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This paper surveys a new perspective on tree automata and Monadic Second-
Order Logic (MSO) on infinite trees. We show that the operations on tree au-
tomata used in the translations of MSO-formulae to automata underlying Rabin’s
Tree Theorem (the decidability of MSO) correspond to the connectives of Intuition-
istic Multiplicative Exponential Linear Logic (IMELL). Namely, we equip a variant of
usual alternating tree automata (that we call uniform tree automata) with a fibred
monoidal closed structure which in particular handles a linear complementation of
alternating automata. Moreover, this monoidal structure is actually Cartesian on
non-deterministic automata, and an adaptation of a usual construction for the simu-
lation of alternating automata by non-deterministic ones satisfies the deduction rules
of the !(−) exponential modality of IMELL. (But this operation is unfortunately not
a functor because it does not preserve composition.)

Our model of IMLL consists in categories of games which are based on usual
categories of two-player linear sequential games called simple games, and which gen-
eralize usual acceptance games of tree automata. This model provides a realizability
semantics, along the lines of Curry-Howard proofs-as-programs correspondence, of
a linear constructive deduction system for tree automata. This realizability seman-
tics, which can be summarized with the slogan “automata as objects, strategies as
morphisms”, satisfies an expected property of witness extraction from proofs of ex-
istential statements. Moreover, it makes it possible to combine realizers produced
as interpretations of proofs with strategies witnessing (non-)emptiness of tree au-
tomata.

1 Introduction

Monadic Second-Order Logic (MSO) on infinite trees is a rich system, which contains non
trivial mathematical theories (see e.g. [Rab69, BGG97]), and which subsumes many logics, in
particular modal logics (see e.g. [BdRV02]) and logics for verification (see e.g. [VW08]). Rabin’s
Tree Theorem [Rab69], the decidability of MSO on infinite trees, is an “important and difficult
decidability theorem for mathematical theories” ([BGG97, §1.3, p. 11]).
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The original proof of [Rab69] relied on an effective translation of formulae to finite state
automata running on infinite trees. Since then, there has been considerable work on Rabin’s
Tree Theorem, culminating in streamlined decidability proofs, as presented e.g. in [Tho97,
GTW02, PP04]. Most current approaches to MSO on infinite trees are based on translations of
MSO-formulae to automata.1

In this paper, we show that the operations on tree automata used in the translations of
MSO-formulae to automata underlying Rabin’s Tree Theorem correspond to the connectives
of Intuitionistic Multiplicative Exponential Linear Logic (IMELL) [Gir87]. Namely, we equip a
variant of usual alternating tree automata (that we call uniform tree automata) with a fibred
monoidal closed structure which in particular (via determinacy of ω-regular games) handles a
linear complementation of alternating automata. Moreover, this monoidal structure is actually
Cartesian on non-deterministic automata, and an adaptation of a usual construction for the
simulation of alternating automata by non-deterministic ones satisfies the deduction rules of
the !(−) exponential modality of IMELL. (But this operation is unfortunately not a functor
because it does not preserve composition.)

Our model of IMLL consists in categories of games which are based on usual categories of two-
player linear sequential games called simple games (see e.g. [Abr97, Hyl97]), and which generalize
usual acceptance games of tree automata.2 This model provides a realizability semantics, along
the lines of the Curry-Howard proofs-as-programs correspondence (see e.g. [GLT89, SU06]), of a
linear constructive deduction system for tree automata (see Fig. 1). This realizability semantics,
which can be summarized with the slogan “automata as objects, strategies as morphisms”, satis-
fies an expected property of witness extraction from proofs of existential statements. Moreover,
it makes it possible to combine realizers obtained as interpretations of proofs with strategies
witnessing (non-)emptiness of tree automata.

Our motivation for this deduction system is that even if Rabin’s Tree Theorem proves the
existence of decision procedures for MSO on infinite trees, there is (as far as we know) no
working implementation of such procedures. The reason is that all known translations of for-
mulae to tree automata involve at some stage the determinization of automata on ω-words
(McNaughton’s Theorem [McN66]), which is believed not to be amenable to tractable imple-
mentation (see e.g. [KV05]). We instead target semi-automatic approaches in which the user
can interactively perform some proofs steps and can delegate sufficiently simple subgoals to
automatic non-emptiness checkers (solving parity games). The partial proof tree built by the
user is then translated to a combinator able to compose the witnessing strategies obtained from
the algorithms.

This work builds on [Rib15], which proposed monoidal fibrations of games and tree automata,
and extends it with a monoidal closed structure, based on a variant of alternating automata (that
we call uniform automata), and which allows for a clearer connection of our model with IMELL.
We follow the guidelines and axiomatizations provided by categorical logic and categorical
approaches to the Curry-Howard correspondence, for which we refer to [Jac01, LS86] and [AC98].
We moreover refer to [Mel09] for a comprehensive presentation of categorical axiomatizations
of models of (subsystems of) linear logic. The present paper is a slightly shortened version
of [Rib18]. In the remaining of this Introduction, we sketch some key points of Rabin’s Theorem
(§1.1, §1.2) and then outline the main aspects of our decomposition of MSO in IMELL and the
corresponding realizability interpretation (§1.3–§1.5).

1But with the notable exception of [Blu13].
2However, the IMLL-structure underlying our model differs from the usual IMLL-structure of simple games.
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1.1 MSO and (Non-Deterministic) Tree Automata. Let us set some concepts and notations.
Concatenation of sequences s, t is denoted either s.t or s · t, and ε is the empty sequence. We fix
throughout the paper a finite non-empty set D of tree directions. We are interested in labelings
of the full D-ary tree D∗ over different alphabets. Alphabets (denoted Σ,Γ, etc) are finite non-
empty sets, and Σ-labeled D-ary trees are functions T : D∗ → Σ. Throughout the paper, we
shall denote with overlines both vectors and finite words, so that e.g. T denotes a sequence
T = T1, . . . , Tn, while a ∈ Σ∗ denotes a word a = a1. · · · .an where each ai is a letter of Σ.

There are different expressively equivalent variants of MSO over infinite trees. The main idea
is that we have a two-sorted logic, with a sort of individuals ranging over the positions of the
full D-ary tree D∗ (that is over D∗ itself) and a sort of monadic second order variables ranging
over sets of positions (that is over P(D∗)). When discussing translations to automata, it is
actually customary and convenient (following e.g. [Tho97]), to only allow monadic variables,
and to simulate quantifications over individuals via a (definable) singleton predicate. We shall
moreover not be concerned with any particular choice of atomic predicates. We thus assume
given a set At of atomic predicates. MSO-formulae are then given by

ϕ,ψ ::= α | ⊥ | > | ¬ϕ | ϕ ∧ ψ | (∃X)ϕ (where α ∈ At)

These formulae are interpreted in the full D-ary tree D∗ as expected, assuming an interpretation
of the atomic predicates.

On the other hand, there are two families of tree automata involved in the interpretation
of MSO-formulae: non-deterministic tree automata and alternating tree automata3. The sim-
plest notion is that of non-deterministic automaton, and it is sufficient to introduce the basic
motivations and methodology of this work.

A tree automaton A consists of a finite set Q of states, with a distinguished4 initial state
qı ∈ Q, an acceptance condition given by an ω-regular set Ω ⊆ Qω, and a transition function ∂.
A non-deterministic tree automaton A over Σ has a transition function of the form

∂ : Q× Σ −→ P(D −→ Q)

Acceptance for tree automata can equivalently be described by games or run trees. The
notion of run tree is simpler and sufficient at various places in this Introduction and §2. A
run tree of A on T : D∗ → Σ is a tree R : D∗ → Q such that R(ε) = qı, and which respects
the transitions of A, in the sense that for each tree position p ∈ D∗, there exists a D-tuple
(qd)d∈D ∈ ∂(R(p), T (p)) such that R(p.d) = qd for all d ∈ D. The run R is accepting if all its
infinite paths belong to Ω. We say that T is accepted by A if there exists an accepting run of
A on T , and let L(A) be the set of trees accepted by A. We moreover write A(T ) for the set
of accepting runs of A on T .

1.2 Games and Alternating Automata. The main difficulty when translating MSO-formulae
to tree automata is the interplay between negation and (existential) quantification. Histori-
cally, Rabin [Rab69] translated MSO-formulae to non-deterministic tree automata. The major
achievement of Rabin [Rab69] was to show that non-deterministic automata on infinite trees
are closed under complement. This means that for every non-deterministic automaton A one
can build a non-deterministic automaton ∼A which accepts exactly the trees rejected by A.

Rabin’s original construction [Rab69] of a complement ∼A from A has been considerably
simplified by Gurevich and Harrington [GH82] thanks to the notion of acceptance game. The

3Alternating automata are not always made explicit (see e.g. [Tho97]).
4It is also customary (and equivalent in terms of expressiveness) to allow several initial states.
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idea is to model the evaluation of an automaton A on an input tree T as an infinite two-players
game G(A, T ). In this game, the Proponent P (also called ∃löıse or Automaton) plays for
acceptance while its Opponent O (also called ∀bélard or Pathfinder) plays for rejection, and A
accepts T when P has a winning strategy. A typical (infinite) play χ in G(A, T ) has the form:

P O P O P O

(q0,d)d∈D · d0 · (q1,d)d∈D · d1 · · · · · (qn+1,d)d∈D · dn+1 · · · ·∈ ∈ ∈ ∈ ∈ ∈

∂(qı, T (ε)) D ∂(q0,d0 , T (d0)) D ∂(qn,dn , T (p)) D

where p = d0 · . . . ·dn. Then χ is winning for P if the sequence of states qı, q0,d0 , q1,d1 , . . . belongs
to Ω; otherwise it is winning for O. Note that P chooses transitions (qd)d∈D while O chooses tree
directions d ∈ D. Hence, there is a bijection between accepting runs R ∈ A(T ) and winning
P-strategies in G(A, T ). Since acceptance games are determined, A does not accept T precisely
when O has a winning strategy in G(A, T ). Gurevich and Harrington [GH82] show that in
acceptance games, winning strategies can be assumed to be finite state w.r.t. game positions of
the form (p, q) ∈ D∗ × Q, that is to only depend on a finite memory in addition to the game
positions in D∗ ×Q.5 This makes it possible to devise an automaton ∼A which, using a usual
projection operation, non-deterministically checks for the existence of winning O-strategies.

However, the construction of ∼A is still not trivial because the roles of P and O in acceptance
games are not symmetric, so that dualizing the acceptance game of a non-deterministic automa-
ton A does not directly give a non-deterministic automaton ∼A. Since [MS87, EJ91, MS95] it
is known that the construction of ∼A can be neatly decomposed using alternating automata.
The original idea, as stated in e.g. [MS87, MS95], is for an alternating automaton A with state
set Q to have transitions with values in the free distributive lattice over Q×D. But recall from
e.g. [Joh86, Lem. I.4.8] that free distributive lattices are given by irredundant disjunctive nor-
mal forms. Actually, following [Wal02], we can give up irredundancy. We thus simply assume
that transitions are of the form

∂ : Q× Σ −→ P(P(Q×D)) (1)

and we read ∂(q, a) as the disjunctive normal form∨
γ∈∂(q,a)

∧
(q′,d)∈γ

(q′, d)

This results in acceptance games where intuitively P plays from disjunctions while O plays from
conjunctions. A typical play in the acceptance game G(A, T ) with A alternating has the form

P O P O P

γ0 · (q0, d0) · γ1 · (q1, d1) · · · · · γn+1 · · · ·∈ ∈ ∈ ∈ ∈

∂(qı, T (ε)) γ0 ∂(q0, T (d0)) γ1 ∂(qn, T (p))

Hence, P chooses relations γk ∈ P(Q × D) instead of tuples (qk,d)d∈D while O chooses pairs
(qk, dk) ∈ γk instead of just tree directions dk ∈ D. The main consequence is that O may now
be allowed to choose between pairs (q′k, dk), (q

′′
k , dk) ∈ γk with different states q′k, q

′′
k for the same

tree direction dk ∈ D.

5This is trivial for P-strategies but not for O-strategies.
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The extra possibility for O to choose states in addition to tree directions allows us to define a
complement of A which essentially simulates A while reversing the roles of P and O. This can
be implemented with an alternating automaton6 A‚ having the same states as A. The idea is
that since the double powerset P(P(Q × D)) in (1) represents disjunctive normal forms over
Q×D, the transition function of A‚ can just take (q, a) ∈ Q×Σ to a disjunctive normal form
representing the dual of ∂(q, a). Then, if the acceptance condition of A‚ is the complement of
Ω, it follows from game determinacy that L(A‚) is the complement of L(A).

Every alternating automaton A can be simulated by a non-deterministic automaton !A of
exponential size (this is the Simulation Theorem [MS87, EJ91, MS95], see also §7.2), while
non-deterministic automata are linearly embedded into alternating automata via the obvious
mapping

(qd)d∈D ∈ QD 7−→ {(qd, d) | d ∈ D} ∈ P(Q×D)

On the other hand, non-deterministic automata are easily (and linearly in the number of
states) closed under projections ∃̃Σ(−) which implement the existential quantifications of MSO.

The situation can be pictured as follows:

Non-Deterministic
Automata

Alternating
Automata

!(−)

∃̃(−) (−)‚

(2)

Accordingly, in most modern approaches to MSO on infinite trees, the complementation of
non-deterministic tree automata can be decomposed as

∼A = !(A‚) (3)

1.3 Toward Linear Logic. The model of [Rib15] consists in categories of two-player sequential
games generalizing the usual acceptance games of tree automata. Using the notion of uniform
automata (to be introduced in §3), the extension of [Rib15] proposed in this work shows that
the decomposition depicted in (2) of the translation of MSO-formulae to non-deterministic tree
automata via alternating automata corresponds to some extent to an IMELL-structure:

• First, the usual direct synchronous product of alternating automata (which we denote
(−)⊗ (−)) has a symmetric monoidal structure. Moreover, thanks to the monoidal-closed
structure of (−) ⊗ (−) on uniform automata, the set of morphisms from A to B is in
bijection with the set of winning P-strategies in the acceptance game of an automaton
(A( B) over T . In particular, linear complements are obtained with

A‹ ' A( ‹
(where ‹ is a particular automaton accepting no tree), with as expected T ∈ L(A‹) iff
T /∈ L(A).

6(−)‚ was noted ∼(−) in [Rib15].
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• Second, we show that the simulation operation !(−) satisfies the deduction rules of the
usual modality !(−) of IMELL. Moreover, the symmetric monoidal product (−) ⊗ (−) is
Cartesian on non-deterministic automata, so that the picture (2) is similar to the usual
linear-non-linear adjunctions in models of IMELL. (Unfortunately, in our models the
operation !(−) is not a functor.7)

The connection between alternating automata and IMELL suggests that we may take variants
of IMELL as intermediate steps between MSO and automata. In our setting, an IMELL-based
language for MSO would consist of the following formulae:

ϕ,ψ ::= α | ⊥ | I | ϕ⊗ ψ | ϕ( ψ | !ϕ | (∃X)ϕ | (∀X)ϕ

This language must be seen as a refinement of MSO with finer-grained connectives, which
directly correspond to operations on automata (the primitive universal quantification is actually
non-standard, see §6). Since the connectives of IMELL correspond to operations on automata,
provided a (non-deterministic) automaton A(α) is given for each atomic formula α ∈ At, one
can (inductively) associate an automaton A(ϕ) to each IMELL formula ϕ.

It would have been natural to also consider the additive connectives & (conjunction) and
⊕ (disjunction) of linear logic, which do correspond to known constructions on alternating
automata. However, the expected categorical properties of these connectives would require an
extension of our setting that we leave for further work. Keeping this in mind, the translation of
MSO to non-deterministic automata induced by (3) factors via the map (−)nd : MSO→ IMELL
given by

αnd := α ⊥nd := ⊥ >nd := I
(¬ϕ)nd := !(ϕnd ( ⊥)

(ϕ ∧ ψ)nd := ϕnd ⊗ ψnd

((∃X)ϕ)nd := (∃X)ϕnd

while the translation of MSO to alternating automata factors via the map (−)alt : MSO→ IMELL
given by

αalt := α ⊥alt := ⊥ >alt := I
(¬ϕ)alt := ϕalt ( ⊥

(ϕ ∧ ψ)alt := ϕalt ⊗ ψalt

((∃X)ϕ)alt := (∃X)!ϕalt

The factorizations of the translations of MSO to automata via IMELL are sound in the following
sense.

Proposition 1.1. Let (−)† be either (−)nd or (−)alt. A closed MSO-formulae ϕ is true in the
full infinite D-ary tree if and only if A(ϕ†) accepts the unique 1-labeled tree.

1.4 Computational Interpretation of Proofs. In our view, proposing IMELL as an intermedi-
ate system between MSO and automata should rely on a suitable computational interpretation
of proofs, along the lines of the Curry-Howard proofs-as-programs correspondence. We explain
here our view that the relevant computational objects are runs of automata or P-strategies in
acceptance games. This leads us to the slogan “automata as objects, strategies as morphisms”,
and implies that we consider a deduction system for automata rather than IMELL formulae.

7It does not preserve composition, because of issues with positionality of strategies. Possible workarounds, left
as future work, are discussed in §8.1.
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Our deduction system manipulates sequents of the form

T ; A1, . . . ,An ` B (4)

where T is an infinite tree labeled over (say) the alphabet Σ, andA1, . . . ,An,B are tree automata
over Σ. We see these sequents with two different levels of interpretation. The first level interprets
provability: if the sequent (4) is provable, then the automaton B accepts the tree T as soon as
the automata A1, . . . ,An all accept T .

The second level is the computational interpretation of proofs of the Curry-Howard correspon-
dence. This is best exemplified with existential quantifications. The existential quantifications
of MSO are implemented by a projection operation on non-deterministic automata. Consider
a non-deterministic automaton A over the alphabet Γ × Σ. Its projection ∃̃ΣA is the non-
deterministic automaton over Γ defined as A but with transition function

∂∃̃ΣA : QA × Γ −→ P(D→ QA)

(q, b) 7−→
⋃

a∈Σ ∂A(q, (b, a))

As expected, ∃̃ΣA accepts T : D∗ → Γ iff there exists U : D∗ → Σ such that A accepts
〈T,U〉 : D∗ → Γ× Σ.

