
Semantics & Verification
Course Notes

Colin Riba
ENS de Lyon, Université de Lyon, LIP∗

colin.riba@ens-lyon.fr

http://perso.ens-lyon.fr/colin.riba/

March 28, 2025

∗Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

1

http://perso.ens-lyon.fr/colin.riba/

Contents

Contents

1 Introduction 5
1.1 Notational Preliminaries . 5

2 Transition Systems 6

3 Linear-Time Properties 7
3.1 Linear-Time Behaviour of Transition Systems 8
3.2 Safety Properties and Invariants . 10

3.2.1 Invariants . 10
3.2.2 Safety Properties . 11
3.2.3 Regular Safety Properties . 12
3.2.4 Safety Properties and Trace Equivalence 13
3.2.5 Kőnig’s Lemma . 16
3.2.6 Proof of Proposition 3.27 . 18

3.3 Liveness Properties . 19
3.4 Safety vs Liveness . 20

4 Topological Approach 20
4.1 Generalities . 21

4.1.1 Adherence . 22
4.1.2 The Topological Decomposition Theorem 23
4.1.3 Bases and Subbases . 24

4.2 Spaces of ω-Words . 24
4.2.1 Topological Safety and Liveness . 26

5 Partial Orders and Complete Lattices 27
5.1 Partial Orders . 27
5.2 Complete Lattices . 28
5.3 Closure Operators . 30
5.4 Galois Connections . 31
5.5 Prefix and Closure . 32

5.5.1 Alternative Proof of the Decomposition Theorem 3.42 33
5.6 Further Properties of Closure Operators and Galois Connections 34

5.6.1 On the Kleisli Construction . 36

6 Observable Properties 36
6.1 Observable Properties as Clopen Sets . 36
6.2 Compactness . 38

6.2.1 The Finite Intersection Property 40
6.3 Compact Hausdorff Spaces . 40

2

Contents

7 Linear Temporal Logic 41
7.1 The Logic LML of Observable Properties 41

7.1.1 Syntax and Semantics of LML . 41
7.1.2 Logical Equivalence . 43
7.1.3 Observable Properties . 43

7.2 Extending LML with Fixpoints . 46
7.2.1 The “Eventually” and “Always” Modalities 46
7.2.2 Positive and Negative Variables in a Formula 48
7.2.3 The Knaster-Tarski Fixpoint Theorem 48

7.3 The Logic LTL . 50
7.3.1 Syntax and Semantics of LTL . 50
7.3.2 Fixpoints and Defined Modalities 50
7.3.3 Logical Equivalence . 52
7.3.4 Positive Normal Forms . 53
7.3.5 Satisfaction of LTL-Formulae by Transition Systems 53

8 Toward Stone Duality 54
8.1 A Short Path Toward a Simplified Result 56

8.1.1 From Lattices to Boolean Algebras 56
8.1.2 Filters and Ultrafilters . 57
8.1.3 The Spectrum of a Boolean Algebra 58
8.1.4 Proof of the Ultrafilter Lemma 8.16 58

8.2 Lattices and Boolean Algebras . 59
8.2.1 Semilattices . 59
8.2.2 Lattices . 62
8.2.3 Distributive Lattices . 64
8.2.4 Boolean Algebras . 64

8.3 Representation of Boolean Algebras . 66
8.3.1 Filters and Ultrafilters . 66
8.3.2 The Spectrum of a Boolean Algebra 67
8.3.3 On the Proof of The Ultrafilter Lemma 8.82 68

9 Bisimulation 69
9.1 Bisimulation (with Actions) . 69
9.2 Bisimilarity and Trace Equivalence . 70
9.3 The Bisimulation Quotient . 71

10 On Modal Logics of Transition Systems 71
10.1 Kripke Frames and Kripke Models . 71
10.2 Syntax and Semantics of HML . 72
10.3 Logical Equivalence . 73

10.3.1 Logical Equivalence on Formulae 73
10.3.2 Logical Equivalence on States and Bisimilarity 74

10.4 The Hennessy-Milner Property . 74

3

Contents

10.5 Modal Saturation . 76
10.6 Boolean Algebras with Operators . 76
10.7 Ultrafilter Extensions of Kripke Models 79

4

1 Introduction

1 Introduction

While the course is mostly based on the book [BK08], we depart from it in several
occasions. These notes mainly cover material which is either not presented in [BK08],
or on which we substantially differ from [BK08].

In particular, we refer to [BK08, Chap. 2] for a general introduction to verification
and model-checking.1

1.1 Notational Preliminaries

Notation 1.1 (Unions and Intersections). Let X be a set.

(1) Given a collection C ⊆ P(X), we let
⋃
C be the unique subset of X such that

(∀x ∈ X)
(
x ∈

⋃
C ⇐⇒ (∃A ∈ C)(x ∈ A)

)
In particular, ⋃

∅ = ∅

Moreover, given a family (Ai)i∈I of subsets of X, we let⋃
i∈I Ai :=

⋃
{Ai | i ∈ I}

(2) Given a collection C ⊆ P(X), we let
⋂
C be the unique subset of X such that

(∀x ∈ X)
(
x ∈

⋂
C ⇐⇒ (∀A ∈ C)(x ∈ A)

)
In particular, ⋂

∅ = X

Moreover, given a family (Ai)i∈I of subsets of X, we let⋂
i∈I Ai :=

⋂
{Ai | i ∈ I}

Notation 1.2 (Finite and Infinite Words). Let Σ be an alphabet (i.e. a set).

(1) We write Σω for the set of infinite words (actually ω-words) or streams over Σ,
i.e. the set of all σ : N→ Σ.

(2) We let Σ∞ = Σ∗ ∪ Σω be the set of finite or infinite words over Σ. The empty
word is denoted ε.

(3) Given σ ∈ Σ∞ and σ̂ ∈ Σ∗, we write σ̂ ⊆ σ to mean that σ̂ is a (finite) prefix of σ,
i.e. that

∀i < length(σ̂), σ̂(i) = σ(i)
1Until 2008. For a recent project in the subject, see e.g. https://www.aere.iastate.edu/

modelchecker/

5

https://www.aere.iastate.edu/modelchecker/
https://www.aere.iastate.edu/modelchecker/

2 Transition Systems

pay

selectsoda beer

ic

τ τ

gs gb

Figure 1: A Beverage Vending Machine (from [BK08]).

(4) Given σ ∈ Σ∞ and E ⊆ Σ∞, we let

Pref(σ) := {σ̂ ∈ Σ∗ | σ̂ ⊆ σ}
Pref(E) :=

⋃
σ∈E Pref(σ) (=

⋃
{Pref(σ) | σ ∈ E})

Further, we often write σ for an ω-word in Σω and σ̂ for a finite word Σ∗.

Remark 1.3. Note that the prefix order ⊆ is a partial order on Σ∗. But given an
ω-word σ ∈ Σω, the set Pref(σ) is linearly (or totally) ordered by ⊆.

2 Transition Systems

Fix a set AP of atomic propositions. Recall from [BK08, Def. 2.1] that a transition
system over AP is a tuple

TS = (S,Act,→, I,AP, L)

where

• S is the set of states,

• I ⊆ S is the set of initial states,

• Act is the set of actions,

• → ⊆ S ×Act× S is the transition relation,

• L : S → P(AP) is the labelling function.

Example 2.1 (The Beverage Vending Machine of [BK08, Ex. 2.2]). We consider the
beverage vending machine (BVM) depicted in Fig. 1. Formally, this transisition
system has:

6

3 Linear-Time Properties

state set: S = {pay, soda,beer}, with pay initial;

action set: Act = {ic, gs, gb, τ}.

The intention is that in state pay the machine is waiting for the customer to pay. Pay-
ment is modelized by the action ic (short for “insert coin”). Upon payment, the machine
goes in state select, from which the beverage to be delivered is chosen. This choice is
not up to the customer: the two transitions out of the state select are labeled with the
same action τ . From state soda the action gs (short for “get soda”) expresses that the
customer will get a soda (and similarly from state beer).

We let the set AP of atomic propositions be {paid, drink}. The labelling function L
(not drawn in Fig. 1) is given by:

L(pay) = ∅ L(soda) = {drink}
L(select) = {paid} L(beer) = {drink}

Remark 2.2 (The Action τ). It is a quite general convention to use the distinguished
name τ as in Ex. 2.1 to denote some (possibly non-deterministic) action internal to the
system under consideration, where “internal” means that the outside has no information
on what is actualy done by the system.

We refer to [BK08, Chap. 2] for further examples.

3 Linear-Time Properties

We follow the approach of [BK08, Chap. 3] with a few differences in terminology and
notation. Recall Notation 1.2 from §1.1.

Definition 3.1. A linear-time (LT) property over a set AP of atomic propositions
is a set P ⊆ (2AP)ω of ω-words σ ∈ (2AP)ω.

The idea is that an ω-word σ ∈ (2AP)ω is a function

σ : N −→ 2AP

n 7−→ σ(n)

where σ(n) ⊆ AP specifies the set of atomic propositions which σ assumes to hold at
time n ∈ N.

Example 3.2. Recall the BVM of Ex. 2.1 (§2), with set of atomic propositions AP =
{paid, drink}. The following are linear-time properties on this transition system.

(1) σ ∈ P iff in σ, each drink occurs after a paid. Formally:

P =
{
σ ∈ (2AP)ω | (∀n ∈ N) (drink ∈ σ(n) =⇒ ∃k < n. paid ∈ σ(k))

}
(2) σ ∈ P iff at every moment, there has been at least as many paid’s as drink’s. For-

mally:

P =
{
σ ∈ (2AP)ω | ∀σ̂ ⊆ σ, Card{n | drink ∈ σ̂(n)} ≤ Card{n | paid ∈ σ̂(n)}

}

7

3 Linear-Time Properties

(3) σ ∈ P iff in σ, there are infinitely many paid’s whenever there are infinitely many
drink’s. Formally:

P =
{
σ ∈ (2AP)ω | (∃∞t)(drink ∈ σ(t)) =⇒ (∃∞t)(paid ∈ σ(t))

}
(4) σ ∈ P iff in σ, there are at most finitely many drink’s whenever there are at most

finitely many paid’s. Formally:

P =
{
σ ∈ (2AP)ω | (∀∞t)(paid /∈ σ(t)) =⇒ (∀∞t)(drink /∈ σ(t))

}
Notation 3.3 (The Quantifiers ∃∞ and ∀∞). In Ex. 3.2 we used the quantifiers ∃∞ and
∀∞. These customary notations for linear-time properties stand for the following.

The “infinitely many” quantifier (∃∞t)(· · · t · · ·) unfolds to (∀N ∈ N)(∃t ≥ N)(· · · t · · ·)
(where N is supposed not to occur in (· · · t · · ·)). This precisely means that there
are infinitely many t ∈ N such that (· · · t · · ·). For instance, (∃∞t)(paid ∈ σ(t))
means that there are infinitely many t ∈ N such that paid ∈ σ(t).

The “ultimately all” quantifier (∀∞t)(· · · t · · ·) unfolds to (∃N ∈ N)(∀t ≥ N)(· · · t · · ·)
(where N is supposed not to occur in (· · · t · · ·)). This means that there are at most
finitely many t ∈ N such that (· · · t · · ·) fails, or equivalently that (· · · t · · ·) holds
for ultimately all t ∈ N. For instance, (∀∞t)(paid /∈ σ(t)) means that there are at
most finitely many t ∈ N such that paid ∈ σ(t), equivalently that paid /∈ σ(t) for
ultimately all t ∈ N.

We refer to [BK08, Chap. 3] for further examples.

3.1 Linear-Time Behaviour of Transition Systems

Fix a transition system TS = (S,Act,→, I,AP, L) over AP.

Definition 3.4 (Path). A (finite or infinite) path in TS is a finite or infinite sequence
of states π = (si)0≤i<n with n ≤ ω, which respects the transitions of TS in the sense

that for all i such that i+ 1 < n, we have si
a→ si+1 for some a ∈ Act.

A path π = (si)0≤i<n is initial if s0 is initial (i.e. if s0 ∈ I).

Definition 3.5 (Trace).

(1) Let π = (si)i<n be finite or infinite path. The trace of π is the finite or infinite word

L(π) := (L(si))0≤i<n ∈ (2AP)n

(2) The set of traces of TS is

Tr(TS) := {L(π) | π finite or infinite initial path of TS}

We shall write Trω(TS) (resp. Trfin(TS)) for the set of infinite (resp. finite) traces
of TS.

8

3 Linear-Time Properties

Example 3.6. Recall the BVM of Ex. 2.1 (§2). Its unique infinite trace is (∅ · {paid} ·
{drink})ω, while its set of finite traces is Pref ((∅ · {paid} · {drink})∗).

Remark 3.7 (Differences with [BK08]). Beware that Tr(TS) in Def. 3.5 does not co-
incide with Traces(TS) as defined in [BK08, §3.2.2]. However, Trfin(TS) does coincide
with Tracesfin(TS) ([BK08, p. 98 & 96]), and Trω(TS) is the set of infinite traces in
Traces(TS).

Definition 3.8 (Satisfaction of Linear-Time Properties). We say that TS satisfies a
LT property P ⊆ (2AP)ω, notation TS |≈ P , if Trω(TS) ⊆ P .

Example 3.9. The BVM of Ex. 2.1 (§2) satisfies all the LT properties of Ex. 3.2.

Remark 3.10. Linear time properties do not take into account the branching structure
of transition systems.

Remark 3.11 (Differences with [BK08]). Definition 3.8 coincides with [BK08, Def.
3.11, §3.2.3]. But note our special symbol |≈ for the satisfaction of LT properties in
transition systems, which differs from the notation of [BK08, Def. 3.11]. The reason
is that LT properties are properties on the infinite traces of TS’s rather than properties
on the TS’s themselves (see Rem. 3.10), while there are well-known modal logics for
describing the latter (see §10).

Two transition systems have the same infinite traces if and only if they satisfy the
same LT properties.

Proposition 3.12. Given two transition systems TS and TS ′, both over AP, we have

Trω(TS) ⊆ Trω(TS ′) if and only if ∀P ⊆ (2AP)ω, TS ′ |≈ P =⇒ TS |≈ P

Proof. Assume Trω(TS) ⊆ Trω(TS ′). Then for an LT property P such that TS ′ |≈ P ,
we have Trω(TS) ⊆ Trω(TS ′) ⊆ P , so that TS |≈ P .

Conversely, let P ⊆ (2AP)ω be the LT property Trω(TS ′). Then TS ′ |≈ P , but
TS 6|≈ P unless Trω(TS) ⊆ Trω(TS ′).

Proposition 3.12 is an easy first step in a theme on which we shall come back in §3.2.4
below, namely the comparison of TS’s w.r.t. the LT properties they satisfy.

Example 3.13 (Another BVM ([BK08, Ex. 3.19])). Consider the transition system
depicted in Fig. 2, with labelling function

pay 7−→ ∅ sel.1 7−→ {paid} soda 7−→ {drink}
sel.2 7−→ {paid} beer 7−→ {drink}

This transition system has the same infinite traces as the BVM of Ex. 2.1 (§2) and thus
satisfies exactly the same LT properties.

9

3 Linear-Time Properties

pay

sel1soda sel2 beer

ic ic

τ τ

gs gb

Figure 2: Another Beverage Vending Machine (from [BK08]).

3.2 Safety Properties and Invariants

We now embark in a basic classification of LT properties, which shall be reformulated
in §4 with topological notions, and which will be sharpened in §5 using order and lattice
theoretic tools. This simple classification considers two families of LT properties:

Safety Properties, discussed in this §3.2;

Liveness Properties, to be discussed in §3.3.

Safety and liveness properties are related by the following important facts (§3.4):

The Decomposition Theorem 3.42: for every LT property P over AP, there is a safety
property Psafe and a liveness property Pliveness (both over AP) such that

P = Psafe ∩ Pliveness

Proposition 3.41: the only LT property (over AP) which is both a safety and a liveness
property is the “true” property (2AP)ω.

This classification of LT properties is due to [AS85]. See [BK08, §3.7] for further refer-
ences.

We fix a set AP of atomic propositions.

3.2.1 Invariants

An invariant is an LT property P ⊆ (2AP)ω such that for some propositional formula
ϕ over AP, we have

P = {σ ∈ (2AP)ω | ∀i ∈ N, σ(i) |= ϕ}

10

3 Linear-Time Properties

3.2.2 Safety Properties

The idea of safety properties is to specify “bad behaviours” that should not occur.
Otherwise said, a safety property expresses that “something bad does not occur”. This
is formalized as follows for LT properties.

Definition 3.14 (Safety Property). We say that P ⊆ (2AP)ω is a safety property if
there is a (possibly infinite) set of finite words Pbad ⊆ (2AP)∗ such that P is the set of
ω-words which avoid Pbad, in the sense that

P = {σ ∈ (2AP)ω | ∀σ̂ ⊆ σ, σ̂ /∈ Pbad}

In this case we say that P is induced by Pbad.

Example 3.15. The LT properties of Ex. 3.2.(1) and (2) are safety properties. The
properties of Ex. 3.2.(3) and (4) are not.

