Advanced Semantics of Programming Languages

Pierre Clairambault \& Colin Riba

LIP - ENS de Lyon
Course 01
09/11

A Naive Introduction

(based on simple examples)

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) + f(5)
```

```
bar(f:int->int):
    a=f(5)
    return a + a
```


The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) + f(5)
```

and

```
bar(f:int->int):
    a = f(5)
    return a + a
```

Are these two programs equivalent?

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) + f(5)
```

and $\quad \begin{aligned} & \text { bar (f:int->int) : } \\ & \left.\quad \begin{array}{l}a=f(5) \\ \text { return } a+a\end{array}\right]\end{aligned}$

Are these two programs equivalent?

- They are not equivalent if \mathbf{f} can access a global reference.

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) +f(5)
```

and $\quad \begin{aligned} & \text { bar }(f: \text { int->int }): \\ & \quad a=f(5) \\ & \\ & \\ & \\ & \text { return } a+a\end{aligned}$

Are these two programs equivalent?

- They are not equivalent if \mathbf{f} can access a global reference.
- They are equivalent if \mathbf{f} behaves as a function, say

$$
\llbracket f \rrbracket: \llbracket \text { int } \rrbracket \longrightarrow \llbracket \text { int } \rrbracket
$$

where \llbracket int \rrbracket is a set representing the type int.

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) +f(5)
```

and $\quad \begin{aligned} & \text { bar }(f: \text { int->int }): \\ & \quad a=f(5) \\ & \\ & \\ & \\ & \\ & \end{aligned}$

Are these two programs equivalent?

- They are not equivalent if \mathbf{f} can access a global reference.
- They are equivalent if \mathbf{f} behaves as a function, say

$$
\llbracket f \rrbracket: \llbracket \text { int } \rrbracket \longrightarrow \llbracket \text { int } \rrbracket
$$

where $\llbracket i n t \rrbracket$ is a set representing the type int.
Objectives of the course.

- Mathematical models of programming languages (denotational semantics, category theory, type systems).

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) +f(5)
and
```

```
bar(f:int->int):
    a = f(5)
    return a + a
```

Are these two programs equivalent?

- They are not equivalent if \mathbf{f} can access a global reference.
- They are equivalent if \mathbf{f} behaves as a function, say

$$
\llbracket f \rrbracket: \llbracket \text { int } \rrbracket \longrightarrow \llbracket \text { int } \rrbracket
$$

where $\llbracket i n t \rrbracket$ is a set representing the type int.

Objectives of the course.

- Mathematical models of programming languages (denotational semantics, category theory, type systems).

Methodology of the course.

- Begin with simple approaches.
- Then progressively model more complex behaviours.

The First Example

Consider the programs

```
foo(f:int->int):
    return f(5) +f(5)
and
```

```
bar(f:int->int):
```

Are these two programs equivalent?

- They are not equivalent if f can access a global reference.
- They are equivalent if $£$ behaves as a function, say

$$
\llbracket f \rrbracket: \llbracket \text { int } \rrbracket \longrightarrow \llbracket \text { int } \rrbracket
$$

where $\llbracket i n t \rrbracket$ is a set representing the type int.

Objectives of the course.

- Mathematical models of programming languages (denotational semantics, category theory, type systems).

Methodology of the course.

- Begin with simple approaches.
- Then progressively model more complex behaviours.

Now:

- A naive introduction to some basic ideas.

Types as Sets

－Assume types，say int，bool，are to be interpreted as sets 【int】，【bool】．

Types as Sets

- Assume types, say int, bool, are to be interpreted as sets \llbracket int \rrbracket, 【bool】. Question.
- Can we assume

$$
\begin{equation*}
\llbracket \text { bool } \rrbracket:=\{\text { true, false }\} \tag{1}
\end{equation*}
$$

Types as Sets

- Assume types, say int, bool, are to be interpreted as sets \llbracket int \rrbracket, 【bool】.

Question.

- Can we assume

$$
\begin{equation*}
\llbracket \text { bool } \rrbracket:=\{\text { true, false }\} \tag{1}
\end{equation*}
$$

Answer.

