
Certified polynomial approximations for D-finite functions

Thomas GREGOIRE

August 26, 2012

Abstract

This paper describes the work carried out during a two-month internship in the AriC team at the
Laboratoire de l’Informatique du Parallélisme, under the supervision of Marc Mezzarobba and Nicolas
Brisebarre. The topic is the systematic generation of polynomial approximations, together with proofs
of correctness, for the class of univariate functions satisfying linear ordinary differential equations with
polynomial coefficients.

Contents

1 Introduction 2
1.1 The Dynamic Dictionary of Mathematical Functions . 2
1.2 The general framework of D-finite functions . 2
1.3 Certified evaluation . 4
1.4 Aims of this internship . 4

2 Polynomial approximations via the Cauchy-Kovalevskaya method 5
2.1 Polynomial approximations . 5
2.2 Majorant series and equations . 6
2.3 Application: Taylor approximation for D-finite functions . 7

3 Contributions 8
3.1 Lower bounds on moduli of singularities . 9
3.2 Majorant series for rational functions . 12
3.3 Truncation order estimation . 15
3.4 Economization of power series . 16
3.5 Implementation . 17

4 Future work 17
4.1 Code generation . 17
4.2 Certification in Coq . 17

5 Thanks 17

6 References 21

1

1 Introduction

1.1 The Dynamic Dictionary of Mathematical Functions

This work lies within the framework of dictionaries of mathematical reference data, more particularly of
mathematical functions. Probably the most famous example is the Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables [1]. The idea is to provide, in an accessible way, a huge
amount of information of all kinds, prepared by specialists and carefully proofread: definitions, identities,
approximations, plots, tables of values and so on. Such an encyclopedia is of great interest. For example,
the Handbook of Mathematical Functions is one of the most cited and most widely distributed scientific
books of all times.

When the need of an update of the Handbook of Mathematical Functions arose, the National Institute
of Standards and Technology launched an online project, the Digital Library of Mathematical Functions
(http://dlmf.nist.gov/). Like for its precursor, the idea was still to gather a lot of information, but
presented in a different manner: it is a freely available web site1, accessible to everyone, including non-
experts. Moreover DLMF makes use of the advantages proposed by the World Wide Web. It takes the
form of a hypertext document, which makes the search of a given paragraph far easier. Another important
advantage, in contrast with written media, is that the web offers a great extensibility — no need to buy a
more recent edition of the dictionary after revision — and interactivity.

The Dynamic Dictionary of Mathematical Functions (DDMF) [3] is a research project which makes it
one step further, by taking advantage of the development of Computer Algebra Systems (CAS). It is also
an online encyclopedia of mathematical functions, but contrary to the aforementioned dictionaries, all its
pages are automatically generated (Figure 1). It is based on DynaMoW [5], an OCaml library allowing to
generate mathematical web sites using content generated by a CAS — in the case of DDMF, Maple. Thus,
information is computed directly from the function data structure in the CAS, then laid out, taking care of
the particularities of each function, and finally displayed to the user.

DDMF is targeted for a broad audience. It provides great interactivity: the user can for example change
the precision of the evaluator, the number of terms displayed in the Taylor expansion or the bounds of the
plot domain. Hence, anyone can get information they are looking for, even if it has not been computed by
the authors or by anyone before, the dictionary evolving according to their needs.

In such a framework, a major issue with automatic content generation is reliability. One of the amazing
goals of DDMF is to turn this issue into a feature by providing the user not only information about the
way content was generated, but also to provide detailed proofs of correctness, allowing him to understand
and check step-by-step the calculations. Moreover, this is a way to make DDMF more accessible to the
non-expert user than the output of a CAS.

This work is a step in this direction, into making this encyclopedia both accessible and reliable.

1.2 The general framework of D-finite functions

To design an encyclopedia like DDMF, one needs a common data structure for functions. Of course we have
to carefully choose the set of functions we will be working on: the aim is not only to represent functions, but
also to do calculations on them, that is, to manipulate those functions. Let us present the class of functions
we will be working with, and detail some of the reasons motivating this choice.

1Yet printed versions are still available.

2

The Special Function

1. Differential equation

The function satisfies the differential equation

with initial values , .

2. Plot

min = max =

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path [z ; ;] along which to perform analytic continuation of the solution of the defining differential equation. Each z should be of the form x
+ y*i.)

path = precision =

Ai (x)

Ai (x)

y =3(0) = 1
p3
3

À(2=3)
(y) 1=20 (0) = À Ù

À(2=3)
p6
3

1 z2 : : : ; zn k

Home Glossary

[-]

y y
d2

dx2
(x)À x (x) = 0

[-]

-10 10 Envoyer

[-]

Ai :28881085 :06285935 :(1=4 =4)+ 1 i Ù 0 À 0 i

1/4+1/4*i 8 Envoyer

linkrendering

Figure 1: The Dynamic Dictionary of Mathematical Functions

Definition 1. Let K be a subfield2 of C. A function f : K ! K is D-finite if it satisfies a linear
homogeneous differential equation with polynomial coefficients:

Prf
(r) + � � �+ P1f

0 + P0f = 0;

with Pi 2 K[X] for i = 0 : : : r and Pr 6= 0.

The first interesting property of this class is that D-finite functions can be represented by a particular
differential equation, that is, an order and a finite number of polynomials, together with (a finite number of)
initial values. Therefore they can be represented in the memory of a computer3. Of course, this is essential
for computer algebra.

