
On the Values of Reducibility Candidates

Colin Riba

Laboratoire de l’Informatique du Parallélisme?

ENS Lyon – Université de Lyon
colin.riba@ens-lyon.fr

http://perso.ens-lyon.fr/colin.riba/

Abstract. The straightforward elimination of union types is known to
break subject reduction, and for some extensions of the lambda-calculus,
to break strong normalization as well. Similarly, the straightforward elim-
ination of implicit existential types breaks subject reduction.
We propose elimination rules for union types and implicit existential
quantification which use a form call-by-value issued from Girard’s re-
ducibility candidates. We show that these rules remedy the above men-
tioned difficulties, for strong normalization and, for the existential quan-
tification, for subject reduction as well.
Moreover, for extensions of the lambda-calculus based on intuitionistic
logic, we show that the obtained existential quantification is equivalent to
its usual impredicative encoding w.r.t. provability in realizability models
built from reducibility candidates and biorthogonals.

1 Introduction

Although useful in some type systems [2, 12], implicit existential types can be
problematic because of their elimination rule. Some of these problems seem re-
lated to similar issues with union types.

The straightforward elimination of union types is known to break subject
reduction [1], and for some extensions of the λ-calculus, to break strong normal-
ization as well [14]. The counter example for subject reduction given in [1] has
been adapted to implicit existential types in [18]. Concerning strong normaliza-
tion, the difficulties are related to type interpretations in reducibility. Usually,
types are interpreted by closure operators. Union types and implicit existential
types are both interpreted by the closure of the union. When no further as-
sumption is made, the validity of their elimination rules follows from the closure
under unions of the interpretations (i.e. when closure preserves unions). But re-
sults of [14] on failures of strong normalization with elimination of union types
show that some rewrite systems are not compatible with type interpretations
which are closed under unions.

These problems with elimination are caused by possibly bad cohabitations
between the rules of elimination and the reductions of some calculi. This suggests
? UMR 5668 CNRS ENS-Lyon UCBL INRIA, 46 allée d’Italie, 69364 Lyon Cedex 7,

France

http://perso.ens-lyon.fr/colin.riba/

2 Colin Riba

either to adapt the elimination rules to the calculus, or to adapt the calculus
to the elimination rules. In call-by-value settings, the first solution is studied
in [6, 19] for systems with union and implicit existential quantification. Both
works propose elimination rules restricted to call-by-value evaluation contexts.
The second solution is studied in [8] for a call-by-value λ-calculus. On a related
subject, a reducibility interpretation of Moggi’s computational calculus based on
a combination of reducibility candidates and biorthogonals is given in [11].

In this paper, working on rewriting-based extensions of the λ-calculus, we pro-
pose to eliminate union and implicit existential types by a (let x = t in c) which
is reduced according to a form call-by-value issued from Girard’s reducibility
candidates [7]. In contrast with [8, 6, 19], this does not force the whole calculus
to be call-by-value. We build on [15, 16], where a general notion of Girard’s
candidates is proposed. This framework assumes only a rewrite relation and a
set of contexts, called elimination contexts, subject to some axioms. The basic
ingredient is an interaction property between terms and elimination contexts.
Terms which interact with elimination contexts are called values since they are
observable. They are the values that we use in the reduction of the let. Our
notion of call-by-value is not the usual one (considered for instance in [8]) since
in our case variables are not values. From a theoretical point of view, this allows
to define the reduction of (let x = t in c) by a rewrite relation. This would have
been impossible if variables were values.

We present the basic tools in Sect. 2. The axiomatization of reducibility can-
didates is presented in Sect. 3. In Sect. 4, we show how to extend modularly
our framework with the let and prove that the axioms for reducibility are pre-
served. Section 5 presents three applications. First, strong normalization with
union types and possibly non-deterministic simple rewriting in Sect. 5.1. Second,
strong normalization and subject reduction with existential, product and sum
types in Sect. 5.2. Third, concerning extensions of the λ-calculus based on intu-
itionistic logic, we show in Sect. 5.3 that the obtained existential quantification is
equivalent to the usual impredicative encoding w.r.t. provability in realizability
models built from reducibility candidates and biorthogonals.

A version of this paper with full proofs is available from the webpage of the
author.

2 Preliminaries

Terms. A signature Σ is a family of sets (Σn)n∈N such that Σn contains algebraic
symbols of arity n. We consider λ-terms with uncurryied symbols f in a signature
Σ and variables x ∈ X:

t, u ∈ Λ(Σ) ::= x | λx.t | t u | f(t1, . . . , tn) ,

where f ∈ Σn. Let Λ be the set of pure λ-terms Λ(∅). A substitution is a function
σ : X→ Λ(Σ) of finite domain. The capture-avoiding application of σ to a term
t is written tσ or t[σ(x1)/x1, . . . , σ(xn)/xn] if Dom(σ) = {x1, . . . , xn}. We let
σ[t/x] be the substitution which maps x to t and is equal to σ on Dom(σ) \ {x}.

On the Values of Reducibility Candidates 3

Reductions. A rewrite relation is a binary relation →R ⊆ (Λ(Σ) \ X)×Λ(Σ)
which is closed under contexts and substitutions. Write →RS for →R ∪ →S and
let (t)R =def {v | t→R v}. Define the product extension of→R as (t1, . . . , tn)→R
(u1, . . . , un) when there is k ∈ {1, . . . , n} such that tk →R uk and ti = ui for all
i 6= k. We denote by SNR the set of strongly normalizing terms for →R, which is
the smallest set such that ∀t. (∀u. t→R u =⇒ u ∈ SNR) ⇒ t ∈ SNR. Let →β
be the smallest rewrite relation on Λ(Σ) such that (λx.t)u→β t[u/x].

The Polymorphic λ-Calculus λ∀. Our core language is the Curry-style poly-
morphic λ-calculus λ∀. Its types are the formulas of second-order minimal logic,
with variables X ∈ XT:

T,U ∈ T∀ ::= X ∈ XT | U⇒ T | ∀X.T .

