08,
§5]. Corollary 8.50 can also be proven with a variant “with truth” of Kleene’s Realiz-
ability (see e.g. [SU06, Prop. 9.6.6]). A somewhat different proof method is presented
in [TvD88a, Chap. 3, §5.6–5.10].

137

9. Polymorphism

9. Polymorphism

This §9 presents a typed λ-calculus introduced in the 70’s independently by Girard
(under the name System F) and by Reynolds (as the Polymorphic λ-Calculus).
Girard’s and Reynolds’ motivations were completely different.

The motivation of Reynolds, coming from computer science, was to formalize the
notion of Parametric Polymorphism, according to which extending simple types with
type variables (ranged over by X,Y, Z, . . . ∈ VTy) and universal quantifications on
type variables (notation (∀X)T) makes it possible to uniformly express that a single
algorithm can be given several types. Typical examples (building on Ex. 3.1 §3.2.2 and
to be developed in §9.1.3 and §9.2.2) are

id := λx.x : (∀X)(X → X)

as well as the usual polymorphic map function on lists

map : (∀X)(∀Y)
(
(X → Y)→ list(X)→ list(Y)

)
such that

map f [t0; . . . ; tn] = [ft0; . . . ; ftn]

We refer to [Pie02, §23] for more on (parametric) polymorphism in (functional) pro-
gramming languages.

Unlimited extension of simple types with type variables and (universal) type quan-
tification results in a system with a huge expressive power. Besides (polymorphic) lists,
one can represent any datatype over a finite signature (see e.g. [GLT89, §11.4]), as well
as product and sum types (§4.4). From a logical perspective, the most important case
is the polymorphic typing of Church’s numerals (Ex. 3.1, §3.2.2), namely

n := λz.λs.snz : (∀X)
(
X → (X → X)→ X

)︸ ︷︷ ︸
nat

(compare with the simple types of Ex. 4.3, §4.2.1).
Girard introduced System F with a purely logical motivation, namely as a (strongly)

normalizing typed λ-calculus for Second-Order Arithmetic (§??). In particular, Gi-
rard has shown that the System F terms of type nat→ nat (with nat as above) charac-
terize exactly those partial recursive functions which are provably total in Second-Order
Arithmetic (in very much the same way as Gödel’s System T characterizes the provably
total functions of First-Order Arithmetic (Thm. 8.20, §8.2.3)). See ?? below, as well
as [SU06, §11 & §12] and [GLT89, §11 & §15].

As a consequence of Girard’s characterization, the strong normalization of System F
(a result also due to Girard, see [GLT89, §14]) cannot be proven in Second-Order
Arithmetic (for very much the same reason as for System T w.r.t. First-Order arithmetic,
§8.2.4). This results in a normalization proof which is bound to rely on principles going
beyond second-order reasoning, and for which the reducibility machinery of §5 is the
only proof method known yet.

138

9. Polymorphism

System F usually comes under two different presentation, the so-called Church-style
and Curry-style ones. In contrast with the simply-typed λ-calculi seen in §4 (but
similarly as in the presentation of System T adopted in §8.2.4), in Church-style typed
λ-calculi the whole typing derivations are recorded within the λ-terms. In the case of
System F, this leads to a system with abstractions and applications for introduction
and elimination of universal quantifications on types (in a manner reminiscent from
the proof-terms for NJ1 of §6.3). This setting has good type-checking properties, and
is a convenient basis for further enrichment with Dependent Types (as in e.g. the
Calculus of Constructions, see [SU06, §14] or e.g. [Bar92, §5]).

On the other hand, Curry-style systems record less typing information at the term
level (compare the presentation of System T of §8.2 with that of §8.2.4). In the case
of System F, this leads to a type system for the pure λ-terms of §3.2.1. Such settings
are often better for studying the computational behavior of typed λ-terms, but typically
lack decidable type-checking. Besides [SU06, §11.4] (on Curry-style System F), good
further readings on Curry-style type systems are [Bar92, §4] and [Kri93].

We refer to [Bar92, §3] for a further discussion of Church-style vs Curry-style typing.
The remaining of this §9 is organized as follows. We present the (original) Church-

style System F in §9.1, and the Curry-style version is discussed in §9.2. Finally, strong
normalization (for both variants) is proven in §9.3.

Last but not least, logical aspects of System F, namely its strong ties with Second-
Order logic, is discussed separately in §??.

9.1. Church-Style System F

Church-style System F (actually the original version of System F) is an explicit version
of System F, in the sense that terms contain type annotations. This contrasts with the
λ-calculus we have seen so far (which are called Curry-style). These annotations allow
Church-style System F to have decidable type-checking (Rem. 9.22, §9.1.4).

Besides [SU06, §11.2], the standard reference is [GLT89, §11].

9.1.1. Definition

Fix a countably infinite set VTy = {X,Y, Z, . . . } of type variables. The types of
System F are given by the grammar

T,U ::= X | U → T | (∀X)T

where X ∈ VTy.
The λ-terms of Church-Style System F are given by the grammar

t, u ::= x | λx : T.t | t u | ΛX.t | t T

where X ∈ VTy and x ∈ X (§3.2.1).
Note that the syntax of terms depends on types, since besides type abstractions

(ΛX.t) and type applications (t T), the type of the bound variable is recorded in the

139

9. Polymorphism

Basic Rules:

(λx : T.t)u �0 t[u/x] (ΛX.t)U �0 t[U/X]

Congruence Rules: �β is the closure of �0 under the rules

t �β t′

t u �β t′ u

u �β u′

t u �β t u′
t �β t′

λx : T.t �β λx : T.t′

t �β t′

t U �β t′ U

t �β t′

ΛX.t �β ΛX.t′

Figure 25: Beta-Reduction for Church-Style System F.

usual λ-abstraction
λx : T.t

The notion of free-variable (Def. 3.3, §3.2.3) is adapted so as to encompass the free
type variables occurring in a term and in a type.

Definition 9.1 (Free Variable). The sets FV(T) and FV(t) of free (term or type)
variables of T and t are defined by induction as follows:

FV(X) := {X} FV(x) := {x}
FV(U → T) := FV(U) ∪ FV(T) FV(t u) := FV(t) ∪ FV(u)

FV(λx : T.t) := FV(T) ∪ FV(t) \ {x}
FV((∀X)T) := FV(T) \ {X} FV(t T) := FV(t) ∪ FV(T)

FV(ΛX.t) := FV(t) \ {X}

Warning 9.2 (Variable Binding). As suggested by Def. 9.1 and similarly as for first-
order formulae (§6.1.2), universal quantifiers in types (∀X)T bind X in T . We thus
assume that System F types are quotiented by α-equivalence (w.r.t. the obvious adapta-
tion of §3.2.4). We also assume the obvious adaptation (from §6.1.2) of the notion of
capture-avoiding type substitution.

Concerning λ-terms, the variable X is bound in ΛX.t, and we assume the correspond-
ing extension of α-conversion and of capture-avoiding substitution (§3.2.3 and §3.3.1).

The full (strong) relation �β of β-reduction is defined in Fig. 25 as the closure of
the basic reduction relation �0 under the indicated congruence rules.

The typing rules of (Church-style) System F are given in Fig 26, where given E = x1 :
T1, . . . , xn : Tn, we write FV(E) for FV(T1) ∪ · · · ∪ FV(Tn).

9.1.2. Structural Properties

System F enjoys the same basic structural properties as the typed λ-calculi seen earlier.

140

9. Polymorphism

(Var)
E ` x : T

((x : T) ∈ E)

(→-I)
E , x : U ` t : T

E ` λx : U.t : U → T
(→-E)

E ` t : U → T E ` u : U

E ` t u : T

(∀2-I)
E ` t : T

E ` ΛX.t : (∀X)T
(X /∈ FV(E)) (∀2-E)

E ` t : (∀X)T

E ` t U : T [U/X]

Figure 26: Typing Rules of Church-Style System F.