Now, how large is this class? Algebraic functions4 are D-finite [4], as well as trigonometric functions like
sin(z) or cos(z). A lot of special functions5, like Ai(z) or erf(z) are D-finite too. There are of course some
exceptions. A simple counterexample is the tangent function. Nevertheless, about 60% of the functions
referenced in the Handbook of Mathematical Functions are solution of linear differential equations, which
represents an important part of the functions used everyday by scientists and engineers.

D-finite functions also play an important role in algebraic and symbolic computation, for example for
automatic proofs of identities (see for example [4]). D-finite functions are interesting from the data structure

2For the implementation of the algorithms, one needs to work with a computable field, e.g., a field whose elements may be
injected into the set of binary numbers in such a way that the functions corresponding to the field operations are computable
on a Turing machine. For example, rational or algebraic numbers.

3Remember that even the set of maps Q! Q is uncountable and thus impossible to represent on a computer.
4A function f is algebraic if there exists a bivariate polynomial P with rational coefficients such that P (f(x); x) = 0.
5Special functions are particular functions which occur often enough in mathematics, physics or engineering that they get

a name. There is obviously no general formal definition [2].

3

point of view too, the set of D-finite functions being stable by numerous operations. This is another
good reason to use them in DDMF. What follows is just an example of the kind of results which can be
obtained. Another way to discover the opportunities opened by D-finite functions is the DDMF, which
actually showcases the algorithmics associated to this field of research.

Theorem 1.

. The sum of two D-finite functions is D-finite.

. The product of two D-finite functions is D-finite.

. Any algebraic function is D-finite.

All the proofs are actually algorithmic, in the sense that, for example, we have an efficient algorithm to
compute a differential equation satisfied by an algebraic function, together with initial values. For a proof
of those results, see [4]. For a detailed bibliography concerning D-finite functions, see [15].

1.3 Certified evaluation

Once the class of functions to study is chosen, one wants to design algorithms to manipulate those functions.
Evaluation is probably one of the operations which come to mind first when speaking about mathematical
functions. Our topic here is certified evaluation, meaning that we aim both at reliability and efficiency.

In everyday applications, the user can afford to ask the computer for a result, wait for its answer, then
trust the algorithms and implementation and consider the result as correct. It is not always the case. In
critical systems (e.g., nuclear industry or aeronautics) it is not sufficient and users need more confidence in
the result. This can be achieved by providing proofs of correctness and, in the most delicate situations, by
formal certification in a proof assistant.

In the context of function evaluation, there are already tools galore to evaluate functions, with different
levels of certification. To mention only a few of them, CRlibm [6] for finite-precision, MPFR [17] for arbitrary-
precision or MPFI [16] for interval arithmetic. In the context of D-finite functions, we have NumGfun [14].

In this work, we are interested in polynomial approximation. The idea is simply to replace the functions
by simpler objects, polynomials, while controlling the error. One of the reasons is that we have fast
evaluation algorithms for polynomials (e.g. Horner’s scheme). Thus, one can use them to evaluate functions6.

In DDMF, as outlined before, we need to make the user confident in our results. The aim is a little
bit different from the case of libraries like MPFR. We are not as much interested in the existence of those
proofs as in their readability. If he wishes so, the user should be able to understand what computations
have been done to get the result and check them, step-by-step.

1.4 Aims of this internship

Before this work, there was a polynomial approximation module in DDMF. It was a by-product of the
algorithms described in [15] computing tight bounds on the Taylor coefficients of D-finite functions. In
this previous polynomial approximation module, the aim was asymptotic tightness (i.e. when the degree
tends to infinity), not simplicity. This resulted in a robust system, able to deal with high precisions and
high degrees. This system is far worse for polynomials of small degree. Moreover, the drawback is that it

6This is not the only application. Polynomial approximation can also be used, for example, to establish bounds on a
function.

4

uses general formulas, so that we have to trust the computer for the whole calculation — a big numerical
application. The result is illustrated in Figure 2.

One of the aims of this internship was to reimplement a polynomial approximation module and to find
alternative proofs and/or simplify the existing ones in order to generate simpler, easy-to-follow proofs. That
is, to design a complementary module in the above-mentioned tightness-efficiency/simplicity trade-off.

Finally, concerning proofs of correctness, there is a project, launched by Frédéric Chyzak and Assia
Mahboubi on the “coqification” of DDMF, that is, on the generation of Coq proofs for some of the results
stated on the web site. A long-term goal could be to prove a polynomial approximation module similar
to ours in Coq. All the algorithms in this work have been designed while keeping this aim in mind. In
particular, it enforced limitations on the tools we could use and the way we could do the computations.

Tail Bound: General Formula

The tail of the series expansion is bounded by

for larger than

and by

otherwise.

Generated on 2012-06-19 08:01:25 using unknown version. Powered by .

j (n)x jP1
n=N u n Ai (n)x(x) =

P1
n=0 u n

N

Home Glossary

177514027337

427967505916500000000000

p
3
3 (N 3)+ 2 11 e + + +

22500000
13382353 1À11((N+23)À1)

3 336470597
2880000000

1À11((N+23)À1)
6 6117647593

162000000000
1À11((N+23)À1)

9 424836711
32000000000

1À11((N+23)À1)

jxj
ï

1 1

Ò
À 1 (jxj) 3

°
3=2 + 2

ÑÀ1ÓÀ1
!3=2

208008382167

100000000000
+

3015790257

20000000000 jxj+
5297382371

206250000000
(jxj)2 +

208008382167

28600000000000
(jxj)3 +

294877269573

100100000000000
(jxj)4 +

470878432979

300300000000000

DynaMoW

linkrendering

Figure 2: Details for a given polynomial approximation before this work.

