The solutions must be sent either in paper or by email at colin.riba@ens-lyon.fr before the course of 28th of October. The questions marked with an asterisk (*) are optional and will not be graded.

1 Algebraicity and Scott Domains

Basic definitions from the course are recalled in Appendix A. Our goal here is to study the following notion.

Definition 1.1 (Finite Element of a CPO). Let (A, \leq) be a CPO. We say that $a \in A$ is finite if for each directed $X \subseteq A$ such that $a \leq \bigvee X$, we have $a \leq b$ for some $b \in X$.

Definition 1.2 (Algebraic CPO). A CPO (A, \leq) is algebraic if for every element $a \in A$, the set

 $\{b \in A \mid b \text{ is finite and } \leq a\}$

is directed and has supremum a.

Question 1.

(1) Show that each element of [nat] is finite.

(2) Show that [nat] is algebraic.

We are going to prove that each $[\tau]$ is algebraic. This relies on the following fundamental notion.

Definition 1.3. Consider two types σ and τ , and two finite elements $a \in [\![\sigma]\!]$ and $b \in [\![\tau]\!]$. The step function $(a \Rightarrow b) : [\![\sigma]\!] \to [\![\tau]\!]$ is defined as

$$(a \Rightarrow b)(x) \quad := \quad \left\{ \begin{array}{ll} b & \text{if } a \sqsubseteq_{\llbracket \sigma \rrbracket} x \\ \bot_{\llbracket \tau \rrbracket} & \text{otherwise} \end{array} \right.$$

Question 2. Consider two types σ and τ , and two finite elements $a \in [\![\sigma]\!]$ and $b \in [\![\tau]\!]$.

- (1) Show that $(a \Rightarrow b)$ is Scott-continuous.
- (2) Show that $(a \Rightarrow b)$ is a finite element of $[\![\sigma \rightarrow \tau]\!]$.

In order to show that the interpretation of a function type $\sigma \to \tau$ is an algebraic CPO, we need a description of the finite elements of $[\![\sigma \to \tau]\!]$. The latter will turn out to be some finite supremums of steps functions. But not every finite set of step functions admits a supremum. We shall thus be concerned with the existence of **some** finite supremums.

Definition 1.4 (Bounded-Complete CPO). A CPO (A, \leq) is **bounded-complete** if for each finite subset $X \subseteq A$, if X has an upper bound in A (i.e. if there is some $a \in A$ such that $a \geq x$ for all $x \in X$), then X has a supremum (i.e. a least upper bound) $\bigvee X \in A$.

Q. 2

Q. 1

Question 3. Show that for each type τ , the CPO $\llbracket \tau \rrbracket$ is bounded-complete.

Question 4. Fix two types σ and τ . Consider, for some $k \ge 1$, some finite elements $a_1, \ldots, a_k \in [\![\sigma]\!]$ and $b_1, \ldots, b_k \in [\![\tau]\!]$. Show that the function

$$(a_1 \Rightarrow b_1) \sqcup \cdots \sqcup (a_k \Rightarrow b_k)$$

is defined if for each $I \subseteq \{1, ..., k\}$ such that $\{a_i \mid i \in I\}$ has an upper bound, the set $\{b_i \mid i \in I\}$ has an upper bound as well.

Definition 1.5. Fix two types σ and τ . Given $f \in [\![\sigma \to \tau]\!]$, define

 $\Downarrow(f) \quad := \quad \{(a \Rightarrow b) \mid a \in \llbracket \sigma \rrbracket \text{ and } b \in \llbracket \tau \rrbracket \text{ are finite and } (a \Rightarrow b) \sqsubseteq f \}$

Question 5. Let $f \in [\![\sigma \to \tau]\!]$. Show that for each finite subset $F \subseteq \downarrow(f)$, the function $\bigsqcup F$ is defined and finite.

We are now going to see that for each $f \in \llbracket \sigma \to \tau \rrbracket$ we have

$$f = \bigsqcup \{ \bigsqcup F \mid F \text{ is a finite subset of } \Downarrow(f) \}$$

Question 6. Let $f \in [\![\sigma \to \tau]\!]$, where $[\![\sigma]\!]$ and $[\![\tau]\!]$ are algebraic.

