
Logical Foundations of Programming Languages

Olivier LAURENT & Colin RIBA

LIP - ENS de Lyon

Course 01

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 1 / 12

Naive Introduction

A Naive Introduction

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 2 / 12

Naive Introduction

A First Example

Consider

foo(f:int->int):
return f((10^10)!)*0

and
bar(f:int->int):

return 0

Are these two programs equivalent ?
I They are not equivalent if f can throw an exception (e.g. division by 0).
I They are not equivalent if f does not terminate.
I They are not equivalent in terms of exection time.
I They are equivalent if f behaves as a function

JfK : JintK −→ JintK

where JintK is the set of integers Z.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 3 / 12

Naive Introduction

A First Example

Consider

foo(f:int->int):
return f((10^10)!)*0 and

bar(f:int->int):
return 0

Are these two programs equivalent ?
I They are not equivalent if f can throw an exception (e.g. division by 0).
I They are not equivalent if f does not terminate.
I They are not equivalent in terms of exection time.
I They are equivalent if f behaves as a function

JfK : JintK −→ JintK

where JintK is the set of integers Z.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 3 / 12

Naive Introduction

A First Example

Consider

foo(f:int->int):
return f((10^10)!)*0 and

bar(f:int->int):
return 0

Are these two programs equivalent ?

I They are not equivalent if f can throw an exception (e.g. division by 0).
I They are not equivalent if f does not terminate.
I They are not equivalent in terms of exection time.
I They are equivalent if f behaves as a function

JfK : JintK −→ JintK

where JintK is the set of integers Z.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 3 / 12

Naive Introduction

A First Example

Consider

foo(f:int->int):
return f((10^10)!)*0 and

bar(f:int->int):
return 0

Are these two programs equivalent ?
I They are not equivalent if f can throw an exception (e.g. division by 0).
I They are not equivalent if f does not terminate.
I They are not equivalent in terms of exection time.

I They are equivalent if f behaves as a function

JfK : JintK −→ JintK

where JintK is the set of integers Z.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 3 / 12

Naive Introduction

A First Example

Consider

foo(f:int->int):
return f((10^10)!)*0 and

bar(f:int->int):
return 0

Are these two programs equivalent ?
I They are not equivalent if f can throw an exception (e.g. division by 0).
I They are not equivalent if f does not terminate.
I They are not equivalent in terms of exection time.
I They are equivalent if f behaves as a function

JfK : JintK −→ JintK

where JintK is the set of integers Z.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 3 / 12

Naive Introduction

Mathematical Models of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic

Categories

Types ≡ Formulae

≡ Objects

Programs ≡ Proofs

≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Mathematical Models of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic

Categories

Types ≡ Formulae

≡ Objects

Programs ≡ Proofs

≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Mathematical Models of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic

Categories

Types ≡ Formulae

≡ Objects

Programs ≡ Proofs

≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Logical Foundations of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic

Categories

Types ≡ Formulae

≡ Objects

Programs ≡ Proofs

≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Logical Foundations of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic Categories
Types ≡ Formulae ≡ Objects

Programs ≡ Proofs ≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Logical Foundations of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic Categories
Types ≡ Formulae ≡ Objects

Programs ≡ Proofs ≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Logical Foundations of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic Categories
Types ≡ Formulae ≡ Objects

Programs ≡ Proofs ≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Logical Foundations of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic Categories
Types ≡ Formulae ≡ Objects

Programs ≡ Proofs ≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Logical Foundations of Programming Languages

foo(f:int->int):
return f((10^10)!)*0 vs

bar(f:int->int):
return 0

Naive Idea:
Types ≡ Sets

Programs ≡ Functions

Curry-Howard-Lambek Correspondence:

Prog. Languages Logic Categories
Types ≡ Formulae ≡ Objects

Programs ≡ Proofs ≡ Morphisms

I Linear Logic (O. LAURENT)

Keywords.
I Type systems, proof theory, denotational semantics, category theory.

This part of the course.
I Mathematical models of programming languages.

Now:
I A naive introduction to some basic ideas.
LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 4 / 12

Naive Introduction

Types as Sets
I Assume types, say int, bool, are to be interpreted as sets JintK, JboolK.

Question.
I Can we assume

JboolK := {true,false} (1)
Answer.
I Consider the non-terminating program

loop (b:bool):
while true:

skip
return true

I If JboolK is as in (1), then we cannot have

JloopK : JboolK −→ JboolK

I We shall therefore represent divergence and assume

JboolK := {⊥,true,false} (⊥ “=” divergence)

We can then have, as expected:

JloopK(a) = ⊥ (for all a ∈ JboolK)

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 5 / 12

Naive Introduction

Types as Sets
I Assume types, say int, bool, are to be interpreted as sets JintK, JboolK.

