
A tutorial on type-based termination

Gilles Barthe1 Benjamin Grégoire2 Colin Riba2

1 IMDEA Software, Madrid, Spain
2 INRIA Sophia-Antipolis, France

Abstract. Type-based termination is a method to enforce termination
of recursive definitions through a non-standard type system that intro-
duces a notion of size for inhabitants of inductively defined types. The
purpose of this tutorial is to provide a gentle introduction to a polymor-
phically typed λ-calculus with type-based termination, and to the size
inference algorithm which is used to guarantee automatically termination
of recursive definitions.

1 Introduction

Functional programming languages advocate the use of mathematically intuitive
constructions to develop programs. In particular, functional programming lan-
guages feature mechanisms to introduce and manipulate finite datatypes such as
lists and trees, and infinite datatypes such as streams and infinite trees. There
are two basic ingredients to manipulate elements of a datatype: case analysis,
that enables to reason by analysis on the top constructor, and fixpoints, that en-
able to define functions by recursion and co-recursion. Traditionally, functional
programming languages allow for unrestricted fixpoints, which are subsumed by
the construction

Γ, f : τ ` e : τ

Γ ` (letrecτ f = e) : τ

whose computational behavior is given by the reduction rule

(letrecτ f = e) → e[f := (letrecτ f = e)]

Unrestricted use of fixpoints leads to typable expressions that diverge, i.e. that
have an infinite reduction sequence. While non-termination is acceptable in func-
tional programming languages, logical systems based on type theory must be
terminating in order to guarantee coherence and decidability of equivalence be-
tween terms. Thus, logical systems based on type theory seek to restrict the
usage of recursive definitions to enforce termination.

A standard means to enforce termination is to abandon the syntax of func-
tional programming languages and to rely instead on combinators, known as
recursors. Such recursors allow to define functions of type d → σ, where d is an
inductive datatype such as natural numbers of lists; more generally, the notion of
inductive datatype captures in a type-theoretical setting the notion of least fix-
point of a monotone operator. To guarantee termination, recursors combine case

2 Gilles Barthe Benjamin Grégoire Colin Riba

analysis and structural recursion, and their reduction rules ensure that recursive
calls are applied to smaller arguments. Unfortunately, recursors are not intuitive
to use. Therefore, proof assistants based on type theory, such as Coq and Agda,
tend to rely on an alternative approach, that maintains the syntax of functional
programming languages, but imposes instead syntactic conditions that ensure
termination. Restrictions concern both the typing rule and the reduction rule.
Restrictions for the typing rule impose conditions, both on the type τ and on
the expression e, under which recursive definitions are well-formed. Essentially,
the type τ must be of the form d → σ, where d is an inductive datatype, as
for recursors. Then, the expression e must be of the form λx : d. b where b
can only make recursive calls to f on arguments that are structurally smaller
than x. Finally, reductions must be restricted to the case where e is applied to
an expression of the form c t for some constructor c. While the first and third
restrictions are easily enforced, it is difficult to find appropriate criteria that
enforce the second restriction. A common means to ensure that recursive calls
are performed on smaller arguments is to define a syntactic check on the body
b of recursive calls. However, such a syntactic approach is problematic, as shall
be explained in the course of this chapter.

Type-based termination is an alternative approach to guarantee strong nor-
malization of typable expressions through the use of a non-standard typing sys-
tem in which inhabitants of inductive datatypes are given a size, which in turn is
used to guarantee termination of recursive definitions. Type-based termination
draws its inspiration from the set-theoretic and domain-theoretic semantics of
inductive definitions, in which inductive sets are viewed as the upper limit of
their approximation. In effect, type-based termination embeds these semantical
intuitions into the syntax of the type theory, by letting inductive datatypes carry
size annotations, and by restricting the rule for fixpoints

Γ, f : dı → σ ` e : dbı → σ

Γ ` (letrecd∞→σ f = e) : d∞ → σ

where d is an inductive datatype, ı is an arbitrary (i.e. implicitly quantified
universally) size, dı denotes the ı-approximation of d, and dbı denotes the next
approximation of d, and d∞ denotes the inductive datatype itself. As should
appear from the typing rule, termination is enforced naturally by requiring that
recursive calls, that correspond to occurrences of f in e, can only be made to
smaller elements, as f only takes as arguments elements of type dı.

Type-based termination benefits from essential characteristics that make it
an attractive means to ensure termination of recursive definitions in a typed
λ-calculus, both from the point of view of the users and of the designers of the
type system. First and foremost, it is intuitive and easy to grasp, since the type
system simply captures the idea that a recursive definition terminates whenever
the size of arguments decreases in recursive calls. As a consequence, the type
system is also predictable (i.e. it is possible to have a priori an intuition as to
whether a definition is correct) and transparent (i.e. it is possible a posteriori
to understand why a definition is incorrect) for users, which we view as essen-

A tutorial on type-based termination 3

tial properties of a formal system. Second, type-based termination is expressive:
even for the simplest instance of type-based termination, in which the arithmetic
of stages only builds on zero, successor and infinity, type-based termination is
sufficiently powerful to encode many typed λ-calculi using syntactic termination
criteria, and to provide precise typings for some functions that do not increase
the size of their arguments (i.e. for unary functions the size of the result is
smaller or equal than the size of the argument). Third, type-based termination
is based on a solid theoretical foundation, namely that of approximation, which
substantially simplifies in the development of realizability models. As shall be
illustrated in Section 3.4, there is a good match between the syntax of the type
system and its semantics, which facilitates the interpretation of recursive defi-
nitions in the realizability model. Fourth, type-based termination isolates in the
design of the type system itself the components that are relevant for termina-
tion, i.e. constructors, case analysis, and fixpoint definitions, from the remaining
components, whose syntax and typing rules are unaffected. Such a separation
makes type-based termination robust to language extensions, and compatible
with modular verification and separate compilation.

In summary, type-based termination appears as a suitable approach to guar-
antee strong normalization of typable terms, which in the near future may well
supplant syntactic methods that are currently in use in logical systems based on
type theory. On this account, the main objective of this tutorial is to provide
a gentle introduction to type-based termination. For pedagogical purposes, we
start with a review of mechanisms to introduce recursive definitions in typed
λ-calculi, and proceed to define a type system that uses type-based termination.
Then, we provide high-level proofs of the essential properties of the type system,
in particular of strong normalization and of decidability of type inference; we
explain the latter in great length, because of the complexity of the algorithm.
We conclude with a brief examination of some possible extensions to our system,
and a brief account of related work. For simplicity, we focus on a polymorphi-
cally typed λ-calculus, although all of the results that we present in this chapter
scale up to dependent types.

2 Computations in polymorphic type systems

This section presents the basic framework of this tutorial and the main problem
we want to address: having a convenient way for computing in type systems is-
sued from the Curry-Howard isomorphism, while preserving crucial logical prop-
erties such as subject reduction, strong normalization and coherence.

We start in Sect. 2.1 from Girard’s System F , with terms à la Church, as
presented in [12]. This system enjoys strong normalization and coherence, and
can encode every inductive datatype and every function provably total in second
order Peano arithmetic [12]. However, the algorithmic behavior of System F is
unsatisfactory, since basic functions such as the predecessor function on Church’s
numerals is not implementable in constant time [15], and it is more generally

4 Gilles Barthe Benjamin Grégoire Colin Riba

the case of primitive recursion over all inductive datatypes, at least when the
computing relation is β-reduction [16].

Hence, from a computational point of view, it is convenient to add datatypes
and recursion to System F , leading to System F rec presented in Sect. 2.2. How-
ever, F rec lacks both strong normalization and coherence, because of general
recursion and of the ability to define non well-founded datatypes.

As a first step towards a well-behaved system, we introduce in Sect. 2.3 the
notion of inductive datatype. Then, we recall in Sect. 2.5 a syntactic termina-
tion criteria, which allows to retrieve strong normalization and coherence. The
limitations of such criteria motivate the use of type-based termination, to be
presented in Sect. 3.

2.1 System F

Types. We assume given a set VT of type variables. The set T of types is given
by the abstract syntax:

T ::= VT | T → T | ΠVT. T

Types are denoted by lower-case Greek letters σ, τ, θ, Free and bound vari-
ables are defined as usual. The capture-avoiding substitution of τ for X in σ is
written σ[X := τ]. We let FVT(e) be the set of type variable occurring free in
τ . A type τ is closed if FVT(τ) = ∅.

Example 2.1.
(i) The type of the polymorphic identity is

ΠX. X → X

(ii) It is well-known that inductive datatypes can be coded into System F , see
e.g. [12]. For instance, Peano natural numbers can be encoded as Church’s
numerals, whose type is

NCh := ΠX. X → (X → X) → X

From this type, we can read that Church numerals represent the free struc-
ture built from one nullary constructor (which stands for 0), and one unary
constructor (which stands for the successor).

(iii) The ”false” proposition is

⊥ := ΠX. X

ut

Terms and reductions. We assume given a set VE = {x, y, z, . . . } of (object)
variables. The set E of terms is given by the abstract syntax:

E ::= VE | λVE : T. E | ΛVT. E | E E | E T

A tutorial on type-based termination 5

Free and bound variables, substitution, etc. are defined as usual. The capture-
avoiding substitution of e′ for x in e is written e[x := e′]. We let FVE(e) be the set
of free term variables occurring in e. We say that e is closed when FVE(e) = ∅.

The reduction calculus is given by β-reduction →β , which is defined as the
compatible closure of

(λx : τ. e) e′ �β e[x := e′] and (ΛX. e) τ �β e[X := τ]

The relation →β is confluent.

Notation 2.2. We write e →n
β e′ if there is k ≤ n such that

e →β . . . →β︸ ︷︷ ︸
k times

e′

Example 2.3.
(i) The polymorphic identity is ΛX. λx : X. x.
(ii) The Church’s numerals are terms of the form

cn := ΛX. λx : X. λf : X → X. fn x

The numeral cn encodes the natural number n by computing iterations.
Indeed, the expression cn p f performs n iterations of f on p:

cn p f →∗
β f · · · (f︸ ︷︷ ︸

n times

p) = fn p

The constructors of Church’s numerals are the terms Z and S defined as:

Z := ΛX. λx : X. λf : X → X. x
S := λn : NCh. ΛX. λx : X. λf : X → X. f (n X xf)

where NCh is the type of Church’s numerals defined in Ex. 2.1.(ii). Given
τ ∈ T, we can code iteration at type τ with the term Iterτ u v n := n τ u v.
For all n, u, v ∈ E we have

Iterτ u v Z →2
β (λx : τ. λf : τ → τ. x) u v →2

β u
Iterτ u v (S n) →2

β (λx : τ. λf : τ → τ. f (n τ x f)) u v →2
β v (n τ u v)

Hence, Iterτ u v (Sn) β-reduces in four steps to v (Iterτ u v n). Using this iter-
ation scheme, every function provably total in second order Peano arithmetic
can be coded in System F [12]. ut

Typing. A context is a map Γ : VE → T of finite domain. Given x /∈ dom(Γ)
we let Γ, x : τ be the context

(Γ, x : τ)(y) =def

{
τ if y = x
Γ (y) otherwise

The notation Γ, x : τ always implicitly assumes that x /∈ dom(Γ). The typing
relation of System F is defined by the rules of Fig. 1.

6 Gilles Barthe Benjamin Grégoire Colin Riba

Example 2.4.
(i) The polymorphic identity of Ex. 2.3.(i) can be given the type of Ex. 2.1.(i):

` ΛX. λx : X. x : ΠX. X → X

(ii) Church numerals can be given the type NCh:

` ΛX. λx : X. λf : X → X. fn x : ΠX. X → (X → X) → X

Moreover, Z : NCh and S : NCh → NCh. Iteration can be typed as follows:

n : NCh, u : τ, v : τ → τ ` Iterτ n u v : τ

ut

(var)
Γ, x : σ ` x : σ

(abs)
Γ, x : τ ` e : σ

Γ ` λx : τ. e : τ → σ
(app)

Γ ` e : τ → σ Γ ` e′ : τ

Γ ` e e′ : σ

(T-abs)
Γ ` e : σ

Γ ` ΛX. e : ΠX. σ
if X /∈ Γ (T-app)

Γ ` e : ΠX. σ

Γ ` e τ : σ[X := τ]

Fig. 1. Typing rules of System F

Some important properties. The most important properties of System F
are subject reduction, strong normalization, and coherence.

Subject reduction states that types are closed under β-reduction.

Theorem 2.5 (Subject reduction). If Γ ` e : τ and e →β e′, then also
Γ ` e′ : τ .

Terms typable in System F enjoy a very strong computational property:
they are strongly normalizing. A term is strongly normalizing if every reduction
sequence starting from it is finite. We can thus define the set SNβ of strongly
β-normalizing terms as being the smallest set such that

∀e. (∀e′. e →β e′ =⇒ e′ ∈ SNβ) =⇒ e ∈ SNβ

Strong normalization is also useful for the implementation of the language, be-
cause it ensures that every reduction strategy (i.e. every way of reducing a term)
is terminating. Strong normalization can be proved using the reducibility tech-
nique [12], which is sketched in Sect. 3.4.

A tutorial on type-based termination 7

Theorem 2.6 (Strong normalization). If Γ ` e : τ then e ∈ SNβ.

We now discuss some logical properties of System F . It is easy to see that
Γ ` e : ⊥ implies Γ ` e τ : τ for all type τ . According to the Curry-
Howard propositions-as-types isomorphism, this means that the type ⊥ is the
false proposition: every proposition τ can be deduced from it. Therefore, having
Γ ` e : ⊥ means that everything can be deduced from Γ . From a logical
perspective, it is crucial to ensure that there is no term of type ⊥ in the empty
context. This property is fortunately satisfied by System F . It can be proved by
syntactical reasoning, using subject reduction and strong normalization, but a
direct reducibility argument is also possible, see Sect. 3.4.

Theorem 2.7 (Coherence). There is no term e such that ` e : ⊥.

2.2 A polymorphic calculus with datatypes and general recursion

It is well-known that System F has limited computational power, e.g. it is not
possible to encode in System F a predecessor function that computes in constant
time [15]. Therefore, programming languages and proof assistants rely on lan-
guages that extend the λ-calculus with new constants and rewrite rules. In this
section, we discuss one such extension of System F à la Church, as presented in
Sect. 2.1. This system, called F rec, consists in adding datatypes and general re-
cursion to System F . Before giving the formal definitions, we informally present
the system with some examples of datatypes. We then recall some well-known
examples showing that System F rec lacks two of the most important properties
of System F , namely termination and coherence.

Basic features. In System F rec, we represent the type natural numbers using
a special type constant Nat. Furthermore, the language of λ-terms is extended
by two constants o : Nat and s : Nat → Nat representing the two constructors of
Nat. All this information is gathered in the datatype definition:

Datatype Nat := o : Nat | s : Nat → Nat

This defines Nat as the least type build from the nullary constructor o and the
unary constructor s.

Example 2.8. We can now represent the number n by the term sn o. ut

System F rec provides two ways of computing on datatypes. The first one
performs the destruction of constructor-headed terms, and allows to reason by
case-analysis, similarly as in functional programming languages. For instance,
we can define the predecessor function as follows:

pred := λx : Nat. caseNat x of { o ⇒ o
| s ⇒ λy : Nat. y }

8 Gilles Barthe Benjamin Grégoire Colin Riba

This function is evaluated as follows:

pred o → caseNat o of {o ⇒ o | s ⇒ λy : Nat. y} → o
pred (s n) → caseNat (s n) of {o ⇒ o | s ⇒ λy : Nat. y} → (λy : Nat. y) n → n

and is typed using the rule

x : Nat ` x : Nat x : Nat ` o : Nat x : Nat ` λy : Nat. y : Nat → Nat

x : Nat ` caseNat x of {o ⇒ o | s ⇒ λy : Nat. y} : Nat

Performing a case analysis over an expression e of type Nat means building an
object of a given type, say σ, by reasoning by cases on the constructors of Nat.
We therefore must provide a branch eo for the case of o and a branch es for
the case of s. If e evaluates to o, then the case-analysis evaluates to eo, and if e
evaluates to s n, then the we get es n:

caseσ o of {o ⇒ eo | s ⇒ es} → eo

caseσ (s n) of {o ⇒ eo | s ⇒ es} → es n

Since this case-analysis must evaluate to a term of type σ, we must have eo : σ
and es : Nat → σ. We therefore arrive at the general rule for case-analysis over
natural numbers:

(case)
Γ ` e : Nat Γ ` eo : σ Γ ` es : Nat → σ

Γ ` caseσ e of {o ⇒ eo | s ⇒ es} : σ

The second computing mechanism of System F rec is general recursion. The
system is equipped by a general fixpoint operator (letrecτ f = e), which is typed
by the rule

(rec)
Γ, f : τ ` e : τ

Γ ` (letrecτ f = e) : τ

and which reduces as follows:

(letrecτ f = e) → e[f := (letrecτ f = e)]

This allows to encode efficiently primitive recursion over natural numbers.

