Master 2 in Computer Science 2021-2022

Course CR0O3
Logical Foundations of Programming Languages
Homework

The solutions must be sent either in paper or by email at colin.riba@ens-lyon.fr before the
course of 28th of October. The questions marked with an asterisk () are optional and will not be
graded.

1 Algebraicity and Scott Domains

Basic definitions from the course are recalled in Appendix A. Our goal here is to study the
following notion.

Definition 1.1 (Finite Element of a CPO). Let (A, <) be a CPO. We say that a € A is finite
if for each directed X C A such that a < \/ X, we have a < b for some b € X.

Definition 1.2 (Algebraic CPO). A CPO (A, <) is algebraic if for every element a € A, the
set
{be A | b is finite and < a}

1s directed and has supremum a.

Question 1.

(1) Show that each element of [nat] is finite.

(2) Show that [nat] is algebraic.

We are going to prove that each [7] is algebraic. This relies on the following fundamental notion.

Definition 1.3. Consider two types o and 7, and two finite elements a € [o] and b € [7]. The
step function (a = b) : [o] — [7] is defined as

(a=b)(z) = {b if a Cpop

L otherwise
Question 2. Consider two types o and 7, and two finite elements a € [o] and b € [7].
(1) Show that (a = b) is Scott-continuous.
(2) Show that (a = b) is a finite element of [o — 7].

In order to show that the interpretation of a function type ¢ — 7 is an algebraic CPO, we
need a description of the finite elements of [o — 7]. The latter will turn out to be some finite
supremums of steps functions. But not every finite set of step functions admits a supremum.
We shall thus be concerned with the existence of some finite supremums.

Definition 1.4 (Bounded-Complete CPO). A CPO (A, <) is bounded-complete if for each
finite subset X C A, if X has an upper bound in A (i.e. if there is some a € A such that a > x
for all x € X), then X has a supremum (i.e. a least upper bound) \/ X € A.



Question 3. Show that for each type T, the CPO [7] is bounded-complete. Q.3

Question 4. Fiz two types o and 7. Consider, for some k > 1, some finite elements ay,...,a; €

[o] and by, ..., by € [T]. Show that the function
(a1 = br)U---U(ar = bi)

is defined if for each I C {1,...,k} such that {a; | i € I} has an upper bound, the set {b; | i € I}
has an upper bound as well.

Definition 1.5. Fiz two types o and 7. Given f € [o — 7], define
J(f) = {(a=0b)]|ac]o] and b€ [1] are finite and (a = b) C f}

Question 5. Let f € [o — 7]. Show that for each finite subset F' C |(f), the function | | F' is
defined and finite.

We are now going to see that for each f € [o — 7] we have
f = |_|{|_|F | F'is a finite subset of {(f)}

Question 6. Let f € [o — 7], where [o] and [7] are algebraic.

(1) Show that the set
{|_|F | F is a finite subset of (f)}

is directed has supremum f.

(2) Assume that [ is a finite element of [o — 7]. Show that f = | |F for some finite set F' of
step functions.

Question 7. Show that for each T, the CPO [7] is algebraic.

2 Definability in PCF

We are now going to discuss whether some a € [7] can be defined by a PCF term ¢ : 7. We
rely on some results of §1.

Definition 2.1. We say that an element a € [7] is definable if there is some &t : T such that

[t] = a.

Question* 8. *Q. 8
(1) Show that for each type T, the least element L. of [7] is definable.

(2) Show that each element of [nat] is definable.

Question* 9. Give some f € [nat — nat] which is not definable. *Q. 9
We shall only be interested in the definability of the finite a € [7] (in the sense of Def. 1.1).

Question™ 10. Show that each step function (a = b) € [nat — nat] is definable.

Let f € [nat — nat]. We are going to show that f is definable whenever it is finite. This relies
on the following. Define the graph of f to be the set

Gph(f) = {(n,f(n))[neNand f(n) €N}



Question* 11. Consider a function f € [nat — nat] which is strict and different from

L [nat—nat]- Show that the following are equivalent:
(a) Gph(f) is a finite set.

(b) f is of the form
(n1:>m1)L|"-|_|(nk:>mk)

for some k > 1 and with n; # n; whenever ¢ # j.
(c) f is finite.

Question® 12. Give an f € [nat — nat] which is finite, different from L [qag_nae) but such
that Gph(f) is infinite.

Question* 13. Show that if f € [nat — nat] is finite, then f is definable.

We would like to extend this result to each type of PCF. This is however not possible,
because of the famous “parallel or” function.

Definition 2.2 (Parallel Or). The function por : [nat] — [nat] — [nat] is defined as

0 ifa=0o0rb=0
porab = 1 ifa=1andb=1
Lnat] oOtherwise

Question™ 14. Show that por is a finite element of [nat] — [nat] — [nat].