Example 3.16 (A Traffic Light ([BK08, Ex. 3.23])). Consider the following transition
system

G Y R

with exactly one action, with set of atomic propositions AP = {G,Y,R}, and whose
labelling function is given by

G 7→ {G} Y 7→ {Y} R 7→ {R}

A typical safety property on this transition system is “every R is the immediate successor
of a Y”, which can be formalized as{

σ ∈ (2AP)ω | (∀n ∈ N)
(
R ∈ σ(n) =⇒

[
n > 0 and Y ∈ σ(n− 1)

])}
Safety properties have a partly finitary nature, since they a generated from sets of

finite words Pbad. This suggests to check the satisfaction of safety properties via some
inspection of the finite traces of a TS . This is possible under a mild assumption, which
is given by the following definition.

Definition 3.17. A state s ∈ S of a transition system TS is called terminal if there
are no state s′ ∈ S and no action a ∈ Act such that s

a→ s′.

Proposition 3.18 (Satisfaction of Safety Properties). Let P ⊆ (2AP)ω be a safety
property induced by Pbad. Given a transition system TS over AP and without terminal
states, we have

TS |≈ P iff Trfin(TS) ∩ Pbad = ∅

Proof. Assume first that Trfin(TS) ∩ Pbad = ∅. and let σ ∈ Trω(TS). Then for any
σ̂ ⊆ σ, since σ̂ ∈ Trfin(TS) we have σ̂ /∈ Pbad. It follows that σ ∈ P .

Conversely, let σ̂ ∈ Trfin(TS) ∩ Pbad. Let π̂ be a finite initial path in TS such that
σ̂ = L(π̂). Then since TS has no terminal state, there is an infinite (initial) path π in
TS with π̂ ⊆ π. But then TS 6|≈ P since σ̂ ⊆ L(π).

11

3 Linear-Time Properties

The assumption that TS has no terminal state is unavoidable in Prop. 3.18.

Example 3.19. Consider the following transition system TS (with exactly one action):

• •
{a} {b}

Let P be the safety property induced by Pbad = {a}∗{b}. Then TS satisfies P since the
only infinite trace of TS is {a}ω. But {a}{b} is a finite trace in TS which belongs to
Pbad.

3.2.3 Regular Safety Properties

We essentially follow here [BK08, §4.2], hence momentarily jumping to Chapter 4 (Reg-
ular Properties) of the latter.

Definition 3.20 (Regular Safety Property). A safety property P ⊆ (2AP)ω is regular
if it is induced by a regular set Pbad ⊆ (2AP)∗.

Let P ⊆ (2AP)ω be the regular safety property induced by the regular set Pbad ⊆
(2AP)∗. Fix an NFA

(A : 2AP) = (Q,∆, Q0, F)

which recognizes Pbad. Note that we can assume Pbad to be suffix-closed, and that for
q ∈ F and A ∈ 2AP we have (q, A, q′) ∈ ∆ iff q′ = q.

Consider now a transition system TS over AP:

TS = (S,Act,→, I,AP, L)

We define the product transition system

TS ⊗A := (S⊗,Act,→⊗, I⊗,AP⊗, L⊗)

as follows:

• The set of states is S⊗ := S ×Q.

• The transition relation →⊗ is defined by the rule

s
a→ s′ (q, L(s′), q′) ∈ ∆

(s, q)
a→ (s′, q′)

Note that it is the label of the target state s′ of s
a→ s′ which is used as input

letter of A.

• The set of initial states I⊗ is the set of all pairs (s0, q) such that s0 is initial in TS
(s0 ∈ I) and such that we have (q0, L(s0), q) for some initial q0 ∈ Q0.

12

3 Linear-Time Properties

• A⊗ := Q.

• L⊗(s, q) := {q}.

Since the accepting states F of A are assumed to be sink states, we can reduce checking
TS |≈ P to checking that TS ⊗A satisfies the invariant property induced by

ϕA :=
∧
q∈F ¬q

Note that if TS has no terminal states, then it follows from Prop. 3.18 that we have

TS |≈ P iff Trfin(TS) ∩ L(A) = ∅

Proposition 3.21. Assume that TS has no terminal states. Then TS |≈ P iff the
transition system TS ⊗A satisfies the invariant induced by ϕA.

Proof. Exercise!

Remark 3.22. An immediate consequence of Prop. 3.21 is that it is decidable whether
a given finite TS satisfies a given regular safety property. This actually extends (in a
non-trivial way) to (sufficiently regularly generated) infinite TS’s. We refer to [Wal16]
for an overview (outside the scope of this course).

3.2.4 Safety Properties and Trace Equivalence

We now continue the task began in Prop. 3.12 (§3.1), and compare transition systems
w.r.t. the safety properties they satisfy.

We begin with the following direct consequence of Prop. 3.18 (§3.2.2) for finite traces.

Lemma 3.23. Consider TS and TS ′, both over AP and both without terminal states.
We have

Trfin(TS) ⊆ Trfin(TS ′) iff ∀P ⊆ (2AP)ω safety, TS ′ |≈ P =⇒ TS |≈ P

Proof. Assume first that Trfin(TS) ⊆ Trfin(TS ′). Let P be induced by Pbad and such
that TS ′ |≈ P . Then by Prop. 3.18 we have Trfin(TS ′) ∩ Pbad = ∅, from which we get
Trfin(TS) ∩ Pbad = ∅, and the result follows, again by Prop. 3.18.

For the converse, let P be the safety property induced by

Pbad := (2AP)∗ \ Trfin(TS ′)

Then TS ′ |≈ P by definition. But then by Prop. 3.18 we have Trfin(TS) ⊆ Trfin(TS ′)
whenever TS |≈ P .

It is fairly easy to see that TS must have no terminal state in Lem. 3.23.

13

3 Linear-Time Properties

•{a} •{a} •{a} . . .

•{b} •{b}

•{b}

•{b}

•{b}

•{b}

Figure 3: A transition system with infinitely many initial states for Ex. 3.25.

Example 3.24. Consider the following two transition systems:

• •
{a} {b}

•
{a}

These TS’s satisfy the same LT properties (and in particular the same safety properties)
since they have the same infinite traces (Prop. 3.12, §3.1). But the TS on the left-hand
side has finite traces that the other one does not have.

The following shows that the assumption on TS ′ in Lem. 3.23 cannot be omitted neither.

Example 3.25. Let TS be the following transition system:

• •
{a} {b}

Let TS ′ be the transition system depicted in Fig. 3 (with infinitely many initial states).
Then both TS and TS ′ have set of finite traces {a}∗ ∪ {a}+{b}∗. Note that TS has the

14

3 Linear-Time Properties

infinite trace {a}{b}ω, while the only infinite trace of TS ′ is {a}ω. In particular, TS ′

satisfies the safety property induced by Pbad = {a}+{b}, but this property is not satisfied
by TS.

We now look for an analogue of Prop. 3.12 (§3.1) for safety properties. To this end,
we shall forbid transition systems which (as the TS ′ of Ex. 3.25) have infinitely many
initial states. This actually lead to the following assumption.

Definition 3.26 (Finitely Branching TS). A transition system TS = (S,Act,→, I,AP, L)
is finitely branching when the two following conditions are satisfied:

(i) I is finite, and

(ii) for every s ∈ S, there are at most finitely many s′ ∈ S such that s
a→ s′ for some

a ∈ Act.

Proposition 3.27. Consider TS and TS ′, both over AP. Assume that TS has no
terminal state and that TS ′ is finitely branching. Then

Trω(TS) ⊆ Trω(TS ′) iff Trfin(TS) ⊆ Trfin(TS ′)

Corollary 3.28. Consider finitely branching TS and TS ′, both over AP and both without
terminal states. Then we have

Trω(TS) = Trω(TS ′) iff ∀P ⊆ (2AP)ω safety, TS ′ |≈ P ⇐⇒ TS |≈ P

Example 3.24 shows that the assumption on TS cannot be omitted in Prop. 3.27. As
for the assumption on TS ′, one can consider the following mild modification of Ex. 3.25.

Example 3.29. Let TS be the following transition system:

• •
{a} {b}

Let TS ′ be the transition system depicted in Fig. 4 (with infinitely many initial states).
Then both TS and TS ′ have set of finite traces {a}∗∪{a}+{b}∗. But TS has the infinite
trace {a}ω, while all infinite traces of TS ′ have the form {a}+{b}ω.

Since both TS and TS ′ have no terminal states, they satisfy the same safety proper-
ties (Lem. 3.23). Hence, we cannot omit the assumption that TS and TS ′ are finitely
branching in Cor. 3.28.

Remark 3.30. For Ex. 3.25 and Ex. 3.29, the transition systems of Fig. 3 and Fig. 4
could have been replaced by (non finitely branching) transition systems with exactly one
initial state.

15

3 Linear-Time Properties

•{a} •{a} •{a} . . .

•{b} •{a}

•{b}

•{a}

•{a}

•{b}

Figure 4: A transition system with infinitely many initial states for Ex. 3.29.

3.2.5 Kőnig’s Lemma

Proposition 3.27 relies on a principle of infinite combinatorics known as Kőnig’s Lemma.
It basically says that if an infinite tree is finitely branching, then it has an infinite path.

We first define the required notions.

Definition 3.31.

(1) A tree over a set A is a set T ⊆ A∗ which is closed under prefix: if u ∈ T and v ⊆ u
then v ∈ T .

(2) A tree T over A is finitely branching if for each u ∈ T , there are at most finitely
many a ∈ A such that u.a ∈ T .

(3) An infinite path in a tree T over A is an ω-word π ∈ Aω whose finite prefixes
belong all to T :

∀n ∈ N, π(0) · · ·π(n) ∈ T

Note that a tree T over A is automatically finitely branching if A is finite.

16

3 Linear-Time Properties

Lemma 3.32 (Kőnig’s Lemma). If T is an infinite tree which is finitely-branching, then
T has an infinite path.

Proof. Given a tree T ⊆ A∗ and u ∈ A∗, we write T �u for the subtree of T at u:

T �u := {v ∈ T | u ⊆ v or v ⊆ u}

Fix a tree T ⊆ A∗, and assume that T is infinite and finitely branching. We build an
infinite path π = (an)n∈N by induction on n ∈ N as follows. First, note that T is the
union of the T �a for a ∈ A. Since T is infinite and finitely branching, by the infinite
pigeonhole principle there is some a ∈ A such that T �a is infinite. We let a0 := a.
Iterating this process, we obtain a sequence (an)n∈N such that

• a0 · · · an ∈ T for all n ∈ N,

• T �(a0 · · · an) is infinite for all n ∈ N.

Assuming a0, . . . , an defined, since

T �(a0 · · · an) =
⋃
a∈A

(a0···ana)∈T

T �(a0 · · · ana)

is infinite and finitely branching, by the infinite pigeonhole principle there is some a ∈ A
such that a0 · · · ana ∈ T and T �(a0 · · · ana) is infinite. We let an+1 := a.

No assumption of Kőnig’s Lemma 3.32 can be omitted. First, T trivially needs be infinite
to have an infinite path. Finite branching is also easy to observe.

Example 3.33. The following tree over N is infinite but has no infinite path:

ε

0 1 · · · n · · · · · ·

Why T is required to be a tree is not too difficult to see neither, but perhaps more
subtle. We come back on this in Ex. 4.18 (§4.2).

Example 3.34. The set T0 := 0∗1 ⊆ {0, 1}∗ is infinite, finitely branching but is not a
tree: T0 is not closed under prefix since it is prefix-free (if u ∈ T0 then no proper prefix
of u belongs to T0). In particular, it is clear that T0 has no infinite path.

On the other hand, the tree T := Pref(T0) has a unique infinite path, namely 0ω. But
note that no prefix of 0ω belongs to T0! See Fig. 5 (in which nodes are the v ∈ T).

Remark 3.35 (On Definition 3.31). The notion of tree in Def. 3.31 formally differs
from the graph-theoretic one. See e.g. [Kec95, 4.13 (§4B)] for a comparison.

17

3 Linear-Time Properties

ε

0 1

00 01

000 001

0001

Figure 5: The tree T of Ex. 3.34.

Remark 3.36 (References). A striking aspect of Kőnig’s Lemma 3.32 is that there are
recursive infinite trees T ⊆ {0, 1}∗ with no recursive infinite path (see e.g. [TvD88,
Chap. 4, §7.6] or [Sim10, Lem. VIII.2.15]). We refer to [Sim10, I.8.8 and §III.7] for
the axiomatic strength of Kőnig’s Lemma (outside the scope of this course).

Kőnig’s Lemma 3.32 is an important tool for various topics related to this course.
First, see [BBJ07, §26.2] for an approach based on logic and an application to graphs
(namely Ramsey’s Theorem). Moreover, Kőnig’s Lemma 3.32 has important applica-
tions in the theory of automata on ω-words, see e.g. [GTW02, §3] (also [PP04, §I.9])
or [VW08, §2.2.1] (outside the scope of this course). Last but not least, Kőnig’s Lemma 3.32
is strongly related to topological compactness. We come back on this in §6.2 (Prop. 6.12,
Rem. 6.13 and Rem. 6.14).

3.2.6 Proof of Proposition 3.27

We can now prove Prop. 3.27.

Proof. Assume first that Trω(TS) ⊆ Trω(TS ′). Then given σ̂ ∈ Trfin(TS), since TS
has no terminal states we have σ̂ ⊆ σ for some σ ∈ Trω(TS) ⊆ Trω(TS ′), and it follows
that σ̂ ∈ Trfin(TS ′).

For the converse, assume Trfin(TS) ⊆ Trfin(TS ′) and let σ ∈ Trω(TS). Then for all
σ̂ ⊆ σ we have σ̂ ∈ Trfin(TS) ⊆ Trfin(TS ′). As a consequence, for all n ∈ N there is in
TS ′ a finite initial path

πn = sn0 · · · snn
such that

L′(πn) ⊆ σ

But note that we may not have πn ⊆ πn+1. We therefore apply Kőnig’s Lemma 3.32 to
build a suitable infinite path in TS ′. Consider the tree T ′ ⊆ (S′)∗ defined as

T ′ := {u ∈ (S′)∗ | u is a finite initial path in TS ′ and L′(u) ⊆ σ}

18

3 Linear-Time Properties

Then T ′ is evidently a tree. It is finitely branching since TS ′ is finitely branching.
Moreover T ′ is infinite: for all σ̂ ⊆ σ we have σ̂ ∈ Trfin(TS) ⊆ Trfin(TS ′), so there is
a finite initial path u in TS ′ such that L′(u) = σ̂. By Kőnig’s Lemma 3.32, T ′ has an
infinite path π. We have L′(π) = σ since L′(π(0) · · ·π(n)) ⊆ σ for all n ∈ N. Moreover,
π is an initial path in TS ′ by construction of T ′.

Direct Proof of Proposition 3.27. We can nevertheless give a direct proof of Prop. 3.27.

Proof. Exercise!

3.3 Liveness Properties

While safety properties specify that “nothing wrong can happen”, a given safety property
may vacuously hold in a “sufficiently inactive” system.

Example 3.37. Recall Ex. 3.16 (§3.2.2) and consider the following “traffic light”:

G

with AP = {G,Y,R} and state labelling G 7→ {G}. This system trivially satisfies the
safety property of Ex. 3.16 (“every R is the immediate successor of a Y”).

Liveness properties, which form the second part of the classification mentioned in §3.2,
specify that “something good will happen”.

Definition 3.38 (Liveness Property). We say that P ⊆ (2AP)ω is a liveness property
if for every σ̂ ∈ (2AP)∗ there is some σ ∈ P such that σ̂ ⊆ σ.

Liveness properties are typically conditions on infinite behaviours.

Example 3.39. A typical liveness property which can be used to ensure that the safety
property of Ex. 3.37 holds in a non-trivial way is: “R occurs infinitely often”. Formally:{

σ ∈ (2AP)ω | (∃∞t)(R ∈ σ(t))
}

This property is satisfied by the transition system of Ex. 3.16 but not by the one of
Ex. 3.37.

Example 3.39 suggests to consider the conjunction of a safety property with a liveness
property. This is no special case: the Decomposition Theorem 3.42 (in §3.4 below) states
that every LT property is the conjunction of a safety property with a liveness property.

Example 3.40. Recall the BVM of Ex. 2.1 (§2). The following two properties from
Ex. 3.2 are liveness properties:

• σ ∈ P iff in σ, there are infinitely many paid’s whenever there are infinitely many
drink’s:

P =
{
σ ∈ (2AP)ω | (∃∞t)(drink ∈ σ(t)) =⇒ (∃∞t)(paid ∈ σ(t))

}

19

4 Topological Approach

• σ ∈ P iff in σ, there are at most finitely many drink’s whenever there are at most
finitely many paid’s:

P =
{
σ ∈ (2AP)ω | (∀∞t)(paid /∈ σ(t)) =⇒ (∀∞t)(drink /∈ σ(t))

}
See [BK08, §3.5] for more.

3.4 Safety vs Liveness

We now turn to the two results relating safety and liveness which were mentioned in §3.2.