2 Polynomial approximations via the Cauchy-Kovalevskaya method

To obtain polynomial approximations for D-finite functions, we used a classical tool, the Cauchy-Kova-
levskaya method. It has already been used for symbolic-numeric computations on D-finite functions in [15],
to obtain tight bounds on Taylor coefficients of D-finite functions. This technique was already used before in
[18]. This section briefly recapitulates this method and sketches its application to the problem of polynomial
approximation for D-finite functions. Our work has been to simplify and implement the different steps of
this process, as detailed in the next section.

2.1 Polynomial approximations

Firstly let us state the polynomial approximation problem in a formal way.

Problem 1. Given a D-finite function f defined by a differential equation

a[r]f (r) + � � �+ a[0]f = 0;

with a[r](0) 6= 0, a[i] 2 K[X] for i = 0 : : : r, given initial values

f (0)(0); : : : ; f (r�1)(0);

5

and given7 � > 0 and � > 0, compute a polynomial function P such that

jf(z)� P (z)j < �;

whenever jzj � �, z 2 K.

We study here the special case where P is obtained by truncating the Taylor series expansion of f . The
aim is to find a correct (and hopefully as small as possible) truncation order according to the parameters �
and �.

2.2 Majorant series and equations

Let us recall some basic definitions.

Definition 2. Let f be an analytic function defined on a neighborhood of 0. Write its Taylor expansion
at 0 as

f(z) =

+1X
k=0

akz
k:

Then a series g(z) =
P

k�0 bkz
k is a majorant series of f if

8k 2 N; jakj � bk:

This relation is written as follows:
f(z) / g(z):

Suppose that f(z) and g(z) are two analytic functions such that f(z) / g(z). Then�����f(z)�
nX

k=0

akz
k

����� =

�����
+1X

k=n+1

akz
k

�����
�

+1X
k=n+1

jakjjzj
k

�

+1X
k=n+1

bkjzj
k:

Hence, if we find a majorant series g(z) whose remainder has a “simple” expression, it will be easy to find
an integer n such that �����f(z)�

nX
k=0

akz
k

����� � ";

whenever jzj � �, for any " > 0 and � > 0 such that f(z) is analytic on the disk jzj � �.

The Cauchy-Kovalevskaya method rests on the following proposition, which gives a way to compute
majorant series for solutions of ordinary differential equations.

Lemma 1. Let u and v be analytic solutions of the following differential equations

u(r) = a[r�1]u(r�1) + � � �+ a[0]u;

v(r) = b[r�1]v(r�1) + � � �+ b[0]v;

7In this paper, we do not deal with singularities. Hence � has to be less than the minimum modulus of a singularity of f .

6

for some meromorphic functions
�
a[i]
�r�1
i=0

and
�
b[i]
�r�1
i=0

satisfying

a[i] / b[i]

for i = 0 : : : r � 1. Suppose moreover that none of those functions has a singularity at 0 and that���u(i)(0)��� � v(i)(0)

for i = 0 : : : r � 1. Then u / v.

We will prove a special case of this lemma in Section 3.2 below. The proof of the version stated here is
similar and may be found in [10].

According to this lemma, the problem of finding majorant series for a D-finite function boils down to the
search of majorant series for the coefficients of a differential equation it satisfies, i.e., for rational functions.

2.3 Application: Taylor approximation for D-finite functions

From now on we can sketch the application of the Cauchy-Kovalevskaya method to Problem 1. Consider a
function f , satisfying the differential equation

f (r) = a[r�1]f (r�1) + � � �+ a[0]f;

where the
�
a[i]
�r�1
i=0

are rational functions.

We will suppose that f admits at least one singularity. If it is not the case, for example if f is the
exponential function, the reader can easily check that everything which follows is still correct if one replaces
the value ~� defined below by any constant ~� such that 1

~� > �, � being defined in Problem 1. In this case,
our bounds are really crude. We explain in Section 3.4 how to remedy this problem.

A general result8 about analytic functions is that the exponential behaviour of coefficients (un)n2N of
the Taylor expansion of f at 0 is given by (~�n)n2N, where 1

~� is the minimum modulus of a singularity of f .
More precisely, in the framework of non-entire D-finite functions, there exists a sub-exponential factor �(n)
such that

junj � ~�n�(n);

for any integer n. Moreover ~� is the smallest positive number for which such a bound exists [15].

This invites to look for majorant series of f in the form9

f(z) /
A

(1� ~�z)�
; (1)

for some constants A and �.

To find such a majorant series, we proceed as follows [13]:
8This is a consequence of the Cauchy-Hadamard formula [9], which states that for a formal power series

P
n�0

akz
k, the

radius of convergence R satisfies the equality
1

R
= lim sup

n!+1

n
p
janj:

9At this point, the reader may wonder why we introduced a new parameter �. In fact, as we will see in Section 3.1, ~� is not
easy to compute, and we will replace it by an approximation � > ~�. Nevertheless, majorant series of the form A

1��z
(that it,

with an approximation of ~�) does not always exist. This why we introduced this “multiplicity” �.

