Advanced Semantics of Programming Languages

Pierre CLAIRAMBAULT & Colin RIBA

LIP - ENS de Lyon

Course 01 09/11

A Naive Introduction

(based on simple examples)

The First Example

Consider the programs

and

bar(f:int->int):
 a = f(5)
 return a + a

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) + f(5)
```

and

bar(f:int->int): a = f(5) return a + a

Are these two programs equivalent ?

and

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) + f(5)
```

```
bar(f:int->int):
    a = f(5)
    return a + a
```

Are these two programs equivalent ?

They are not equivalent if f can access a global reference.

The First Example

Consider the programs

foo(f:int->int):
 return f(5) + f(5)

and

bar(f:int->int): a = f(5) return a + a

Are these two programs equivalent ?

- ▶ They are not equivalent if **f** can access a global reference.
- They are equivalent if f behaves as a function, say

 $\llbracket \texttt{f} \rrbracket \ : \ \llbracket \texttt{int} \rrbracket \ \longrightarrow \ \llbracket \texttt{int} \rrbracket$

where [[int]] is a set representing the type int.

The First Example

Consider the programs

foo(f:int->int):
 return f(5) + f(5)

and

bar(f:int->int):
 a = f(5)
 return a + a

Are these two programs equivalent ?

- They are not equivalent if f can access a global reference.
- They are equivalent if f behaves as a function, say

 $\llbracket \texttt{f} \rrbracket \ : \ \llbracket \texttt{int} \rrbracket \ \longrightarrow \ \llbracket \texttt{int} \rrbracket$

where [[int]] is a set representing the type int.

Objectives of the course.

Mathematical models of programming languages (denotational semantics, category theory, type systems).

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) + f(5)
```

```
and
```

```
bar(f:int->int):
    a = f(5)
    return a + a
```

Are these two programs equivalent ?

- ▶ They are not equivalent if **f** can access a global reference.
- They are equivalent if f behaves as a function, say

 $\llbracket \texttt{f} \rrbracket \ : \ \llbracket \texttt{int} \rrbracket \ \longrightarrow \ \llbracket \texttt{int} \rrbracket$

where [[int]] is a set representing the type int.

Objectives of the course.

 Mathematical models of programming languages (denotational semantics, category theory, type systems).

Methodology of the course.

- Begin with simple approaches.
- Then progressively model more complex behaviours.

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) + f(5)
```

```
and
```

```
bar(f:int->int):
    a = f(5)
    return a + a
```

Are these two programs equivalent ?

- ▶ They are not equivalent if **f** can access a global reference.
- They are equivalent if f behaves as a function, say

 $\llbracket \mathtt{f}
rbracket$: $\llbracket \mathtt{int}
rbracket \longrightarrow \llbracket \mathtt{int}
rbracket$

where [[int]] is a set representing the type int.

Objectives of the course.

 Mathematical models of programming languages (denotational semantics, category theory, type systems).

Methodology of the course.

- Begin with simple approaches.
- Then progressively model more complex behaviours.

Now:

A naive introduction to some basic ideas.

CLAIRAMBAULT & RIBA (LIP - ENS de Lyon)

Assume types, say int, bool, are to be interpreted as sets [int], [bool].

Assume types, say int, bool, are to be interpreted as sets [int], [bool].

Question.

Can we assume

$$\llbracket \texttt{bool} \rrbracket := \{\texttt{true}, \texttt{false}\}$$
 (1)

Assume types, say int, bool, are to be interpreted as sets [int], [bool].

Question.

Can we assume

$$bool$$
] := {true, false} (1)

Answer.

Consider the non-terminating program

```
loop (b:bool):
  while true:
    skip
  return true
```

Assume types, say int, bool, are to be interpreted as sets [int], [bool].

Question.

Can we assume

$$bool$$
] := {true, false} (1)

Answer.

Consider the non-terminating program

```
loop (b:bool):
  while true:
    skip
  return true
```

If [boo1] is as in (1), then we can not have

 $\llbracket \texttt{loop} \rrbracket \ : \ \llbracket \texttt{bool} \rrbracket \ \longrightarrow \ \llbracket \texttt{bool} \rrbracket$

Assume types, say int, bool, are to be interpreted as sets [[int]], [[bool]].

Question.

Can we assume

$$[bool]$$
 := {true, false} (1)

Answer.

Consider the non-terminating program

```
loop (b:bool):
  while true:
    skip
  return true
```

If [boo1] is as in (1), then we can not have

$$\llbracket \texttt{loop} \rrbracket \ : \ \llbracket \texttt{bool} \rrbracket \ \longrightarrow \ \llbracket \texttt{bool} \rrbracket$$

We shall therefore represent divergence and assume

$$\llbracket \texttt{bool} \rrbracket := \{ \bot, \texttt{true}, \texttt{false} \}$$
 $(\bot ``=" divergence)$

We can then have, as expected:

$$\texttt{loop}]\!](a) = \bot$$
 (for all $a \in [\texttt{bool}]$)

Motivation.

