Logical Foundations of Programming Languages

Olivier Laurent \& Colin RibA

LIP - ENS de Lyon

Course 05

The Language PCF

The Syntax of PCF

Motivation.

- A simple functional language with general recursion.

The Syntax of PCF

Motivation.

- A simple functional language with general recursion.

The Language of PCF.

$$
\tau, \sigma \quad::=\text { nat } \quad \mid \quad \sigma \rightarrow \tau
$$

The Syntax of PCF

Motivation.

- A simple functional language with general recursion.

The Language of PCF.

$$
\begin{aligned}
& \tau, \sigma::=\text { nat } \mid \quad \sigma \rightarrow \tau \\
& t, u::= x|\lambda x: \sigma . t| t u\left|Y^{\sigma}\right| t+1|t-1| n \\
& \text { if } t \text { then } u \text { else } v
\end{aligned}
$$

The Syntax of PCF

Motivation.

- A simple functional language with general recursion.

The Language of PCF.

$$
\begin{array}{rlrl}
\tau, \sigma: & := & \text { nat } \mid \quad \sigma \rightarrow \tau \\
t, u::= & x|\lambda x: \sigma . t| t u\left|Y^{\sigma}\right| t+1|t-1| & n \\
& \text { if } t \text { then } u \text { else } v
\end{array}
$$

Notes.

- We assume an infinite set of variables x, y, z, \ldots
- We have one numeral \underline{n} for each $n \in \mathbb{N}$.

The Syntax of PCF

Motivation.

- A simple functional language with general recursion.

The Language of PCF.

$$
\begin{aligned}
\tau, \sigma: & =\text { nat } \mid \quad \sigma \rightarrow \tau \\
t, u::= & x|\lambda x: \sigma . t| t u\left|Y^{\sigma}\right| t+1| | t-1 \mid \underline{n} \\
& \mid \quad \text { if } t \text { then } u \text { else } v
\end{aligned}
$$

Notes.

- We assume an infinite set of variables x, y, z, \ldots
- We have one numeral \underline{n} for each $n \in \mathbb{N}$.
- Y is the fixpoint combinator.

The Syntax of PCF

Motivation.

- A simple functional language with general recursion.

The Language of PCF.

$$
\begin{array}{rlrl}
\tau, \sigma: & := & \text { nat } \mid \quad \sigma \rightarrow \tau \\
t, u::= & x|\lambda x: \sigma . t| t u\left|Y^{\sigma}\right| t+1|t-1| & n \\
& \text { if } t \text { then } u \text { else } v
\end{array}
$$

Notes.

- We assume an infinite set of variables x, y, z, \ldots
- We have one numeral \underline{n} for each $n \in \mathbb{N}$.
- Y is the fixpoint combinator.

Typing Rules.

- Adaptation of System T with

$$
\begin{gathered}
\overline{\Gamma \vdash Y^{\sigma}:(\sigma \rightarrow \sigma) \rightarrow \sigma} \quad \overline{\Gamma \vdash \underline{n}: \text { nat }}(n \in \mathbb{N}) \\
\frac{\Gamma \vdash t: \text { nat } \quad \Gamma \vdash u: \text { nat } \quad \Gamma \vdash v: \text { nat }}{\Gamma \vdash \text { if } t \text { then } u \text { else } v: \text { nat }} \quad \frac{\Gamma \vdash t: \text { nat }}{\Gamma \vdash t-1: \text { nat }}
\end{gathered}
$$

Operational Semantics

Weak Head Reduction.

- Usual (weak) call-by-name evaluation.

Operational Semantics

Weak Head Reduction.

- Usual (weak) call-by-name evaluation.

Basic Rules.

| $\overline{(\lambda x: \sigma . t) u \triangleright t[u / x]}$ | $\overline{n+1} \triangleright \underline{n+1}$ | $\overline{n+1-1} \triangleright \underline{n}$ | $\overline{0}-1 \triangleright \underline{0}$ |
| :--- | :--- | :--- | :--- | :--- |
| if $\underline{0}$ then u else $v \triangleright u$ | $\overline{\text { if } n+1 \text { then } u \text { else } v \triangleright v}$ | $\overline{Y t} \triangleright t(Y t)$ | |

Operational Semantics

Weak Head Reduction.