Question.
I Can we assume

JboolK := {true,false} (1)

Answer.
I Consider the non-terminating program

loop (b:bool):
while true:

skip
return true

I If JboolK is as in (1), then we cannot have

JloopK : JboolK −→ JboolK

I We shall therefore represent divergence and assume

JboolK := {⊥,true,false} (⊥ “=” divergence)

We can then have, as expected:

JloopK(a) = ⊥ (for all a ∈ JboolK)

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 5 / 12

Naive Introduction

Types as Sets
I Assume types, say int, bool, are to be interpreted as sets JintK, JboolK.

Question.
I Can we assume

JboolK := {true,false} (1)
Answer.
I Consider the non-terminating program

loop (b:bool):
while true:
skip

return true

I If JboolK is as in (1), then we cannot have

JloopK : JboolK −→ JboolK

I We shall therefore represent divergence and assume

JboolK := {⊥,true,false} (⊥ “=” divergence)

We can then have, as expected:

JloopK(a) = ⊥ (for all a ∈ JboolK)

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 5 / 12

Naive Introduction

Types as Sets
I Assume types, say int, bool, are to be interpreted as sets JintK, JboolK.

Question.
I Can we assume

JboolK := {true,false} (1)
Answer.
I Consider the non-terminating program

loop (b:bool):
while true:
skip

return true

I If JboolK is as in (1), then we cannot have

JloopK : JboolK −→ JboolK

I We shall therefore represent divergence and assume

JboolK := {⊥,true,false} (⊥ “=” divergence)

We can then have, as expected:

JloopK(a) = ⊥ (for all a ∈ JboolK)

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 5 / 12

Naive Introduction

Types as Sets
I Assume types, say int, bool, are to be interpreted as sets JintK, JboolK.

Question.
I Can we assume

JboolK := {true,false} (1)
Answer.
I Consider the non-terminating program

loop (b:bool):
while true:
skip

return true

I If JboolK is as in (1), then we cannot have

JloopK : JboolK −→ JboolK

I We shall therefore represent divergence and assume

JboolK := {⊥,true,false} (⊥ “=” divergence)

We can then have, as expected:

JloopK(a) = ⊥ (for all a ∈ JboolK)

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 5 / 12

Naive Introduction

A Taste of Finitary PCF

Motivation.
I A simple language to discuss

JboolK := {⊥,true,false}

The Language of Finitary PCF.

τ, σ ::= bool | σ → τ

t , u ::= t u | fun x → t | true | false | if t then u else v | Ω

I Purely functional language with Booleans and divergence (Ω).

We assume call-by-name evaluation:

(fun x → t)u = t [u/x]
if true then t else u = t

if false then t else u = u

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 6 / 12

Naive Introduction

A Taste of Finitary PCF

Motivation.
I A simple language to discuss

JboolK := {⊥,true,false}

The Language of Finitary PCF.

τ, σ ::= bool | σ → τ

t , u ::= t u | fun x → t | true | false | if t then u else v | Ω

I Purely functional language with Booleans and divergence (Ω).

We assume call-by-name evaluation:

(fun x → t)u = t [u/x]
if true then t else u = t

if false then t else u = u

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 6 / 12

Naive Introduction

A Taste of Finitary PCF

Motivation.
I A simple language to discuss

JboolK := {⊥,true,false}

The Language of Finitary PCF.

τ, σ ::= bool | σ → τ

t , u ::= t u | fun x → t | true | false | if t then u else v | Ω

I Purely functional language with Booleans and divergence (Ω).

We assume call-by-name evaluation:

(fun x → t)u = t [u/x]
if true then t else u = t

if false then t else u = u

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 6 / 12

Naive Introduction

A Taste of Finitary PCF

Motivation.
I A simple language to discuss

JboolK := {⊥,true,false}

The Language of Finitary PCF.

τ, σ ::= bool | σ → τ

t , u ::= t u | fun x → t | true | false | if t then u else v | Ω

I Purely functional language with Booleans and divergence (Ω).

We assume call-by-name evaluation:

(fun x → t)u = t [u/x]
if true then t else u = t

if false then t else u = u

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 6 / 12

Naive Introduction

Example.
Consider the following two or programs:

or_l := fun a, b ->
if a then a else b vs

or_r := fun a, b ->
if b then b else a

Questions.
I What are the functions Jor_lK, Jor_rK ?
I Are the programs or_l and or_r equivalent ?