Consider now a non-deterministic automaton B over the alphabet Σ ' 1×Σ, where 1 ' {•}
is a singleton set. By computational interpretation of proofs, we mean that from a formal proof
of the sequent

1 ; ` ∃̃ΣB

(where 1 stands for the unique 1-labeled tree) one should be able to extract a witness for
the existential quantification ∃̃ΣB, that is a Σ-labeled tree accepted by B. Such witnesses can
actually be extracted from the runs of ∃̃ΣB on 1. First note that a run R of a non-deterministic
automaton A on T defines a function p ∈ D∗ 7−→ (qd)q∈D ∈ ∂A(R(p), T (p)). It follows that

given an accepting run R of ∃̃ΣB on 1, then from the induced function

p ∈ D∗ 7−→ (qd)d∈D ∈
⋃
a∈Σ

∂B(R(p), a)

one can get a Σ-labeled tree T such that R is an accepting run of B on T .
In other words, runs of automata convey the kind of information one is usually interested in

with computational interpretations of proofs. We will however rather rely on the more complex
notions of acceptance games and strategies. There are two reasons for this choice. First, as
discussed in §1.2 above, games give a smooth treatment of complementation of tree automata.
The second reason, which we motivate with more details in §2, is that games and strategies
are equipped with well-known categorical structures, which allow to easily define compositional
interpretations of proofs.

Following the methodology of categorical logic, the categories proposed here and in [Rib15]
are indexed (or fibred) over a base category T of trees, whose objects are alphabets and whose
morphisms from Σ to Γ induce functions from Σ-labeled trees to Γ-labeled trees (see §2.2
and §4). In this setting, existential quantifications (in the categorical sense) are provided by a
slight modification (denoted ∃(−)) of the usual projection ∃̃(−).

1.5 Toward Realizability Interpretations of MSO. The ultimate motivation for the Curry-
Howard approach to automata on infinite trees proposed in this paper, together with the un-
derlying decomposition of the translation of MSO-formulae to tree automata via IMELL, is to
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provide realizability interpretations of MSO (in the spirit of e.g. [SU06, Koh08]). We think that
the model presented here (consolidating [Rib15]) is a preliminary step toward this goal. Let us
briefly describe our main results in this direction.

Generalizing (4), our deduction system also manipulates sequents of the form

M ; A1, . . . ,An ` B (5)

(see §2.2) where M is a T-morphism, from say Σ to Γ and the automata A1, . . . ,An,B have
input alphabet Γ. In case M is the identity T-map on Σ, the sequent (5) is written

Σ ; A1, . . . ,An ` B (6)

which in contrast with (4) and (5) does not mention any tree. The full system is presented in
Fig. 1, and we can state a second soundness result.

Proposition 1.2. Given IMELL-formulae ϕ1, . . . , ϕn, ϕ, we have

ϕ1, . . . , ϕn `IMELL ϕ =⇒ 2p ; A(ϕ1), . . . , A(ϕn) ` A(ϕ)

(where ϕ1, . . . , ϕn, ϕ have free variables among X1, . . . , Xp).

The symmetric monoidal closed structure, together with the categorical quantifiers and the
interpretation of simulation as an exponential modality !(−), allows us to interpret proofs in
the deduction system of Fig. 1. From a proof D of a sequent (6), one can (compositionally
w.r.t. the structure of D) extract a winning finite-state strategy σ in an infinite game of the
form A1⊗· · ·⊗An( B. As indicated in §1.3, A1⊗· · ·⊗An essentially evaluates the automata
A1, . . . ,An in parallel, while the linear arrow( is a synchronous restriction of the usual linear
arrow of simple games. When we have a strategy σ winning in A1⊗ · · · ⊗An( B, we say that
σ is a realizer and write

σ  A1 ⊗ · · · ⊗ An −( B

In case (6) is of the form 1 ; ` ∃ΣN (with N non-deterministic), we indeed obtain a compu-
tational interpretation of proofs in the sense of §1.4, since as shown in §7.1.2, we have

σ  ∃ΣN ⇐⇒ σ = 〈T, τ〉 where T : D∗ → Σ and τ  N (T )

Assume now that (6) is of the form

Σ ; A ` B (7)

Then a Σ-labeled tree T induces a substitution functor T ?, whose action on σ gives a function
T ?(σ) taking any winning P-strategy τ on A(T ) to a winning P-strategy T ?(σ) ◦ τ on B(T ) (see
Prop. 4.11). This gives the rule

σ  A( B
T ?(σ)  A(T )( B(T )

and the function
τ  A(T ) 7−→ T ?(σ) ◦ τ  B(T )

In other words, realizers of sequents of the form (7) can be composed (via substitution) with
strategies τ on A(T ) obtained by any possible mean.

To summarize, we get the following soundness result.
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Theorem 1.3. Given automata A,A over Σ,

Σ ; A1, . . . ,An ` A =⇒  A1 ⊗ · · · ⊗ An( A (8)

 A1 ⊗ · · · ⊗ An( A =⇒ L(A1) ∩ · · · ∩ L(An) ⊆ L(A) (9)

More generally, the methodology behind our deduction system and its realizability interpre-
tation targets interactive proofs systems, allowing possible human simplifications or decom-
positions of the goals given to automatic tools, and moreover to combine the corresponding
witnessing strategies. Our motivation is that even if Rabin’s Tree Theorem proves the existence
of decision procedures for MSO on infinite trees, there is (as far as we know) no working im-
plementation of such procedures. The reason is that all known translations of formulae to tree
automata involve at some stage the determinization of automata on ω-words (McNaughton’s
Theorem [McN66]), which is believed not to be amenable to tractable implementation (see
e.g. [KV05]). We instead target semi-automatic approaches in which the user can delegate
sufficiently simple subgoals to automatic non-emptiness checkers (solving parity games). The
partial proof tree built by the user is then translated to a combinator able to compose the
strategies obtained by the algorithms.8 To this end, some relevant properties of our framework
are the following.

First, thanks to the (non-standard) primitive universal quantifications, games of the form
Σ ` A( B are equivalent to games of the form 1 ` ∀Σ(A( B), which are themselves equivalent
to ω-regular games on finite graphs. Thanks to the Büchi-Landweber Theorem [BL69], one can
thus decide if there is a strategy realizing the implication A( B, and if such a strategy exists,
then there exists a finite state one, which is moreover effectively computable from A and B (see
Cor. 6.5).

Second, following Ex. 6.10, our system can be extended with the rule

L(A : 1) 6= ∅
1 ; ` A

This rule has the following consequences:

(1) Assuming
A1 ⊗ · · · ⊗ An −( B

(over say Σ) is realizable, following the same reasoning as for Cor. 6.5, we get (leaving
implicit some structural and cut rules)

L(∀Σ(A1 ⊗ · · · ⊗ An( B)) 6= ∅
1 ; ` ∀Σ(A1 ⊗ · · · ⊗ An( B)

Σ ; ` A1 ⊗ · · · ⊗ An( B
Σ ; A1 ⊗ · · · ⊗ An ` B

Σ ; A1, . . . ,An ` B

This entails the rules of Ex. 5.9, and in particular allows us to derive the general (Weak)
rule

M ; A,B ` C
M ; A,A,B ` C

8The author and P. Pradic have recently obtained preliminary results in this direction for MSO on ω-
words [PR17, PR18].
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(2) Given A,B : Σ non-deterministic we have

L(A) ∩ L(B) = ∅
Σ ; A ` B‹

Indeed, from L(A) ∩ L(B) = ∅ we can derive (again leaving implicit some structural and
(Cut) rules)

L
(
∃Σ(A⊗ B)( ‹) 6= ∅

1 ; ` ∃Σ(A⊗ B)( ‹
1 ; ∃Σ(A⊗ B) ` ‹

Σ ; A⊗ B ` ‹
Σ ; A , B ` ‹
Σ ; A ` B‹

Moreover any (finite-state) O-strategy witnessing L(A ⊗ B) = ∅ can be lifted to a (finite-
state) realizer of A( B‹ (Prop. 7.7).

(3) In particular, for A,B : Σ not-necessarily non-deterministic, we have

L(A) ⊆ L(B)

Σ ; !A ` ?B

where ?(−) := !((−)( ‹)( ‹ (Prop. 7.17).

1.6 Outline. The paper is organized as follows. In §2, we expose some ingredients and method-
ology of our approach based on categorical logic, and we sketch the connection between IMELL
and the interpretation of MSO in usual tree automata. We then turn in §3 to our notion of
uniform automata (motivated by monoidal closure), and present basic material on zig-zag games
required for our setting. Section 4 then deals with the fibred structure (which is essentially a
refinement of [Rib15]), §5 presents the monoidal closure and the corresponding deduction rules,
while §6 deals with quantifications. Finally, in §7 we concentrate on the Cartesian structure
of non-deterministic automata and present the interpretation of the Simulation Theorem using
the deduction rules of usual !(−) IMELL-exponential modalities. [Rib18, App. A] provides con-
nections with usual game semantics. Further examples, showing that our setting can handle
constructions of [CL08, SA05], are presented in [Rib18, App. C].

2 Toward Categories of Games and Automata

The purpose of this Section is twofold. First, in §2.1–2.3, we expose some ingredients and
methodology of our approach based on categorical logic. We state in §2.1 the minimal re-
quirements imposed by categorical semantics of proofs, and §2.2 presents some basic ideas
and motivations on indexed categories for modeling free variables and quantifications. Finally,
in §2.3 we explain why it seems difficult to obtain a suitable categorical semantics of implications
using usual connectives on automata. Second, building on [Rib15], in §2.4 & §2.5 we sketch
the connection between linear logic and the interpretation of MSO in tree automata mentioned
in §1.3.
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(Exchange)
M ; A, A, B, C ` C
M ; A, B, A, C ` C

M ; A ` A
M ◦M ′ ; A ` A

(Subst)

(Cut)
M ; A ` A M ; B, A, C ` C

M ; B, A, C ` C M ; A ` A
(Axiom)

(Left ⊗) M ; A, A, B, B ` C
M ; A, A⊗ B, B ` C

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

(Right ⊗)

(Left I)
M ; A, B ` C
M ; A, I, B ` C M ; ` I

(Right I)

(Left ()
M ; A ` A M ; B, B, C ` C

M ; B, A, A( B, C ` C
M ; A, B ` C
M ; A ` B( C

(Right ()

(Dereliction)
M ; A , A , B ` C
M ; A , !A , B ` C

M ; N ` A
M ; N ` !A

(Promotion)

(WeakND)
M ; A , B ` C

M ; A , N , B ` C
M ; A , N , N , B ` C
M ; A , N , B ` C

(ContrND)

(Left ∃) M × IdΓ ; A[π], B ` A[π]

M ; A, ∃ΓB ` A
M ×N ; A ` A

M ×N ; A ` (∃ΓA)[π]
(Right ∃)

(Left ∀) M ×N ; A, B ` A
M ×N ; A, (∀ΓB)[π] ` A

M × IdΓ ; A[π] ` A
M ; A ` ∀ΓA

(Right ∀)

Figure 1: Deduction rules on automata of Fig. 15 (§5.3), Fig. 16 (§6.3) and Fig. 19 (§7.2.4),

where M,M ′ are composable, N ,N are non-deterministic, and where the weakening
functor (−)[π] takes automata over Σ to automata over Σ× Γ.

11



2.1 Compositionality and Categorical Semantics. The method of categorical semantics of
proofs (see e.g. [LS86, AC98, Jac01, Mel09]) is to interpret proofs in a deduction system as
morphisms in a category C, such that C is equipped with some structure corresponding to the
connectives and rules of the deduction system. For the moment, let us step back from acceptance
games and consider run trees. Our task is thus to devise categories whose objects include all
sets of the form A(T ), for an automaton A and a tree T , and such that the proofs of a sequent
T ; A ` B can be interpreted as morphisms from A(T ) to B(T ).

The first requirement of categorical semantics is that the very notion of category already
imposes interpretations to be compositional. Recall that the sets of morphisms of a (locally
small) category C come with associative composition operations

(−) ◦ (−) : C[B,C]× C[A,B] −→ C[A,C] (for each C-objects A,B,C)

and with identity morphisms idA ∈ C[A,A] which are neutral for composition:

f ◦ idA = f = idB ◦ f for every f ∈ C[A,B] (10)

Composition and identities provide the interpretations respectively of the following instances of
the usual cut and axiom rules:

(Cut0)
T ; A ` B T ; B ` C

T ; A ` C T ; A ` A
(Axiom)

The identity laws (10) imply for instance that the three derivations below must be interpreted
by the same morphism:

T ; A ` A
D

T ; A ` B
T ; A ` B

D
T ; A ` B

D
T ; A ` B T ; B ` B

T ; A ` B
(11)

2.2 Indexed Structure: Substitution and Quantification Rules. Our categories actually in-
volve a slight generalization of the usual notion of acceptance (either with run trees or games)
of automata. This generalization is induced by the axiomatization of quantification and substi-
tution in categorical logic (see e.g. [Jac01, LS86]).

Let us briefly discuss the usual setting of first-order logic over a manysorted individual lan-
guage. The categorical semantics of existential quantifications is given by an adjunction which
is usually represented as

(∃x)ϕ(x) ` ψ
(x not free in ψ)

ϕ(x) ` ψ
(12)

This adjunction induces a bijection between (the interpretations of) proofs of the sequents
ϕ(x) ` ψ and (∃x)ϕ(x) ` ψ, that we informally denote

ϕ(x) ` ψ ' (∃x)ϕ(x) ` ψ

Now, in general the variable x will occur free in ϕ. As a consequence, in order to properly
formulate (12) one should be able to interpret sequents of the form ϕ(x) ` ψ with free variables.
More generally, the formulae ϕ and ψ should be allowed to contain free variables distinct from x.

The idea underlying the general method (but see e.g. [Jac01] for details), is to first devise
a base category B of individuals, whose objects interpret products of sorts of the individual
language, and whose maps from say ι1 × · · · × ιm to o1 × · · · × on represent n-tuples (t1, . . . , tn)

12



of terms ti of sort oi whose free variables are among xι1 , . . . , xιm with xιj of sort ιj . Then, for
each object ι = ι1 × · · · × ιn of B, one devises a category Eι whose objects represent formulae
with free variables among xι1 , . . . , xιn , and whose morphisms interpret proofs. Furthermore,
B-morphisms

t = (t1, . . . , tn) : ι1 × · · · × ιm −→ o1 × · · · × on
induce substitution functors

t? : Eo1×···×on −→ Eι1×···×ιm

The functor t? takes (the interpretation of) a formula ϕ with free variables among yo1 , . . . , yon to
(the interpretation of) the formula ϕ[t1/yo1 , . . . , tn/yon ] with free variables among xι1 , . . . , xιm .
Its action on the morphisms of Eo1×···×on allows us to interpret the substitution rule

ϕ ` ψ
ϕ[t1/yo1 , . . . , tn/yon ] ` ψ[t1/yo1 , . . . , tn/yon ]

In very good situations, the operation (−)? is itself functorial. Among the morphisms of B, one
usually requires the existence of projections, say

π : o× ι −→ o

Projections induce substitution functors, called weakening functors

π? : Eo −→ Eo×ι

which simply allow to see formula ψ(yo) with free variable yo as a formula ψ(yo, xι) with free
variables among yo, xι (but with no actual occurrence of xι). Then the proper formulation
of (12) is that existential quantification over xι is a functor

(∃xι)(−) : Eo×ι −→ Eo

which is left-adjoint to π?:
(∃xι)ϕ(xι, yo) ` ψ(yo)

ϕ(xι, yo) ` π?(ψ)(xι, yo)
(13)

(where xι does not occur free in ψ since ψ is assumed to be (interpreted as) an object of Eo, thus
replacing the usual side condition). Universal quantifications are dually axiomatized as right ad-
joints to weakening functors. In both cases, the adjunctions are subject to additional conditions
(called the Beck-Chevalley conditions) which ensure that they are preserved by substitution.

Returning to automata and infinite trees, we will take as base category the following category
T of trees.

Definition 2.1 (The Base Category T). The objects of T are alphabets, and its morphisms
from Σ to Γ, denoted M,N,L, . . . , are functions of the form⋃

n∈N

(
Σn+1 ×Dn

)
−→ Γ

A T-morphism M ∈ T[Σ,Γ] thus takes for each n ∈ N a sequence of input letters a = a0·. . .·an ∈
Σn+1 and a sequence of tree directions p = d1 · . . . · dn ∈ Dn to an output letter M(a, p) ∈ Γ.
In particular, we have T[1,Σ] ' (D∗ → Σ), so each Σ-labeled D-ary tree T corresponds to
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a morphism Ṫ ∈ T[1,Σ]. Moreover, (Σ → Γ)-labeled trees M : D∗ → (Σ → Γ) induce T-
morphisms from Σ to Γ.9 T-morphisms are composed in the expected way (see §4.3 for details).

We will therefore not devise a single category C, but a T-indexed collection of categories
EΣ, one for each alphabet Σ. Let us sketch the general idea with runs of non-deterministic
automata. Given a non-deterministic automaton A over Γ and a morphism M ∈ T[Σ,Γ], a
Σ-run of A on M is a tree

R : D∗ −→ Σ×QA
such that R(ε) = (a0, q

ı
A) for some a0 ∈ Σ, and which respects the transition function

∂A : QA × Γ −→ P(D→ QA)

supplied with input letters b ∈ Γ computed byM from tree positions p = d1·. . .·dn and sequences
of input letters a = a0 · . . . ·an where ak is given by the Σ-component of R(d1 · . . . ·dk) ∈ Σ×QA.
(So a0 is given by R(ε) and an is given by R(p).) Explicitly, R is a Σ-run tree when for p and
a as above, if R(p) is labeled with state q ∈ QA, then there exists a D-tuple (qd)d∈D ∈ ∂A(q, b)
with b = M(a, p) and such that for all d ∈ D, R(p · d) is labeled with state qd. Such a Σ-run R
is accepting if the QA-labeled tree

p ∈ D∗ 7−→ π(R(p)) ∈ QA

is accepting in the usual sense (where π : Σ×QA → QA is the second projection), that is if all
its infinite paths belong to ΩA. We let Σ ` A(M) be the set of accepting Σ-run trees of A on
M , and simply write A(M) for Σ ` A(M) when Σ is clear from the context.

Roughly speaking, for each Σ, the objects of the category EΣ will include all sets of the form
Σ ` A(M). Moreover, given L ∈ T[∆,Σ], the substitution functor

L? : EΣ −→ E∆

will take an EΣ-object Σ ` A(M) to the E∆-object ∆ ` A(M ◦ L), where the T-map L ◦M ∈
T[∆,Γ] is the T-composition of L and M (assuming M ∈ T[Σ,Γ] as above).

This will induce sequents generalizing (4). For instance, given M ∈ T[Σ,Γ], we have sequents
of the form

M ; A1, . . . ,An ` B (14)

where A1, . . . ,An and B are automata over Γ. Such sequents are to be thought about as our
version of “open sequents” or “sequents with free variables” (here of sort Σ), with the usual
implicit prenex universal quantification, and are to be interpreted as morphisms in the category
EΣ (the fibre over Σ). Substitution functors such as L? : EΣ → E∆ above will act in the
deduction system via a substitution rule

(Subst)
M ; A1, . . .An ` B

M ◦ L ; A1, . . .An ` B
(where M ∈ T[Σ,Γ] and L ∈ T[∆,Σ]) (15)

Let us briefly sketch the most important instances of this construction.