Lemma 9.3 (Structural Properties).

(Weakening) If E ` t : T and x /∈ dom(E) then E , x : U ` t : T .

(Contraction) If E , x : U, y : U ` t : T then E , x : U ` t[x/y] : T .

(Exchange) If E , x : U, E ′, y : V, E ′′ ` t : T , then E , y : V, E ′, x : U, E ′′ ` t : T .

Lemma 9.4 (Substitution).

(1) If E , x : U ` t : T and E ` u : U then E ` t[u/x] : T .

(2) If E ` t : T then E [U/X] ` t[U/X] : T [U/X].

Proposition 9.5 (Subject Reduction). If E ` t : T and t�β u then E ` u : T .

9.1.3. Examples of Impredicative Codings

We now turn to a series of examples of representation of various types in System F. All
these examples strongly rely on (sometimes not prenex) universal type quantification,
and for this reason are often called impredicative codings.

Most examples below (but for lists, 9.16–9.18) are impredicative representations of
type constructions seen earlier in §4.4 and §8.2. We refer to [SU06, §11.3] for further
examples (see also [GLT89, §11.3 – §11.5] and [Pie02, §23]).

Example 9.6 (Polymorphic Identity). Let

id := ΛX. λx : X. x : (∀X)(X → X)︸ ︷︷ ︸
Id

For each type T we have

idT �β λx : T. x : T → T

and thus
idT t �β (λx : T. x) t �β t

Note that
id Id : Id→ Id

141

9. Polymorphism

Example 9.7 (Empty Type). Let

void := (∀X)X

Note that
E ` t : void

E ` t T : T

We shall see in Prop. 9.24 (§9.1.4) that there is no closed term of type void.

Example 9.8 (Unit Type). Let

unit := (∀X)(X → X)

We have
〈〉 := ΛX. λx : X. x : unit

Example 9.9 (Booleans). Let

bool := (∀X)
(
X → X → X

)
With

true := ΛX. λx : X. λy : X. x
false := ΛX. λx : X. λy : X. y

(if t then u else v)T := t T u v

we have

E ` true : bool E ` false : bool

E ` t : bool E ` u : T E ` v : T

E ` (if t then u else v)T : T

Moreover, we have

(if true then u else v)T =
(
ΛX. λx : X. λy : X. x

)
T u v �+

β u

(if false then u else v)T =
(
ΛX. λx : X. λy : X. y

)
T u v �+

β v

Example 9.10 (Product Types). Given types T,U , let

T × U := (∀X)
(
(T → U → X)→ X

)
(where X /∈ FV(T,U)). Given λ-terms t, u, let

pair t u := ΛX. λp : T → U → X. p t u
π1 t := t T (λx : T. λy : U. x)
π2 t := t U (λx : T. λy : U. y)

so that

E ` t : T E ` u : U

E ` pair t u : T × U
E ` t : T × U
E ` π1t : T

E ` t : T × U
E ` π2t : U

142

9. Polymorphism

Moreover, we have

π1(pair t u) =(
ΛX. λp : T → U → X. p t u

)
T (λx : T. λy : U. x) �+

β

(λx : T. λy : U. x) t u �+
β t

and similarly
π2(pair t u) �+

β u

Remark 9.11 (Polymorphic Products). Note that the terms pair, π1, π2 of Ex. 9.10
actually depend on the types T,U . Let us make this precise by momentarily writing
pairT,U , πT,U1 , πT,U2 for the terms pair, π1, π2 of Ex. 9.10.

One can actually define polymorphic versions of pairing and projections, namely
(overriding the notations used in Ex. 9.10):

pair := ΛY.ΛZ.λx : Y.λy : Z. ΛX.λp : Y → Z → X. p x y︸ ︷︷ ︸
pairY,Zx y

: (∀Y Z)
(
Y → Z → Y × Z

)
π1 := ΛY. ΛZ. λp : Y × Z. p Y (λx : Y. λy : Z. x)︸ ︷︷ ︸

πY,Z1 p

: (∀Y Z)
(
Y × Z → Y

)
π2 := ΛY. ΛZ. λp : Y × Z. pZ (λx : Y. λy : Z. y)︸ ︷︷ ︸

πY,Z2 p

: (∀Y Z)
(
Y × Z → Z

)
Example 9.12 (Sum Types). Given types T,U , let

T + U := (∀X)
(
(T → X)→ (U → X)→ X

)
(where X /∈ FV(T,U)). Given λ-terms t, u, let

inl t := ΛX. λ` : T → X. λr : U → X. ` t
inru := ΛX. λ` : T → X. λr : U → X. r u

caseV t u v := t V u v

Note that
E ` t : T

E ` inl t : T + U

E ` u : U

E ` inru : T + U

E ` t : T + U E ` u : T → V E ` v : U → V

E ` caseV t u v : V
We have

caseV (inl t)u v �+
β u t and caseV (inr t)u v �+

β v t

Remark 9.13 (Polymorphic Sums). Remark 9.11 extends to sum types, to the effect
that we have polymorphic versions of inl, inr, case:

inl : (∀XY)
(
Y → X + Y

)
inr : (∀XY)

(
Y → X + Y

)
case : (∀XY Z)

(
(X + Y)→ (X → Z)→ (Y → Z)→ Z

)

143

9. Polymorphism

Example 9.14 (Natural Numbers). Let

nat := (∀X)
(
X → (X → X)→ X

)
n := ΛX. λz : X. λs : X → X. snz
Z := ΛX. λz : X. λs : X → X. z

S t := ΛX. λz : X. λs : X → X. s (tX z s)
iterU t u v := t U u v

(where n ∈ N). Note that

E ` Z : nat

E ` t : nat

E ` S t : nat E ` n : nat
(n ∈ N)

E ` t : nat E ` u : U E ` v : U → U

E ` iterU t u v : U

We have
Sn �+

β n+ 1

iterU Zu v �+
β u

iterU (S t)u v =β v (iterU t u v)

Remark 9.15 (System T Recursor). It is of course possible to represent System T’s
Recursor (§8) in Church-style System F, see e.g. [SU06, Prop. 11.3.6] or [GLT89,
§11.5.1]. This however cannot be made in “constant time” (w.r.t. the number of β-
reduction steps), see Rem. 9.32, §9.2.2 (see also [GLT89, §11.5.1]).

However, the expressive power of System F goes far beyond System T, since the Sys-
tem F terms of type nat → nat are exactly those partial recursive functions which are
provably total in Second-Order Arithmetic. See ?? below, as well as [SU06, §11 & §12]
and [GLT89, §11 & §15].

