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1 Introduction

In formal language theory, two very different models sometimes turn out to describe the
same class of languages. This usually shows that there is a fundamental concept described
by those models. A well-known example is the class of regular languages, which can be
characterized by logic (monadic second order (MSO) logic), algebra (syntactic monoids),
and many computational models (automata). In particular, it was shown by Rabin and
Scott [11] that two-way finite state automata are equivalent to finite state automata, even
in presence of non-determinism.

However, these results do not hold when, instead of languages, we consider transduc-
tions, that is, relations from strings to strings. Indeed, two-way finite state transducers are
strictly more powerful than their one-way counterparts. The non-deterministic versions
of these models are also strictly more powerful than the deterministic ones. Nonetheless,
some notable equalities have been proven between those classes of transductions: in [8],
Engelfriet and Hoogeboom have shown that two-way deterministic generalized sequential
machines (2dgsm) define the same class of transductions as deterministic MSO string
transducers (dmsos).

Recently, Alur has described a new model for defining string transductions [1], deter-
ministic streaming string transducers (dsst), which is equally expressive as 2dgsm and
MSO logic [4]. An interesting feature of this model compared to 2dgsm is that it only
does a one-way pass through its input, using a finite number of string variables in order
to compute the output. Moreover, when we consider the non-deterministic models, nsst
are shown to be as expressive as non-deterministic MSO logic [3], whereas they are in-
comparable to 2ngsm. Alur has also extended his model to string-to-tree and tree-to-tree
transductions, with interesting results in terms of expressiveness and decidability [2].

During this internship, I focused on the deterministic versions of those models. More
precisely, I looked at the equivalence between dsst and 2dgsm in terms of resource usage,
and tried to exhibit a relation between the number of variables of a dsst and the number
of back-and-forth moves of an equivalent 2dgsm. Section 2 introduces the definitions of
the different models. Section 3 proves some expressiveness results between dsst, dmsos
and 2dgsm. Section 4 deals with relations between the resources of dsst and 2dgsm.
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2 Definitions

2.1 DSST

Description Deterministic streaming string transducers (dssts), defined in [4], in ad-
dition to all transductions implemented by deterministic one-way finite transducers, can
implement transductions such as reversing a string and swapping substrings.

A dsst reads the input in a single left-to-right pass. In addition to a finite set of
states, it has a finite set of string variables that it uses to produce the output.

In each step, a dsst reads an input symbol, changes its state, and concurrently updates
all its string variables using a copyless assignment.

Copyless assignments The right-hand sides in a copyless assignment consist of a
concatenation of string variables and output symbols, with the restriction that in a parallel
assignment, a variable can appear at most once across all right-hand sides.

For instance, letX = {x, y} be the set of string variables, and let α, β, γ ∈ Γ∗ be strings
of output symbols. Then, the update (x, y) = (α.x.β.y.γ, ε) is a copyless assignment, as
it contains only one occurrence of x and y each.

On the other hand, the assignment (x, y) = (x.y, y.α) is not copyless as the variable
y appears in the right-hand sides twice.

Formal definition A dsst W is a tuple (Σ,Γ, Q, q0, X, F, δ1, δ2), where:

• Σ is the input alphabet

• Γ is the output alphabet

• Q = {q0, . . . , qn} is the set of states

• q0 is the initial state

• X = {x1, . . . , xm} is the set of string variables

• F : Q → (Γ ∪ X)∗ is the partial output function such that for each q ∈ Q and
x ∈ X, there is at most one occurrence of x in F (q)

• δ1 : Q× Σ→ Q is the state-transition function

• δ2 : Q×Σ×X → (Γ∪X)∗ is the variable-update function such that for each q ∈ Q
and a ∈ Σ and x ∈ X, there is at most one occurrence of x in the set of strings
{δ2(q, a, y) | y ∈ X}

At the beginning of the computation, the dsst is in state q0 and all variables are mapped
to the empty string.
From now on, an assignment such that δ2(q, a, x) = α.x.β.y and δ2(q, a, y) = γ will be

noted either (α.x.β.y, γ) or

∣∣∣∣ x := α.x.β.y
y := γ

.

2.2 2DGSM

DGSM A deterministic generalized sequential machine (dgsm) is similar to a deter-
ministic finite automaton (dfa) except that on each transition, it can output symbols
from an output alphabet Γ. The output is written from left to right on a write-only
output tape. Formally, a dgsm is a tuple (Q,Σ,Γ, δ, q0, F ) where (Q,Σ, q0, F ) are defined
as for dfa, but the transition function is δ : Q× Σ→ Q× Γ∗.
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2DGSM A two-way deterministic generalized sequential machine (2dgsm), introduced
in [9], is a finite-state device with a two-way read-only input tape and a one-way write-only
output tape.

In each step, the machine reads an input symbol, changes its state, writes a finite string
on its output tape, and moves its reading head according to the finite-state control. The
head either moves to the left (−) or to the right (+).

The string on the input tape is assumed to be ` w a, where ` and a (/∈ Σ) are special
symbols known as the left and right end-markers. If it moves right from a or left from `,
the 2dgsm halts and rejects its input

It is possible that the computation of the machine may not terminate; however, only
halting runs contribute to the output. The output of the machine is the string on the
output tape if the machine terminates in a designated final state.

Formally, a 2dgsm is specified as the tuple (Q,Σ,Γ, δ, q0, F ) where Q,Σ, Γ, q0 and
F are defined as for dgsms, while the transition function is δ : Q × (Σ ∪ {`,a}) →
Q× {−,+} × Γ∗.