Example 2.9 (Gödel’s System T). In F rec, we can encode primitive recursion on
natural numbers as follows:

rec := ΛX. (letrecNat→X rec = λx : Nat. λu : X. λv : Nat → X → X.
caseX x of { o ⇒ u

| s ⇒ λy : Nat. v y (rec y u v) }
) : ΠX. Nat → (Nat → X → X) → X → X

Therefore, writing recτ for the head β-reduct of rec τ , we have the following
reductions, which are performed in a constant number of steps:

recτ o u v →6 u and recτ (s n) u v →6 v n (recτ n u v)

ut

A tutorial on type-based termination 9

Functions defined by primitive recursion can also be directly coded in F rec.
Take for instance the addition and subtraction on Nat.

Example 2.10 (Addition of two natural numbers).

plus := (letrecNat→Nat→Nat plus = λx : Nat. λy : Nat.
caseNat x of { o ⇒ y

| s ⇒ λx′ : Nat. s (plus x′ y) }
) : Nat → Nat → Nat

ut

Example 2.11 (Subtraction of natural numbers).

minus := (letrecNat→Nat→Nat ms = λx : Nat. λy : Nat.
caseNat x of { o ⇒ x

| s ⇒ λx′ : Nat. caseNat y of { o ⇒ x
| s ⇒ λy′ : Nat. ms x′ y′}

}
) : Nat → Nat → Nat

ut

Since general fixpoints are allowed, we can also give definitions where recur-
sive calls are not performed on structurally smaller terms. This is the case of the
Euclidean division on natural numbers. We will see in Sect. 3 that this function
terminates provably with typed-based termination.

Example 2.12 (Euclidean division). This program for the Euclidean division de-
pends on the function minus. It is not typable in systems with a syntactic guard
predicate, as, syntactically, (minus x′ y) is not properly structurally smaller than
x in the program below.

div := (letrecNat→Nat→Nat div = λx : Nat. λy : Nat.
caseNat x of { o ⇒ o

| s ⇒ λx′ : Nat. s (div (minus x′ y) y) }
) : Nat → Nat → Nat

ut

Polymorphic datatypes. System F rec features polymorphic datatypes, such
as polymorphic lists whose constructors, nil and cons, are typed as follows:

nil : ΠX. List X cons : ΠX. X → List X → List X

Formally, the datatype of lists is defined as follows:

Datatype List X := nil : List X | cons : X → List X → List X

10 Gilles Barthe Benjamin Grégoire Colin Riba

List are eliminated using case-analysis, along a pattern similar to that of natural
numbers. The case-analysis of polymorphic lists is performed on one particular
instantiation of the datatype:

(case)
Γ ` e : List τ Γ ` enil : σ Γ ` econs : τ → List τ → σ

Γ ` caseσ e of {nil ⇒ enil | cons ⇒ econs} : σ

This means that nil τ can be the subject of case-analysis, while nil can not.
Accordingly, the branches of the case-analysis must be typable with the corre-
sponding instantiation of the polymorphic type: econs takes an argument of type
List τ , but not of type ΠX. List X. The reduction rules are similar to that of
natural numbers:

caseσ (nil τ) of {nil ⇒ enil | cons ⇒ econs} → enil

caseσ (cons τ x xs) of {nil ⇒ enil | cons ⇒ econs} → econs x xs

Here are two basic functions on lists, namely the concatenation of two lists
and the map function.

Example 2.13 (The concatenation of two lists).

app := ΛX. (letrecList X→List X→List X app = λx : List X. λy : List X.
caseListX x of { nil ⇒ y

| cons ⇒ λz : X. λx′ : List X. cons X z (app x′ y)
}

) : ΠX. List X → List X → List X

ut

Example 2.14 (The map function on a list).

map := ΛX. ΛY. λf : X → Y. (letrecList X→List Y map = λx : List X.
caseList Y x of { nil ⇒ nil

| cons ⇒ λz : X. λx′ : List X. cons Y (f z) (map f x′)
}

) : ΠX. ΠY. (X → Y) → List X → List Y

ut

We can also define the concatenation of a list of lists. In F rec the polymorphic
type of lists of lists is ΠX. List (List X). The concatenation of a list of lists is
therefore of type ΠX. List (List X) → List X.

Example 2.15 (The concatenation of a list of lists).

conc := ΛX. (letrecList (List X)→List X conc = λx : List (List X).
caseList X x of { nil ⇒ nil

| cons ⇒ λz : List X. λx′ : List (List X). app X z (conc x′)
}

) : ΠX. List (List X) → List X

ut

A tutorial on type-based termination 11

An other interesting polymorphic type is that of polymorphic finitely branch-
ing trees. These trees are composed of leaves, with one token of information, and
of inner nodes, with one token of information and a list of successor subtrees.
These two kinds of nodes are represented by the same constructor:

node : ΠX. X → List (Tree X) → Tree X

For instance, the types of trees of natural numbers is Tree Nat, and a leave with
token n is represented by node Nat n (nil (Tree Nat)). The important point with
this type is that the recursive argument of node τ , which is a list of trees of τ , is
not directly of type Tree τ but of type List (Tree τ). This allows to encode trees
where each node can have a different, but finite, arity.

Like natural numbers and lists, trees are eliminated by case-analysis. Since
this type has only one constructor, the scheme of elimination essentially performs
the projection of that constructor:

(case)
Γ ` e : List τ Γ ` enode : τ → List (Tree τ) → σ

Γ ` caseσ e of {node ⇒ enode} : σ

The reduction rule is as follows:

caseσ (node τ x l) of {node ⇒ enode} → enode x l

For instance, the first projection is typed as

Γ ` e : List τ Γ ` λx : τ. λl : List (Tree τ). x : τ → List (Tree τ) → τ

Γ ` caseτ e of {node ⇒ λx : τ. λl : List (Tree τ). x} : τ

and we have caseτ (node τ x l) of {node ⇒ λx : τ. λl : List (Tree τ). x} →3 x.
The following example treats the flattening of finitely branching trees.

Example 2.16 (Flattening of finitely branching trees). This program depends on
map, defined in Ex. 2.14 and on conc, defined in Ex. 2.15. Similarly to div, it is
not typable in systems with a syntactic guard predicate.

flatten := ΛX. (letrecTree X→List X flat = λt : Tree X. caseList X t of {
node ⇒ λx : X. λl : List (Tree X). cons x (conc (map flat l))
}

) : ΠX. Tree X → List X

For readability, we have left the instantiation of polymorphic types implicit at
the term level. ut

Higher-order datatypes. Up to now, we only have presented first order
datatypes, i.e. datatypes whose inhabitants represent particular forms of finitely
branching trees.

12 Gilles Barthe Benjamin Grégoire Colin Riba

There can in fact be much more powerful datatypes, representing infinitely
branching trees, that we call higher-order datatypes. One of them is the type
Ord of Brouwer ordinals. It is defined as follows:

Datatype Ord := o : Ord | s : Ord → Ord | lim : (Nat → Ord) → Ord

Thanks to the constructors o : Ord and s : Ord → Ord, Brouwer ordinals contain
natural numbers. This is represented by the canonical injection inj : Nat → Ord
defined as follows:

inj := (letrecNat→Ord inj = λx : Nat.
caseNat x of { o ⇒ o

| s ⇒ λx′ : Nat. s (inj x′)}
) : Nat → Ord

For all p ∈ N, we have inj (sp o) → sp o. Moreover, ordinals also feature the
higher-order constructor lim : (Nat → Ord) → Ord. The expression lim f repre-
sents the supremum of the countable list of ordinals represented by f : Nat →
Ord. For instance, lim inj is a term-level representation of the set of natural
numbers.

Addition of ordinals can easily be defined in F rec.

Example 2.17 (The addition of two ordinals).

add := (letrecOrd→Ord→Ord add = λx : Ord. λy : Ord.
caseOrd x of { o ⇒ y

| s ⇒ λx′ : Ord. s (add x′ y)
| lim ⇒ λf : Nat → Ord. lim (λz : Nat. add (f z) y)
}

) : Ord → Ord → Ord

The addition of lim f and o is the limit for n : Nat of the addition of each f n
and o. For instance, add (lim inj) o →∗ lim (λx : Nat. add (inj x) o). ut

Formal definition. Now that we have presented the main features of F rec, we
can give its formal definition.

At the type level, F rec extends System F with datatypes, which have names
taken in a set D of datatypes identifiers. Moreover, each datatype has a fixed
number of parameters. Hence we assume that each datatype identifier d ∈ D

comes equipped with an arity ar(d).

Example 2.18. We have ar(Nat) = 0 and ar(List) = ar(Tree) = 1. ut

Formally, the types of F rec extend that of System F as follows:

T ::= . . . | D T

where in D T, it is assumed that the length of the vector T is exactly the arity
of the datatype.

A tutorial on type-based termination 13

We now turn to datatype declarations. Each datatype d ∈ D has a fixed set
of constructors C(d), and each constructor c ∈ C(d) is assigned a closed type of
the form

ΠX. θ1 → . . . → θp → d X

Note that the arity condition on d imposes that X has the same length for
all c ∈ C(d). We let C =def

⋃
{C(d) | d ∈ D}. The declaration of a datatype,

which gathers its parameters, its constructors and their types, is performed in a
datatype definition of the form:

Datatype d X := c1 : σ1 | . . . | cn : σn

where C(d) = {c1, . . . , cn} and each σk is of the form θk → d X. Given
k ∈ {1, . . . , k}, we write ck : ΠX. θk → d X.

Example 2.19. We review here the datatypes that we have already seen. All
these datatypes represent a form of well-founded trees. We call them inductive,
and come back on this notion in Sect. 2.3. Moreover, we give an example of a
non-well founded datatype, noted D.

(i) The inductive datatype of natural number is defined as

Datatype Nat := o : Nat | s : Nat → Nat

(ii) The inductive datatype of polymorphic lists is defined as

Datatype List X := nil : List X | cons : X → List X → List X

(iii) The inductive datatype of polymorphic finitely branching trees is

Datatype Tree X := node : X → List (Tree X) → Tree X

(iv) The inductive datatype of Brouwer ordinals is defined as

Datatype Ord := o : Ord | s : Ord → Ord | lim : (Nat → Ord) → Ord

(v) The following datatype is not well-founded. We will see in Ex. 2.22 that it
allows to build a non-terminating term of type ⊥.

Datatype D := c : (D → ⊥) → D

ut

The terms of System F rec extend those of the Church’s style System F with
constructors, case-expressions and recursive definitions:

E ::= . . . | C | caseT E of {C ⇒ E} | (letrecT VE = E)

The reduction calculus extends β-reduction with ι-reduction for case analysis
and µ-reduction for unfolding recursive definitions. Formally,

14 Gilles Barthe Benjamin Grégoire Colin Riba

– ι-reduction →ι is defined as the compatible closure of

caseσ (ci τ a) of {c1 ⇒ e1 | . . . | cn ⇒ en} �ι ei a

– µ-reduction →µ is defined as the compatible closure of

(letrecτ f = e) �µ e[f := (letrecτ f = e)]

Then, βιµ-reduction, written →βιµ, is →β ∪ →ι ∪ →µ. The relation →βιµ is
confluent.

(cons)
Γ ` ck : ΠX. θk → d X

(rec)
Γ, f : τ ` e : τ

Γ ` (letrecτ f = e) : τ

(case)
Γ ` e : d τ Γ ` ek : θk[X := τ] → σ (1 ≤ k ≤ n)

Γ ` caseσ e of {c1 ⇒ e1 | · · · | cn ⇒ en} : σ

Fig. 2. Typing rules for F rec

The type system is standard. The typing relation Γ ` e : τ extends that
of System F with the rules given in Fig. 2, where in the rules for (cons) and
(case) it is assumed that C(d) = {c1, . . . , cn}, and that the type θk → d X of
the constructor ck is given by the datatype declaration.

System F rec enjoys subject reduction.

Theorem 2.20 (Subject reduction). If Γ ` e : τ and e →βιµ e′, then
Γ ` e′ : τ .

Non-termination and incoherence. In this paragraph, we show that al-
though convenient for computing, System F rec lacks two of the most important
properties of System F , namely termination and coherence. These problems are
due to the presence of general recursion and non well-founded datatypes. We
recall two independent examples, one involving unrestricted recursion and the
other involving the non well-founded datatype D of Ex. 2.19.(v). Both examples
provide a non-terminating incoherent term, that is, a non-terminating closed
term of type ⊥.

Example 2.21 (Recursion). The typing rule (rec) can be instantiated as follows:

f : ⊥ ` f : ⊥
` (letrec⊥ f = f) : ⊥

The closed term (letrec⊥ f = f) of type ⊥ is non-terminating:

(letrec⊥ f = f) →µ (letrec⊥ f = f) →µ . . .

ut

A tutorial on type-based termination 15

The second well-known example shows how to write a non-normalizing term
using case-analysis on the non well-founded datatype D of Ex. 2.19.(v). Note
that it involves no recursion.

Example 2.22 (Non well-founded datatypes [14]). Consider the non well-founded
datatype D of Ex. 2.19.(v). Recall that c : (D → ⊥) → D and let

p := λx : D. caseD→⊥ x of {c ⇒ λy : D → ⊥. y}

We can derive

x : D ` x : D x : D ` λy : D → ⊥. y : (D → ⊥) → (D → ⊥)

x : D ` caseD→⊥ x of {c ⇒ λy : D → ⊥. y} : D → ⊥
` λx : D. caseD→⊥ x of {c ⇒ λy : D → ⊥. y} : D → (D → ⊥)

That is p : D → (D → ⊥). Furthermore, let ωD := λx : D. p x x : D → ⊥.
We then have c ωD : D, hence p (c ωD) (c ωD) : ⊥. This incoherent term is
non-terminating:

p (c ωD) (c ωD) →∗
βι (λx : D. p x x) (c ωD) →βι p (c ωD) (c ωD) →βι . . .

ut

These two examples show that to achieve termination and coherence, we
must restrict the formation of both recursive definitions and datatypes.

2.3 Inductive datatypes

The standard means to rule out pathological cases such as the ones above is
to focus on inductive datatypes. Intuitively, inductive datatypes are datatypes
that can be constructed as the least fixed point of a monotonic operator. This
is formalized using the notion of positivity.

Definition 2.23 (Positivity). Let σ nocc τ if σ does not occur in τ . The pred-
icate σ pos τ (resp. σ neg τ), stating that all occurrences of σ in τ are positive
(resp. negative), is inductively defined in Fig. 3.

Example 2.24. In the following types, the occurrences of τ are positive and the
occurrences of σ are negative:

τ σ → τ (τ → σ) → τ

In particular, Nat pos Nat, Tree X pos List (Tree X) and Ord pos (Nat → Ord),
but not D pos (D → ⊥). ut

Inductive datatypes are datatypes d ∈ D in which d and its parameters occur
only positively in the type of their constructors.

Definition 2.25 (Inductive datatypes).

16 Gilles Barthe Benjamin Grégoire Colin Riba

σ pos σ

σ nocc τ
σ pos τ

σ neg τ2 σ pos τ1

σ pos τ2 → τ1

σ pos τ

σ pos ΠX. τ

σ pos τi (1 ≤ i ≤ ar(d))

σ pos d τ

σ nocc τ
σ neg τ

σ pos τ2 σ neg τ1

σ neg τ2 → τ1

σ neg τ

σ neg ΠX. τ

σ neg τi (1 ≤ i ≤ ar(d))

σ neg d τ

Fig. 3. Positivity and negativity of a type occurrence

(i) An inductive datatype definition is a datatype declaration

Datatype d X := c1 : σ1 | . . . | cn : σn

where for all k ∈ {1, . . . , n}, σk is of the form θk → d X with X pos θk and
d X pos θk. Inductive datatypes definitions are written

Inductive d X := c1 : σ1 | . . . | cn : σn

(ii) An environment is a sequence of datatype definitions I1 . . . In in which
constructors of the datatype definition Ik only use datatypes introduced by
I1 . . . Ik.