7

1. For every i, find majorant series for a[i] in the form

a[i] /
M [i]

(1� ~�z)r�i
:

2. Check that the right-hand side of (1) is a solution of

y(r) =

r�1X
i=0

M [i]

(1� ~�z)r�i
y(i);

if � is10 the (unique) positive root of

~�r�"r =

r�1X
i=0

M [i] ~�i�"i;

where �"i = �(�+ 1) : : : (�+ i� 1) denotes the rising factorial.

3. Let v(z) = (1� ~�z)��. According to Lemma 1, if we take

A = max
i

�
f (i)(0)

v(i)(0)

�
;

then
f(z) /

A

(1� ~�z)�
:

Note that this is just one choice among many possible classes of majorant series for D-finite functions.
This one has been chosen for its simplicity and because it was easy to use to generate simple proofs for
DDMF.

To conclude this section, and before diving into more details, let us outline the fact that our system is
essentially independent of the underlying arithmetic. This flexibility enables, depending on the situation,
to implement our algorithms in exact (rational) arithmetic, as well as finite-precision, arbitrary-precision or
interval arithmetic. To simplify, we will elude questions of complexity, the choice of a computation model
depending on the arithmetic used in the implementation. In DDMF (see Section 3.5) we have worked in
arbitrary-precision arithmetic.

3 Contributions

In the previous section, we described a general method to find majorant series for D-finite functions. During
this internship, we focused on the simplification of all the steps of this process. The aims were twofold. On
the one hand it simplified the implementation of the polynomial approximation module. On the other hand
it allowed to automatically generate proofs of correctness for polynomial approximations which are easy to
follow for a human reader. In particular the main difference between the bounds derived in this work and
those described in [15] lies in the trade-off between tightness and simplicity. We focused on simplicity and
on the readability of the proofs.

10In fact, � can we replaced by any greater value. In particular, depending on the underlying arithmetic, one could prefer to
replace � by an integer.

8

3.1 Lower bounds on moduli of singularities

First of all, for a given D-finite function f it is difficult to compute ~�, defined as before as the reciprocal of
the minimum modulus of a singularity of f . Those singularities are necessarily singularities of the differential
equation satisfied by f , that is, poles of the coefficients, but the converse is false. Nevertheless, we observe
that in the previous algorithm we can replace ~� by any value � such that ~� � �, because

A

(1� ~�z)�
/

A

(1� �z)�
:

In this section, we describe an algorithm to compute such a lower bound on ~�. Note that in our
application, we want the majorant series to converge on a disk D : jzj � �. Thus, the problem can be stated
as follows.

Problem 2. Given some rational functions (ai)
r�1
i=0 and a positive real value � < 1

~� , compute a value
� such that, for every pole zp of the functions, one has:

� <
1

�
<

1

jzpj
:

It is straightforward that this problem can be solved if we can solve the following one.

Problem 3. Given a polynomial

P = anX
n + an�1X

n�1 + � � �+ a0;

with a0an 6= 0, one would like to design an algorithm which computes

� = min
P (z)=0

jzj

by successive refinement. More precisely, for any given 0 < r < �, one wants to compute a value R
such that

r < R � �:

This section is devoted to the resolution of Problem 3. We first express rough upper and lower bounds
on � in terms of the coefficients (ak)

n
k=0 of our polynomial P . Next we use the Dandelin-Graeffe iterative

method [7] to refine this bound and make it as tight as needed.

A two-sided bound. For now, we shall prove the following technical result.

Lemma 2. With the notations of Problem 3, let

R =
1

2
min

1�k�n
ak 6=0

����a0ak
����
1=k

:

Then
R < � � 2nR: (2)

This bound is a variant of the one which appears in [11], exercise 4.6.2-20. A lot of similar results on the
localization of the roots of polynomials can be found in [9].

Firstly, let z be a complex number such that jzj � R. We are going to prove that P (z) 6= 0. Consider
the following trivial equality:

a0 =

nX
k=0

akz
k �

nX
k=1

akz
k = P (z)�

nX
k=1

akz
k:

9

By the triangular inequality, we have

ja0j � jP (z)j+

nX
k=1

jakjR
k: (3)

Now let us look more carefully at the definition of R. We have

Rk �
1

2k

����a0ak
���� ;

for every 1 � k � n such that ak 6= 0. Hence, for every 1 � k � n, we have

jakjR
k �

ja0j

2k
: (4)

Next, if we inject (4) into (3), we get

jP (z)j � ja0j

1�

nX
k=1

1

2k

!
> 0;

(remember that a0 6= 0) so that P (z) 6= 0. Thus we have proved that P could not cancel on the disk jzj � R
so we necessarily have � > R.

Now let us focus on the second inequality, namely �
2n � R. To prove this one, we introduce the reciprocal

polynomial
Q = XnP (1=X) = a0X

n + a1X
n�1 + : : : an�1X + an:

Because a0an 6= 0, its roots are exactly the reciprocals of the roots of P . In particular, for every root z of
Q, we have

jzj � ��1:

Thus, if we write Vieta’s formulas for the polynomial Q:

(�1)k
ak
a0

=
X

1�i1<i2<���<ik�n

zi1zi2 : : : zik ;

where z1; z2; : : : ; zn are the n roots of Q, then the following inequality holds:����aka0
���� �

�
n

k

�
��k

(there are
�
n
k

�
terms in the sum).