- Usual (weak) call-by-name evaluation.

Basic Rules.

$$
\begin{array}{cllll}
\overline{(\lambda x: \sigma . t) u \triangleright t[u / x]} \overline{\underline{n+1} \triangleright \underline{n+1}} \overline{n+1-1 \triangleright \underline{n}} & \overline{\underline{0}-1 \triangleright \underline{0}} \\
\overline{\text { if } \underline{0} \text { then } u \text { else } v \triangleright u} & \overline{\text { if } \underline{n+1} \text { then } u \text { else } v \triangleright v} & \overline{Y t} \triangleright t(Y t)
\end{array}
$$

Congruence Rules.

$$
\begin{aligned}
& \begin{aligned}
& t \triangleright u \\
& t v \triangleright v
\end{aligned} \frac{t \triangleright u}{t+1} \triangleright u+1 \quad \frac{t \triangleright u}{t-1} \triangleright u-1 \\
& \begin{array}{cl}
t \quad u \\
\text { if } t \text { then } v \text { else } W & \triangleright \text { if } u \text { then } v \text { else } w
\end{array}
\end{aligned}
$$

Operational Semantics

Weak Head Reduction.

- Usual (weak) call-by-name evaluation.

Basic Rules.

$$
\begin{array}{clllll}
\overline{(\lambda x: \sigma . t) u \triangleright t[u / x]} & \overline{n+1} \triangleright \underline{n+1} & \overline{n+1-1 \triangleright \underline{n}} & \overline{0}-1 \triangleright \underline{0} \\
\text { if } \underline{0} \text { then } u \text { else } v \triangleright u & \overline{\text { if } \underline{n+1} \text { then } u \text { else } v \triangleright v} & \overline{Y t} \triangleright t(Y t)
\end{array}
$$

Congruence Rules.

$$
\begin{aligned}
& \begin{aligned}
& t \triangleright u \\
& t v \triangleright v
\end{aligned} \frac{t \triangleright u}{t+1} \triangleright u+1 \quad \frac{t \triangleright u}{t-1} \triangleright u-1 \\
& \begin{array}{cl}
t \quad u \\
\text { if } t \text { then } v \text { else } W & \triangleright \text { if } u \text { then } v \text { else } w
\end{array}
\end{aligned}
$$

Substitution.

- If $\Gamma, x: \sigma \vdash t: \tau$ and $\Gamma \vdash u: \sigma$ then $\Gamma \vdash t[u / x]: \tau$.

Operational Semantics

Weak Head Reduction.

- Usual (weak) call-by-name evaluation.

Basic Rules.

$$
\overline{(\lambda x: \sigma . t) u \triangleright t[u / x] \quad \overline{n+1} \triangleright \underline{n+1} \quad \overline{n+1-1 \triangleright \underline{n}} \quad \overline{\underline{0}-1 \triangleright \underline{0}} .}
$$

if \underline{O} then u else $v \triangleright u$

$$
\text { if } n+1 \text { then } u \text { else } v \triangleright v
$$

$$
\overline{Y t} \triangleright t(Y t)
$$

Congruence Rules.

Substitution.

- If $\Gamma, x: \sigma \vdash t: \tau$ and $\Gamma \vdash u: \sigma$ then $\Gamma \vdash t[u / x]: \tau$.

Subject Reduction.

- If $\Gamma \vdash t: \tau$ and $t \triangleright u$ then $\Gamma \vdash u: \tau$.

$$
\begin{aligned}
& \begin{array}{l}
t \triangleright u \\
t v \triangleright u v
\end{array} \frac{t}{t+1} \triangleright u \quad u+1 \quad \frac{t \triangleright u}{t-1} \triangleright u-1 \\
& \begin{array}{cl}
t \quad u \\
\text { if } t \text { then } v \text { else } W & \triangleright \text { if } u \text { then } v \text { else } w
\end{array}
\end{aligned}
$$

Operational Semantics

Weak Head Reduction.