- Consider the non-terminating program

$$
\begin{gathered}
\text { loop (b:bool): } \\
\text { while true: } \\
\text { skip } \\
\text { return true }
\end{gathered}
$$

Types as Sets

－Assume types，say int，bool，are to be interpreted as sets 【int】，【bool】．

Question．

－Can we assume

$$
\begin{equation*}
\llbracket \text { bool } \rrbracket:=\{\text { true, false }\} \tag{1}
\end{equation*}
$$

Answer．

－Consider the non－terminating program

$$
\begin{aligned}
& \text { loop (b:bool): } \\
& \text { while true: } \\
& \text { skip } \\
& \text { return true }
\end{aligned}
$$

－If \llbracket bool \rrbracket is as in（1），then we can not have

$$
\llbracket \mathrm{loop} \rrbracket: \llbracket \mathrm{bool} \mathrm{\rrbracket} \longrightarrow \text { 【bool】 }
$$

Types as Sets

－Assume types，say int，bool，are to be interpreted as sets 【int】，【bool】．

Question．

－Can we assume

$$
\begin{equation*}
\llbracket \mathrm{bool} \rrbracket:=\quad\{\text { true, false }\} \tag{1}
\end{equation*}
$$

Answer．

－Consider the non－terminating program

$$
\begin{gathered}
\text { loop (b:bool): } \\
\text { while true: } \\
\text { skip } \\
\text { return true }
\end{gathered}
$$

－If $\llbracket b o o l \rrbracket$ is as in（1），then we can not have

$$
\llbracket \mathrm{loop} \rrbracket: \llbracket \mathrm{bool} \rrbracket \longrightarrow \text { 【bool } \rrbracket
$$

－We shall therefore represent divergence and assume

$$
\llbracket \text { bool } \rrbracket:=\{\perp, \text { true, false }\} \quad(\perp \text { " }=\text { " divergence })
$$

We can then have，as expected：

$$
\llbracket l o o p \rrbracket(a)=\perp
$$

A Taste of Finitary PCF

Motivation.

- A simple language to discuss

$$
\llbracket \mathrm{bool} \rrbracket:=\{\perp, \text { true, false }\}
$$

A Taste of Finitary PCF

Motivation.

- A simple language to discuss

$$
\llbracket \text { bool】 }:=\{\perp, \text { true, false }\}
$$

The Language of Finitary PCF.

$\tau, \sigma \quad::=$ bool $\quad \sigma \rightarrow \tau$
$t, u \quad::=t u \quad \mid \quad$ fun $x \rightarrow t \quad \mid$ true \mid false \mid if t then u else $v \quad \Omega$

A Taste of Finitary PCF

Motivation.

- A simple language to discuss

$$
\llbracket \text { bool】 }:=\{\perp, \text { true, false }\}
$$

The Language of Finitary PCF.

$\tau, \sigma \quad::=$ bool $\quad \sigma \rightarrow \tau$
$t, u \quad:=t u \quad \mid$ fun $x \rightarrow t \mid$ true \mid false \mid if t then u else $v \mid \Omega$

- Purely functional language with Booleans and divergence (Ω).

A Taste of Finitary PCF

Motivation.

- A simple language to discuss

$$
\llbracket \text { bool } \rrbracket:=\{\perp, \text { true, false }\}
$$

The Language of Finitary PCF.

```
\tau,\sigma ::= bool | \sigma->\tau
t,u ::= tu | fun }x->t|\mathrm{ true | false | if t then }u\mathrm{ else v | }
```

- Purely functional language with Booleans and divergence (Ω).

We assume call-by-name evaluation:

$$
\begin{aligned}
(\text { fun } x \rightarrow t) u & =t[u / x] \\
\text { if true then } t \text { else } u & =t \\
\text { if false then } t \text { else } u & =u
\end{aligned}
$$

Example.

Consider the two following or programs:

$$
\begin{array}{r}
\text { or_l }:=\text { fun } a, b-> \\
\text { if } a \text { then } a \text { else } b
\end{array}
$$

vs

$$
\begin{aligned}
& \text { or_r := fun } a, b-> \\
& \text { if } b \text { then } b \text { else } a
\end{aligned}
$$

Example.

Consider the two following or programs:

or_l $:=$ fun $a, ~ b->$
if a then a else b
---:
if b then b else a

Questions.

- What are the functions $\llbracket 0 r_{-} _\rrbracket$, $\llbracket 0 r_{_} r \rrbracket$?
- Are the programs or_1 and or_r equivalent?

Example.

Consider the two following or programs:

Questions.

- What are the functions $\llbracket 0 r_{1} _\mathbf{1} \rrbracket$, $\llbracket 0 r_{_} \mathbf{r} \rrbracket$?
- Are the programs or_1 and or_r equivalent?