(1) Show that the set

 $\{ \left| F \mid F \text{ is a finite subset of } \downarrow(f) \right\}$

is directed has supremum f.

(2) Assume that f is a finite element of $[\sigma \to \tau]$. Show that $f = \bigsqcup F$ for some finite set F of step functions.

Question 7. Show that for each τ , the CPO $\llbracket \tau \rrbracket$ is algebraic.

2 Definability in PCF

We are now going to discuss whether some $a \in [[\tau]]$ can be defined by a PCF term $\vdash t : \tau$. We rely on some results of §1.

Definition 2.1. We say that an element $a \in [[\tau]]$ is definable if there is some $\vdash t : \tau$ such that [[t]] = a.

Question^{*} 8.

(1) Show that for each type τ , the least element $\perp_{\llbracket \tau \rrbracket}$ of $\llbracket \tau \rrbracket$ is definable.

(2) Show that each element of [nat] is definable.

Question* 9. Give some $f \in [nat \rightarrow nat]$ which is not definable.

We shall only be interested in the definability of the **finite** $a \in [[\tau]]$ (in the sense of Def. 1.1).

Question* 10. Show that each step function $(a \Rightarrow b) \in [[nat \rightarrow nat]]$ is definable.

Let $f \in [[nat \to nat]]$. We are going to show that f is definable whenever it is finite. This relies on the following. Define the **graph** of f to be the set

$$\operatorname{Gph}(f) := \{(n, f(n)) \mid n \in \mathbb{N} \text{ and } f(n) \in \mathbb{N}\}\$$

Q.	3	
Q.	4	

Q. 6

Q. 7

*Q. 8

Q. 9)
------	---

*Q. 10

Question* 11. Consider a function $f \in [[nat \rightarrow nat]]$ which is strict and different from $\perp_{[[nat \rightarrow nat]]}$. Show that the following are equivalent:

- (a) Gph(f) is a finite set.
- (b) f is of the form

$$(n_1 \Rightarrow m_1) \sqcup \cdots \sqcup (n_k \Rightarrow m_k)$$

for some $k \geq 1$ and with $n_i \neq n_j$ whenever $i \neq j$.

(c) f is finite.

Question* 12. Give an $f \in [[nat \to nat]]$ which is finite, different from $\perp_{[[nat \to nat]]}$ but such that Gph(f) is infinite.

Question* 13. Show that if $f \in [nat \rightarrow nat]$ is finite, then f is definable.

We would like to extend this result to each type of PCF. This is however **not** possible, because of the famous "parallel or" function.

Definition 2.2 (Parallel Or). The function $por : [nat] \to [nat] \to [nat]$ is defined as

Question* 14. Show that por is a finite element of $[nat] \rightarrow [nat] \rightarrow [nat]$.

It is well-known that **por** is not definable in PCF. However, if we extend PCF with a constant for **por** then we can obtain a language in which every finite element is definable.

The bounded-complete algebraic CPOs are called **Scott domains**. They are of fundamental importance for denotational semantics, in particular for the following reason. Say that two (closed) terms t, u of type τ are **observationally equivalent** (notation $t \equiv u$) if for every closed term C of type $\tau \rightarrow \operatorname{nat}$,

$$\forall n \in \mathbb{N} \left(Ct \vartriangleright^* \underline{n} \quad \Longleftrightarrow \quad Cu \vartriangleright^* \underline{n} \right)$$

Consider an extension PCF^* of PCF , together with an interpretation $[\![-]\!]^*$ which takes each type τ of PCF^* to a Scott domain $[\![\tau]\!]^*$ and each closed term t of type τ to some $[\![t]\!]^* \in [\![\tau]\!]^*$. We assume tat $[\![\mathsf{nat}]\!]^* = [\![\mathsf{nat}]\!]$ and that $[\![\sigma \to \tau]\!]^*$ is a set of Scott-continuous functions $[\![\sigma]\!]^* \to [\![\tau]\!]^*$ ordered pointwise. We furthermore require $[\![-]\!]^*$ to be compositional, to be preserved by evaluation and to be computationally adequate. The algebraicity of Scott domains implies that if the finite elements of each $[\![\tau]\!]^*$ are definable, then $[\![-]\!]^*$ is **fully abstract**, in the sense that for all terms t, u of the same type, we have

$$t \equiv u \quad \iff \quad \llbracket t \rrbracket^* = \llbracket u \rrbracket^*$$

Question* 15. Prove the last assertion above.