- Usual (weak) call-by-name evaluation.

Basic Rules.

$$
\overline{(\lambda x: \sigma . t) u \triangleright t[u / x] \quad \overline{n+1} \triangleright \underline{n+1} \quad \overline{n+1-1 \triangleright \underline{n}} \quad \overline{\underline{0}-1 \triangleright \underline{0}})}
$$

if $\underline{0}$ then u else $v \triangleright u \quad$ if $\underline{n+1}$ then u else $v \triangleright v \quad \overline{Y t \triangleright t(Y t)}$ Congruence Rules.

$$
\begin{gathered}
\frac{t}{t} \frac{t}{t v} \triangleright u v \\
t+1 \triangleright u+1
\end{gathered} \frac{t \triangleright u}{t-1 \triangleright u-1}
$$

Substitution.

- If $\Gamma, x: \sigma \vdash t: \tau$ and $\Gamma \vdash u: \sigma$ then $\Gamma \vdash t[u / x]: \tau$.

Subject Reduction.

- If $\Gamma \vdash t: \tau$ and $t \triangleright u$ then $\Gamma \vdash u: \tau$.

Normal Forms of Type nat.

- If $\vdash t$: nat with t in normal form w.r.t. \triangleright, then $t=\underline{n}$ for some $n \in \mathbb{N}$.

Examples

(\triangleright^{*} is the reflexive transitive closure of \triangleright and \triangleright^{+}is the transitive closure of \triangleright.)

Examples

(\triangleright^{*} is the reflexive transitive closure of \triangleright and \triangleright^{+}is the transitive closure of \triangleright.) Conditionals at all types.

- For each type σ we have

$$
\frac{\Gamma \vdash t: \text { nat } \quad \Gamma \vdash u: \sigma \quad \Gamma \vdash v: \sigma}{\Gamma \vdash(\text { if } t \text { then } u \text { else } v)_{\sigma}: \sigma}
$$

where

$$
(\text { if } t \text { then } u \text { else } v)_{\sigma \rightarrow \tau}:=\lambda x: \sigma .(\text { if } t \text { then } u x \text { else } v x)_{\tau}
$$

Examples

(\triangleright^{*} is the reflexive transitive closure of \triangleright and \triangleright^{+}is the transitive closure of \triangleright.) Conditionals at all types.

- For each type σ we have

$$
\frac{\Gamma \vdash t: \text { nat } \quad \Gamma \vdash u: \sigma \quad \Gamma \vdash v: \sigma}{\Gamma \vdash(\text { if } t \text { then } u \text { else } v)_{\sigma}: \sigma}
$$

where

$$
(\text { if } t \text { then } u \text { else } v)_{\sigma \rightarrow \tau}:=\quad \lambda x: \sigma .(\text { if } t \text { then } u x \text { else } v x)_{\tau}
$$

Divergence.

- For each type σ we let

$$
\Omega^{\sigma}:=Y^{\sigma}(\lambda x: \sigma \cdot x)
$$

so that $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

Examples

(\triangleright^{*} is the reflexive transitive closure of \triangleright and \triangleright^{+}is the transitive closure of \triangleright.)

Conditionals at all types.

- For each type σ we have

$$
\frac{\Gamma \vdash t: \text { nat } \quad \Gamma \vdash u: \sigma \quad \Gamma \vdash v: \sigma}{\Gamma \vdash(\text { if } t \text { then } u \text { else } v)_{\sigma}: \sigma}
$$

where

$$
(\text { if } t \text { then } u \text { else } v)_{\sigma \rightarrow \tau}:=\quad \lambda x: \sigma .(\text { if } t \text { then } u x \text { else } v x)_{\tau}
$$

Divergence.

- For each type σ we let

$$
\Omega^{\sigma}:=Y^{\sigma}(\lambda x: \sigma . x)
$$

so that $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

Addition.

- We let

where \quad| add | $:=$ | Y add_rec |
| :--- | :--- | :--- |
| add_rec | $:=$ | $\lambda f . \lambda x . \lambda y$. if x then y else $(f(x-1) y)+1$ |

Examples

(\triangleright^{*} is the reflexive transitive closure of \triangleright and \triangleright^{+}is the transitive closure of \triangleright.) Conditionals at all types.