Proposition 3.41 ([BK08, Lem. 3.35]). The only LT property which is both a safety
and a liveness property is the “true” property (2AP)ω.

Proof. First, note that (2AP)ω is evidently a liveness property. It is also the safety
property induced by Pbad := ∅.

Conversely, let P ⊆ (2AP)ω be both a liveness property and a safety property, say
induced by Pbad. Then for every σ̂ ∈ Pbad there must be some σ ∈ P such that σ̂ ⊆ σ.
But this implies Pbad = ∅.

Theorem 3.42 (Decomposition ([BK08, Thm. 3.37])). For every LT property P ⊆
(2AP)ω, there is a safety property Psafe and a liveness property Pliveness such that

P = Psafe ∩ Pliveness

The Decomposition Theorem 3.42 will be proved in §4.2 as a corollary of a topological
decomposition theorem. An alternative proof, based on closure operators and Galois
connections and actually following [BK08, Thm. 3.37], is presented in §5.5.1.

4 Topological Approach

Topology has different purposes in this course.
First, we shall see that Σω (the set of ω-words over Σ) can be equipped with a nice

notion of topology. In the case of LT properties over AP, the topology on (2AP)ω

provides clean characterizations of safety and liveness, and exhibits the Decomposition
Theorem 3.42 as a basic topological fact.

Second, as we shall see in §6 and §7.1, the topology on (2AP)ω will give us a strong
ground on how to build logics (i.e. syntaxes) to describe LT properties. This will
be sharpened in §8, with Stone’s Representation Theorem which establishes a deep
connection between Boolean algebras on the one hand, and the so called Stone’s spaces
on the hand, of which Σω (for Σ finite) is an important example.

Further, in §10 we shall consider (Hennessy-Milner) modal logic, which allows us to
reason on the branching structure of transitions systems, and whose model theory
rests on Stone’s Representation Theorem.

To keep things simple, the exposition of this Section is oriented toward presenting
(and proving) the Decomposition Theorem 3.42 in its natural topological context.

20

4 Topological Approach

4.1 Generalities

We expose some basic fundamental concepts and facts on general (or set-theoretic) topo-
logical spaces. We refer to [Wil70, Chap. 2] and [Run05, Chap. 3] for most of the material.

Definition 4.1. A topological space is a pair (X,ΩX) where X is a set and ΩX ⊆
P(X) is a family of subsets of X, called the open subsets of X, and such that

• ΩX is stable under unions: given a family (Ui)i∈I of open sets, the set
⋃
i∈I Ui is

open as well, and

• ΩX is stable under finite intersections: given a finite family (Ui)i∈I of open sets,
the set

⋂
i∈I Ui is open.

The complements of open sets, i.e. the sets of the form X \ U for U open, are called
closed.

Note that ∅ and X (as resp. the empty union and the empty intersection) are always
open (and thus closed) in (X,ΩX). Moreover, closed sets are stable under arbitrary
intersections and finite unions.

Lemma 4.2. Let (X,ΩX) be a topological space.

• Given a family (Ci)i∈I of closed sets, the set
⋂
i∈I Ci is closed as well.

• Given a finite family (Ci)i∈I of closed sets, the set
⋃
i∈I Ci is closed.

In order to show that a particular subset of a topological space is open (resp. closed),
one usually proceeds by the following basic fact.

Lemma 4.3. Let (X,ΩX) be a topological space.

(1) A set A ⊆ X is open iff for every x ∈ A there is an open set U ∈ ΩX such that
x ∈ U and U ⊆ A.

(2) A set A ⊆ X is closed iff for every x /∈ A there is an open set U ∈ ΩX such that
x ∈ U and U ∩A = ∅.

Proof.

(1) If A is open, then A is itself an open set contained in A and containing each of its
points. Conversely, if for each x ∈ A there is an open Ux such that x ∈ Ux ⊆ A then
A =

⋃
x∈A Ux is open.

(2) Since A ⊆ X is closed iff X \A is open.

Every subset A of topological space (X,ΩX) is contained in a least closed set A.

Definition 4.4 (Closure of a set). Given a topological space (X,ΩX) and a set A ⊆ X,
the closure A of A is defined as

A :=
⋂
{C ⊆ X | A ⊆ C and C is closed}

21

4 Topological Approach

Note that A is closed as an intersection of closed sets. Moreover, A is the least closed
set containing A:

• if A ⊆ C with C closed, then A ⊆ C.

In particular, a set A ⊆ X is closed iff A = A. The following is [Wil70, Thm. 3.7]. See
also [Run05, Def. 3.1.19 & Thm. 3.1.20].

Lemma 4.5. Given subsets A,B ⊆ X of a topological space (X,ΩX), we have

(1) A ⊆ B implies A ⊆ B,

(2) A ⊆ A,

(3) (A) = A,

(4) ∅ = ∅,

(5) A ∪B = A ∪B.

Proof.

(1) Assume A ⊆ B and let C be closed set such that B ⊆ C. We then have A ⊆ C, and
thus A ⊆ C.

(2) Trivial.

(3) We just have to show (A) ⊆ A. But A is a closed set containing A, so that A ∈
{C ⊆ X | A ⊆ C and C is closed} and (A) ⊆ A.

(4) Since the empty set is closed.

(5) We have A∪B ⊆ A ∪B by monotonicity of (−). For the converse, note that A∪B
is a closed set which contains A ∪B, so it contains A ∪B.

Remark 4.6. Given a set A, an operator (−) : P(A) → P(A) satisfying all the con-
ditions of Lem. 4.5 is called a Kuratowski closure operator. Closure operators,
which are only required to satisfy the first three conditions of Lem. 4.5 are further dis-
cussed in the context of partial orders in §5.3 (Ex. 5.19). It in particular follows from
Lem. 5.20 that a Kuratowski closure operator (−) : P(X) → P(X) induces a topology
on X, with C ⊆ X closed iff C = C.

4.1.1 Adherence

The following notion is useful to reason on the closure of a set. We refer to [Bou07,
Chap. 1] for developments.

Definition 4.7 (Adherent Point). Consider a topological space (X,ΩX) and some A ⊆
X. We say that x ∈ X is adherent to A (or that x is an adherent point of A) if A
intersects any open set which contains x:

∀U ∈ ΩX, x ∈ U =⇒ A ∩ U 6= ∅

22

4 Topological Approach

Remark 4.8 (Terminology). In the English terminology, adherent points are also called
points of closure.

Adherent points provide a handy characterization of the closure of a set.

Lemma 4.9. Consider a topological space (X,ΩX) and some A ⊆ X. Then x is adher-
ent to A if and only if x ∈ A.

Proof. Assume first that x is adherent to A. If C is a closed set which contains A but
not x, then x belongs to the open X \ C. But the latter cannot intersect A as A ⊆ C.

Conversely, if x ∈ A and x ∈ U with U open, then A∩U empty would imply A ⊆ X\U
and thus x /∈ U , a contradiction.

4.1.2 The Topological Decomposition Theorem

Definition 4.10 (Dense Set). Let (X,ΩX) be a topological space. A set D ⊆ X is
dense if D ∩ U 6= ∅ for all non-empty open U .

Theorem 4.11 (Topological Decomposition Theorem). Let (X,ΩX) be a topological
space. Then for any A ⊆ X, there is some closed set C and some dense set D such that
A = C ∩D.

Proof. Let C := A and D := A ∪ (X \A). The set C is trivially closed. Moreover,

C ∩D = (A ∩A) ∪ (A ∩ (X \A)) = A

It thus remains to show that D is dense. So let U be a non-empty open set. If U ∩A = ∅,
then A is included in the closed set X\U . But this implies A ⊆ X\U , so that U ⊆ X\A.

Note that the density of D = A ∪ (X \ A) may be easier to see via the notion of
adherence (§4.1.1). Indeed consider a non-empty open U such that U ∩ (X \ A) is
empty. This means that U is included in A and since U is non-empty, there is some
x ∈ A such that x ∈ U . Now, by Lem. 4.9, x is adherent to A since x ∈ A, which implies
U ∩A 6= ∅ since x ∈ U with U open.

Let us finally mention a useful property on dense sets.

Lemma 4.12. Let (X,ΩX) be a topological space. A set D ⊆ X is dense if and only if
D = X.

Proof. Assume first that D is a dense subset of X. We claim that X is the only
closed set C such that D ⊆ C. So assume C is a proper closed subset of X such that
D ⊆ C. But then X \C is a non-empty open set, so that we must have D∩ (X \C) 6= ∅,
contradicting D ⊆ C.

Conversely, assume D = X and consider some non-empty open U . If U ∩D is empty
then D ⊆ X \ U , so that X ⊆ X \ U , contradicting that U is non-empty.

23

4 Topological Approach

Remark 4.13 (Alternative Proof of Thm. 4.11). Lemma 4.12, together with the fact
that (−) is a Kuratowski closure operator (see Lem. 4.5 and Rem. 4.6) gives a more
direct proof of the Topological Decomposition Theorem 4.11, similar in spirit to the
proof of [BK08, Thm. 3.37] (see §5.5.1). The argument goes as follows. Taking D :=
A ∪ (X \A) as in the proof of Thm. 4.11, by Lem. 4.5 we have

D = A ∪ (X \A)

It follows that D = X, and thus that D is dense by Lem. 4.12.

4.1.3 Bases and Subbases

It is often convenient to define a topology from more atomic data than the direct de-
scription of open sets.

Lemma 4.14 (Base). Consider a set X together with a family of sets B ⊆ P(X) which
is closed under finite intersections. Let ΩX consist of all the

⋃
i∈I Ui for (Ui)i∈I a family

of elements of B. Then (X,ΩX) is a topological space.

Proof. First, ΩX is obviously closed under unions. As for closure under finite intersec-
tions, we have X ∈ ΩX as X ∈ B (since B is closed under finite intersections). It thus
remains to show that ΩX is closed under binary intersections. Consider families (Ui)i∈I
and (Vj)j∈J of elements of B. Since finite intersections distribute over unions, we have

(
⋃
i Ui) ∩ (

⋃
j Vj) =

⋃
i,j Ui ∩ Vj

so that (
⋃
i Ui) ∩ (

⋃
j Vj) ∈ ΩX as B is closed under finite intersections.

A family B as in Lem. 4.14 is a base of the topology ΩX. In practice, it is often more
convenient to generate a base as the closure under finite intersections of an arbitrary
family B0 subsets of X. Such B0 are the called subbases of ΩX.

4.2 Spaces of ω-Words

Definition 4.15 (The Topology on ω-Words). Given a non-empty set Σ, we equip Σω

with the topology induced by the subbase (ext(u))u∈Σ∗, where

ext(u) := {σ ∈ Σω | u ⊆ σ}

Note that Σω = ext(ε). Also, if u, v ∈ Σ∗ are incomparable w.r.t. the prefix order then
ext(u) ∩ ext(v) = ∅. Moreover, v ⊆ u obviously implies ext(u) ⊆ ext(v). We actually
have the following.

Lemma 4.16. Assume that Σ has at least two elements. Given u, v ∈ Σ∗ we have

ext(u) ⊆ ext(v) iff v ⊆ u

24

4 Topological Approach

Proof. If v ⊆ u and u ⊆ σ, then we obviously have v ⊆ σ. Hence ext(u) ⊆ ext(v).
Conversely, let ext(u) ⊆ ext(v). Recall that Σ has at least two elements. If length(u) =

length(v), then we must have u = v. If length(u) < length(v), then given σ such that
u ⊆ σ, we have v ⊆ σ by assumption, so u must be a strict prefix of v. Hence u.a is a
prefix of v for some a ∈ Σ. Then for b 6= a let σ such that u ⊆ u.b ⊆ σ. But we cannot
have u.a ⊆ σ, and in particular σ /∈ ext(v), a contradiction. Hence length(v) < length(u)
and v must be a prefix of u.

As a consequence, every open of Σω is a union of sets of the form ext(u) for u ∈ Σ∗.
Lemma 4.3 gives a quite useful characterization of the open (resp. closed) subsets of Σω.

Lemma 4.17. Let Σ be a non-empty set.

(1) A set P ⊆ Σω is open iff for every σ ∈ P there is a finite word σ̂ ∈ Σ∗ such that
σ̂ ⊆ σ and β ∈ P for all β ∈ Σω such that σ̂ ⊆ β.

(2) A set P ⊆ Σω is closed iff for every σ /∈ P there is a finite word σ̂ ∈ Σ∗ such that
σ̂ ⊆ σ and β /∈ P for all β ∈ Σω such that σ̂ ⊆ β.

In particular, if C ⊆ Σω is closed, then given σ ∈ Σω, we have σ ∈ C whenever for all
σ̂ ⊆ σ there is some β ∈ C with σ̂ ⊆ β.

Example 4.18 (Closed Sets from Trees (§3.2.5)). Recall Def. 3.31. Given a tree T ⊆ Σ∗,
the set cl(T) of infinite paths of T is a closed subset of Σω. For instance, the closed set
cl(Pref(0∗1)) ⊆ {0, 1}ω is the singleton {0ω} (Ex. 3.34). Actually, we shall see in §5.5
(Cor. 5.29) that the closed subsets of Σω are exactly the cl(T) for trees T ⊆ Σ∗. See
e.g. [Kec95, §2B] for more.

Notation 4.19. Given U ⊆ Σ∗ we let

ext(u) := {σ ∈ Σω | u ⊆ σ}
ext(U) :=

⋃
u∈U ext(u)

Remark 4.20 (A Base for ω-Words). The set BΣ ⊆ P(Σω) consisting of all sets of the
form ext(U) for U ⊆ Σ∗ finite can be used as a base for a topology on Σω. It is easy to
see that this topology coincides with that of Def. 4.15.

Proof. Note that we have ext(∅) = ∅. Moreover, sets of ω-words the form ext(U) for
U ⊆ Σ∗ are closed under finite intersections. Since Σω = ext({ε}), we just have to
consider the case of binary intersections. But for U, V ⊆ Σ∗ we have

ext(U) ∩ ext(V) =
(⋃

u∈U ext(u)
)
∩
(⋃

v∈V ext(v)
)

=
⋃
u∈U
v∈V

ext(u) ∩ ext(v)

Now ext(u) ∩ ext(v) is either empty or equal to ext(u) or ext(v), so that
⋃
u∈U
v∈V

ext(u) ∩
ext(v) is indeed of the form ext(W) for some W ⊆ Σ∗. Moreover W is finite whenever
so are U, V .

As a consequence, the set BΣ ⊆ P(Σω) consisting of all sets of the form ext(U) for
U ⊆ Σ∗ finite can be used as a base for a topology on Σω. It is easy to see that it
coincides with that of Def. 4.15.

25

4 Topological Approach

Remark 4.21 (On Finite or Infinite Words). While we focus on infinite words σ ∈ Σω, it
is sometimes useful to topologize the set Σ∞ of finite or infinite words (see Notation 1.2,
§1.1). A good (advanced) example in the context of this course is [VVK05]. We refer
to [PP04, §III.4] for a detailed account of Σ∞ as a topological space.

Remark 4.22 (An Informal Analogy with Recursively Enumerable Sets). Given a finite
word u ∈ Σ∗ and an ω-word σ ∈ Σω, we can check whether σ ∈ ext(u) by only inspecting
a finite prefix of σ. Consider now an open set ext(W) with W ⊆ Σ∗, and assume that
we want to check whether σ ∈ ext(W). If it happens that σ ∈ ext(W), then we can know
this after checking whether σ ∈ ext(w) for only finitely many w ∈W . But if σ /∈ ext(W),
then we might have to check whether σ ∈ ext(w) for infinitely many w ∈W .

This suggests an analogy between membership of an ω-word to a given open subset
of Σω on the one hand, and membership of a natural number to a given recursively
enumerable set on the other hand. This mere analogy can actually be made formal, as
detailed in [Mos09, Chap. 3] (outside the scope of this course).

4.2.1 Topological Safety and Liveness

Lemma 4.23. An LT property is closed if and only if it is a safety property.

Proof. Assume first that P ⊆ (2AP)ω is the safety property induced by Pbad ⊆ (2AP)∗.
Then P is closed as

P = (2AP)ω \
⋃
u∈Pbad

ext(u)

Conversely, if P is closed then (2AP)ω \ P is open, say

(2AP)ω \ P =
⋃
u∈Pbad

ext(u)

for some Pbad ⊆ (2AP)∗. But then P is the safety property induced by Pbad.

Lemma 4.24. An LT property is dense if and only if it is a liveness property.

Proof. Assume first that P ⊆ (2AP)ω is a liveness property. Let U be a non-empty
open set. Then ext(u) ⊆ U for some u ∈ (2AP)∗. But since P is a liveness property, we
have σ ∈ P for some σ ∈ ext(u). Hence σ ∈ P ∩ U .

Conversely, assume that P is dense. Given u ∈ (2AP)∗, we have P ∩ext(u) 6= ∅. Hence
there is some σ ∈ P such that u ⊆ σ. It follows that P is a liveness property.

The Decomposition Theorem 3.42 is thus a direct consequence of the Topological
Decomposition Theorem 4.11.