Since �
n

k

�
=

n(n� 1) : : : (n� k + 1)

k!
� nk;

we can write

�k � nk
����a0ak

���� ;
whenever ak 6= 0. In particular, we get

� � 2nR;

which finishes the proof of (2).

Finally, we can rewrite the bound (2) in a more convenient form:

�

2n
� R < �: (5)

10

Algorithm 1: Graeffe transform
Input: A polynomial P =

Pn
k=0 akX

k.
Output: Its Graeffe transform G(P).

1 q = bn=2c;
2 Pe =

Pq
i=0 a2iX

i;
3 Po =

Pn�q�1
i=0 a2i+1X

i;
4 return P 2

e �XP 2
o ;

The Dendelin-Graeffe method. Consider a polynomial

P = �(X � �1)(X � �2) : : : (X � �n):

Its Graeffe transform G(P) is defined by:

G(P) = �(X � �2
1)(X � �2

2) : : : (X � �2
n): (6)

Since we are only interested in the roots of P and G(P), the exact values of the constants � and � are
irrelevant and we shall ignore them.

The interesting property is that G(P) can be computed efficiently, even if the roots of P are unknown.
Indeed, let us write

P = Pe(X
2) +XPo(X

2):

Then11

G(P) / Pe(X)2 �XPo(X)2:

This follows directly from the fact that

G(P)(X2) / P (X)P (�X):

This leads to a simple yet efficient algorithm to compute the Graeffe transform of a polynomial, Algorithm 1.

As an application, consider our original problem and define a sequence of polynomials (P [i])i�0 as follows:

P [0] = P;
P [i+1] = G(P [i]);

for every integer i � 0. If we define as before:

�i = min
P [i](z)=0

jzj;

then we have immediately from (6)
�i = �2

i

0 :

Now let

Ri =
1

2
min

1�k�n
ak 6=0

�����a
[i]
0

a
[i]
k

�����
1=k

;

11As indicated above, there is an irrelevant multiplicative factor. We write P / Q to say that there exists a constant � such
that P = �Q.

11

where for every integer i,
P [i] = a[i]n X

n + � � �+ a
[i]
1 X + a

[i]
0 :

According to the bound (5), we have

�0

�
1

2n

�2�i

� R2�i

i < �0;

so that
lim
i!1

R2�i

i = ��0 :

This leads to an algorithm solving Problem 3, namely Algorithm 2. It will terminate whenever

r < �0

�
1

2n

�2�i;

i.e., when

i > log2
log 2n

log �0
r

:

Let us define R as in the bound (5). Then according to this bound, Algorithm 2 terminates after at most

1 +

&
log2

log 2n

log 2nR
r

'

iterations.

Let us summarize the results we have obtained:

Theorem 2. Algorithm 2 solves Problem 3. It is correct and, given a polynomial P =
Pn

k=0 akz
k, it

terminates after at most

1 +

&
log2

log 2n

log 2nR
r

'

applications of Graeffe’s transform, where

R =
1

2
min

1�k�n
ak 6=0

����a0ak
����
1=k

:

3.2 Majorant series for rational functions

As outlined before, Lemma 1 reduces the problem of finding majorant series for a D-finite function to the
one of finding majorant series for rational functions. There are several ways to find majorant series for this
class of functions, see for example [15]. We designed a different, elementary method which avoids partial
fraction decompositions. The price of this simplicity is obviously that our bounds are less tight than those
of the algorithms cited above.

Let f(z) = P (z)
Q(z) be a rational function. Without loss of generality, suppose that Q(0) = 1. We are given

two positive numbers m and �. The aim is to find a constant M such that

f(z) /
M

(1� �z)m
:

12

Algorithm 2: Lower bound improvement
Input: A polynomial P of degree n, a positive real number r < �, where � = minP (z)=0 jzj.
Output: A positive real number R such that r < R � �.

1 Q = P ;

2 R = 1
2 min

����Q0

Qk

���1=k : 1 � k � n; Qk 6= 0

�
; // Q =

Pn
i=0QiX

i

3 p = 1;
4 while R � r do
5 p = p=2;
6 Q = Graeffe(Q) ; // Algorithm 1

7 R =
�

1
2 min

����Q0

Qk

���1=k : 1 � k � n; Qk 6= 0

��p
; // Q =

Pn
i=0QiX

i

8 end
9 return R;

Let us recall the Taylor expansion of the right-hand side for future reference12:

M

(1� �z)m
=

+1X
k=0

M

�
k +m� 1

k

�
�kzk: (7)

We will find constants M0 and M1 such that

P (z) /
M0

(1� �z)m=2
and (8)

1

Q(z)
/

M1

(1� �z)m=2
: (9)

Then it is easy to see that the constant M = M0M1 is a solution to our initial problem.

Majorant series for polynomials. Finding a constant M0 to satisfy (8) is easy. Just write

P (z) =

nX
k=0

akz
k

and take
M0 = max

0�k�n

jakj�
k+m=2�1

k

�
�k

;

according to the Taylor expansion (7).