- For each type σ we have

$$
\frac{\Gamma \vdash t: \text { nat } \quad \Gamma \vdash u: \sigma \quad \Gamma \vdash v: \sigma}{\Gamma \vdash(\text { if } t \text { then } u \text { else } v)_{\sigma}: \sigma}
$$

where

$$
(\text { if } t \text { then } u \text { else } v)_{\sigma \rightarrow \tau}:=\quad \lambda x: \sigma .(\text { if } t \text { then } u x \text { else } v x)_{\tau}
$$

Divergence.

- For each type σ we let

$$
\Omega^{\sigma}:=Y^{\sigma}(\lambda x: \sigma . x)
$$

so that $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

Addition.

- We let

$$
\begin{array}{ll}
& \text { add } \\
\text { where } & :=Y \text { add_rec } \\
\text { add_rec } & :=\quad \lambda f . \lambda x . \lambda y . \text { if } x \text { then } y \text { else }(f(x-1) y)+1
\end{array}
$$

- Note that

$$
\begin{array}{lll}
\operatorname{add} \underline{0} u & \triangleright^{*} & u \\
\operatorname{add} \underline{n}+1 u & \triangleright^{*} & (\text { add } \underline{n+1-1} u)+1
\end{array}
$$

Toward a Denotational Semantics for PCF

Sets with Divergence.

- Because of $\Omega^{\text {nat }}$, we let

$$
\llbracket \text { nat } \rrbracket:=\mathbb{N} \cup\{\perp\}
$$

Toward a Denotational Semantics for PCF

Sets with Divergence.

- Because of $\Omega^{\text {nat }}$, we let

$$
\llbracket \text { nat } \rrbracket:=\mathbb{N} \cup\{\perp\}
$$

- We can give an interpretation of $+1,-1$ and the conditional if - then - else -

Toward a Denotational Semantics for PCF

Sets with Divergence.

- Because of $\Omega^{\text {nat }}$, we let

$$
\llbracket \text { nat } \rrbracket:=\mathbb{N} \cup\{\perp\}
$$

- We can give an interpretation of $+1,-1$ and the conditional if - then - else -

A Set-Theoretic Partial Interpretation.

- We can get for each type τ a set $\llbracket \tau \rrbracket$ with

$$
\llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket=\llbracket \tau \rrbracket^{\llbracket \sigma \rrbracket}
$$

Toward a Denotational Semantics for PCF

Sets with Divergence.

- Because of $\Omega^{\text {nat }}$, we let

$$
\llbracket \text { nat } \rrbracket:=\mathbb{N} \cup\{\perp\}
$$

- We can give an interpretation of $+1,-1$ and the conditional if - then - else -

A Set-Theoretic Partial Interpretation.

- We can get for each type τ a set $\llbracket \tau \rrbracket$ with

$$
\llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket=\llbracket \tau \rrbracket \rrbracket^{\llbracket \sigma}
$$

- Abstractions and applications can be interpreted as in System T.

Toward a Denotational Semantics for PCF

Sets with Divergence.

- Because of $\Omega^{\text {nat }}$, we let

$$
\llbracket \text { nat } \rrbracket:=\mathbb{N} \cup\{\perp\}
$$

- We can give an interpretation of $+1,-1$ and the conditional if - then - else -

A Set-Theoretic Partial Interpretation.

- We can get for each type τ a set $\llbracket \tau \rrbracket$ with

$$
\llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket=\llbracket \tau \rrbracket \rrbracket^{\llbracket \sigma \rrbracket}
$$

- Abstractions and applications can be interpreted as in System T.