Example.

Consider, for $\mathbf{b} \in\{$ true, false $\}$, the program

```
taste_b := fun f ->
    if f(true, \Omega) and
        f(\Omega, true) and
        not(f(false, false))
    then b
    else true
```


Example．

Consider the two following or programs：
or_l := fun a, b ->
or_l := fun a, b ->
if a then a else b
if a then a else b
or_r := fun a, b ->
or_r := fun a, b ->
if b then b else a
if b then b else a

Questions．

－What are the functions $\llbracket 0 r_{-1 \rrbracket} \downarrow$ ， 0 or＿r】？
－Are the programs or＿1 and or＿r equivalent？

Example．

Consider，for $\mathbf{b} \in\{$ true，false $\}$ ，the program

```
taste_b := fun f ->
    if f(true, \Omega) and
        f(\Omega, true) and
        not(f(false, false))
    then b
    else true
```


Questions．

－Do we have \llbracket taste＿true】 $=$ 【taste＿false】？
－Are taste＿true and taste＿false equivalent？

A Taste of PCF

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

A Taste of PCF

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

$$
\begin{array}{rll|l|l|l|lll}
\tau, \sigma & := & \ldots & \text { nat } & & & \\
t, u & := & \cdots & t+1 & t-1 & \mathbf{z} ? & Y & \underline{n} \quad(\text { for each } n \in \mathbb{N})
\end{array}
$$

- Y is a fixpoint combinator:

$$
Y t=t(Y t)
$$

A Taste of PCF

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

$$
\begin{array}{rll|l|l|l|lll}
\tau, \sigma & := & \ldots & \text { nat } & & & \\
t, u & := & \cdots & t+1 & t-1 & \mathbf{z} ? & Y & \underline{n} \quad(\text { for each } n \in \mathbb{N})
\end{array}
$$

- Y is a fixpoint combinator:

$$
Y t=t(Y t)
$$

Examples.

- We could have defined

$$
\Omega:=Y(\operatorname{fun} x \rightarrow x)
$$

A Taste of PCF

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

$$
\begin{array}{rll|l|l|l|l|ll}
\tau, \sigma & := & \ldots & \text { nat } & & & \\
t, u & ::= & \cdots & t+1 & t-1 & \mathbf{z} ? & Y & \underline{n} \quad(\text { for each } n \in \mathbb{N})
\end{array}
$$

- Y is a fixpoint combinator:

$$
Y t=t(Y t)
$$

Examples.

- We could have defined

$$
\Omega:=Y(\operatorname{fun} x \rightarrow x)
$$

- Addition

$$
\begin{array}{ll}
\operatorname{add} \underline{0} u & =u \\
\operatorname{add} t+1 u & =(\operatorname{add} t u)+1
\end{array}
$$

A Taste of PCF

Motivation.

- Extend Finitary PCF with general recursion.
- Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

$$
\begin{array}{rll|l|l|llll}
\tau, \sigma & := & \ldots & \text { nat } & & & \\
t, u & := & \cdots & t+1 & t-1 & \mathbf{z} ? & Y & \underline{n} \quad(\text { for each } n \in \mathbb{N})
\end{array}
$$

- Y is a fixpoint combinator:

$$
Y t=t(Y t)
$$

Examples.

- We could have defined

$$
\Omega:=Y(\operatorname{fun} x \rightarrow x)
$$

- Addition

$$
\begin{array}{ll}
\operatorname{add} \underline{0} u & =u \\
\operatorname{add} t+1 u & =(\text { add } t u)+1
\end{array}
$$

can be defined as

$$
\text { add }:=Y \text { add_rec }
$$

where

```
add_rec := fun f, x, y ->
    if (z? x) then }Y\mathrm{ else (f x-1 y)+1
```


A Denotational Semantics for PCF ?

A Denotational Semantics for PCF ? We Would Like

- each type τ to be interpreted as a set $\llbracket \tau \rrbracket$,

A Denotational Semantics for PCF ?

We Would Like

- each type τ to be interpreted as a set $\llbracket \tau \rrbracket$,
- a program t of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$
\llbracket t \rrbracket: \llbracket \sigma \rrbracket \longrightarrow \llbracket \tau \rrbracket
$$

A Denotational Semantics for PCF ?