Corollary 4.25 (Decomposition (Thm. 3.42)). For every LT property P ⊆ (2AP)ω,
there is a safety property Psafe and a liveness property Pliveness such that

P = Psafe ∩ Pliveness

Let us finally mention the following alternative characterization of liveness properties.

Corollary 4.26. An LT property P ⊆ (2AP)ω is a liveness property if and only if
P = (2AP)ω.

Corollary 4.26 is a direct consequence of Lem. 4.24 and Lem. 4.12.

26

5 Partial Orders and Complete Lattices

5 Partial Orders and Complete Lattices

In this Section, we introduce some basic concepts and facts pertaining to partial orders
and complete lattices. These will be used for different purposes in this course.

First, these tools provide a purely order-theoretic proof of the Decomposition Theo-
rem 3.42 (essentially as in [BK08, Thm. 3.37]). Moreover, some order-theoretic notions
which are good generalizations of topological ones can serve as useful abstractions for
the latter. Further, some basic order-theoretic notions presented here lay the ground to
lattice-theoretic concepts which are important for Stone’s Representation Theorem (§8).

Second, complete lattices have a nicely behaved notion of fixpoint on which we rely
to define (and reason on) the logic LTL in §7.

We mainly refer to [DP02], and we indicate differences in notation and terminology
whenever possible.

5.1 Partial Orders

Definition 5.1 ([DP02, Def. 1.2]). A partial order is a pair (A,≤) where A is a set
and ≤ is a binary relation on A which is

reflexive: a ≤ a for all a ∈ L,

transitive: a ≤ c whenever a ≤ b and b ≤ c,

antisymmetric: a = b whenever a ≤ b and b ≤ a.

Example 5.2. The following are simple but important examples of partial orders which
are not linear (i.e. in which a 6≤ b may not imply b ≤ a):

(1) (Σ∗,⊆) where Σ has at least two elements.

(2) (P(X),⊆) for a set X.

(3) (ΩX,⊆) for a topological space (X,ΩX).

Definition 5.3. The opposite of a partial order (A,≤) is the partial order (A,≤)op :=
(A,≥) where a ≥ b iff b ≤ a.

We often just write Aop for the opposite of (A,≤). Opposites are called duals in [DP02]
and are denoted (A,≤)∂ . We refer to [DP02, §1.19 & §1.20] for further comments on
opposites.

Definition 5.4 (Monotone Function). Consider partial orders (A,≤A) and (B,≤B) and
a function f : A→ B.

(1) We say that f is monotone if f(a) ≤B f(a′) whenever a ≤A a′.

(2) We say that f is antimonotone if f(a′) ≤B f(a) whenever a ≤A a′.

In other words, a function A → B is antimonotone iff it is monotone as a function
Aop → B.

27

5 Partial Orders and Complete Lattices

5.2 Complete Lattices

Definition 5.5. Let (A,≤) be a partial order and consider some set S ⊆ A.

(1) An upper bound of S is some b ∈ A such that s ≤ b for all s ∈ S.

(2) A least upper bound (or join) of S is an upper bound
∨
S such that

∨
S ≤ b for

every upper bound b of S.

A lower bound of S is an upper bound of S in (A,≤)op. A greatest lower bound (or
meet)

∧
S of S is a least upper bound of S in (A,≤)op.

In words, b ∈ A is a lower bound of S iff b ≤ s for all s ∈ S, and
∧
S is a lower bound

of S such that b ≤
∧
S for all lower bound b of S. We refer to [DP02, Def. 2.1] for a

slightly more elaborated definition of (least) upper and (greatest) lower bounds.
In the litterature, a least upper bound is sometimes also called a lub or a sup.

Similarly, greatest lower bounds are sometimes called glb’s of infs.

Remark 5.6. By antisymmetry, joins and meets are unique whenever they exist.

Remark 5.7 (On P(X) and ΩX). It is easy to see that (P(X),⊆) has all meets and
joins, given respectively by intersections and unions.

For (X,ΩX) a topological space, it follows from the definition that (ΩX,⊆) has all
joins. But does it have all meets? This question may be seen as a motivation for the
following definition.

Definition 5.8. A complete lattice is a partial order (L,≤) such that every subset S ⊆ L
has both a join (i.e. least upper bound)

∨
S ∈ L and a meet (i.e. greatest lower bound)∧

S ∈ L.

Note that a complete lattice (L,≤) has in particular a least element ⊥ =
∨
∅ ∈ L and

a greatest element > =
∧
∅ ∈ L. We repeat that by antisymmetry, joins and meets are

unique.

Example 5.9. Given a set A, the set (P(A),⊆) is a complete lattice.

The notion of complete lattice of [DP02, Def. 2.4] relies on the following, which can be
rephrased as a consequence of [DP02, Thm. 2.31].

Lemma 5.10. The following are equivalent for a partial order (L,≤):

(i) (L,≤) is a complete lattice,

(ii) every subset S ⊆ L has a join
∨
S ∈ L,

(iii) every subset S ⊆ L has a meet
∧
S ∈ L.

28

5 Partial Orders and Complete Lattices

Proof. It is obvious that the first condition implies the other two. Let (L,≤) be a
partial order with all joins. Given S ⊆ L, define:

B := {b ∈ L | ∀s ∈ S, b ≤ s}

We claim that
∨
B is the greatest lower bound of S. Indeed, given s ∈ S, we have b ≤ s

for all b ∈ B, so that
∨
B ≤ s. Moreover, given a lower bound b of S, we have b ∈ B,

and thus b ≤
∨
B.

The proof that having all meets implies having all joins is similar.

A particular case of complete lattices are the frames. They simply abstract the lat-
tice structure of open sets. This apparently candid notion is the basis of considerable
developments, see e.g. [Joh82].

Definition 5.11. A frame is a partial order (L,≤) which has finite meets and all joins,
and which satisfies the following infinite distributive law, where S is an arbitrary subset
of L:

a ∧
∨
S =

∨
{a ∧ s | s ∈ S}

Corollary 5.12. Every frame (L,≤) is a complete lattice.

Example 5.13. For a topological space (X,ΩX), the partial order (ΩX,⊆) is a frame
where finite meets are given by finite intersections and joins are given by unions.

Recall that by antisymmetry, meets (and joins) in a partial order are unique whenever
they exists. In particular, for a frame (L,≤,∧,

∨
), we have

a ∧ b =
∨
{c ∈ L | c ≤ a and c ≤ b}

Corollary 5.14. For a topological space (X,ΩX), the partial order (ΩX,⊆) is a com-
plete lattice.

Beware that meets of open sets are in general not given by intersections!

Example 5.15. Consider the space Σω for Σ = {a, b}. The set S =
⋂
n∈N ext(an) is not

open.

Proof. Indeed, assume S =
⋃
u∈W ext(u) for some W ⊆ Σ∗. Then since S contains the

ω-word aω, we must have aω ∈ ext(u) for some u ∈W . But this implies u = an for some
n ∈ N, while ext(an) is not a subset of S since

anbω ∈ ext(an) \ ext(an+1)

Given a topological space (X,ΩX), following the proof of Lem. 5.10, the meet in ΩX of
a family of open sets S ⊆ ΩX is given by∧

S :=
⋃
{U ∈ ΩX | ∀V ∈ S, U ⊆ V }

In other words,
∧
S is the largest open set contained in

⋂
S. This generalizes to the

following usual notion.

29

5 Partial Orders and Complete Lattices

Definition 5.16 (Interior (see e.g. [Wil70, Def. 3.9] or [Run05, Def. 2.2.22])). Given a
topological space (X,ΩX), the interior of a set A ⊆ X is

Å :=
⋃
{U ∈ ΩX | U ⊆ A}

We state the following obvious fact, and refer to [Wil70, §3.9–12] for further material.

Lemma 5.17. Given a topological space (X,ΩX), the interior Å of A ⊆ X is the largest
open set contained in A.

5.3 Closure Operators

Definition 5.18 ([DP02, Def. 7.1]). A closure operator on a partial order (L,≤) is a
function c : L→ L which is

monotone: a ≤ b implies c(a) ≤ c(b),

expansive: a ≤ c(a),

idempotent: c(c(a)) = c(a).

We say that an element a ∈ L is closed when c(a) = a. We write Lc for the set of
closed elements of L.

Closure operators are in particular an abstraction of the closure operation on subsets of
a topological space.

Example 5.19. Given a topological space (X,ΩX), the operation (−) is a closure op-
erator on P(X) (see Rem. 4.6, §4.1).

Lemma 5.20 ([DP02, Prop. 7.2]). Consider a closure operator c on a complete lattice
(L,≤). Then Lc is a complete lattice with meets

d
and joins

⊔
given resp. by

l
S =

∧
S and

⊔
S = c(

∨
S)

Proof. Fix a set S ⊆ Lc of closed elements.
We first prove that

∧
S is closed. Indeed, for all s ∈ S, we have

∧
S ≤ s, and thus

c(
∧
S) ≤ s since s is closed. It follows that c(

∧
S) ≤

∧
S and thus c(

∧
S) =

∧
S since

c is expansive. We now show that
∧
S is the meet of S in Lc. But given b ∈ Lc such

that b ≤ s for all s ∈ S, we of course have b ≤
∧
S.

We now turn to the case of joins. We have to show that c(
∨
S) is the join of S in Lc.

Let b ∈ Lc such that s ≤ b for all s ∈ S. We then of course have
∨
S ≤ b, and thus

c(
∨
S) ≤ c(b) = b.

We note the following, for the sake of sharpening our intuitions.

Lemma 5.21. Consider a closure operator c on a complete lattice (L,≤). Then for all
a ∈ L we have

c(a) =
∧
{c(b) | a ≤ c(b)}

Proof. Exercise!

30

5 Partial Orders and Complete Lattices

5.4 Galois Connections

Galois connections are the subject of [DP02, §7.23–35]. We differ on notation.

Definition 5.22. Given partial orders (A,≤A) and (B,≤B), a Galois connection
g a f : A→ B is given by a pair of functions

g : A −→ B
f : B −→ A

such that for all a ∈ A and all b ∈ B we have

g(a) ≤B b iff a ≤A f(b)

In a Galois connection g a f , g (resp. f) is called the lower adjoint (resp. upper
adjoint).

Example 5.23. Given an ordinary function f : X → Y , we have f! a f•, where

f• : P(Y)→ P(X), T 7→ {x ∈ X | f(x) ∈ T}
f! : P(X)→ P(Y), S 7→ {f(x) | x ∈ S}

Proof. Indeed, given S ∈ P(X) and T ∈ P(Y), we have

f!(S) ⊆ T ⇐⇒ ∀x ∈ S, f(x) ∈ T
⇐⇒ S ⊆ f•(T)

Remark 5.24. It immediately follows from Def. 5.22 that in a Galois connection g a f ,
f is uniquely determined by g and g is uniquely determined by f .

Proof. Assume g a f and g a f ′ with g : A→ B. Given b ∈ B we have f ′(b) ≤A f(b)
since g(f ′(b)) ≤B b, which itself follows from f ′(b) ≤A f ′(b). We similarly get f(b) ≤A
f ′(b). The case of g a f and g′ a f is similar.

Lemma 5.25 ([DP02, Lem. 7.26]). If g a f : A → B form a Galois connection, then
both f and g are monotone.

Proof. First note that for all a ∈ A and all b ∈ B, since g(a) ≤B g(a) and f(b) ≤A f(b),
we have

a ≤A (f ◦ g)(a) and (g ◦ f)(b) ≤B b

Then for a ≤A a′ and b ≤B b′ we have

a ≤A a′ ≤A (f ◦ g)(a′) and (g ◦ f)(b) ≤B b ≤B b′

and thus
g(a) ≤B g(a′) and f(b) ≤A f(b′)

31

5 Partial Orders and Complete Lattices

Lemma 5.26 ([DP02, Prop. 7.27]). If g a f : A → B is a Galois connection, then
f ◦ g : A→ A is a closure operator.

Proof. Let c : A → A be f ◦ g. First, c is monotone as a composite of two monotone
maps. Second, we have a ≤ c(a) since

g(a) ≤B g(a) ⇐⇒ a ≤A (f ◦ g)(a)

Finally, we have c(c(a)) ≤A c(a) since (g ◦ f ◦ g)(a) ≤A g(a), the latter being given by

(g ◦ f ◦ g)(a) ≤B g(a) ⇐⇒ (f ◦ g)(a) ≤A (f ◦ g)(a)

We refer to §5.6 for further general properties of Galois connections and closure oper-
ators.

5.5 Prefix and Closure

We now describe the closed subsets of Σω by a closure operator induced by a Galois
connection. This in particular gives another proof of the Decomposition Theorem 3.42
(see §5.5.1). We loosely follow the approach of [BK08, Chap. 3]. Recall the definition of
Pref(σ) from Notation 1.2 (§1.1).

Given a non-empty set Σ, define

Pref : P(Σω) −→ P(Σ∗)
P 7−→

⋃
{Pref(σ) | σ ∈ P}

cl : P(Σ∗) −→ P(Σω)
W 7−→ {σ ∈ Σω | Pref(σ) ⊆W}

It is easy to see that these maps form a Galois connection Pref a cl : P(Σω)→ P(Σ∗).

Lemma 5.27. For all P ⊆ Σω and all W ⊆ Σ∗ we have

Pref(P) ⊆W iff P ⊆ cl(W)

Proof. Assume first that Pref(P) ⊆ W and let σ ∈ P . Given σ̂ ∈ Pref(σ), we have
σ̂ ∈W since Pref(σ) ⊆ Pref(P) ⊆W . It follows that σ ∈ cl(W).

Conversely, assume that P ⊆ cl(W) and let σ̂ ∈ Pref(P). This implies σ̂ ⊆ σ for some
σ ∈ P . But we then have σ̂ ∈W as σ̂ ∈ Pref(σ) ⊆W .

It thus follows from Lem. 5.26 that

cl ◦ Pref : P(Σω) −→ P(Σω)

is a closure operator. Note that

cl(Pref(P)) = {σ ∈ Σω | Pref(σ) ⊆ Pref(P)}
= {σ ∈ Σω | ∀σ̂ ⊆ σ, ∃β ∈ P, σ̂ ⊆ β}

32

5 Partial Orders and Complete Lattices

Proposition 5.28. Given P ⊆ Σω, we have

P = cl(Pref(P))

Proof. We first show that P ⊆ cl(Pref(P)). This amounts to showing that cl(Pref(P))
is a topologically closed set containing P . It is clear that cl(Pref(P)) contains P . We
show that Σω \ cl(Pref(P)) is open.

Consider some σ /∈ cl(Pref(P)) = cl(Pref(cl(Pref(P)))). This means that there is some
σ̂ ⊆ σ which has no extension in cl(Pref(P)), i.e. such that ext(σ̂) ⊆ Σω \ cl(Pref(P)).
Hence Σω \ cl(Pref(P)) is a union of open sets and is thus itself open.

We now show that cl(Pref(P)) ⊆ P . We use the notion of adherence (see Def. 4.7 and
Lem. 4.9). Given σ ∈ cl(Pref(P)), we show that σ is adherent to P . So let u ∈ Σ∗ such
that σ ∈ ext(u). This means u ⊆ σ, and thus that P contains some β such that u ⊆ β.
Hence P ∩ ext(u) 6= ∅.

Recall Def. 3.31 (§3.2.5). Note that for a tree T ⊆ Σ∗, the set cl(T) defined above is
exactly the set of infinite paths of T (see Ex. 4.18, §4.2). We thus obtain the following.

Corollary 5.29. A subset C of Σω is closed if and only if C is the set of infinite paths
of some tree T ⊆ Σ∗.

Notation 5.30. Given P ⊆ Σω we often write cl(P) for cl(Pref(P)). With this notation,
cl(P) is closure(P) in the sense of [BK08, Def. 3.26].

Proposition 5.28, together with the fact that safety properties P ⊆ (2AP)ω are the
topologically closed subsets of (2AP)ω (Lem. 4.23), gives the following. A direct proof is
nevertheless possible.

Corollary 5.31. An LT property P ⊆ (2AP)ω is a safety property if and only if P =
cl(P).

Together with Corollary 4.26, Prop. 5.28 gives the following.

Corollary 5.32. An LT property P ⊆ (2AP)ω is a liveness property iff cl(P) = (2AP)ω.

We moreover have the following.

Proposition 5.33. An LT property P ⊆ (2AP)ω is a liveness property iff Pref(P) =
(2AP)∗.

Proof. Exercise!

5.5.1 Alternative Proof of the Decomposition Theorem 3.42

The Galois connection Pref a cl : P(Σω) → P(Σ∗) gives an alternative, more combina-
torial proof of Thm. 3.42, following the lines of [BK08, Thm. 3.37]. The combinatorial
content of the argument is contained in the following.

33

5 Partial Orders and Complete Lattices

Lemma 5.34 ([BK08, Lem. 3.36]). Given P,Q ⊆ Σω, we have

cl(P ∪Q) = cl(P) ∪ cl(Q)

Lemma 5.34 directly follows from Lem. 4.5 and Prop. 5.28. A direct (more combinatorial)
proof is nevertheless possible.

