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Naive Introduction

A Naive Introduction
(based on simple examples)
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Naive Introduction

The First Example
Consider the programs

foo(f:int->int):
return f(5) + f(5) and

bar(f:int->int):
a = f(5)
return a + a

Are these two programs equivalent ?
I They are not equivalent if f can access a global reference.
I They are equivalent if f behaves as a function, say

JfK : JintK −→ JintK

where JintK is a set representing the type int.

Objectives of the course.
I Mathematical models of programming languages

(denotational semantics, category theory, type systems).

Methodology of the course.
I Begin with simple approaches.
I Then progressively model more complex behaviours.

Now:
I A naive introduction to some basic ideas.
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Naive Introduction

Types as Sets
I Assume types, say int, bool, are to be interpreted as sets JintK, JboolK.

Question.
I Can we assume

JboolK := {true,false} (1)
Answer.
I Consider the non-terminating program

loop (b:bool):
while true:

skip
return true

I If JboolK is as in (1), then we can not have

JloopK : JboolK −→ JboolK

I We shall therefore represent divergence and assume

JboolK := {⊥,true,false} (⊥ “=” divergence)

We can then have, as expected:

JloopK(a) = ⊥ (for all a ∈ JboolK)
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Naive Introduction

A Taste of Finitary PCF

Motivation.
I A simple language to discuss

JboolK := {⊥,true,false}

The Language of Finitary PCF.

τ, σ ::= bool | σ → τ

t , u ::= t u | fun x → t | true | false | if t then u else v | Ω

I Purely functional language with Booleans and divergence (Ω).

We assume call-by-name evaluation:

(fun x → t)u = t [u/x ]
if true then t else u = t

if false then t else u = u
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Naive Introduction

Example.
Consider the two following or programs:

or_l := fun a, b ->
if a then a else b vs

or_r := fun a, b ->
if b then b else a

Questions.
I What are the functions Jor_lK, Jor_rK ?
I Are the programs or_l and or_r equivalent ?

Example.
Consider, for b ∈ {true,false}, the program

taste_b := fun f ->
if f(true, Ω) and

f(Ω, true) and
not(f(false, false))

then b
else true

Questions.
I Do we have Jtaste_trueK = Jtaste_falseK ?
I Are taste_true and taste_false equivalent ?
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Naive Introduction

A Taste of PCF
Motivation.
I Extend Finitary PCF with general recursion.
I Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

τ, σ ::= . . . | nat

t , u ::= . . . | t+1 | t-1 | z? | Y | n (for each n ∈ N)
I Y is a fixpoint combinator:

Y t = t (Y t)
Examples.
I We could have defined

Ω := Y (fun x → x)

I Addition
add 0 u = u
add t+1 u = (add t u)+1

can be defined as
add := Y add_rec

where
add_rec := fun f, x, y ->

if (z? x) then y else (f x-1 y)+1
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Naive Introduction

A Denotational Semantics for PCF ?

We Would Like
I each type τ to be interpreted as a set JτK,
I a program t of type say σ → τ to be interpreted as a function

JtK : JσK −→ JτK

Difficulty.
I Equation

Y t = t (Y t)

imposes
JY K : (S → S) −→ S

Traditional Solution.
I Restrict S → S to the continuous functions for a suitable topology

(cpos, Scott domains, etc).
Gödel’s System T.
I Restrict Y to recursion over N:

rec u v 0 = u
rec u v t+1 = v t (rec u v t)

I Allows to see important basic techniques in a simple setting.
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Outline

Rough Outline
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Outline

Indicative Outline

Courses 1–6: (C. RIBA)
I Set-theoretic semantics of System T.
I Denotational semantics of PCF (cpos, logical relations).
I Further topics among:

I Polymorphism (Girard-Reynolds System F).
I Recursive types.
I Intersection types.
I Scott domains and PCF definability.
I Results on the set-theoretic semantics of the simply-typed λ-calculus.

Courses 7–12: (P. CLAIRAMBAULT)
I Categories, functors and natural transformations.
I Cartesian closed categories and the λ-calculus.
I Monads.
I Further topics among:

I Categorical models of linear logic.
I Game semantics.

Courses 13–: Survey of Some Active Research Topics.
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