(a) Consider a T-map Ṫ : T[1,Σ] representing a tree T : D∗ → Σ. Then the accepting runs of
A on T are in bijection with the accepting 1-run trees of A on Ṫ :

(1 ` A(Ṫ )) ' A(T )

9The morphisms from Σ to Γ of the base category of [Rib15] are restricted to (Σ→ Γ)-labeled trees.
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Sequents of the form (14) thus indeed generalize sequents of the form

T ; A1 , . . . , An ` B

with T : D∗ → Σ (as depicted in (4)), which are to be interpreted in the category E1 (the
fibre over 1), and are to be thought about as representing closed statements.

(b) Given a non-deterministic automaton A over Σ, we write Σ ` A (or even just A when no
ambiguity arises) for Σ ` A(IdΣ) where the T-identity IdΣ ∈ T[Σ,Σ] is given by

IdΣ(a · a, p) := a

Consider now another automaton B, also over Σ. Then we write

Σ ; A ` B (16)

(or even A ` B) for the sequent IdΣ ; A ` B. The provability interpretation of (16) will
be that if (16) is provable, then L(A) ⊆ L(B). The computational interpretation of (16)
will consist in a form of uniform simulation of A by B (generalizing the notion used with
the guidable automata of [CL08]). Moreover, given a Σ-labeled tree T seen as a morphism
Ṫ ∈ T[1,Σ], the interpretation of the substitution rule

Σ ; A ` B
Ṫ ; A ` B

will take a morphism σ ∈ EΣ[A,B] to a function Ṫ ?(σ) : A(T )→ B(T ).

(c) Any ordinary function f : Σ→ Γ induces a morphism [f] ∈ T[Σ,Γ] defined as

[f] : (a · a, p) 7−→ f(a)

The action of the substitution functor [f]? : EΓ → EΣ on EΓ-objects of the form Γ ` A can
be internalized in automata. We indeed have

[f]?(Γ ` A) = Σ ` A([f]) = Σ ` A[f]

where the automaton A[f] over Σ is defined as A but with transition function:

∂A[f] : QA × Γ −→ P(D→ QA)

(q, b) 7−→ ∂A(q, f(b))

In particular:

(i) T-maps from Σ× Γ to Σ indeed include projections [π] : D∗ → (Σ× Γ→ Σ) induced
by Set-projections π : Σ× Γ→ Σ.

(ii) Consider automata A1, . . . ,An and B, with Ai over Σi and B over Γ. Consider fur-
thermore T-morphisms Mi ∈ T[∆,Σi] and L ∈ T[∆,Γ]. Then we write

∆ ; A1(M1) , . . . , An(Mn) ` B(L)

for the sequent
〈M1, . . . ,Mn, L〉 ; A1[π1] , . . . , An[πn] ` B[π]
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where
〈M1, . . . ,Mn, L〉 ∈ T[∆, Σ1 × · · · × Σn × Γ]

is the T-tupling of M1, . . . ,Mn, L (see Cor. 4.6) and where the πi’s and π are suitable
projections:

πi : Σ1 × · · · × Σn × Γ −→ Σi

π : Σ1 × · · · × Σn × Γ −→ Γ

Unless otherwise stated, all the sequents seen up to now must from now on be thought about
as being of the more general form (16), that is a with a T-map M (of appropriate type) instead
of the labeled tree T .

2.3 Toward a Semantics for Implications. The provability interpretation of sequents tells us
that in sequents of the form

M ; A ` B (17)

the symbol ` is a form of implication. One of the main contributions of this work is that this
implication can be internalized in automata. This will lead us outside of non-deterministic
automata (see §3), but for the moment let us sketch some salient consequences this imposes to
the interpretation of the symbol ` in sequents of the form (17).

Assume that proofs of our deduction system are interpreted in categories E(−) indexed over
T. Then, internalizing ` in automata will imply that given automata A and B over Σ there is
an automaton (A( B) over Σ such that for each tree T : D∗ → Σ there is a bijection

E1[A(Ṫ ), B(Ṫ )] ' 1 ` (A( B)(Ṫ )

that we informally write as

Ṫ ; A ` B ' 1 ` (A( B)(Ṫ )

In other words, morphisms in the interpretation of Ṫ ; A ` B will correspond to the runs of
an automaton (A ( B) on T . This could suggest to interpret Ṫ ; A ` B as the runs of an
automaton of the form ∼A∨B over T , where ∼A is the complement of A (in the sense of §1.2)
and (−) ∨ (−) is a disjunction on automata. Let us rule out this possibility, at least for the
natural implementation of (−) ∨ (−) with an additive disjunction (−) ⊕ (−). Given automata
A1 and A2, both over Σ and with Ai = (QAi , q

ı
Ai
, ∂Ai ,ΩAi), the non-deterministic automaton

A1 ⊕A2 over Σ is

A1 ⊕A2 := (QA1 +QA2 + 1 , • , ∂A1⊕A2 , ΩA1⊕A2)

where, via the embedding of QD
A1

+QD
A2

into (QA1 +QA2)D, we let

∂A1⊕A2(q, a) :=

{
∂A1(qıA1

, a) + ∂A2(qıA2
, a) if q = • ∈ 1

∂Ai(q, a) if q ∈ QAi

and where •, q1, q2, . . . ∈ ΩA1⊕A2 iff either qıA1
, q1, q2, . . . ∈ ΩA1 or qıA2

, q1, q2, . . . ∈ ΩA2 .
Note that in Set, for every M : D∗ → (Γ→ Σ) we have

(A1 ⊕A2)(M) ' A1(M) +A2(M)

so in particular
L(A1 ⊕A2) = L(A1) ∪ L(A2)

Assume now that we take for E1[A(Ṫ ), B(Ṫ )] the set of runs of (∼A ⊕ B) on T , that is the
disjoint union ∼A(T ) + B(T ). Then one faces the following difficulties.
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• We have to devise identity morphisms, say

idA(Ṫ ) ∈ ∼A(T ) +A(T )

One may take for idA(Ṫ ) either an accepting run of A on T or an accepting run of ∼A
on T . But this raises two problems. First, it may be undecidable whether a possibly
non-recursive tree is accepted or rejected by a given automaton. So this precludes any
general and effective computational interpretation of the deduction system. Second, even
if we restrict to trees T for which acceptance is known to be decidable (e.g. trees generated
by higher-order recursion schemes [Ong06]), there seem to be no canonical choice of an
actual accepting run idA(Ṫ ) ∈ ∼A(T ) +A(T ).

• It is not clear how to define composition, say

(−) ◦ (−) : (∼B(T ) + C(T ))× (∼A(T ) + B(T )) −→ ∼A(T ) + C(T )

Given run trees, say

RC(T ) ∈ C(T ) ⊆ ∼B(T ) + C(T ) and R∼A(T ) ∈ ∼A(T ) ⊆ ∼A(T ) + B(T )

there seems to be no obvious choice for RC(T ) ◦R∼A(T ) ∈ ∼A(T ) + C(T ). Both

RC(T ) ◦R∼A(T ) := RC(T ) and RC(T ) ◦R∼A(T ) := R∼A(T )

may seem reasonable. But each of them breaks one of the equalities between the inter-
pretations of the derivations depicted in (11).

The methodology of linear logic may suggest here to devise a linear implication of the form

A( B := A‚ ` B
where ` is a dual of the direct product ⊗ (see §1.3 and §2.4 below), relying on a Cartesian prod-
uct of states and evaluating its arguments in parallel, with acceptance given by a disjunction.
However, in contrast with ω-word automata [PR18], such a connective does not seem to exist
on tree automata. The reason is that the universal quantification on paths (in the definition of
acceptance) does not commute with disjunction.

2.4 The (Synchronous) Direct Product of (Non-Deterministic) Automata. The solution to
obtain a suitable closed structure will be provided by uniform automata, to be defined in §3.
On the other hand, part of the program announced up to now was already completed in [Rib15].
In that work, using the notions of substituted acceptance games and of synchronous linear arrow
games, we obtained categories of (usual) alternating automata fulfilling the requirements of §2.1
and §2.2. Although [Rib15] does not explicitly mention any deduction system, it does devise
categorical structures allowing for parts of the linear logic based approach mentioned in §1.3.

We survey here the relevant connections between [Rib15] and IMELL, as they underlie the
role of linear logic in this paper. Returning to the general case of sequents of the form

M ; A1, . . . ,An ` B (18)
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the provability interpretation tells us that the left commas correspond to a form of conjunc-
tion. A conjunction on non-deterministic automata can be implemented with a direct (syn-
chronous) product. The direct product A1 ⊗ A2 of the non-deterministic automata Ai =
(QAi , q

ı
Ai
, ∂Ai ,ΩAi), both over Σ, is the non-deterministic automaton over Σ

A1 ⊗A2 :=
(
QA1 ×QA2 , (qıA1

, qıA2
) , ∂A1⊗A2 , ΩA1⊗A2

)
with

∂A1⊗A2((q1, q2), a) := {〈g1, g2〉 : D→ QA1 ×QA2 | gi ∈ ∂Ai(qi, a) for i = 1, 2}

and where ΩA1⊗A2 is ΩA1 × ΩA2 modulo (QA1 × QA2)ω ' QωA1
× QωA2

. For every tree T ,
the (accepting) runs of A1 ⊗ A2 on T are exactly10 the pairs 〈R1, R2〉 : D∗ → QA1 × QA2 of
(accepting) runs of A1 and A2 over T . We therefore have, in the category Set

(A1 ⊗A2)(T ) ' A1(T )×A2(T ) (19)

from which we immediately get

L(A1 ⊗A2) = L(A1) ∩ L(A2)

For similar reasons, the direct product (−)⊗(−) on non-deterministic automata is also Carte-
sian in the games of [Rib15] provided one restricts to total automata.11 This Cartesian structure
on total non-deterministic automata implies that we can equip them with the deduction rules
of a Cartesian product, such as the following (where I is a unit automaton similar to that of
Ex. 3.2.(i)):

(Left ⊗) M ; A, A, B, B ` C
M ; A, A⊗ B, B ` C

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

(Right ⊗)

(Left I)
M ; A, B ` C
M ; A, I, B ` C M ; ` I

(Right I)

(20)

together with the structural exchange rule:

(Exchange)
M ; A, A, B, C ` C
M ; A, B, A, C ` C

(21)

as well as the structural weakening and contraction rules:

(Weak)
M ; A , B ` C

M ; A , A , B ` C
M ; A , A , A , B ` C
M ; A , A , B ` C

(Contr) (22)

and the following general (multiplicative) cut rule:

(Cut)
M ; A ` A M ; B, A, C ` C

M ; B, A, C ` C
(23)

To summarize, with total non-deterministic automata, the left commas in sequents of the
form (18) can be internalized as a product (⊗, I), whose deduction rules are induced by its
structure in the computational interpretation.

10Because universal quantifications commute over conjunctions!
11We say that a non-deterministic automaton A is total if the empty set is not in the range of its transition

function.
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2.5 Alternating Automata and Linear Logic. With respect to the context of this paper,
the basic insight of linear logic [Gir87], is that having an explicit control on the weakening
and contraction structural rules depicted in (22) gives rise to a decomposition of the usual
intuitionistic connectives ∧,→ into more refined connectives (usually denoted ⊗,&, !,(), which
in a lot of cases allow, thanks to the Curry-Howard correspondence, refined constructions of
models of programming languages based on (typed) λ-calculi (see e.g. [AC98]).

In the case of conjunction, this can be phrased as follows. First, when suppressing the struc-
tural rules (Weak) and (Contr), the rules displayed in (20) and (21) do not specify anymore
a Cartesian structure for the product (⊗, I), but merely a symmetric monoidal structure (see
e.g. [Mel09] for definitions). This implies that in contrast with intuitionistic sequents, the left
commas in linear sequents, which have the same structure as (⊗, I), do not anymore behave as
a Cartesian product. Moreover, (⊗, I) is not anymore equivalent to the additive conjunction
(usually denoted &, with unit >), which, as a logical connective, would be defined in linear
sequents by rules of the form12:

A1 , . . . , An ` B1 A1 , . . . , An ` B2

A1 , . . . , An ` B1 &B2 A1 , . . . , An ` >

A1 , . . . , Ai , . . . , An ` B
A1 , . . . , Ai & C , . . . , An ` B

A1 , . . . , Ai , . . . , An ` B
A1 , . . . , C &Ai , . . . , An ` B

Second, the structural rules (Weak) and (Contr) are restored but for a specific exponential
modality !(−):

A1 , . . . , . . . , An ` B
A1 , . . . , !Ai , . . . , An ` B

A1 , . . . , !Ai , !Ai , . . . An ` B
A1 , . . . , !Ai , . . . , An ` B

(24)

The modality !(−) is itself subject to specific introduction rules, called dereliction and promotion:

A1 , . . . , Ai , . . . , An ` B
A1 , . . . , !Ai , . . . , An ` B

!A1 , . . . , !An ` B
!A1 , . . . , !An ` !B

(25)

Then (but see also [Gir87, AC98, Mel09] for details), the categorical interpretation of proofs
gives an isomorphism

!A⊗ !B ' !(A&B) (26)

which implies that an intuitionistic sequent

A1 , . . . , An ` B

where the left commas behave as a Cartesian product, corresponds to the linear sequent

!A1 , . . . , !An ` B

where the left commas behave as a symmetric monoidal product (−)⊗ (−).
The pertinence of intuitionistic linear logic in our context comes from the fact that the

product (−)⊗(−) defined in §2.4 on non-deterministic automata extends to (total13) alternating
automata, but induces a symmetric monoidal product which is not Cartesian.

12We do not consider in this paper the usual additive conjunction on alternating automata, which would provide
an implementation of &, because its categorical properties would require a slight extension of our setting.

13Total alternating automata were called complete in [Rib15].
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Given alternating automata A and B over Σ, the automaton A ⊗ B over Σ has state set
QA × QB, and evaluates A and B along common paths p ∈ D∗ (see [Rib15] for details). Now,
recall that with alternating automata, O can choose states in addition to tree directions. Hence,
given a P-strategy on (A⊗B)(T ) (for T : D∗ → Σ), and given a branch of this strategy following
a given path p ∈ D∗, it is possible for P to make different choices according to previous O-moves.
In particular, some choice of P in component A may depend on previous O-moves in B. (Note
that this was not possible with non-deterministic automata, since p ∈ D∗ determines uniquely
the previous O-moves.) So a P-strategy on (A ⊗ B)(T ) may not uniquely determine a pair of
strategies in A(T )× B(T ).

On the other hand, in any model of intuitionistic linear logic, the isomorphism (26) implies
that every object of the form !A is a commutative comonoid w.r.t. (⊗, I) (see e.g. [Mel09]),
which essentially means that (⊗, I) has a Cartesian structure w.r.t. objects of the form !A.
This indicates that non-deterministic automata behave as objects of the form !A, and it turns
out that to some extent, the powerset construction translating an alternating automaton to an
equivalent non-deterministic one (the Simulation Theorem [MS87, EJ91, MS95]), corresponds
to an !(−)-modality of intuitionistic linear logic. In particular, all the !(−)-rules (24) and (25)
can be interpreted in our categories14. (But unfortunately, this interpretation is not compatible
with usual cut-elimination, because the operation !(−) fails to be a functor.)

3 Uniform Automata and Zig-Zag Strategies

In view of §2.3, it seems that the categorical structure required for a Curry-Howard approach
should involve some machinery not given by usual connectives on automata. In [Rib15], we
proposed categories of generalized acceptance games based on the technology of game semantics,
and more precisely on simple games (see e.g. [Abr97, Hyl97]), which stem from Berry & Curien’s
sequential data structures (see e.g. [AC98, Chap. 14], but also [Mel05]). The model of [Rib15]
uses usual alternating automata, which seem unfortunately not to induce categories equipped
with a monoidal closed structure while providing a computational interpretation of proofs in
the sense of §1.4.

We present here the notion of automata (called uniform automata) on which this paper relies
(§3.1 and §3.2), as well as the adaption of the substituted acceptance games of [Rib15] to this
context (§3.3). Uniform automata are motivated by the extension of usual alternating automata
with a monoidal closed structure. Working with uniform automata instead of usual automata
allows, w.r.t. [Rib15], for a considerable simplification of the underlying technology of game
semantics. We rely on a very simple category DZ of (total) zig-zag games presented in §3.4
(DZ stands for Dialectica-like Zig-zag games, see Rem. 3.11), on top of which we build the
counterpart for uniform automata of substituted acceptance games and synchronous arrows
games (§3.5).

The proof that DZ is a category is given in [Rib18, App. A], which also discusses the con-
nections between our approach and usual simple games.

3.1 Uniform Automata. In order to obtain the required categorical properties of a monoidal
closed structure, we devise a “uniform” variant of usual alternating automata, whose transitions
are given by explicit arbitrary non-empty finite sets of P and O-moves. The corresponding
monoidal closed structure is presented in §5.

14(Weak) actually holds (in a non-canonical way) for total alternating automata (i.e. the ! is not strictly
necessary in the conclusion).
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Definition 3.1 (Uniform Tree Automata). A uniform tree automaton A over Σ (notation
A : Σ) has the form

A = (QA , q
ı
A , U , X , ∂A , ΩA) (27)

where QA is the finite set of states, qıA ∈ QA is the initial state, U and X are finite non-empty
sets of resp. P and O-moves, the acceptance condition ΩA is an ω-regular subset of QωA, and
the transition function ∂A has the form

∂A : QA × Σ −→ U ×X −→ (D −→ QA) (28)

Following the usual terminology, an automaton A as in (27) is non-deterministic if X ' 1,
universal if U ' 1, and deterministic if U ' X ' 1.

Example 3.2. (i) The unit automaton IΣ : Σ is the unique uniform deterministic automaton
over Σ with state set 1 (with • initial) and acceptance condition 1ω. Explicitly,

IΣ := (1, •,1,1, ∂1,1
ω)

where ∂1 is the unique function

∂1 : 1× Σ −→ 1× 1 −→ (D −→ 1)

We write I for IΣ when Σ is clear from the context.

(ii) Each alternating automaton A can be translated to a uniform automaton Â. The automa-
ton Â simulates A as long as P and O respect the transition function of A, and switches
to an accepting (resp. rejecting) state as soon as O (resp. P) plays a move not allowed by
A. Assuming

∂A : QA × Σ −→ P(P(QA ×D))

we let Â be the uniform automaton

(Â : Σ) := (QA + B , qıA , P(QA ×D) , QA , ∂Â , ΩÂ)

where B := {t, f}, with transitions given by ∂Â(b, a,−,−,−) := b if b ∈ B and for q ∈ QA:

∂Â(q, a, γ, q′, d) :=


q′ if γ ∈ ∂A(q, a) and (q′, d) ∈ γ
t if γ ∈ ∂A(q, a) and (q′, d) /∈ γ
f if γ /∈ ∂A(q, a)

and with ΩÂ := ΩA +Q∗A.t
ω.