Its typing rules are the following:

(Ax)
Γ, x : T ` x : T

(⇒I)
Γ, x : U ` t : T

Γ ` λx.t : U⇒ T
(⇒E)

Γ ` t : U⇒ T Γ ` u : U

Γ ` tu : T

(∀ I)
Γ ` t : T

Γ ` t : ∀X.T
(X /∈ Γ) (∀E)

Γ ` t : ∀X.T
Γ ` t : T [U/X]

Types without ∀X.T are called simple types, denoted by T. The simply typed
λ-calculus λ is λ∀ restricted to T (hence without the rules (∀ I) and (∀E)).

Implicit Existential Types. We add to λ∀ implicit existential types. Let T∀∃
be the extension of T∀ with the second-order existential quantification ∃X.T . The
usual implicit rules for ∃X.T are

(∃ I)
Γ ` t : T [U/X]

Γ ` t : ∃X.T
(∃E)

Γ ` t : ∃X.T Γ, x : T ` c : C

Γ ` c[t/x] : C
X /∈ Γ, C

As for universal quantification, they are not reflected at the term level by corre-
sponding constructors and eliminators. The rule (∃E) does not satisfy subject
reduction [18].

Example 2.1 ([18]). Let I = λx.x, u1 = z(Ixy)(Ixy), u2 = z(xy)(Ixy) and let Γ
be the context x : Y ⇒ ∃X.X ⇒ X, y : Y, z : ∀X.(X ⇒ X) ⇒ (X ⇒ X) ⇒ Z. Using
(∃E) we have Γ ` u1 : Z. But u1 →β u2 and u2 is not of type Z in Γ .

Moreover, (∃E) causes difficulties with strong normalization. To explain them,
we introduce some basic notions on reducibility.

Reducibility. Let →R be a rewrite relation on Λ(Σ). In strong normalization
proofs based on reducibility, types T are interpreted by sets of strongly normaliz-
ing terms JTK. Strong normalization of typable terms follows from the adequacy
of the interpretation: typable terms must belong to the interpretation of their

4 Colin Riba

type. However, not every type interpretation is adequate. Usually, an adequate
interpretation can be described by a closure operator on P(SNR), i.e. by a func-
tion Red() : P(SNR) → P(SNR) which is idempotent (Red(Red(A)) = Red(A)),
extensive (A ⊆ Red(A)) and monotone (A ⊆ B⇒ Red(A) ⊆ Red(B)). It is well-
known that the set of closed elements Red =def {Red(A) | A ⊆ SNR} is a complete
lattice whose g.l.b.’s are given by intersections. We say that Red is a reducibility
family if X ⊆ A for all A ∈ Red . There are essentially three kinds of reducibil-
ity families: Tait’s saturated sets [17], Girard’s reducibility candidates [7] and
biorthogonals [13]. In this paper we focus on the last two.

Assume that Red is closed under the function space ⇒ , which is defined
as A ⇒ B =def {t | ∀u. u ∈ A =⇒ t u ∈ B} where A,B ⊆ Λ(Σ). Given an
assignment ρ : XT → Red , the interpretation JTKRed

ρ ∈ Red of polymorphic types
T ∈ T∀ is inductively defined as JXKRed

ρ =def ρ(X),

JU⇒ TKRed
ρ =def JUKRed

ρ ⇒ JTKRed
ρ and J∀X.TKRed

ρ =def

⋂
C∈Red

JTKRed
ρ[C/X] .

We say that J KRed is adequate if (Γ ` t : T and (ρ, σ) |=Red Γ) implies tσ ∈ JTKRed
ρ ,

where (ρ, σ) |=Red Γ if σ(x) ∈ JΓ(x)KRed
ρ for all x ∈ Dom(Γ). If J KRed is adequate

then Γ ` t : T implies t ∈ SNR.

Adequacy and Existential Quantification. Adequacy w.r.t. the rules (∀ I)
and (∀E) is ensured by the definition of J∀X.TKRed

ρ . Dually, one might expect
adequacy w.r.t. (∃ I) and (∃E) for the extension of J KRed

ρ to T∀∃ defined as

J∃X.TKRed
ρ =def Red

(⋃
C∈RedJTKRed

ρ[C/X]

)
.

Since JTKRed
ρ[C/X] ⊆ Red(

⋃
C∈RedJTKRed

ρ[R/X]), every reducibility family validates the
rule (∃ I). This is less clear for (∃E). We only know that it is validated by
reducibility families which are closed under unions, i.e. such that Red(

⋃
A) =⋃

A for all A ⊆ Red . But closure under unions is not possible for all rewrite
relations→R. This is related to strong normalization problems with union types.

Union Types. Let Tut be the extension of simple types with intersection types
T u U and union types T t U. Tut is equipped with a binary relation v such
that (Tut,v) is a preorder with all finite l.u.b.’s and g.l.b.’s and satisfying usual
additional axioms for the arrow ⇒ (see Sect. 5.1). The typing rules are those
of λ extended with (Sub) and (u I) (see Sect. 5.1). Intersections and unions are
interpreted in Red similarly as quantifications: JT uUKRed

ρ =def JTKRed
ρ ∩ JUKRed

ρ

and JT tUKRed
ρ =def Red(JTKRed

ρ ∪ JUKRed
ρ). As with (∃E), if Red is closed under

unions, then J KRed
ρ is adequate for the elimination of union:

(tE)
Γ ` t : T1 t T2 Γ, x : T1 ` c : C Γ, x : T2 ` c : C

Γ ` c[t/x] : C

As (∃E), the rule (tE) does not satisfy subject reduction [1, 18].