Majorant series for reciprocals of polynomials. To find a constant M1 satisfying (9), let us write

g(z) =
1

Q(z)
=

+1X
k=0

ukz
k

12Note that here, m is not necessarily an integer. Recall that for a complex number � and a non-negative integer n, we define��
n

�
=
�(�� 1) : : : (�� n+ 1)

n!
:

13

and

Q(z) =

dY
i=1

(1� �iz):

On the one hand, by definition of ~�, we have

j�ij � ~�;

for i = 1 : : : d. On the other hand, we have formally

g0(z)

g(z)
=

dX
i=1

�i
1� �iz

=

dX
i=1

+1X
k=0

�k+1
i zk

=
1

z

+1X
k=1

Skz
k;

where Sk =
Pd

i=1 �
k
i . We will reformulate it in terms of Taylor coefficients. Let us recall the following facts

about generating series:

Lemma 3. Let A(z) =
P

n�0 anz
n and B(z) =

P
n�0 bnz

n. Then

zA0(z) =
X
n�0

nanz
n

and

A(z)B(z) =
X
n�0

nX

k=0

akbn�k

!
zn:

Hence, the equation

zg0(z) = g(z)

+1X
k=1

Skz
k

becomes

nun =

nX
k=0

ukSn�k: (10)

Now remember we want to find a value M1 such that (9) holds. According to (7), in terms of Taylor
coefficients it is equivalent to finding a value M1 such that

jukj �M1

�
k +m=2� 1

k

�
�k; (11)

for every integer k.

Let n be an integer. Suppose that (11) holds for every k < n. Then according to the recurrence formula

14

(10), we have

junj =

����� 1n
nX

k=0

ukSn�k

�����
�

1

n

nX
k=0

jukjjSn�kj

�
1

n

nX
k=0

�
M1

�
k +m=2� 1

k

�
�k
��

d~�n�k
�

� M1

�
n+m=2� 1

n

�
�n

d

n

nX
k=0

�
~�

�

�n�k

� M1

�
n+m=2� 1

n

�
�n

d

n

1

1� ~�
�

:

Hence if n0 is any integer satisfying
d

n0

1

1� ~�
�

� 1;

then by induction

M1 = max
0�k�n0

jukj�
k+m=2�1

k

�
�k

is a solution to our problem.

3.3 Truncation order estimation

At this point, we are able to find majorant series for any D-finite function f in the form

f(z) /
A

(1� �z)�
: (12)

In this section, we show how to use this result to find polynomial approximations of f .

Let � > 0 and � > 0 such that the Taylor series
P

k�0 akz
k of f at 0 converges on the disk D : jzj �

�; z 2 C. Remember that we are looking for an integer n such that�����f(z)�
nX

k=0

akz
k

����� � �; (13)

for any z in D.

Now, for z 2 D, we have: �����f(z)�
nX

k=0

akz
k

����� =

�����
+1X

k=n+1

akz
k

�����
�

+1X
k=n+1

jakjjzj
k

�

+1X
k=n+1

jakj�
k:

15

According to (12), we can replace jakj by the general coefficient of the Taylor expansion of �(z) = A
(1��z)�

.
Cauchy’s estimate [9] states that this coefficient is bounded by M

rk
, where13 r = 1

2

�
� + 1

�

�
and14 M =

max�2[0;2�] j�(re
i�)j. Thus, �����f(z)�

nX
k=0

akz
k

����� �

+1X
k=n+1

M

rk
�k

� M
��
r

�n+1 1

1� �
r

:

Hence to satisfy (13), it suffices to take

n = log �
r

��
1�

�

r

� �

M

�
� 1

and one gets an �-approximation polynomial on the disk D.

3.4 Economization of power series

The first version of our implementation was producing really high-degree polynomial approximations —
which was expected, considering the crudeness of our bounds. On a suggestion of Marc Mezzarobba, we
used an heuristic trick to improve the truncation order returned by our algorithms, known as economization
of power series [12]. The idea is the following: imagine the user asks for an �-approximation of a given
D-finite function f . Firstly, we use our algorithms to compute an �=2-approximation of this function f , that
is we get a polynomial P =

Pn
k=0 akz

k such that

jf(z)� P (z)j < �=2;

on a disk jzj � � selected by the user. Then we compute the quantity

d = min

(
0 � k � n :

nX
i=k+1

jaij�
i < �=2

)
:

Thus, if we take Q =
Pd

k=0 akz
k, by triangular inequality we have

jf(z)�Q(z)j � jf(z)� P (z) + P (z)�Q(z)j

� jf(z)� P (z)j+ jP (z)�Q(z)j

< �=2 +

�����
nX

k=d+1

akz
k

�����
� �=2 +

nX
k=d+1

jakjjzj
k

� �=2 +

nX
k=d+1

jakj�
k

� �=2 + �=2

� �:

So when such a d exists, we obtain a polynomial approximation of degree smaller than the one returned
by our algorithm for an �=2-approximation. This heuristic trick does very well in practice ; for all the
functions presented in the DDMF, d exists and is much smaller than the order returned by our algorithm
when computing an �-approximation, leading to a division of the degree of output polynomials by a factor
of 10.

13Any r such that � < r < 1

�
would do the job.

14It is straightforward to prove that M = 1

j1��rj�
, so that M can easily be computed.

16

3.5 Implementation

We have implemented those results in a polynomial approximation module and integrated it into DDMF.
Figure 3 shows the interface - a new paragraph in the main page. Every polynomial approximation can be
proved on demand. Proofs are fully instantiated and deal with special cases. The beginning of such a proof
is illustrated in Figures 4 and 5.

Error bound for Taylor approximation on the disk :

.

r = prec =

jxj =10Ô r = 3

(n)x 0 :

ÌÌÌÌÌ
X68

n=0

u n ÀAi (x)

ÌÌÌÌÌ < 1 À100

Details

0.3 100 Envoyer

Figure 3: New paragraph in the main page of the DDMF.