3.2 Full Positive Games and Acceptance for Uniform Automata. The shape (28) of the
transition functions of uniform automata allows for their acceptance games to be defined without
imposing legality conditions on plays. This leads to a slightly simpler setting than for usual
automata.

Definition 3.3 (Full Positive Games).

• A full positive game has the form A = (U,X) where U and X are sets of resp. P and
O-moves. We say that A = (U,X) is total if U and X are both non-empty.
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A(T )

(ε, qıA)
...

(p, qA)

P u
O (x, d)

(p.d, q′A)

P u′

O (x′, d′)

(p.d.d′, q′′A)
...

Figure 2: Acceptance game for uniform automata

• A full positive game with winning condition is a full positive game A = (U,X) together
with a winning condition WA ⊆ (U ·X)ω.

A typical (infinite) play χ in a full positive game A has the form

P O P O P O

u0 · x0 · u1 · x1 · · · · · un · xn · · · ·∈ ∈ ∈ ∈ ∈ ∈

U X U X U X

So P plays first (hence the term “positive”) and all P-moves (resp. O-moves) are available to P
(resp. O) when it has to play (hence the term “full”). Assuming A is equipped with the winning
condition WA, a play χ as above is winning if (uk · xk)k ∈ WA.

Consider a uniform automaton A : Σ as in (27), and a Σ-labeled tree T . The acceptance
game A(T ) is the full positive game with P-moves U and O-moves X ×D. So a play in A(T )
has the form

P O P O P O

u0 · (x0, d0) · u1 · (x1, d1) · · · · · un · (xn, dn) · · · ·∈ ∈ ∈ ∈ ∈ ∈

U X ×D U X ×D U X ×D

Similarly as in acceptance games for a usual non-deterministic or alternating automaton (§1.2),
O chooses tree directions. Note that if A is non-deterministic in the sense of Def. 3.1 (i.e.
X ' 1), then O only chooses tree directions. Dually, if A is universal (U ' 1) then P has no
choice. Finally if A is deterministic (U ' X ' 1) then the only choices available in the game
A(T ) are the O’s choices of tree directions. Note also that because the sets of P and O-moves
of a uniform automaton are always assumed to be non-empty (in this sense uniform automata
are always total), there is no maximal finite play in the game A(T ).

We now equip A(T ) with a winning condition WA(T ) ⊆ (U · (X × D))ω. Each infinite play
χ = (uk · (xk, dk))k ∈ (U · (X × D))ω generates an infinite sequence of states (qk)k ∈ QωA as
follows. We let q0 := qıA and

qk+1 := ∂A(qk , ak , uk , xk , dk)
where ak := T (d0 · . . . · dk−1)
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Then χ is winning (i.e. χ ∈ WA(M)) iff (qk)k is accepting, i.e. iff (qk)k ∈ ΩA. (See also Fig. 2,
where states and tree positions are explicitly represented.)

Strategies for P in full positive games are what one expects.

Definition 3.4 (Strategies in Full Positive Games). A (P-)strategy in a full positive game
A = (U,X) is a function

σ : X∗ −→ U

Assume now that A is a game with winning condition WA. Given a strategy σ : X∗ → U and a
sequence (xk)k ∈ Xω, define the sequence (uk)k ∈ Uω as

un := σ(x0 · . . . · xn−1)

We then say that σ is winning in A if (uk · xk)k ∈ WA for all (xk)k ∈ Xω.

Example 3.5. Continuing Ex. 3.2.(ii), given an alternating automaton A over Σ and a Σ-
labeled tree T , P has a winning strategy in A(T ) iff it has a winning strategy in Â(T ).

Definition 3.6. Given a uniform automaton A : Σ and a Σ-labeled tree T , we say that A
accepts T if P has a winning strategy in A(T ), and we let L(A) be the set of Σ-labeled trees
which are accepted by A. Moreover, a set L of Σ-labeled trees is regular if there is an automaton
A : Σ such that L = L(A).

3.3 Substituted Acceptance Games. We now turn to substituted acceptance games, a simple
but central notion of this paper, which allows us to obtain the indexed structure discussed
in §2.2. Substituted acceptance games are simply the (essentially obvious) adaptation of the
Σ-runs of §2.2 to the acceptance games of §3.2. A similar notion for usual alternating automata
was introduced in [Rib15].

Consider a uniform automaton A : Γ as in (27), and a morphism M ∈ T[Σ,Γ]. The uniform
substituted acceptance game Σ ` A(M) is the full positive game with P-moves Σ × U and
O-moves X ×D. So a play in Σ ` A(M) has the form

P O P O P O

(a0, u0) · (x0, d0) · (a1, u1) · (x1, d1) · · · · · (an, un) · (xn, dn) · · · ·∈ ∈ ∈ ∈ ∈ ∈

Σ× U X ×D Σ× U X ×D Σ× U X ×D

Similarly as in a substituted acceptance game for a usual non-deterministic or alternating au-
tomaton [Rib15], P chooses input letters and O chooses tree directions. Similarly as in the
acceptance games of §3.2, there is no maximal finite play in the game Σ ` A(M).

We now equip Σ ` A(M) with a winning condition WA(M) ⊆ ((Σ × U) · (X × D))ω. Each
infinite play χ = ((ak, uk) · (xk, dk))k ∈ ((Σ × U) · (X ×D))ω generates an infinite sequence of
states (qk)k ∈ QωA as follows. We let q0 := qıA and

qk+1 := ∂A(qk , bk , uk , xk , dk)
where bk := M(a0 · . . . · ak , d0 · . . . · dk−1)

Then χ is winning (i.e. χ ∈ WA(M)) iff (qk)k is accepting (i.e. iff (qk)k ∈ ΩA).
Let us set some notations. When the input alphabet Σ is irrelevant or clear from the context,

we omit it and write A(M) for Σ ` A(M). We write Γ ` A (or simply A) for the game
Γ ` A(IdΓ). Moreover, we extend the notation A[f] of §2.2 to uniform automata.
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A −(DZ B
...

...

O u
v P
y O

P x
...

...

Figure 3: A typical zig-zag play with full positive games A = (U,X) and B = (V, Y )

Definition 3.7. Given an ordinary function f : Σ→ Γ and a uniform automaton A : Γ, we let
A[f] : Σ be the uniform automaton defined as A, but with

∂A[f](q, a, u, x, d) := ∂A(q, f(a), u, x, d)

Similarly as in §2.2, the game Σ ` A([f]) is the same as the game Σ ` A[f].

Example 3.8. Continuing Ex. 3.5, given a usual alternating automaton A over Γ and some
M ∈ T[Σ,Γ], P has a winning strategy in A(M) (in the sense of [Rib15]) if and only if P has
a winning strategy in Â(M).

As expected, substituted acceptance games generalize usual acceptance games. Consider
a uniform automaton A : Σ and a Σ-labeled tree T . Let Ṫ ∈ T[1,Σ] be the T-morphism
corresponding to T (see §2.2). The game 1 ` A(Ṫ ) is similar (actually isomorphic in the sense
of §3.4) to the acceptance game A(T ) defined in §3.2. A typical play of 1 ` A(Ṫ ) has the form

P O P O P O

(•, u0) · (x0, d0) · (•, u1) · (x1, d1) · · · · · (•, un) · (xn, dn) · · · ·∈ ∈ ∈ ∈ ∈ ∈

1× U X ×D 1× U X ×D 1× U X ×D

In words, since 1 ' {•} is a singleton, P has actually exactly the same choices in the game
1 ` A(Ṫ ) as in the game A(T ).

3.4 Zig-Zag Strategies. Zig-zag strategies are at the core of the notion of morphism of our
categories of automata. They stem from usual strategies in simple games (see e.g. [Abr97,
Hyl97]), by imposing a very strong restriction on the shape of plays, essentially corresponding
to a form of simulation games. This lead to a very simple notion of strategy, which admits a
very simple functional representation (at least compared to usual simple games [BE93, AC98]).

Consider full positive games A = (U,X) and B = (V, Y ). Intuitively, a total zig-zag strategy
σ : A(DZ B amounts to a strategy for P in an infinite game which consists in countably many
sequences of rounds. In a single round n ∈ N, four moves occur in succession (see also Fig. 3):

(1) O plays a move un ∈ U ,

(2) P plays a move vn ∈ V ,

(3) O answers with a move yn ∈ Y ,
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(4) P concludes with a move xn ∈ X.

So, in a zig-zag strategy σ : A (DZ B, each P-move vn depends on the previous O-moves
u0, . . . , un and y0, . . . , yn−1, while each P-move xn depends on the previous O-moves u0, . . . , un
and y0, . . . , yn−1, yn. This leads to the following definition.

Definition 3.9. Given full positive games A = (U,X) and B = (V, Y ), a (total zig-zag) strategy
σ : A(DZ B is a pair of functions σ = (f, F ) where

f :
⋃
n∈N

(
Un+1 × Y n

)
−→ V

F :
⋃
n∈N

(
Un+1 × Y n+1

)
−→ X

Assume now that A and B are equipped with winning conditions WA and WB. Given sequences
(un)n ∈ Uω and (yn)n ∈ Y ω, a strategy σ induces sequences (vn)n ∈ V ω and (xn)n ∈ Xω defined
as

vn := f(u0 · · ·un , y0 · · · yn−1) ∈ V

and xn := F (u0 · · ·un , y0 · · · yn−1 · yn) ∈ X

Then σ is winning if for all (un)n ∈ Uω and all (yn)n ∈ Y ω, we have (vn · yn)n ∈ WB whenever
(un · xn)n ∈ WA.

It is easy to see that (winning) total zig-zag strategies form a category. We give a proof of
this fact in [Rib18, App. A], which also contains further background on game semantics.

Proposition 3.10. Full positive games (with winning) and (winning) total zig-zag strategies
form a category DZ(W).

Remark 3.11. The functional representation of strategies of [BE93, AC98] is (at least in
spirit) inspired from approaches to Gödel’s Dialectica interpretation (see e.g. [AF98, Koh08]) in
categorical logic [dP91] (see also e.g. [HS03, Hyl02, Hof11] and [Jac01, Ex. 1.10.11] for modern
refinements and variations). Actually, the category DZ (for Dialectica-like Zig-zag games) can
be constructed (via a distributive law) from a category of simple self dualization [HS99, HS03]
(over the topos of trees, see e.g. [BMSS12]), which can be seen as a skeleton of Dialectica-like
categories, and our categories of automata (§4) have a shape similar to Dialectica fibrations.
Besides, as we shall see in Ex. 6.4, there is an ∃∀-structure on automata which is reminiscent
from Gödel’s Dialectica.

The connection between the models presented in this paper and a linear variant of Gödels’s
Dialectica has been made precise in [PR19] in the case of ω-words.

3.5 Toward Uniform Linear Synchronous Arrow Games. We now prepare to introduce (cat-
egories of) uniform linear synchronous arrow games, the last simple but central notion of this
paper. Similarly as with §3.3, the material of this section is essentially the adaptation to uni-
form automata of corresponding notions of [Rib15]. We shall however postpone the proper
categorical treatment to §4, as we rely on more advanced material.

Consider substituted acceptance games Σ ` A(M) and Σ ` B(N). Our goal is to devise a
notion of morphism

Σ ` A(M) −( B(N)

with a behaviour similar to the linear synchronous arrow games of [Rib15]. This would amount
to devise a notion of strategy

Σ ` σ : A(M) −( B(N)
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Σ A(M) −( B(N)

(ε, ε, qıA) (ε, ε, qıB)
...

...
(p, a, qA) (p, a, qB)

O (a, u)
(a, v) P
(y, d) O

P (x, d)

(p.d, a.a, q′A) (p.d, a.a, q′B)
...

...

Σ A −( B
...

...

O (a, u)
v P

(y, d) O
P x

...
...

Figure 4: Linear synchronous arrow games

playing similarly as in Fig. 4 (left). Such a strategy σ is therefore required to be a total zig-zag
strategy A(M) (DZ B(N) in the sense of Def. 3.9. But in addition, we should as in Fig. 4
also require the a ∈ Σ and d ∈ D played by P to be the same as their immediate predecessors
played by O. The approach we adopt in this paper is to simply remove these moves from the
game. This leads to the following notion.

Definition 3.12 (DialZ(Σ)-Games). Fix an alphabet Σ.

• A DialZ(Σ)-object A is given by non-empty sets U and X.

• Given DialZ(Σ)-objects A = (U,X), B = (V, Y ), a DialZ(Σ)-morphism σ : A(DialZ(Σ) B
is a total zig-zag strategy (see Fig. 4 (right))

σ : (Σ× U,X) −(DZ (V, Y ×D)

Similarly as for DZ, the name DialZ stands for Dialectica-like Zig-zag games. But note the
font change. The sans-serif categories DialZ(Σ) actually form an indexed category, postponed
to §4. This will in particular allow us to equip these games with winning conditions, leading to
the indexed category DialAut (for Dialectica-like Automata).

If we forget about winning, it is possible to see here why DialZ(Σ)-games induce a gener-
alization of the acceptance games of §3.2. First, a substituted acceptance game Σ ` A(M)
with A as in (27) induces the DialZ(Σ)-game A = (U,X). Hence substituted acceptance games
Σ ` A(M),B(N) induce a DialZ(Σ)-game

A(M) −(DialZ(Σ) B(N)

in the obvious way. Consider now an automaton A : Σ as in (27) and a Σ-labeled tree T .
As before, let Ṫ ∈ T[1,Σ] be the T-map corresponding to T . Recall the unit automaton
I : 1 of Ex. 3.2.(i). Then the moves allowed in 1 ` A(Ṫ ) correspond exactly to those of the
DialZ(1)-game I(DialZ(1) A(Ṫ ) (see Fig. 5).

4 Fibrations of Tree Automata

In this Section we present an indexed structure for uniform synchronous linear arrow games, in
which morphisms L ∈ T[∆,Σ] induce substitution functors, and such that the operation (−)?
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1 I −(DialZ(1) A(Ṫ )

(ε, •) (ε, qıA)
...

...
(p, •) (p, qA)

O (•, •)
u P

(x, d) O
P •

(p.d, •) (p.d, q′A)
...

...

Figure 5: Acceptance games as DialZ(1)-games

is itself functorial (see §2.2 and [Jac01, Chap. 1]). While substitution in [Rib15] was defined
directly at the level of synchronous arrow games (via the representation of strategies as re-
lations), we devise here an indexed structure induced by a reformulation of synchronicity (in
the sense of [Rib15]) based on §3.5. We use the techniques of monoid and comonoid index-
ing [HS99, HS03] on zig-zag games, which allow for a smooth treatment of monoidal closure
and universal quantifications. This will lead us to a proper treatment of the DialZ(Σ)-games of
Def. 3.12, and to the category DialAut, fibred over T.

The material of this section relies on the symmetric monoidal structure of DZ.

4.1 Symmetric Monoidal Structure of DZ

The category DZ has a particularly simple symmetric monoidal structure, but which differs
from the usual ones in game semantics.

Proposition 4.1. The category DZ is symmetric monoidal with unit I := (1,1) and with
A⊗B := (U × V,X × Y ) for A = (U,X) and B = (V, Y ).

The action of the tensor ⊗ on strategies σi : Ai (DZ Bi (for i = 1, 2, Ai = (Ui, Xi) and
Bi = (Vi, Yi)) is depicted on Fig. 6. If the σi = (fi, Fi) where

fi :
⋃
n∈N

(
Un+1
i × Y n

i

)
−→ Vi

Fi :
⋃
n∈N

(
Un+1
i × Y n+1

i

)
−→ Xi

then σ1 ⊗ σ2 = (h,H) where

h :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n

)
−→ V1 × V2

H :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n+1

)
−→ X1 ×X2

are defined as
h((u1, u2) , (y1, y2)) := (f1(u1, y1) , f2(u2, y2))
H((u1, u2) , (y1, y2)) := (F1(u1, y1) , F2(u2, y2))

The natural structure isomorphisms of DZ are depicted on Fig. 7. This structure obviously
lifts to DZW, but we shall not directly use this fact.
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Ai
σi
−(DZ Bi

...
...

O ui
vi P
yi O

P xi
...

...

A1 ⊗A2

σ1⊗σ2

−( DZ B1 ⊗B2
...

...

O (u1, u2)
(v1, v2) P
(y1, y2) O

P (x1, x2)
...

...

Figure 6: Action of ⊗ on σi : Ai(DZ Bi.

(A⊗B)⊗ C
αA,B,C

−(DZ A⊗ (B ⊗ C)
...

...

O ((u, v), w)
(u, (v, w)) P
(x, (y, z)) O

P ((x, y), z)
...

...

I⊗A
λA
−( A

...
...

O (•, u)
u P
x O

P (•, x)
...

...

A⊗B
γA,B

−(DZ B ⊗A
...

...

O (u, v)
(v, u) P
(y, x) O

P (x, y)
...

...

A⊗ I
ρA
−( A

...
...

O (u, •)
u P
x O

P (x, •)
...

...

Figure 7: The structure maps of DZ, for A = (U,X), B = (V, Y ) and C = (W,Z)
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(M ⊗M)⊗M α //

m⊗idM

��

M ⊗ (M ⊗M)
idM⊗m //M ⊗M

m

��
M ⊗M m

//M

I⊗M

λ
''

u⊗idM //M ⊗M
m
��

M ⊗ I

ρ
ww

idM⊗uoo

M

M ⊗M γ //

m

##

M ⊗M
m

{{
M

Figure 8: Coherence for a monoid (M,m, u) (where α, λ, ρ and γ are symmetric monoidal
structure maps)

4.2 Monoid and Comonoid Indexing in DZ

Fix an alphabet Σ. We are now going to see that the DialZ(Σ)-games of Def. 3.12 form a
category. Recall that given DialZ(Σ)-objects A = (U,X) and B = (V, Y ), a DialZ(Σ)-morphism
from A to B is a total zig-zag strategy

σ : (Σ× U,X) −(DZ (V, Y ×D)

We will use some algebraic structure. Objects of the form (1,M) (resp. (K,1)) are actually
(commutative) monoids (resp. comonoids) in DZ. Recall from e.g. [Mel09] that a commutative
monoid in a symmetric monoidal category (C,⊗, I) is an object M equipped with structure
maps m : M ⊗M → M and u : I → M subject to coherence conditions depicted on Fig. 8. A
(commutative) comonoid in C is a (commutative) monoid in Cop. In this paper, by (co)monoid
we always mean commutative (co)monoid. Write Comon(C) for the category of comonoids in C.
Maps from (K, d, e) to (K ′, d′, e′) are C-maps f : K → K ′ which commute with the comonoid
structure:

(f ⊗ f) ◦ d = d′ ◦ f and e = e′ ◦ f (29)

It is well-known that the symmetric monoidal structure of C induces a Cartesian product on
Comon(C) (see e.g. [Mel09, Cor. 18, §6.5]), and conversely that if (C,⊗, I) is Cartesian, then
every C-object has a canonical comonoid structure. Moreover, note that any set I ' 1 is a
monoid in Set.