Visit number A 2dgsm is said to have a visit number of k if k is the maximum number
of visits done to a position of an input word on which it halts and accepts.

It is useful to note that the visit number of a 2dgsm is bounded by its number of
states (otherwise, it would loop because of the determinism). We can also note that for
every 2dgsm which may reject an input by looping (and therefore doesn’t halt), there is
a equivalent 2dgsm which always halts. This result was proven by Sipser, in [12].

2.3 DMSOS

As in [8], to define deterministic MSO-definable string transductions (dmsos), we are
going to use the same definition as for MSO-definable graph transductions.

String graph A string w = w1w2 · · ·wk is viewed as a string graph Gw with k + 1
vertices v0, v1, · · · vk, with an edge from each vi to vi+1 labeled with the symbol wi.

Then, a MSO string transduction will be a graph transduction between two string
graphs.

Formal definition An MSO formula over an alphabet Σ, to be interpreted over a
string graph Gw, consists of Boolean connectives, quantifiers, first-order variables that
range over vertices of Gw , monadic second-order variables that range over sets of vertices
of Gw, and atomic formulas of the form edgea(x, y), for a ∈ Σ, meaning that the vertex
x has an a-labeled edge to the vertex y.

A dmsos T from input alphabet Σ to output alphabet Γ is defined by:

• A finite copy set C

• Vertex formulas ϕc(x), for each c ∈ C, each of which is an MSO formula over Σ
with one free first-order variable x.

• Edge formulas ϕc1,c2γ (x, y), for each γ ∈ Γ and c1, c2 ∈ C, each of which is an MSO
formula over Σ with two free first-order variables x and y.
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Given an input string w, consider the following output graph: for each vertex x in Gw
and c ∈ C, there is a vertex xc in the output iff the formula ϕc(x) holds, and for all vertices
xc1 and yc2 , there is a γ-labeled edge from xc1 to yc2 iff the formula ϕc1,c2γ (x, y) holds. If
this graph is the string graph corresponding to the string u over Γ then [[T ]](w) = u, and
if this graph is not a string graph, then [[T ]](w) is undefined.

3 Expressiveness of DSST

In [8], Engelfriet and Hoogeboom proved that dmsos = 2dgsm. In a recent paper, Alur
and Cerny [4] showed that dsst are equally expressive to these two other models.

3.1 Proof of DSST ⊆ DMSOS

First, let us formalize Alur’s proof of the reduction from dsst to dmsos.

Theorem 1. For every deterministic streaming string transducer W there exists a deter-
ministic MSO transducer T such that [[W]] = [[T]].

Proof. The idea is to find an MSO-definable graph transformation that is able to simulate
the behavior of any streaming string transducer. Let’s see the general idea on an example:
the transduction f3 from Alur’s article [4], which replaces each symbol b by as many bs
as there are as between this occurrence of b and the previous occurrence of b:

f3(ai1bai2b · · · aikbaik+1) = ai1bi1ai2bi2 · · · aikbikaik+1

This transduction is implemented by a dsst with one state q0 and two variables x and
y. When it reads the letter a, it stores a in x and b in y. When it reads the letter b, it
concatenates x and y in x, and resets y to ε. At the end, the output is in the variable x.
For example, f3(aaba) = aabba.

∆

q0start F (q0) = x

a a b a

a a

b b

a

b

a

∣∣∣∣ x := xa
y := by

b

∣∣∣∣ x := xy
y := ε

x

y

Figure 1: Graph transformation associated with the DSST implementing f3

On top of figure 1 is the graph representation of the input string aaba. Under each
letter of the input string, 6 nodes represent the new assignments to the variables when the
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dsst reads this letter. The top three nodes represent the assignment to x, and the bottom
three nodes represent the assignment to y. For example, under the second letter a of the
input string, the assignment x := xa is represented in the top three nodes. The symbol
a is represented by a labeled edge (pink), and the variable x is written by connecting the
former content of the variable x from the previous column, using dashed (ε-labeled) edges
(blue). After this assignment, the new content of the variable x can be read between the
two orange nodes. In the first column, variables are represented by a dashed edge (red)
since they are empty in the beginning of the computation. In the last column, the symbol
∆ denotes the beginning of the output, and some variables might be linked depending on
the output function (it it not the case here since the output is just x).

Let us formalize the MSO formulas defining this graph transformation. Let W =
(Σ,Γ, Q, q0, V, F, δ1, δ2) be a deterministic streaming string transducer, whereQ = {q0, . . . , qn}
and V = {v1, . . . , vm} is the set of string variables (noted v in order to avoid confusion
with the x’s and y’s in the logic formulas).

Firstly, in order to represent an assignment of the form v := w1 · · ·wk with k symbols
wi ∈ (Γ ∪ V ) in the right-hand side, we need k + 1 nodes. Thus, the copy-set C must be
such that |C| = m× p, where m is the number of variables and p = max

q,a,v
(|δ2(q, a, v)|+ 1).

For all c ∈ C, let ϕc(x) = true, i.e., every node has |C| copies.

Now, we have to define the formulas ϕc1,c2γ (x, y), which denote that there is an

edge from the cth1 copy of x to the cth2 copy of y, labeled by γ. We need a formula
States(X0, · · · , Xn) which means that the second-order variables Xi describe a run of the
dsst.