In the remainder of this tutorial, we implicitly assume given an environment
in which every d ∈ D is an inductive datatype.

Example 2.26. Nat, List, Tree and Ord are inductive, but D is not. ut

2.4 Guarded reduction for strong normalization

The µ-reduction is inherently non strongly normalizing. Since

(letrecτ f = e) →µ e[f := (letrecτ f = e)]

there are infinite µ-reductions starting from every expression (letrec f = e) such
that f occurs free in e. As a first step towards normalization, we restrict the
typing and reduction rules of fixpoints. First, we require that fixpoints are only
used to defined functions whose domain is a datatype, i.e. instead of the rule
(rec) of Fig. 2, we will restrict to the following typing rule:

Γ, f : d τ → θ ` e : d τ → θ

Γ ` (letrecd τ→θ f = e) : d τ → θ
(1)

A tutorial on type-based termination 17

Note that all examples on natural numbers, lists, trees and ordinals presented
in Sect. 2.2 can by typed with this rule.

Then we replace µ-reduction with a notion of guarded γ-reduction→γ defined
as the compatible closure of:

(letrecd τ→θ f = e) (c τ a) �γ e[f := (letrecd τ→θ f = e)] (c τ a)

Definition 2.27 (Guarded reduction). The relation → is defined as

→ =def →β ∪ →ι ∪ →γ

The relation → is confluent.
These restrictions do not rule out non-terminating and incoherent expres-

sions.

Example 2.28 (Non-termination and incoherence). We can derive

f : Nat → ⊥ ` f : Nat → ⊥
` (letrecNat→⊥ f = f) : Nat → ⊥

and we have (letrecNat→⊥ f = f) o : ⊥ with

(letrecNat→⊥ f = f) o → (letrecNat→⊥ f = f) o → . . .

ut
To obtain strong normalization, we must require that fixpoints must be func-
tions defined by induction on an inductive datatype. This is the purpose of the
criterion defined in the next section.

2.5 Syntactic termination criteria

Termination of recursive definitions can be enforced by adopting the guarded
reduction rule of Definition 2.27 and by restricting the rule for recursive defi-
nitions so that e is a λ-abstraction, and the body of e is guarded by x, which
stands for the recursive argument of the function. Formally, this is achieved by
the rule:

Γ, f : d τ → σ ` λx : d τ . a : d τ → σ Gx
f (∅, a)

Γ ` (letrec f = λx : d τ . a) : d τ → σ

where the guard predicate G is defined to ensure that the calls to f are performed
over expressions that are structurally smaller than x. Informally, a recursive
definition is guarded by destructors, i.e. satisfies G, if all occurrences of f in
e are protected by a case analysis on x and are applied to a subcomponent
of x. The notion of subcomponent is defined as the smallest transitive relation
such that the variables that are introduced in the branches of a case analysis
are subcomponents of the expression being matched. Barthe et al [5] provide a
formal definition of the guard predicate for a simply typed λ-calculus and show
that the resulting type system can be embedded in the simply typed fragment
of System F̂ that we introduce in the next section.

18 Gilles Barthe Benjamin Grégoire Colin Riba

Example 2.29. The addition on natural numbers, which we recall from Sect. 2.2:

plus := (letrecNat→Nat→Nat plus = λx : Nat. λy : Nat.
caseNat x of { o ⇒ y

| s ⇒ λx′ : Nat. s (plus x′ y) }
) : Nat → Nat → Nat

is guarded, since the only application of plus is protected by a case analysis on
x, the formal argument of plus. The argument of this application is the pattern
variable n, which is a component of x.

While syntactic criteria are widely used, they suffer from several weaknesses.
A first weakness is that the syntactic criterion must consider all constructs of
the language, and can only be applied if the body of the recursive definition is
completely known. Thus, the approach is not compatible with separate compi-
lation.

A second weakness of the approach is that the guard predicate is very sensi-
tive to syntax; for example, the function

(letrec always zero = λx : Nat. case x of {o ⇒ o
| s ⇒ λn : Nat.((λf : Nat → Nat. f) always zero) n }

) : Nat → Nat

is not accepted by the guard predicate of [5], because f is passed as an argument
to the identity function. It is tempting to extend the definition of the guard
predicate with the rule of the form

Gx
f (V, a′) a 7→ a′

Gx
f (V, a)

where 7→ is a subset of the reduction relation. However, checking termination
of recursive definitions in large developments may become prohibitive, because
of the necessity to reduce the body of recursive definitions for checking the
guard condition. Worse, an inappropriate choice of 7→ may lead to allow non-
terminating expressions in the type system. For example, allowing 7→ to include
reductions of the form (λx : A. a) a′ → a when x does not appear in a leads
to non-terminating expressions, because it fails to impose any condition on a′

which may then contain recursive calls that are not well-founded [5].

3 The system F̂ of type-based termination

This section presents the system F̂ of type-based termination. This system has
been published in [6], and is an extension of the system λ̂ of [5].

A tutorial on type-based termination 19

3.1 Semantical ideas for a type-based termination criterion

In this section, we present some intuitions underlying type-based termination. To
keep things as simple as possible, we focus on weak termination. Recall that an
expression e is weakly terminating if and only if it has a normal form. Consider
the definition of a recursive function over natural numbers:

f : Nat → θ ` e : Nat → θ

` (letrec f = e) : Nat → θ

This function will be computed using the evaluation rules:

(letrec f = e) o →γ e[f := (letrec f = e)] o

(letrec f = e) (s n) →γ e[f := (letrec f = e)] (s n)

In order to make sure that the evaluation terminates, we have to ensure that
something decreases during the computation. Think of F =def (letrec f = e) as
being a function defined using successive approximations F0, . . . , Fp, Now,
assume that we want to evaluate F (s n). If there is some p such that the result
of that evaluation can be computed using only F0, . . . , Fp+1, with

Fk+1(s n) →γ e[f := Fk] (s n) for all k ≤ p ,

then the evaluation of F (s n) terminates.
To express a notion of function approximation, we rely on a notion of ap-

proximation of inductive datatype. Roughly speaking, the type Nat of natural
numbers can be drawn as

JNatK = {o, s o, . . . , spo, . . . }

Let JNatK(0) =def {o} and JNatK(p + 1) =def JNatK(p) ∪ {s e | e ∈ JNatK(p)} for
all p ∈ N. Now, the set JNatK is the limit of its approximations

JNatK(0) ⊆ JNatK(1) ⊆ . . . ⊆ JNatK(p) ⊆ . . .

These approximations of the type of natural numbers can be used to define
functions as the limit of their approximants. More precisely, a total function F :
JNatK → θ can be seen as the limit of its finite approximants Fp : JNatK(p) → θ
for p ∈ N. Indeed, if s n is the representation of a natural number p + 1, then
F (s n) can by computed by evaluating Fp+1(s n). Conversely, in order to ensure
that F is the limit of its approximants (Fp)p∈N, we can proceed by induction on
p ∈ N, and force Fp+1 to be defined only in terms of Fp, as follows:

∀p ∈ N Fp : JNatK(p) → θ ` Fp+1 : JNatK(p + 1) → θ

` F : JNatK → θ
if F =

⋃
p∈N Fp (2)

The basic idea of type-based termination is to use a type system to convey
these notions of approximations. Each JNatK(p) can be represented in the type
system by an annotated type Natp. In such a system, the typing rule for s is

` n : Natp

` s n : Natp+1

20 Gilles Barthe Benjamin Grégoire Colin Riba

In addition, we introduce a type Nat∞ to capture the datatype of natural num-
bers (corresponding to the datatype Nat of system F rec). These types are natu-
rally ordered by a subtyping relation, expressed by the subsumption rules:

` n : Natp

` n : Natp+1

` n : Natp

` n : Nat∞

Now, the requirement expressed by (2) can be represented by the typing rule

∀p ∈ N f : Natp → θ ` e : Natp+1 → θ

` (letrec f = e) : Nat∞ → θ
(3)

The only remaining issue is to type o. The obvious candidate

` o : Nat0

is unfortunately unsound, both for termination and for coherence: Ex. 2.28 can
be easily adapted.

Example 3.1. Assume that o : Nat0. Then by subsumption we have o : Natp for
all p ∈ N, and thus, using (3),

∀p ∈ N f : Natp → ⊥ ` λx : Nat. f o : Natp+1 → ⊥
` (letrec f = λx : Nat. f o) : Nat∞ → ⊥

Since ` o : Nat∞, we have a closed term (letrec f = λx : Nat. f o) o of type ⊥,
which is moreover non-terminating:

(letrec f = λx : Nat. f o) o → (λx : Nat. (letrec f = λx : Nat. f o) o) o → . . .

ut

A solution is to assume that o belongs to all JNatK(p+1) with p ∈ N, but not
to JNatK(0), which leads to the interpretation of inductive datatypes detailed in
Sect. 3.4. This is reflected by the typing rule

` o : Natp+1

Hence, the expression spo has size p + 1.

3.2 Formal definition

Stages. Generalizing the discussion of the previous section, every datatype d is
replaced by a family of approximations indexed over a set of stages, which are
used to record a bound on the “depth” of values. Stages expression are build
from a set VS = {ı, j, κ, . . . } of stage variables. They use the successor operation
·̂ and the constant ∞ denoting the greatest stage.

A tutorial on type-based termination 21

Definition 3.2 (Stages). The set S = {s, r, . . . } of stage expressions is given
by the abstract syntax:

S ::= VS | ∞ | Ŝ

The substitution s[ı := r] of the stage variable ı for r in s is defined in the
obvious way.

The inclusions JNatK(0) ⊆ . . . ⊆ JNatK(p) ⊆ Nat(p + 1) ⊆ . . . ⊆ JNatK(∞)
will hold for each datatype d ∈ D. This is reflected by a subtyping relation,
which is derived from a substage relation s ≤ r.

Definition 3.3 (Substage relation). The substage relation is the smallest
relation ≤ ⊆ S× S closed under the rules

(refl)
s ≤ s

(trans)
s ≤ r r ≤ p

s ≤ p
(succ)

s ≤ ŝ
(sup)

s ≤ ∞

Types. The approximations (ds)s∈S of datatypes are directly represented in the
syntax of types. Therefore, the types of F̂ are the types of F rec where datatype
identifiers d ∈ D are annotated by size expressions s ∈ S.

Definition 3.4 (Sized types). The set T of sized types is given by the follow-
ing abstract syntax:

T ::= VT | T → T | ΠVT. T | DS T

where in the clause for datatypes, it is assumed that the length of the vector T

is exactly the arity of the datatype.

Sized types are denoted by lower-case over lined Greek letters τ , θ, σ,
The subtyping relation τ v σ is directly inherited from the substage relation.

The subtyping rule for datatypes

(data) s ≤ r τ v σ

dsτ v drσ

expresses two things. First, it specifies that datatypes are covariant w.r.t. their
parameters (an assumption made for the sake of simplicity). For instance we
have List∞ Nats v List∞ Natbs. Second, it reflects inclusions of datatypes ap-
proximations:

e : ds τ s ≤ r

e : dr τ

The substage relation imposes that ∞ is the greatest stage of the system.
Hence, we have Nats v Nat∞ for all stage s. This means that the type Nat∞ has
no information on the size of its inhabitants. Therefore, it corresponds to the
type Nat of system F rec.

Notation 3.5. Given a datatype identifier d, we write d τ to mean d∞ τ .

22 Gilles Barthe Benjamin Grégoire Colin Riba

Definition 3.6 (Subtyping). The subtyping relation is the smallest relation
τ v σ, where τ , σ ∈ T, such that

(var)
X v X

(func)
τ ′ v τ σ v σ′

τ → σ v τ ′ → σ′

(prod)
τ v σ

ΠX. τ v ΠX. σ
(data)

s ≤ r τ v σ

dsτ v drσ

We denote by |.| : T → T the erasure function from sized types to types,
which forgets the size information represented in a type of F .̂ Erasure is defined
inductively as follows:

|X| = X |τ → θ| = |τ | → |θ| |ΠX. τ | = ΠX. |τ | |ds τ | = d |τ |

Sized inductive datatypes. We now turn to datatype definitions. In Def. 2.25,
we have defined inductive datatypes definitions for F rec as declarations of the
form

Inductive d X := c1 : σ1 | . . . | cn : σn

where for all k ∈ {1, . . . , n}, σk is of the form θk → d X with X pos θk and
d X pos θk.

The inductive datatypes of F̂ are annotated versions of inductive datatypes
of F rec. Each occurrence of d′ 6= d in θk is annotated with∞, and each occurrence
of d in θk is annotated with the stage variable ı. Then, the annotated type of ck

is ΠX. θk → dbı X. Definitions of sized inductive datatypes are like definitions
of inductive datatypes in F rec, excepted that constructors are now given their
sized type. For instance, sized natural numbers are declared as follows:

Inductive Nat := o : Natbı | s : Natı → Natbı
In words, the constructor o always build an expression with at least one con-
structor, hence of size 0̂. Since stages record upper-bound on sizes, we have o of
stage p̂ for all stages p. On the other hand, s turns an expression of stage p into
one of stage p̂.

We now turn to the formal definition.

Definition 3.7 (Sized inductive datatypes).
(i) A sized inductive datatype definition is a declaration

Inductive d X := c1 : σ1 | . . . | cn : σn

such that
– its erased form Inductive d X := c1 : |σ1| | . . . | cn : |σn| is an

inductive datatype definition in F rec, and
– for all k ∈ {1, . . . , n}, the sized type σk is of the form θk → dbı X where

each occurrence of d′ 6= d in θk is annotated with ∞, and each occurrence
of d in θk is annotated with the stage variable ı.

A tutorial on type-based termination 23

For all k ∈ {1, . . . , n}, we write ck : ΠX. θk → dbı X.
(ii) A sized environment is a sequence of sized inductive datatype definitions

I1 . . . In in which constructors of the sized inductive datatype definition Ik

only use datatypes introduced by I1 . . . Ik.

Note that our definition of inductive datatypes types rules out heterogeneous
and mutually inductive datatypes. This is only a matter of simplicity.

Besides, the positivity requirement for dıX is necessary to guarantee strong
normalization. Also, the positivity requirement for X is added to guarantee the
soundness of the subtyping rule (data) for datatypes, and to avoid considering
polarity, as in e.g. [17].

Example 3.8 (Sized datatypes definitions).

(i) The sized inductive datatype of polymorphic lists is defined as

Inductive List X := nil : Listbı X | cons : X → Listı X → Listbı X

The minimal stage of a list is its length, with the nil list being of stage at
least ı̂. For instance, leaving implicit the type argument of constructors, we
have cons n nil : List

bbı Nat and cons n1(. . . (cons np nil) . . .) : Listbıp+1
Nat.

(ii) The sized inductive datatype of polymorphic finitely branching trees is

Inductive Tree X := node : X → List (Treeı X) → Treebı X

The minimal stage of a tree is its depth. The least tree contains just one leave
node n nil and is of stage at least ı̂. Consider p trees t1, . . . , tp of respective
types Trees1 Nat, . . . ,Treesp Nat, and let l := cons t1(. . . (cons tp nil) . . .).
For all stage s greater than each sk, we have l : Listbıp+1

(Trees Nat), hence
node n l : Treebs Nat. Therefore, the least stage of node n l is the strict supre-
mum of the stages of the trees in l. Moreover, the stage of l as a list has been
forgotten in the stage of node n l.

(iii) The sized inductive datatype of Brouwer ordinals is defined as

Inductive Ord := o : Ordbı | s : Ordı → Ordbı | lim : (Nat → Ordı) → Ordbı
As with finitely branching trees, the least stage of lim f is the strict supremum
of the stages of f n for n ∈ Nat. ut

In the remaining of this tutorial, we implicitly assume given a sized environ-
ment in which every d ∈ D is a sized inductive datatype.

Terms and reductions. The terms of F̂ are those of F rec, defined in Sect. 2.2.
The reduction relation of F̂ is the rewrite relation → defined in Def. 2.27.