On the Values of Reducibility Candidates 5

Problems with Strong Normalization. There are extensions of β-reduction
with which the rule (tE) allows to type non-strongly normalizing terms. We
consider simple rewrite systems R, that are finite sets of rewrite rules of the
form f(x1, . . . , xn) 7→R r, where f ∈ Σn, r ∈ Λ(Σ) and x1, . . . , xn are distinct
variables. Algebraic symbols are typed using a rule inspired from [3]:

(FunR)
Γ ` t : T ∀f(x) 7→R r, Γ, x : T ` r : U

Γ ` f(t) : U

For instance, with the non-deterministic simple rewrite system x1 + x2 7→+ xi
(i ∈ {1, 2}), we have x1 : T1, x2 : T2 ` x1 + x2 : T1 t T2. By combining (Fun+)
and (tE), we can type non-strongly normalizing terms, while the type system
with (Fun+) but without (tE) is strongly normalizing [14].

Example 2.2 ([14]). Let δ = λx.xx, t1 = λz.zyδ and t2 = λz.δ. There are types
T1, T2, U, V such that y : V ` ti : Ti and y : V, x : Ti ` xx : U (note that
titi ∈ SNβ+). Using (tE) and (Fun+) we get y : V ` (t1+ t2)(t1+ t2) : U. But
(t1 + t2)(t1 + t2)→∗β+ t1t2 →∗β+ δδ /∈ SNβ+.

Call-by-Value Eliminations. In this paper, we propose and study a modified
version of (∃E) and (tE) which uses a call-by-value (let x = t in c). We consider
the extended set of terms

Λ(Σ)let ::= x | λx.t | t u | f(t1, . . . , tn) | (let x = t in u) ,

and we replace (∃E) and (tE) by the following rules:

(tElet)

Γ, x : T1 ` c : C

Γ ` t : T1 t T2 Γ, x : T2 ` c : C

Γ ` (let x = t in c) : C
(∃Elet)

Γ ` t : ∃X.T Γ, x : T ` c : C

Γ ` (let x = t in c) : C
X /∈ Γ, C

The let is reduced according to a notion of value V issued from Girard’s reducibil-
ity candidates (to be defined in Sect. 3). Given a rewrite relation →R and a set
of values V, we extend →R with the smallest rewrite relation →V on Λ(Σ)let s.t.

(let x = v in c) →V c[v/x] if v ∈ V .

We show that the rules (tElet) and (∃Elet) lead to strongly normalizing systems
regardless of closure under unions. We moreover show that this may allow to
recover subject reduction with implicit existential quantification.

Remark 2.3. The subtyping rule (T1 ⇒ U) u (T2 ⇒ U) v (T1 t T2) ⇒ U causes
strong normalization problems similar to those of (tE) [14]. Our solution does
not handle it because it would imply to have a call-by-value arrow, while we
want to force call-by-value only locally in (tElet).

3 Reducibility Candidates

Reducibility candidates, denoted by CRRE, form a reducibility family depending
only on a rewrite relation →R and a set of elimination contexts E [15, 16]. They
come with an inherent notion of values VRE, which are the terms that interact
with elimination contexts (see Def. 3.4 below).

6 Colin Riba

An Axiomatization. Our axiomatization of reducibility has been first pre-
sented in [15]. We use the version of [16] where details and proofs can be found.
Let [] ∈ X be a distinguished variable and →R be a rewrite relation on Λ(Σ).

Definition 3.1 (Evaluation Contexts). A set of evaluation contexts for →R
is a set E of terms E[] containing exactly one occurrence of [], and which is
closed under reduction: if E[] ∈ E and E[]→R t then t = F[] ∈ E.

If t ∈ Λ(Σ) and E[] ∈ E then we let E[t] =def (E[])[t/[]].

Values and neutral terms are defined by an interaction property between
terms and evaluation contexts.

Definition 3.2 (Interacton, Values and Neutral Terms). Let E be a set
of evaluation contexts for →R.

– A term t interacts with E[] ∈ E for →R, notation t 1R E[], if there is
a term w such that E[t] →R w and which is not of the form E ′[t ′] with
(E[], t)→R (E ′[], t ′).

– A value for →R in E is a term v s.t. v 1R E[] for some E[] ∈ E. We denote
by VRE the set of values for →R in E. Given X ⊆ Λ(Σ), the set of values
of X is VRE(X) =def {v ∈ VRE | t→∗R v for some t ∈ X}. We write VRE(t) for
VRE({t}).

– A term t is neutral for →R in E if it is not a value. We denote by NRE the
set of neutral terms for →R in E.

Values are observable terms, since they interact with evaluation contexts. For in-
stance, the values for β-reduction in evaluation contexts E[] ∈ E⇒ ::= [] | E[] t
are the λ-abstractions λx.t. Note that non-interaction is compositional:

Lemma 3.3. If t 61R E[] and E[t] 61R F[] then t 61R F[E[]].

Reducibility candidates are defined from a rewrite relation and a set of evalu-
ation contexts satisfying some axioms. These axioms define elimination contexts.
The modular extension of this framework with let, presented in Sect. 4, requires
to introduces new axioms of closure under substitutions.

Definition 3.4 (Elimination Contexts). Let E be a set of evaluation contexts
for →R. Then E is a set of elimination contexts for →R if

– [] ∈ E,
– variables are neutral: X ⊆ NRE,
– NRE is closed under composition with E: if t ∈ NRE and E[] ∈ E then
E[t] ∈ NRE.

– NRE \ X is closed under substitution: if t ∈ NRE \ X, then tσ ∈ NRE.
– VRE is closed under substitution: if t ∈ VRE, then tσ ∈ VRE.
– E is closed under substitution: if E[] ∈ E and σ : (X\{[]})→ Λ(Σ) then
Eσ[] ∈ E.

On the Values of Reducibility Candidates 7

For instance, the contexts E⇒ are elimination contexts for β-reduction. We as-
sume given a set E of elimination contexts for →R.