Example.
Consider, for b ∈ {true,false}, the program

taste_b := fun f ->
if f(true, Ω) and

f(Ω, true) and
not(f(false, false))

then b
else true

Questions.
I Do we have Jtaste_trueK = Jtaste_falseK ?
I Are taste_true and taste_false equivalent ?

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 7 / 12

Naive Introduction

Example.
Consider the following two or programs:

or_l := fun a, b ->
if a then a else b vs

or_r := fun a, b ->
if b then b else a

Questions.
I What are the functions Jor_lK, Jor_rK ?
I Are the programs or_l and or_r equivalent ?

Example.
Consider, for b ∈ {true,false}, the program

taste_b := fun f ->
if f(true, Ω) and

f(Ω, true) and
not(f(false, false))

then b
else true

Questions.
I Do we have Jtaste_trueK = Jtaste_falseK ?
I Are taste_true and taste_false equivalent ?

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 7 / 12

Naive Introduction

Example.
Consider the following two or programs:

or_l := fun a, b ->
if a then a else b vs

or_r := fun a, b ->
if b then b else a

Questions.
I What are the functions Jor_lK, Jor_rK ?
I Are the programs or_l and or_r equivalent ?

Example.
Consider, for b ∈ {true,false}, the program

taste_b := fun f ->
if f(true, Ω) and

f(Ω, true) and
not(f(false, false))

then b
else true

Questions.
I Do we have Jtaste_trueK = Jtaste_falseK ?
I Are taste_true and taste_false equivalent ?

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 7 / 12

Naive Introduction

Example.
Consider the following two or programs:

or_l := fun a, b ->
if a then a else b vs

or_r := fun a, b ->
if b then b else a

Questions.
I What are the functions Jor_lK, Jor_rK ?
I Are the programs or_l and or_r equivalent ?

Example.
Consider, for b ∈ {true,false}, the program

taste_b := fun f ->
if f(true, Ω) and

f(Ω, true) and
not(f(false, false))

then b
else true

Questions.
I Do we have Jtaste_trueK = Jtaste_falseK ?
I Are taste_true and taste_false equivalent ?
LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 7 / 12

Naive Introduction

A Taste of PCF
Motivation.
I Extend Finitary PCF with general recursion (= fixpoint combinator).
I Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

τ, σ ::= . . . | nat

t , u ::= . . . | t+1 | t-1 | z? | Y | n (for each n ∈ N)
I Y is a fixpoint combinator:

Y t = t (Y t)
Examples.
I We could have defined

Ω := Y (fun x → x)

I Addition
add 0 u = u
add t+1 u = (add t u)+1

can be defined as
add := Y add_rec

where
add_rec := fun f, x, y ->

if (z? x) then y else (f x-1 y)+1

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 8 / 12

Naive Introduction

A Taste of PCF
Motivation.
I Extend Finitary PCF with general recursion (= fixpoint combinator).
I Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

τ, σ ::= . . . | nat

t , u ::= . . . | t+1 | t-1 | z? | Y | n (for each n ∈ N)
I Y is a fixpoint combinator:

Y t = t (Y t)

Examples.
I We could have defined

Ω := Y (fun x → x)

I Addition
add 0 u = u
add t+1 u = (add t u)+1

can be defined as
add := Y add_rec

where
add_rec := fun f, x, y ->

if (z? x) then y else (f x-1 y)+1

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 8 / 12

Naive Introduction

A Taste of PCF
Motivation.
I Extend Finitary PCF with general recursion (= fixpoint combinator).
I Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

τ, σ ::= . . . | nat

t , u ::= . . . | t+1 | t-1 | z? | Y | n (for each n ∈ N)
I Y is a fixpoint combinator:

Y t = t (Y t)
Examples.
I We could have defined

Ω := Y (fun x → x)

I Addition
add 0 u = u
add t+1 u = (add t u)+1

can be defined as
add := Y add_rec

where
add_rec := fun f, x, y ->

if (z? x) then y else (f x-1 y)+1

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 8 / 12

Naive Introduction

A Taste of PCF
Motivation.
I Extend Finitary PCF with general recursion (= fixpoint combinator).
I Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

τ, σ ::= . . . | nat

t , u ::= . . . | t+1 | t-1 | z? | Y | n (for each n ∈ N)
I Y is a fixpoint combinator:

Y t = t (Y t)
Examples.
I We could have defined

Ω := Y (fun x → x)

I Addition
add 0 u = u
add t+1 u = (add t u)+1

can be defined as
add := Y add_rec

where
add_rec := fun f, x, y ->

if (z? x) then y else (f x-1 y)+1

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 8 / 12

Naive Introduction

A Taste of PCF
Motivation.
I Extend Finitary PCF with general recursion (= fixpoint combinator).
I Mathematically cleaner if an infinite type is assumed (say the natural numbers).