Remark 3.9 (Stages in terms). Note that the types appearing in terms are those
of F rec: they do not carry stage expressions. As shown in [6], subject reduction
would have failed if terms conveyed stage expressions. However, it is often useful
to write these annotations in examples. For instance, we may write λx : Natı. x
to denote the term λx : Nat. x.

24 Gilles Barthe Benjamin Grégoire Colin Riba

Typing rules. The typing rule for fixpoints uses a predicate ı pos σ that is used
to ensure that a stage variable occurs positively in the codomain of the type of
a recursive definition. Its definition is similar to that of the predicate τ pos σ of
Sect. 2.3.

Definition 3.10 (Positivity). Given two stage expressions s and r, let s occ r
(resp. s nocc r) if and only if s occurs in r (resp. does not occurs in r). Moreover,
let s nocc τ if the stage expression s does not occur in the sized type τ .

The predicate s pos τ (resp. s neg τ), stating that all occurrences of s in τ
are positive (resp. negative), is inductively defined in Fig. 4.

The typing rules follow [6].

Definition 3.11 (Typing). A sized context is a map Γ : VE → T of finite
domain. The typing relation is the smallest relation Γ ` e : τ which is closed
under the rules of Fig. 5, page 30.

All rules but (cons), (case), (rec) and (sub) do not mention stages. They are
therefore the same as in F rec. The rule (cons) for constructors simply says that
a constructor can be given any possible stage instance of its type specified in a
datatype definition.

In order to understand the rule (case), we look at it for natural numbers:

Γ ` e : Natbs Γ ` eo : σ Γ ` es : Nats → σ

Γ ` case|σ| e of {0 ⇒ eo | s ⇒ es} : σ

The important point, which makes the difference with the rule of F rec, is that
the type of the expression e subject to case analysis must have a stage of the
form ŝ. Note that this is always possible thanks to subtyping. Now, assume that
e is of the form s n. The rule (case) says that the term es sees n as an expression
of stage s. Indeed, we have

case|σ| (s n) of {0 ⇒ eo | s ⇒ es} →ι es n with Γ ` es : Nats → σ

We now discuss the typing rule (rec) for fixpoints, in the case of natural
numbers, and assuming that ı does not occur in θ:

(rec)
Γ , f : Natı → θ ` e : Natbı → θ

Γ ` (letrecNat→|θ| f = e) : Nats → θ
if ı /∈ Γ , τ

As explained in Sect. 3.1, typing fix := (letrecNat→|θ| f = e) with type Nat∞ → θ

requires showing that the body e turns an approximation of fix of type Natı → θ
into its next approximation, which is of type Natbı → θ. As discussed in Sect 3.4,
such recursive functions are terminating and, despite its simplicity, this mecha-
nism is powerful enough to capture course-of-value recursion.

A tutorial on type-based termination 25

Notation 3.12. When writing examples of typings of fixpoints, it is convenient
to write at the term level the stage annotations corresponding to fixpoint vari-
ables. For instance, given a derivation of the form

(rec)
f : Natı → θ ` e : Natbı → θ

` (letrecNat→|θ| f = e) : Nats → θ

where ı /∈ θ, it is convenient to write (letrec f : Natı → θ = e) : Nats → θ to
mean that using f : Natı → θ, we must have e : Natbı → θ. We use a similar
notation when ı ∈ θ.

The following example, taken from [2], shows that strong normalization may
fail if the positivity condition is not met. However, there are finer conditions
on the occurrences of ı in θ than positivity that nevertheless preserve strong
normalization, see [3,2].

Example 3.13 (Counter-example for the positivity condition [2]). Consider the
terms

shift := λf : Nat → Nat
bbı. λx : Nat. caseNat

Nat
bbı︷ ︸︸ ︷

f (s x) of { o ⇒ o

| s ⇒ λy : Natbı. y }
plus 2 := λx : Nat. s (s x)

of type respectively Nat → Nat
bbı and Nat → Natbı. Note that shift plus 2 →∗ plus 2.

Consider now the following fixpoint:

loop := (letrec loop : Natı → (Nat → Natbı) → Nat = λx : Natbı. λf : Nat → Nat
bbı.

caseNat (f x) of {o ⇒ o

| s ⇒ λx′ : Natbı. case x′ of {
| o ⇒ o
| s ⇒ λy′ : Natı. loop y′ (shift f)
}

}
) : Nats → (Nat → Natbs) → Nat

The stage variable ı occurs negatively in the type (Nat → Natbı) → Nat. There-
fore, the expression loop would be typable in F̂ without the condition ı pos θ in
the rule (rec). But then it would also be possible to type the term loop o plus 2
which is non normalizing

loop o plus 2 →∗ loop o (shift plus 2) →∗ loop o plus 2 → . . .

ut

26 Gilles Barthe Benjamin Grégoire Colin Riba

s nocc τ
s pos τ

s pos τ i (1 ≤ i ≤ ar(d))

s pos dr τ

s pos τ

s pos ΠX. τ

s neg τ2 s pos τ1

s pos τ2 → τ1

s nocc τ
s neg τ

s neg τ i (1 ≤ i ≤ ar(d))

s neg dr τ

s neg τ

s neg ΠX. τ

s pos τ2 s neg τ1

s neg τ2 → τ1

Fig. 4. Positivity and negativity of a stage occurrence

Examples. We now review some examples of functions presented in Sect. 2.2.
We begin with the minus and div functions on natural numbers.

Example 3.14 (minus and div). In F rec, minus and div are defined as follows:

minus := (letrecNat→Nat→Nat ms = λx : Nat. λy : Nat.
caseNat x of { o ⇒ x

| s ⇒ λx′ : Nat. case y of { o ⇒ x
| s ⇒ λy′ : Nat. ms x′ y′ }

}
) : Nat → Nat → Nat

div := (letrecNat→Nat→Nat div = λx : Nat. λy : Nat.
caseNat x of { o ⇒ o

| s ⇒ λx′ : Nat. s (div (minus x′ y) y) }
) : Nat → Nat → Nat

For minus, in Γ ′ =def ms : Natı → Nat → Natı, x : Natbı, y : Nat, x′ : Natı we
have

Γ ′ ` y : Natc∞ Γ ′ ` x : Natbı Γ ′ ` λy′ : Nat. ms x′ y′ : Nat∞ → Natbı
Γ ′ ` caseNat y of {o ⇒ x | s ⇒ λy′ : Nat. ms x′ y′} : Natbı

We deduce that

Γ ` x : Natbı Γ ` x : Natbı Γ ` λx′ : Nat. es : Natı → Natbı
Γ ` caseNat x of {o ⇒ x | s ⇒ λx′ : Nat. es} : Natbı

where es := caseNat y of {o ⇒ x | s ⇒ λy′ : Nat. ms x′ y′} and Γ is the typing
context ms : Natı → Nat → Natı, x : Natbı, y : Nat. Using (rec), for all stages s

A tutorial on type-based termination 27

we get

ms : Natı → Nat → Natı ` λx : Nat. λy : Nat. eminus : Natbı → Nat → Natbı
` (letrec ms = λx : Nat. λy : Nat. eminus) : Nats → Nat → Nats

where eminus := caseNat x of {o ⇒ x | s ⇒ λx′ : Nat. es}. Hence, system F̂
is powerful enough to express that the size of (minus n m) is at most the size
of n. This information is essential for the typing of div. In the computation of
(div (s n) m), the recursive call to div is performed on the argument (minus n m)
which is not a subterm of (s n). It can even be syntactically arbitrarily bigger!
However, with stages we have the information that if (s n), as a natural number,
is of size at most p̂, then (minus n m) is of size at most p. The termination
argument relies on this decreasing from p̂ to p.

Formally, using (rec), for all stages s we obtain div : Nats → Nat → Nats

from the judgment

div : Natı → Nat → Natı `
λx : Nat. λy : Nat. caseNat x of { o ⇒ o

| s ⇒ λx′ : Nat. s (div (minus x′ y)︸ ︷︷ ︸
Natı

y)

︸ ︷︷ ︸
Natı

} : Natbı → Nat → Natbı
ut

Example 3.15 (Ordinals). In F rec, the addition on ordinals is defined as

add := (letrecOrd→Ord→Ord add = λx : Ord. λy : Ord.
caseOrd x of {o ⇒ y

| s ⇒ λx′ : Ord. s (add x′ y)
| lim ⇒ λf : Nat → Ord. lim (λz : Nat. add (f z) y)}

) : Ord → Ord → Ord

Therefore, we have add (lim f) e →∗ lim (λz : Nat. add (f z) e). The difficulty
here is that f z is not a subterm of lim f . However, this example is handled by
the syntactic termination criterion described in Sect. 2.5. In F ,̂ add is typed as
follows:

add := (letrec add : Ordı → Ord → Ord = λx : Ordbı. λy : Ord.
caseOrd x of {o ⇒ y

| s ⇒ λx′ : Ordı. s (add x′ y)
| lim ⇒ λf : Nat → Ordı. lim (λz : Nat. add (f z)︸ ︷︷ ︸

Ordı

y)}

) : Ords → Ord → Ord

We now come back to the discussion of Ex. 3.8.(iii), about the stage of lim inj,
where inj : Nat → Ord is the canonical injection of natural numbers into ordinals.

28 Gilles Barthe Benjamin Grégoire Colin Riba

In F ,̂ it is defined as follows:

inj := (letrec inj : Natı → Ordı = λx : Natbı.
caseNat x of {o ⇒ o

| s ⇒ λx′ : Natı. s (inj x′)}
) : Nats → Ords

Note that this definition uses the same stage variable ı to annotate both Nat
and Ord. Moreover, for all p ∈ N we have inj (sp o) →∗ (sp o). The only way
to apply inj to lim is to instantiate their sized types as Nat∞ → Ord∞ and
(Nat∞ → Ord∞) → Ord∞ respectively. We thus get lim inj : Ord∞, and ∞ is the
best possible approximation of the size of lim inj expressible in the system. ut

Example 3.16 (Concatenations of lists). The function app concatenates two lists.
Therefore, if l1 and l2 are of respective size s1 and s2, then app l1 l2 is of size
s1 + s2. But system F̂ does not feature stage addition. Hence the precise size of
app l1 l2 is not expressible in the system, and we have app l1 l2 : List∞X. Since
recursion is performed only on the first argument of app, the size of the second
one is not relevant, and for all stages s we have app : ΠX. Lists X → List X →
List X. The function app is defined as follows:

app := ΛX. (letrec app : Listı X → List X → List X = λx : Listbı X. λy : List X.
caseListX x of {nil ⇒ y

| cons ⇒ λz : X. λx′ : Listı X. cons z (app x′ y)
}

) : ΠX. Lists X → List X → List X

The function conc concatenates a list of lists. As for app, we cannot express its
precise typing in F ,̂ and for all stage s we have conc : ΠX. Lists (List X) →
List X. The function conc is defined as follows:

conc := ΛX. (letrec conc : Listı (List X) → List X = λx : Listbı (List X).
caseList (List X) x of {nil ⇒ nil

| cons ⇒ λz : List X. λx′ : Listı (List X). app z (conc x′)
}

) : ΠX. Lists (List X) → List X

ut

Example 3.17 (The map function on a list). The function map f l applies the
function f to each element of the list l and produces the corresponding list.
Hence map f l evaluates to a list of the same size as l. This is expressible in F̂
by map : ΠX. ΠY. (X → Y) → Lists X → Lists Y . The function map is defined

A tutorial on type-based termination 29

as follows:

map := ΛX. ΛY. λf : X → Y. (letrec map : Listı X → Listı Y = λx : Listbı X.
caseList X x of {nil ⇒ nil

| cons ⇒ λz : X. λx′ : Listı X. cons (f z) (map f x′)︸ ︷︷ ︸
Listı Y︸ ︷︷ ︸

Listbı Y

}
) : ΠX. ΠY. (X → Y) → Lists X → Lists Y

ut

Example 3.18 (Flattening of finitely branching trees). System F̂ is able to prove
the termination of flatten, even if the recursive call is made through a call to
map. However, as for app and conc, the system F̂ cannot express the precise
typing of the flattening of finitely branching trees flatten. The function flatten is
defined by induction on the depth of its argument. We thus have

flatten := ΛX. (letrec flat : Treeı X → List X = λt : Treebı X. caseTree X t of {
node ⇒ λx : X. λxs : List (Treeı X). cons x (conc (map flat xs︸ ︷︷ ︸

List (List X)

)

︸ ︷︷ ︸
List X

)

}
) : ΠX. Trees X → List X

ut

3.3 Some important properties

We now state some important properties of system F .̂ They are the properties
underlined in Sect. 2.1 for system F , namely subject reduction, strong normal-
izability of typable terms, and coherence of the type system.

Subject reduction. The proof of this property is easily adapted from the proof
for λ̂ presented in [5].

Theorem 3.19 (Subject reduction). If Γ ` e : τ and e → e′, then also
Γ ` e′ : τ .

With respect to stage annotations, subject reduction says that the size ap-
proximations represented by stages are preserved by reduction, and moreover
that they can be retrieved by the type system after a reduction step.

30 Gilles Barthe Benjamin Grégoire Colin Riba

(var)
Γ , x : σ ` x : σ

(sub)
Γ ` e : σ σ v τ

Γ ` e : τ

(abs)
Γ , x : τ ` e : σ

Γ ` λx : |τ |. e : τ → σ
(app)

Γ ` e : τ → σ Γ ` e′ : τ

Γ ` e e′ : σ

(T-abs)
Γ ` e : σ

Γ ` ΛX. e : ΠX. σ
if X 6∈ Γ (T-app)

Γ ` e : ΠX. σ

Γ ` e |τ | : σ[X := τ]

(cons)
Γ ` ck : ΠX. θk → dbı X

if ck ∈ C(d) for some d

(case)

ck : ΠX. θk → dbı X

Γ ` e : dbs τ Γ ` ek : θk[X := τ , ı := s] → σ (1 ≤ k ≤ n)

Γ ` case|σ| e of {c1 ⇒ e1 | · · · | cn ⇒ en} : σ
if C(d) = {c1, . . . , cn}

(rec)
Γ , f : dıτ → θ ` e : dbıτ → θ[ı := bı] ı pos θ

Γ ` (letrecd|τ |→|θ| f = e) : dsτ → θ[ı := s]
if ı /∈ Γ , τ

Fig. 5. Typing rules for F̂
Strong normalization and coherence. System F̂ enjoys the two crucial
properties that fail for F rec, namely strong normalizability of typable terms and
coherence. Proofs are sketched in the next section, respectively in Cor. 3.29 and
in Cor. 3.30. They both rely on a reducibility interpretation of F̂ by saturated
sets [11,18]. Let SN be the set of strongly normalizing terms. Hence SN is the
least set of terms such that

∀e. (∀e′. e →βιγ e′ =⇒ e′ ∈ SN) =⇒ e ∈ SN

Theorem 3.20 (Strong normalization). If Γ ` e : τ then e ∈ SN.

Theorem 3.21 (Coherence). There is no term e such that ` e : ⊥.

3.4 A reducibility interpretation

In this section, we sketch the correctness proof of a reducibility semantics for F .̂
Our semantics is based on a variant of reducibility [12] called Tait’s saturated
sets [18], and will be used to prove both the strong normalization of typable
terms and the coherence of the type system. We begin by the interpretation of
stages, and turn to the model construction. We then state its correctness, from
which we deduce strong normalization and coherence.

In the whole section, if f is a map from A to B, a ∈ A and b ∈ B, then
f(a := b) : A → B maps a to b and is equal to f everywhere else.

A tutorial on type-based termination 31

The stage model. Stages are interpreted by the ordinals used to build the
interpretation of inductive types. While first-order inductive types can be inter-
preted by induction on N, higher-order inductive types may require an induction
on countable ordinals. Recall that (Ω,≤Ω) denote the well-ordered set of count-
able ordinals and by +Ω the usual ordinal addition on Ω.

Let Ω̂ =def Ω ∪ {Ω}. For all α ∈ Ω and all β ∈ Ω̂, let α < β iff (β = Ω or
α <Ω β).