We first define outa(x) = ∃y.edgea(x, y) which means that we read a in position x.

States(X0, · · · , Xn) =

∀x(

∧
i 6=j
¬(x ∈ Xi ∧ x ∈ Xj) ∧

∨
i

x ∈ Xi


∧

(first(x)⇒ x ∈ X0)

∧


∧
a∈Σ

i,j∈[[0,n]]
δ1(qi,a)=qj

(x ∈ Xi ∧ ¬last(x) ∧ outa(x)⇒ ∃y(y ∈ Xj ∧ edgea(x, y)))


∧

last(x)⇒
∨

i∈[[0,n]]
F (qi) is defined

x ∈ Xi


)

For node x of the input string and each variable vi, we need p copies of x. We name
the elements of the copy-set: C = {vαi | i ∈ [[1,m]], α ∈ [[1, p]]}. Then we write the formu-
las ϕc1,c2γ (x, y) depending on c1 and c2 as follows:

There is a vertical edge labeled by γ between two consecutive copies of a node iff they
correspond to the same variable vi and the current state and letter read correspond to
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a transition where the letter γ appears in the right place in the right-hand side of the
assignment. We get the formula:

ϕ
vαi ,v

α+1
i

γ (x, y) = ∃X0 · · · ∃Xn(States(X0, · · · , Xn) ∧x = y ∧
∨
k,a

δ2(qk,a,vi)[α]=γ

(x ∈ Xk ∧ outa(x))

)

The case of the letter ε is particular: we also have to draw an ε-labeled edge in the
first column for the empty variables at the beginning.

ϕ
vαi ,v

α+1
i

ε (x, y) = ∃X0 · · · ∃Xn(States(X0, · · · , Xn) ∧ (x = y ∧ first(x) ∧
∨
k,a,j

δ2(qk,a,vi)[α]=vj

outa(x)


∨ x = y ∧

∨
k,a

|δ2(qk,a,vi)|<α

(x ∈ Xk ∧ outa(x))

))

In order to draw the diagonal ε-labeled edges from one column to the next one, we
have to check if there is a symbol corresponding to the right variable at the right position:

ϕ
v
p
i ,v

α+1
j

ε (x, y) = ∃X0 · · · ∃Xn(States(X0, · · · , Xn) ∧(y = x + 1) ∧
∨
k,a

δ2(qk,a,vj)[α]=vi

(x ∈ Xk ∧ outa(x))

)

For the edges from a column to the previous one, we get a similar formula ϕ
vαi ,v

1
j

ε (x, y)
where y = x + 1 is replaced by x = y + 1. We also need to have formulas for the edges
which link the variables together in the last column, and which write the ∆ label on the
first node. The formulas ϕc1,c2γ (x, y) which don’t correspond to any of those cases are set
to false. If it corresponds to several different cases, we have to merge the formulas.

In the end, we have successfully defined all the formulas using monadic second-order
logic. Thus, this graph transformation is MSO-definable. In order to get a string graph,
we have to delete the ε labeled edges and the nodes which are not accessible from the
first one. This transformation is also MSO-definable and was formalized by Engelfriet
and Hoogeboom [8]. Since MSO-definable transductions are closed under sequential com-
position [6], we have finally proven the theorem.

3.2 Direct reduction from DSST to 2DGSM

Alur has shown that dsst = dmsos = 2dgsm [4]. The disadvantage of his proof is that
there is no direct reduction between dsst and 2dgsm. We will now try to write a direct
reduction from dsst to 2dgsm, and see if it helps us find a relation between the number
of variables of a dsst and the number of visits of the associated 2dgsm.
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3.2.1 Use of Hopcroft’s property

We are going to use the following property [5]:

Theorem 2 (Hopcroft). dgsm ◦ 2dgsm ⊆ 2dgsm

Proof. The idea of the proof can be given by the beginning of the article of Chytil and
Jakl [6] and relies on the construction of a ”dgsm inverse” explained in Hopcroft and
Ullman’s article [9].

Let A1 be a dgsm and A2 a 2dgsm. We want to construct a 2dgsm A3 such that
A3 = A1 ◦ A2. On an input w, A1 produces an output w′, which is then used as an
input by A2, which finally produces the output word w′′. We want A3 to simulate this
composition by outputting w′′ on the input w.

In fact, A3 does the same computation as A2, but it also needs to keep track of the
state in which A1 would be at the current position. This way, when reading a letter of
w, it can determine what letters of w′ are output by A1, and thus simulate the behavior
of A2. This is easily done when A2 moves right by following the transitions in A1’s
automaton. But when A2 goes left, A3 needs to do one step to the left in the run of A1.
This amounts to “guessing” in which state A1 was before reading the last letter. This is
done by the following algorithm:

Algorithm for reverse run (based on [9]) Assume that A = (Q, · · · ) is a dgsm,
then a 2dgsm B = (Q′, · · · ) with Q ⊆ Q′ can be constructed with the following behavior:

Let w = a1 · · · an be an input to A and ai a position in w such that A reaches state r
at position ai−1 and state q at position ai. Then, starting on w at position ai in state q,
the 2dgsm B ends in position ai−1 in state r. Let us use two functions: δ∗, the next state
function defined as a mapping from Q × Σ∗ to Q, and γ, the preceding states function,
defined as follows: γ(q, w) = {p | δ∗(p, w) = q}.

B needs to find the preceding state r of A in the current run. In order to do that, B
looks at the value of γ(q, ai−1). If it contains only one state, then this is the desired state
r and the algorithm is finished.