Example 9.16 (Lists). Given a type T , let

list(T) := (∀X)
(
X → (T → X → X)→ X

)
(where X /∈ FV(T)). Given λ-terms t0, . . . , tn, t, `, u, v, let

[t0; . . . ; tn]T := ΛX. λe : X. λc : T → X → X. c t0
(
. . . (c tn e)

)
nilT := ΛX. λe : X. λc : T → X → X. e

consT t ` := ΛX. λe : X. λc : T → X → X. c t (`X e c)
iterT U `u v := ` U u v

so that

E ` t0 : T . . . E ` tn : T

E ` [t0; . . . ; tn]T : list(T) E ` nilT : list(T)

E ` t : T E ` ` : list(T)

E ` consT t ` : list(T)

E ` ` : list(T) E ` u : U E ` v : T → U → U

E ` iterT U `u v : U

144

9. Polymorphism

Moreover,
consT t nilT �+

β [t]T
consT t [t0; . . . ; tn]T �+

β [t; t0; . . . ; tn]T
iterT U nilT u v �+

β u

iterT U (consT t `)u v =β v t (iterT U `u v)

Remark 9.17 (Polymorphic Lists). Similarly as with products (Rem. 9.11) and sums
(Rem. 9.13), we also have polymorphic versions of the operations of Ex. 9.16, namely:

nil : (∀Y)list(Y)
:= ΛY. nilY

cons : (∀Y)
(
Y → list(Y)→ list(Y)

)
:= ΛY. λx : Y. λy : list(Y). consY x y

iter : (∀Y)(∀Z)
(
list(Y)→ Z → (Y → Z → Z)→ Z

)
:= ΛY. ΛZ. λx : list(Y). λy : Z. λz : Y → Z → Z. iterY Z xy z

Exercise 9.18. Give a polymorphic

map : (∀X)(∀Y)
(
(X → Y)→ list(X)→ list(Y)

)
such that

map T U f [t0; . . . ; tn]T �+
β [ft0; . . . ; ftn]U

Proof. Exercise!

Remark 9.19 (Further Examples). Actually, any type of finite structures (together
with its induction principle) specified by a finite first-order signature is representable in
System F, see [GLT89, §11.4]. See also [GLT89, §11.5.4] for a representation of (finite)
trees whose branching type is a fixed arbitrary type T of System F.

9.1.4. Main Properties

The main property of System F is the strong normalization of typable terms. This
non-trivial result, due to Girard, is proven in §9.3 (see [GLT89, §14]).

Theorem 9.20 (Strong Normalization (Girard)). If E ` t : T then t is strongly normal-
izing for �β.

As usual with non-pure normalizing typed λ-calculi, we obtain confluence via Newman’s
Lemma 3.35 (§3.4.3).

Theorem 9.21 (Confluence). For each typing context E and each type T , the relation
�β is confluent on |E ` T | (where |E ` T | is defined as in Rem. 4.11, §4.2.2).

Explicit type annotations in terms make type-checking decidable in the following sense.

145

9. Polymorphism

Remark 9.22 (Decidability of Typing). The following problem is decidable:

• Given a type T , a context E and a Church-style λ-term t, decide whether E ` t : T
in Church-style System F.

Note that in contrast with Rem. 4.13 (§4.2.2, on the pure simply-typed λ-calculus), it is
undecidable whether a given term is typable (in the sense of §4.2.1), see [SU06, §11.2].

A perhaps surprising but non-trivial fact is that type inhabitation is undecidable for
System F (see [SU06, §11.6]).

We now turn to the analysis of typed normal forms. The analogue of Lem. 4.33 (§4.4.4)
is the following.

Lemma 9.23 (Typed Normal Forms). If t is a λ-term in β-normal form and typable in
the empty context, then t is of one of the following forms:

λx : T.u or ΛX.u

Lemma 9.23 is proven by a syntactic analysis similar to the proof of Lem. 4.33. Note
that the term t is not assumed to be closed: the assumption that t is typable in the
empty context implies that t contains no free λ-variable x ∈ X , but t may contain free
type variables X ∈ VTy.

The following Prop. 9.24 consists of (not all direct) consequences of Lem. 9.23. Ac-
tually, when it comes to the impredicative codings of §9.1.3, the analysis of typed nor-
mal forms in the empty context is more intricate than for the simply-typed versions
(Lem. 4.33, §4.4.4). We come back on this in Rem. 9.38 (§9.2.3) below.

Proposition 9.24.

(1) There is no term t such that ` t : void.

(2) If ` t : unit is a β-normal form then t = 〈〉.

(3) If ` t : bool is a β-normal form then either t = true or t = false.

(4) If ` t : nat is a β-normal form then t = n for some n ∈ N.

Proof. Exercise!

9.2. Curry-Style System F

We now turn to Curry-style System F, which amounts to a polymorphic type system
for the pure λ-terms of §3.2, namely

t, u ∈ Λ ::= x | λx.t | tu

(where x ∈ X). The types of Curry-style System F are the same as for the Church-style
version, and the typing rules are given in Fig. 27.

146

9. Polymorphism

(Var)
E ` x : T

((x : T) ∈ E)

(→-I)
E , x : U ` t : T

E ` λx.t : U → T
(→-E)

E ` t : U → T E ` u : U

E ` t u : T

(∀2-I)
E ` t : T

E ` t : (∀X)T
(X /∈ FV(E)) (∀2-E)

E ` t : (∀X)T

E ` t : T [U/X]

Figure 27: Typing Rules of Curry-Style System F.

|x| := x
|λx : T.t| := λx.|t|

t u	:=	t		u
ΛX.t	:=	t		
t T	:=	t		

Figure 28: Erasure from Church-Style to Curry-Style System F.

Besides [SU06, §11.4], a good synthetic account on Curry-style System F is [Bar92,
§4]. We insist on the (obvious) crucial difference with the Church-style version: Curry-
style System F assigns types to pure λ-terms. As such, Curry-style System F turns out
to be a particularly well suited setting for studying the computational behaviour of pure
λ-terms, using polymorphic types as a structuring principle. This approach is developed
in [Kri93, §8–§10].

Example 9.25. Of course not every pure λ-term is typable in Curry-style System F.
In particular, it follows from the Strong Normalization Theorem 9.35 (§9.2.3) that the
term

Ω = (λx.xx︸ ︷︷ ︸
δ

)λx.xx︸ ︷︷ ︸
δ

of Ex. 3.1 (§3.2.2) is not typable. But note that δ is typable as follows, where Id =
(∀X)(X → X) (Ex. 9.6, §9.1.3):

x : Id ` x : (∀X)(X → X)

x : Id ` x : Id→ Id x : Id ` x : Id
x : Id ` xx : Id
` λx.xx : Id→ Id

Further examples are given in §9.2.2, after having devised in §9.2.1 a type-preserving
(and reflecting) erasure map from Church-style to Curry-style System F. The main
properties of Curry-style System F are then stated in §9.2.3.

9.2.1. Erasing from Church-Style to Curry-Style System F

Figure 28 presents an erasure map from Church-style to Curry-style System F. This
erasing preserves and reflects typability:

147

9. Polymorphism

Proposition 9.26 (Typability).

(1) If E ` t : T in Church-style System F, then E ` |t| : T in Curry-style System F.

(2) If E ` t : T in Curry-style System F, then there is a Church-style λ-term u such
that |u| = t and E ` u : T in Church-style System F.

9.2.2. Examples of Polymorphic Typings of Pure Lambda-Terms

It follows from §9.2.1 that the Curry-style System F has the same expressive power as
the Church-style version. In particular, all examples for Church-style System F (§9.1.3)
erase to examples for the Curry-style version. We just note here that in the relevant
cases, this yields suitable polymorphic types for the pure λ-terms of Ex. 3.1 (§3.2.2).