Definition 3.22 (Interpretation of stages). A stage valuation is a map π

from VS to Ω̂, and is extended to a stage interpretation L.Mπ : S → Ω̂ as follows:

LιMπ = π(ι) L0Mπ = 0 L∞Mπ = Ω LŝMπ =
{

LsMπ + 1 if LsMπ < Ω
Ω if LsMπ = Ω

Type interpretation. In this section, we define the type interpretation and
prove its correctness. Our proof follows the pattern of [1]. We interpret types by
saturated sets. It is convenient to define them by means of elimination contexts:

E[] ::= [] | E[] e | E[] |τ | | case|τ | E[] of {c ⇒ e}

Note that the hole [] of E[] never occurs under a binder. Thus E[] can be
seen as a term with one occurrence of a special variable []. Therefore, we can
define E[e] as E[][[] := e]. The relation of weak head βιγ-reduction is defined
as E[e] →wh E[e′] if and only if e �βιγ e′.

Definition 3.23 (Saturated sets).
A set S ⊆ SN is saturated (S ∈ SAT) if

(SAT1) E[x] ∈ S for all E[] ∈ SN and all x ∈ VE,
(SAT2) if e ∈ SN and e →wh e′ for some e′ ∈ S then e ∈ S.

One can easily show that SN ∈ SAT and that
⋂

Y,
⋃

Y ∈ SAT for all non-
empty Y ⊆ SAT. One can also check that the function space on SAT, defined for
X, Y ∈ SAT as:

X → Y =def {e | ∀e′. e′ ∈ X =⇒ e e′ ∈ Y }

returns a saturated set.
Because saturated sets are closed under non-empty intersections, one can

define for each X ⊆ SN the smallest saturated set containing X, written X. We
let ⊥ =def ∅; it is easy to show that ⊥ is the smallest element of SAT. The
following properties precisely characterizes the membership of an expression to
a saturated set.

Lemma 3.24.
(i) ⊥ = {e ∈ SN | ∃E[], x. e →∗

wh E[x]}.
(ii) If X ⊆ SN then X = ⊥ ∪ {e ∈ SN | e →∗

wh X}.

32 Gilles Barthe Benjamin Grégoire Colin Riba

The interpretation of types is defined in two steps. We first define the inter-
pretation scheme of types, given an interpretation of datatypes. We then define
the interpretation of datatypes.

Definition 3.25. An interpretation of datatypes is a family (Id)d∈D of func-
tions Id : SATar(d) × Ω̂ → SAT for each d ∈ D. Given an interpretation of
datatypes I, a stage valuation π and a type valuation ξ : VT → SAT, the type
interpretation J.KI

π,ξ : T → SAT is defined by induction on types as follows

JXKI
π,ξ = ξ(X)

Jτ → σKI
π,ξ = JτKI

π,ξ → JσKI
π,ξ

JΠX. τKI
π,ξ =

{
e | ∀|σ| ∈ |T|, ∀S ∈ SAT, e |σ| ∈ JτKI

π,ξ(X:=S)

}
Jdsτ KI

π,ξ = Id(Jτ KI
π,ξ, LsMπ)

We now define the interpretation of inductive datatypes. Recall that they are
defined in an ordered list I1, . . . , In of declarations (see Def. 2.25). Let us say
that k is the rank of d if d is defined in Ik. The interpretation (Id)d∈D is defined
by induction on the rank, and for each d ∈ D, the map Id : SATar(d)× Ω̂ → SAT
is defined by induction on Ω̂.

Definition 3.26. For all d ∈ D, all S ∈ SATar(d) and all α ∈ Ω̂, we define
Id(S, α) by induction on pairs (k, α) ordered by (<,<)lex, where k is the rank of
d, as follows:

Id(S, 0) = ⊥
Id(S, α + 1) =

⋃
{c JθKI

ι:=α,X:=S | c ∈ C(d) ∧ Type(c) = ΠX. θ → dbιX}

Id(S, λ) =
⋃
{Id(S, α) | α < λ} if λ is a limit ordinal

where cS =def {c |τ |a | a ∈ S ∧ |τ | ∈ |T|} for all S ∈ SAT.

Note that Id(S, α + 1) only uses cJθKI
ι:=α,X:=S with c ∈ C(d), which in turn

only uses Id(U , β) with (p, β) (<,<)lex (k, α + 1), where k (resp. p) is the rank
of d (resp. d′).

Now that we have an interpretation of inductive datatypes (Id)d∈D, we can
interpret types as in Def. 3.25 using this interpretation of datatypes. It is con-
venient to denote J.KI

π,ξ by J.Kπ,ξ.
We gather in Fig. 6 some properties of L.Mπ and J.Kπ,ξ. The following Propo-

sition states that each inductive datatype can be interpreted by a countable
ordinal. This is crucial in order to deal with the rule (cons) in the proof of
Thm. 3.28. The key-point is that for every countable S ⊆ Ω, there is β ∈ Ω such
that α < β for all α ∈ S [9].

Proposition 3.27. For all d ∈ D and all S ∈ SATar(d), there is an ordinal
α < Ω such that Id(S, α) = Id(S, β) for all β such that α ≤ β ≤ Ω.

A tutorial on type-based termination 33

Substitution Lp[ι := s]Mπ = LpMπ(ι:=LsMπ)

Jτ [ι := s]Kπ,ξ = JτKπ(ι:=LsMπ),ξ

Jτ [X := σ]Kπ,ξ = JτKπ,ξ(X:=JσKπ,ξ)

Stage monotony α ≤ β ⇒ Id(S, α) ⊆ Id(S, β)
α ≤ β ∧ ι pos θ ⇒ JθKπ(ι:=α),ξ ⊆ JθKπ(ι:=β),ξ

α ≤ β ∧ ι neg θ ⇒ JθKπ(ι:=β),ξ ⊆ JθKπ(ι:=α),ξ

Substage soundness s ≤ p ⇒ LsMπ ≤ LpMπ

Subtyping soundness τ v σ ⇒ JτKπ,ξ ⊆ JσKπ,ξ

Fig. 6. Properties of the type interpretation

Correctness of the interpretation. As usual, soundness is shown by induc-
tion on typing derivations. Given π : VS → Ω̂, ξ : VT → SAT and ρ : (VE →
E)] (VT → |T|), we let (π, ξ, ρ) |= Γ if and only if ρ(x) ∈ JΓ (x)Kπ,ξ for all
x ∈ dom(Γ).

Theorem 3.28 (Typing soundness). If Γ ` e : τ , then eρ ∈ JτKπ,ξ for all
π, ξ, ρ such that (π, ξ, ρ) |= Γ .

We deduce the strong normalization of typable terms and the coherence of the
system.

Corollary 3.29 (Strong normalization). If Γ ` e : τ then e ∈ SN.

Proof. Apply Thm. 3.28 with any π and ξ, and with the identity substitution
for ρ. We thus have (π, ξ, ρ) |= Γ , hence e = eρ ∈ JτKπ,ξ ⊆ SN. ut

Corollary 3.30 (Coherence). There is no term e such that ` e : ΠX. X.

Proof. Assume that ` e : ΠX. X. Note that e must be a closed term, i.e.
FVE(e) = ∅. By Thm. 3.28, we have e ∈ JΠX. XK. Therefore, for all τ ∈ T,
we have e τ ∈ ⊥. By Lem. 3.24.(i), e τ reduces to a term of the form E[x] for
some x ∈ VE. But E[x] is an open term, which contradicts the fact that e τ is
closed. ut

4 Type inference

The purpose of this section is to present a sound and complete algorithm that
infers size annotations for F .̂ One particularity of our algorithm is to return
concise results, in the form of constrained types (C, τ) where τ is a sized type
and C is a set of stage inequalities. Restricting such constrained types is bene-
ficial for two reasons: first of all, sets of stage inequalities are always satisfiable
(by mapping all stage variables to ∞), hence a term e is typable whenever the
inference algorithm does not return an error. Second of all, the algorithm avoids
the use of disjunction, which makes satisfiability of constraints complex. Dis-
junctive typings are avoided by requiring recursive definitions to carry tags that

34 Gilles Barthe Benjamin Grégoire Colin Riba

identify which positions are meant to carry a size annotation related to the size
of the recursive argument. Consider the following expression:

(letrecNat→Nat f = λx : Nat. o)

It may be given the types Natı → Natı and Natı → Nat
bj . If we restrict to

conjunctive constrained types as discussed above, it is impossible to obtain a
more general type that subsumes both types. In order to achieve more general
types without using disjunctive constrained types, we tag positions whose size
must use the same base size variable as the recursive argument with a special
symbol ?. These tags will be used by the inference algorithm to separate between
stage variables that must pertain to the same hierarchy as the stage variable
of the recursive arguments, and those that must not. In effect, the inference
algorithm will produce the following results:

(letrecNat?→Nat? f = λx : Nat. o) : Natı → Natı

(letrecNat?→Nat f = λx : Nat. o) : Natı → Nat
bj

For clarity, the inference algorithm is defined together with a checking algo-
rithm, that takes as additional argument a candidate type and verifies that it
is a correct instance of the computed type. Since we start from terms that do
not carry size annotations, both algorithms must generate size variables that are
used to build the size annotations that decorate the inferred or checked types. In
order to guarantee that they only introduce fresh size variables, the algorithms
take an auxiliary parameter V , that represents the set of size variables that have
been used elsewhere, and return an extended set V ′ that includes V and the new
stage variables that were used for the expression under evaluation. Therefore,

– the type inference algorithm Infer(V, Γ , e) takes as input a context Γ , an
expression e and a set of size variables V s.t. FV(Γ) ⊆ V , and returns a tuple
(V ′, C, τ) where τ is an annotated type, C is a constraint, and V ′ is a set of
size variables s.t. FV(C, τ) ∪ V ⊆ V ′;

– the type checking algorithm takes as additional input a candidate type τ ;
then Check(V, Γ , e, τ) returns a pair (V ′, C) s.t. FV(C, τ) ∪ V ⊆ V ′ and
ensuring that e has type ρτ in environment Γ provided that ρ is a solution
for C.

The algorithm is sound and complete.

Proposition 4.1 (Soundness and completeness of Check and Infer).

– Soundness:
(i) If Check(V, Γ , e, τ) = (V ′, C) then ρ(Γ) ` e : ρ(τ) for all ρ s.t. ρ |= C.
(ii) If Infer(V, Γ , e) = (V ′, C, τ) then ρ(Γ) ` e : ρ(τ) for all ρ s.t. ρ |= C.

– Completeness:
(i) If ρ(Γ) ` e : ρτ and FVI(Γ , τ) ⊆ V then there exist V ′, C, ρ′ such that

Check(V, Γ , e, τ) = (V ′, C) and ρ′ |= C and ρ =V ρ′.

A tutorial on type-based termination 35

(ii) If ρ(Γ) ` e : θ and FVI(Γ) ⊆ V there exist V ′, C, τ , ρ′ such that
Infer(V, Γ , e) = (V ′, C, τ) and ρ′ |= C and ρ′(τ) v θ and ρ′ =V ρ

where ρ =V ρ′ means that ρ(α) = ρ′(α) for all α ∈ V .

Note that every conjunctive constraint has a solution. Therefore, if the inference
algorithm is successful on input (Γ , e), i.e. Infer(Γ , e) = (C, τ), one can find ρ
such that ρ |= C. Therefore, by soundness ρΓ ` e : ρτ .

The crux of the algorithm is the rule for recursive definitions, which must
check the existence of solutions for more elaborate constraints, in which one
can also declare that a stage variable ı can only be interpreted as itself (in
effect it amounts to restrict ourselves to substitutions ρ such that ρ(ı) = ı), and
that a stage s cannot be in the same hierarchy as a fixed stage variable ı. For
such systems, the existence of a solution is not always guaranteed, and we shall
therefore device a dedicated algorithm to verify whether a solution exists.

Outline. Type inference is presented step by step. We begin by recalling the
straightforward type inference algorithm of system F in Sect. 4.1. Then, in
Sect. 4.2, we discuss the effect of adding sized inductive datatypes, with subtyp-
ing and case analysis but without recursion. We concentrate on the subtyping
relation and the necessity to infer stage annotations for λ-abstractions, type ap-
plications and case analysis. At this level, we do not need to be precise about
freshness conditions. Its is sufficient to work with

– the judgment C ; Γ ` e ↑ τ , which stands for Infer(Γ , e) = (C, τ), and
– the judgment C ; Γ ` e ↓ τ , which stands for Check(Γ , e, τ) = C.

In Sect. 4.3, we informally discuss the way we handle recursive definitions. The
main point is an auxiliary algorithm called RecCheck, which is informally pre-
sented and justified. Finally, in Sect. 4.4 we discuss the full type inference al-
gorithm of F ,̂ as presented in [6] and using the functions Infer(V, Γ , e) and
Check(V, Γ , e, τ).

4.1 Preliminaries: Type inference in system F

In the Church style system F , as presented in Sect. 2.1, type inference is trivial,
because the typing derivation of a term is uniquely determined by the shape of
a term. Hence, the type inference algorithm is directly given by the typing rules
read bottom-up:

– The type of x in the context Γ is Γ (x) if and only if x ∈ dom(Γ).
– The type of λx : τ. e in Γ is τ → σ if and only if the type of e in Γ, x : τ is

σ;
– The type of e e′ in Γ is σ if and only if there is a (necessarily unique) type

τ such that the type of e (resp. e′) in Γ is τ → σ (resp. τ).
– The type of ΛX. e in Γ is ΠX. τ if and only if the type of e in Γ is τ and

X /∈ Γ .
– The type of e τ in Γ is σ[X := τ] if and only if the type of e in Γ is ΠX. σ.

36 Gilles Barthe Benjamin Grégoire Colin Riba

4.2 Adding sized inductive datatypes

We present type inference in system F enriched with the sized typing rules for
constructors, case analysis, and subtyping. Recall that sized types, defined in
Def. 3.4, are given by the abstract syntax:

T ::= VT | T → T | ΠVT. T | DS T

and that the typing rule (cons), (case) and (sub) are the following:

(cons)
Γ ` ck : ΠX. θk → dbı X

(sub)
Γ ` e : σ σ v τ

Γ ` e : τ
if ck ∈ C(d) for some d

(case)

ck : ΠX. θk → dbı X

Γ ` e : dbs τ Γ ` ek : θk[X := τ , ı := s] → σ (1 ≤ k ≤ n)

Γ ` case|σ| e of {c1 ⇒ e1 | · · · | cn ⇒ en} : σ
if C(d) = {c1, . . . , cn}

In this section, it is not mandatory for the informal discussion to be very
precise on freshness conditions. Moreover, we work step by step, and progres-
sively introduce the features of the type inference algorithm. Therefore, instead
of using Infer(Γ , e) and Check(Γ , e, τ), we start with two simple unconstrained
judgments Γ ` e ↑ τ for type inference and Γ ` e ↓ τ for type-checking. we will
then introduce constraints, which lead us to

– the judgment C ; Γ ` e ↑ τ , which stands for Infer(Γ , e) = (C, τ), and
– the judgment C ; Γ ` e ↓ τ , which stands for Check(Γ , e, τ) = C.

Inference of size annotations. We now discuss the case of λ-abstractions.
The natural inference rule would be

Γ , x : τ ` e ↑ σ

Γ ` λx : |τ |. e ↑ τ → σ
(4)

That is, we infer the type τ → σ for λx : |τ |. e if we can infer the type σ for e
in a context where the variable x is given the type τ . In other words, we have
to infer the type τ from its erasure |τ |. The difficulty is that the type τ may
depend on e. For instance, with

Γ =def f : Natı → Natı, g : Natj → Natj

we have

Γ , x : Natı ` f x : Natı

Γ ` λx : Nat. f x : Natı → Natı
and

Γ , x : Natj ` g x : Natı

Γ ` λx : Nat. g x : Natj → Natı

where the typing of λx : Nat. f x and λx : Nat. g x require two different an-
notations of Nat. A solution is to proceed similarly as in Hindley-Milner type
inference for ML-like languages. We perform type inference in a system whose
stage expressions feature inference stage variables VI = {α, β, . . . }.

A tutorial on type-based termination 37

Definition 4.2 (Inference stages). The set SI = {s, r, . . . } of inference stage
expressions is given by the abstract syntax:

SI ::= VS | VI | ŜI | ∞

The substitution s[α := r] of the inference stage variable α for r in s is defined
in the obvious way.

Then, each type σ ∈ T can be systematically annotated with inference vari-
ables. This is performed by a function Annot satisfying the following specifi-
cation. If V is a set of inference stage variables and σ ∈ T is a type, then
Annot(σ, V) returns a pair (σ, V ′) such that

– |σ| = σ,
– each occurrence of an inductive datatype in σ is annotated with a distinct

inference stage variable α /∈ V (so that α occurs at most once in σ),
– V ′ = V ∪ FVI(σ).