Let γ(q, ai−1) = {q1, · · · , qs} , s ≥ 2.

We remark that, A being deterministic, the following configuration cannot occur (with
w ∈ Σ∗, and p1 6= p2):

p

p1

p2

q0

w

w
*

So we can define s disjoint subtrees T1, · · ·Ts as follows:

Tj = {(p, j) | 1 ≤ k < i− 1, δ∗(p, ak · · · ai−2) = qj}

B goes down in the subtrees, computing successively γ(qj , ak · · · ai−2) for 1 ≤ j ≤ s
and k = i− 2, i− 3, · · · . Two configurations may appear:
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1. B reaches the following configuration for some k:

• γ(qj , ak+1 · · · ai−2) is non empty for at least two subtrees;

• γ(qj , ak · · · ai−2) is empty except for exactly one subtree (which is one among
the non empty subtrees one step before). If this subtree is Tl, then ql is the
state r we are looking for.

q

q1 q2 qs

p2

p

T2

p1

T1 Ts

ai

ai−1

ak+1

ak

In this example, γ(qj , ak+1 · · · ai−2) is non empty for T1 and T2, and at the next
step the only non-empty one is T2. The desired state is thus r = q2.

Let m 6= m′ such that γ(qm, ak+1 · · · ai−2) and γ(qm′ , ak+1 · · · ai−2) are non empty.
B then selects two states pm and pm′ such that pm is in γ(qm, ak+1 · · · ai−2) and
pm′ is in γ(qm′ , ak+1 · · · ai−2).

2. B reaches the left endmarker ; only one tree Tl contains the initial state q0 (other-
wise, A would not be deterministic), the desired state is r = ql. It can be obtained
by computing δ∗(q0, a1 · · · ai−2) . Then, B can find, for distinct m and m′, two
states pm and pm′ , in γ(qm, a2 · · · ai−2) and γ(qm′ , a2 · · · ai−2) respectively.

When having found pm and pm′ , B uses them to come back to state q. It thus
computes δ∗(pm, ak+1 · · · aj) and δ∗(pm′ , ak+1 · · · aj), for successive values of j, starting
with j = k + 1. As Tm and Tm′ are disjoint, δ∗(pm, ak+1 · · · aj) = δ∗(pm′ , ak+1 · · · aj) =
q ⇔ j = i − 1. Therefore, B is able to go back to the position ai−1, in the state r, and
continue its computation.

3.2.2 General idea

Given a dsst W , we want to build a 2dgsm which simulates W . Using Hopcroft’s
property, we decompose it into a dgsm and a 2dgsm. First, the dgsm labels each letter
of the input string with the operation done on the variables of the dsst at this position.
Then, the 2dgsm produces the same output as W , using this labeled string as input.
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Example 1 We show the idea on an example: (AnBp)k → (ancpbndp)k, with two
string variables x and y. We can implement this translation via a dgsm and a 2dgsm,
this composition being equivalent to a 2dgsm.

We define the following dsst implementing this transduction:

qAstart qB F (qA) = F (qB) = xy

A→ (xa, by)

B → (xc, yd)

B → (xc, yd)

A→ (xya, b)

Figure 2: DSST implementing the transduction (AnBp)k → (ancpbndp)k

Let the input be ABAB. The idea is first to label the letters with the operations
applied to them, done by a dgsm.

Then we use a 2dgsm to form the output, by ”following” the formation of the string
variables (see figure 3).

a

a

c

b

d

c

b

d

(xa, by)

(xc, yd)

(xya, b)

(xc, yd)

output(xy)

B

A

B

A

OperationsInput

Figure 3: Here, the output of 2dgsm is acbdacbd

The 2dgsm first goes through the whole input to see which string variable will be
used first in the output (here it is x). It then browses the input in reverse to know what
are the output symbols used in this variable, adding to its output all symbols which are
written before the string variable in the operation. When reaching the beginning of the
output or completing the value of the string variable, the 2dgsm goes on in the valuation
of the following string variables.

3.2.3 Formal definition

Let W = (Σ,Γ, Q, q0, X, F, δ1, δ2), with n states and m variables.

Construction of the DGSM The dgsm labeling the states of the input word has input
alphabet Σ and output alphabet Σ̂ = {(δ2(q, a, x))x∈X | q ∈ Q, a ∈ Σ} ∪ {F (q) | q ∈ Q}.
Its set of states is Q and for each transition δ1(q, a) = q′ of W, there is a transition
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δ(q, a) = (q′, (δ2(q, a, x))x∈X). In the final state qf , it also adds a symbol indicating the
output F (qf ). We get as output of this dgsm the sequence of operations that W does on
its variables while reading the input.

Construction of the 2DGSM Now, we need to build a 2dgsm T with input alphabet
Σ̂ and output alphabet Γ. Its set of states is Q̂ = {q0, qacc}∪{xLi , xRi | xi ∈ X}. We have

|Q̂| = 2m+ 2.

• In the initial state q0, T goes right until it finds the end of the input string. The
last symbol indicates what the output of the dsst is: if the first variable used in
the output is xi, T goes in state xLi to start writing the content of the variable xi.

• In state xLi , T writes down the symbols that were added at the left of the variable
xi, while going from right to left on the input string.