Proof. Exercise!

Remark 5.35. As a consequence, cl : P(Σω)→ P(Σω) is a Kuratowski closure operator
(see Rem. 4.6).

The proof of Thm. 3.42 given in [BK08] then proceeds by the following. The decompo-
sition has the same shape as in the general topological Thm. 4.11.

Corollary 5.36 ([BK08, Thm. 3.37]). For every LT property P ⊆ (2AP)ω, we have

P = cl(P) ∩
(
P ∪

(
(2AP)ω \ cl(P)

))
where cl(P) is a safety property and P ∪

(
(2AP)ω \ cl(P)

)
is a liveness property.

Proof. Exercise!

5.6 Further Properties of Closure Operators and Galois Connections

We gather here some further properties of Galois connections and closure operators.
These properties come from the fact that Galois connections and closure operators are
particular cases of general notions in category theory, the notions resp. of adjunction
and monad. We generally refer to [ML98] for categorical material, and give references
to the corresponding statements.

We begin with the usual join and (resp. meet) preservation of lower (resp. upper
adjoints).

Lemma 5.37 ([DP02, Prop. 7.31]). If g a f : A → B is a Galois connection, then g
preserves any join which exists in A and f preserves any meet which exists in B.

Proof. Exercise!

Lemma 5.37 thus implies that g (resp. f) preserves joins (resp. meets) whenever it has
a lower adjoint (resp. an upper adjoint). This is actually a particular case of a general
property of adjoints in category theory (see e.g. [Awo10, §9.5] or [ML98, §V.5]), where
we speak of left and right adjoints for the generalized form of resp. lower and upper
adjoints. In various occasions, one is more interested in knowing the existence of an
adjoint, so as to deduce preservation properties, rather than in the adjoint in itself.

Interestingly, Lem. 5.37 has a converse.

Lemma 5.38 ([DP02, Prop. 7.34]). Assume that (A,≤A) and (B,≤B) are complete
lattices.

34

5 Partial Orders and Complete Lattices

(1) If f : B → A preserves meets (and is thus monotone), then f has a lower adjoint
g : A→ B.

(2) If g : A → B preserves joins (and is thus monotone), then g has an upper adjoint
f : B → A.

Proof. Exercise!

The categorical generalization of Lem. 5.38 actually involves more complex conditions.
See e.g. [ML98, §V.6] and [Awo10, §9.8].

Example 5.39 ((Complete) Heyting Algebras). Let (A,≤) be a complete lattice. Given
a ∈ A, consider the map

(−) ∧ a : A −→ A
b 7−→ b ∧ a

It follows from Lem. 5.37 and Lem. 5.38 that (−) ∧ a has an upper adjoint if and only
if (−) ∧ a preserves all joins. Note that the latter exactly means that for all S ⊆ A, we
have

(
∨
S) ∧ a =

∨
{s ∧ a | s ∈ S}

Hence, A is a frame (Def. 5.11, §5.2) if and only if each map (−) ∧ a (for a ∈ A) has
an upper adjoint.

Upper adjoints to (−) ∧ a are often denoted a⇒ (−), since (−) ∧ a a a⇒ (−) means

(b ∧ a) ≤ c iff b ≤ (a⇒ c)

so that a⇒ c is reminiscent from a logical implication.
Frames are also called complete Heyting algebras. A Heyting algebra is a lattice

A (i.e. a partial order in which has all finite joins and all finite meets) such that each
map (−) ∧ a (for a ∈ A) has an upper adjoint a ⇒ (−). Note that this implies (by
Lem. 5.37) that a Heyting algebra is automatically distributive, in the sense that for
all a, b, c ∈ A we have

(c ∨ b) ∧ a = (c ∧ a) ∨ (b ∧ a)

Note also that what we called a “complete Heyting algebra” is nothing else but a Heyting
algebra which happens to be complete as a lattice.

Heyting algebras are the appropriate notion of truth values for intuitionistic propo-
sitional logic (see e.g. [SU06, §2.4] or [Awo10, §6.3], outside the scope of this course).

We have seen in Lem. 5.26 that Galois connections induce closure operators. The
converse, namely that every Galois connection arises from a closure operator is also
true. The categorical generalization of closure operators are monads. See e.g. [ML98,
Chap VI].

Given a closure operator c : A → A, we already have looked at the set Ac of closed
elements in §5.3.

Lemma 5.40 ([DP02, §7.28]). Let c : A→ A be a closure operator. Then c : A→ Ac is
part of a Galois connection c a ι : A→ Ac, where ι(a) := a.

35

6 Observable Properties

Proof. Exercise!

We of course have c = ι ◦ c. The Galois connection of Lem. 5.40 generalizes to the
well-known adjunction between a category C and the Eilenberg-Moore category CT of a
monad T on C, see e.g. [ML98, §VI.2].

5.6.1 On the Kleisli Construction

The notion of closure operator on a partial order of Def. 5.18 can be generalized to
preorders. A preorder on a set A is a binary relation which is reflexive and transitive.
So the difference with a partial order is that antisymmetry is not required, i.e. we can
have a ≤ b and b ≤ a with a 6= b. If (A,≤) is a preorder, we say that c : A → A is a
closure operator if c is monotone, expansive and such that c(c(a)) ≤ c(a) for all a ∈ A.
The definition of Galois connections between preorders is the same as for partial orders
(Def. 5.22), and all properties seen in §5.4 and the present §5.6 generalize to preorders.

In this setting, for a closure operator c : A→ A, let ≤c⊆ A×A be such that a ≤c a′ iff
a ≤ c(a′). The following is a particular case of a second way to generate an adjunction
from a monad T on a category C, namely the adjunction between C and its Kleisli
category CT . We refer to e.g. [ML98, §VI.5] for details.

Lemma 5.41. Let c : A → A be a closure operator on a preorder. Then c : A → A is
part of a Galois connection ι a c : (A,≤)→ (A,≤c), where ι(a) := a.

Proof. Exercise!

6 Observable Properties

This Section refines the topological approach of §4, with the aim of isolating a natural
notion of “observable” linear-time property. This lays the ground to logics for linear-
time properties. An important point is that, when AP is finite, LT properties of the
form ext(V), for a finite V ⊆ (2AP)∗, form a Boolean algebra.

6.1 Observable Properties as Clopen Sets

Given sets X, Y and a function f : X → Y , recall from Example 5.23 the function

f• : P(Y) −→ P(X)
B 7−→ {x | f(x) ∈ B}

Lemma 6.1. Given a function f : X → Y , the function f• : P(Y)→ P(X) is a map of
complete Boolean algebras from (P(Y),

⋂
,
⋃
, Y \(−), Y, ∅) to (P(X),

⋂
,
⋃
, X\(−), X, ∅).

Note that if f• preserves unions and intersections, then it also preserves complements,
as the complement of A ∈ P(X) is the unique B ∈ P(X) such that A ∪ B = X and
A ∩B = ∅.

36

6 Observable Properties

Proof. First, f• preserves all intersections since it is an upper adjoint (Example 5.23
and Lemma 5.37). Consider the function

f• : P(X) −→ P(Y)
S 7−→

⋃
{T ∈ P(Y) | f•(T) ⊆ S}

Note that f• a f•. Indeed, if f•(T) ⊆ S, then we obviously have T ⊆ f•(S). Con-
versely, assume T ⊆ f•(S). Given x ∈ f•(T), we have f(x) ∈ T , hence f(x) ∈ f•(S) and
there is some T ′ ∈ P(Y) such that f(x) ∈ T ′ and f•(T ′) ⊆ S. We thus get x ∈ S since
x ∈ f•(T ′). It then follows from Lemma 5.37 that f• preserves all unions.

Definition 6.2 (Continuous Function). Consider topological spaces (X,ΩX) and (Y,ΩY).

(1) A function f : X → Y is continuous if f• : P(Y) → P(X) restricts to a function
ΩY → ΩX, i.e. if f•(V) is open in X whenever V is open in Y .

(2) We say that f : X → Y is an homeomorphism if f is a continuous bijection with
continuous inverse Y → X.

Lemma 6.3. A function f : Σω → Γω is continuous iff

∀n ∈ N, ∀α ∈ Σω, ∃k ∈ N, ∀β ∈ Σω
(
β(0) · · ·β(k) = α(0) · · ·α(k) =⇒

f(β)(0) · · · f(β)(n) = f(α)(0) · · · f(α)(n)
)

Proof. Assume first that f is continuous. Given α ∈ Σω and n ∈ N, let v :=
f(α)(0) · · · f(α)(n). The set

U := f•(ext(v))

is open in Σω, and since α ∈ U , there is some k ∈ N such that ext(α(0) · · ·α(k)) ⊆ U .
For the converse, let V be an open of Γω. If f•(Γ) is empty then the result is trivial.

Otherwise, let α ∈ f•(Γ). We are done if we show that ext(α(0) · · ·α(k)) ⊆ f•(Γ)
for some k ∈ N. Since f(α) ∈ Γ with Γ open, there is some n ∈ N such that with
v := f(α)(0) · · · f(α)(n) we have ext(v) ⊆ Γ. But by assumption on f , we indeed have
ext(α(0) · · ·α(k)) ⊆ f•(ext(v)) for some k ∈ N.

In words, a continuous stream function must be able to produce a finite part of its output
from a finite part of its input. It is generally admitted that a computable function on
streams must be continuous. In particular, a necessary condition for an LT property
P ⊆ (2AP)ω to be decidable is to have a continuous characteristic function

χP : (2AP)ω −→ 2

α 7−→
{

1 if α ∈ P
0 otherwise

where 2 is endowed with the discrete topology, with which every subset is open. This
amounts to ask that both P and (2AP)ω \ P are open, or equivalently that P is both
open and closed.

37

6 Observable Properties

Definition 6.4 (Clopen Set). A subset of a topological space is clopen if it is both open
and closed.

Lemma 6.5 (The Boolean Algebra of Clopens). Let (X,ΩX) be a topological space. The
clopens of X form a sub-Boolean algebra of (P(X), (−) ∩ (−), (−) ∪ (−), X \ (−), X, ∅).

Proof. First, clopens are evidently closed under complements. Furthermore, both ∅
and X are clopens. Finally, the open subsets and the closed subsets of X are closed
under binary intersections and binary unions.

Definition 6.6 (Observable Property). An LT property P ⊆ (2AP)ω is observable if
P is a clopen subset of (2AP)ω.

Let us look more precisely at the observable properties.

Lemma 6.7. In Σω, each set of the form ext(u) for u ∈ Σ∗ is clopen.

Proof. We reason by induction on u. If u = ε then ext(u) = Σω is evidently clopen.
Otherwise, u = v.a and

Σω \ ext(v.a) =
(⋃

b6=a ext(v.b)
)
∪ (Σω \ ext(v))

Since ext(v) is clopen by induction hypothesis and since each ext(v.b) is open, we get
that (2AP)ω \ ext(v.a) is open, so that ext(v.a) is clopen.

As a consequence, each finite subset U ⊆ Σ∗ induces a clopen set ext(U) =
⋃
u∈U ext(u).

However, the converse is not true in general.

Example 6.8. Consider the Baire space N := Nω. The subset P ⊆ Nω given by

P :=
⋃
n>0 ext(n)

is obviously open. It is also closed as being the complement of ext(0). But P cannot be
presented as the extension of a finite set U ⊆ N∗.

We shall see in Prop. 6.15 that when AP is finite, the observable P ⊆ (2AP)ω are
exactly the sets of the form

⋃
u∈U ext(u) for a finite U ⊆ (2AP)ω. This relies on a

strong topological property of (2AP)ω for finite AP, known as compactness, and whose
most basic aspects are presented in §6.2 and §6.3.

6.2 Compactness

We follow here parts of the presentation of [Run05].

Definition 6.9. Let (X,ΩX) be a topological space.

• An open cover of a set A ⊆ X is a family of open sets (Ui)i∈I such that A ⊆⋃
i∈I Ui.

38

6 Observable Properties

• A set A ⊆ X is compact in X if every open cover (Ui)i∈I of A contains a finite
cover of A, in the sense that there is a finite set J ⊆ I such that A ⊆

⋃
j∈J Uj.

• The space (X,ΩX) is compact if X is itself a compact subset of X.

A metric space is compact in the sense of Definition 6.9 precisely when it is sequen-
tially compact (every sequence has a convergent subsequence), see e.g. [Run05, Theorem
2.5.10]. Beware however that in general, the two notions differ (see e.g. [Run05, Example
3.3.22]).

The following is a simple consequence of the definitions. In the case of compact
Hausdorff spaces (§6.3) it becomes part of a powerful characterization of the compact
sets (see Prop. 6.20).

Lemma 6.10. A closed subset of a compact space is compact.

Proof. Let (X,ΩX) be a compact space and let C ⊆ X be closed. Given an open
covering U = (Ui)i∈I of C, we obtain with U ∪ {X \ C} an open covering of X. Since
X is compact, it has a finite subcover V ∪ {X \ C} where V = (Uj)j∈J for some finite
J ⊆ I. But then V covers C.

In the case of ω-words, the space Σω is compact if and only if Σ is finite. First, it is easy
to see that Σω is not compact when Σ is infinite.

Lemma 6.11. Consider the space of ω-words Σω for some non-empty set Σ. If Σ is
infinite, then Σω is not compact.

Proof. Indeed, we have
Σω =

⋃
a∈Σ ext(a)

But if Σ is infinite, one cannot extract a finite subcover of Σω from (ext(a))a∈Σ.

We now show that Σω is compact when Σ is finite. We rely on Kőnig’s Lemma 3.32
(§3.2.5).

Proposition 6.12. Let Σ be a finite non-empty set. Then Σω is compact.

Proof. Consider an open covering (Ui)i∈I of Σω. Note that each Ui is of the form⋃
v∈Vi ext(v) for some Vi ⊆ Σ∗. Let V :=

⋃
i∈I Vi. We build a prefix-free W ⊆ V as

W =
⋃
n∈NWn, where

• ε ∈W0 iff ε ∈ V .

• Given u ∈ Σ∗ of length n + 1, we let u ∈ Wn+1 if u ∈ V and u has no prefix in⋃
k≤nWk.

It is clear that W is prefix-free, in the sense that if u ∈W then u has no strict prefix in
W . Moreover, each v ∈ V has a prefix in W . Hence, recalling from Lemma 4.16 that
w ⊆ v implies ext(v) ⊆ ext(w), the set W induces a cover of Σω as

Σω =
⋃
v∈V

ext(v) =
⋃
w∈W

ext(w)

39

6 Observable Properties

Hence we are done if W is finite. Assume toward a contradiction that W is infinite. Let
T ⊆ Σ∗ be the prefix-closure of W (i.e. u ∈ T iff u ⊆ w for some w ∈ W). Then T is
finitely branching as Σ is finite, and T is infinite as W is infinite. Hence, by Kőnig’s
Lemma 3.32, T has a path π. Since W induces a cover of Σω, we have w ⊆ π for some
w ∈ W . Since π is a path in T , we have w.a ⊆ π for some w.a ∈ T with a ∈ Σ. By
definition of T , we must have w.a ⊆ v for some v ∈ W , but this is impossible since
v ∈W would then have a strict prefix w ∈W .

Remark 6.13 (Tychonoff Theorem – Compactness of Product Spaces). The conjunction
of Lem. 6.11 with Prop. 6.12 is an instance of Tychonoff Theorem. We refer to [Wil70,
Thm. 17.8] and to [Run05, Thm. 3.3.21]. It is an easy exercise to show that “our” topol-
ogy on Σω is the product topology in the usual sense (taking Σ discrete), see e.g. [Wil70,
Chap. 3, §8] or [Run05, Def. 3.3.19]. Tychonoff Theorem is known to be equivalent to
the Axiom of Choice. In the simple case of Σω, we used Kőnig’s Lemma 3.32, a much
weaker principle of infinite combinatorics (see e.g. [Sim10, Ex. I.8.8]).

Remark 6.14. It is possible to prove Prop. 6.12 without explicitly relying on Kőnig’s
Lemma 3.32 (see e.g. [PP04, §III.3.5]). Actually, one can obtain Kőnig’s Lemma 3.32
from a strengthening of Prop. 6.12 stating the relative compactness of subspaces of Σω

(with Σ possibly infinite). See e.g. [PP04, Ex. III.8.6] (outside the scope of this course).

Proposition 6.15 (Observable Property – The Compact Case). If AP is finite, then
P ⊆ (2AP)ω is observable iff P =

⋃
u∈U ext(u) for some finite U ⊆ (2AP)∗.

Proof. We already know from Lem. 6.7 and Lem. 6.5 that the condition is sufficient.
Let P ⊆ (2AP)ω be clopen, hence compact open. Then P =

⋃
u∈U ext(u) for some U ⊆

(2AP)∗. Since P is compact, there is a finite subset V ⊆ U such that P ⊆
⋃
u∈V ext(u).

But this implies P =
⋃
u∈V ext(u) as V ⊆ U .