We Would Like

- each type τ to be interpreted as a set $\llbracket \tau \rrbracket$,
- a program t of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$
\llbracket t \rrbracket: \llbracket \sigma \rrbracket \longrightarrow \llbracket \tau \rrbracket
$$

Difficulty.

- Equation

$$
Y t=t(Y t)
$$

imposes

$$
\llbracket Y \rrbracket:(S \rightarrow S) \longrightarrow S
$$

A Denotational Semantics for PCF?

We Would Like

- each type τ to be interpreted as a set $\llbracket \tau \rrbracket$,
- a program t of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$
\llbracket t \rrbracket: \llbracket \sigma \rrbracket \longrightarrow \llbracket \tau \rrbracket
$$

Difficulty.

- Equation

$$
Y t=t(Y t)
$$

imposes

$$
\llbracket Y \rrbracket:(S \rightarrow S) \longrightarrow S
$$

Traditional Solution.

- Restrict $S \rightarrow S$ to the continuous functions for a suitable topology (cpos, Scott domains, etc).

A Denotational Semantics for PCF?

We Would Like

- each type τ to be interpreted as a set $\llbracket \tau \rrbracket$,
- a program t of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$
\llbracket t \rrbracket: \llbracket \sigma \rrbracket \longrightarrow \llbracket \tau \rrbracket
$$

Difficulty.

- Equation

$$
Y t=t(Y t)
$$

imposes

$$
\llbracket Y \rrbracket:(S \rightarrow S) \longrightarrow S
$$

Traditional Solution.

- Restrict $S \rightarrow S$ to the continuous functions for a suitable topology (cpos, Scott domains, etc).

Gödel's System T.

- Restrict Y to recursion over \mathbb{N} :

$$
\begin{aligned}
\operatorname{rec} u \vee \underline{0} & =u \\
\operatorname{rec} u v t+1 & =v t(\operatorname{rec} u v t)
\end{aligned}
$$

A Denotational Semantics for PCF?

We Would Like

- each type τ to be interpreted as a set $\llbracket \tau \rrbracket$,
- a program t of type say $\sigma \rightarrow \tau$ to be interpreted as a function

$$
\llbracket t \rrbracket: \llbracket \sigma \rrbracket \longrightarrow \llbracket \tau \rrbracket
$$

Difficulty.

- Equation

$$
Y t=t(Y t)
$$

imposes

$$
\llbracket Y \rrbracket:(S \rightarrow S) \longrightarrow S
$$

Traditional Solution.

- Restrict $S \rightarrow S$ to the continuous functions for a suitable topology (cpos, Scott domains, etc).

Gödel's System T.

- Restrict Y to recursion over \mathbb{N} :

$$
\begin{array}{ll}
\operatorname{rec} u v \underline{0} & =u \\
\operatorname{rec} u v t+1 & =v t(\operatorname{rec} u v t)
\end{array}
$$

- Allows to see important basic techniques in a simple setting.

Rough Outline

Indicative Outline

Courses 1-6:

- Set-theoretic semantics of System T.
- Denotational semantics of PCF (cpos, logical relations).
- Further topics among:
- Polymorphism (Girard-Reynolds System F).
- Recursive types.
- Intersection types.
- Scott domains and PCF definability.
- Results on the set-theoretic semantics of the simply-typed λ-calculus.

Indicative Outline

Courses 1-6:

- Set-theoretic semantics of System T.
- Denotational semantics of PCF (cpos, logical relations).
- Further topics among:
- Polymorphism (Girard-Reynolds System F).
- Recursive types.
- Intersection types.
- Scott domains and PCF definability.
- Results on the set-theoretic semantics of the simply-typed λ-calculus.

Courses 7-12:

- Categories, functors and natural transformations.
- Cartesian closed categories and the λ-calculus.
- Monads.
- Further topics among:
- Categorical models of linear logic.
- Game semantics.

Indicative Outline

Courses 1-6:

- Set-theoretic semantics of System T.
- Denotational semantics of PCF (cpos, logical relations).
- Further topics among:
- Polymorphism (Girard-Reynolds System F).
- Recursive types.
- Intersection types.
- Scott domains and PCF definability.
- Results on the set-theoretic semantics of the simply-typed λ-calculus.

Courses 7-12:

- Categories, functors and natural transformations.
- Cartesian closed categories and the λ-calculus.
- Monads.
- Further topics among:
- Categorical models of linear logic.
- Game semantics.

Courses 13-: Survey of Some Active Research Topics.