Difficulty:

$$
\llbracket Y^{\sigma} \rrbracket:(\llbracket \sigma \rrbracket \rightarrow \llbracket \sigma \rrbracket) \longrightarrow \llbracket \sigma \rrbracket
$$

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau}:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau}:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea: \perp means "no information", reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau}:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea: \perp means "no information", reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

- Recall that add $:=Y$ add_rec where
add_rec $:=\quad \lambda f . \lambda x . \lambda y$.if x then y else $(f(x-1) y)+1$

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau}:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea: \perp means "no information", reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

- Recall that add $:=Y$ add_rec where

$$
\text { add_rec }:=\lambda f . \lambda x . \lambda y . \text { if } x \text { then } y \text { else }(f(x-1) y)+1
$$

- Note that

$$
\llbracket \text { add_rec } \rrbracket \perp a b=\llbracket \text { if } a \text { then } b \text { else } \Omega \rrbracket
$$

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau} \quad:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea: \perp means "no information", reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

- Recall that add $:=Y$ add_rec where

$$
\text { add_rec }:=\lambda f . \lambda x . \lambda y \text {.if } x \text { then } y \text { else }(f(x-1) y)+1
$$

- Note that

$$
\begin{aligned}
& \llbracket \text { add_rec } \rrbracket \perp a b \\
& \llbracket \text { add_rec } \rrbracket(\llbracket \text { add_rec } \rrbracket \perp) a b= \\
& \text { if } a \text { if } a \text { then } b \text { else } \Omega \rrbracket \\
&= \\
& \text { if } \text { else }(\text { if } a-1 \text { then } b \text { else } \Omega)+1 \rrbracket
\end{aligned}
$$

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau} \quad:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea: \perp means "no information", reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

- Recall that add $:=Y$ add_rec where

$$
\text { add_rec }:=\lambda f . \lambda x . \lambda y \text {.if } x \text { then } y \text { else }(f(x-1) y)+1
$$

- Note that

$$
\begin{aligned}
& \llbracket \text { add_rec } \rrbracket \perp a b \\
& \llbracket \text { add_rec } \rrbracket(\llbracket \text { add_rec } \rrbracket \perp) a b= \\
& \text { if } a \text { if } a \text { then } b \text { else } \Omega \rrbracket \\
&= \\
& \text { if } \text { else }(\text { if } a-1 \text { then } b \text { else } \Omega)+1 \rrbracket
\end{aligned}
$$

- We obtain, for $k, m \in \mathbb{N}$ and $n>0$:

$$
\left(\llbracket \text { add_rec } \rrbracket^{n} \perp\right) k m= \begin{cases}k+m & \text { if } k<n \\ \perp & \text { otherwise }\end{cases}
$$

Toward an Interpretation of the Fixpoint Combinator

－For each type σ ，a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ} ，where

$$
\perp_{\sigma \rightarrow \tau} \quad:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea：\perp means＂no information＂，reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.
－Recall that add $:=Y$ add＿rec where

$$
\text { add_rec }:=\lambda f . \lambda x . \lambda y \text {.if } x \text { then } y \text { else }(f(x-1) y)+1
$$

－Note that

$$
\begin{aligned}
& \llbracket \text { add_rec } \rrbracket \perp a b=\llbracket \text { if } a \text { then } b \text { else } \Omega \rrbracket \\
& \llbracket \text { add_rec】(【add_rec } \rrbracket \perp) a b= \\
& \text { 【if } a \text { then } b \text { else (if } a-1 \text { then } b \text { else } \Omega \text {) }+1 \rrbracket
\end{aligned}
$$

－We obtain，for $k, m \in \mathbb{N}$ and $n>0$ ：

$$
\left(\llbracket \text { add_rec } \rrbracket^{n} \perp\right) k m= \begin{cases}k+m & \text { if } k<n \\ \perp & \text { otherwise }\end{cases}
$$

－This suggests

$$
\llbracket \operatorname{add} \rrbracket a b=\llbracket Y \text { add } _ \text {rec } \rrbracket a b:=\bigvee\left(\llbracket \text { add_rec } \rrbracket^{n} \perp\right) a b
$$

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau} \quad:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea: \perp means "no information", reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

- Recall that add $:=Y$ add_rec where

$$
\text { add_rec }:=\lambda f . \lambda x . \lambda y . \text { if } x \text { then } y \text { else }(f(x-1) y)+1
$$