For instance, Annot(Nat → Nat, {α1, α2}) = (Natα3 → Natα4 , {α1, α2, α3, α4}).
For the moment, we do not use the set of variables V ′ produced by Annot. If we
add these systematic annotations to the rule (4), we obtain

(abs)
(τ , V) := Annot(τ,FVI(Γ)) Γ , x : τ ` e ↑ σ

Γ ` λx : τ. e ↑ τ → σ

In such system, the intended semantics of type inference and type checking
can be phrased by the property that for all substitution ρ : VI → SI we have

Γ ` e ↑ τ =⇒ Γρ ` e : τρ

Γ ` e ↓ τ =⇒ Γρ ` e : τρ

Checking subtyping derivations. Type inference with a rule like the above
does not work directly: we have to take subtyping into account more seriously.
Let us look at the type inference derivation of λx : Nat. f x in the context
f : Natı → Nat∞. We would have a derivation of the form

f : Natı → Nat∞, x : Natα ` f x ↑? (Natα, V) = Annot(Nat, ∅)
f : Natı → Nat∞ ` λx : Nat. f x ↑?

(5)

but we get stuck because this would require Natα v Natı, which does not hold.
In other words, once we generate sized types featuring stage inference vari-

ables, we have to adapt our way of handling subtyping. In Sect. 3.2, we have
seen that the substage relation s ≤ r (defined in Def. 3.3) leads to the subtyping
relation τ v σ (defined in Def. 3.6). For type checking, we go the other way:
starting from a subtyping assertion τ v σ, we generate a conjunction of substage
assertions s1 ≤ r1, . . . , sn ≤ rn, which holds if and only if τ v σ is derivable.

Definition 4.3 (Constraints).

38 Gilles Barthe Benjamin Grégoire Colin Riba

(i) A constraint is either the false constraint ⊥ or a set of inference stage ex-
pressions inequalities {s1 ≤ r1, . . . , sn ≤ rn}.

(ii) A substitution ρ : VI → SI satisfies a constraint C, notation ρ |= C, if and
only if C 6= ⊥ and sρ ≤ rρ is derivable using the rules of Def. 3.3 for all
s ≤ r ∈ C.

(iii) A subtyping assertion τ v σ generates a constraint Lτ v σM defined as
follows

LX v XM =def ∅

Lτ2 → τ1 v σ2 → σ1M =def Lσ2 v τ2M ∪⊥ Lτ1 v σ1M

LΠX. τ v ΠX. σM =def Lτ v σM

Lds τ v dr σM =def {s ≤ r} ∪⊥ Lτ v σM

Lτ v σM =def ⊥ in all other cases

where

C1 ∪⊥ C2 =def

{
⊥ if C1 = ⊥ or C2 = ⊥

C1 ∪ C2 otherwise

We write s1 ≤ r1, . . . , sn ≤ rn instead of {s1 ≤ r1, . . . , sn ≤ rn}. Note that we
have ρ |= ∅ for all ρ : VI → SI, and that the empty substitution does not satisfies
the false constraint ⊥. The satisfaction of constraints generated by subtyping
assertions corresponds exactly to the derivability of subtyping judgments.

Proposition 4.4. ρ |= Lτ v σM if and only if τρ v σρ.

Example 4.5.
(i) The assertion Nat∞ v Bool∞ generates the constraint ⊥. It follows that

Nat∞ v Bool∞ is not derivable.
(ii) The assertion Natı v Nat∞ generates the constraint {ı ≤ ∞}. The inequality

ı ≤ ∞ is derivable, hence Natı v Nat∞ is also derivable.
(iii) The assertion Natı v Natj generates the constraint {ı ≤ j}. The inequality

ı ≤ j is not derivable, hence Natı v Natj is not derivable. ut

Inference rules. We have to adapt type inference to take into account the
constraints generated by subtyping. We now consider judgments of the form

C ; Γ ` e ↑ τ and C ; Γ ` e ↓ τ

where C is a constraint. The constraints are generated by subtyping

(sub)
C ; Γ ` e ↑ τ

C ∪⊥ Lτ v σM ; Γ ` e ↓ σ

and transmitted by the other rules. In all rules, constraints have to be read
top-bottom. The system is presented in Fig. 7, and its correctness is stated the
following Proposition. The rule (cons) and (case) are commented in the next
paragraph.

A tutorial on type-based termination 39

Proposition 4.6 (Correctness).
(i) If C ; Γ ` e ↑ τ and ρ |= C then Γρ ` e : τρ
(ii) If C ; Γ ` e ↓ τ and ρ |= C then Γρ ` e : τρ

Let us now look at the derivation (5). We have

∅ ; f : Natı → Nat∞, x : Natα ` x ↑ Natα

α ≤ ı ; f : Natı → Nat∞, x : Natα ` x ↓ Natı

and it follows that

α ≤ ı ; f : Natı → Nat∞, x : Natα ` f x ↑ Nat∞ (Natα, V) = Annot(Nat, ∅)
α ≤ ı ; f : Natı → Nat∞ ` λx : Nat. f x ↑ Natα → Nat∞

By Prop. 4.6.(i), we get f : Natı → Nat∞ ` λx : Nat. f x : Natı → Nat∞.

Inductive datatypes. We now focus on the type inference rules (cons) and
(case) that correspond respectively to the introduction and to the elimination
of inductive datatypes. The only particular feature of the type inference rule for
constructors is that it introduces a fresh inference stage variable:

(cons)
ck : ΠX. θk → dbı X

∅ ; Γ ` ck ↑ ΠX. θk[ı := α] → dbα X
if α /∈ VI(Γ) and ck ∈ C(d) for some d

Consider now the type inference rule (case) for case-analysis:

C ; Γ ` e ↑ ds τ α /∈ VI(Γ) (σ, V) = Annot(σ,VI(Γ) ∪ {α})
ck : ΠX. θk → dbı X Ck ; Γ ` ek ↓ θk[X := τ , ı := α] → σ (1 ≤ k ≤ n)

{s ≤ α̂} ∪⊥ C ∪⊥ (
⋃
⊥ Ck) ; Γ ` caseσ e of {c1 ⇒ e1 | · · · | cn ⇒ en} ↑ σ

where C(d) = {c1, . . . , cn}

For simplicity, we consider a simple case where the output type σ does not
contain any datatype (hence σ = σ) and where the datatype d subject of the
case-analysis is the type of natural numbers. Assume that we want to infer the
type of caseσ e of {0 ⇒ eo | s ⇒ es} in the context Γ . First, we infer the
type of the subject e of the case-analysis, and we get a constraint C such that
C ; Γ ` e ↑ Nats. Now, recall the typing rule case imposes that the subject
can be typed with a stage of the form r̂, and that in our case, the branch es

corresponding to the constructor s has type Natr → σ:

Γ ` e : Natbr Γ ` eo : σ Γ ` es : Natr → σ

Γ ` caseσ e of {0 ⇒ eo | s ⇒ es} : σ

We express this by using a fresh stage variable α together with a constraint
s ≤ α̂, and we typecheck the branch es against the type Natα → σ. This gives:

C ; Γ ` e ↑ Nats Co ; Γ ` eo ↓ σ Cs ; Γ ` es ↓ Natα → σ

{s ≤ α̂} ∪⊥ C ∪⊥ Co ∪⊥ Cs ; Γ ` caseσ e of {0 ⇒ eo | s ⇒ es} ↑ σ

where α /∈ VI(Γ)

40 Gilles Barthe Benjamin Grégoire Colin Riba

Example 4.7. Let us look at the following example, where V ∈ VT:

? ; v : V, f : Natα → V, y : Natβ ` caseV y of {0 ⇒ v | s ⇒ λz : Nat. f z} ↑?

Since γ ≤ α ; v : V, f : Natα → V, y : Natβ , z : Natγ ` f z ↑ V , we deduce

γ ≤ α, α ≤ γ ; v : V, f : Natα → V, y : Natβ ` λz : Nat. f z ↓ Natα → V

It follows that

γ ≤ α, α ≤ γ, β ≤ α̂ ;
v : V, f : Natα → V, y : Natβ ` caseV y of {0 ⇒ v | s ⇒ λz : Nat. f z} ↑ V

There are two things to note about the constraint γ ≤ α, α ≤ γ, β ≤ α̂. First, it
contains a variable γ that appears nowhere else in the sequent. It is in fact the
inference stage variable that corresponds to the bound variable z. Hence, if the
types recorded under abstractions were annotated by stages, we would have:

γ ≤ α, α ≤ γ, β ≤ α̂ ;
v : V, f : Natα → V, y : Natβ ` caseV y of {0 ⇒ v | s ⇒ λz : Natγ . f z} ↑ V

Second, this constraint implies α = γ, hence the type inference judgment above
can be simplified to

β ≤ bα ; v : V, f : Natα → V, y : Natβ ` caseV y of {0 ⇒ v | s ⇒ λz : Natα. f z} ↑ V

Such notations are very convenient to write type inference judgments. ut

4.3 Checking the correctness of recursive definitions

We now discuss the typing rule of fixpoints. For the sake of simplicity, we assume
that d is an inductive datatype without parameters and that ı /∈ θ. In this case,
the typing rule of fixpoints becomes

(rec)
Γ , f : dı → θ ` e : dbı → θ

Γ ` (letrecd→|θ| f = e) : ds → θ
if ı /∈ Γ , θ

Consider now that rule from the point of view of type inference. If we start from

? ; Γ ` (letrecd→θ f = e) ↑?

then we have to compute a constraint CRec and a type dα → θ such that |θ| = θ
and

CRec ; Γ ` (letrecd→θ f = e) ↑ dα → θ

The constraint CRec must be computed from the constraint C generated by
typechecking the body e of the recursive definition. By analogy with (rec), the
inference rule can be written

C ; Γ , f : dα → θ ` e ↓ dbα → θ

CRec ; Γ ` (letrecd→θ f = e) ↑ dα → θ

A tutorial on type-based termination 41

(var)
∅ ; Γ , x : σ ` x ↑ σ

(abs)
(τ , V) := Annot(τ, VI(Γ)) C ; Γ , x : τ ` e ↑ σ

C ; Γ ` λx : τ. e ↑ τ → σ

(app)
C1 ; Γ ` e ↑ τ → σ C2 ; Γ ` e′ ↓ τ

C1 ∪⊥ C2 ; Γ ` e e′ ↑ σ

(T-abs)
C ; Γ ` e ↑ σ

C ; Γ ` ΛX. e ↑ ΠX. σ
if X 6∈ Γ

(T-app)
C ; Γ ` e ↑ ΠX. σ (τ , V) = Annot(τ, VI(Γ))

C ; Γ ` e τ ↑ σ[X := τ]

(cons)
ck : ΠX. θk → dbı X

∅ ; Γ ` ck ↑ ΠX. θk[ı := α] → dbα X
if α /∈ VI(Γ)

where C(d) = {c1, . . . , cn} for some d

(case)

C ; Γ ` e ↑ ds τ α /∈ VI(Γ) (σ, V) = Annot(σ, VI(Γ) ∪ {α})
ck : ΠX. θk → dbı X Ck ; Γ ` ek ↓ θk[X := τ , ı := α] → σ (1 ≤ k ≤ n)

{s ≤ bα} ∪⊥ C ∪⊥
`S

⊥ Ck

´
; Γ ` caseσ e of {c1 ⇒ e1 | · · · | cn ⇒ en} ↑ σ

where C(d) = {c1, . . . , cn}

(sub)
C ; Γ ` e ↑ τ

C ∪⊥ Lτ v σM ; Γ ` e ↓ σ

Fig. 7. Type inference with constraints

42 Gilles Barthe Benjamin Grégoire Colin Riba

To guarantee correctness, as stated in Prop. 4.6, we want that ρ |= CRec entails

Γρ ` (letrecd→θ f = e) : dρ(α) → θρ

For the above judgment to be derivable, it must be the case (applying inversion)
that the premises of the rule (rec) must hold, and there must exist a substitution
ρ′ such that Γρ′ = Γρ′, ρ′ |= C, ρ′(α) = ı and

Γρ′, f : dı → θρ′ ` e : dbı → θρ′ with ı /∈ Γρ′

We explain how to define CRec by considering two examples of fixpoints
definitions:

fix1 := (letrecNat→Nat f = λx : Nat. o)
fix2 := (letrecNat→Nat f = λx : Nat. (f o))

Note that fix1 o terminates while fix2 o does not. Hence, fix1 must be typable
while fix2 must be rejected by the type inference algorithm. Let us now inspect
the typechecking derivations of the bodies of these two functions.

– For the body of fix1, we have

∅ ; f : Natα → Natβ , x : Natγ ` o ↑ Nat
bδ

∅ ; f : Natα → Natβ ` λx : Nat. o ↑ Natγ → Nat
bδ

Since LNatγ → Nat
bδ v Natbα → NatβM = α̂ ≤ γ, δ̂ ≤ β, it follows that

α̂ ≤ γ, δ̂ ≤ β ; f : Natα → Natβ ` λx : Nat. o ↓ Natbα → Natβ

– For the body of fix2, we have

∅ ; f : Natα → Natβ , x : Natγ ` o ↑ Nat
bδ

δ̂ ≤ α ; f : Natα → Natβ , x : Natγ ` o ↓ Natα

Hence

δ̂ ≤ α ; f : Natα → Natβ , x : Natγ ` f o ↑ Natβ

δ̂ ≤ α ; f : Natα → Natβ ` λx : Nat. (f o) ↑ Natγ → Natβ

It follows that

δ̂ ≤ α, α̂ ≤ γ ; f : Natα → Natβ ` λx : Nat. (f o) ↓ Natbα → Natβ

We arrive at these two derivations

α̂ ≤ γ, δ̂ ≤ β ; f : Natα → Natβ ` λx : Nat. o ↓ Natbα → Natβ

CRec
1 ; ` (letrecNat→Nat f = λx : Nat. o) ↑ Natbα → Natβ

(fix1)

δ̂ ≤ α, α̂ ≤ γ ; f : Natα → Natβ ` λx : Nat. (f o) ↓ Natbα → Natβ

CRec
2 ; ` (letrecNat→Nat f = λx : Nat. (f o)) ↑ Natbα → Natβ

(fix2)

A tutorial on type-based termination 43

where
CRec

1 is computed from C1 =def α̂ ≤ γ, δ̂ ≤ β

CRec
2 is computed from C2 =def δ̂ ≤ α, α̂ ≤ γ

The constraints CRec
1 and CRec

2 must satisfy different properties:

– We want fix1 to be typable. Hence, CRec
1 must be satisfiable, and moreover,

for all substitution ρ such that ρ |= CRec
1 , there must be a substitution ρ′

and a stage variable ı such that ı /∈ codom(ρ), ρ′(α) = ı, ρ′(β) = ρ(β) and
ρ′ |= α̂ ≤ γ, δ̂ ≤ β.

– CRec
2 must be unsatisfiable because fix2 is not typable since it does not ter-

minate. CRec
2 will actually be the false constraint ⊥.

These properties are provided by an algorithm called RecCheck, which we
describe below. To ease the explanations, we introduce some terminology. Recall
that stage expressions s ∈ S are either of the form ı̂n with ı ∈ VS or of the form
∞̂n. Hence, any stage expression s has at most one occurrence of a unique stage
variable ı ∈ VS. We call this stage variable the base stage of s, and write it bsc.
Furthermore, consider a fixpoint (letrecd→θ f = e) such that

C ; Γ , f : dα → θ ` e ↓ dbα → θ with α /∈ Γ , θ (6)

We say that α is the fixpoint inference stage variable of (letrecd→θ f = e).

Example 4.8. The fixpoint stage variable of both fix1 and fix2 is α. ut

Consider an instance of the judgment (6) for substitution ρ. In order to apply
the rule (rec) with that instance as premise, the fixpoint inference stage variable
α must be mapped to a fresh stage variable ı. Moreover, we must have ı /∈ Γρ, θρ.
This imposes that no inference stage variable occurring in Γ , θ can be mapped
to a stage expression with base stage ı. Let V 6= =def VI(Γ , θ).