• In state xRi , T has just finished writing the current content of the variable xi. At this
position, thanks to the copyless restriction of dsst, there is a unique assignment of
the form xj := u.xi.v, where u, v ∈ (Γ∪X)∗. If v doesn’t contain any variable, then
T outputs v, goes to state xRj and does one step to the right. If the first variable
appearing in v is xk, then T outputs all the symbols in v before xk, goes to state
xLk and does one step to the left, to start writing down the contents of xk.

• When the output is fully written, T goes to the accepting state qacc.

For readability, suppose we have only three variables x, y and z, and one of the symbols

in Σ̂ is ϕ =

∣∣∣∣∣∣
x := a.x.b
y := c
z := d.z.e.y.f

where a, b, c, d, e, f ∈ Σ.

Then we have the following transitions:

1. (xL, ϕ)→ (xL, a,−)

2. (xR, ϕ)→ (xR, b,+)

3. (yL, ϕ)→ (yR, c,+)

4. (yR, ϕ)→ (zR, f,+)

5. (zL, ϕ)→ (zL, d,−)

6. (zR, ϕ)→ (yL, e,−)

The transition 4 is particularly tricky: the state yR means that the current content
of variable y has just been written. So we continue writing what comes after the symbol
y in the right-hand side of the assignment z := d.z.e.y.f , i.e., the letter f . But now, we
need to go to state zR since the variable which has just been written is z, not y.

In the general case, that kind of construction is always possible thanks to the copyless
restriction of the dsst. With m variables, we have to add exactly 2m transitions for each
symbol in Σ̂. We also need to have transitions for the symbol indicating the beginning of
the input: (xLi ,`)→ (xRi , ε,+). The transitions for the output function F are similar to
those for the operations on variables.

In Figure 4 we show the 2dgsm of example 1, working on the alphabet of operations
Σ̂ = {(xa, by), (xc, yd), (xya, b), output(xy)}.
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q0start

xL xR

yL yR

qacc

∗ → ε,+

output(xy) → ε,−

(xa, by) → ε,−
(xya, b) → ε,−
(xc, yd) → ε,−

`→ ε,+

(xa, by) → a,+
(xc, yd) → c,+

(xya, b) → ε,−
output(xy) → ε,−

(xa, by) → b,−
(xc, yd) → ε,−

(xya, b) → b,+
`→ ε,+

(xa, by) → ε,+
(xc, yd) → d,+

(xya, b) → a,+

output(xy)

Figure 4: 2DGSM of example 1

Proof of correctness. Let us represent the computation of the dsst by an ordered tree.
In order to explain how such a tree is constructed, we will focus on example 1 (see Figure
5), but this proof works in the general case. The internal nodes of the tree are labeled

by variables, and the leaves are labeled by symbols in the output alphabet Γ ∪ {ε}. The
root is a special node with no label.

• The input ABAB is written on the left, from bottom to top. The corresponding
operations on variables are written next to it.

• At the top of the tree is the root (level 0), which links to each symbol x and y of
the output (level 1).

• At the next levels, the children of the node x depend of the assignment to x. For
example, at level 2, the operation is x := xc so we add two nodes x and c whose
father is the x node from the previous level. This construction is always possible
thanks to the copyless restriction of the dsst.

• At the last level, each variable x and y is linked to the symbol ε since they are
empty in the beginning.

The output of the dsst is obtained by performing a depth-first search (DFS) of the
tree and writing the letters in the leaves of the trees in the order we visit them. In figure
5, the output is acbdacbd. Let us follow the run of the 2dgsm from Figure 4 in order to
see that it does exactly the same DFS and thus outputs the same word as the dsst from
Figure 2.

• First, in state q0, it goes to the end of the input word until it reaches the symbol
output(xy) indicating the output of the dsst. This corresponds to the level 1 of the
tree. It then goes to state xL since x is the first variable that appears in the output
(i.e., the leftmost child of the root).
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Figure 5: Tree associated with the computation of ABAB in example 1

• In state xL, it goes down the x-labeled branch, and writes down ε symbols since
the x node never has left siblings. When it reaches the symbol `, it interprets x as
ε and goes to state xR to start going up.

• In state xR, it goes up the x-labeled branch and writes down the right siblings of
x: a and c. Then at level 3 it encounters the variable y and goes to state yL.

• In state yL, it goes down the y branch and writes a b since it is a left sibling of y.
Then it goes back up and writes the letter d.

• When it reaches level 3 in state yR, it outputs the right sibling of y (letter a), and
then goes to state xR since the father of y is x.

• It then keeps going up and outputs c. When it reaches level 1 in the stats xR, the
part of the output contained in variable x has been written. It goes to state yL to
start writing the second part of the output.

• It goes down until level 3 where the operation y := b is done. This corresponds to
a leaf of the tree so it writes a b and goes back up in state yR to write the last d.

• When it reaches the first level in state yR, the output is finished, so it goes to the
accepting state. The output is acbdacbd.

Number of visits If the dsstW has m variables, after labeling the input with a dgsm,
we can build a 2dgsm with 2m+ 1 non-accepting states which gives the same output as
W . Hence, the number of visits on each letter of the input is bounded by 2m+ 1.

Theorem 3. Given a dsst with n states and m string variables, we construct an equiv-
alent 2dgsm of size O

(
2n logn ×m

)
.
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Proof. This is due to Hopcroft’s construction (see page 7) : we compose a dgsm A of
size O(n) with a 2dgsm B of size O(m). In order to compute the reverse run of A, we
need a sub-automaton which memorizes at most n disjoint sets of states. Its thus needs
O(nn) = O

(
2n logn

)
states. Moreover, we also have to remember the current state of B,

hence the total size is O
(
2n logn ×m

)
.