- Note that

$$
\begin{aligned}
\llbracket \text { add_rec } \rrbracket \perp a b & =\quad \llbracket \text { if } a \text { then } b \text { else } \Omega \rrbracket \\
\llbracket \text { add_rec } \rrbracket & (\llbracket \text { add_rec } \rrbracket \perp) a b= \\
& \text { if } a \text { then } b \text { else }(\text { if } a-1 \text { then } b \text { else } \Omega)+1 \rrbracket
\end{aligned}
$$

- We obtain, for $k, m \in \mathbb{N}$ and $n>0$:

$$
\left(\llbracket \text { add_rec } \rrbracket^{n} \perp\right) k m= \begin{cases}k+m & \text { if } k<n \\ \perp & \text { otherwise }\end{cases}
$$

- This suggests

$$
\llbracket \operatorname{add} \rrbracket a b=\llbracket Y \text { add_rec } \rrbracket a b:=\quad \bigvee\left(\llbracket \text { add_rec } \rrbracket^{n} \perp\right) a b
$$

Idea:

- $a \in \llbracket \tau \rrbracket$ is "more defined" than $\perp_{\tau} \in \llbracket \tau \rrbracket$.

Toward an Interpretation of the Fixpoint Combinator

- For each type σ, a natural candidate for $\llbracket \Omega^{\sigma} \rrbracket$ is \perp_{σ}, where

$$
\perp_{\sigma \rightarrow \tau}:=\quad(a \in \llbracket \sigma \rrbracket) \longmapsto\left(\perp_{\tau} \in \llbracket \tau \rrbracket\right)
$$

Idea: \perp means "no information", reflecting $\Omega \triangleright^{+} \Omega \triangleright^{+} \ldots$.

- Recall that add $:=Y$ add_rec where

$$
\text { add_rec }:=\lambda f . \lambda x . \lambda y . \text { if } x \text { then } y \text { else }(f(x-1) y)+1
$$

- Note that

$$
\begin{aligned}
& \llbracket \text { add_rec } \rrbracket \perp a b \\
& \llbracket \text { add_rec } \rrbracket(\llbracket \text { add_rec } \rrbracket \perp) a b= \\
& \text { if } a \text { if } a \text { then } b \text { else } \Omega \rrbracket \\
&= \\
& \text { if else }(\text { if } a-1 \text { then } b \text { else } \Omega)+1 \rrbracket
\end{aligned}
$$

- We obtain, for $k, m \in \mathbb{N}$ and $n>0$:

$$
\left(\llbracket \text { add_rec } \rrbracket^{n} \perp\right) k m= \begin{cases}k+m & \text { if } k<n \\ \perp & \text { otherwise }\end{cases}
$$

- This suggests

$$
\llbracket \operatorname{add} \rrbracket a b=\llbracket Y \text { add_rec } \rrbracket a b:=\quad \bigvee\left(\llbracket \text { add_rec } \rrbracket^{n} \perp\right) a b
$$

Idea:

- $a \in \llbracket \tau \rrbracket$ is "more defined" than $\perp_{\tau} \in \llbracket \tau \rrbracket$.
- (\llbracket add_rec $\rrbracket^{n+1} \perp$) is "more defined" than $\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right)$.

The Information Order

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have

- $\perp_{\tau} \sqsubseteq_{\tau} a$
(for every $a \in \llbracket \tau \rrbracket$)

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have

- $\perp_{\tau} \sqsubseteq_{\tau} \mathrm{a}$
(for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have

- $\perp_{\tau} \sqsubseteq_{\tau} a$ (for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$
In order to put

$$
\llbracket Y^{\sigma} \rrbracket f:=\bigsqcup_{n \in \mathbb{N}} f^{n}(\perp)
$$

we need

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have

- $\perp_{\tau} \sqsubseteq_{\tau} a$ (for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$
In order to put

$$
\llbracket Y^{\sigma} \rrbracket f:=\bigsqcup_{n \in \mathbb{N}} f^{n}(\perp)
$$

we need
(a) $\bigsqcup f^{n}(\perp)$ to be defined,

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have

- $\perp_{\tau} \sqsubseteq_{\tau} \mathrm{a}$
(for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$
In order to put

$$
\llbracket Y^{\sigma} \rrbracket f:=\bigsqcup_{n \in \mathbb{N}} f^{n}(\perp)
$$

we need
(a) $\bigsqcup f^{n}(\perp)$ to be defined,
(b) to satisfy equation

$$
\llbracket Y^{\sigma} \rrbracket f=f\left(\llbracket Y^{\sigma} \rrbracket f\right)
$$