The algorithm works on a representation of C as a graph whose nodes are
inference stages variables and ∞, and whose edges are integers. Each constraint
in C is of the form ∞ ≤ β̂n, or α̂n1

1 ≤ α̂n2
2 . In the first case, one adds an edge

from β to ∞ labeled with 0, in the second case one adds an edge from α2 to
α1 labeled with n2 − n1. We do not represent edges for constraints of the form
β̂n ≤ β̂n.

Example 4.9. The graphs representing C1 and C2 are depicted in Fig. 8. ut

Before explaining the algorithm, let us make an important remark on the
graph of constraints. It may happen that the graph contains a negative cycle,
i.e. a cycle where the sum of the edges is strictly negative. Such cycles imply
β̂k+1 ≤ β, or equivalently ∞ ≤ β, for the variable β in the cycle. Hence, every
variable in a negative cycle must be mapped to ∞. Therefore, at some stage in
the algorithm, it is necessary to compute negative cycles. This can be done using
Bellman’s algorithm, which runs n2, where n is number of edges of the graph,
hence the number of inference stage variables in C.

The algorithm runs in two phases. The first phase ensures that the fixpoint
inference stage variable α can be mapped to ı, and the second phase ensures
that no variable in V 6= must be mapped to a stage expression with base stage ı.

44 Gilles Barthe Benjamin Grégoire Colin Riba

α
vv
−1

γ

δ gg
−1

β

δ
ww
−1

α
vv
−1

γ

bα ≤ γ, bδ ≤ β bδ ≤ α, bα ≤ γ

C1 C2

Fig. 8. The graphs of the constraints C1 and C2.

First phase: variables that must be mapped to ı. First, note that the
constraint δ̂ ≤ α, α̂ ≤ γ of fix2 cannot be satisfied by a substitution which sends
α to the stage variable ı. Indeed, the constraint δ̂ ≤ α would lead to a stage
inequality of the form ŝ ≤ ı, which is derivable for no stage expression s.

We briefly indicate how to detect this kind of situation. Observe that con-
straints of the form β̂n ≤ α̂m force β to be mapped to a stage expression with
base stage ı. This is the case of the variable δ in the constraint C2. So, we define
Sı, the set of inference stage variable that must be mapped to a stage expression
with base stage ı, as the downward closure of {α}:

α ∈ Sı and β ∈ Sı if β̂n ≤ γ̂m ∈ C with γ ∈ Sı

Example 4.10. For fix1 we have Sı = {α} and for fix2 we have Sı = {α, δ}. ut

Note that if β ∈ Sı is mapped to a s depending on ı, then we must have
ı ≤ s. We represent this by computing a new set of constraints

C1 =def C ∪ {α ≤ β | β ∈ Sı}

Example 4.11. These constraints for fix1 and fix2, denoted respectively C1
1 and

C1
2 , are depicted in Fig. 9. We have C1

1 = C1. On the other hand, the graph of
C1

2 contains a negative cycle which forces α to be mapped to ∞. Hence α cannot
be mapped to ı. ut

Therefore, we now have to check for negative cycles in the graph of C1. For
each such cycle starting from β, we compute the set Vβ≤ of variables greater or
equal to β, remove all inequalities about variables in Vβ≤ and add the constraints
∞ ≤ γ for γ ∈ Vβ≤. Hence, we get a new set of constraints C2 that does not
contain cycles.

Example 4.12. The sets C2
1 and C2

2 for fix1 and fix2 are depicted on Fig. 10. The
negative cycle involving α in C1

2 implies that C2
2 forces α to be mapped to ∞,

which makes impossible to map α to ı. Therefore, we can already discard fix2 at
this point, and put CRec

2 =def ⊥. On the other hand, the constraint C2
1 poses no

problem. ut

A tutorial on type-based termination 45

α
vv
−1

γ

δ gg
−1

β

δ
ww
−1

α66
0

vv
−1

γ

bα ≤ γ, bδ ≤ β bδ ≤ α, bα ≤ γ, α ≤ δ

C1
1 C1

2

Fig. 9. The graphs of the constraints C1
1 and C1

2 .

α
vv
−1

γ

δ gg
−1

β

∞000 OO

0

nn 0

δ γ

α

bα ≤ γ, bδ ≤ β ∞ ≤ δ, ∞ ≤ α, ∞ ≤ γ

C2
1 C2

2

Fig. 10. The graphs of the constraints C2
1 and C2

2 .

Second phase: ensuring that ı 6∈ Γρ, θρ. Since we must have ı /∈ Γρ, θρ,
no inference stage variables occurring in Γ , θ can be mapped by ρ to a stage
expression with base stage ı. Moreover, if β is such a variable and β̂n ≤ δ̂m is
derivable from C2 (i.e. if there is a path from δ to β in the graph of C2), then δ
cannot be mapped to a stage expression with base stage ı. Indeed, s ≤ ı̂p implies
that s is of the form ı̂q. Hence, mapping δ to ı̂p for some p forces to map β to ı̂q

some q. Therefore, we let S¬ı, the set of variables that cannot be mapped to a
stage expression with base stage ı, be the upward closure of V 6=:

V 6= ⊆ S¬ı and δ ∈ S¬ı if β̂n ≤ δ̂m ∈ C2 with β ∈ S¬ı

(recall that V 6= = VI(Γ , θ)).

Example 4.13. For fix1 and fix2 we have S¬ı
1 = S¬ı

2 = {β} = V 6=
1 = V 6=

2 . ut

Now, assume that there is in C2 a path from a variable δ ∈ S¬ı to a variable
β ∈ Sı (hence that β̂n ≤ δ̂m is derivable from C2). Since β must be mapped
to an expression with base stage ı, there are two possibilities for δ: it must be
mapped either to a stage expression with base stage ı or to ∞. But δ cannot be
mapped to a stage expression with base stage ı. It must therefore be mapped to
∞, which is expressed by the constraint ∞ ≤ δ. Now, it may happen that such
new constraints force a variable γ ∈ Sı to be mapped to ∞ (see for instance
Ex. 4.14 below). In this case the algorithm fails, otherwise it succeeds.

46 Gilles Barthe Benjamin Grégoire Colin Riba

C3 = β ≤ bα, bα ≤ β C4 = γ ≤ bα, bα ≤ β
Sı

3 = {α, β} Sı
4 = {α, γ}

V 6=
3 = {γ} V 6=

4 = {γ}

C2
3 = C1

3 = α __

−1

oo
0

1

!!
β C2

4 = C1
4 = γ

~~
1

0

??α __

−1

β

S¬ı
3 = {γ} S¬ı

4 = {α, γ}
Sı≤

3 = {α, β} Sı≤
4 = {α, β, γ}

S¬ı
3 ∩ Sı≤

3 = ∅ S¬ı
4 ∩ Sı≤

4 = {α, γ}

C3
3 = C2

3 = α __

−1

oo
0

1

!!
β C3

4 = γ α __

−1

β

∞))
0 ��

0

S∞3 = ∅ S∞4 = {α, β, γ}
S∞3 ∩ Sı

3 = ∅ S∞4 ∩ Sı
4 = {α, γ}

fix3 fix4

Fig. 11. Runs of RecCheck on fix3 and fix4 of Ex. 4.14.

Formally, we proceed as follows.

1. We compute the upward closed set Sı≤ of stage variables that must be mapped
to ∞ or to a stage expression with base stage ı:

Sı ⊆ Sı≤ and δ ∈ Sı≤ if β̂n ≤ δ̂m ∈ C2 with β ∈ Sı≤

For fix1, we have Sı≤
1 = {α, γ}.

2. Proceeding as for computing C2, we set all variables β ∈ S¬ı ∩ Sı≤ to ∞.
This generates a new set of constraints C3. For fix1, we have S¬ı

1 ∩ Sı≤
1 = ∅,

hence C3
1 = C2

1 .
3. We compute the upward closed set S∞ of stage variables that must be mapped

to ∞:

β ∈ S∞ if ∞ ≤ β̂k ∈ C3 or
(
δ̂n ≤ β̂m ∈ C3 with δ ∈ S∞

)
Now, if Sı ∩ S∞ = ∅, then the algorithm succeeds and we put CRec := C3,
otherwise it fails and we put CRec := ⊥.

This second phase succeeds for fix1. On the other hand, the failure of the
algorithm for fix2 was already known at the end of the first phase. In Ex. 4.14
below, we give an expression for which the algorithm succeeds on the first phase
and fails on the second.

In the case of fix1, the algorithm succeeds and we have CRec
1 = C2

1 = C1
1 = C1.

We arrive at the following inference derivation:

α̂ ≤ γ, δ̂ ≤ β ; f : Natα → Natβ ` λx : Nat. o ↓ Natbα → Natβ

α̂ ≤ γ, δ̂ ≤ β ; ` (letrecNat→Nat f = λx : Nat. o) ↑ Natα → Natβ

A tutorial on type-based termination 47

We check that the constraint CRec
1 allows applying the rule (rec):

(rec)
f : Natı → Natr ` λx : Nat. o : Natbı → Natr

` (letrecNat→Nat f = λx : Nat. o) : Nats → Natr
if ı /∈ r

Let ρ such that ρ̂(α) ≤ ρ(γ) and ρ̂(δ) ≤ ρ(β). Moreover, let s =def ρ(α) and
r =def ρ(β). Let ı /∈ ρ(β), ρ(δ) and define ρ′ such that

ρ′(α) = ı ρ′(γ) = ı̂ ρ′(β) = ρ(β) ρ′(δ) = ρ(δ)

We thus have ρ̂′(α) ≤ ρ′(γ) and ρ̂′(δ) ≤ ρ′(β). It follows that

f : Natı → Natr ` λx : Nat. o : Natbı → Natr

Since ı /∈ r, by (rec) deduce that

` (letrecNat→Nat f = λx : Nat. o) : Nats → Natr

hence ` (letrecNat→Nat f = λx : Nat. o) : Natρ(α) → Natρ(β).

Example 4.14 (The second phase of RecCheck). Consider the expressions:

fix3 := λv : V. λy : Nat. (letrec f = λx : Nat.
caseV x of {o ⇒ v | s ⇒ λz : Nat. f z})

fix4 := λv : V. λy : Nat. (letrec f = λx : Nat.
caseV y of {o ⇒ v | s ⇒ λz : Nat. f z})

Forgetting stages, fix3 and fix4 would have type V → Nat → Nat → V , hence

v : V ` fix3 v (s o) o : V and v : V ` fix4 v (s o) o : V

The only difference between fix3 and fix4 is the variable subject to the case-
analysis: in fix3, this is the variable x, bound inside the fixpoint, while in fix4,
this is the variable y, bound outside the fixpoint. This leads to very different be-
haviors: fix3 v (s o) o is strongly normalizing and reduces to v, whereas fix4 v (s o) o
has no normal form. Indeed, we have fix4 v (s o) o →∗ fix′4o and

fix′4 o →∗ caseV (s o) of {o ⇒ v | s ⇒ λz : Nat. fix′4 z} → fix′4 o → . . .

where fix′4 := (letrec f = λx : Nat. caseV (s o) of {o ⇒ v | s ⇒ λz : Nat. f z}).
Let us have a look at the constraints generated during the typechecking of fix3

and fix4. Reasoning as in Ex. 4.7 (and doing the same simplifications), we obtain
the following judgment for fix3:

β ≤ α̂ ; v : V, y : Natγ , f : Natα → V, x : Natβ `
caseV x of {0 ⇒ v | s ⇒ λz : Natα. f z} ↑ V

48 Gilles Barthe Benjamin Grégoire Colin Riba

and for fix4:

γ ≤ α̂ ; v : V, y : Natγ , f : Natα → V, x : Natβ `
caseV y of {0 ⇒ v | s ⇒ λz : Natα. f z} ↑ V

This leads to the following premises for the inference rule (rec): for fix3, we have

β ≤ α̂, α̂ ≤ β ; v : V, y : Natγ , f : Natα → V `

λx : Natβ . caseV x of {0 ⇒ v | s ⇒ λz : Natα. f z} ↓ Natbα → V

and for fix4, we have

γ ≤ α̂, α̂ ≤ β ; v : V, y : Natγ , f : Natα → V `

λx : Natβ . caseV y of {0 ⇒ v | s ⇒ λz : Natα. f z} ↓ Natbα → V

Let C3 =def β ≤ α̂, α̂ ≤ β and C4 =def γ ≤ α̂, α̂ ≤ β. In both cases, when
checking the body of the recursive definition, α is the fixpoint stage variable (i.e.
it must be mapped to ı), while γ cannot be mapped to a stage expression with
base stage ı. The variable β must normally not appear as an annotation of Nat
under the λ-abstraction; we write it just for convenience. We have V 6=

3 = V 6=
4 =

{γ}, hence there is a priori no restriction on β. The constraint C4 impose γ to
be mapped to ı, and the algorithm will fail on fix4 for this reason. We display
on Fig.11 the runs of the algorithm on fix3 and fix4. The algorithm succeeds on
fix3. On fix4, the first phase succeeds but the second fails. ut

4.4 Type inference in System F̂
We now turn to the formal and precise description of the type inference algorithm
for F .̂ Our presentation follows [6], where more details can be found.

System F̂?. When we discussed the typing rule of fixpoint in the last section
(Sect. 4.3), we silenced one issue concerning the types appearing as tags in terms.
Consider the typing rule (rec)

(rec)
Γ , f : dıτ → θ ` e : dbıτ → θ[ı := ı̂] ı pos θ

Γ ` (letrecd|τ |→|θ| f = e) : dsτ → θ[ı := s]
if ı /∈ Γ , τ

In the general case, the stage variable may appear in θ. But when inferring the
type of a fixpoint ? ; Γ ` (letrecd τ→θ f = e) ↑? we have a priori no indication
on how the θ should be decorated. Therefore, type inference is performed in
a system F̂? such that the type appearing in fixpoints convey an indication,
symbolized by the tag ?, of the positions at which the fixpoint stage variable
must appear. Such types are called position types and are given by the abstract
syntax:

T? ::= VT | T? → T? | ΠVT. T? | D? T? | D T?

A tutorial on type-based termination 49

where in the clause for datatypes, it is assumed that the length of the vector T?

is exactly the arity of the datatype. We let |.| : T? → T be the obvious erasure
map from T? to T.

The terms of F̂? are those of F ,̂ excepted that fixpoints are now of the form
(letrecτ? f = e) where τ? ∈ T? is a position type. The typing rules of F̂? are
those of F ,̂ excepted that the typing rule (rec) of fixpoints is now

Γ , f : dıτ → θ ` e : dbıτ → θ[ı := ı̂]

Γ ` (letrecτ? f = e) : dsτ → θ[ı := s]
if

{
ı /∈ Γ , τ and ı pos θ

τ? is ı-compatible with dıτ → θ

where we say that a position type σ? is ı-compatible with a sized type σ if σ?

can be obtained from σ by replacing all stage annotations containing ı by ?
and by erasing all other size annotations. For instance, Natı → Natj → Natbı is
ı-compatible with Nat? → Nat → Nat?, while Natı → Natı → Natbı is not.

Remark 4.15 (The shape of τ?). Note that the conjunction of the conditions
ı /∈ τ and τ? ı-compatible with dıτ → θ implies that τ? is of the form d?τ → θ?,
where τ are not position types (i.e. they convey no tag ?).

The annotation of a position type τ? is performed by a function Annot?,
which is similar to Annot but takes as input a position type instead of a bare
type. Intuitively, if V is a set of inference stage variables and σ? ∈ T? is a position
type, then Annot?(σ?, V) returns a tuple (σ, V ′, V ?) such that |σ?| = |σ| and:

– as with Annot, each occurrence of an inductive datatype (tagged or not) in
σ? is annotated with a distinct inference stage variable α /∈ V (so that α
occurs at most once in σ?), and V ′ = V ∪ VI(σ),

– V ? is the set of inference stages variables occurring in σ at positions that
where tagged in σ.