4 Future work

The work on D-finite functions is far from being over. In this last section, we give two directions for further
research.

4.1 Code generation

We have implemented a small code generator in DDMF, based on the work previously described. It outputs
C code using the MPC library [8] to evaluate any D-finite function on a disk centered at 0, up to any
given precision. Such an evaluation code is illustrated in Listing 1. It evaluates, using Horner’s scheme, a
numerical approximation of a certified truncation of the Taylor series. For now, only the truncation error
is certified, the numerical error being neglected. This should be fixed in the near future. Then, it would
be important to provide evaluation code on more general domains, notably on neighbourhoods of infinity or
singularities.

4.2 Certification in Coq

As outlined above, certification is unavoidable for critical situations in which we cannot afford to make
mistakes in function evaluations. We have kept the long-term goal of Coq certification in mind. In particular
we have used only elementary algorithms and theoretic tools. Therefore our module is a good candidate for
this formal certification.

5 Thanks

I would like to thank Marc Mezzarobba and Nicolas Brisebarre for this nice internship, for their constant
support and advice and for all the things they taught to me during those few weeks. I also would like to
thank Frédéric Chyzak, Bruno Salvy and Assia Mahboubi for interesting discussions and remarks about my
work.

17

1 #include <mpc . h>
2
3 stat ic mpc_t c o e f f [8+1] ;
4 stat ic const char� c o e f f_ s t r [8+1] =
5 {
6 " .35502806 " , "�.25881940" , " 0 . " , " .5917134 e�1" , "�.2156829e�1" ,
7 " 0 . " , " .197237 e�2" , "�.51351e�3" , " 0 . " ,
8 } ;
9
10 void i n i t (mpfr_prec_t prec , mpc_rnd_t rnd)
11 {
12 mpc_init2 (c o e f f [0] , prec) ;
13 mpc_init2 (c o e f f [1] , prec) ;
14 . . .
15 mpc_init2 (c o e f f [8] , prec) ;
16
17 mpc_set_str (c o e f f [0] , c o e f f_ s t r [0] , 10 , rnd) ;
18 . . .
19 mpc_set_str (c o e f f [8] , c o e f f_ s t r [8] , 10 , rnd) ;
20 }
21
22 void compute (mpc_t x , mpc_t acc , mpc_rnd_t rnd)
23 {
24 int i ;
25
26 mpc_set (acc , c o e f f [8] , rnd) ;
27
28 i = 8 � 1 ;
29 while (i >= 0)
30 {
31 mpc_mul(acc , acc , x , rnd) ;
32 mpc_add(acc , acc , c o e f f [i] , rnd) ;
33 i��;
34 }
35 }
36
37 void un in i t (void)
38 {
39 mpc_clear (c o e f f [0]) ;
40 . . .
41 mpc_clear (c o e f f [8]) ;
42 }

Listing 1: An example of evaluation code in C generated by our web pages.

18

Taylor polynomial approximation

1. Sketch of proof

The aim is to find an integer such that the order Taylor polynomial of approximates it uniformly
on the disk with absolute error less than . To achieve this goal, one looks for a

 of in order to bound the tail of its Taylor expansion.

The starting point is the differential equation satisfied by :

with initial conditions

In the following paragraph, we find a majorant series of .

The method is then based on the following remark: If is a solution of the majorant equation

and if

then is a majorant series of .

2. Majorant series of the coefficients

Now let denote the minimum modulus of a singularity of . One can show that the exponential
behaviour of the Taylor coefficients of a (generic) solution of the differential equation satisfied by is
controlled by . This invites to look for majorant series of the form . It is not easy to compute , but

using the Dendelin-Graeffe iteration, one can compute an approximation , namely Ë . Then:

, where M , is a majorant series of . More details .

3. Resolution of the majorant equation

According to the results of the previous paragraphs, the following equation is a majorant equation for :

This is an Euler equation, which admits a solution in the form

where is the unique positive solution of the equation .

Hence, according to the result stated in the first paragraph, it suffices to choose so that the inequalities
on the initial conditions hold. Numerically, we get and .

The function defined by

n nth Ai (x)

jxj =10Ô r = 3 Ï 0= 1 À100

Ai (x)

Ai (x)

a0 (x) Àx

¶(x)

¶(x) Ai (x)

ËÀ1Ö Ai (x)

Ai (x)

ËÖ M
(1ÀËx)Ö m ËÖ

Ë > ËÖ = 9
20

a (x)0 = M0

(1ÀËx)2 0 =
9
20 Àx

Ai (x)

Õ0 81
484 Õ0

2 + 81
286 Õ0 À 1 = 0

A0

A :3855581350 Ô 1 = A Õ :084059072350 Õ 0 = Õ

¶(x)~

Home Glossary

[-]

y
d2

dx2
(x) = (Àx) y (x) ;

y =3 ; 1=2 :(0) = 1

p
3
3

À (2=3)
(y)0 (0) = À

Ù

À
p
6
3 (2=3)

¶
d2

dx2
(x) = a0 (x)¶ (x) ;

jy j(0) Ô ¶ (0) ; j(y) j0 (0) Ô (¶)0 (0) ;

[-]

here

[-]

¶
d2

dx2
(x) =

ï
M0

(1)À Ëx 2

!
¶ (x) :

;
A0

(1 x)À Ë Õ0

¶(x) ;~ =
A

(1 x)À Ë Õ

linkrendering

majorant series

Figure 4: Details for a given polynomial approximation (1).