6.2.1 The Finite Intersection Property

The following characterization of compact spaces is useful in practice. It directly follows
from the definitions.

Definition 6.16 (Finite Intersection Property). Given a set A, a family of sets F ⊆
P(A) has the finite intersection property for every finite F ⊆ F , we have

⋂
F 6= ∅.

Lemma 6.17. A space (X,ΩX) is compact iff for every family of closed sets F with the
finite intersection property, we have

⋂
F 6= ∅.

Proof. Exercise!

6.3 Compact Hausdorff Spaces

Compact spaces with the following separation property enjoy a particularly simple char-
acterization of their compact subsets. See e.g. [Wil70, Chap. 5, §13] or [Run05, Def.
3.13].

40

7 Linear Temporal Logic

Definition 6.18 (Hausdorff Space). A topological space (X,ΩX) is Hausdorff (or T2)
if for any distinct points x, y ∈ X, there are disjoint opens U, V such that x ∈ U and
y ∈ V .

Example 6.19. Spaces of ω-words Σω are Hausdorff.

Here comes the announced characterization of the compacts subsets of a compact Haus-
dorff space. Recall from Lem. 6.10 that the closed subsets of a compact spaces are always
compact.

Proposition 6.20. In an Hausdorff space, each compact set is closed.

Proof. Consider an Hausdorff space (X,ΩX) and fix a compact set C ⊆ X. We show
that C is closed using Lem. 4.3. So let x /∈ C. Since X is Hausdorff, for each y ∈ C there
are disjoint open sets Uy, Vy such that x ∈ Uy and y ∈ Vy. Hence (Vy)y∈C is an open
cover of C. Since C is compact, (Vy)y∈C has a finite subcover, say Vy1 , . . . , Vyn . But then
x belongs to the open set U := Uy1 ∩ · · · ∩Uyn . Moreover, since each Uyi is disjoint from
Vyi , it follows that U is disjoint from each Vyi and thus from C ⊆ Vy1 ∪ · · · ∪ Vyn .

As a consequence, in a compact Hausdorff space, the compact sets are exactly the
closed sets, and the clopen sets are exactly the compact open sets.

7 Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal logic to express linear-time properties. In the
field of computer science, temporal logics for linear-times properties were introduced
by [Pnu77]. We refer to [BdRV02] for a comprehensive introduction to modal logic.

This Section presents LTL in a step-wise manner, starting from the notion of observable
property drawn in §6. We mostly build from [BK08, Chap. 5], but differ in various
aspects. In particular, we discuss standard material on the computation of fixpoints in
complete lattices which goes beyond [BK08] and for which we mainly refer to [DP02].

7.1 The Logic LML of Observable Properties

Fix a set AP of atomic propositions. We are going to define a linear-time modal logic
LML such that, when AP is finite, the formulae of LML describe exactly the clopens of
(2AP)ω.

7.1.1 Syntax and Semantics of LML

We assume given a countably infinite set X = {X,Y, Z, . . . } of variables. The formulae
of LML are given by the following grammar:

ϕ,ψ ::= > | ⊥ | X | a (where X ∈ X and a ∈ AP)
| ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ
| ©ϕ

41

7 Linear Temporal Logic

The formulae of LML are to be interpreted as subsets of (2AP)ω. In particular, the
interpretation of a formula ϕ with variables among X1, . . . , Xn depends on a valuation
of the Xi’s as sets Ai ⊆ (2AP)ω.

Definition 7.1 (Valuations and Formulae with Parameters).

(1) A valuation of a set of variables V ⊆ X is a function ρ : V → P((2AP)ω).

(2) A formula with parameters is a pair (ϕ, ρ) of a formula ϕ and a valuation
ρ : V → P((2AP)ω) where V contains all the variables of ϕ.

We often speak of a formula ϕ with parameters ρ for the pair (ϕ, ρ).

Consider a formula ϕ with parameters ρ. We define the interpretation JϕKρ ⊆ (2AP)ω

by induction on ϕ as follows:

JXKρ := ρ(X)
JaKρ :=

{
σ ∈ (2AP)ω | a ∈ σ(0)

}
J>Kρ := (2AP)ω

J⊥Kρ := ∅
Jϕ ∧ ψKρ := JϕKρ ∩ JψKρ
Jϕ ∨ ψKρ := JϕKρ ∪ JψKρ

J¬ϕKρ := (2AP)ω \ JϕKρ
J©ϕKρ :=

{
σ ∈ (2AP)ω | σ�1 ∈ JϕKρ

}
where, for i ∈ N, σ�i ∈ (2AP)ω is the function which takes k ∈ N to σ(i+ k) ∈ 2AP, e.g.

σ = σ(0) · σ(1) · . . . · σ(n) · . . .
σ�1 = σ(1) · σ(2) · . . . · σ(n+ 1) · . . .

Notation 7.2. Other propositional connectives are defined as usual:

ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

Definition 7.3. We say that σ ∈ (2AP)ω satisfies a formula ϕ with parameters ρ if
σ ∈ JϕKρ.

Lemma 7.4. If ρ(X) = ρ′(X) for all variables X which actually occur in ϕ, then
JϕKρ = JϕKρ′

In particular, if ϕ is closed, i.e. contains no free variable, then JϕKρ does not depend on
ρ. In this case, we just write JϕK for JϕKρ.

Notation 7.5. For a closed ϕ, we write σ
 ϕ for σ ∈ JϕK.

The relation σ
 ϕ (for ϕ closed) can be given an inductive definition.

42

7 Linear Temporal Logic

Remark 7.6. The relation σ
 ϕ is the least relation such that

σ
 a iff a ∈ σ(0)
σ
 >
σ 6
 ⊥
σ
 ϕ ∧ ψ iff σ
 ϕ and σ
 ψ
σ
 ϕ ∨ ψ iff σ
 ϕ or σ
 ψ
σ
 ¬ϕ iff σ 6
 ϕ
σ
©ϕ iff σ�1
 ϕ

7.1.2 Logical Equivalence

Definition 7.7 (Logical Equivalence). Given formulae ϕ and ψ with free variables in
V ⊆ X , we say that ϕ and ψ are logically equivalent (notation ϕ ≡ ψ) if for all valuation
ρ : V → P((2AP)ω) we have

JϕKρ = JψKρ

Lemma 7.8. All the equivalences of Fig. 6 hold.

Remark 7.9. The notion of logical equivalence ≡ given in Def. 7.7, for which we fol-
low [BK08, Def. 5.17], is not the usual one (see e.g. [BdRV02, Def. 5.29]). In Def. 7.7
as well as in [BK08, Def. 5.17], logical equivalence is defined as a semantic equivalence,
whereas [BdRV02, Def. 5.29] defines ≡ as provable equivalence in a given axiomatic
system.

While the “right” notion of logical equivalence is that of [BdRV02, Def. 5.29] (see also
e.g. [DP02, §11.11–16]), we stick to the semantic notion of [BK08, Def. 5.17] since the
present notes do not cover axiomatic and deductive approaches to logic.

7.1.3 Observable Properties

We now turn to the promised fact that when AP is finite, the closed formulae of LML
exactly correspond to the observable (i.e. clopen) properties on (2AP)ω. Recall from
Prop. 6.15 that when AP is finite, the clopen subsets of (2AP)ω are exactly the finite
unions of sets of the form ext(σ̂) for σ̂ ∈ (2AP)∗. Recall moreover from Lem. 6.5 that
clopen sets are closed under complements, finite unions and finite intersections.

Proposition 7.10. For each closed LML-formula ϕ, JϕK is a clopen subset of (2AP)ω.

Proof. By induction on ϕ.

Case of a ∈ AP. We have

JaK =
⋃
{ext(A) | A ∈ 2AP and a ∈ A}

and we are done by Lem. 6.7 and Lem. 6.5 if AP is finite.

Assume now that AP is infinite. If σ /∈ JaK, we have a /∈ σ(0). But then ext(σ(0))
is an open set containing σ and disjoint from JaK. Hence JaK is closed and thus
clopen.

43

7 Linear Temporal Logic

Semilattices Laws:

ϕ ∨ ϕ ≡ ϕ ϕ ∧ ϕ ≡ ϕ
ϕ ∨ ψ ≡ ψ ∨ ϕ ϕ ∧ ψ ≡ ψ ∧ ϕ
ϕ ∨ ⊥ ≡ ϕ ϕ ∧ > ≡ ϕ

ϕ ∨ (ψ ∨ θ) ≡ (ϕ ∨ ψ) ∨ θ ϕ ∧ (ψ ∧ θ) ≡ (ϕ ∧ ψ) ∧ θ

Absorptive Laws (Lattice Laws):

ϕ ∨ (ϕ ∧ ψ) ≡ ϕ
ϕ ∧ (ϕ ∨ ψ) ≡ ϕ

Distributive Laws:
ϕ ∨ (ψ ∧ θ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ θ)
ϕ ∧ (ψ ∨ θ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ θ)

Boolean Algebra Laws:

ϕ ∧ ¬ϕ ≡ ⊥ ϕ ∨ ¬ϕ ≡ >

Duality (De Morgan) Laws:

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ) ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ) ϕ ≡ ¬¬ϕ

Modal Laws:
©(ϕ ∧ ψ) ≡ ©ϕ ∧©ψ ©> ≡ >
©(ϕ ∨ ψ) ≡ ©ϕ ∨©ψ ©⊥ ≡ ⊥
©(¬ϕ) ≡ ¬©ϕ

Figure 6: Some Usual Laws.

44

7 Linear Temporal Logic

Cases of >, ⊥, ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ. By Lem. 6.5.

Case of ©ϕ. By induction hypothesis, JϕK is clopen and thus open. Hence JϕK = ext(U)
for some set U ⊆ (2AP)∗. Then we have

J©ϕK =
⋃
{ext(A.u) | u ∈ U and A ∈ 2AP}

If AP is finite, then by Prop. 6.15 we can further assume that U is finite, and we
are done by Lem. 6.7 and Lem. 6.5 since 2AP is also finite.

Assume now that AP is infinite. If σ /∈ J©ϕK, then we have σ�1 /∈ JϕK. Hence
by induction hypothesis there is some w ∈ (2AP)∗ such that σ�1 ∈ ext(w) and
ext(w) ∩ JϕK = ∅. But it then follows that ext(σ(0).w) ∩ J©ϕK = ∅ while σ ∈
ext(σ(0).w). Hence J©ϕK is closed and we are done.

Proposition 7.11. Assume that AP is finite. Then for any clopen P ⊆ (2AP)ω there
is a closed LML-formula ϕ such that P = JϕK.

Proof. We know from Prop. 6.15 that P = ext(U) for some finite U ⊆ (2AP)∗. We
show that ext(u) is definable in LML for each u ∈ U and then conclude by Lem. 6.5.
First note that since AP is finite, for each set A ∈ 2AP, we have ext(A) = JϕAK where

ϕA :=
(∧

a∈A a
)
∧
(∧

a∈AP\A ¬a
)

Consider now some finite word u = An · · ·A1 ∈ (2AP)∗. We show by induction on n ∈ N
that ext(u) is definable in LML. The base case follows from the fact that ext(ε) = J>K.
As for the induction step, assume that u is definable by ψu. Then A.u is definable by
ϕA ∧©ψu.

Proposition 7.11 may not hold when AP is infinite.

Example. Let AP := N and let 2N ⊆ AP consist of the even numbers. Note that
σ ∈ ext(2N) iff σ(0) = 2N and that ext(2N) is clopen by Lem. 6.7. It is easy to see that
there is no closed formula ϕ such that ext(2N) = JϕK.

Proof. Assume toward a contradiction that such a ϕ exists. Using the laws of Fig. 6,
we have

ϕ ≡
∨
i∈I
∧
j∈Ji©

ni,jλi,j

where I and the Ji’s are finite sets and each λi,j is either of the form n or ¬n with
n ∈ N. Note that we can always assume ni,j = 0 (i.e. ©ni,jλi,j = λi,j) since σ ∈ ext(2N)
iff (σ(0)) · β ∈ ext(2N) for all β ∈ (2AP)ω.

Let σ
 ϕ, with say σ

∧
j∈Ji λi,j . Let n be the least odd number not occurring in∧

j∈Ji λi,j We thus have β := (σ(0) ∪ {n}) · σ�1
 ϕ, a contradiction since β /∈ ext(2N)
as n is odd.

45

7 Linear Temporal Logic

7.2 Extending LML with Fixpoints

As seen in Prop. 7.10, the logic LML has a very limited expressive power. In particular,
it can only express few safety properties, and it follows from Prop. 3.41 that the only
expressible liveness property is the “true property” (2AP)ω. We shall therefore look for
extensions of LML.

7.2.1 The “Eventually” and “Always” Modalities

Typical logical constructs one may wish to add to LML are the Eventually and Always
modalities, noted resp. 3ϕ and 2ϕ, and with

J3ϕKρ := {σ ∈ (2AP)ω | ∃i ∈ N, σ�i ∈ JϕKρ}
J2ϕKρ := {σ ∈ (2AP)ω | ∀i ∈ N, σ�i ∈ JϕKρ}

In the spirit of Notation 7.5, for a closed ϕ we write

σ
 3ϕ iff ∃i ∈ N, σ�i
 ϕ
σ
 2ϕ iff ∀i ∈ N, σ�i
 ϕ

Example 7.12. Let a ∈ AP.

(1) σ
 3a iff a ∈ σ(i) for some i ∈ N.

The formula 3a defines an open liveness property J3aK ⊆ (2AP)ω.

(2) σ
 2a iff a ∈ σ(i) for all i ∈ N.

The formula 2a defines a safety property J2aK ⊆ (2AP)ω.

(3) σ
 23a iff a ∈ σ(i) for infinitely many i ∈ N.

(4) σ
 32a iff a /∈ σ(i) for at most finitely many i ∈ N, or equivalently iff there is
some n ∈ N such that a ∈ σ(i) for all i ≥ n.

Note that 32ϕ → 23ϕ is always true. The formulae 32a and 23a define liveness
properties J32aK, J23aK ⊆ (2AP)ω which are not closed nor open.

Let us investigate the semantics of 3ϕ and 2ϕ, with the aim of looking for behaviour
which could be easily generalized. First note the following basic equivalences, where ≡
stands for the obvious extension of Def. 7.7.

Lemma 7.13. We have
3ϕ ≡ ¬2¬ϕ
2ϕ ≡ ¬3¬ϕ
3ϕ ≡ ϕ ∨©3ϕ
2ϕ ≡ ϕ ∧©2ϕ

Intuitively, the first two equivalences of Lem. 7.13 say that 3 and 2 can be seen as De
Morgan duals of each other. The last two could be rephrased as follows.

46

7 Linear Temporal Logic

• 3ϕ holds at the current time step iff either ϕ holds at the current time step or
3ϕ holds at the next time step.

• 2ϕ holds at the current time step iff ϕ holds at the current time step and 2ϕ
holds at the next time step.

If we allowed for formulae with infinite disjunctions and conjunctions, we could state

3ϕ ≡ ϕ ∨©ϕ ∨©©ϕ ∨ · · · ≡
∨
n∈N©

nϕ
2ϕ ≡ ϕ ∧©ϕ ∧©©ϕ ∧ · · · ≡

∧
n∈N©

nϕ

We shall rather look for finitary representations of such infinite behaviors, with exten-
sions of LML with fixpoints of functions P((2AP)ω)→ P((2AP)ω) induced by formulae
as follows.

Notation 7.14. Given a formula ϕ with parameters ρ and a variable X, we write
JϕKρ(X) for the function

JϕKρ(X) : P((2AP)ω) −→ P((2AP)ω)
S 7−→ JϕKρ[S/X]

Lemma 7.15. Let ϕ be a formula with parameters ρ. Consider the formulae

ϕ3(X) := ϕ ∨©X ϕ2(X) := ϕ ∧©X

where X does not occur in ϕ. Then we have:

(1) J3ϕKρ is the least element of (P((2AP)ω),⊆) such that

J3ϕKρ = Jϕ3Kρ(J3ϕKρ)

(2) J2ϕKρ is the greatest element of (P((2AP)ω),⊆) such that

J2ϕKρ = Jϕ2Kρ(J2ϕKρ)

Proof. Both equations are clear from Lem. 7.13.

(1) Consider some P ⊆ (2AP)ω such that P = Jϕ3K(P). We show that J3ϕK ⊆ P . Note
that for all k ∈ N we have σ�k ∈ Jϕ3K(P) = P whenever σ�k + 1 ∈ P .

Assume that σ
 3ϕ and let i ∈ N such that σ�i
 ϕ. We thus have σ�i ∈ Jϕ3K(P) =
P . By (reverse) induction, we obtain σ�k ∈ Jϕ3K(P) = P for all k ≤ i, and so in
particular σ ∈ P .

(2) Consider some P ⊆ (2AP)ω such that P = Jϕ2K(P). We show that P ⊆ J2ϕK. Note
that for all k ∈ N, if σ�k ∈ P = Jϕ2K(P), then we have σ�k ∈ JϕK and σ�k + 1 ∈ P .
Hence, given σ ∈ P , it follows by induction that σ�i ∈ JϕK and σ�i + 1 ∈ P for all
i ∈ N, and so in particular σ ∈ J2ϕK.