Definition 3.5 (Reducibility Candidates). The set of reducibility candi-
dates for →R in E, written CRRE, is the set of all C ⊆ SNR such that

(CR0) if t ∈ C and t→R u then u ∈ C,
(CR1) if t ∈ NRE and ∀u. t→R u =⇒ u ∈ C then t ∈ C.

There is a closure operator CRRE() : P(SNR) → P(SNR) such that CRRE(X)
is the smallest reducibility candidate containing X if X ⊆ SNR. The closure of the
empty set is the set of hereditary neutral terms, i.e. the set of strongly normalizing
neutral terms which never reduce to a value. Since variables are neutral terms
in normal form (recall that →R ⊆ (Λ(Σ) \ X)×Λ(Σ)), we get X ⊆ C for all
candidate C. It follows that reducibility candidates form a reducibility family.
Note that the greatest element of CRRE is SNR.

The axioms defining elimination contexts allow to show the following basic
property of reducibility candidates. We use it to prove that elimination-based
type interpretations (such as the function space ⇒) preserve CRRE.

Lemma 3.6 ([16]). Let t ∈ NRE, E[] ∈ E ∩ SNR and C ∈ CRRE. If E[u] ∈ C
for all u ∈ (t)R, then E[t] ∈ C.

Proof. By induction on E[] ∈ SNR. Since E[t] is neutral, it is sufficient to
show that (E[t])R ⊆ C. Let w ∈ (E[t])R. Since t is neutral w = (E ′[t ′]) with
(t, E[])→R (t ′, E ′[]). If t→R t ′ then w ∈ C by assumption. Otherwise E[]→R
E ′[], and for all u ∈ (t)R we have E[u] →R E ′[u], hence E ′[u] ∈ C by (CR0).
Thus E ′[t] ∈ C by induction hypothesis. ut

The Values of Reducibility Candidates. An important property of re-
ducibility candidates is that they are uniquely determined by their values:

Lemma 3.7 ([16]). Given X ⊆ SNR and t ∈ SNR, we have t ∈ CRRE(X) if and
only if VRE(t) ⊆ VRE(X).

This paper builds on the following consequences of Lem. 3.7. Write A ⊆∗ B

when A is a non-empty subset of B.

Corollary 3.8.

CRRE(A) ⊆ CRRE(B) ⇔ VRE(A) ⊆ VRE(B) (A,B ⊆ SNR)

VRE(CRRE(
⋃

A)) =
⋃

VRE(A) (A ⊆∗ CRRE)

CRRE(B ∪ (C1 ∩ C2)) = CRRE(B ∪ C1) ∩ CRRE(B ∪ C2) (B,C1, C2 ∈ CRRE)

B ∩ CRRE(C1 ∪ C2) = CRRE((B ∩ C1) ∪ (B ∩ C2)) (B,C1, C2 ∈ CRRE)

The first equality says that CRRE is in some sense closed under union w.r.t. values.
It will justify the typing rules (tElet) and (∃Elet) (Sect. 4.2). The last two ones
state the distributivity of the candidate lattice, which is used in Sect. 5.1. All
these properties are independent from the closure under unions of CRRE.

8 Colin Riba

Orthogonality. We now briefly discuss biorthogonality. See [16] for details on
biorthogonality in our framework. Let →R be a rewrite relation on Λ(Σ) and E

be a set of elimination contexts for →R. Define ⊥ ⊆ Λ(Σ)× E as t ⊥ E[] if and
only if E[t] ∈ SNR. Define the orthogonal of A ⊆ Λ(Σ) (resp. B ⊆ E) as

A⊥ =def {E[] | ∀t. t ∈ A =⇒ t ⊥ E[]}

(resp. B⊥ =def {t | ∀E[]. E[] ∈ B =⇒ t ⊥ E[]})

The induced map ()⊥⊥ on P(SNR) is a closure operator [16]. Write CR⊥⊥RE for
{A⊥⊥ | A ⊆∗ SNR} = {B⊥ | B ⊆∗ E ∩ SNR}. It is a reducibility family thanks to:

Lemma 3.9 ([16]). CR⊥⊥RE ⊆ CRRE.

4 A Call-by-Value Extension of Reducibility

We now insert the let presented in Sect. 2 into the reducibility candidates issued
from a rewrite relation →R on Λ(Σ) and a set E of elimination contexts for →R.

We first extend the set of terms from Λ(Σ) to Λ(Σ)let (defined in Sect. 2).
We then extend →R to the smallest rewrite relation on Λ(Σ)let containing the
original relation →R (which was defined on Λ(Σ)). Now, let →V be the smallest
rewrite relation on Λ(Σ)let such that (let x = t in u)→V u[t/x] if t ∈ VRE.

The delicate operation is to extend the set of elimination contexts. We need
to extend E both with contexts of the form (let x = E[] in c) and with contexts
having the same shape as those in E, but built on Λ(Σ)let rather than on Λ(Σ).
This second operation is easy to express in the usual cases where E is defined
by a grammar (see Sect. 5.1 and Sect. 5.2). However, performing this operation
on an arbitrary set E while preserving the axioms of Def. 3.4 leads us to some
technicalities. We chose to close E by Λ(Σ)let-substitution, but this causes diffi-
culties w.r.t. stability by reduction. A solution is to close by substitution only the
contexts which are linear in X, but they need not to be stable by reduction. We
therefore work with the set ERlin, defined as the set of R-normal linear E[] ∈ E.

Definition 4.1. Let Elet be the smallest set such that(
E[] ∈ ERlin ∧ σ : (X \ {[]})→ Λ(Σ)let

)
=⇒ E[]σ ∈ Elet

(E[], F[] ∈ Elet ∧ t ∈ Λ(Σ)let) =⇒ E[(let x = F[] in t)] ∈ Elet

We now show that Elet is a set of elimination contexts for→RV. This allows to
define reducibility candidates and biorthogonals. We then show that this turns
the closure of an union into an elimination-based interpretation.