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have

- $\perp_{\tau} \sqsubseteq_{\tau} \mathrm{a}$ (for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$
In order to put

$$
\llbracket Y^{\sigma} \rrbracket f:=\bigsqcup_{n \in \mathbb{N}} f^{n}(\perp)
$$

we need
(a) $\bigsqcup f^{n}(\perp)$ to be defined,
(b) to satisfy equation

$$
\llbracket Y^{\sigma} \rrbracket f=f\left(\llbracket Y^{\sigma} \rrbracket f\right)
$$

Consequences.

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have
$\triangleright \perp_{\tau} \sqsubseteq_{\tau} a \quad$ (for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$
In order to put

$$
\llbracket Y^{\sigma} \rrbracket f:=\bigsqcup_{n \in \mathbb{N}} f^{n}(\perp)
$$

we need
(a) $\bigsqcup f^{n}(\perp)$ to be defined,
(b) to satisfy equation

$$
\llbracket Y^{\sigma} \rrbracket f=f\left(\llbracket Y^{\sigma} \rrbracket f\right)
$$

Consequences.

(a) It seems reasonable to ask for $\perp \sqsubseteq f(\perp) \sqsubseteq \ldots \sqsubseteq f^{n}(\perp) \sqsubseteq \ldots$

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have
$\triangleright \perp_{\tau} \sqsubseteq_{\tau} a \quad$ (for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$
In order to put

$$
\llbracket Y^{\sigma} \rrbracket f:=\bigsqcup_{n \in \mathbb{N}} f^{n}(\perp)
$$

we need
(a) $\bigsqcup f^{n}(\perp)$ to be defined,
(b) to satisfy equation

$$
\llbracket Y^{\sigma} \rrbracket f=f\left(\llbracket Y^{\sigma} \rrbracket f\right)
$$

Consequences.

(a) It seems reasonable to ask for $\perp \sqsubseteq f(\perp) \sqsubseteq \ldots \sqsubseteq f^{n}(\perp) \sqsubseteq \ldots$ which follows from requiring functions to be monotone.

The Information Order

Definition (The Information Order)

Define \sqsubseteq_{τ} by induction on τ :

- $a \sqsubseteq_{\text {nat }} b$ iff $a=\perp$ or $a=b$.
- $f \sqsubseteq_{\sigma \rightarrow \tau} g$ iff $f(a) \sqsubseteq_{\tau} g(a)$ for every $a \in \llbracket \sigma \rrbracket$.

As expected, we have
$\triangleright \perp_{\tau} \sqsubseteq_{\tau} a \quad$ (for every $a \in \llbracket \tau \rrbracket$)
$\triangleright \perp \sqsubseteq \llbracket$ add_rec $\rrbracket \perp \ldots \ldots\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n} \perp\right) \sqsubseteq\left(\llbracket\right.$ add_rec $\left.\rrbracket^{n+1} \perp\right) \sqsubseteq \ldots$
In order to put

$$
\llbracket Y^{\sigma} \rrbracket f:=\bigsqcup_{n \in \mathbb{N}} f^{n}(\perp)
$$

we need
(a) $\bigsqcup f^{n}(\perp)$ to be defined,
(b) to satisfy equation

$$
\llbracket Y^{\sigma} \rrbracket f=f\left(\llbracket Y^{\sigma} \rrbracket f\right)
$$

Consequences.

(a) It seems reasonable to ask for $\perp \sqsubseteq f(\perp) \sqsubseteq \ldots \sqsubseteq f^{n}(\perp) \sqsubseteq \ldots$ which follows from requiring functions to be monotone.
(b) We will moreover require a form of continuity.