The Language of PCF.

τ, σ ::= . . . | nat

t , u ::= . . . | t+1 | t-1 | z? | Y | n (for each n ∈ N)
I Y is a fixpoint combinator:

Y t = t (Y t)
Examples.
I We could have defined

Ω := Y (fun x → x)

I Addition
add 0 u = u
add t+1 u = (add t u)+1

can be defined as
add := Y add_rec

where
add_rec := fun f, x, y ->

if (z? x) then y else (f x-1 y)+1

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 8 / 12

Naive Introduction

A Denotational Semantics for PCF ?

We would like
I each type τ to be interpreted as a set JτK,
I a program t of type say σ → τ to be interpreted as a function

JtK : JσK −→ JτK

Difficulty.
I Equation

Y t = t (Y t)

imposes
JY K : (S → S) −→ S

Traditional Solution.
I Restrict S → S to the continuous functions for a suitable topology

(cpos, Scott domains, etc).

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 9 / 12

Naive Introduction

A Denotational Semantics for PCF ?

We would like
I each type τ to be interpreted as a set JτK,

I a program t of type say σ → τ to be interpreted as a function

JtK : JσK −→ JτK

Difficulty.
I Equation

Y t = t (Y t)

imposes
JY K : (S → S) −→ S

Traditional Solution.
I Restrict S → S to the continuous functions for a suitable topology

(cpos, Scott domains, etc).

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 9 / 12

Naive Introduction

A Denotational Semantics for PCF ?

We would like
I each type τ to be interpreted as a set JτK,
I a program t of type say σ → τ to be interpreted as a function

JtK : JσK −→ JτK

Difficulty.
I Equation

Y t = t (Y t)

imposes
JY K : (S → S) −→ S

Traditional Solution.
I Restrict S → S to the continuous functions for a suitable topology

(cpos, Scott domains, etc).

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 9 / 12

Naive Introduction

A Denotational Semantics for PCF ?

We would like
I each type τ to be interpreted as a set JτK,
I a program t of type say σ → τ to be interpreted as a function

JtK : JσK −→ JτK

Difficulty.
I Equation

Y t = t (Y t)

imposes
JY K : (S → S) −→ S

Traditional Solution.
I Restrict S → S to the continuous functions for a suitable topology

(cpos, Scott domains, etc).

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 9 / 12

Naive Introduction

A Denotational Semantics for PCF ?

We would like
I each type τ to be interpreted as a set JτK,
I a program t of type say σ → τ to be interpreted as a function

JtK : JσK −→ JτK

Difficulty.
I Equation

Y t = t (Y t)

imposes
JY K : (S → S) −→ S

Traditional Solution.
I Restrict S → S to the continuous functions for a suitable topology

(cpos, Scott domains, etc).

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 9 / 12

Naive Introduction

Simpler Settings for Semantics

Gödel’s System T.
I Restrict Y to recursion over N:

rec u v 0 = u
rec u v t+1 = v t (rec u v t)

I Allows to see important basic techniques in a simple setting.

Simply Typed λ-Calculus.
I System T without nat.
I A kernel language without recursion.
I Simple instance of the Curry-Howard-Lambek Correspondence:

Intuitionistic Cartesian Closed
(⇒,∧)-Logic Categories

Types ≡ Formulae ≡ Objects
Programs ≡ Proofs ≡ Morphisms

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 10 / 12

Naive Introduction

Simpler Settings for Semantics

Gödel’s System T.
I Restrict Y to recursion over N:

rec u v 0 = u
rec u v t+1 = v t (rec u v t)

I Allows to see important basic techniques in a simple setting.

Simply Typed λ-Calculus.
I System T without nat.
I A kernel language without recursion.
I Simple instance of the Curry-Howard-Lambek Correspondence:

Intuitionistic Cartesian Closed
(⇒,∧)-Logic Categories

Types ≡ Formulae ≡ Objects
Programs ≡ Proofs ≡ Morphisms

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 10 / 12

Naive Introduction

Simpler Settings for Semantics

Gödel’s System T.
I Restrict Y to recursion over N:

rec u v 0 = u
rec u v t+1 = v t (rec u v t)

I Allows to see important basic techniques in a simple setting.