47

7 Linear Temporal Logic

X Pos X

X 6= Y

X Pos Y X Pos a X Pos > X Pos ⊥
X Pos ϕ

X Pos©ϕ

X Pos ϕ X Pos ψ

X Pos ϕ ∨ ψ
X Pos ϕ X Pos ψ

X Pos ϕ ∧ ψ
X Neg ϕ

X Pos ¬ϕ

Y 6= X

X Neg Y X Neg a X Neg > X Neg ⊥
X Neg ϕ

X Neg©ϕ

X Neg ϕ X Neg ψ

X Neg ϕ ∨ ψ
X Neg ϕ X Neg ψ

X Neg ϕ ∧ ψ
X Pos ϕ

X Neg ¬ϕ

Figure 7: Positive and Negative Occurrences in a Formula.

7.2.2 Positive and Negative Variables in a Formula

We note here the simple fact that if the variable X occurs under an even (resp. odd)
number of negations in ϕ, then JϕKρ(X) is a monotone (resp. antimonotone) function of
(P((2AP)ω),⊆).

We use the following inductive notions of positive (resp. negative) variable in a formula
ϕ in order to express that a variable occurs under an even (resp. odd) number of negations
in ϕ.

Definition 7.16 (Positive Negative Variables). Given an LML-formula ϕ and a variable
X, the relations X Pos ϕ (X is positive in ϕ) and X Neg ϕ (X is negative in ϕ) are
defined by induction on Fig. 7.

Lemma 7.17. Consider a formula ϕ with parameters ρ and a variable X.

(1) If X Pos ϕ, then JϕK(X) is a monotone function on (P((2AP)ω),⊆).

(2) If X Neg ϕ, then JϕK(X) is an antimonotone function on (P((2AP)ω),⊆).

7.2.3 The Knaster-Tarski Fixpoint Theorem

Definition 7.18 (Fixpoints ([DP02, Def. 8.14])).

(1) A fixpoint of a function f : X → X is an x ∈ X such that f(x) = x.

(2) Let L be a partial order and let f : L → L be monotone. We say that a ∈ L is a
pre-fixpoint of f if f(a) ≤ a, and that a ∈ L is a post-fixpoint of f if a ≤ f(a).

A monotone function f : L → L on a complete lattice has always a least fixpoint
µ(f) ∈ L and a greatest fixpoint ν(f) ∈ L. Intuitively, the least fixpoint µ(f) can
always be obtained as the least pre-fixpoint of f . Dually, the greatest fixpoint of ν(f)
can always be obtained as the greatest post-fixpoint of f .

48

7 Linear Temporal Logic

Theorem 7.19 (Knaster-Tarski Fixpoint Theorem ([DP02, Thm. 2.35])). Let L be a
complete lattice and let f : L → L be a monotone function. Then the least fixpoint
µ(f) and the greatest fixpoint ν(f) are given resp. by

µ(f) =
∧
{a ∈ L | f(a) ≤ a}

ν(f) =
∨
{a ∈ L | a ≤ f(a)}

Proof. By duality we only discuss the case of least fixpoints. First, if a is a fixpoint
of f then it is in particular a pre-fixpoint of f and thus µ(f) ≤ a. Second, since f is
monotone, for each pre-fixpoint a of f we have f(µ(f)) ≤ f(a) ≤ a, and it follows that
f(µ(f)) ≤ µ(f). Hence µ(f) is itself a pre-fixpoint of f . Again by monotonicity of f ,
this implies that f(f(µ(f))) ≤ f(µ(f)), so that f(µ(f)) is also a pre-fixpoint of f . But
this implies µ(f) ≤ f(µ(f)) and we are done.

Remark 7.20 (On the Modal µ-Calculus). The full extension of LML with fixpoints is
the (linear-time) modal µ-calculus, a powerful logic, due to [Koz83], whose study would
lead us too far for this course. We refer to e.g. [VW08, §6] and [GTW02, BW18] and
references therein for more material on the modal µ-calculus. At the semantic level, we
refer to [DP02, §8.27–31] for reasoning principles with least and greatest fixpoints.

We finally note the following duality between least and greatest fixpoints.

Lemma 7.21. Let ϕ be a formula with parameters ρ and assume that X Pos ϕ. Let
ψ(X) := ¬ϕ(¬X). Then

ν(JϕKρ(X)) = (2AP)ω \ µ(JψKρ(X)) µ(JϕKρ(X)) = (2AP)ω \ ν(JψKρ(X))

Proof. We rely on the Knaster-Tarski Fixpoint Theorem 7.19. We have

(2AP)ω \ µ(JψK) = (2AP)ω \
⋂
{A ⊆ (2AP)ω | JψK(A) ⊆ A}

=
⋃
{(2AP)ω \A | JψK(A) ⊆ A}

=
⋃
{(2AP)ω \A | (2AP)ω \ JϕK((2AP)ω \A) ⊆ A}

=
⋃
{(2AP)ω \A | (2AP)ω \A ⊆ JϕK((2AP)ω \A)}

=
⋃
{B ⊆ (2AP)ω | B ⊆ JϕK(B)}

= ν(JϕK)

Dually,

(2AP)ω \ ν(JψK) = (2AP)ω \
⋃
{A ⊆ (2AP)ω | A ⊆ JψK(A)}

=
⋂
{(2AP)ω \A | A ⊆ JψK(A)}

=
⋂
{(2AP)ω \A | A ⊆ (2AP)ω \ JϕK((2AP)ω \A)}

=
⋂
{(2AP)ω \A | JϕK((2AP)ω \A) ⊆ (2AP)ω \A}

=
⋂
{B ⊆ (2AP)ω | JϕK(B) ⊆ B}

= µ(JϕK)

49

7 Linear Temporal Logic

7.3 The Logic LTL

The logic LTL is the extension of LML with a limited form of fixpoints, which can be
presented as follows. Consider a formula θ(X) with X Pos θ. Then using the laws of
Fig. 6, we can put θ(X) in disjunctive normal form, and obtain

θ(X) ≡ ψ ∨
∨
i∈I

(
ϕi ∧

∧
j∈J©

ni,jX
)

where X does not occur in ψ nor in the ϕi’s. If we further assume that in θ, X occurs
under exactly one ©, then we have

θ(X) ≡ ψ ∨
∨
i∈I (ϕi ∧©X)

≡ ψ ∨ (ϕ ∧©X)

where X does not occur in ψ nor in ϕ.
The logic LTL is the extension of LML with least (and greatest by the duality of

Lem. 7.21) fixpoints of formulae of the form θ(X) = ψ ∨ (ϕ ∧ ©X). Concretely, we
extend the formulae of LML with a modality ϕ U ψ (pronounced ϕ until ψ), whose
semantics is the least fixpoint of θ(X) = ψ ∨ (ϕ ∧©X).

Our order of presentation does not follow [BK08].

7.3.1 Syntax and Semantics of LTL

The formulae of LTL are given by the following grammar:

ϕ,ψ ::= > | ⊥ | X | a (where X ∈ X and a ∈ AP)
| ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ
| ©ϕ | ϕ U ψ

The semantics of LTL-formulae extends that of LML with the clause:

Jϕ U ψKρ := {σ ∈ (2AP)ω | ∃i ∈ N, σ�i ∈ JψKρ and ∀j < i, σ�j ∈ JϕKρ}

We extend the notation σ
 of Notation 7.5. This gives, for closed ϕ, ψ,

σ
 ϕ U ψ iff ∃i ∈ N, σ�i
 ψ and ∀j < i, σ�j
 ϕ

7.3.2 Fixpoints and Defined Modalities

It is now time to check that ϕ U ψ is indeed the least fixpoint of θ(X) = ψ ∨ (ϕ∧©X).

Lemma 7.22 ([BK08, Lem. 5.18]). Given formulae ϕ, ψ with parameters ρ, Jϕ U ψKρ
is the least fixpoint of JθKρ(X) : P((2AP)ω)→ P((2AP)ω), where

θ(X) := ψ ∨ (ϕ ∧©X)

50

7 Linear Temporal Logic

Proof. First note that if σ ∈ Jϕ U ψKρ with σ /∈ JψKρ, then we must have σ ∈ JϕKρ and
σ�1 ∈ Jϕ U ψKρ. So the law is respected.

Let now some P ⊆ (2AP)ω such that P = JθKρ(P). We show that Jϕ U ψKρ ⊆ P . So let
σ and i ∈ N such that σ�i ∈ JψKρ and σ�j ∈ JϕKρ for all j < i. Then σ�i ∈ JθKρ(P) = P
and by (reverse) induction σ�j ∈ JθKρ(P) = P for all j < i. It follows that σ ∈ P .

With the notations of §7.2.3, Lem. 7.22 says that for ϕ,ψ with parameters ρ and with
θ(X) as in Lem. 7.22 we have

Jϕ U ψKρ = µX.JθKρ(X)

Using the duality of Lem. 7.21, we can obtain a syntactic representation of the greatest
fixpoint of θ(X), known as the weak until modality. It follows from Lem. 7.21 that the
greatest fixpoint νX.JθKρ(X) of JθKρ(X) is given by

νX.JθKρ(X) = (2AP)ω \ µX.J¬θ[¬X/X]Kρ(X)

By using the laws of Fig. 6, we have

¬θ[¬X/X] ≡ ¬
(
ψ ∨ (ϕ ∧©¬X)

)
≡ ¬ψ ∧ ¬(ϕ ∧ ¬©X)
≡ ¬ψ ∧ (¬ϕ ∨©X)
≡ (¬ψ ∧ ¬ϕ) ∨ (¬ψ ∧©X)

It thus follows from Lem. 7.22 that

µX.J¬θ[¬X/X]Kρ(X) = J¬ψ U ¬(ψ ∨ ϕ)Kρ

so that
νX.JθKρ(X) = J¬(¬ψ U ¬(ψ ∨ ϕ))Kρ

Notation 7.23 (Weak Until). Given formulae ϕ and ψ, we let

ϕW ψ := ¬(¬ψ U ¬(ψ ∨ ϕ))

The above discussion leads us to the expected:

Lemma 7.24. Given formulae ϕ, ψ with parameters ρ, JϕW ψKρ is the greatest fixpoint
of JθKρ(X) : P((2AP)ω)→ P((2AP)ω), where

θ(X) := ψ ∨ (ϕ ∧©X)

It is then direct to define the modalities 3 and 2 discussed in §7.2.1. Recall from
Lem. 7.15 that 3ϕ and 2ϕ are respectively the least and greatest fixpoints of

ϕ3(X) := ϕ ∨©X ϕ2(X) := ϕ ∧©X

51

7 Linear Temporal Logic

Notation 7.25 (Eventually and Always). Given a formula ϕ, we let

3ϕ := > U ϕ
2ϕ := ϕW ⊥

Finally, note that while we have presented LTL as the extension of LML with least
(and greatest) fixpoints of formulae of the form θ(X) = ψ ∨ (ϕ ∧©X), there are quite
simple (positive and guarded) fixpoints which are not definable in LTL.

Proposition 7.26. Let a ∈ AP. There is no closed LTL-formula ϕ such that JϕK is the
greatest fixpoint of θ(X) := a ∧©©X.

Proposition 7.26 is part of a non-trivial theory. We refer to e.g. [PP04, Chap. VIII] and
references therein for details.

7.3.3 Logical Equivalence

The notion of logical equivalence for LTL is exactly that of LML (Def. 7.7) extended to
the formulae of LTL. In addition to the rules of Fig. 6, we have the equivalences for
LTL-formulae of Fig. 8.

Lemma 7.27. All the equivalences of Fig. 6 and Fig. 8 hold.

We refer to [BK08, Fig. 5.7, p. 248] and [BK08, §5.1.5] for further equivalences. We
nevertheless note the two following facts. First, there is a simple direct description of
ϕW ψ.

Lemma 7.28 ([BK08, Lem. 5.19]). We have

ϕW ψ ≡ (ϕ U ψ) ∨2ϕ

Proof. Let ϕ, ψ with parameters ρ and let θ(X) := ψ ∨ (ϕ ∧ ©X). Let further
P := J(ϕ U ψ) ∨ 2ϕKρ. We show that P is the greatest fixpoint of JθKρ(X). First, P is
indeed a fixpoint of JθKρ(X) since thanks to the rules of Fig. 6 and Fig. 8 we have

θ
(
(ϕ U ψ) ∨2ϕ

)
≡ ψ ∨

(
ϕ ∧©

(
(ϕ U ψ) ∨2ϕ

))
≡ ψ ∨

(
ϕ ∧

(
©(ϕ U ψ) ∨©2ϕ

))
≡ ψ ∨

(
ϕ ∧©(ϕ U ψ)

)
∨
(
ϕ ∧©2ϕ

)
≡ (ϕ U ψ) ∨2ϕ

Let now Q ⊆ (2AP)ω be any fixpoint of JθKρ(X). We show that Q ⊆ P . Let σ ∈ Q. If
σ ∈ J2ϕKρ then we are done. Otherwise, it follows from Lem. 7.15 that there is a least
i ∈ N such that σ�i /∈ JϕKρ. Since Jϕ U ψKρ ⊆ P by Lem. 7.22, and since σ�j ∈ JϕKρ for
all j < i, we are done if we show that σ�j ∈ JψKρ for some j ≤ i. Assume that for all
j ≤ i, we have σ�j /∈ JψKρ. We claim that σ�j ∈ Q for all j ≤ i. We have σ�0 = σ ∈ Q
by assumption. Moreover, if σ�j ∈ Q = JθKρ(Q) for j < i, then since σ�j /∈ JψKρ we
necessarily have σ�(j + 1) ∈ Q. But this implies σ�i ∈ Q = JθKρ(Q), contradicting that
σ�i /∈ Jψ ∨ ϕKρ.

52

7 Linear Temporal Logic

Modal Duality Laws:

3ϕ ≡ ¬2¬ϕ 2ϕ ≡ ¬3¬ϕ

Modal Operators Laws:

3(ϕ ∨ ψ) ≡ 3ϕ ∨3ψ 3⊥ ≡ ⊥
2(ϕ ∧ ψ) ≡ 2ϕ ∧2ψ 2> ≡ >

Distributive ©/ U Law:
©(ϕ U ψ) ≡ ©ϕ U©ψ

Expansion Laws:
ϕ U ψ ≡ ψ ∨ (ϕ ∧©ψ)

3ϕ ≡ ϕ ∨©3ϕ
2ϕ ≡ ϕ ∧©2ϕ

Figure 8: Some Usual LTL Laws.

Second, Lem. 7.21 gives the following dualities.

Lemma 7.29. We have

¬(ϕW ψ) ≡ ¬ψ U (¬ϕ ∧ ¬ψ)
¬(ϕ U ψ) ≡ ¬ψ W (¬ϕ ∧ ¬ψ)

Proof. Exercise!

7.3.4 Positive Normal Forms

By extending the syntax of LTL with the weak until modality ϕ W ψ, the equivalences
of §7.3.3 allow us to “reduce” each formula to a formula in positive normal form,
i.e. to a formula in which negations are only allowed on atomic formulae a ∈ AP and
on variables X ∈ X . This, however, comes with an exponential blow-up if one uses the
equivalences of Lem. 7.29. A solution for this is, instead of extending the syntax of LTL
with W, to extend it with the formal dual R of U, called release and such that

ϕ R ψ ≡ ¬(¬ϕ U ¬ψ)
ϕ U ψ ≡ ¬(¬ϕ R ¬ψ)

We refer to [BK08, §5.1.5] for details.

7.3.5 Satisfaction of LTL-Formulae by Transition Systems

Consider a transition system TS = (S,Act,→, I,AP, L) over AP. A (closed) LTL-
formula ϕ defines a linear-time property JϕK ⊆ (2AP)ω. Hence, we can specialize the
notion of satisfaction of LT properties (Def. 3.8) to the following.

53

8 Toward Stone Duality

Definition 7.30. Given TS and ϕ as above, we say that TS satisfies ϕ (notation
TS |≈ ϕ) if TS |≈ JϕK (i.e. if Trω(TS) ⊆ JϕK).

Definition 7.30 corresponds to [BK08, Def. 5.7]. We refer to [BK08, §5.1.2 & 5.1.3] for
examples.

8 Toward Stone Duality

Warning (On AP). In this section we always assume that AP is a finite non-empty
set.

In §6, we devised a topological notion of “observable properties”, which consist of the
Boolean algebra of clopen sets of a topological space. For spaces (2AP)ω, this amounts
to the Boolean algebra of sets of the form ext(W) for some finite W ⊆ (2AP)∗. In §7,
we devised LML, a base modal logic for linear-time properties, whose formulae define
exactly the observable properties on (2AP)ω. We noted that LML is very weak w.r.t. the
linear-time properties discussed in §3, and considered LTL, and extension of LML with a
restricted form of least and greatest fixpoints.

In this Section, we shall discuss further topological properties of spaces (2AP)ω, which
allow for recovering the whole set (2AP)ω from the Boolean algebra of clopen sets of its
topology, i.e. from LML.