Example 9.27 (Polymorphic Identity). Example 9.6 erases to

id := λx.x : (∀X)(X → X)︸ ︷︷ ︸
Id

with
id t �β t

Example 9.28 (Booleans). Example 9.9 erases to

E ` T : bool E ` F : bool

E ` t : bool E ` u : T E ` v : T

E ` if t then u else v : T

where
bool := (∀X)

(
X → X → X

)
T := λx.λy.x
F := λx.λy.y

if t then u else v := t u v

Moreover, we have

if T then u else v =
(
λx.λy.x

)
u v �+

β u

if F then u else v =
(
λx.λy.y

)
u v �+

β v

Example 9.29 (Product Types). Example 9.10 erases to

E ` t : T E ` u : U

E ` pair t u : T × U
E ` t : T × U
E ` π1t : T

E ` t : T × U
E ` π2t : U

where
T × U := (∀X)

(
(T → U → X)→ X

)
pair t u := λp.p t u

π1 t := t (λx.λy.x)
π2 t := t (λx.λy.y)

Moreover, we have

π1 (pair t u) =
(
λp.p t u

)
(λx.λy.x) �+

β t

π2 (pair t u) =
(
λp.p t u

)
(λx.λy.y) �+

β u

148

9. Polymorphism

Example 9.30 (Church’s Numerals). Example 9.14 erases to

nat := (∀X)
(
X → (X → X)→ X

)
n := λz.λs.snz
0 := λz.λs.z
S := λx.λz.λs. s (x z s)

iter t u v := t u v

(where n ∈ N). We have

E ` 0 : nat E ` S : nat→ nat E ` n : nat
(n ∈ N)

E ` t : nat E ` u : U E ` v : U → U

E ` iter t u v : U

and
Sn �+

β n+ 1

iter 0u v �+
β u

iter (S t)u v =β v (iter t u v)

Exercise 9.31. Give terms

add : nat→ nat→ nat

mult : nat→ nat→ nat

exp : nat→ nat→ nat

such that
addnm �∗β n+m

multnm �∗β n×m
expnm �∗β nm

Proof. Exercise!

Remark 9.32 (System T Recursor). Remark 9.15 (§9.1.3) implies that it is of course
possible to represent System T’s Recursor (§8) in Curry-style System F (see e.g. [SU06,
Prop. 11.3.6]). This however cannot be made in constant time ([Par89]), in the sense
that there is no (pure) λ-term Rec such that there is k ∈ N such that for all λ-terms
t, u, v ∈ Λ we have

Recu v 0 �k
β u and Recu v (S t) �k

β v t (Recu v t)

Remark 9.33 (Polymorphic Versions). Similarly as in Rem. 9.11 (§9.1.3) we also have
polymorphic versions of Ex. 9.28, Ex. 9.29 and Ex. 9.30. Namely

λx.λy. pair x y = λx.λy.λp. pxy : (∀XY)
(
X → Y → X × Y

)
λp. πix = λp. p(λx1.λx2. xi) : (∀X1X2)

(
X1 ×X2 → Xi

)
and

λb.λx.λy. if b then x else y = λb.λx.λy. b x y : (∀X)
(
bool→ X → X → X

)
λx.λy.λz. iterx y z = λx.λy.λz. x y z : (∀X)

(
nat→ X → (X → X)→ X

)

149

9. Polymorphism

9.2.3. Main Properties

A striking aspect of Curry-style System F is that a given term can be given many types.
For instance (with the notations of Ex. 9.27, §9.2.2):

id : Id

id : Id→ Id

id : (Id→ Id)→ (Id→ Id)
id : · · ·

This cannot happen in the Church-style version, since typing of Church-style λ-terms
is syntax-directed: there is at most one typing derivation for given term (in a given
typing environment).

In contrast, typing in Curry-style System F is not syntax-directed. This fact (which
may be seen as an actual feature of the Curry-style version, as in e.g. [Kri93, §8–§10])
makes typing somehow more difficult with the Curry-style version than with the Church-
style one. A typical instance of this is Subject Reduction, for which we refer to [SU06,
§11.4] (see also [Kri93, §8.2] or [Bar92, §4.2]).

Theorem 9.34 (Subject Reduction). In Curry-style System F, if E ` t : T and t�β u
then E ` u : T .

Typed Curry-style terms are strongly normalizing.

Theorem 9.35 (Strong Normalization). In Curry-style System F, if E ` t : T then t is
strongly normalizing for �β.

We prove Thm. 9.35 in §9.3. We shall actually deduce the Strong Normalization for the
Church-style version (Thm. 9.20, §9.1.4) from Thm. 9.35.

Remark 9.36 (Undecidability of Typing). The following problem is undecidable:

• Given a type T , a context E and a λ-term t, decide whether E ` t : T in Curry-style
System F.

This result, which is not as easy as it may seems, is due to Wells ([SU06, Thm. 11.4.7]).

The analogue of Prop. 9.24 (§9.1.4) for Curry-style terms is the following (with the
notations of §9.2.2), which can be proven from Prop. 9.24 via the erasure map of §9.2.1.

Proposition 9.37.

(1) There is no term t such that ` t : void.

(2) If ` t : unit is a β-normal form then t = id.

(3) If ` t : bool is a β-normal form then either t = T or t = F.

(4) If ` t : nat is a β-normal form then t = n for some n ∈ N.

150

9. Polymorphism

Remark 9.38 (Analysis of Closed Typed Normal Forms). Note that neither Prop. 9.37
nor Prop. 9.24 (§9.1.4) deal with the impredicative coding of product types (nor with that
of sum types).

As alluded to before Prop. 9.24 (§9.1.4), regarding the impredicative codings of §9.1.3
and §9.2.2, the analysis of closed typed normal forms of System F is more intricate than
in the simply typed case.

We refer to [Kri93, §8.4] for a general theory of “data-types” which makes it possible
to obtain the expected results in Curry-style System F. For instance, under suitable
assumptions on U and V , the machinery of [Kri93, §8.4] gives the following (with the
notation of §9.2.2):

• If ` t : U × V is a β-normal form then t = pair u v with ` u : U and ` v : V .

9.3. Strong Normalization

We prove here that the typed terms of Church-style and Curry-style System F are
strongly normalizing. We follow the same general outline as [SU06, §11.5]. Other im-
portant references are [Kri93, §8.3] (as well as [Bar92, §4.3]), and of course [GLT89,
§14].

Theorem 9.39 (Girard).

(1) If t is typable term of Church-style System F, then t is strongly normalizing.

(2) If t a pure λ-term typable in Curry-style System F, then t is strongly normalizing.

Theorem 9.39.(1) follows from Thm. 9.39.(2) using a combinatorial argument (actually
formalizable in Second-Order Arithmetic §??) discussed in §9.3.1. The core of Thm. 9.39,
namely Thm. 9.39.(2), is proven in §9.3.2 below, using an extension of the reducibility
method of §5.

9.3.1. Erasing from Church-style to Curry-style System F

We show here Thm. 9.39.(1) assuming Thm. 9.39.(2): If Curry-style System F is strongly
normalizing, then so is Church-style System F.

The proof is based on the erasure | − | of Fig. 27 (§9.2.1). Recall from Prop. 9.26 that
| − | preserves and reflects typability.

Erasing almost preserves reductions. In order to formulate this, we need to split the
relation �β of β-reduction for Church-style System F as

�β = �λ ∪�Λ

where �λ (resp. �Λ) is the closure under the Congruence Rules of Fig. 25 (§9.1.1) of

(λx : T.t)u �λ t[u/x] resp. (ΛX.t)T �Λ t[T/X]

Lemma 9.40 (Reduction and Erasing). Let t, u be (possibly untyped) terms of Church-
style System F. Then,

151

9. Polymorphism

(1) if t�λ u then |t|�β |u|,

(2) if t�Λ u then |t| = |u|.

Remark 9.41. Note that the strong normalization of �Λ is trivial (even on non typable
terms) since the number of �Λ-redexes strictly decreases at each �Λ-step.

Proposition 9.42. If Curry-style System F is strongly normalizing then Church-style
System F is also strongly normalizing.

Proof. Exercise!

9.3.2. Strong Normalization of Curry-Style System F

We prove here Thm. 9.39.(2). We follow the usual (and only known) method of Girard’s
reducibility candidates. The general pattern of the method is that of §5 for normal-
ization of the simply-typed λ-calculus, extended in §8.2.2 and §8.2.5 to System T, and
similar to the (modified) realizability interpretation of §8.3.