Simply Typed λ-Calculus.
I System T without nat.
I A kernel language without recursion.

I Simple instance of the Curry-Howard-Lambek Correspondence:

Intuitionistic Cartesian Closed
(⇒,∧)-Logic Categories

Types ≡ Formulae ≡ Objects
Programs ≡ Proofs ≡ Morphisms

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 10 / 12

Naive Introduction

Simpler Settings for Semantics

Gödel’s System T.
I Restrict Y to recursion over N:

rec u v 0 = u
rec u v t+1 = v t (rec u v t)

I Allows to see important basic techniques in a simple setting.

Simply Typed λ-Calculus.
I System T without nat.
I A kernel language without recursion.
I Simple instance of the Curry-Howard-Lambek Correspondence:

Intuitionistic Cartesian Closed
(⇒,∧)-Logic Categories

Types ≡ Formulae ≡ Objects
Programs ≡ Proofs ≡ Morphisms

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 10 / 12

Naive Introduction

Simpler Settings for Semantics

Gödel’s System T.
I Restrict Y to recursion over N:

rec u v 0 = u
rec u v t+1 = v t (rec u v t)

I Allows to see important basic techniques in a simple setting.

Simply Typed λ-Calculus.
I System T without nat.
I A kernel language without recursion.
I Simple instance of the Curry-Howard-Lambek Correspondence:

Intuitionistic Cartesian Closed
(⇒,∧)-Logic Categories

Types ≡ Formulae ≡ Objects
Programs ≡ Proofs ≡ Morphisms

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 10 / 12

Indicative Outline

Indicative Outline

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 11 / 12

Indicative Outline

Indicative Outline

Logical Foundations of Programming Languages (C. RIBA)

Gödel’s System T.
I Set-Theoretic Semantics.

Categorical Semantics of the Simply Typed λ-Calculus.
I Basic Notions of Category Theory.
I Cartesian Closed Categories.
I (Curry-Howard Correspondence.)

PCF.
I CPOs and Scott-Continuity.
I Denotational Semantics.

Category Theory.
I Adjunctions.
I Monads.
I . . .

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 12 / 12

Indicative Outline

Indicative Outline

Logical Foundations of Programming Languages (C. RIBA)

Gödel’s System T.
I Set-Theoretic Semantics.

Categorical Semantics of the Simply Typed λ-Calculus.
I Basic Notions of Category Theory.
I Cartesian Closed Categories.
I (Curry-Howard Correspondence.)

PCF.
I CPOs and Scott-Continuity.
I Denotational Semantics.

Category Theory.
I Adjunctions.
I Monads.
I . . .

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 12 / 12

Indicative Outline

Indicative Outline

Logical Foundations of Programming Languages (C. RIBA)

Gödel’s System T.
I Set-Theoretic Semantics.

Categorical Semantics of the Simply Typed λ-Calculus.
I Basic Notions of Category Theory.
I Cartesian Closed Categories.
I (Curry-Howard Correspondence.)

PCF.
I CPOs and Scott-Continuity.
I Denotational Semantics.

Category Theory.
I Adjunctions.
I Monads.
I . . .

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 12 / 12

Indicative Outline

Indicative Outline

Logical Foundations of Programming Languages (C. RIBA)

Gödel’s System T.
I Set-Theoretic Semantics.

Categorical Semantics of the Simply Typed λ-Calculus.
I Basic Notions of Category Theory.
I Cartesian Closed Categories.
I (Curry-Howard Correspondence.)

PCF.
I CPOs and Scott-Continuity.
I Denotational Semantics.

Category Theory.
I Adjunctions.
I Monads.
I . . .

LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 12 / 12

Indicative Outline

Indicative Outline

Logical Foundations of Programming Languages (C. RIBA)

Gödel’s System T.
I Set-Theoretic Semantics.

Categorical Semantics of the Simply Typed λ-Calculus.
I Basic Notions of Category Theory.
I Cartesian Closed Categories.
I (Curry-Howard Correspondence.)

PCF.
I CPOs and Scott-Continuity.
I Denotational Semantics.

Category Theory.
I Adjunctions.
I Monads.
I . . .
LAURENT & RIBA (LIP - ENS de Lyon) LFPL (CR03) Course 01 12 / 12

	Naive Introduction
	Indicative Outline