Proposition 4.2. If M,K are non-empty sets and I ' 1, then M := (I,M) is a monoid and
K := (K, I) is a comonoid in DZ. Structure maps are depicted on Fig. 9 (in the case of I = 1).

From now on, we reason modulo the following DZ-isos (with the notations of Prop. 4.2):

(Σ× U,X) ' Σ⊗ (U,X) and (V, Y ×D) ' (V, Y )⊗D

It is well-known (see e.g. [HS99, HS03]) that a monoid M (resp. a comonoid K) in a symmetric
monoidal category (C,⊗, I) induces a monad (−) ⊗M of indexing with M (resp. a comonad
K ⊗ (−) of indexing with K).

Proposition 4.3. Let (C,⊗, I) be a symmetric monoidal category.
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M ⊗M
mM

−(DZ M
...

...

O (•, •)
• P
m O

P (m,m)
...

...

I
uM
−(DZ M

...
...

O •
• P
m O

P •
...

...

K
dK
−(DZ K ⊗K

...
...

O k
(k, k) P
(•, •) O

P •
...

...

K
eK
−(DZ I

...
...

O k
• P
• O

P •
...

...

Figure 9: Structure maps for the monoid M = (1,M) and the comonoid K = (K,1)

(a) A monoid (M,m, u) in C induces a (lax symmetric monoidal) monad ((−)⊗M,µ, η). The
functor (−)⊗M takes an object A to A⊗M and a map f : A→ B to f ⊗ idM : A⊗M →
B ⊗M . The natural maps µ and η are given by

µA := (idA ⊗m) ◦ α : (A⊗M)⊗M −→ A⊗M
ηA := (idA ⊗ u) ◦ ρ−1 : A −→ A⊗M

(b) Dually, a comonoid K = (K, d, e) in C induces an (oplax symmetric monoidal) comonad
(K ⊗ (−), δ, ε), where

δA := α ◦ (d⊗ idA) : K ⊗A −→ K ⊗ (K ⊗A)
εA := λ ◦ (e⊗ idA) : K ⊗A −→ A

The maps ρ, α and λ above are structural isomorphisms of (C,⊗, I).

Moreover, the comonad K ⊗ (−) is related to the monad (−) ⊗M via a distributive law.
A distributive law Λ of a comonad (G, δ, ε) over a monad (T, µ, η) on C is a natural map
Λ : G ◦ T ⇒ T ◦G subject to some coherence conditions (see e.g. [HHM07]), which ensure that
we have a category Kl(Λ) with the same objects as C and with homsets

Kl(Λ)[A, B] := C[GA, TB]

and that there is a lifting functor (−)↑ : Kl(Λ)→ C taking f : GA→ TB to

f↑ := G(µB ◦ Tf ◦ ΛA) ◦ δTA : GTA −→ GTB

In the case of comonoid and monoid indexing, a distributive law of K ⊗ (−) over (−)⊗M is
given by the natural associativity maps:

Φ(−) := α−1
K,(−),M : K ⊗ ((−)⊗M) =⇒ (K ⊗ (−))⊗M
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Returning to our case, we let
DialZ(Σ) := Kl(Φ)

where Φ is the distributive law of the comonad of indexing with the comonoid Σ over the monad
of indexing with the monoid D in the category DZ. The canonical lifting functor

(−)↑ : DialZ(Σ) −→ DZ

takes a total zig-zag strategy

σ : Σ⊗A −(DZ B ⊗D

to a total zig-zag strategy

σ↑ : Σ⊗ (A⊗D) −(DZ Σ⊗ (B ⊗D)

Modulo associativity, the strategy σ↑ is given by

(idΣ ⊗ ((idB ⊗mD) ◦ (σ ⊗ idD))) ◦ (dΣ ⊗ idA⊗D) : Σ⊗A⊗D −(DZ Σ⊗B ⊗D

Note that if σ plays as in Fig. 4 (right) then the strategy

σ̇ := (idB ⊗mD) ◦ (σ ⊗ idD) : Σ⊗A⊗D −(DZ B ⊗D

plays as in Fig. 10 (top). It follows that σ↑ = (idΣ ⊗ σ̇) ◦ (dΣ ⊗ idA⊗D) plays as in Fig. 10
(bottom).

4.3 The Indexed Structure of DialZ(−) and the Base Category T

We therefore have for each alphabet Σ a category DialZ(Σ). We now discuss an indexed structure
on the categories DialZ(−), based on a pattern similar to the simple fibration s : s(B) → B
over a category B with finite products (see e.g. [Jac01, Chap. 1] but also [Hyl02, Hof11]), and
reminiscent from [MM15]. The objects of s(B) are pairs (I,X) of B-objects. The morphisms
(I,X)→ (J, Y ) are pairs (f0, f) with f0 : I → J and f : I×X → Y . The functor s : s(B)→ B is
the first projection, and the fibre over I is the Kleisli category of indexing with the comonoid I
(see e.g. [Jac01, Ex. 1.3.4]).

A similar construction can be done if instead of a category B with finite products, one starts
from a symmetric monoidal category C, and take as base the category Comon(C). The fibre over
the comonoid K is the Kleisli category Kl(K) of indexing with K, and a comonoid morphism
u : K → L induces a functor u? : Kl(L)→ Kl(K) acting as the identity on objects and taking
f : L ⊗ A → B to f ◦ (u ⊗ idA) : K ⊗ A → B. It readily follows that id?K = idKl(K) and that
(u ◦ v)? = v? ◦ u?. In other words, we have a functor Comon(C)op → Cat that we denote
CI(C) (for comonoid indexing over C). The corresponding Grothendieck construction

∫
CI(C)

(see e.g. [Jac01, Chap. 1]) is the category whose objects are pairs (K,A) of an object K of
Comon(C) and an object A of C, and whose morphisms from (K,A) to (L,B) are pairs (u, f)
where u : K → L is a comonoid morphism and f : K ⊗A→ B. The category

∫
CI(C) is fibred

over Comon(C) via the first projection, that we denote

sCI(C) :

∫
CI(C) −→ Comon(C)

Returning to our case, recall that DialZ(Σ) = Kl(Φ) where Φ is the distributive law of Σ⊗(−)
over (−) ⊗ D. The category DialZ(Σ) can alternatively be obtained as a Kleisli category of
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Σ⊗A⊗D
σ⊗idD

−( DZ B ⊗D⊗D
idB⊗mD

−( DZ B ⊗D
...

...
...

O (a, u)
v

v P
(y, d) O

(y, d, d)
P (x, d)

...
...

...

Σ⊗A⊗D
dΣ⊗idA⊗D

−( DZ Σ⊗ Σ⊗A⊗D
idΣ⊗σ̇
−( DZ Σ⊗B ⊗D

...
...

...

O (a, u)
(a, a, u)

(a, v) P
(y, d) O

(x, d)
P (x, d)

...
...

...

Figure 10: Decomposition of σ↑
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A
σ
−(DZ B ⊗D

...
...

O u
v P

(y, d) O
P x

...
...

B
τ
−(DZ C ⊗D

...
...

O v
w P

(z, d) O
P y

...
...

A
σ
−(DZ B ⊗D

τ⊗idD

−( DZ C ⊗D⊗D
µDC
−(DZ C ⊗D

...
...

...
...

O u
v

w
w P

(z, d) O
(z, d, d)

(y, d)
P x

...
...

...
...

Figure 11: Composition in DZD = Kl(D)

indexing with comonoids over a symmetric monoidal category. Let DZD be the Kleisli category
of indexing with the DZ-monoid D. The objects of DZD are full positive games, and maps
from A to B are DZ-maps from A to B ⊗D.

Let us spell out composition in DZD. First recall that for a monad (T, µ, η) on a category C,
composition in the Kleisli category Kl(T ) is given by

g ◦Kl(T ) f := A
f−→ TB

Tg−→ TTC
µC−→ TC

for f : A → TB and g : B → TC. In the case of DZD-morphisms σ : A (DZ B ⊗ D and
τ : B (DZ C ⊗ D (where A = (U,X), B = (V, Y ) and C = (W,Z)) as depicted on Fig. 11
(top), the composite τ ◦DZD

σ is depicted (modulo associativity) on Fig. 11 (bottom).
Since DZD is the Kleisli category of a lax symmetric monoidal monad on DZ, it is symmetric

monoidal with structure induced by that of DZ (see e.g. [Mel09]).

Proposition 4.4. (a) Consider a monoid M in a symmetric monoidal category (C,⊗, I). The
Kleisli category Kl(M) is symmetric monoidal with A ⊗Kl(M) B := A ⊗ B on objects and
unit I.

Moreover, each comonoid (K, d, e) in C induces a comonoid (K, ηMK⊗K◦d, ηMI ◦e) in Kl(M).

(b) In the case of DZD = Kl(D), the action of ⊗DZD
on maps σi : Ai −(DZ Bi ⊗ D (for

i = 1, 2, Ai = (Ui, Xi) and Bi = (Vi, Yi)) is depicted on Fig. 12. If the σi = (fi, Fi) where

fi :
⋃
n∈N

(
Un+1
i × Y n

i ×Dn
)

−→ Vi
Fi :

⋃
n∈N

(
Un+1
i × Y n+1

i ×Dn+1
)
−→ Xi
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Ai
σi
−(DZ Bi ⊗D

...
...

O ui
vi P

(yi, d) O
P xi

...
...

A1 ⊗A2

σ1⊗DZD
σ2

−( DZ (B1 ⊗B2)⊗D
...

...

O (u1, u2)
(v1, v2) P

((y1, y2), d) O
P (x1, x2)

...
...

Figure 12: Action of ⊗DZD
on σi : Ai(DZD

Bi

then σ1 ⊗DZD
σ2 = (h,H) where

h :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n ×Dn

)
−→ V1 × V2

H :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n+1 ×Dn+1

)
−→ X1 ×X2

are defined as

h((u1, u2) , (y1, y2) , p) := (f1(u1, y1, p) , f2(u2, y2, p))
H((u1, u2) , (y1, y2) , p) := (F1(u1, y1, p) , F2(u2, y2, p))

Moreover, the DZD-structure maps d̃Σ and ẽΣ of the comonoid induced by Σ can be depicted
as in Fig. 13.

It follows from Prop. 4.4 and the fact that Φ is a distributive law, that each category DialZ(Σ)
is the Kleisli category of indexing with Σ in DZD. We can therefore index DialZ(−) with the
comonoids of DZD. We will actually index DialZ(−) over the base category T (of Def. 2.1),
which is isomorphic to a full subcategory of Comon(DZD). First, it directly follows Def. 3.9
that T-strategies from Σ to Γ in the sense of Def. 2.1 correspond exactly to total zig-zag
strategies from (Σ,1) to (Γ,D), that is to DZD-maps from Σ to Γ. Hence T is isomorphic to a
full subcategory of DZD. Second, T-maps induce comonoid maps.

Proposition 4.5. The category T embeds in Comon(DZD) via the functor ET which takes an
alphabet Σ to the comonoid (Σ, d̃Σ, ẽΣ) and a morphism M : T[Γ,Σ] to the DZD-morphism

M̃ := Σ ◦M : (Γ,1) −(DZ (Σ,1)⊗ (1,D)

induced by the DZ-iso Σ : (Σ,D)
'
−(DZ (Σ,1)⊗ (1,D).

A detailed proof of Prop. 4.5 is given in [Rib18]. We thus get an indexed category

DialZ := CI(DZD) ◦ ET : Top −→ Cat

We already mentioned the well-known fact that the symmetric monoidal structure of a cate-
gory induces a Cartesian structure on its category of comonoids (see e.g. [Mel09, Cor. 18, §6.5]).
By Prop. 4.5, this gives a Cartesian structure on T.

Corollary 4.6. The category T is Cartesian, with on objects the Cartesian product of alphabets,
and with unit 1.
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Σ
d̃Σ

−(DZD
Σ⊗ Σ

...
...

O a

(a, a) P
d O

P •
...

...

Σ
ẽΣ
−(DZD

I
...

...

O a

• P
d O

P •
...

...

Figure 13: Structure maps for the comonoid Σ = (Σ,1)

4.4 The Fibred Category DialAut

We thus have a category DialZ indexed over T, and whose fibre over Σ is the category DialZ(Σ).
We will now define a fibration da : DialAut → T (for Dialectica-like Automata) of uniform
substituted acceptance games, which essentially extends DialZ with winning (and acceptance).
The fibration da : DialAut → T is obtained by applying the Grothendieck construction to an
indexed category (−)? : Top → Cat, which takes an alphabet Σ to a category DialAutΣ. The
action of (−)? on T-maps is based on the indexed category DialZ.

Definition 4.7 (The Category DialAutΣ). Fix an alphabet Σ.

• The objects of the category DialAutΣ are tuples (U,X,WA) where U and X are non-empty
sets and where WA ⊆ ((Σ× U) · (X ×D))ω.

• The DialAutΣ-morphisms from (U,X,WA) to (V, Y,WB) are DialZ(Σ)-morphisms from
(U,X) to (V, Y ), that is total zig-zag strategies

σ : Σ⊗ (U,X) −(DZ (V, Y )⊗D

whose lift σ↑ are winning strategies on

(Σ× U,X ×D,WA) −(DZW (Σ× V, Y ×D,WB)

Composition and identities of DialAutΣ are induced by composition and identities of DialZ(Σ)
(using the functoriality of (−)↑ for winning). Given a uniform automaton A : ∆ and M ∈
T[Σ,∆], we still write Σ ` A(M) for the DialAutΣ-object induced by the uniform substituted
acceptance game Σ ` A(M) of §3.5.

We now turn to substitution and indexing. Morphisms L ∈ T[Γ,Σ] induce functors

L? : DialAutΣ −→ DialAutΓ

defined as follows. Given a DialAutΣ-object A = (U,X,WA), we let L?(A) be the DialAutΓ-
object (U,X,L?(WA)), where

((bk, uk) · (xk, dk))k ∈ L?(WA) iff ((L(b0. · · · .bk, d0. · · · .dk−1), uk) · (xk, dk))k ∈ WA

When the DialAutΣ-object A is induced by a uniform substituted acceptance game Σ ` A(M),
we have the expected result that L?(A) is induced by the uniform substituted acceptance game
Γ ` A(M ◦ L) (see §2.2).
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Lemma 4.8. Given a uniform substituted acceptance game Σ ` A(M) and L ∈ T[Γ,Σ], we
have

L?(Σ ` A(M)) = Γ ` A(M ◦ L)

A detailed proof of Lem. 4.8 is given in [Rib18]. The action of L? on maps is induced by
CI(DZD)(L) : DialZ(Σ)→ DialZ(Γ), so that for σ ∈ DialAutΣ[A,B], we let

L?(σ) := σ ◦ (L⊗ idA)

(where ◦, ⊗ and idA are taken in DZD). It remains to check that L?(σ)↑ is winning whenever
so is σ↑.

Proposition 4.9. Let L ∈ T[Γ,Σ] and consider DialAutΣ-objects A = (U,X,WA) and B =
(V, Y,WB). Given a total strategy σ : Σ ⊗ (U,X) −(DZ (V, Y ) ⊗ D, if the strategy σ↑ is
winning on

(Σ× U,X ×D,WA) −(DZ (Σ× V, Y ×D,WB)

then the strategy L?(σ)↑ is winning on

(Γ× U,X ×D, L?(WA)) −(DZ (Γ× V, Y ×D, L?(WB))

A detailed proof of Prop. 4.9 is given in [Rib18]. We thus obtain an indexed category (−)? :
Top → Cat since (−)? is itself functorial. We let da : DialAut→ T be obtained by applying the
Grothendieck construction to (−)?.

Definition 4.10 (The Fibred Category DialAut). The objects of DialAut are pairs (Σ, A) where
A is an object of DialAutΣ. Maps from (Σ, A) to (Γ, B) are pairs (L, σ) of a T-map L : Σ→ Γ
and a DialAutΣ-map σ from A to L?(B).

The fibration
da : DialAut −→ T

is the first projection, so that da(Σ, A) := Σ and da(L, σ) := L.

4.5 Substitution and Language Inclusion

We now check that DialAutΣ is correct w.r.t. language inclusion. First, consider substituted
acceptance games Σ ` A(M) and Σ ` B(N) in the sense of §3.3. We thus obtain DialAutΣ
objects, that we still write Σ ` A(M),B(N). Now, it follows from Lem. 4.8 that given

σ : A(M) −( B(N) and L ∈ T[Γ,Σ]

we have
L?(σ) : A(M ◦ L) −( B(N ◦ L)

Hence, DialAut interprets all instances of the (Subst) rule (15) of the form

M ; A ` B
M ◦ L ; A ` B

(where M ∈ T[Σ,∆] and L ∈ T[Γ,Σ])

In particular, given A,B : Σ, for all Σ-labeled tree T (and using the notation of §2.2.(b)) we
have

Σ ; A ` B
Ṫ ; A ` B
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Assume given σ : A ( B. If T ∈ L(A), then there is some τ : I1 ( A(T ). It follows that
we obtain Ṫ ?(σ) ◦ τ : I1 ( B(T ), which implies T ∈ L(B). In other words, σ : A( B and T
induce a function

τ : I( A(T ) 7−→ T ?(σ) ◦ τ : I( B(T )

and we have shown:

Proposition 4.11 (Thm. 1.3, (9)). If P has a winning strategy in Σ ` A( B, then we have
L(A) ⊆ L(B).

5 Symmetric Monoidal Closed Structure

We show here that the category DZ of full positive games and total zig-zag strategies is equipped
with a monoidal closed structure, and that this structure lifts to DialZ(Σ) and to the fibres of
DialAut. This in particular gives a (symmetric) monoidal closed structure on uniform automata.

We first discuss the closed structure of DZ (§5.1). We then show how the symmetric monoidal
closed structure of DZ lifts to DialAut and to uniform tree automata (§5.2). This provides a
realizability interpretation of a propositional linear (multiplicative) deduction system (§5.3). We
finally show how the closed structure gives a (functorial) notion of linear complement (§5.4).