A simple language to discuss

 $[\![\texttt{bool}]\!] \quad := \quad \{\bot, \texttt{true}, \texttt{false}\}$

Motivation.

A simple language to discuss

 $\llbracket \texttt{bool} \rrbracket := \{\bot, \texttt{true}, \texttt{false} \}$

The Language of Finitary PCF.

- au,σ ::= bool \mid $\sigma
 ightarrow au$
 - t, u ::= $t u \mid fun x \rightarrow t \mid true \mid false \mid if then u else v \mid \Omega$

Motivation.

A simple language to discuss

 $\llbracket \texttt{bool} \rrbracket := \{\bot, \texttt{true}, \texttt{false} \}$

The Language of Finitary PCF.

- au, σ ::= **bool** | $\sigma \to \tau$
- t, u ::= $t u \mid fun x \rightarrow t \mid true \mid false \mid if then u else v \mid \Omega$
- Purely functional language with Booleans and divergence (Ω) .

Motivation.

A simple language to discuss

 $\llbracket \texttt{bool} \rrbracket := \{\bot, \texttt{true}, \texttt{false} \}$

The Language of Finitary PCF.

- au, σ ::= **bool** | $\sigma \to \tau$
- t, u ::= $t u \mid fun x \rightarrow t \mid true \mid false \mid if then u else v \mid \Omega$
- Purely functional language with Booleans and divergence (Ω).

We assume *call-by-name* evaluation:

$$(\texttt{fun } x \to t) u = t[u/x]$$

if true then t else $u = t$
if false then t else $u = u$

Example.

Consider the two following or programs:

or_l := fun a, b -> if a then a else b

VS

or_r := fun a, b ->
 if b then b else a

VS

Example.

Consider the two following or programs:

or_r := fun a, b -> if b then b else a

Questions.

- What are the functions [[or_1]], [[or_r]]?
- Are the programs or_1 and or_r equivalent ?

Example.

Consider the two following or programs:

vs

or_r := fun a, b -> if b then b else a

Questions.

- What are the functions [[or_1]], [[or_r]] ?
- Are the programs or_1 and or_r equivalent ?

Example.

Consider, for $b \in \{\texttt{true}, \texttt{false}\}$, the program

```
taste_b := fun f ->
if f(true, Ω) and
f(Ω, true) and
not(f(false, false))
then b
else true
```

Example.

Consider the two following or programs:

vs

or_r := fun a, b -> if b then b else a

Questions.

- What are the functions [[or_1]], [[or_r]] ?
- Are the programs or_1 and or_r equivalent ?

Example.

Consider, for $b \in \{true, false\}$, the program

```
taste_b := fun f ->
if f(true, Ω) and
f(Ω, true) and
not(f(false, false))
then b
else true
```

Questions.

- Do we have [[taste_true]] = [[taste_false]] ?
- Are taste_true and taste_false equivalent ?

CLAIRAMBAULT & RIBA (LIP - ENS de Lyon)

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

 au, σ ::= ... | nat

 $t, u ::= \dots | t+1 | t-1 | z? | Y | \underline{n}$ (for each $n \in \mathbb{N}$)

► Y is a *fixpoint* combinator:

$$Yt = t(Yt)$$

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

 au, σ ::= ... | nat

 $t, u ::= \dots | t+1 | t-1 | z? | Y | \underline{n}$ (for each $n \in \mathbb{N}$)

Y is a *fixpoint* combinator:

$$Yt = t(Yt)$$

Examples.

We could have defined

$$\Omega$$
 := $Y(\texttt{fun } x \to x)$

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

 au,σ ::= ... | nat

 $t, u ::= \dots | t+1 | t-1 | z? | Y | \underline{n}$ (for each $n \in \mathbb{N}$)

Y is a *fixpoint* combinator:

$$Yt = t(Yt)$$

Examples.

We could have defined

$$\Omega$$
 := $Y(\texttt{fun } x \to x)$

Addition

$$add \underline{0} u = u$$

 $add t+1 u = (add t u)+1$

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

 au,σ ::= ... | nat

 $t, u ::= \dots | t+1 | t-1 | z? | Y | \underline{n}$ (for each $n \in \mathbb{N}$)

> Y is a *fixpoint* combinator:

$$Yt = t(Yt)$$

Examples.

We could have defined

$$\Omega$$
 := $Y(\texttt{fun } x \to x)$

Addition

add
$$\underline{0} u = u$$

add $t+1 u = (add t u)+1$

can be defined as

where

A Denotational Semantics for PCF ?