4.1 Values, Neutral Terms and Elimination Contexts

In this section, we give the main steps of the proof that Elet is a set of elimination
contexts for→RV. We first give a characterization of the values and neutral terms
for→RV in Elet in terms of those for→R in E. Note that the let ensures that values
for →R in E are values for →RV in Elet. The characterization of neutral terms
relies on the fact that values and non-variable neutral terms are not unifiable in
Λ(Σ)let, which follows from the substitution axioms of Def. 3.4.

On the Values of Reducibility Candidates 9

Proposition 4.2 (Values and Neutral Terms).

VRVElet
= {vσ | v ∈ Λ(Σ) ∩ VRE ∧ σ : X→ Λ(Σ)let} ,

NRVElet
= X ∪ {(let x = t in c) | t, c ∈ Λ(Σ)let}

∪ {nσ | n ∈ (Λ(Σ) ∩NRE) \ X ∧ σ : X→ Λ(Σ)let} .

In order to show that Elet is a set of elimination contexts for →RV, we have
to check the axioms of Defs. 3.1 and 3.4. Concerning Def. 3.1, linearity in []
follows from an easy induction on Elet, using linearity in [] of E in the base case.
Stability by reduction is a consequence of the condition E[] ∈ ERlin in the first
clause of the definition of Elet.

Concerning Def. 3.4, stability by substitution for values and non-variable
neutral terms follows directly from Prop. 4.2. Stability by substitution for con-
texts follows from an easy induction on Elet. Moreover, variables are neutral by
Prop. 4.2, and the preservation of neutral terms by composition with elimination
contexts is a consequence of Prop. 4.2 shown by induction on Elet. Hence we have

Theorem 4.3. Elet is a set of elimination contexts for →RV.

We thus obtain reducibility candidates CRRVElet
and biorthogonals CR⊥⊥RVElet

directly from a rewrite relation→R on Λ(Σ) and a set of elimination contexts E.

4.2 An Elimination-Based Interpretation of Unions

In this section, we show that for reducibility candidates and biorthogonals, the
let turns Red(

⋃
A) into the elimination-based interpretation

∨
Red A defined as{

t | ∀C ∈ Red , ∀c s.t. u ∈
⋃

A⇒ c[u/x] ∈ C, (let x = t in c) ∈ C
}
.

Hence, we get elimination-based interpretations of union and implicit existential
types. This ensures the adequacy of reducibility candidates and biorthogonals
w.r.t. (∃Elet) and (tElet), but does not change the definition of the type inter-
pretation using the closure of unions (see Sect. 5).

Write CR for CRRVElet
, CR⊥⊥ for CR⊥⊥RVElet

, N for NRVElet
, V for VRVElet

and SN

for SNRV. We begin by showing that
∨

CR A (resp.
∨

CR⊥⊥ A) is a reducibility
candidate (resp. a biorthogonal).

Lemma 4.4. If A ⊆∗ CR then
∨

CR A ∈ CR.

Proof. Write
∨

A for
∨

CR A. We first show that
∨

A ⊆ SN. Let t ∈
∨

A and
take C =def CR(

⋃
A). Since

⋃
A ⊆ CR(

⋃
A), we get (let x = t in x) ∈ C ⊆ SN,

hence t ∈ SN. Stability by reduction (CR0) is immediate. For the clause (CR1),
take t ∈ N such that (t)RV ⊆

∨
A. Let C ∈ CR and c such that u ∈

⋃
A implies

c[u/x] ∈ C. Since (let x = [] in c) ∈ Elet ∩ SN and (let x = t ′ in c) ∈ C for all
t ′ ∈ (t)RV, we have (let x = t in c) ∈ C by Lem. 3.3. ut

Lemma 4.5. If A ⊆∗ CR⊥⊥ then
∨

CR⊥⊥ A ∈ CR⊥⊥.

10 Colin Riba

Proof. Since
∨

CR⊥⊥ A is the orthogonal of the non-empty subset of SN{
E[(let x = [] in c)] | C ∈ CR⊥⊥ ∧ E[] ∈ C⊥ ∧

(
u ∈

⋃
A⇒ c[u/x] ∈ C

)}
.

ut

We now show that
∨

Red is the closure of the union when Red ∈ {CR,CR⊥⊥}.

Theorem 4.6. If Red ∈ {CR,CR⊥⊥} and A ⊆∗ Red then
∨

Red A = Red(
⋃

A).

Proof. (⊇). Since Red is defined by a closure operator, by Lem. 4.4 and 4.5
it is sufficient to show that

⋃
A ⊆

∨
Red A. Let t ∈

⋃
A, C ∈ Red and

c s.t. u ∈
⋃

A implies c[u/x] ∈ C. Note that t, c ∈ SN since
⋃

A is not
empty. By Lem. 3.9, we have C ∈ CR. Since (let x = t in c) is neutral, it
is sufficient to show that ((let x = t in c))RV ⊆ C. We reason by induction
on pairs (t, c) ordered by the product extension of →RV. Let w such that
(let x = t in c)→RV w. There are two cases.
w = c[t/x] & t ∈ V. Since t ∈

⋃
A, we get c[t/x] ∈ C by assumption on C.

w = (let x = t ′ in c ′) & (t, c)→RV (t ′, c ′). By (CR0), we have t ′ ∈
⋃

A and
that u ∈

⋃
A⇒ c ′[u/x] ∈ C. We get w ∈ C by induction hypothesis.