Recall from e.g. [Mel09] that a symmetric monoidal category (C,⊗, I) is closed if for every
object A, the functor A⊗ (−) has a right adjoint (−)A. According to [ML98, Thm. IV.1.2], it
is sufficient to show that for every object C there is an object CA and map

evalC : A⊗ CA −→ C

such that for every f : A⊗B → C there is a unique Λ(f) : B → CA with

A⊗ CA evalC // C

A⊗B
f

88

idA⊗Λ(f)

OO

5.1 The Symmetric Monoidal Closure of DZ

The monoidal closed structure of DZ can actually be read off from the definition of zig-zag
strategies given in Def. 3.9.

Let us see how to define a linear exponent full positive game BA = (A (DZ B) from full
positive games A = (U,X) and B = (V, Y ), such that a strategy σ : A −(DZ B induces
(modulo A ' A⊗ I) a strategy Λ(σ) : I −(DZ (A(DZ B). Assume that σ plays as in Fig. 3.
From each play s of σ, the responses v ∈ V of σ to O-moves u ∈ U define a function

fs : U −→ V

and the responses x ∈ X of σ to further O-moves y ∈ Y define a function

Fs : U × Y −→ X

This amounts to describe σ by a pair of maps

f :
⋃
n∈N (Un × Y n) −→ (U −→ V )

F :
⋃
n∈N (Un × Y n) −→ (U × Y −→ X)

(30)
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Proposition 5.1. The category DZ is symmetric monoidal closed. The linear exponent of
A = (U,X) and B = (V, Y ) is A(DZ B := (V U ×XU×Y , U × Y ).

A detailed proof of Prop. 5.1 is given in [Rib18]. The monoidal closed structure of DZ departs
from traditional game semantics since the natural isomorphism A ⊗ B −(DZ C ' B −(DZ

(A(DZ C) relates strategies, but not plays.

5.2 The Symmetric Monoidal Closed Structure of DialAut and Tree Automata

The symmetric monoidal closed structure of DialAut and of tree automata is induced by the
symmetric monoidal closed structure of DialZ, which is itself lifted from DZ.

5.2.1 The Symmetric Monoidal Structure of DialZ. We have seen in Prop. 4.4 that the
symmetric monoidal structure of DZ lifts via monoid indexing to give a symmetric monoidal
structure to DZD. The same scheme actually applies to DialZ, which is symmetric monoidal
with structure induced by comonoid indexing in DZD.

Proposition 5.2. (a) Consider a comonoid K in a symmetric monoidal category C. The
Kleisli category Kl(K) is symmetric monoidal with A ⊗Kl(K) B := A ⊗ B on objects and
unit I.

(b) In the case of DialZ(Σ) = Kl(Σ), the action of the tensor ⊗DialZ(Σ) on strategies σi :
Σ⊗Ai −(DZD

Bi (for i = 1, 2, Ai = (Ui, Xi) and Bi = (Vi, Yi)) is depicted on Fig. 14. If
the σi = (fi, Fi) where

fi :
⋃
n∈N

(
Σn+1 × Un+1

i × Y n
i ×Dn

)
−→ Vi

Fi :
⋃
n∈N

(
Σn+1 × Un+1

i × Y n+1
i ×Dn+1

)
−→ Xi

then σ1 ⊗DialZ(Σ) σ2 = (h,H) where

h :
⋃
n∈N

(
Σn+1 × (U1 × U2)n+1 × (Y1 × Y2)n ×Dn

)
−→ V1 × V2

H :
⋃
n∈N

(
Σn+1 × (U1 × U2)n+1 × (Y1 × Y2)n+1 ×Dn+1

)
−→ X1 ×X2

are defined as

h(a , (u1, u2) , (y1, y2) , p) := (f1(a, u1, y1, p) , f2(a, u2, y2, p))
H(a , (u1, u2) , (y1, y2) , p) := (F1(a, u1, y1, p) , F2(a, u2, y2, p))

5.2.2 The Symmetric Monoidal Closure of DZD and DialZ. The monoidal closed structure
of DZ lifts to DZD and to the fibres of DialZ. In the case of DZD, since

DZD[A⊗B , C] = DZ[A⊗B , C ⊗D] ' DZ[A , (B(DZ C ⊗D)]

we should have (A(DZD
B)⊗D ' (A(DZ B ⊗D). Given A = (U,X) and B = (V, Y ) this

leads to (A(DZD
B) = (W,Z) with

(W,Z ×D) ' (V U ×XU×Y×D , U × Y ×D)

We therefore let

(U,X)(DZD
(V, Y ) := (V U ×XU×Y×D , U × Y )

The closed structure of DZD directly lifts to DialZ(Σ) since

DialZ(Σ)[A⊗B , C] = DZD[Σ⊗ (A⊗B) , C] ' DZD[Σ⊗A , B(DZD
C]

Proposition 5.3. The categories DZD and DialZ(Σ) are symmetric monoidal closed.
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Σ⊗Ai
σi
−(DZD

Bi
...

...

O (a, ui)
P vi
O (yi, d)
P xi

...
...

Σ⊗ (A1 ⊗A2)
τ
−(DZD

B1 ⊗B2
...

...

O (a, (u1, u2))
(v1, v2) P

((y1, y2), d) O
P (x1, x2)

...
...

Figure 14: Action of ⊗DialZ(Σ) on σi : Ai(DialZ(Σ) Bi, where τ := σ1 ⊗DialZ(Σ) σ2

5.2.3 The Symmetric Monoidal Closed Structure of DialAut. The symmetric monoidal
closed structure of DialZ gives the fibrewise symmetric monoidal closed structure of DialAut
(in the sense of [Jac01, §1.8]). The unit over Σ is IΣ := (1,1,1ω). Given DialAutΣ-objects
A = (U,X,WA) and B = (V, Y,WB), let

A⊗DA B := (U × V , X × Y , WA uWB)
A(DA B := (V U ×XU×Y×D , U × Y , WA AWB)

with
$ ∈ WA uWB iff

(
$�(Σ×U)+(X×D) ∈ WA and $�(Σ×V )+(Y×D) ∈ WB

)
and

((ak , (fk, Fk)) · ((uk, yk) , dk))k ∈ WA AWB iff (α ∈ WA =⇒ β ∈ WB)

where α and β are obtained by pointwise application:

α := ((ak , uk) · (Fk(uk, yk, dk) , dk))k
β := ((ak , fk(uk)) · (yk , dk))k

In the notations A⊗DAB and A(DA B we omit the subscript DA and write A⊗B and A( B
whenever possible.

Proposition 5.4. The fibration DialAut is fibrewise monoidal closed.

5.2.4 The Symmetric Monoidal Closed Structure of Uniform Automata. We now turn to
uniform automata. Their symmetric monoidal closed structure is inherited from DialAutΣ.

Definition 5.5 (Monoidal Product and Linear Implication on Uniform Automata). Assume A
is as in (27) and

B = (QB , q
ı
B , V , Y , ∂B , ΩB)

so that
∂A : QA × Σ −→ U ×X −→ (D −→ QA)

and ∂B : QB × Σ −→ V × Y −→ (D −→ QB)
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• We let A⊗ B be the automaton over Σ defined as

A⊗ B := (QA ×QB , (qıA, q
ı
B) , U × V , X × Y , ∂A⊗B , ΩA⊗B)

with
∂A⊗B((qA, qB) , a , (u, v) , (x, y) , d) := (q′A , q

′
B)

where
q′A := ∂A(qA , a , u , x , d) and q′B := ∂B(qB , a , v , y , d)

and with ((qn, q
′
n))n ∈ ΩA⊗B iff ((qn)n ∈ ΩA and (q′n)n ∈ ΩB).

• We let (A( B) be the automaton over Σ defined as

(A( B) := (QA ×QB , (qıA, q
ı
B) , V U ×XU×Y×D , U × Y , ∂A(B , ΩA(B)

with
∂A(B((qA, qB) , a , (f, F ) , (u, y) , d) := (q′A , q

′
B)

where

q′A = ∂A(qA , a , u , F (u, y, d) , d) and q′B = ∂B(qB , a , f(u) , y , d)

and with ((qn, q
′
n))n ∈ ΩA(B iff ((qn)n ∈ ΩA =⇒ (q′n)n ∈ ΩB).

Note that ΩA⊗B as well as ΩA(B are ω-regular since ΩA and ΩB are both assumed to be ω-
regular. Note also that A ⊗ B is non-deterministic (resp. universal, deterministic) if both A
and B are non-deterministic (resp. universal, deterministic). Moreover, assuming A,B : Γ and
M ∈ T[Σ,Γ], we have, as DialAutΣ-objects,

Σ ` (A(M)(DA B(M)) ' Σ ` (A( B)(M)
and Σ ` (A(M)⊗DA B(M)) ' Σ ` (A⊗ B)(M)

Note also that we obtain a notion of linear complement with

A‹ := A( ‹
where ‹ is a particular automaton accepting no tree (see §5.4), and it follows from monoidal
closure that (−)‹ is a contravariant functor taking σ : A(M) ( B(N) to σ‹ : B‹(N) (
A‹(M).

5.3 Deduction, Adequacy and Correctness

We now return to the deduction system for automata outlined in §1, and discuss the role of
linearity in our setting following §2.4 and §2.5. First, the monoidal structure of DialAutΣ allows
us to interpret sequents of the form

M ; A1, . . . ,An ` B (14)

where M ∈ T[Σ,Γ] and A1, . . . ,An,B are uniform automata over Γ. The sequent (14) is
interpreted as the homset

DialAutΣ[A1(M)⊗DA · · · ⊗DA An(M) , B(M)]
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(Exchange)
M ; A, A, B, C ` C
M ; A, B, A, C ` C

(Cut)
M ; A ` A M ; B, A, C ` C

M ; B, A, C ` C M ; A ` A
(Axiom)

(Left ⊗) M ; A, A, B, B ` C
M ; A, A⊗ B, B ` C

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

(Right ⊗)

(Left I)
M ; A, B ` C
M ; A, I, B ` C M ; ` I

(Right I)

(Left ()
M ; A ` A M ; B, B, C ` C

M ; B, A, A( B, C ` C
M ; A, B ` C
M ; A ` B( C

(Right ()

Figure 15: Rules of IMLL for uniform automata

Moreover, the monoidal closed structure implies that (14) can equivalently be interpreted as
the set of winning P-strategies in the uniform substituted acceptance game

Σ ` (A1 ⊗ · · · ⊗ An( B)(M)

Second, the symmetric monoidal closed structure allows us to interpret the deduction rules
of IMLL. We gather them on Fig. 15. Using the notations of §2.2, we write A1, . . . ,An ` B to
denote the sequent Id ; A1, . . . ,An ` B. Our model is sound w.r.t. this deduction system.

Proposition 5.6 (Adequacy). If the sequent M ; A1, . . . ,An ` B is derivable using the rules
of Fig. 15, then there is a winning P-strategy σ in

A1(M)⊗DA · · · ⊗DA An(M) −( B(M)

In particular, if A ` B is derivable, then by combining Prop. 5.6 with Prop. 4.11, we obtain
a strategy witnessing that L(A) ⊆ L(B).

Note that the strategy σ is obtained from the derivation D in a purely compositional way.
Moreover, all the rules of Fig. 15 are compatible with cut-elimination.

Remark 5.7 (On Cut-Elimination). It follows from the fact that we have monoidal closed cat-
egories (Prop. 5.4), that the interpretation of derivations as strategies for the rules of Fig. 15 is
compatible with cut-elimination, in the sense that if a derivation D ′ is obtained from a deriva-
tion D by applying the proof transformation steps described in e.g. [Mel09, §3.3], then D and D ′

are interpreted by the same strategy. This in particular applies to the following two derivations:

D1

A ` B
I ` A( B

D2

I ` A B ` B
A( B ` B

I ` B

...
D1[D2/A]

I ` B
Example 5.8. Proposition 5.6 yields a winning P-strategy in

B ⊗ B ⊗ (B( A) −( A⊗ B

obtained from the proof tree
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B ` B A ` A
B,B( A ` A B ` B
B, (B( A),B ` A⊗ B
B,B, (B( A) ` A⊗ B

Note that in Fig. 15 we omitted the weakening and contraction rules (22):

(Weak)
M ; A , B ` C

M ; A , A , B ` C
M ; A , A , A , B ` C
M ; A , A , B ` C

(Contr)

Similarly as with usual automata, the contraction rule can be interpreted on non-deterministic
uniform automata but not on general uniform automata. This rule amounts to providing win-
ning P-strategies in the game

A −( A⊗A (31)

If A is non-deterministic (and with P-moves U), then a winning P-strategy in (31) simply takes
an O-move u ∈ U in component A to the pair (u, u) ∈ U × U in component A⊗A. Note that
such strategy may not exist when A is a general uniform automaton, that is when it is equipped
with a set of O-moves X 6' 1, since O can play two different (x, x′) ∈ X ×X in the component
A⊗A, that P may not be able to merge into a single x′′ ∈ X in the left component A.

On the other hand, the weakening rule, which asks for a winning P-strategy in

A −( I

can always be realized (since we required the set of P and O-moves to be always non-empty),
but in a non-canonical way for general uniform automata. More generally, given A and B over
the same input alphabet, there is always a winning P-strategy in

A⊗ B −( A (32)

Assuming A and B are as in Def. 5.5, such a strategy takes (u, v) ∈ U × V to u ∈ U and takes
x ∈ X to (x, y) ∈ X × Y , where y is an arbitrarily chosen element of Y .

We shall come back on the connection between non-deterministic automata, the interpretation
of the (Weak) and (Contr) rules and IMELL in §7.

Example 5.9. Proposition 5.6 actually holds for any extension of the deduction system of
Fig. 15 with realizable rules, that is with rules

A ` B

such that there is a winning P-strategy in A −( B. In particular:

(i) We can extend the system with the following generalization of (32):

A1 , . . . , An ` Ai

We thus get

A ` A B ` B
A,B ` A⊗B A⊗ B ` A

A,B ` A
A ` B( A
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So there is a winning P-strategy on

A −( (B( A)

and by Prop. 4.11 we have
L(A) ⊆ L(B( A)

(ii) For B non-deterministic, we can extend the system with the following generalizations
of (31):

B ` B ⊗ . . .⊗ B
Continuing Ex. 5.8 with B non-deterministic, we thus have

B ` B ⊗ B

...
B,B, (B( A) ` A⊗ B
B ⊗ B, (B( A) ` A⊗ B

B, (B( A) ` A⊗ B

Finally, we note that the monoidal structure together with (32) implies that ⊗ indeed imple-
ments a conjunction on automata.

Proposition 5.10. Given A,B : Σ, we have L(A⊗ B) = L(A) ∩ L(B).

5.4 Falsity and Complementation

We have already seen in §1.2 that usual alternating automata are equipped with a complemen-
tation construction (−)‚ linear in the number of states (see e.g. [MS87]). Using the monoidal
closed structure, a similar construction can be done with uniform automata.

Definition 5.11 (Falsity Uniform Automaton). For each alphabet Σ, the falsity uniform au-
tomaton ‹ over Σ is

‹ := (B , f , D , 1 , ∂‹ , Ω‹)

where Ω‹ := B∗ · tω and where

∂‹(b , , d′ , • , d) :=

{
f if b = f and d = d′

t otherwise

Note that in the game Σ ` ‹, O looses as soon as it does not play the same tree direction
as proposed by P. On the other hand, ‹ accepts no tree since in an acceptance game ‹(T ), O
can always play the same d as P.

Consider a uniform automaton A : Σ with set of P-moves U and set of O-moves X. The
automaton (A( ‹) is isomorphic (via XU×D ' XU×1×D) to the automaton A‹ defined as

A‹ := (QA × B , (qıA, f) , D
U ×XU×D , U , ∂A‹ , ΩA‹)

where
(qk,bk)k ∈ ΩA‹ iff ((qk)k ∈ ΩA =⇒ (bk)k ∈ B∗ · tω)

and where

∂A‹(a , (qA,b) , (f, F ) , u , d) :=

{
(q′A , f) if b = f and d = f(u)
(q′A , t) otherwise

with q′A := ∂A(a, qA, u, F (u, d), d). Hence O looses as soon as it does not follow the direction
proposed by P via f .

Thanks to the determinacy of ω-regular games (see e.g. [Tho97, PP04]), we get:
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Proposition 5.12. Given A : Σ, we have L(A‹) = ΣD∗ \ L(A).

A detailed proof of Prop. 5.12 is given in [Rib18].

5.4.1 Deduction Rules for ‹ and A‹. Since the fibre categories DialAutΣ are symmetric
monoidal closed, they are in particular dialogue categories in the sense of [Mel13], with as
exponentiating object any object of DialAutΣ. Hence, if as in Ex. 5.9 we extend the deduction
system of Fig. 5.9 with the realizable rules

A( ‹ ` A‹ and A‹ ` A( ‹
then we can derive the following rules for ‹ and A‹:

A, B ` ‹
A ` B‹

A ` B‹
A, B ` ‹

A ` B‹
B ` A‹ A ` A‹‹

A ` B
B‹ ` A‹ A‹‹‹ ` A‹

6 Quantifications

We now discuss quantifications in the fibration DialAut. We follow the categorical approach
outlined in §2.2, according to which existential and universal quantifications (also called simple
coproducts and products [Jac01, Chap. 1]) in a fibration p : E → B are given resp. by left
adjoints

∐
I,J : EI×J → EI and right adjoints

∏
I,J : EI×J → EI to the weakening functors

π? : EI → EI×J induced by B-projections π : I × J → I. The families of operations (
∐
I,J)I,J

and (
∏
I,J)I,J are moreover required to satisfy some coherence conditions, called the Beck-

Chevalley conditions, which insure that they are preserved by substitution.
Having both (categorical) existential and universal quantifications greatly simplifies some

basic reasoning on games (see Cor. 6.5 and Ex. 6.10). Referring to Rem. 3.11, this also allows
for a clearer connection with Gödel’s Dialectica interpretation (Ex. 6.4).

We first present quantifications in DialAut (§6.1), from which we then derive quantifications
on automata (§6.2) and deduction rules for quantifications (§6.3).

6.1 Quantifications in DialAut

Quantifications in DialAut are induced by quantifications in DialZ, which are themselves based
on quantifications in simple fibrations. It is well-known (see e.g. [Jac01, Chap. 1]) that the
simple fibration s : s(B) → B always has simple coproducts, and has simple products iff B is
Cartesian closed. They are given by∐

I,J

(I × J,X) := (I, J ×X) and
∏
I,J

(I × J,X) := (I,XJ)

This directly extends to DialZ.

Proposition 6.1. The weakening functors [π]? : DialZ(Σ)→ DialZ(Σ×Γ) induced by projections
π : Σ× Γ→ Σ have left and right adjoints given by∐

Σ,Γ

(U,X) := (Γ× U,X) and
∏
Σ,Γ

(U,X) := (UΓ,Γ×X) ' (Γ(DZD
(U,X))
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The Beck-Chevalley conditions amount, for L ∈ T[∆,Σ], to the equalities

L?(
m

Σ,Γ

(U,X)) =
m

∆,Γ

(L× IdΓ)?(U,X) for
m
∈ {
∐
,
∏
}

which follow from the fact that substitution functors are identities on objects.
The extension to DialAut just requires to handle winning and acceptance.