19

is then a majorant series of which is itself a majorant series of .

4. Bound on the tail

Note that the remainder of the Taylor expansion of is bounded by the remainder of the
Taylor expansion of for every and . We will find an integer such that on the disk

, with .

Let Ñ and . It is easy to prove that . Then, applying the Cauchy

inequality, we have:

whenever . Thus, if

then

5. Degree improvement

Let

be the Taylor expansion of We have proved that

for and .

Using the recurrence relation satisfied by the coefficients to compute them, one gets

so that finally, by the triangular inequality

whenever and .

Generated on 2012-08-21 19:54:02 using unknown version. Powered by .

;A0

(1ÀËx)Õ0
Ai (x)

R (x)n Ai (x) R (jxj)n
~

¶(jxj)~ n x n R (jxj) =2n
~ < Ï

jxj =10Ô r = 3 Ï 0= 1 À100

= 2
1 (r)+ 1

Ë M ¶(Ñe)j= maxÒ2[0;2Ù] j {Ò M = A
j1ÀËÑjÕ

jxj Ô r < Ñ

Ai :(x)

jxj =10Ô r = 3 Ï 0= 1 À100

jxj =10Ô r = 3 Ï 0= 1 À100

[-]

jR (x)j (jxj) jxj ;nÀ1 Ô RnÀ1~ Ô
X

kÕn
Ñk

M k Ô M

Ò

Ñ

jxjÓn
1

1À Ñ
jxj

n ;Õ 1044

jR (x)j =2:nÀ1 Ô M

Ò
r

Ñ

Ón
1

1À r
Ñ

Ô Ï

[-]

(n)x
X

nÕ0
u n

(n)x =2;

ÌÌÌÌÌ
X1044

n=0

u n ÀAi (x)

ÌÌÌÌÌ < Ï

u(n)jr =2;
X1044

k=69

j n Ô Ï

(n)x ;

ÌÌÌÌÌ
X68

n=0

u n ÀAi (x)

ÌÌÌÌÌ < Ï

DynaMoW

Figure 5: Details for a given polynomial approximation (2).

20

6 References

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, ninth Dover printing, tenth GPO printing edition, 1964.
http://people.math.sfu.ca/~cbm/aands/.

[2] George E. Andrews, Richard Askey, and Ranjan Roy. Special Functions, volume 71 of Encyclopedia
of mathematics and its applications. Cambridge University Press, pub-CAMBRIDGE:adr, 1999.

[3] Alexandre Benoit, Frédéric Chyzak, Alexis Darrasse, Stefan Gerhold, Marc Mezzarobba, and Bruno
Salvy. The Dynamic Dictionary of Mathematical Functions (DDMF). In Mathematical Software -
ICMS, pages 35–41, 2010.

[4] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Bruno Salvy, and Éric Schost. Algo-
rithmes efficaces en calcul formel, 2012. http://algo.inria.fr/chyzak/mpri/poly-20120112.pdf.

[5] Frédéric Chyzak and Alexis Darrasse. Using Camlp4 for presenting dynamic mathematics on the web:
DynaMoW, an OCaml language extension for the run-time generation of mathematical contents and
their presentation on the web. In Olivier Danvy, editor, ICFP’11 (September 19–21, 2011, Tokyo,
Japan), page 259–265. ACM, 2011.

[6] The Correctly Rounded mathematical library. http://lipforge.ens-lyon.fr/www/crlibm/.

[7] J. H. Davenport and M. Mignotte. On finding the largest root of a polynomial. Mathematical Modelling
and Numerical Analysis, 24(6):693–696, 1990.

[8] Andreas Enge, Mickaël Gastineau, Philippe Théveny, and Paul Zimmermann. mpc — A library for
multiprecision complex arithmetic with exact rounding. http://mpc.multiprecision.org/.

[9] P. Henrici. Applied and computational complex analysis I. John Wiley, New York, 1974.

[10] P. Henrici. Applied and computational complex analysis II. John Wiley, New York, 1977.

[11] D. E. Knuth. The Art of Computer Programming: Volume 2, Seminumerical Algorithms. Addison-
Wesley Publishing Company, 1969.

[12] C. Lanczos. Applied Analysis. Van Nostrand, Prentice-Hall, 1956.

[13] Marc Mezzarobba. Génération automatique de procédures numériques pour les fonctions D-finies.
Rapport de stage, Master parisien de recherche en informatique, 2007. http://marc.mezzarobba.net/
m2/Mezzarobba_MScThesisMPRI2007-1.2.pdf.

[14] Marc Mezzarobba. NumGfun: a package for numerical and analytic computation with D-finite functions.
In Wolfram Koepf, editor, ISSAC ’10, pages 139–146. ACM, 2010.

[15] Marc Mezzarobba. Autour de l’évaluation numérique des fonctions D-finies. Thèse de doctorat,
École polytechnique, 2011. http://marc.mezzarobba.net/these/these-mezzarobba.pdf.

[16] MPFI, a multiple precision interval arithmetic library based on MPFR. http://perso.ens-lyon.fr/
nathalie.revol/software.html.

[17] The GNU MPFR Library. http://www.mpfr.org/.

[18] Joris van der Hoeven. Fast Evaluation of Holonomic Functions Near and in Regular Singularities. J.
Symb. Comput, 31(6):717–743, 2001.

21