It is well-known that por is not definable in PCF. However, if we extend PCF with a constant
for por then we can obtain a language in which every finite element is definable.

The bounded-complete algebraic CPOs are called Scott domains. They are of fundamental
importance for denotational semantics, in particular for the following reason. Say that two
(closed) terms t,u of type 7 are observationally equivalent (notation ¢ = w) if for every
closed term C of type 7 — nat,

VnEN(CtD*Q — CUD*@)

Consider an extension PCF* of PCF, together with an interpretation [—]* which takes each type
7 of PCF* to a Scott domain [7]* and each closed term ¢ of type 7 to some [t]* € [7]*. We assume
tat [nat]* = [nat] and that [o — 7]* is a set of Scott-continuous functions [o]]* — [7]* ordered
pointwise. We furthermore require [—]* to be compositional, to be preserved by evaluation and
to be computationaly adequate. The algebraicity of Scott domains implies that if the finite
elements of each [7]* are definable, then [—]* is fully abstract, in the sense that for all terms
t, u of the same type, we have

t=u <= [t]" =[u]*

Question* 15. Prove the last assertion above.



A PCF and its Denotational Semantics

We recall here the definition of the language PCF and its Scott-continuous denotational seman-
tics. The types of PCF are given by the grammar:

T,0 = mnat | o—7T
The terms of PCF are given by the grammar:

tbu = =z | Ae:ot | tu | Y7 | t+1 | t—1 | n
| if ¢t thenu elsev

where n € N (so that we have a numeral n for each natural number n € N). The evaluation
relation > is defined by the following rules:

Az :ot)u > tlu/x] n+1 > n+1 n+l—1 > n 0—1 > 0

if Qthenuelsev > u ifn+1thenuelsev > w Yt > t(Yt)

t > u t > u t > u
tv > wuv t+1 > u+1 t—1 > u—1

t > u
if tthenvelsew > if u thenvelsew

We write >* for the reflexive-transitive closure of . The typing rules of PCF are the following:

(x:0)el Fx:obt:T F't:o—7 N'u:o
I'Fz:o 'kFXe:ot:T F'Ftu:r

I't:nat 't :nat
I'n:nat I't+1:nat I'Ht—1:nat

I'Ft:nat I' - w:nat I'Fv:nat
rcYe:(oc—o)—o ' if ¢ then u else v : nat

We recall a basic property of PCF.

Lemma A.1 (Subject Reduction). IfI'Ft¢:7 andt>u then ' : 7.
We now turn to the Scott-continuous denotational semantics of PCF.

Definition A.2 (CPO). Let (A, <) be a poset.

o Fiz some X C A. The supremum \/ X € A of X is (if it exists) the least upper bound of
X:
VacX.a<\/X  and VbeA((Van.agb) — \/ng)

o A subset X C A is directed if it is non-empty and if for all a,b € X there is some ¢ € X
such that a < c and b < c.

e We say that A is a complete partial order (CPO) if A has a least element (often denoted
L4 or L) and if every directed X C A has a supremum \/ X € A.



Definition A.3 (Scott-Continuous Function). Let (A,<4) and (B,<p) be CPOs. A function
f: A — A is Scott-continuous if it is monotone (a <4 da implies f(a) <p f(a’)) and if for

each directed X C A we have
VX = VX

Definition A.4 (Interpretation of PCF). We define the CPO ([7], =) by induction on the type
T as follows:

o [nat] =N+ {L} and a Cpat b iff either a=b ora = L.

o [0 — 7] is the set of Scott-continuous functions from ([o],C,) to ([7],C+) equipped with
the pointwise ordering:

fEosryg — Va € [o]. f(a) Er g(a)

FEach term &t : o is interpreted by an element [t] € [o].

We recall the interpretation of the constants of PCF. Each numeral - n : nat is interpreted by
[n] :=n € [nat]. The other constants of PCF are interpreted by the following Scott-continuous
functions:

o [Y] : o — o] — [o] is given by

Yor =\ 1w

neN
e [(—)+1] : [nat] — [nat] is given by

(D+l@ = Ll = {5, 5oy

e [(—)—1] : [nat] — [nat] is given by

€ ifa=1
[(=)—=1l(a) = [a—1] := 0 ifa=0
a—1 ifa>0

e [if (—) then (—) else (—)] : [nat] x [nat] x [nat] — [nat] is given by

L dfa=1
[if (=) then (—) else (—)](a,b,c) = [if athenbelsec] := b ifa=0
c ifa>0

We recall some basic properties.
Lemma A.5. If-t:7 and t >* u then [t] = [u].

Theorem A.6 (Computational Adequacy). Given -t : nat, for each n € N we have

t>*n <= [tj=n
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