Our argument actually follows the lines of [Kri93, §8.3] (see also [SU06, §11.5] or [Bar92,
§4.3]), which is somehow simpler than [GLT89, §14] (as the latter directly proves the
strong normalization of Church-style System F).

Notation 9.43. For the remaining of this §9.3, we let SN stand for strong normaliza-
tion w.r.t. β-reduction (see Notation 5.24, §5.5.1).

Roughly speaking, the basic idea is the following. Assume that, along the lines of §5,
we want to define an interpretation JT K for each type T of System F. For arrow types
U → T , we can proceed as in §5, and set

JU → T K := JUK� JT K

(where � is as in Def. 5.8, §5.3.2).
However, we have a problem in the case of a type quantification (∀X)T . A tentative

definition of J(∀X)T K could be to take the set of all terms t ∈ SN such that

for all type U , t ∈ JT [U/X]K

But this definition is ill-founded since T [U/X] can be (∀X)T itself! For instance, the
above scheme would lead for J(∀X)XK to take the set of all t ∈ SN such that

for all type T , t ∈ JT K

The solution found by Girard is to define a priori a suitable family of sets SAT ⊆
P(SN), and then to interpret type quantifications (∀X)T by universal quantifications
over S ∈ SAT . For instance, in the case of (∀X)T this leads to take

J(∀X)XK =
⋂
SAT

Technically, a major difference with the setting of §5 is that type interpretations JT K
should now be parametrized by type valuations ρ : VTy → SAT .

152

9. Polymorphism

9.3.3. Reducibility Candidates

We thus arrive to the (then) easy adaptation of §5.5 to Curry-style System F. Consider
the following simple notion of elimination context:

E[] ∈ Elim ::= [] | E[] t

Similarly as in Notation 5.25 (§5.5.2), write (t1, . . . , tn) �β (u1, . . . , un) when there is
some i ∈ {1, . . . , n} such that ti �β ui and tj = uj for all j 6= i.

The key Lem. 5.26 and Lem. 5.27 specialize to the following. We refer to §5.5.2 for
the proof.

Lemma 9.44. On pure λ-terms we have the following.

(Weak Standardization) If E[(λx.t)u] �β v, then either v = E[t[u/x]] or v is of the
form E′[(λx.t′)u′] with (E[], t, u) �β (E′[], t′, u′).

(Weak Head Expansion) If E[t[u/x]] ∈ SN and u ∈ SN then E[(λx.t)u] ∈ SN .

The notion of Saturated Set (Def. 5.28, §5.5.3) for pure λ-terms simplifies to the fol-
lowing.

Definition 9.45 (Saturated Sets). The set SAT of saturated sets is the set of all
A ⊆ SN such that

(i) E[x] ∈ A whenever E[] ∈ Elim ∩ SN , and

(ii) E[(λx.t)u] ∈ A whenever u ∈ SN and E[t[u/x]] ∈ A.

Let us first check that SAT is not empty.

Lemma 9.46. SN ∈ SAT

Proof. Exercise!

Note also that thanks to the first clause of SAT , saturated sets are not empty, since
S ∈ SAT implies x ∈ S for every variable x ∈ X .

We shall interpret System F types by saturated sets. In order to achieve this, we need
the following closure properties of SAT .

Lemma 9.47.

(1) Given A,B ∈ SAT , we have A� B ∈ SAT (where � is as in Def. 5.8, §5.3.2).

(2) Given S ⊆ SAT , we have
⋂
S ∈ SAT .

We can finally define the type interpretation. Given ρ : VTy → SAT , define JT Kρ by
induction on T as follows:

JXKρ := ρ(X)
JU → T Kρ := JUKρ� JT Kρ
J(∀X)T Kρ :=

⋂
S∈SAT JT Kρ[S/X]

Lemma 9.48. For all type T and all ρ : VTy → SAT we have JT Kρ ∈ SAT .

153

9. Polymorphism

9.3.4. Adequacy

We now turn to the adequacy of our type interpretation. Recall from Def. 5.7 (§5.3.2)
that this amounts to the following:

• If x1 : U1, . . . , xn : Un ` t : T is derivable in Curry-style System F, then for all
ρ : VTy → SAT and all u1 ∈ JU1Kρ, . . . , un ∈ JUnKρ we have t[~u/~x] ∈ JT Kρ.

We need the following “semantic” Substitution Lemma.

Lemma 9.49 (Substitution). Given T,U and ρ : VTy → SAT , we have JT [U/X]Kρ =
JT Kρ[JUKρ/X].

We now prove the adequacy of the interpretation. We reason by induction on typing
derivations and by cases on the last applied rule. In the following, we assume that the
contexts E are of the form x1 : U1, . . . , xn : Un.

Case of

(Var)
(x : T) ∈ E
E ` x : T

Trivial.

Case of

(→-I)
E , x : U ` t : T

E ` λx.t : U → T

Let ~u ∈ J~UKρ and u ∈ JUKρ. We have to show (λx.t[~u/~x])u ∈ JT Kρ.

By induction hypothesis we have t[~u/~x, u/x] ∈ JT Kρ, and we are done since JT Kρ ∈
SAT and u ∈ SN .

Case of

(→-E)
E ` t : U → T E ` u : U

E ` tu : T

By definition of (−)� (−).

Case of

(∀2-I)
E ` t : T

E ` t : (∀X)T
(X /∈ FV(E))

Let ~u ∈ J~UKρ and S ∈ SAT . We have to show t[~u/~x] ∈ JT Kρ[S/X].

Note that X /∈ FV(~U), so that ~u ∈ J~UKρ[S/X], and we are done by induction
hypothesis.

Case of

(∀2-E)
E ` t : (∀X)T

E ` t : T [U/X]

Let ~u ∈ J~UKρ. By induction hypothesis we have t[~u/~x] ∈ JT Kρ[JUKρ/X] since
JUKρ ∈ SAT , and we are done by Lem. 9.49.

154

9. Polymorphism

We then directly obtain the Strong Normalization Theorem.

Theorem 9.50 (Thm. 9.39.(2)). If E ` t : T in Curry-style System F then t ∈ SN .

Proof. Exercise!

155

References

References

[AC98] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1998. 7,
23, 37, 41, 43, 58, 109

[Awo10] S. Awodey. Category Theory. Oxford University Press, Inc., USA, 2nd edition,
2010. 57

[Bar84] H.P. Barendregt. The Lambda-Calculus, its Syntax and Semantics. Studies in
Logic and the Foundation of Mathematics. North Holland, 1984. Second edition.
23, 31, 32, 37, 38, 39, 40, 80

[Bar92] H.P. Barendregt. Lambda Calculi with Types. In S. Abramsky, D.M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2.
Oxford University Press, 1992. 7, 23, 31, 35, 41, 58, 86, 139, 147, 150, 151, 152

[BBC98] S. Berardi, M. Bezem, and T. Coquand. On the Computational Content of the
Axiom of Choice. Journal of Symbolic Logic, 63(2):600–622, 1998. 82

[BBJ07] G. S. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic. Cam-
bridge University Press, fifth edition, 2007. 80, 101, 102, 103, 108

[Bee85] M. J. Beeson. Foundations of Constructive Mathematics. Ergebnisse der Math-
ematik und ihrer Grenzgebiete. Springer, Berlin, Heidelberg, 1985. 7, 98, 101,
114, 131

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. 29, 30, 33

[BO05] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice.
Lecture Notes in Logic, 20:89–107, 2005. 82

[Bus98a] S. R. Buss. An Introduction to Proof Theory. In S. R. Buss, editor, Handbook
of Proof Theory, volume 137 of Studies in Logic and the Foundations of Math-
ematics, pages 1–78. Elsevier, Amsterdam, 1998. 10, 16, 71, 83, 91, 92, 94, 95,
160, 162, 163, 164