(⊆). We have
∨

Red A ∈ Red by Lem. 4.4 and Lem. 4.5. Since CR⊥⊥ ⊆ CR we have∨
Red A,Red(

⋃
A) ∈ CR. Therefore, by Cor. 3.8 it is sufficient to show that

V(
∨

Red A) ⊆ Red(
⋃

A). Let v ∈ V(
∨

Red A) and take C=def Red(
⋃

A). Since⋃
A ⊆ C, we obtain that (let x = v in x) ∈ C. But (let x = v in x) →V v

since v ∈ V. Hence v ∈ C = Red(
⋃

A) by (CR0). ut

5 Applications

We now discuss three applications. Our approach is to start from a given cal-
culus made of a type system and a rewrite relation →R. We provide a set of
elimination contexts E. This gives reducibility candidates (and biorthogonals)
as in Sect. 3. We then apply the method of Sect. 4. Terms are extended with
let, the rewrite relation →R is extended with →V, and we obtain elimination
contexts Elet by Def. 4.1. Using Thm. 4.3, we obtain reducibility candidates CR

(and biorthogonals CR⊥⊥) for →RV in Elet. We then extend the type system with
(tElet) or (∃Elet). Adequacy w.r.t. these rules is ensured by Thm. 4.6.

The first application concerns union types, the second one existential types
and the third one deals with existential quantification in realizability models
based on reducibility candidates and biorthogonals.

5.1 Union Types

We apply the framework presented in Sect. 4 to a calculus with union types,
intersection types and (possibly non-deterministic) simple rewrite rules. We focus
on reducibility candidates and do not consider biorthogonals since their lattice
is not distributive. Some proofs are postponed until Sect. 5.2.

On the Values of Reducibility Candidates 11

We consider simple types with unions and intersections Tut. As in [5], they
are equipped with a preorder v so that (T,v) is a distributive lattice satisfying
the additional axioms

(T ⇒ U1) u (T ⇒ U2) v T ⇒ (U1 uU2) and
U1 v U2 T2 v T1
U2 ⇒ T2 v U1 ⇒ T1

Given a simple rewrite system R, we add to λ the rule (FunR) and

(u I)
Γ ` t : T Γ ` t : U

Γ ` t : T uU
(Sub)

Γ ` t : T T v U
Γ ` t : U

We consider reducibility candidates for →βR in elimination contexts E⇒. By
Thm. 4.3, we thus obtain reducibility candidates CR for→βRV in the elimination
contexts E⇒let. Note that (let x = t in c) →V c[t/x] if and only if t = λy.u.
Therefore, continuing Ex. 2.2, we have y : V ` (let x = t1 + t2 in xx) : U, but
(let x = t1 + t2 in xx) does not reduce to t1t2: since t1 + t2 is not a value, we
must choose between t1 and t2 before performing the substitution.

Note that E⇒let is the following set of contexts (see Lem. 5.2):

E[] ::= [] | E[] t | (let x = E[] in t) .

We now add the rule (tElet) to the system.
Types are interpreted as in Sect. 2. Write J Kρ for J KCR

ρ . The correctness of
the subtyping relation is standard [14], excepted that distributivity is ensured
by Cor. 3.8. We get J Kρ : Tut → CR since ⇒ : CR2 → CR (Lem. 5.3).

Theorem 5.1. If Γ ` t : T and (ρ, σ) |= Γ then tσ ∈ JTKρ.

Proof. By induction on Γ ` t : T . The case of (tElet) follows from Thm. 4.6,
which entails that JT tUKρ = JTKρ ∨CR JUKρ (see the proof of Thm. 5.5). Ade-
quacy w.r.t. the other rules is standard [14]. ut

5.2 Implicit Existential Types

We apply the framework of Sect. 4 to a calculus with existential, product and
sum types. We show that it enjoys strong normalization and subject reduction.

The System. We let T∀∃×+ be the extension of T∀∃ with the binary product
T ×U and the binary sum T +U. Terms are built on the signature

Σ =def {〈 , 〉, π1 , π2 , inj1 , inj2 , case(, ,)} .

We extend β-reduction with πi〈t1, t2〉 →β ti and case(injit, u1, u2) →β uit.
The type system is that of λ∀ enriched with (∃ I) and the following rules:

(×I)
Γ ` t1 : T1 Γ ` t2 : T2

Γ ` 〈t1, t2〉 : T1 × T2
(×E)

Γ ` t : T1 × T2
Γ ` πit : Ti

(i ∈ {1, 2})

(+I)
Γ ` t : Ti

Γ ` injit : T1 + T2
(i ∈ {1, 2}) (+E)

Γ ` u1 : T1 ⇒ U

Γ ` t : T1 + T2 Γ ` u2 : T2 ⇒ U

Γ ` case(t, u1, u2) : U

12 Colin Riba

Reducibility. We consider the elimination contexts

E[] ∈ E ::= [] | E[] t | πiE[] | case(E[], t, u) .

The values are the terms of the form λx.t, 〈t, u〉 or inji t. We consider reducibility
candidates for→β in E. By Thm. 4.3, we thus obtain reducibility candidates CR

and biorthogonals CR⊥⊥ for →βV in the elimination contexts Elet.

Lemma 5.2. Elet is the set of contexts

E[] ::= [] | E[] t | πiE[] | case(E[], t, u) | (let x = E[] in t) .

We add the rule (∃Elet) to the system. In the remaining of this section, we
assume that Red ∈ {CR,CR⊥⊥}. We extend the interpretation of Sect. 2 as follows:

JT ×UKRed
ρ =def {t | π1t ∈ JTKRed

ρ ∧ π2t ∈ JUKRed
ρ }

JT +UKRed
ρ =def {t | ∀C ∈ Red , ∀s ∈ JTKRed

ρ ⇒ C, ∀u ∈ JUKRed
ρ ⇒ C,

case(t, s, u) ∈ C }

The correctness of the definition relies on the fact that the shape of elimination
contexts has not been destroyed by their extension with let (Lem. 5.2).

Lemma 5.3. If ρ : XT → T∀∃×+ and T ∈ T∀∃×+ then JTKRed
ρ ∈ Red.

Proof. In both cases for Red , we reason by induction on T . The result is trivial
if T is a variable. The cases of ∀X.T and ∃X.T follow from the fact that Red is
defined by a closure operator. We detail the case of A⇒ B. Write JTK for JTKRed

ρ .