• each type τ to be interpreted as a set $[\tau]$,

- each type τ to be interpreted as a set $[\tau]$,
- a program *t* of type say $\sigma \rightarrow \tau$ to be interpreted as a function

 $\llbracket t \rrbracket \hspace{0.1 cm} : \hspace{0.1 cm} \llbracket \sigma \rrbracket \hspace{0.1 cm} \longrightarrow \hspace{0.1 cm} \llbracket \tau \rrbracket$

- each type τ to be interpreted as a set $[\tau]$,
- a program *t* of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$\llbracket t \rrbracket \ : \ \llbracket \sigma \rrbracket \ \longrightarrow \ \llbracket \tau \rrbracket$$

Difficulty.

Equation

$$Yt = t(Yt)$$

imposes

$$\llbracket Y \rrbracket : (S \to S) \longrightarrow S$$

- each type τ to be interpreted as a set [[τ]],
- a program *t* of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$\llbracket t \rrbracket \ : \ \llbracket \sigma \rrbracket \ \longrightarrow \ \llbracket \tau \rrbracket$$

Difficulty.

Equation

$$Yt = t(Yt)$$

imposes

$$\llbracket Y \rrbracket : (S \to S) \longrightarrow S$$

Traditional Solution.

► Restrict S → S to the continuous functions for a suitable topology (cpos, Scott domains, etc).

- each type τ to be interpreted as a set [[τ]],
- a program t of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$\llbracket t \rrbracket \ : \ \llbracket \sigma \rrbracket \ \longrightarrow \ \llbracket \tau \rrbracket$$

Difficulty.

Equation

$$Yt = t(Yt)$$

imposes

$$\llbracket Y \rrbracket : (S \to S) \longrightarrow S$$

Traditional Solution.

► Restrict S → S to the continuous functions for a suitable topology (cpos, Scott domains, etc).

Gödel's System T.

▶ Restrict *Y* to recursion over ℕ:

$$\mathbf{rec} \ u \ v \ \underline{0} = u \\ \mathbf{rec} \ u \ v \ t + \mathbf{1} = v \ t \ (\mathbf{rec} \ u \ v \ t)$$

- each type τ to be interpreted as a set [[τ]],
- a program *t* of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$\llbracket t \rrbracket \ : \ \llbracket \sigma \rrbracket \ \longrightarrow \ \llbracket \tau \rrbracket$$

Difficulty.

Equation

$$Yt = t(Yt)$$

imposes

$$\llbracket Y \rrbracket : (S \to S) \longrightarrow S$$

Traditional Solution.

► Restrict S → S to the continuous functions for a suitable topology (cpos, Scott domains, etc).

Gödel's System T.

▶ Restrict *Y* to recursion over ℕ:

$$\mathbf{rec} \ u \ v \ \underline{0} = u \\ \mathbf{rec} \ u \ v \ t + \mathbf{1} = v \ t \ (\mathbf{rec} \ u \ v \ t)$$

Allows to see important basic techniques in a simple setting.

Rough Outline

Indicative Outline

Courses 1–6:

(<u>C. RIBA</u>)

- Set-theoretic semantics of System T.
- Denotational semantics of PCF (cpos, logical relations).
- Further topics among:
 - Polymorphism (Girard-Reynolds System F).
 - Recursive types.
 - Intersection types.
 - Scott domains and PCF definability.
 - Results on the set-theoretic semantics of the simply-typed λ -calculus.

Indicative Outline

Courses 1–6:

(C. RIBA)

- Set-theoretic semantics of System T.
- Denotational semantics of PCF (cpos, logical relations).
- Further topics among:
 - Polymorphism (Girard-Reynolds System F).
 - Recursive types.
 - Intersection types.
 - Scott domains and PCF definability.
 - Results on the set-theoretic semantics of the simply-typed λ -calculus.

Courses 7–12:

- Categories, functors and natural transformations.
- Cartesian closed categories and the λ-calculus.
- Monads.
- Further topics among:
 - Categorical models of linear logic.
 - Game semantics.

(P. CLAIRAMBAULT)

Indicative Outline

Courses 1–6:

- Set-theoretic semantics of System T.
- Denotational semantics of PCF (cpos, logical relations).
- Further topics among:
 - Polymorphism (Girard-Reynolds System F).
 - Recursive types.
 - Intersection types.
 - Scott domains and PCF definability.
 - Results on the set-theoretic semantics of the simply-typed λ -calculus.

Courses 7–12:

- Categories, functors and natural transformations.
- Cartesian closed categories and the λ-calculus.
- Monads.
- Further topics among:
 - Categorical models of linear logic.
 - Game semantics.

Courses 13–: Survey of Some Active Research Topics.

(P. CLAIRAMBAULT)

(C. RIBA)