[Bus98b] S. R. Buss. First-Order Proof Theory of Arithmetic. In S. R. Buss, editor,
Handbook of Proof Theory, volume 137 of Studies in Logic and the Foundations
of Mathematics, pages 79–147. Elsevier, Amsterdam, 1998. 97

[Cha12] A. Charguéraud. The Locally Nameless Representation. Journal of Automated
Reasoning, 49(3):363–408, 2012. 27

[DP02] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. CUP, 2nd
edition, 2002. 163

156

References

[Fri78] Harvey Friedman. Classically and intuitionistically provably recursive functions.
In Gert H. Müller and Dana S. Scott, editors, Higher Set Theory, pages 21–27,
Berlin, Heidelberg, 1978. Springer Berlin Heidelberg. 114

[Gal95] J. H. Gallier. On the Correspondance Between Proofs and λ-Terms. In
P. de Groote, editor, Cahiers du Centre de Logique. Université Catholique de
Louvain, 1995. 41, 47, 49, 57, 83, 95

[Gir91] J.-Y. Girard. A new constructive logic: Classical logic. Math. Struct. Comput.
Sci., 1(3):255–296, 1991. 22

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1989. 10, 16, 41,
58, 98, 101, 122, 125, 126, 138, 139, 141, 144, 145, 151, 152, 160

[Hof97] M. Hofmann. Syntax and semantics of dependent types. In Andrew M. Pitts and
P.Editors Dybjer, editors, Semantics and Logics of Computation, Publications
of the Newton Institute, page 79–130. Cambridge University Press, 1997. 70

[Jac01] B. Jacobs. Categorical Logic and Type Theory. Studies in logic and the founda-
tions of mathematics. Elsevier, 2001. 70

[Joh82] P.T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1982. 164

[Koh08] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer, 2008. 7, 17, 82,
100, 106, 109, 110, 114, 116, 122, 131, 132, 133, 137

[Kri93] J.-L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood, 1993. 23,
27, 37, 58, 131, 139, 147, 150, 151, 152

[Kri01] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Frænkel set theory.
Arch. Math. Log., 40(3):189–205, 2001. 58, 131

[Kri09] J.-L. Krivine. Realizability in classical logic. In Interactive models of com-
putation and program behaviour, volume 27 of Panoramas et synthèses, pages
197–229. Société Mathématique de France, 2009. 19, 58, 131

[Kri12] J.-L. Krivine. Realizability algebras II : new models of ZF + DC. Log. Methods
Comput. Sci., 8(1), 2012. 132

[KV65] S. C. Kleene and R. E. Vesley. The Foundations of Intuitionistic Mathematics,
volume 39 of Studies in Logic and the Foundations of Mathematics. Elsevier,
1965. 131

[Lev03] P. B. Levy. Call-By-Push-Value. Semantics Structures in Computation.
Springer, Dordrecht, 2003. 44

157

References

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
CUP, 1986. 57, 58

[Mel09] P.-A. Melliès. Categorical semantics of linear logic. In Interactive models of com-
putation and program behaviour, volume 27 of Panoramas et Synthèses. SMF,
2009. 16, 160

[Mel17] P.-A. Melliès. Une étude micrologique de la négation. Habilitation à diriger des
recherches, Université Paris Diderot, 2017. 22

[Miq11] A. Miquel. Existential witness extraction in classical realizability and via a
negative translation. Logical Methods in Computer Science, 7(2), 2011. 116

[Odi99] P. Odifreddi. Classical Recursion Theory, volume 143 of Studies in Logic and
the Foundations of Mathematics. Elsevier, second edition, 1999. 101, 109

[Par89] M. Parigot. On the Representation of Data in Lambda-Calculus. In Proceedings
of CSL’89, volume 440 of LNCS, pages 309–321, 1989. 149

[Pie02] B. C. Pierce. Types and Programming Languages. The MIT Press, 1st edition,
2002. 7, 41, 47, 48, 58, 138, 141

[Run05] V. Runde. A Taste of Topology. Universitext. Springer New York, 2005. 164

[Sel01] P. Selinger. Control Categories and Duality: on the Categorical Semantics of the
Lambda-Mu Calculus. Mathematical Structures in Computer Science, 11:207–
260, 2001. 19, 58

[Sim10] S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic.
Cambridge University Press, 2nd edition, 2010. 98, 112, 113, 163

[SU06] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism,
volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science Inc., 2006. 1, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 23, 27, 34, 35, 36,
37, 41, 43, 44, 46, 47, 52, 56, 57, 58, 70, 71, 78, 80, 81, 82, 83, 86, 95, 99, 100,
101, 102, 106, 107, 108, 110, 114, 115, 116, 122, 124, 125, 126, 131, 132, 137,
138, 139, 141, 144, 146, 147, 149, 150, 151, 152, 160, 162

[Tro73] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis, volume 344 of LNM. Springer Verlag, 1973. 100, 110, 114, 122, 124,
126, 129, 131, 132

[TS00] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, 2nd
edition, 2000. 47, 49, 83, 98, 101

[TvD88a] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, Volume 1,
volume 121 of Studies in Logic and the Foundations of Mathematics. Elsevier,

158

References

1988. 7, 10, 11, 12, 17, 19, 41, 58, 67, 79, 80, 82, 83, 99, 100, 101, 102, 106, 110,
112, 114, 115, 116, 131, 137

[TvD88b] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, Volume 2,
volume 123 of Studies in Logic and the Foundations of Mathematics. Elsevier,
1988. 7, 11, 83, 95, 100, 114, 122

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute
for Advanced Study, 2013. 70, 86

[vD04] D. van Dalen. Logic and Structure. Universitext. Springer, fourth edition, 2004.
7, 11, 16, 17, 19, 20, 47, 71, 76, 78, 80, 82, 83, 91, 92, 93, 99, 101, 102, 106, 107,
108, 109, 113, 126, 127, 128, 162, 163

[Wil70] S. Willard. General Topology. Addison-Wesley, 1970. 164

159

https://homotopytypetheory.org/book

A. Completeness of Classical Propositional Logic

A. Completeness of Classical Propositional Logic

This Appendix discusses the completeness of the (classical) system NK0 (Thm. 2.30,
§2.3). See §A.4 for a comparison with other usual statements.

A.1. A Semantically Reversible Sequent Calculus

In this §A.1 we show the completeness of a Gentzen-style sequent calculus for a frag-
ment of NK0. We consider (for simplicity) formulae on the grammar:

A,B ::= p | A⇒ B | ⊥

where p is an atomic proposition. Beware that in contrast with minimal logic (§2.4), we
assume the proposition ⊥. See [SU06, §7] (also [GLT89, §5], [Bus98a, §1.2] or [Mel09,
§1]) for more on Gentzen-style sequent calculi.

Definition A.1.

(1) A sequent is a pair ∆ ` Γ, where ∆ and Γ are (possibly empty) lists of formulae.

(2) A sequent A1, . . . , An ` B1, . . . , Bm is valid if (A1 ∧ · · · ∧An)⇒ (B1 ∨ · · · ∨Bm) is
valid (in the sense of Def. 2.10, §2.1.1).

(3) A rule
∆1 ` Γ1 . . . ∆n ` Γn

∆ ` Γ

is

• valid if the sequent ∆ ` Γ is valid whenever the sequents ∆1 ` Γ1, . . . ,∆n ` Γn
are all valid;

• semantically reversible if each sequent ∆i ` Γi is valid whenever the sequent
∆ ` Γ is valid.