Red = CR. We have JAK⇒ JBK ⊆ SNβV since JAK is not empty and JBK ⊆ SNβV.
Stability by reduction follows from (CR0) on JBK. We get (CR1) by Lem. 3.6,
using that []t ∈ Elet for all t ∈ Λ(Σ)let thanks to Lem. 5.2.

Red = CR⊥⊥. Since JAK ⇒ JBK is orthogonal to {E[[]t] | t ∈ JAK ∧ E[] ∈ JBK⊥}

which is a non-empty subset of SNβV. ut

Since type constructors are interpreted by eliminations, Lem. 5.3 implies
adequacy w.r.t. the elimination rules (⇒E), (×E) and (+E). Adequacy w.r.t.
the rules (⇒I), (×I) and (+I) follows from the following saturation lemma (recall
that SNβV ∈ CR and [] ∈ Elet).

Lemma 5.4. For all u, s ∈ SNβV, all E[] ∈ Elet and all C ∈ CR,

E[(λx.t)u] ∈ C if E[t[u/x]] ∈ C
E[π1〈t, u〉] ∈ C if E[t] ∈ C
E[π2〈u, t〉] ∈ C if E[t] ∈ C

E[case(inj1t, u, s)] ∈ C if E[ut] ∈ C
E[case(inj2t, s, u)] ∈ C if E[ut] ∈ C

Proof. Note that t, E[] ∈ SNβV since C ⊆ SNβV. We detail the case of
E[(λx.t)u]. Since (λx.t)u is neutral, by Lem. 3.6 it is sufficient to show that
E[w] ∈ C if (λx.t)u →β w. We reason by induction on (t, u) ordered by the
product extension of→β. Let w such that (λx.t)u→β w. If w = t[u/x] then we
are done by assumption. Otherwise, w = (λx.t ′)u ′ with (t, u) →β (t ′, u ′) and
we conclude by induction hypothesis, using that C is closed under reduction. ut

On the Values of Reducibility Candidates 13

Using Thm. 4.6 for the existential quantification, adequacy follows as usual.

Theorem 5.5. If Γ ` t : T and (ρ, σ) |=Red Γ then tσ ∈ JTKRed
ρ .

Proof. By induction on Γ ` t : T . We detail the case of (∃Elet). Let (ρ, σ) |= Γ .
By induction hypothesis we have tσ ∈ J∃X.TKRed

ρ . Since X /∈ Γ,U, if C ∈ Red
and u ∈ JTKRed

ρ[C/X] then (ρ[C/X], σ[u/x]) |=Red Γ, x : T . By induction hypothesis
again, we deduce that cσ[u/x] ∈ JUKRed

ρ for all u ∈
⋃
C∈RedJTKRed

ρ[C/X]. We obtain
(let x = tσ in cσ) ∈ JCKRed

ρ since J∃X.TKRed
ρ =

∨
C∈RedJTKRed

ρ[C/X] by Thm. 4.6. ut

Subject Reduction. We sketch the proof that let allows to recover subject
reduction for implicit existential types. The key-point is that the reduction of a
(let x = t in c) obtained from (∃Elet) is only made when t is a value, in which case
we know that its type has been obtained by a (∃ I) rule (Prop. 5.6). This prevents
us from the counter example of [18] (Ex. 2.1): we can type (let w = Ixy in zww)
but this term does not reduce to u1 since Ixy is not a value.

Proposition 5.6 (Determinacy of Typing). Let v ∈ VβVElet
. If Γ ` v : ∃X.T

then there is U such that Γ ` v : T [U/X].

The remaining of the proof directly follows that of [9] for λ∀. It relies on usual
substitution and inversion properties.

Substitution. (i) If Γ, x : U ` t : T and Γ ` u : U then Γ ` t[u/x] : T .
(ii) If Γ ` t : T then Γ [U/X] ` t : T [U/X].

Inversion. (i) If Γ ` λx.t : U⇒ T then Γ, x : U ` t : T .
(ii) If Γ ` 〈t1, t2〉 : A1 ×A2 then Γ ` ti : Ai for all i ∈ {1, 2}.
(iii) If Γ ` injit : A1 +A2 then Γ ` t : Ai.

Theorem 5.7 (Subject Reduction). If Γ ` t : T and t→βV u then Γ ` u : T .

5.3 Realizability Semantics of Existential Quantification

We now discuss the realizability interpretation of existential quantification in
presence of the let. Realizability with implicit existential types is used e.g. in [12].

Given a reducibility family Red , write t
Red A (read t realizes A) if t
is a closed term such that t ∈ JAKRed

ρ for all ρ : XT → Red . In realizabil-
ity models based on λ∀, the existential quantification is usually encoded as
∃̃X.T =def ∀Y.(∀X.T ⇒ Y) ⇒ Y where Y /∈ T . Using Thm 4.6, we define
terms t, u such that for reducibility candidates and biorthogonals, we have
t
 (∃X.T)⇒ (∃̃X.T) and u
 (∃̃X.T)⇒ (∃X.T) (Thm. 5.9). This means that in
the corresponding realizability models, the let makes the two existential quan-
tifications equivalent w.r.t. provability.

We assume given a rewrite relation →R on Λ(Σ), which contains →β and
which is compatible with →β in the following sense: if (λx.t)u →R w and w
is not of the form (λx.t ′)u ′ with (t, u) →R (t ′, u ′), then w = t[u/x]. We also

14 Colin Riba

assume given a set E of elimination contexts for →R such that [] t ∈ E for all
t ∈ Λ(Σ) and such that (λx.t)u is neutral for all t, u ∈ Λ(Σ). Note that this
include the reduction systems presented in Sect. 5.1 and Sect. 5.2.