Proposition 6.2. The fibration DialAut has existential and universal quantifications given by∐
Σ,Γ

(U,X,WA) := (Γ× U,X,
∐
Σ,Γ

WA) and
∏
Σ,Γ

(U,X,WA) := (UΓ,Γ×X,
∏
Σ,Γ

WA)

where
∐
WA is defined from WA via associativity and

∏
WA by pointwise function application

as ((ak, fk) · (bk, xk, dk))k ∈
∏

Σ,ΓWA iff ((ak, bk, fk(bk)) · (xk, dk))k ∈ WA.

6.2 Quantifications on Uniform Automata

Similarly as with the monoidal closed structure, the quantifications on automata and their
deduction rules are obtained by direct adaptation of the quantifications of DialAut.

Definition 6.3. Given A : Σ× Γ with set of P-moves U and set of O-moves X, let

(∃ΓA : Σ) := (QA , q
ı
A , Γ× U , X , ∂∃ΓA , ΩA)

(∀ΓA : Σ) := (QA , q
ı
A , U

Γ , Γ×X , ∂∀ΓA , ΩA)

where
∂∃ΓA(q, a, (b, u), x, d) := ∂A(q, (a, b), u, x, d)

and ∂∀ΓA(q, a, f, (b, x), d) := ∂A(q, (a, b), f(b), x, d)

Quantifications on automata induce an ∃∀-structure which is reminiscent from Gödel’s Dialectica
interpretation (see e.g. [AF98, Koh08]).

Example 6.4. Given A : Σ with set of P-moves U and set of O-moves X, let D be the deter-
ministic automaton

(D : Σ× U ×X) := (QA, q
ı
A, 1, 1, ∂D, ΩA)

whose transition function

∂D : QA × (Σ× U ×X) −→ D −→ QA

is obtained from ∂A in the obvious way. In DialAutΣ we have A ' ∃U∀XD.

Let us now discuss the connection between quantifications on automata and in DialAut. First,
given (A : Σ× Γ), we have, as DialAutΣ-objects,

(Σ `
∐
Σ,Γ

A) = (Σ ` ∃ΣA) and (Σ `
∏
Σ,Γ

A) = (Σ ` ∀ΣA)

It then follows that the Beck-Chevalley conditions in DialAut imply∐
Σ,ΓA(M × IdΓ) = M?(

∐
∆,ΓA) = (∃ΓA)(M)∏

Σ,ΓA(M × IdΓ) = M?(
∏

∆,ΓA) = (∀ΓA)(M)
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Thanks to the adjunctions
∐
a π? a

∏
in DialAut, we then have

Σ ` (∃ΓA)(M) ( B(N) ' Σ× Γ ` A(M × IdΓ) ( B(N ◦ [πΣ])
Σ ` B(N) ( (∀ΓA)(M) ' Σ× Γ ` B(N ◦ [πΣ]) ( A(M × IdΓ)

(33)

It follows that P has winning strategies in

Σ× Γ ` (∀ΓA)[πΣ] −( A and Σ× Γ ` A −( (∃ΓA)[πΣ] (34)

We thus get the following corollary to Prop. 6.2.

Corollary 6.5. Given uniform automata A,B : Σ, the game Σ ` A ( B is equivalent to a
regular game on a finite graph. It is therefore decidable whether there exists a winning P-strategy
on Σ ` A ( B, and if there exists such a winning P-strategy, then there exists a finite-state
one, which is moreover effectively computable from A and B.

Proof. By (33) and (34), P has a winning strategy in Σ ` A( B iff it has a winning strategy
in 1 ` I1 ( ∀Σ(A ( B). But since in that game O can only play • in the component I1,
similarly as in §3.5, it is equivalent to the acceptance game of the automaton ∀Σ(A ( B) : 1
on the unique tree 1 : D∗ → 1.

Reasoning as in [Tho97, Ex. 6.12], the game 1 ` ∀Σ(A ( B) is effectively equivalent to a
regular game on a finite graph. Then, by the Büchi-Landweber Theorem [BL69] (see also [Tho97,
Thm. 6.18]), one can decide which player has a winning strategy, and the winner always has a
finite-state winning strategy which is moreover effectively computable from the game graph.

We also get from (34) that existential quantifications are complete in the following sense:

Corollary 6.6. Given A : Σ× Γ, we have πΓ(L(A)) ⊆ L(∃ΓA).

The converse inclusion (the correctness of existential quantifications) only holds for non-
deterministic automata, and is detailed in §7. Dually, it follows from (34) that universal quan-
tifications are correct (but they are complete only on universal automata, see Def. 3.1).

Corollary 6.7. Given A : Σ × Γ, if T ∈ L(∀ΓA), then for all Γ-labeled tree T ′ we have
〈T, T ′〉 ∈ L(A).

6.3 Deduction Rules for Quantifications

We now turn to deduction rules for quantification. It follows from the isos (33) that we can
extend the deduction system of Fig. 15 with the rules of Fig. 16 while preserving adequacy
(Prop. 5.6), Ex. 5.9 and compatibility with cut-elimination (in the sense of Rem. 5.7).

Proposition 6.8 (Adequacy with Quantifications). If the sequent M ; A1, . . . ,An ` B is
derivable using the rules of Fig. 15, Fig. 16 and of Ex. 5.9, then there is a winning P-strategy
in the game

A1(M)⊗DA · · · ⊗DA An(M) −( B(M)

Note that the rules of Fig. 16 involve internalized substitutions of the form A[f] as defined
in Def. 3.7. The transfer rules (Trans↑) and (Trans↓) allow to connect the internalized
substitutions of the form A[f] with the T-substitution.
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(Subst)
M ; A ` A

M ◦M ′ ; A ` A

(Trans↓)
[f] ◦M ; A ` B
M ; A[f] ` B[f]

M ; A[f] ` B[f]

[f] ◦M ; A ` B
(Trans↑)

(Left ∃) M × IdΓ ; A[π], B ` A[π]

M ; A, ∃ΓB ` A
M ×N ; A ` A

M ×N ; A ` (∃ΓA)[π]
(Right ∃)

(Left ∀) M ×N ; A, B ` A
M ×N ; A, (∀ΓB)[π] ` A

M × IdΓ ; A[π] ` A
M ; A ` ∀ΓA

(Right ∀)

Figure 16: Substitution and quantification rules for uniform automata (where M,M ′ are com-
posable, π is a suitable projection and f is a function on alphabets)

Example 6.9. Using the transfer rule (Trans↓), we can derive the following specific rules of
substitution for T-maps induced by functions f : Σ→ Γ:

IdΓ ; A ` A
IdΣ ; A[f] ` A[f]

M × IdΓ ; A ` A
M × IdΣ ; A[id× f] ` A[id× f]

Indeed, since we have (as T-morphisms)

IdΓ ◦ [f] = [f] ◦ IdΣ and (M × IdΓ) ◦ [id× f] = (id× f) ◦ (M × IdΣ)

it follows that we can derive

IdΓ ; A ` A
IdΓ ◦ [f] ; A ` A
IdΣ ; A[f] ` A[f]

and

M × IdΓ ; A ` A
(M × IdΓ) ◦ [id× f] ; A ` A

M × IdΣ ; A[id× f] ` A[id× f]

Example 6.10. Continuing Ex. 5.9, we can extend the deduction system with the rule

L(A : 1) 6= ∅
` A

This rule actually subsumes Ex. 5.9. Indeed, following the same reasoning as for Cor. 6.5,
assuming that

Σ ; A1 ⊗ · · · ⊗ An ` B

is realizable we get (leaving implicit some structural and cut rules)

L(∀Σ(A1 ⊗ · · · ⊗ An( B)) 6= ∅
1 ; ` ∀Σ(A1 ⊗ · · · ⊗ An( B)

Σ ; ` A1 ⊗ · · · ⊗ An( B
Σ ; A1 ⊗ · · · ⊗ An ` B

Σ ; A1, . . . ,An ` B
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7 Non-Deterministic Automata

This final Section focuses on structural properties of non-deterministic automata, on their role in
Rabin’s Theorem [Rab69] (namely in the complementation of non-deterministic tree automata),
and on their relationship with IMELL [Gir87] (see §1.2, §1.3 and §2.5).

We first detail in §7.1 the Cartesian structure of non-deterministic automata announced in §1.3
(see also §2.4 and §5.3). Technically, this Cartesian structure follows from the simple fact that
non-deterministic automata generate comonoids in the fibres of DialAut (by a direct extension
of Prop. 4.4, §4.3). As a consequence, we show that our model has the witnessing properties
asked to computational interpretations of proofs (in the sense of §1.4), and moreover that it
allows for combining strategies obtained from proofs with witnessing strategies computed by
usual emptiness checking algorithms (see §1.5).

Second, we show that a powerset construction for the Simulation Theorem [MS87, EJ91,
MS95] satisfies the usual deduction rules of the exponential modality ! of IMELL. This completes
the picture sketched in §1.3, §1.5, §2.4 and §2.5, and moreover allows us to obtain a deduction
system which is complete w.r.t. intuitionistic and classical deduction (via usual translations).
Furthermore, [Rib18, App. C] details how two constructions from resp. [CL08] and [SA05] can
be reformulated in our setting.

The proofs of all statements of this Section are given in [Rib18].

7.1 The Cartesian Structure of Non-Deterministic Automata

Similarly as with usual (total) non-deterministic automata (see §2.4), the monoidal product
of uniform automata is Cartesian on non-deterministic automata. Recall from Def. 3.1 that a
uniform automaton is non-deterministic if its set of O-moves is ' 1.

Consider a DialAutΣ-object N (L) with N non-deterministic and with set of P-moves U .
Hence, the underlying DialZ(Σ)-object of N (L) is of the form (U, I) with I ' 1. As we have
seen in §5.3, we thus get canonical realizers for

N (L) −( N (L)⊗N (L) and N (L) −( I (35)

As we shall see now, these canonical realizer equip N (L) with the structure of a comonoid15.
Thanks to well-known results (see e.g. [Mel09, Cor. 18, §6.5]), this implies that the monoidal
structure of uniform automata is Cartesian on non-deterministic automata.

Recall from Prop. 4.2 that objects of the form (K, I) with I ' 1 are comonoids in DZ, and
from Prop. 4.4 that such objects are also comonoids in DZD. On the other hand, we have seen
that DialZ(Σ) is a Kleisli category of comonoid indexing in DZD, whose symmetric monoidal
structure is given by the extension of Prop. 4.4 to comonoid indexing given by Prop 5.2. Actually,
the lifting of comonoids given by Prop. 4.4 also extends to the case of comonoid indexing:

Proposition 7.1. Given a comonoid C in a symmetric monoidal category (C,⊗, I), each
comonoid (K, d, e) in C induces a comonoid (K, d ◦ εCK , e ◦ εCK) in the Kleisli category Kl(C)
of indexing with C. In the case of DialZ(Σ), the structure maps d̃K and ẽK of the comonoid
induced by K = (K,1) can be depicted as on Fig. 17 (where we omitted some •-moves).

The extension of Prop. 7.1 to the DialAutΣ-objects induced by non-deterministic automata
is direct. Moreover, DialAutΣ-morphisms between non-deterministic automata are comonoid
morphisms.

15Recall from §4.2 that in this paper, by (co)monoid we always mean commutative (co)monoid
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Σ⊗K
d̃K
−(DZD

K ⊗K
...

...

O (a, k)
(k, k) P
d O

P •
...

...

Σ⊗K
ẽK
−(DZD

I
...

...

O (a, k)
• P
d O

P •
...

...

Figure 17: Structure maps in DialZ(Σ) for the comonoid K = (K,1)

Proposition 7.2. For each alphabet Σ, objects of the form Σ ` N (L), where N is non-
deterministic, are comonoids in DialAutΣ. Moreover, DialAutΣ-morphisms between such objects
are comonoid morphisms.

Since the category of comonoids of a symmetric monoidal category has finite products (see
e.g. [Mel09, Cor. 18, §6.5]), we thus have the expected result that non-deterministic automata
are equipped with a Cartesian structure.

Corollary 7.3. For each alphabet Σ, the full subcategory DialAutND
Σ of DialAutΣ, whose objects

are of the form (U, I,W) with I ' 1, is Cartesian.

7.1.1 Application: Deduction Rules for Non-Deterministic Automata. Similarly as with
usual (total) non-deterministic automata (see §2.4), Cor. 7.3 allows us to extend adequacy
(Prop. 5.6 and Prop. 6.8) to the following restriction of the structural weakening and contraction
rules:

(WeakND)
M ; A , B ` C

M ; A , N , B ` C
M ; A , N , N , B ` C
M ; A , N , B ` C

(ContrND) (36)

where N is required to be non-deterministic (while A, B and C can be arbitrary). On the other
hand, recall that the full weakening rule is actually derivable in the setting of Ex. 5.9, but with
non-canonical realizers of A( I when A is not non-deterministic.

7.1.2 Application: Existential Quantifications and Extraction. A nice consequence of the
Cartesian structure of DialAutND

(−) is the fact that existential quantifications behave similarly as
the usual sum types of Type Theory (see e.g. [Jac01, Chap. 10]). Consider a non-deterministic
automaton N : Σ×Γ with set of P-moves U , and let T be a Σ-labeled tree (so that T : D∗ → Σ).
It directly follows from Def. 3.9 that a winning P-strategy in 1 ` I( (∃ΓA)(Ṫ ) is given by a
function ⋃

n∈N

Dn −→ Γ× U

hence by a pair of functions(⋃
n∈N

Dn −→ Γ

)
×

(⋃
n∈N

Dn −→ U

)

and therefore by a tree T ′ : D∗ → Γ together with a winning P-strategy in 1 ` I( A〈Ṫ , Ṫ ′〉.
We thus have shown
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Proposition 7.4. Given a non-deterministic automaton N : Σ × Γ, a winning P-strategy
σ : 1( ∃ΣN is of the form σ = 〈T, τ〉 where T is a Σ-labeled tree and τ is a winning P-strategy
in 1( N (T ) (so in particular T ∈ L(N )).

In particular, we get the following fact, which completes Cor. 6.6 and mirrors the well-known
situation with usual non-deterministic automata.

Corollary 7.5. If N : Σ× Γ is non-deterministic then L(∃ΓN ) = πΓ(L(N )).

Moreover, it follows from Prop. 7.4 that our computational interpretation makes it possible to
effectively extract witnesses from (interpretations of) proofs, in the sense of §1.4 and §1.5. Let
N : Σ be non-deterministic with set of P-moves U , and consider a derivation D of the sequent

1 ; ` ∃ΣN

using the rules of Fig. 15, Fig. 16, Ex. 5.9 and (36). Then adequacy (Prop. 5.6 and Prop. 6.8)
gives a strategy

σ : I −( ∃ΣN

(effectively computed by induction on D), and which by Prop. 7.4 is of the form

〈T, τ〉 :
⋃
n∈N Dn −→ Σ× U

where τ : I −( N (T )

7.1.3 Application: Effective Realizers from Witnesses of Non-Emptiness. Similarly as with
usual non-deterministic automata (see e.g. [Tho97]), thanks to the Büchi-Landweber Theo-
rem [BL69], Cor. 7.5 implies the decidability of emptiness for non-deterministic automata as
well as the Rabin Basis Theorem [Rab72], stating that if L(N ) 6= ∅, then its contains a regular
tree T and a finite state winning P-strategy on N (T ) (both effectively definable from N ).

Corollary 7.6. Given a non-deterministic automaton N : Σ, one can decide whether L(N ) is
empty. Moreover, if L(N ) 6= ∅ then one can effectively build from N a regular tree T ∈ L(N )
together with a finite state winning P-strategy on I( N (T ).

More generally, strategies witnessing (non-)emptiness obtained via Cor. 7.5 can be lifted to
winning strategies in games of the form A ( C. Consider the case (mentioned in §1.5.(2)) of
C = B‹ and with A,B : Σ non-deterministic. If L(A)∩L(B) = ∅, then an O-strategy witnessing
L(A⊗B) = ∅, which corresponds via Prop. 5.12 to a P-strategy witnessing 1 ∈ L((∃Σ(A⊗B))‹),
can be lifted to a winning P-strategy in A( B‹.

Proposition 7.7. Given non-deterministic A,B : Σ, if L(A)∩L(B) = ∅, then there are winning
P-strategies in A ⊗ B ( ‹ and A ( B‹. Moreover, these P-strategies can be assumed to be
finite state and can be effectively obtained from A and B.

Proposition 7.7, together with Ex. 5.9.(ii), implies the following extension of Ex. 5.9.(i).

Corollary 7.8. If A,B : Σ are non-deterministic and such that L(A)∩L(B) = ∅, then L(A) ⊆
L(B( A) ⊆ L(B‹).
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7.2 Simulation and the Exponential Modality of IMELL

Recall that similarly as in the usual setting, uniform automata have linear complements (§5.4),
and that non-deterministic automata have correct existential quantifications (§7.5). On the
other hand, we mentioned in §1.2 that in the usual setting, the Simulation Theorem [MS87,
EJ91, MS95] says that each alternating automaton A can be simulated by a non-deterministic
automaton !A (of exponential size) with L(!A) = L(A).

We show here that in our setting, an easy adaptation of the construction used in [Wal02] gives
a similar simulation operation !(−), taking a uniform automaton A : Σ to a non-deterministic
automaton !A : Σ with L(!A) = L(A), thus completing the picture (2) of §1.2 for our notion of
uniform automata:

Non-Deterministic
Uniform Automata

Uniform
Automata

!(−)

∃(−) (−)⊗ (−) (−)‹(−)⊗ (−)

(37)

Moreover, we show that the operation !(−) satisfies the deduction rules of the exponential
modality ! of IMELL:

M ; !A ` A
M ; !A ` !A

M ; A, B ` A
M ; A, !B ` A

M ; A, ` A
M ; A, !B ` A

M ; A, !B, !B ` A
M ; A, !B ` A

(38)

It follows that the exponential ! makes it possible to define, using Girard’s decomposition, an
intuitionistic implication (−)→ (−) as A → B := !A( B.

The rules (38) are an obvious adaptation to our context of the rules displayed in (24) and (25)
of §2.5. The last two rules (weakening and contraction) actually follow from the rules (WeakND)
and (ContrND) displayed in (36). The second rule (Dereliction) will easily follow from the
construction of !A. The most difficult rule is the first one (Promotion), which is moreover
not compatible with cut-elimination (in the sense of Rem. 5.7).