Remark A.2. Consider a sequent A1, . . . , An ` B1, . . . , Bm. If n = 0, this sequent is
valid in the sense of Def. A.1.(2) if and only if the formula > ⇒ (B1 ∨ · · · ∨ Bm) is
valid, that is if and only if B1 ∨ · · · ∨ Bm is valid. Symmetrically, if m = 0 the above
sequent is valid if and only if (A1 ∧ · · · ∧ An) ⇒ ⊥ (that is ¬(A1 ∧ · · · ∧ An)) is valid.
As a consequence, the validity of the empty sequent ` (i.e. with n = m = 0 above) is
equivalent to the validity of > ⇒ ⊥. It follows that the empty sequent ` is not valid.

We shall consider deduction with the rules of Fig. 29.

Remark A.3. All rules of Fig. 29 are valid.

Lemma A.4. All rules of Fig. 29 are semantically reversible.

Proof. Exercise!

160

A. Completeness of Classical Propositional Logic

∆, A ` A,Γ
∆ ` Γ

ς(∆) ` ς(Γ) ∆,⊥ ` Γ

∆ ` Γ

∆ ` ⊥,Γ

∆ ` A,Γ ∆, B ` Γ

∆, A⇒ B ` Γ

∆, A ` B,Γ
∆ ` A⇒ B,Γ

Figure 29: A Reversible Sequent Calculus (where ς is a permutation).

Theorem A.5 (Completeness). If ∆ ` Γ is a valid sequent, then ∆ ` Γ is derivable
with the rules of Fig. 29.

Theorem A.5 can be proved by iteratively applying Lem. A.4 along an induction on the
following measure |∆ ` Γ| of sequents ∆ ` Γ. First, |A| is defined by induction on A as

|p| := 0
|⊥| := 1

|A⇒ B| := |A|+ |B|+ 1

Then let |A1, . . . , An ` B1, . . . , Bm| := |A1|+ · · ·+ |An|+ |B1|+ · · ·+ |Bm|.

Proof. Exercise!

Remark A.6. We stated Thm. A.5 for the logical connectives ⇒ and ⊥ only because
this is sufficient for the completeness of NK0, as the other connectives (∧,∨,>) are
classically definable from ⇒,⊥ (see Lem. A.10, §A.3 below). But Thm. A.5 actually
extends to the full language of NK0, using e.g. the following semantically reversible rules:

∆ ` Γ

∆,> ` Γ ∆ ` >,Γ

∆, A,B ` Γ

∆, A ∧B ` Γ

∆ ` A,Γ ∆ ` B,Γ
∆ ` A ∧B,Γ

∆, A ` Γ ∆, B ` Γ

∆, A ∨B ` Γ

∆ ` A,B,Γ
∆ ` A ∨B,Γ

A.2. Translation to NK0

We now consider a translation from the classical sequent calculus of Fig. 29 to NK0.

Proposition A.7. If A1, . . . , An ` B1, . . . , Bm is derivable using the rules of Fig. 29
then A1, . . . , An,¬B1, . . . ,¬Bm ` ⊥ is derivable in NK0.

Proof. Exercise!

Remark A.8. Proposition A.7 extends to the full language of NK0 if one extends the
sequent calculus of Fig. 29 with the rules of Rem. A.6.

161

A. Completeness of Classical Propositional Logic

A.3. Completeness of NK0

We finally show the completeness of NK0.

Theorem A.9 (Completeness of NK0 (Thm. 2.30, §2.3)). If ∆ ` A is a valid sequent
(in the language of §2), then it is provable in NK0.

We obtain Thm. A.9 from Thm. A.5 and Prop. A.7 via the following, which says that
all the formulae of §2 can be defined (w.r.t. classical logic) in the language of §A.1.

Lemma A.10. NK0 proves the following:

(1) ` > ⇔ (⊥ ⇒ ⊥)

(2) ` (A ∧B)⇔ ((A⇒ B ⇒ ⊥)⇒ ⊥)

(3) ` (A ∨B)⇔ ((A⇒ ⊥)⇒ (B ⇒ ⊥)⇒ ⊥)

Proof. Exercise!

Proof of Theorem A.9.

Proof. Let ∆ ` A be a sequent in the language of §2. Assume that ∆ ` A is valid.
First, using Lem. A.10 (and an induction on formulae) we can put ∆ ` A in the language
of §A.1. Hence Thm. A.5 implies that ∆ ` A is provable in the sequent calculus of
Fig. 29. Then Prop. A.7 implies that NJ0 proves ∆ ` ¬¬A, and we conclude with
(DNE) (Cor. 2.23, §2.2.1).

A.4. Comparison with other (Compactness and) Completeness Statements

Theorem A.9 is essentially equivalent to [SU06, Thm. 6.1.10] (see also [Bus98a, 1.1.3.(1)
& 1.1.4]). A common stronger formulation of completeness for classical propositional
logic is e.g. [vD04, Thm. 1.5.13] (see also [Bus98a, 1.1.3.(2)]). In order to state it, we
first need to make the following definition, based on [vD04, Def. 1.4.2 & Def. 1.5.2].

Definition A.11. Let Φ be an arbitrary set of formulae.

(1) We write Φ ` A if there are formulae A1, . . . , An ∈ Φ such that A1, . . . , An ` A is
derivable in NK0.

(2) We say that Φ is inconsistent if Φ ` ⊥.

(3) We say that Φ is consistent if it is not inconsistent.

Hence a set Φ of formulae is consistent iff Φ 6` ⊥.

Definition A.12. Let Φ be an arbitrary set of formulae.

(1) Given a valuation v, we write v |= Φ if v |= B for all B ∈ Φ.

162

A. Completeness of Classical Propositional Logic

(2) Given a formula A, we write Φ |= A when for every valuation v, we have v |= A
whenever v |= Φ.

We can now state [vD04, Thm. 1.5.13] (see also [Bus98a, 1.1.3.(2)]).

Theorem A.13. If Φ is consistent, then there is a valuation v such that v |= Φ.

Note that Thm. A.13 easily gives Thm A.9.

Proof. Assume that ∆ ` A is valid. Let Φ be the set of formulae occurring in ∆. Then
Φ ∪ {¬A} is inconsistent since if it were consistent, Thm. A.13 would imply that there
is a valuation v such that v 6|= A and v |= Φ, thus contradicting the validity of ∆ ` A.
But if Φ ∪ {¬A} is inconsistent, we get ∆,¬A ` ⊥ and thus ∆ ` A in NK0.

Theorem A.13 is actually stronger than Thm A.9. This is best seen via the usual
(purely model-theoretic) Compactness Theorem for (classical) propositional logic.
See e.g. [Bus98a, 1.1.5] (see also [vD04, Ex. 5.8]).

Theorem A.14 (Compactness). If Φ |= A then there is a finite Φ0 ⊆ Φ such that
Φ0 |= A.

Theorem A.14 should not be confused with the following trivial consequence of Def. A.11.(1):

• If Φ ` A, then there is a finite Φ0 ⊆ S such that Φ0 ` A.

It is not difficult to see that Thm. A.13 is equivalent to (the conjunction of Thm. A.9
with) Thm. A.14.

Proof. Assume Thm. A.13. We already noted that it gives Thm. A.9, so we only discuss
Thm. A.14. Consider Φ and A such that Φ |= A. By definition, there is no valuation
v such that v |= ¬A and v |= Φ. It thus follows from Thm. A.13 that Φ ∪ {¬A} is
inconsistent, i.e. that Φ,¬A ` ⊥. Hence there is a finite Φ0 ⊆ Φ such that Φ0,¬A ` ⊥,
that is Φ0 ` A in NK0 and thus Φ0 |= A.