In the next section, we will introduce machines with regular look-ahead (RLA) : given
a dsstrlawith m string variables, we construct a 2dgsmrlaof size O(m) (see Theorem 4).

4 Relation between number of variables of a DSST
and the visit number of the associated 2DGSM

In the previous section, we showed that a dsst with m variables can be simulated by a
(2m+1)-visiting 2dgsm after labeling the input with a dgsm. Unfortunately, Hopcroft’s
construction doesn’t preserve the number of visits of the 2dgsm. In fact, it is not possible
to find a relation between the number of variables and the number of visits, without taking
into account the number of states.

4.1 Counter-examples

Counter-example 1 Consider the transduction Rncopy ⊆ Σ∗×Σ∗ (where Σ = (
⋃n

Σi)∪
{#} and the Σi are pairwise disjoint), defined as the following set:
{(w1#w2# . . .#wn#α,wα) | n ≥ 0, wi ∈ Σ∗i , 0 ≤ α ≤ n}.
The goal is here to copy the αth word.

This tranduction can be implemented by a dsst using n string variables x1, . . . , xn,
recording the values of the n words wi. After reading the end of the input, the value of
xα is given as the output.

Because of the use of n different alphabets Σi, a single string variable cannot be used
to record the value of two different words. Thus, the transducer needs at last n string
variables to record the values of the n different words.

The transduction Rcopy can also be implemented by a 2dgsm: the 2dgsm reads the
input till the end, recording the value of α. Then, the 2dgsm moves backwards, until
the beginning of the αth word, and copies the value of wα. Thus, this transducer visits
three times the positions contained in wα, one time the positions before, and two times
the positions after these. So the visit number of this 2dgsm is 3.

Counter-example 2 Consider the transduction Rex ⊆ Σ∗×Σ∗ defined as the following
set: {(w1a1w2a2 . . . wkakwk+1, a

nk+1

k+1 a
nk
k . . . an2

2 an1
1 ) | wi ∈ (Σr {ai, . . . , ak})∗, ni = |wi|},

where a1, . . . , ak+1 are fixed and pairwise different. Informally, the input is divided into
k input blocks wi, where wi begins at the first occurrence of ai−1, and ends at the first
occurrence of ai. The output depends of the size of each block, from the last to the first.

This transduction can be implemented by the dsst from figure 6, using a single string
variable x. The state indicates in which block the reading head is: when reading ai in
state qi, it goes to state qi+1. The letters are written to the left of variable x in order to
reverse the order of the blocks in the output.
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q1start q2 q3 qk qk+1

a1
x := x

Σ r {a1, . . . , ak}
x := a1x

a2
x := x

Σ r {a2, . . . , ak}
x := a2x

Σ r {a3, . . . , ak}
x := a3x

ak
x := x

Σ r {ak}
x := akx

Σ
x := ak+1x

Figure 6: DSST implementing the transduction Rex

The transduction Rex can also be implemented by a 2dgsm. Since it must write its
output from left to right, it must first find the last block wk+1 and output its length.
Then, being at the end on the input, it must determine where the block wk begins, i.e.,
find the first occurrence of ak−1. Since the 2dgsm has a finite memory and the input
word can be as long as we want, this cannot be done without going back to the beginning
of the input. In fact, every time it writes down the length of a block wi, it must go back
to the beginning of the input in order to find the previous block wi−1. Thus, this 2dgsm
is necessarily (2k + 1)-visiting.

We have shown with these two counter-examples that there is no relation between the
number of variables used in a dsst and the visit number of an equivalent 2dgsm ; they
can get as big as we want, without influencing one another.

4.2 Adding regular look-around / look-ahead

We are now going to consider slightly different versions of dsst and 2dgsm, by allowing
them to test a condition on their input on each transition. The transition can be done iff
the condition is verified.

4.2.1 Definitions

• A dsst with regular look-ahead (dsstrla) is an extension of the dsst model in
which the machine can test at each transition whether the suffix of the input word
situated to the right of the reading head belongs to some regular language.

• A 2dgsm with regular look-around (2dgsmrla) is an extension of the 2dgsm model
in which the machine can test at each transition whether the prefix to the left and
the suffix to the right of the reading head belong to some regular languages.

Remark In order to preserve determinism, for a given state q and input letter a, all
tests must be done on regular languages that are disjoint.
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4.2.2 From DSSTRLA to 2DGSMRLA

Theorem 4. For every dsstrlawith k string variables, there exists an equivalent (2k+1)-
visiting 2dgsmrla. The number of states of the 2dgsmrlais equal to 2k + 2.

Proof. Let W be a dsstrlawith k variables. We want to construct a 2dgsmrlaT which
simulates W , with a number of visits bounded by 2k + 1.

The idea is the same as in section 2.2.3, except that the work of the dgsm is now
done using regular look-around tests. In fact, the only thing T needs to know at a given
position is the operation done by W on its variables. This is determined by the state of
W on that position.