	-	,	
۰			
- 2	-		

		_
*Q.	13	
		_

*Q. 14

*Q. 11

A PCF and its Denotational Semantics

We recall here the definition of the language PCF and its Scott-continuous denotational semantics. The **types** of PCF are given by the grammar:

$$au, \sigma$$
 ::= nat $\mid \sigma
ightarrow au$

The **terms** of PCF are given by the grammar:

where $n \in \mathbb{N}$ (so that we have a **numeral** <u>n</u> for each natural number $n \in \mathbb{N}$). The evaluation relation \triangleright is defined by the following rules:

$\overline{(\lambda x:\sigma.t)u} \hspace{0.2cm} \rhd$	t[u/x] <u>n</u> +	$1 \triangleright \underline{n+1}$	$\underline{n+1}-1 \triangleright \underline{n}$	$\underline{0-1} \triangleright \underline{0}$
$\overline{ \text{if } \underline{0} \text{ then } u \text{ els} }$	$e v \triangleright u$	$\overline{ \text{if } \underline{n+1} } \text{ then } u$	else $v \vartriangleright v$	$\overline{Yt} \vartriangleright t(Yt)$
_	$t \vartriangleright u$	$t \vartriangleright u$	$t \vartriangleright u$	
t	$v \triangleright uv$	$t+1 \triangleright u+1$	$t-1 \triangleright u-1$	
	$\overline{ ext{if } t ext{ then } v ext{ e}}$	$\frac{\iota \vartriangleright u}{\texttt{else } w \vartriangleright \texttt{if } u}$	u then v else w	

We write \triangleright^* for the reflexive-transitive closure of \triangleright . The **typing rules** of PCF are the following:

$$\begin{array}{ccc} \displaystyle \frac{(x:\sigma)\in\Gamma}{\Gamma\vdash x:\sigma} & \displaystyle \frac{\Gamma,x:\sigma\vdash t:\tau}{\Gamma\vdash\lambda x:\sigma.t:\tau} & \displaystyle \frac{\Gamma\vdash t:\sigma\to\tau}{\Gamma\vdash tu:\tau}\\ \\ \displaystyle \frac{\Gamma\vdash \underline{n}:\mathsf{nat}}{\Gamma\vdash \underline{n}:\mathsf{nat}} & \displaystyle \frac{\Gamma\vdash t:\mathsf{nat}}{\Gamma\vdash t+1:\mathsf{nat}} & \displaystyle \frac{\Gamma\vdash t:\mathsf{nat}}{\Gamma\vdash t-1:\mathsf{nat}}\\ \\ \displaystyle \frac{\Gamma\vdash Y^{\sigma}:(\sigma\to\sigma)\to\sigma}{\Gamma\vdash t:\mathsf{nat}} & \displaystyle \frac{\Gamma\vdash t:\mathsf{nat}}{\Gamma\vdash t\mathsf{nat}} & \displaystyle \frac{\Gamma\vdash v:\mathsf{nat}}{\Gamma\vdash t\mathsf{nat}}\\ \end{array}$$

We recall a basic property of PCF.

Lemma A.1 (Subject Reduction). If $\Gamma \vdash t : \tau$ and $t \triangleright u$ then $\Gamma \vdash u : \tau$.

We now turn to the Scott-continuous denotational semantics of PCF.

Definition A.2 (CPO). Let (A, \leq) be a poset.

• Fix some $X \subseteq A$. The supremum $\bigvee X \in A$ of X is (if it exists) the least upper bound of X:

$$\forall a \in X. \ a \leq \bigvee X \qquad and \qquad \forall b \in A\left((\forall a \in X. \ a \leq b) \implies \bigvee X \leq b\right)$$

- A subset $X \subseteq A$ is **directed** if it is non-empty and if for all $a, b \in X$ there is some $c \in X$ such that $a \leq c$ and $b \leq c$.
- We say that A is a complete partial order (CPO) if A has a least element (often denoted $\perp_A \text{ or } \perp$) and if every directed $X \subseteq A$ has a supremum $\bigvee X \in A$.