The difficulty with the (Promotion) rule can be explained as follows. We have seen in §7.1
above that the symmetric monoidal structure of DialAutΣ is Cartesian on non-deterministic
automata, in other words that non-deterministic automata have a canonical comonoid struc-
ture (35). It follows that similarly as with usual IMELL-exponentials (see §2.5 but also [Mel09]),
the simulation operation !(−) adds to an arbitrary automaton A the structure allowing !A to
be equipped with canonical maps:

!A −( !A⊗ !A and !A −( I

On the other hand, recall from §5.3 that for a uniform automaton A with set of O-moves X,
realizers of

A −( A⊗A

may not exist because O can play two different (x, x′) ∈ X ×X in the right component A⊗A,
that P may not be able to merge into a single x′′ ∈ X in the left component A.

Usual solutions to this merging problem for IMELL-exponentials (see e.g. [Mel09, AC98,
Mel04]) amount to equip objects of the form !A with some duplication and memory abilities,
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essentially allowing !A to run several copies of A in parallel. However (and this is via (3) §1.2,
the crux of Rabin’s Theorem [Rab69]), such recipes cannot (at least in an obvious way) be
applied to automata on infinite trees, because !A must be a finite-state automaton, while plays
in acceptance games (which are infinite) would require an infinite memory.

Phrased in modern terms, the solution is given by the existence of positional (i.e. memo-
ryless) winning strategies in ω-regular games equipped with parity acceptance conditions (see
e.g. [Tho97, GTW02]). In our case, we rely for the (Promotion) rule on the stronger fact
that in an ω-regular game whose winning condition is given by a disjunction of parity condi-
tions (also called a Rabin condition), winning P-strategies can always be assumed to be posi-
tional [Kla94, KK95, Jut97, Zie98]. Unfortunately, positionality is not preserved by composi-
tion, and the interpretation of the (Promotion) rule is not preserved by cut-elimination (in
the sense of Rem. 5.7).

Remark 7.9. In (37), we have only displayed existential quantifications ∃ for non-deterministic
automata, because as in the usual setting, they are correct (in the sense of Cor. 7.5) only on
non-deterministic automata. Similarly, we have not displayed universal quantifications because
they are only complete on universal automata (see Def. 3.1).

Note that on the other hand, the categorical properties of quantifications (Prop. 6.2) and thus
the deduction rules of Fig. 16, hold on general uniform automata.

7.2.1 Parity Automata. Similarly as in the usual setting, we say that A is a parity automaton
if ΩA is generated from a map cA : QA → N as the set of sequences (qk)k such that the maximal
number occurring infinitely often in (cA(qk))k is even.

Proposition 7.10. For every automaton A : Σ, there is a parity automaton A† : Σ such that
A† ' A in DialAutΣ.

Note that A ' A† implies L(A) = L(A†) by Prop. 4.11.

7.2.2 An Exponential Construction on Uniform Automata. Our exponential construction
!(−) is an adaptation of the one used in [Wal02]. Given a parity automaton A : Σ with set of
P-moves U and set of O-moves X, we let

!A := (Q!A , q
ı
!A , U

QA , 1 , ∂!A , Ω!A)

where Q!A := P(QA × QA), qı!A := {(qıA, qıA)} and ∂!A is defined as follows: Given a ∈ Σ,
f ∈ UQA , d ∈ D and S ∈ Q!A with π2(S) = {q′ | ∃q. (q, q′) ∈ S} = {q1, . . . , qn}, let

∂!A(S, a, f, •, d) := T1 ∪ · · · ∪ Tn

where, for each k ∈ {1, . . . , n},

Tk := {(qk, q) | ∃x ∈ X. q = ∂A(qk, a, f(qk), x, d)}

Let a trace in an infinite sequence (Sn)n ∈ Qω!A be a sequence (qn)n such that for all n,
(qn, qn+1) ∈ Sn+1. We let Ω!A be the set of sequences (Sn)n whose traces all belong to ΩA.
Note that Ω!A is ω-regular since ΩA is ω-regular (see [Wal02, §4]).

Remark 7.11. Note that Q!A = P(Q×Q) contains a “true” state ∅ ∈ Q!A, so the map

∂̃!A : Q!A × Σ −→ UQ −→ (D −→ Q!A)

is always total.
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((p , a , qA) , (p , a , qB)) AP ×BP

O ↓
((p , a.a , qA , u) , (p , a , qB)) AO ×BP

P ↓
((p , a.a , qA , u) , (p , a.a , qB , v)) AO ×BO

O ↓
((p , a.a , qA , u) , (p.d , a.a , q′B)) AO ×BP

P ↓
((p.d , a.a , q′A) , (p.d , a.a , q′B)) AP ×BP

Figure 18: The edges of the graph G for Σ ` A(M)( B(N)

For a uniform automatonA whose acceptance condition is not a parity condition, let !A := !(A†),
where A† is obtained from Prop. 7.10.

It is easy to show the adequacy of the dereliction rule. This amounts to provide co-unit-like
winning P-strategies

ε : !A(M) −( A(M)

Proposition 7.12. Given A : Σ, there is a winning P-strategy ε in Σ ` !A(M)( A(M).

7.2.3 Game Graphs and Positionality. We now turn to the (Promotion) rule. Its adequacy
relies on well-known but non-trivial results on the existence of winning positional P-strategies for
Rabin games, which are games whose winning conditions are disjunctions of parity conditions.
The notion of positional strategy makes sense for games whose moves and winning condition
are induced in an appropriate way by a given graph.

Consider uniform substituted acceptance games Σ ` A(M) and Σ ` B(N), where A (resp.
B) has set of P-moves U (resp. V ) and set of O-moves X (resp. Y ). The game graph of
Σ ` A(M)( B(N) is the graph G with vertices:

(AP ×BP) + (AO ×BP) + (AO ×BO)

where
AP := D∗ × Σ∗ ×QA
BP := D∗ × Σ∗ ×QB

AO := D∗ × Σ∗ ×QA × U
BO := D∗ × Σ∗ ×QB × V

and with edges depicted in Fig. 18, where q′A := ∂A(qA,M(a.a, p), u, x, d) (for some x ∈ X) and
q′B := ∂B(qB, N(a.a, p), v, y, d) (for some y ∈ Y ). Write pos for the graph morphism from the set
of plays of Σ ` A(M)( B(N) (seen as a tree) to G. We say that a strategy σ is positional if
it agrees on plays with the same position, i.e. if s.m ∈ σ, t.m′ ∈ σ with pos(s) = pos(t) implies
m = m′.

Consider now parity automata A1, . . . ,An and B. The winning condition of a game of the
form A1(M1)⊗ . . .⊗An(Mn)( B(N) is a disjunction of parity conditions, also called a Rabin
condition, which is induced by colorings depending only on the vertices of its game graph G.
It has been shown in [Kla94, KK95, Jut97, Zie98] that if P has a winning strategy σ in such a
game, then it has a winning positional strategy (w.r.t. G), which according to [Zie98] is recursive
in σ. The existence of winning positional P-strategies allows us to show the adequacy of the
(Promotion) rule. A detailed proof of Prop. 7.13 is given in [Rib18, App. B].

Proposition 7.13. Given N ,A : Σ with N non-deterministic, if there is a winning P-strategy
in Σ ` N (L)( A(M), then there is a winning P-strategy in Σ ` N (L)( !A(M).
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Remark 7.14. Consider the case of !A for A non-deterministic. Given S ∈ Q!A with π2(S) =
{q1, . . . , qn}, we have

∂!A(S, a, f, •, d) = {(qk, ∂A(qk, a, f(qk), •, d)) | k = 1, . . . , n}

One can easily see that A is a retract of !A. Moreover, since the initial state of !A is the singleton
qı!A = {(qıA, qıA)}, plays in games of the form !A(M) only reach singleton states {(qA, q′A)} ∈ Q!A.
In particular, each play on !A(M) determines a unique play on A(M), and it follows that !(−)
extends to a functor on non-deterministic automata.

7.2.4 Applications. This paragraph gathers consequences of Props. 7.12 and 7.13, thus mir-
roring §7.1.1-7.1.3 and completing the picture announced in §1.3, §1.5 and §2.5.

First, Prop. 7.12 implies that L(!A) ⊆ L(A), while Prop. 7.13 gives the converse inclusion
L(A) ⊆ L(!A). We thus have, as expected:

Corollary 7.15. L(A) = L(!A).

Corollary 7.15 gives the extension of Cor. 7.6 to general uniform automata.

Corollary 7.16. Given a uniform automaton A, one can decide whether L(A) is empty. More-
over, if L(A) 6= ∅ then one can effectively build from A a regular tree T ∈ L(A) together with a
finite state winning P-strategy on 1 ` I( A(Ṫ ).

We also obtain the lifting property of §1.5.(3), extending Prop. 7.7. Let ?A := (!A‹)‹.

Proposition 7.17 (Weak Completeness). Given automata A,B : Σ, if L(A) ⊆ L(B) then there
is an effective winning P-strategy in Σ ` !A( ?B.

Proof. By Prop. 5.12 and Cor. 7.15, if L(A) ⊆ L(B) then L(!A)∩L(!(B‹)) = ∅, and we conclude
by Prop. 7.7.

Proposition 7.17 is a completeness result on realizability w.r.t. language inclusion. It is only
a weak converse to the soundness of realizability w.r.t. language inclusion (Prop. 4.11, §4.5),
because it imposes constraints on the shape of automata for the implication to be realizable
(while it imposes no constraint on the languages involved as L(A) = L(!A) and L(B) = L(?B)).

On the other hand, Props. 7.12 and 7.13 give adequacy for the rules displayed in (38).

Proposition 7.18 (Adequacy (Thm. 1.3 (8))). If the sequent M ; A1, . . . ,An ` B is derivable
using the rules of Fig. 15, Fig. 16 Fig. 19 and of Ex. 5.9, then there is a winning P-strategy in
the game

A1(M)⊗DA · · · ⊗DA An(M) −( B(M)

As an example of use of the exponential rules, we mention a negative translation of the law
of Peirce ((A → B) → A) → A. The law of Peirce gives full classical logic when added to
intuitionistic logic. Recall that A → B := !A( B.

Example 7.19. The law of Peirce ((?A → ?B) → ?A) → ?A can be derived thanks to the
exponential rules.

Finally, returning to MSO and IMELL (in the sense of §1.1 and §1.3), we obtain Prop. 1.1 As
in §1.3, we assume given an automaton A(α) for each atomic formula α ∈ At.

Proposition 7.20 (Prop. 1.1). Consider a closed MSO-formulae ϕ as in §1.1, and let (−)† be
either (−)nd or (−)alt. Then ϕ is true (in the standard model) if and only if A(ϕ†) accepts the
unique 1-labeled tree.
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(Dereliction)
M ; A , A , B ` C
M ; A , !A , B ` C

M ; N ` A
M ; N ` !A

(Promotion)

(WeakND)
M ; A , B ` C

M ; A , N , B ` C
M ; A , N , N , B ` C
M ; A , N , B ` C

(ContrND)

Figure 19: Exponential rules (where N and N are non-deterministic)

8 Conclusion

We have presented preliminary results toward a Curry-Howard approach to automata on infinite
trees. Our contributions concern mainly two related directions.

First, we have shown that the operations on tree automata used in the translations of MSO-
formulae to automata underlying Rabin’s Theorem [Rab69] correspond to the connectives of
IMELL [Gir87]. Namely, we equipped a variant of usual alternating tree automata (that we
called uniform tree automata, §3) with a fibred monoidal closed structure (§4 and §5), which
in particular handles a conjunction and, via game determinacy, a linear complementation of al-
ternating automata, as well as deduction rules for existential and universal quantifications (§6).
Moreover, we have shown in §7 that this monoidal structure is Cartesian on non-deterministic
automata, and in particular that (an adaptation of) a usual powerset construction for the Sim-
ulation Theorem [MS87, EJ91, MS95] satisfies the deduction rules of an !(−) IMELL-exponential
modality.

Second, our approach is based on a realizability semantics for a linear constructive deduction
system on tree automata, in which, thanks to the monoidal-closed structure, realizers are win-
ning strategies in a generalization of acceptance games. Our realizability semantics satisfies an
expected property of witness extraction from proofs of existential statements. Moreover, this
realizability semantics is compositional and makes it possible to combine realizers produced as
interpretations of proofs with strategies witnessing (non-)emptiness of tree automata, possibly
obtained using external algorithms.

We believe that this can provide a basis for semi-automatic approaches to MSO on infinite
trees16, in which, similarly as with interactive proof systems, decision algorithms can be com-
bined with human-produced proofs or proof-search techniques. The author and P. Pradic have
recently obtained preliminary results in this direction for MSO on ω-words [PR17, PR18].

Furthermore, as shown in Ex. 6.4 (see also Rem. 3.11), our interpretation shares a formal
similarity with Gödel’s Dialectica interpretation (see e.g. [AF98, Koh08]). Actually, the cat-
egory DZ can be constructed (via a distributive law) from a category of simple self dualiza-
tion [HS99, HS03] (over the topos of trees, see e.g. [BMSS12]), which can be seen as a skeleton
of Dialectica-like categories [dP91], and the category DialZ has a shape similar to Dialectica
fibrations (see [Hyl02, Hof11] but also [Jac01, Ex. 1.10.11]). This connection has been made
precise in [PR19] in the case of ω-words and provides realizers for linear variants of Markov and
choice rules.

Moreover, we show in [Rib18, App. C] that our setting easily handles known constructions
from [CL08] and [SA05] for language reduction and separation.

16Even if there are numerous implementations of decision algorithms on tree automata, we are aware of no
working implementation of decision procedures for the full language of MSO on infinite trees.
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8.1 Further Works. We plan to continue the line of research initiated here and in [Rib15]
along different directions. A central point w.r.t. most of them concerns the (Promotion) rule.

The interpretation of Simulation as an !(−) IMELL-exponential modality in §7.2 is interesting
because it shows that an IMELL-like exponential arises precisely where there is a semantic diffi-
culty (positionality) together with a non-trivial exponential construction on automata. However,
we find the interpretation of the (Promotion) rule in §7.2 not completely satisfactory for the
following reasons.

(1) We have to rely on the external result that winning P-strategies can always be assumed to
be positional in Rabin games [Kla94, KK95, Jut97, Zie98]. There seems to be essentially
two ways to apply this result: (a) one could try to extract the positional strategy realizing
the conclusion of (Promotion) from the realizer of the premise, or (b) one could obtain
the strategy for the conclusion from an algorithm solving ω-regular games (that is from the
Büchi-Landweber Theorem [BL69], see also e.g. [Tho97, Thm. 6.16]).

However, in both cases this amounts to apply a non-trivial external algorithm, and there
seems to be no obvious structural relation between the realizer of the conclusion and the
realizer of the premise.

(2) This interpretation of the (Promotion) rule is not compatible with cut-elimination (in the
sense of Rem. 5.7), because the notion of positionality required for (Promotion) is not
preserved by composition, so that !(−) is not a functor.

It is unclear to us whether this is a true drawback, because we can still compose realizers
and extract witnesses for existentials (§7.1.2). The only point is that two derivations which
are equal modulo cut-elimination may be interpreted by two different strategies. But still,
the non-functoriality of !(−) is somehow uncomfortable from a semantic perspective.

First, we plan to pursue some work on the category DZ of zig-zag games in order to get a better
picture of its usual game semantics exponentials. According to the discussion of §7.2, such
exponentials would involve some infinite memory, because plays are infinite in DZ. Moreover,
it seems reasonable to target some relaxation of DZ with finite limits (typically by allowing
games to be equipped with a notion of legal plays).

(1) Taking inspiration from [MTT09], We plan to investigate the existence of free exponentials
in suitable extensions of DZ.

(2) Moreover, there seems to be a natural exponential, in which P essentially plays strategies,
but which in the context of automata would lead to infinite state automata.

(3) We also plan to look at non-synchronous exponentials, such as the Curien-Lamarche ex-
ponential of sequential data structures (see e.g. [AC98, Chap. 14], but also [Mel05]), in
particular because of its backtracking abilities. We suspect that this could allow to han-
dle known results and constructions for reduction and separation properties, in the vein
of [Arn99, AN07, FMS13]. However, we do not know yet if this can provide new results.

Second, an important direction of future work is to get a better semantic account of the
notion of positionality used in the interpretation of the (Promotion) rule. In the realm of
game semantics, it has been shown by Melliès [Mel06] that the notion of Innocence (originally
introduced by [HO00] via a notion of pointers on moves), which characterizes a form of func-
tional (state-free) behavior, corresponds to some notion of positionality. Innocence is actually a
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strong form of positionality, which is preserved by composition. It is possible to equip DialAut-
games with an obvious notion of pointers, representing applications of the transition function
of automata as unfoldings of fixpoints. This leads via innocence to a notion of positionality
which seems to be equipped with a monoidal-closed structure (w.r.t. to the synchronous di-
rect product of automata), but which seems too restrictive to handle strategies obtained (via
Büchi-Landweber Theorem) from emptiness checking in the sense of Cor. 6.5, §7.1.3, Cor. 7.16,
and Prop. 7.17. On the other hand, the notion of positionality used in §7.2.3 may be preserved
by composition for non-deterministic innocent strategies, in the vein of [HP12, TO15]. We do
not know yet how such notions of non-deterministic strategies behave w.r.t. the construction of
positional winning P-strategies for Rabin games as in e.g. [Zie98]. Also, the present setting has
still to be compared with Melliès’s Higher-Order Automata [Mel17].

Our main target is the construction of realizability models for MSO. In the case of ω-words
(that is taking D = 1 in this paper), and in the context of Church’s synthesis, the aforementioned
results of [PR17, PR18] suggest that, together with the results of this paper, it is possible and
pertinent to devise refinements of MSO based on Intuitionistic Linear Logic (ILL). We also
already mentioned above the connection with Gödel’s Dialectica interpretation, which suggests
that it may be possible to realize linear variants of Markov and choice rules. Furthermore, this
paper indicates that working in a linear deduction system for MSO allows for a fibred monoidal
closed structure, with in particular deduction rules for existential and universal quantifications.
We think that this can provide a good basis to handle some axioms of MSO, and moreover that
ILL can provide classes of formulae with improved translations to automata w.r.t. the known
non-elementary lower bound (see e.g. [GTW02, Chap. 13]).

Moreover, in devising realizability models for MSO, and in particular following the approach
of this paper which decomposes the translation of formulae to automata using linear logic, a
crucial role is played by the logical interpretation of the (Promotion) rule. Following [Möl02],
it seems that (Promotion) may be seen as a form of reflection scheme. Similarly as in the
complementation construction of [Tho97, Thm. 6.9], such reflection scheme would simply say
that, because they can be assumed to be positional, realizers can be seen as labeled D-ary trees.
This would simply amount to the fact that predicates of the form ∃σ(σ : A( B) are definable
in MSO.
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