Let Q be the set of states of W . For every q ∈ Q, let Aq be a deterministic finite
automaton (dfa) defined as follows:

• Its set of states is Q, its initial state is the same as W ’s

• Its transition function δ is the same as the state-transition function of W

• Its set of accepting states is F = {q}

Let Rq be the regular language recognized by the dfa Aq. A prefix w1 · · ·wi of the input
word is in Rq iff the dsst W is in state q at position i + 1. Therefore, T can guess
the state of W using a regular look-around test on the prefix to the left of the reading
head.The tests to the right are used to simulate the regular look-ahead behavior of W .
Moreover, since the dfas Aq are deterministic and have disjoint sets of accepting states,
the languages Rq are disjoint. Hence, the determinism is preserved. Since the set of states

of T is still Q̂ = {q0, qacc} ∪ {xLi , xRi | xi ∈ X} as in section 2.2.3, its number of visits is
bounded by 2k + 1.

4.2.3 From 2DGSMRLA to DSSTRLA

Theorem 5. For every k-visiting 2dgsmrla, there exists an equivalent dsstrlawith dk2 e
string variables. The size of the dsstrlais exponential in the number of states of the
2dgsmrla.

Proof. Let T be a k-visiting 2dgsmrla. We want to simulate it with a dsstrlaW . First,
let us explain the idea of the construction.

General idea Let us consider a run of a 3-visiting 2dgsmrlaT . Such a run is shown
on figure 7. T does some back-and-forth moves on the input word w and outputs a word
w1.w2 · · ·w9. There are 4 special positions on the input word which correspond to the
turns of T and are labeled (a), (b), (c) and (d). Since T is 3-visiting, we must show that it
can be simulated by a dsstrlaW with 2 variables x and y. Let us assume that, thanks to
regular look-ahead tests, W can determine the positions of those turns. We will explain
later how this is done.
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Input:

Run of the
2DGSM

(a) (b) (c) (d)

w1 w2

w3

w4 w5 w6

w7

w8 w9

Figure 7: Run of a 2DGSM on input w

The behavior of W is the following:

• It starts writing w1, the beginning of the output, in the variable x, until it finds a
turn.

• When it reaches (a), x = w1 and y = ε. It starts writing w2 in x, and w3.w4 in y.
This can be done by adding the symbols of w3 at the left of y, and the symbols of
w4 at the right.

• When it reaches (b), x = w1.w2 and y = w3.w4. W concatenates the content of the
two variables in x (x := xy) and frees the variable y (y := ε). It starts writing w5

at the right of x.

• When it reaches (c), it does the same thing as at turn (a): it writes the next part
w6 of the input in x, and starts writing w7.w8 in y.

• When it reaches (d), it concatenates x and y as at turn (b), so x = w1 · · ·w8 and
y = ε.

• When it reads the last letter of the input, the output w1 · · ·w9 is stored in variable x.

We notice that there are two types of turns: left turns (such as (a) and (c)) and right
turns (such as (b) and (d)). At each left turn, one new variable is used. At each right
turn, one used variable is freed and can be re-used later. A 2k + 1-visiting 2dgsmrlacan
do at most k consecutive left turns, the associated dsstrlathus needs k + 1 variables (it
also needs one variable for the first left-to-right pass of the 2dgsmrla).

Crossing sequences In order to guess the run of the 2dgsmrla, we are going to use
the same construction as for the reduction from 2dfa to nfa in [10].

Let us represent a run of a 2dfa on its input tape by labeling each boundary between
two tape squares with the sequence of states in which it is crossed. For example, figure
8 shows a 2dfa recognizing the language of words in {0, 1}∗ with no two successive
occurrences of 1, along with a labeled run on input 101001.

• The ordered list of states under the boundary between two input squares is called
a crossing sequence. Note that if the input is accepted, a state cannot be repeated
twice in the same crossing sequence with the head going in the same direction
(otherwise, the 2dfa would loop). Moreover, since the head starts at the left of
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Figure 8: Run of a 2DFA on input 101001

the input, the head must be moving right the first time a boundary is crossed.
Subsequent crossings must be in alternate directions.

• A crossing sequence is valid if it is of length at most 2s with s the number of
states of the 2dfa, and no two odd-numbered and no two even-numbered states are
identical. The number of valid crossing sequences is finite.

• A valid crossing sequence q1, · · · , qk matches p1, · · · , pl on a symbol a (where q1, · · · , qk
is the sequence under the left boundary of a and p1, · · · , pl is under the right bound-
ary of a) if these two sequences are consistent assuming that:

1. a is initially reached in state q1
2. whenever the head moves left in state qi, it comes back in state qi+1

3. whenever the head moves right in state pi, it comes back in state pi+1

We can now construct a nfa which recognizes the same language as the 2dfa: its
set of states is the set of crossing sequences, and its transitions are such that δ(π, a) =
{ρ | ρ is a valid crossing sequence that is matched by π on input a}. On an input w, this
nfa guesses the crossing sequences which correspond to the run of the 2dfa on w. The
proof of this result is in [10].

One important property of this nfa is non-ambiguity, i.e., for every input word w,
there is only one run that accepts w. Indeed, if there were two accepting runs of the nfa
on an input, we could construct two distinct runs of the original 2dfa on input w, which
is absurd because it is deterministic.