E.g., Annot?(Nat? → Nat, {α1, α2}) = (Natα3 → Natα4 , {α1, α2, α3, α4}, {α3}).
Therefore, the inference rule for fixpoints will have the following shape:

C ; Γ , f : dατ → θ ` e ↓ dbατ → θ (dατ → θ, V ′, V ?) = Annot?(d?τ → θ?, V)

CRec ; Γ ` (letrecd?τ→θ? f = e) ↑ dατ → θ

where CRec is computed by RecCheck and V = VI(Γ). Before giving the formal
definition of RecCheck, let us stress some important points. Recall that there
must be a fresh stage variable ı such that the variables β ∈ V ? must all be
mapped to a stage expression of base stage ı, and moreover the fixpoint variable
α, which belongs to V ?, must be mapped to ı. Note that V ? \ {α} contains
exactly the set of inference variables occurring in θ that must be mapped to
a stage expression with base stage ı. Therefore, the variables β ∈ V \ V ? are
annotations of untagged datatypes occurrences in τ?, and cannot be mapped to
stage expressions depending on ı. Moreover the typing rule of fixpoint imposes
that for all substitution ρ, all occurrences of ı in θρ must be positive. It follows
that all occurrences of β ∈ V ? \ {α} in θ must be positive. The type inference
algorithm checks this by encoding positivity tests in constraints.

50 Gilles Barthe Benjamin Grégoire Colin Riba

Lemma 4.16. ı pos τ if and only if τ v τ [ı := ı̂].

Note that by definition of Annot?, the fixpoint variable α does not occur in
θ. Hence the positivity test for the occurrences of variables β ∈ V ? in θ can be
coded by the constraint Lθ v θ̂M where θ̂ is defined as θ̂ =def θ[β := β̂]β∈V ? .
Therefore, in addition to the constraint CRec computed by RecCheck, the type
inference rule of fixpoints produces a constraint Lθ v θ̂M:

C ; Γ , f : dατ → θ ` e ↓ dbατ → θ (dατ → θ, V ′, V ?) = Annot?(d?τ → θ?, V)

CRec ∪⊥ Lθ v bθM ; Γ ` (letrecd?τ→θ? f = e) ↑ dατ → θ

where V = VI(Γ).

The RecCheck algorithm. We now turn to the computation of RecCheck. This
algorithm is at the core of guaranteeing termination. As we have in Sect.4.3,
it takes as input the set of constraints that has been inferred for the body of
the recursive definition, and either returns an error if the definition is unsound
w.r.t. the type system, or the set of constraints for the recursive definition, if the
definition is sound w.r.t. the type system. The formal definition of the function
is given below. Let us look at its signature. Starting from (dατ → θ, V, V ?) :=
Annot?(d?τ → θ?,VI(Γ)), we have

– an inference fixpoint variable α which must be mapped to a fresh stage
variable ı,

– a set of inference stage variables V ?, containing α, which must be mapped
to a stage expression with base stage ı,

– and a set V \ V ? which cannot be mapped to stage expressions with base
stage ı.

This corresponds to the first three arguments of RecCheck. The last one is the
constraint C generated by typechecking the body of the recursive definition.
Formally, the function RecCheck takes as input a tuple (α, V ?, V 6=, C), where

– α is the fixpoint inference stage variable of the recursive definition ; it must
be mapped to a fresh base stage ı;

– V ? is a set of inference stage variables that must be mapped to a stage
expression with the same base stage as α. The set V ? is determined by the
position types in the tag of the recursive definition. In particular, we have
α ∈ V ?;

– V 6= is a set of inference stage variables that must be mapped to a stage
expression with a base stage different from ı;

– C is the constraint inferred by typechecking the body of the recursive defi-
nition.

The algorithm RecCheck(α, V ?, V 6=, C) returns ⊥ or a set of constraints subject
to conditions that will be presented later.

We now turn to the computation of RecCheck(α, V ?, V 6=, C). Assuming that
we intend to map α to a fresh stage variable ı, the computation proceeds as
follows:

A tutorial on type-based termination 51

1. it computes the downwards closed set Sı of stage variables that must be
mapped to a stage expression with base stage ı. The rules are V ? ⊆ Sı, and
if α1 ∈ Sı and α̂n2

2 ≤ α̂n1
1 ∈ C then α2 ∈ Sı;

2. the algorithm must enforce that α is the smallest variable in Sı. It does so
by adding to C the constraints α ≤ Sı. Let C1 = C ∪ α ≤ Sı;

3. the algorithm checks for negative cycles in the graph representation of C1.
Each time it finds such a cycle starting from β, the algorithm computes the set
Vwβ of variables greater or equal to β, removes all inequalities about variables
in Vwβ and adds the constraints ∞ ≤ Vwβ . At the end of this step there are
no more negative cycles in the graph, and we get a new set of constraints C2;

4. the algorithm computes the upwards closed set Sı≤ of stage variables that
must be mapped to ∞ or to a stage expression with base stage ı. The rules
are Sı ⊆ Sı≤ and if α1 ∈ Sı≤ and α̂n1

1 ≤ α̂n2
2 ∈ C2 then α2 ∈ Sı≤;

5. the algorithm computes the upwards closed set S¬ı of stage variables that
cannot be mapped to a stage expression with base stage ı. The rules are
V 6= ⊆ S¬ı and if α1 ∈ S¬ı and α̂n1

1 ≤ α̂n2
2 ∈ C2 then α2 is in S¬ı;

6. the algorithm sets all variables β ∈ S¬ı ∩Sı≤ to ∞ (as in Step 3). At the end
of this step we get a new set of constraints C3;

7. the algorithm computes the upwards closed set S∞ of stage variables that
must be mapped to ∞. If ∞ ≤ β̂k ∈ C3 then β is in S∞, and if α1 ∈ S∞ and
α̂n1

1 ≤ α̂n2
2 ∈ C3 then α2 is in S∞.

8. if S∞ ∩ Sı = ∅ the algorithm returns the new set of constraints, else it fails.

We have already explained this algorithm in Sect. 4.3. Note that at the end
of step 3, the algorithm can already stop and fail if C2 ` ∞ ≤ α.

The inference algorithm. We now turn to the formal definition of the infer-
ence algorithm. Contrary to what we have done up to now, it is not presented by
inference rules. The cause is that we want to have a very precise control on the
fresh variables introduced during type inference. The defect of the presentation
by inference rules can be seen on the inference rule (app) for the application:

(app)
C1 ; Γ ` e ↑ τ → σ C2 ; Γ ` e′ ↓ τ

C1 ∪⊥ C2 ; Γ ` e e′ ↑ σ

Assume that the derivation of C1 ; Γ ` e ↑ τ → σ has generated fresh inference
variables α occurring in C1 but not in Γ . If we need fresh inference variables
in the derivation of C2 ; Γ ` e′ ↓ τ , then we must ensure that these variables
are not taken among α. Hence, we have to transmit the current set of non-fresh
inference variable along the derivations of type inference. The easiest to do this
is to use two functions Infer and Check such that

– Infer takes as input a tuple (V, Γ , e), where V is a set of already used
inference variables such that VI(Γ) ⊆ V . It returns a tuple (V ′, C, τ) such
that C ; Γ ` e ↑ τ and VI(C, τ) ∪ V ⊆ V ′.

52 Gilles Barthe Benjamin Grégoire Colin Riba

Check(V, Γ , e, τ) = (Ve, (Ce ∪⊥ Lτe v τM))
where (Ve, Ce, τe) := Infer(Γ , e)

Infer(V, Γ , x) =
`
V, ∅, Γ (x)

´
Infer(V, Γ , λx : τ1. e) = (Ve, Ce, τ1 → τ2)

where (V1, τ1) := Annot(V, τ1)

(Ve, Ce, τ2) := Infer(V1, Γ , x : τ1, e)

Infer(V, Γ , ΛA. e) = (Ve, Ce, ΠA. τ)

where (Ve, Ce, τ) := Infer(V, Γ , e)

if A does not occur in Γ

Infer(V, Γ , e1 e2) = (V2, (C1 ∪⊥ C2), τ)

where (V1, C1, τ2 → τ) := Infer(V, Γ , e1)

(V2, C2) := Check(V1, Γ , e2, τ2)

Infer(V, Γ , e τ) = (Ve, Ce, τe[A := τ])
where (V1, τ) := Annot(V, τ)

(Ve, Ce, ΠA. τe) := Infer(V1, Γ , e)

Infer(V, Γ , c) = ((V ∪ {α}), ∅, Type(c, α))
with α 6∈ V

Infer(V, Γ , caseθ e of {c ⇒ e}) =
`
Vn, ({s ≤ bα} ∪⊥ Ce ∪⊥

Sn
i=1 Ci), θ

´
where α 6∈ V

(Vθ, θ) := Annot(V ∪ {α}, θ)

(V0, Ce, d
sτ) := Infer(Vθ, Γ , e)

(Vi, Ci) := Check(Vi−1, Γ , ei, Inst(ci, α, τ , θ))
if C(d) = {c1, . . . , cn}

Infer(V, Γ , (letrecd?τ→θ f = e)) =
`
Ve, Cf , dατ → θ

´
where (V1, V

?, dατ → θ) := Annot?(V, d?τ → θ)bθ := θ[αi := bαi]αi∈V ?

(Ve, Ce) := Check(V1, Γ , f : dατ → θ, e, dbατ → bθ)

Cf := RecCheck(α, V ?, V1\V ?, Ce ∪⊥ Lθ v bθM)

Fig. 12. Inference algorithm

– Check takes as input a tuple (V, Γ , e), where V is a set of already used
inference variables such that VI(Γ , τ) ⊆ V . It returns a tuple (V ′, C) such
that C ; Γ ` e ↓ τ and VI(C, τ) ∪ V ⊆ V ′.

For instance, the inference rule for the application now becomes:

Infer(V, Γ , e1 e2) = (V2, C1 ∪ C2, τ)
where (V1, C1, τ2 → τ) := Infer(V, Γ , e1)

(V2, C2) := Check(V1, Γ , e2, τ2)

Hence, if the derivation of C1 ; Γ ` e ↑ τ → σ uses stage variables in V1, then
no fresh variable used in the derivation of C2 ; Γ ` e′ ↓ τ belongs to V1. The
whole inference algorithm is presented in Fig. 12.

A tutorial on type-based termination 53

We end the description of the type inference algorithm by the following ob-
servation about constraints.

Remark 4.17. The principal type returned by the inference algorithm may not
be represented in its most compact form: for example, the inference algorithm
will infer for the usual definition of addition the unconstrained type Natı →
Natj → Nat∞ whereas it would be more readable to use the equivalent type
Nat∞ → Nat∞ → Nat∞. Formally, we can define a notion of equivalence between
pairs of types and constraint: we say (C, τ) � (C ′, τ ′) iff for every ρ s.t. ρ |= C
there exists ρ′ s.t. ρ′ |= C ′ and ρ′τ ′ v ρτ . Then, we define (C, τ) ' (C ′, τ ′) iff
(C, τ) � (C ′, τ ′) and (C ′, τ ′) � (C, τ). Now, we can define a set of heuristics that
transform a pair (C, τ) into simpler ones. For example, one can replace by ∞
all size variables that only occur in negative positions in the type component of
such pairs. One can also perform simplifications in the constraint, in the spirit of
the rules that are used in the algorithm that checks the correctness of recursive
definitions. We do not formalize the notion of simplification, but it is possible to
define a notion of canonical form and provide a set of rules that transform every
such pair to an equivalent, canonical one.

The soundness and completeness of the algorithm, which is stated in Proposi-
tion 4.1, is proved by induction on derivations, and relies on a proof that the
algorithm RecCheck is itself sound and complete.

5 Further reading

The material presented in this paper is based on the research papers [5,6]; the
first paper introduces λ̂ , a simply typed fragment of the F ,̂ and shows that
it enjoys strong normalization, whereas the second paper introduces F̂ and
presents the inference algorithm.

Type-based termination has its origins in Mendler’s formulation of recursion
in the style of fixpoints [14]. Mendler’s ideas were further developed in a series of
works, including [7,19], and adapted to reactive programming by Pareto, Hughes,
and Sabry [13], and to type theory by Giménez [10]. Abel [2] and Barthe et
al provide a more detailed account of related work in the area of type-based
termination. Coquand and Dybjer [8] provide an historical account of inductive
definitions in type theory, whereas Aczel [4] provides an introduction to inductive
definitions in a set-theoretical setting.

References

1. A. Abel. Termination Checking with Types. RAIRO – Theoretical Informatics
and Applications, 38(4):277–319, 2004. Special Issue (FICS’03).

2. A. Abel. Type-Based Termination. A Polymorphic Lambda-Calculus with Sized
Higher-Order Types. PhD thesis, LMU University, Munich, 2006.

3. A. Abel. Semi-Continuous Sized Types and Termination. LMCS, 4(2:3), 2008.

54 Gilles Barthe Benjamin Grégoire Colin Riba

4. P. Aczel. An Introduction to Inductive Definitions. In J. Barwise, editor, Hand-
book of mathematical logic, volume 90 of Studies in Logic and the Foundations of
Mathematics, pages 739–782. North-Holland, 1977.

5. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-Based Ter-
mination of Recursive Definitions. Mathematical Structures in Computer Science,
14(1):97–141, 2004.

6. G. Barthe, B. Grégoire, and F. Pastawski. Practical Inference for Type-Based
Termination in a Polymorphic Setting. In Proceedings of TLCA’05, pages 71–85,
2005.

7. W.-N. Chin and S.-C. Khoo. Calculating Sized Types. Higher-Order and Symbolic
Computation, 14(2–3):261–300, 2001.

8. T. Coquand and P. Dybjer. Inductive Definitions and Type Theory: an Introduc-
tion (Preliminary Version). In P.S. Thiagarajan, editor, Proceedings of FSTTCS’94,
volume 880 of LNCS, pages 60–76. Springer, 1994.

9. J.H. Gallier. What’s So Special About Kruskal’s Theorem and the Ordinal Γ0?
A Survey of Some Results in Proof Theory. Annals of Pure and Applied Logic,
53(3):199–260, 1991.

10. E Giménez. Structural Recursive Definitions in Type Theory. In Proceedings of
ICALP’98, volume 1443 of LNCS, pages 397–408. Springer, 1998.

11. J.-Y. Girard. Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. PhD thesis, Université Paris 7, 1972.

12. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

13. J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems
Using Sized Types. In Proceedings of POPL’96, pages 410–423. ACM, 1996.

14. N. P. Mendler. Recursive Types and Type Constraints in Second Order Lambda-
Calculus. In Proceedings of LiCS’87, pages 30–36. IEEE Computer Society, 1987.

15. M. Parigot. On the Representation of Data in Lambda-Calculus. In Proceedings
of CSL’89, volume 440 of LNCS, pages 309–321, 1989.

16. Z. Sp lawski and P. Urzyczyn. Type Fixpoints: Iteration vs. Recursion. In Proceed-
ings of ICFP’99, pages 102–113. ACM, 1999.

17. M. Steffen. Polarized Higher-order Subtyping. PhD thesis, Department of Com-
puter Science, University of Erlangen, 1997.

18. W. W. Tait. A Realizability Interpretation of the Theory of Species. In R. Parikh,
editor, Logic Colloquium, volume 453 of LNCS, pages 240–251, 1975.

19. H. Xi. Dependent Types for Program Termination Verification. Higher-Order and
Symbolic Computation, 15(1):91–131, 2002.

Table of Contents

A tutorial on type-based termination . 1
Gilles Barthe Benjamin Grégoire Colin Riba

1 Introduction . 1
2 Computations in polymorphic type systems . 3

2.1 System F . 4
2.2 A polymorphic calculus with datatypes and general recursion . . . 7
2.3 Inductive datatypes . 15
2.4 Guarded reduction for strong normalization 16
2.5 Syntactic termination criteria . 17

3 The system F̂ of type-based termination . 18
3.1 Semantical ideas for a type-based termination criterion 19
3.2 Formal definition . 20
3.3 Some important properties . 29
3.4 A reducibility interpretation . 30

4 Type inference . 33
4.1 Preliminaries: Type inference in system F . 35
4.2 Adding sized inductive datatypes . 36
4.3 Checking the correctness of recursive definitions 40
4.4 Type inference in System F̂ . 48

5 Further reading . 53

	A tutorial on type-based termination
	Gilles Barthe Benjamin Grégoire Colin Riba
	Introduction
	Computations in polymorphic type systems
	System F
	A polymorphic calculus with datatypes and general recursion
	Inductive datatypes
	Guarded reduction for strong normalization
	Syntactic termination criteria

	The system F "0362 of type-based termination
	Semantical ideas for a type-based termination criterion
	Formal definition
	Some important properties
	A reducibility interpretation

	Type inference
	Preliminaries: Type inference in system F
	Adding sized inductive datatypes
	Checking the correctness of recursive definitions
	Type inference in System F "0362

	Further reading