Definition A.3 (Scott-Continuous Function). Let (A, \leq_A) and (B, \leq_B) be CPOs. A function $f: A \to A$ is Scott-continuous if it is monotone $(a \leq_A a' \text{ implies } f(a) \leq_B f(a'))$ and if for each directed $X \subseteq A$ we have

$$f(\bigvee X) \quad = \quad \bigvee f(X)$$

Definition A.4 (Interpretation of PCF). We define the CPO ($[[\tau]], \sqsubseteq_{\tau}$) by induction on the type τ as follows:

- $[nat] = \mathbb{N} + \{\bot\}$ and $a \sqsubseteq_{nat} b$ iff either a = b or $a = \bot$.
- $\llbracket \sigma \to \tau \rrbracket$ is the set of Scott-continuous functions from $(\llbracket \sigma \rrbracket, \sqsubseteq_{\sigma})$ to $(\llbracket \tau \rrbracket, \sqsubseteq_{\tau})$ equipped with the pointwise ordering:

$$f \sqsubseteq_{\sigma \to \tau} g \qquad \Longleftrightarrow \qquad \forall a \in \llbracket \sigma \rrbracket. \ f(a) \sqsubseteq_{\tau} g(a)$$

Each term $\vdash t : \sigma$ is interpreted by an element $\llbracket t \rrbracket \in \llbracket \sigma \rrbracket$.

We recall the interpretation of the constants of PCF. Each numeral $\vdash \underline{n}$: nat is interpreted by $[\underline{n}] := n \in [\underline{nat}]$. The other constants of PCF are interpreted by the following Scott-continuous functions:

• $\llbracket Y^{\sigma} \rrbracket : \llbracket \sigma \to \sigma \rrbracket \to \llbracket \sigma \rrbracket$ is given by

$$\llbracket Y^{\sigma} \rrbracket(f) \quad := \quad \bigvee_{n \in \mathbb{N}} f^n(\bot)$$

• $\llbracket (-)+1 \rrbracket : \llbracket \texttt{nat} \rrbracket \to \llbracket \texttt{nat} \rrbracket$ is given by

$$\llbracket (-)+1 \rrbracket (a) = \llbracket a+1 \rrbracket := \begin{cases} \bot & \text{if } a = \bot \\ a+1 & \text{if } a \in \mathbb{N} \end{cases}$$

• $\llbracket (-)-1 \rrbracket : \llbracket \texttt{nat} \rrbracket \to \llbracket \texttt{nat} \rrbracket$ is given by

$$\llbracket (-) - \mathbf{1} \rrbracket (a) = \llbracket a - \mathbf{1} \rrbracket := \begin{cases} \bot & \text{if } a = \bot \\ 0 & \text{if } a = 0 \\ a - 1 & \text{if } a > 0 \end{cases}$$

• $\llbracket \texttt{if}(-)\texttt{then}(-)\texttt{else}(-) \rrbracket : \llbracket \texttt{nat} \rrbracket \times \llbracket \texttt{nat} \rrbracket \times \llbracket \texttt{nat} \rrbracket \to \llbracket \texttt{nat} \rrbracket \text{ is given by }$

$$\llbracket \texttt{if}(-)\texttt{then}(-)\texttt{else}(-) \rrbracket (a,b,c) = \llbracket \texttt{if} a\texttt{ then} b\texttt{ else} c \rrbracket := \begin{cases} \bot & \textit{if} a = \bot \\ b & \textit{if} a = 0 \\ c & \textit{if} a > 0 \end{cases}$$

We recall some basic properties.

Lemma A.5. If $\vdash t : \tau$ and $t \triangleright^* u$ then $\llbracket t \rrbracket = \llbracket u \rrbracket$.

Theorem A.6 (Computational Adequacy). Given $\vdash t : \texttt{nat}$, for each $n \in \mathbb{N}$ we have

$$t \vartriangleright^* \underline{n} \quad \Longleftrightarrow \quad [\![t]\!] = n$$