Let us first consider a 2dgsm T (without regular look-ahead). If we ignore the output
tape and consider it as a 2dfa, we can construct the corresponding nfa M which has
as states the crossing sequences of T , as explained previously. The dsstrlaW simulating
T also has as states the crossing sequences of T , but it must behave in a deterministic
manner:

Assume the input is w = w1 · · ·wk, and the input head is on wi. After reading the
prefix w1 · · ·wi−1, W is in state π. In the nfa M , when reading wi in state π, several
transitions are possible. Let P = δ(π,wi) be the set of possible new states. For each
ρ ∈ P , let Rρ be the regular language recognized by the nfa Mρ which is similar to M
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except ρ is the initial state. The suffix wi+1 · · ·wk of the input is in Rρ iff ρ is the next
state in the unique accepting run of M . Therefore, the transitions of W are δ1(π,wi) = ρ
with the regular test wi+1 · · ·wk ∈ Rρ. Thanks to the non-ambiguity of M , the languages
Rρ are disjoint, hence W can determine the crossing sequences of T using deterministic
regular look-ahead tests.

If we now consider that T is a 2dgsmrla, the same construction still holds. The
regular look-around tests T does on the left of its input head can be done by simulating
the associated automata along the run of W . Those done on the right of the input head
can be tested along with the regular look-ahead tests of W , since regular languages are
closed under intersection. W is still able to determine the crossing sequences of T .

Formal construction Let T = (Q,Σ,Γ, δ, q0, F ) be a k-visiting 2dgsmrla. We simu-
late it with a dsstrlaW = (Q′,Σ,Γ, X, δ1, δ2, q

′
0, F

′) where:

• Q′ = Σ× CS where CS is the set of valid crossing sequences of T .

• δ1 behaves as explained in the previous part in order to guess the crossing sequences
of T using regular look-ahead tests. It also remembers the last letter read in the
first component of the state: instead of δ1(π, ai, Rρ) = ρ, the transition becomes
δ1((ai−1, π), ai, Rρ) = (ai, ρ).

• X = {x1, . . . , xs} is of size s = dk2 e.
• q′0 and F ′ are defined as for the nfa which guesses crossing sequences. In the final

states, the function F ′ outputs x1.

The operations on variables are made such that at all times, if the current crossing
sequence is π = q1 · · · qk, the first variable contains the string output by T before it
reaches this position in state q1 ; the second one contains the string output by T between
the moment it leaves this position in state q2 and the moment it returns in state q3, etc.
We might have to swap the contents of some variables in order to keep them in the right
order, but it allows us to know which variables are used and which variables are free by
looking at the length of the crossing sequence. Let us illustrate this by an example:

ai ai+1 ai+2 ai+3 · · ·

q1

q2

q3

= π

p1

p2

p3

p4

p5

= ρ

r1

r2

r3

r4

r5

= σ

Input tape

x

y

w11

w1

w10

w12

w5

w2

w4

w6

w9

w13

w3

w7

w8

w14

Figure 9: Three successive steps of the DSST

In figure 9 is shown a local part of the run of a 2dgsmrlaT we want to simulate.
Let x, y and z be three variables of the dsstrlaW working on the crossing sequences
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π = q1, q2, q3, ρ = p1, p2, p3, p4, p5 and σ = r1, r2, r3, r4, r5. The words from w1 to w14 are
output by T on those transitions. Let us look at the operations W does on its variables.
The goal is to handle correctly the variables x, y, z and to keep them in the right order.

• First, W is in state (ai, π). Since π is of length 3, we know that x and y are used,
and z is free. The contents of x and y are shown in figure 9 by dotted arrows: x
contains the output before q1, and y contains the output between q2 and q3.

• W reads the letter ai+1. Knowing ai, π and ai+1, we can treat all transitions leaving
a state of π (the blue ones on the figure). Then, W goes to state (ai+1, ρ). The

assignment is:

∣∣∣∣∣∣
x := x.w1

y := w11.y.w12

z := ε

• W reads the letter ai+2. It can now treat all the transitions leaving ρ (red). Since
ρ is of length 5, a new variable must be used. Since the new turn is between p2 and
p3, it is stored in y, and the content of y is put in z. W goes to state (ai+2, σ) and

does the assignment:

∣∣∣∣∣∣
x := x.w2

y := w5.w6

z := w10.y.w13

• W reads the letter ai+3 and treats the transitions leaving σ (green). There is a
right-turn between r1 and r2, so the contents of x and y must be concatenated in
x. In order to preserve the order, the content of z is stored in y, and z is freed:∣∣∣∣∣∣
x := x.w3.w4.y.w7

y := w9.z.w14

z := ε

Remark It is possible to do a similar construction with fewer states, without remem-
bering the previous letter read. When doing a transition δ1(π, a) = ρ, we treat the output
of T in the odd-numbered states of π, and in the even-numbered states of ρ, when reading
letter a. For example, in the previous example, the assignment between π and ρ when

reading ai+1 would be

∣∣∣∣∣∣
x := x.w1

y := w5

z := w10.y.w12

However, with this construction, we must use k string variables instead of dk2 e (because
of the case where the 2dgsmrlazigzags around a crossing sequence).

5 Conclusion

The robustness of the streaming string transducer model and its derivatives is supported
by their equivalence to other models such as two-way transducers and monadic second-
order logic. In this paper, we have taken a closer look at the equivalence between dsst
and 2dgsm, and shown a relation between the resources of these two models.

There are still many open problems on this model, among them the equivalence prob-
lem for k-valued nsst. We have tried reusing the result on 2ngsm by Culik and Karhu-
maki [7], either by adapting the proof (without succes), or by proving the equivalence
of k-valued nsst with k-valued 2ngsm. The inclusion k-val. 2ngsm ⊆ k-val. nsst can
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be proven using a construction similar to the one in section 4.2.3, but we have found no
proof or counter-example for the other inclusion.
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