Conversely, assume Thm. A.14. Let Φ be a consistent set of formulae. Assume toward
a contradiction that Φ |= ⊥. Hence by Thm. A.14 there would be A1, . . . , An ∈ Φ such
that the sequent A1, . . . , An ` ⊥ is valid, so that A1, . . . , An ` ⊥ in NK0 by Thm. A.9.
But the latter would imply Φ ` ⊥, a contradiction. It follows that Φ 6|= ⊥, which by
definition gives a valuation v such that v |= ⊥ and v |= Φ.

The Compactness Theorem A.14 is the core of Thm. A.13 in terms of infinite combi-
natorics. It is typically proved using the Prime Ideal Theorem, which itself follows
from Zorn’s Lemma, see e.g. [DP02, §10.16–10.19 & §11.16]. The precise statement
of [vD04, Thm. 1.5.13] avoids the Prime Ideal Theorem since it restricts to countable
languages (but still requires some infinitary combinatorics, see [Sim10, §IV.3]). See
also [Bus98a, 1.1.5 & 1.1.6] for further comments.

The name “compactness” for Thm. A.14 suggests connections with topological com-
pactness, and indeed, Thm. A.14 can be seen as a consequence of the compactness of
products of compact spaces. The latter result is the famous Tychonoff Theorem, see

163

A. Completeness of Classical Propositional Logic

e.g. [Run05, Thm. 3.3.21] or [Wil70, Thm. 17.8]. See e.g. [Run05, §3.3] or [Wil70, §8
& §17] for more on topological compactness and product spaces. In its general form,
Tychonoff’s Theorem is equivalent to the Axiom of Choice (see e.g. [Wil70, Ex. 17 O]
or [Joh82, Notes on §III.1]).

Topological Proof of the Compactness Theorem A.14. It is easy to see that the
Compactness Theorem A.14 follows from Tychonoff’s Theorem (see also [Bus98a, 1.1.6]).

Proof. Write AP for the set of atomic propositions. In contrast with Def. 2.10 (§2.1.1)
we see valuations v ⊆ AP as characteristic functions AP→ 2 (that we still denote v).

Consider the product space 2AP, with 2 discrete (see e.g. [Run05, Def. 3.3.19] or [Wil70,
Chap. 3, §8]). It follows from the Tychonoff’s Theorem (see e.g. [Run05, Thm. 3.3.21]
or [Wil70, Thm. 17.8]) that 2AP is compact since 2 is compact. Note that a given for-
mula A over AP only involves a finite number of propositional variables over AP, so that
the set UA := {v ∈ 2AP | v |= A} is a clopen subset of 2AP.

Assume now that Φ |= A, where Φ is an arbitrary set of formulae (over AP). Given
v ∈ 2AP, note that v 6|= Φ if and only if v belongs to the open set

⋃
{U¬B | B ∈ Φ}.

Hence, Φ |= A means that 2AP is covered by the family of opens sets {UA}∪{U¬B | B ∈
Φ}. Since 2AP is compact, it admits a finite subcover, say {UA} ∪ {U¬B | B ∈ Φ0}
for some finite Φ0 ⊆ Φ. But 2AP ⊆ {UA} ∪ {U¬B | B ∈ Φ0} precisely means that
Φ0 |= A.

164

	Introduction
	Propositional Logic
	Natural Deduction for Intuitionistic Propositional Logic
	Semantics with Truth Values
	Derivable and Admissible Rules

	Intuitionistic Negation
	Basic Classical Laws: Excluded Middle and Elimination of Double Negation
	Reductio ad Absurdum and The Law of Peirce

	Classical Propositional Logic
	Minimal Implicational Logic
	A Negative Translation
	Glivenko's Theorem

	The Untyped Lambda-Calculus
	Introduction
	Syntax
	The Terms of the Lambda-Calculus
	Examples and Notational Conventions
	Free and Bound Variables, Towards Alpha-Conversion
	Alpha-Conversion via a Locally Nameless Representation

	Beta-Reduction
	Capture-Avoiding Substitution
	The Notion of Beta-Reduction
	The Relation of Beta-Reduction

	Reductions, Conversions and Confluence
	Undecidability of Beta-Conversion
	A Further Simple Fact on Confluence
	Normalization and Newman's Lemma

	Confluence of Beta-Reduction
	Some Basic Properties
	Parallel Nested Beta-Reduction
	Proof of Confluence
	An Alternative Proof by Complete Developments

	Eta-Conversion and Böhm's Theorem
	Combinatory Logic
	Representation of Beta-Conversion

	Curry-Howard Correspondence for Intuitionistic Propositional Logic
	Introduction
	The Simply-Typed Lambda-Calculus
	Syntax
	Main Properties

	Curry-Howard Correspondence for Intuitionistic Minimal Implicational Logic
	Beta-Reduction and Curry-Howard

	Full Intuitionistic Propositional Logic
	Intuitionistic Conjunctions and Products
	Intuitionistic Disjunctions and Sums
	A Simply-Typed Lambda-Calculus with Sums and Products
	Main Properties
	Curry-Howard Correspondence

	Normalization for Simple Types
	Introduction
	Notational Preliminaries
	A First Normalization Result: The Disjunction Property
	Weak Head Reduction
	Type Interpretations and Adequacy
	Proof of the Disjunction Property

	Reducibility Candidates
	Strong Normalization
	Inductive Definition of Strong Normalization
	Strong Normalization and Weak Head Reduction
	Type Interpretations and Adequacy

	First-Order Predicate Logic
	Preliminaries
	First-Order Signatures
	The Language of First-Order Predicate Logic
	Structures and Models

	Natural Deduction for First-Order Predicate Logic
	Structural Properties
	Soundness and Completeness w.r.t. the Classical Semantics; Theories
	Negative Translations
	Undecidability
	The Failure of Glivenko's Theorem for Full First-Order Logic
	Extraction

	Proof-Terms for Intuitionistic First-Order Predicate Logic
	Structural Properties
	Beta-Reduction
	The Full System and its Main Properties

	First-Order Predicate Logic with Equality
	The Language of First-Order Predicate Logic with Equality
	Deduction for First-Order Predicate Logic with Equality
	Models of First-Order Predicate Logic with Equality
	Negative Translations for First-Order Predicate Logic with Equality
	Proof-Terms for First-Order Predicate Logic with Equality
	On Term Extraction and Classical Logic

	Normalization

	First-Order Arithmetic
	Theories of Natural Numbers with Induction
	Peano Arithmetic
	Primitive Recursive Functions
	Representation of Computable Functions
	The Language of First-Order Arithmetic
	The Axioms of First-Order Arithmetic
	First-Order Peano Arithmetic
	Representation and Incompleteness
	A Classical Arithmetic of True Equalities

	Heyting Arithmetic
	Examples and Basic Properties
	The Quantifier-Free Formulae of HA
	Relation to PA and Extraction
	Friedman's Translation

	Gödel's System T
	Proof-Terms for Induction
	Definition and Main Properties
	Structural Properties
	Normalization Properties
	Expressiveness and Representation
	Arithmetization
	Strong Normalization

	Modified Realizability
	Proof of Adequacy
	Extension to Primitive Disjunctions
	The Theory of Realized Formulae
	Realizability with Truth

	Polymorphism
	Church-Style System F
	Definition
	Structural Properties
	Examples of Impredicative Codings
	Main Properties

	Curry-Style System F
	Erasing from Church-Style to Curry-Style System F
	Examples of Polymorphic Typings of Pure Lambda-Terms
	Main Properties

	Strong Normalization
	Erasing from Church-style to Curry-style System F
	Strong Normalization of Curry-Style System F
	Reducibility Candidates
	Adequacy

	Completeness of Classical Propositional Logic
	A Semantically Reversible Sequent Calculus
	Translation to NK0
	Completeness of NK0
	Comparison with other (Compactness and) Completeness Statements