We obtain λ-terms with let and extend →R with →V. Elimination contexts
are extended to Elet. We thus obtain reducibility families CRRVElet

and CR⊥⊥RVElet
,

that we write CR and CR⊥⊥ respectively. Note that compatibility with →β is
preserved: if (λx.t)u →RV w then either w = t[u/x] or w = (λx.t ′)u ′ with
(t, u)→RV (t ′, u ′). This ensures that if t[u/x] ∈ JTKRed

ρ for all u ∈ JUKRed
ρ then

t ∈ JU⇒ TKRed
ρ . Moreover, we still have [] t ∈ Elet for all t ∈ Λ(Σ)let

The formulas we consider are the types T∀∃. They are interpreted as in
Sect. 5.2, using Thm. 4.6. In particular J∃X.TKRed

ρ =
∨

Red

{
JTKRed

ρ[C/X] | C ∈ Red
}

.

Definition 5.8. Given a type T , let 2(T) =def ∀X.(T ⇒ X)⇒ X, where X /∈ T .

Note that the boxed type 2(T) is not the double-negation of T . Boxed types are
useful because of the following intermediate properties: given Red ∈ {CR,CR⊥⊥},

λx.x
Red (∃̃X.T)⇒ 2(∃X.T)
λx.λy.yx
Red T ⇒ 2(T)

λx.x(λy.y)
Red 2(T)⇒ T

λt.λx.t (λy.(let z = y in xz))
Red 2(∃X.T)⇒ (∃̃X.T)

Theorem 5.9. Let Red ∈ {CR,CR⊥⊥}.

(i) λy.λx.(let x = y in xz)
Red (∃X.T)⇒ (∃̃X.T)
(ii) λx.x(λy.y)
Red (∃̃X.T)⇒ (∃X.T)

6 Conclusion

We proposed a let-elimination of union types and implicit existential quantifica-
tions. This provides a way to obtain strongly normalizing systems, and for the
existential quantification, to get subject reduction as well. We also have shown
that the obtained existential quantification coincides with its usual encoding
w.r.t. provability in realizability models built from reducibility candidates.

Further Work. There are different way in which this work can be extended.
First, to study subject reduction of union types with let. Second, to extend the
reduction of let with usual permutative conversions. Third, to study the obtained
existential quantification in Krivine’s realizability [10]. Another direction is to
explore links with classical logic: the obtained let seems to correspond to a form
of µ̃ in the sequent-based λ-calculus of [4]. The elimination rules with let would be
seen as the translation on terms of implicit right-introduction rules on contexts.

Acknowledgments. We thank Alexandre Miquel for suggesting the study of re-
alizability models and the use of boxed types.

On the Values of Reducibility Candidates 15

References

[1] F. Barbanera, M. Dezani-Ciancaglini, and U. de’ Liguoro. Intersection and Union
Types: Syntax and Semantics. Information and Computation, 119:202–230, 1995.

[2] F. Blanqui and C. Riba. Combining Typing and Size Constraints for Checking
the Termination of Higher-Order Conditional Rewrite Systems. In Proceedings of
LPAR’06, volume 4246 of LNAI, 2006.

[3] T. Coquand and A. Spiwack. A Proof of Strong Normalisation using Domain
Theory. In Proceedings of LiCS’06, pages 307–316. IEEE Computer Society, 2006.

[4] P.-L. Curien and H. Herbelin. The Duality of Computation. In Proceedings of
ICFP’00, pages 233–243. ACM, 2000.

[5] M. Dezani-Ciancaglini, U. de’ Liguoro, and P. Piperno. A Filter Model for Con-
current Lambda-Calculus. Siam Journal on Computing, 27(5):1376–1419, 1998.

[6] J. Dunfield and F. Pfenning. Tridirectional Typechecking. In Proceedings of
POPL’04, pages 281–292. ACM, 2004.

[7] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[8] H. Ishihara and T. Kurata. Completeness of Intersection and Union Type As-
signment Systems for Call-by-Value λ-Models. Theoretical Computer Science,
272:197–221, 2002.

[9] J.-L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood, 1993.
[10] J.-L. Krivine. Realizability in Classical Logic. To appear in Panoramas et

synthèses, Société Mathématique de France, disponible sur HAL, 2004.
[11] S. Lindley and I. Stark. Reducibility and TT-Lifting for Computation Types. In

TLCA, volume 3461 of LNCS, pages 262–277. Springer, 2005.
[12] P. Oliva and T. Streicher. On Krivine’s Realizability Interpretation of Classical

Second-Order Arithmetic. Fundameta Informaticae, 84(2):207–220, 2008.
[13] M. Parigot. Proofs of Strong Normalization for Second Order Classical Natural

Deduction. Journal of Symbolic Logic, 62(4):1461–1479, 1997.
[14] C. Riba. Strong Normalization as Safe Interaction. In Proceedings of LiCS’07,

pages 13–22. IEEE Computer Society, 2007.
[15] C. Riba. Stability by Union of Reducibility Candidates for Orthogonal Construc-

tor Rewriting. In Proceedings of CiE’08, volume 5028 of LNCS, pages 498–510.
Springer, 2008.

[16] C. Riba. Toward a General Rewriting-Based Framework for Reducibility. Sub-
mitted (available from the author’s homepage), 2008.

[17] W. W. Tait. A Realizability Interpretation of the Theory of Species. In R. Parikh,
editor, Logic Colloquium, volume 453 of LNCS, pages 240–251, 1975.

[18] M. Tatsuta. Simple Saturated Sets for Disjunction and Second-Order Existential
Quantification. In Proceedings of TLCA’07, volume 4583 of LNCS, pages 366–380.
Springer, 2007.

[19] J. Vouillon and P.-A. Melliès. Semantic Types: A Fresh Look at the Ideal Model
for Types. In Proceedings of POPL’04. ACM, 2004.

	On the Values of Reducibility Candidates
	Colin Riba
	Introduction
	Preliminaries
	Reducibility Candidates
	A Call-by-Value Extension of Reducibility
	Values, Neutral Terms and Elimination Contexts
	An Elimination-Based Interpretation of Unions

	Applications
	Union Types
	Implicit Existential Types
	Realizability Semantics of Existential Quantification

	Conclusion