We use the following notation.

Notation 8.1. Given a compact Hausdorff space (X,Ω), we let KΩ be the set of compact
open subsets of X.

Recall from Lem. 6.10 and Prop. 6.20 that for (X,Ω) compact Hausdorff, KΩ coincides
with the set of clopen subsets of X. By Prop. 6.12 and Prop. 6.15, we in particular have

KΩ((2AP)ω) = {ext(W) | W ⊆ (2AP)∗ is finite}

Given an ω-word σ ∈ (2AP)ω, let

Fσ := {ext(W) ∈ KΩ((2AP)ω) | σ ∈ ext(W)}

The following observations are easy. Recall that ext(ε) = (2AP)ω and that ext(∅) = ∅.

(1) (2AP)ω ∈ Fσ and ∅ /∈ Fσ.

(2) If U ∈ Fσ and U ⊆ V with V ∈ KΩ((2AP)ω) then V ∈ Fσ.

(3) If U ∈ Fσ and V ∈ Fσ then U ∩ V ∈ Fσ.

(4) If U ∪ V ∈ Fσ with U, V ∈ KΩ((2AP)ω), then either U ∈ Fσ or V ∈ Fσ.

54

8 Toward Stone Duality

Given a Boolean algebra B, subsets F ⊆ B satisfying the above conditions are called
prime filters on B.

Note that for σ, β ∈ (2AP)ω, we evidently have Fσ 6= Fβ whenever σ 6= β. Hence
(2AP)ω can be embedded into the set of prime filters on KΩ((2AP)ω). Actually, (2AP)ω

is in bijection with the set of prime filters on KΩ((2AP)ω). This fact, which is part of
Stone’s Representation Theorem, holds for any Stone space.

Definition 8.2 (Stone Space). A Stone space is a topological space (X,Ω) which is
compact (see Def. 6.9), and satisfies the two following conditions:

(X,Ω) is T0: for any distinct points x, y ∈ X, there is an open containing one and not
the other, i.e. there is some U ∈ Ω such that either (x ∈ U and y /∈ U) or (x /∈ U
and y ∈ U).

(X,Ω) is zero-dimensional: the clopen subsets of X form a base for the topology.

Note that every Stone space (X,Ω) is Hausdorff (Def. 6.18).

Example 8.3. It follows from Lem. 6.7 that Aω is zero-dimensional, whether or not A
is finite. Hence (2AP)ω is a Stone space by Prop. 6.12.

We shall target the two following instances of Stone’s Representation Theorem:

• Every Boolean algebra B is isomorphic to the Boolean algebra KΩ(Sp(B)) for
some Stone space (Sp(B),Ω(Sp(B))), called the spectrum of B.

• Every Stone space (X,Ω) is homeomorphic to the spectrum of the Boolean algebra
KΩ.

We refer to [Joh82, Cor. II.4.4] for the full statement of Stone’s Representation Theorem.
Let us finally illustrate the logical relevance of these matters in our context.

Definition 8.4.

(1) Let L(LML) be the set of closed LML-formulae quotiented by logical equivalence ≡
(in the sense of Def. 7.7 and Fig. 6, §7.1.2).

(2) Let L(LTL) be the set of closed LTL-formulae quotiented by logical equivalence ≡ (in
the sense of §7.3.3).

Notation 8.5. In this Section 8, L stands for either LML or LTL.
We shall always notationaly confuse a closed L-formula ϕ with its quotient [ϕ]≡ ∈ L(L),

where, as usual

[ϕ]≡ = {ψ | ψ is a closed L-formula such that ϕ ≡ ψ}

We equip L(L) with the partial order

ϕ ≤ ψ := (ϕ→ ψ) ≡ >

55

8 Toward Stone Duality

Note that
ϕ ≤ ψ iff ϕ ≡ (ϕ ∧ ψ) iff (ϕ ∨ ψ) ≡ ψ

and that ≤ is indeed a partial order on L(L) (i.e. ϕ ≡ ψ if ϕ ≤ ψ and ψ ≤ ϕ).
It follows from Prop. 7.10 and Prop. 7.11 (§7.1.3) that we can identify KΩ((2AP)ω)

with L(LML). The properties of prime filters underlined above can then be rephrased as
follows, for a set F ⊆ L(LML):

• F is non-empty (> ∈ F) and coherent (⊥ /∈ F).

• F is a theory:

• ϕ ∈ F and ϕ ≤ ψ imply ψ ∈ F ,

• ϕ,ψ ∈ F implies ϕ ∧ ψ ∈ F .

• F is complete (ϕ ∨ ψ ∈ F implies either ϕ ∈ F or ψ ∈ F , so that for every ϕ we
have either ϕ ∈ F or ¬ϕ ∈ F).

Then, the existence of a bijection between (2AP)ω and the set of prime filters over
KΩ((2AP)ω) can be read as a completeness theorem:

• Every complete consistent theory F ⊆ L(LML) has a model, i.e. there is some
σ ∈ (2AP)ω such that for all ϕ ∈ L(LML), we have σ
 ϕ iff ϕ ∈ F .

Remark 8.6 (On Lindenbaum-Tarski Algebras). The set L(L) defined in Def. 8.4 is
reminiscent from Lindenbaum-Tarski algebras (see e.g. [BdRV02, Def. 5.31]). How-
ever, Lindenbaum-Tarski algebras are usually defined as the quotient of formulae w.r.t.
provable logical equivalence (see also Rem. 7.9).

8.1 A Short Path Toward a Simplified Result

We present here a short path toward a simplified form of Stone’s Duality, namely that
for every Stone space (X,Ω), the set of points X is in bijection with the set of prime
filters over the Boolean algebra KΩ.

Warning. The notions and results discussed in this §8.1 are not presented in their usual
generality.

8.1.1 From Lattices to Boolean Algebras

Definition 8.7 (Lattice). A lattice is a partial order having all finite joins and all finite
meets.

Lemma 8.8. In a lattice (L,∨,∧,⊥,>), the following two distributive laws are equiv-
alent:

∀a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
∀a, b, c ∈ L, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Proof. Exercise!

56

8 Toward Stone Duality

Definition 8.9 (Distributive Lattice). A lattice is distributive if it satisfies either of
the distributive laws of Lem. 8.8.

Definition 8.10. Let (L,∨,∧,⊥,>) be a lattice. Given a ∈ L, we say that c ∈ L is a
complement of a whenever both a ∨ c = > and a ∧ c = ⊥ hold.

Lemma 8.11. If (L,≤) is a distributive lattice, then a ∈ L has at most one complement.

Proof. Exercise!

Definition 8.12 (Boolean Algebra). A Boolean algebra is a distributive lattice in
which every element b has a (necessarily unique) complement ¬b.

Lemma 8.13 (De Morgan Laws). Every Boolean algebra (B,∨,∧,⊥,>) satisfies the
following De Morgan Laws:

a ∧ b = ¬(¬a ∨ ¬b) a ∨ b = ¬(¬a ∧ ¬b) a = ¬¬a

Proof. Exercise!

8.1.2 Filters and Ultrafilters

Definition 8.14 (Filters). Let (L,≤) be a lattice.

(1) A set F ⊆ L is a filter if

(i) F is upward-closed (b ∈ F whenever b ≥ a for some a ∈ F), and

(ii) > ∈ F , and

(iii) a ∧ b ∈ F whenever a ∈ F and b ∈ F .

(2) A filter F ⊆ L is prime if

(i) ⊥ /∈ F , and

(ii) if a ∨ b ∈ F then either a ∈ F or b ∈ F .

Definition 8.15 (Finite Intersection Property). Let (L,≤) be a lattice. A subset F ⊆ L
is said to have the finite intersection property if

∧
S 6= ⊥ for all finite S ⊆ F .

Lemma 8.16 (Ultrafilter Lemma). Let (L,≤) be a distributive lattice. If F ⊆ L has
the finite intersection property, then F ⊆ F for some prime filter F on L.

The Ultrafilter Lemma 8.16 is discussed in §8.1.4 as a consequence of Zorn’s Lemma (an
equivalent formulation of the Axiom of Choice).

57

8 Toward Stone Duality

8.1.3 The Spectrum of a Boolean Algebra

Definition 8.17 (Spectrum of a Boolean Algebra (1/2)). Given a Boolean algebra B,
we let Sp(B) be the set of prime filters on B.

Definition 8.18. Given a Boolean algebra B and a ∈ B we let

ext(a) := {F ∈ Sp(B) | a ∈ F}

Lemma 8.19. Let (B,≤) be a Boolean algebra. Then we have

ext(a ∧ b) = ext(a) ∩ ext(b)
ext(a ∨ b) = ext(a) ∪ ext(b)
ext(¬a) = Sp(B) \ ext(a)
ext(>) = Sp(B)
ext(⊥) = ∅

Proof. Exercise!

Definition 8.20 (Spectrum of a Boolean Algebra (2/2)). Given a Boolean algebra B,
we equip Sp(B) with the topology Ω(Sp(B)) induced by the base B := {ext(a) | a ∈ B}.
The space (Sp(B),Ω(Sp(B))) is the spectrum of B.

As expected, Sp(B) is always a Stone space.

Lemma 8.21. The spectrum of a Boolean algebra B is T0 and zero-dimensional.

It remains to show that Sp(B) is compact. For this, we rely on the Ultrafilter Lemma 8.16.

Proposition 8.22. The spectrum (Sp(B),Ω(Sp(B))) of a Boolean algebra B is com-
pact.

We can now state a simplified version of Stone’s Representation Theorem. We refer
to [Joh82, Cor. II.4.4] for the full statement of Stone’s Representation Theorem.

Theorem 8.23. If (X,Ω) is a Stone space, then the following function is a bijection:

η : X −→ Sp(KΩ)
x 7−→ {U ∈ KΩ | x ∈ U}

8.1.4 Proof of the Ultrafilter Lemma 8.16

The Ultrafilter Lemma 8.16 follows from a formulation of the Axiom of Choice known
as Zorn’s Lemma. A chain in a partial order (L,≤) is a set C ⊆ L such that for all
a, b ∈ C, we have either a ≤ b or b ≤ a. Zorn’s Lemma is equivalent to the Axiom of
Choice.

Lemma 8.24 (Zorn’s Lemma). Let (L,≤) be a partial order. If every chain in L has
an upper bound in L, then L has a maximal element (i.e. some a ∈ L such that b ≤ a
whenever a ≤ b).

58

8 Toward Stone Duality

A filter F on a lattice (L,≤) is proper if ⊥ /∈ F . Note that if F ⊆ L has the finite
intersection property, then

Filt(F) := {a ∈ L | a ≥
∧
S for some finite S ⊆ F }

is a proper filter.

Proof of the Ultrafilter Lemma 8.16.

Proof. Exercise!

8.2 Lattices and Boolean Algebras

In this Section, we discuss an algebraic presentation of (semi)lattices, distributive lattices
and Boolean algebras, which is mostly based on [Joh82, §I.1]. Most of the material
presented here can also be found in [DP02], but is more scattered in that source.

8.2.1 Semilattices

A lattice is a partial order (L,≤), which, similarly to a complete lattice, has joins and
meets. But in contrast with complete lattices, only finite joins and meets are required
to exists in a lattice. This obviously amounts to ask for binary joins and meets as well
as for a least and a greatest element. As a consequence, and again in contrast with
complete lattices, we must assume joins and meets separately. This leads to the notions
of meet and join semilattices.

Definition 8.25 (Semilattices).

(1) A meet semilattice is a partial order having all finite meets (i.e. greatest lower
bounds ∧,>).

(2) A join semilattice is a partial order having all finite joins (i.e. least upper bounds
∨,⊥).

Example 8.26. Given a set X, (P(X),⊆) is a meet semilattice (with meets given by
intersections) and a join semilattice (with joins given by unions).

Example 8.27. Given a topological space (X,Ω), (Ω,⊆) is a meet semilattice (with
meets given by intersections) and a join semilattice (with joins given by unions).

A meet semilattice can equivalently be defined as a partial order (L,≤) equipped with
binary meets ∧ : L× L→ L and a greatest element > ∈ L. Similarly, a join semilattice
is a partial order (L,≤) equipped with binary joins ∨ : L× L → L and a least element
⊥ ∈ L. In each case, the order ≤ can be recovered from equational axioms on (L,∧,>)
and (L,∨,⊥).

Definition 8.28.

59

8 Toward Stone Duality

(1) A monoid is a set A equipped with a binary operation ~ : A×A→ A and a constant
I ∈ A such that for all a, b, c ∈ A we have

a~ (b~ c) = (a~ b)~ c a~ I = a I~ a = a

(2) A commutative monoid is a monoid (A,~, I) such that for all a, b ∈ A we have

a~ b = b~ a

(3) An element a ∈ A of a monoid (A,~, I) is idempotent if

a~ a = a

Lemma 8.29.

(1) Let (L,≤) be a meet semilattice. Then (L,∧,>) is a commutative monoid in which
every element is idempotent. Moreover, we have a ≤ b iff a = a ∧ b.

(2) Let (L,≤) be a join semilattice. Then (L,∨,⊥) is a commutative monoid in which
every element is idempotent. Moreover, we have a ≤ b iff a ∨ b = b.

Proof. Exercise!

Conversely,

Lemma 8.30.

(1) Given a commutative monoid (L,∧,>) in which every element is idempotent, let
a ≤∧ b iff a = a ∧ b. Then (L,≤∧) is a meet semilattice with binary meets given by
∧ and with greatest element >.

(2) Given a commutative monoid (L,∨,⊥) in which every element is idempotent, let
a ≤∨ b iff a ∨ b = b. Then (L,≤∨) is a join semilattice with binary joins given by ∨
and with least element ⊥.

Proof. Exercise!

Corollary 8.31. Let (L,≤) be a partial order.

(1) The following are equivalent:

(i) (L,≤) is a meet semilattice.

(ii) L is equipped with the structure (L,∧,>) of a commutative monoid in which
every element is idempotent and such that a ≤ b iff a = a ∧ b.

Moreover, if either of the above conditions holds, the binary meets of (L,≤) are
given by ∧ and > is the greatest element of L.

(2) The following are equivalent:

60

8 Toward Stone Duality

(i) (L,≤) is a join semilattice.

(ii) L is equipped with the structure (L,∨,⊥) of a commutative monoid in which
every element is idempotent and such that a ≤ b iff a ∨ b = b.

Moreover, if either of the above conditions holds, the binary joins of (L,≤) are given
by ∨ and ⊥ is the least element of L.

Example 8.32. Consider the partial order (L(L),≤).

(1) (L(L),≤) is a meet semilattice with greatest element > and with binary meets given
by

(−) ∧ (−) : L(L)× L(L) −→ L(L)
(ϕ,ψ) −→ ϕ ∧ ψ

(2) (L(L),≤) is a join semilattice with least element ⊥ and with binary joins given by

(−) ∨ (−) : L(L)× L(L) −→ L(L)
(ϕ,ψ) −→ ϕ ∨ ψ

Proof. Exercise!

Definition 8.33 (Semilattice Morphism). Let (L,≤) and (L′,≤′) be partial orders and
let f : L→ L′ be a function.

(1) If (L,≤) and (L′,≤′) are meet semilattices, then f is a map of meet semilattices
if it preserves finite meets, i.e. if for all finite S ⊆ L we have

f(
∧
S) =

∧′{f(s) | s ∈ S}

(2) If (L,≤) and (L′,≤′) are join semilattices, then f is a map of join semilattices
if it preserves finite joins, i.e. if for all finite S ⊆ L we have

f(
∨
S) =

∨′{f(s) | s ∈ S}

Note that it follows from Lem. 8.29 that a map of semilattices is automatically monotone.
Moreover, if follows from Lem. 8.29 and Lem. 8.30 that f : L → L′ is a map of meet
(resp. join) semilattices iff f(>) = >′ and f(a ∧ b) = f(a) ∧′ f(b) (resp. f(⊥) = ⊥′ and
f(a ∨ b) = f(a) ∨′ f(b)).

Example 8.34. Given sets X and Y , each function f : X → Y induces a map of join
and meet semilattices f• : (P(Y),⊆)→ (P(X),⊆) (see §6.1).

Example 8.35. Given topological spaces (X,ΩX) and (Y,ΩY), each continuous func-
tion f : X → Y (Def. 6.2) induces a map of join and meet semilattices f• : (ΩY,⊆) →
(ΩX,⊆).

Example 8.36. Consider the partial order (L(LTL),≤).

61

8 Toward Stone Duality

(1) The function
2 : L(LTL) −→ L(LTL)

ϕ 7−→ 2ϕ

is a map of meet semilattices.

(2) The function
3 : L(LTL) −→ L(LTL)

ϕ 7−→ 3ϕ

is a map of join semilattices.

Proof. Exercise!

The following is a general algebraic property, which leads to the usual notion of iso-
morphic algebra (see e.g. [BS81, §I.2 & §II.2] and also [DP02, §2.16 & §2.17]).

Lemma 8.37. Given meet (resp. join) semilattices L, L′ and a bijective meet (resp.
join) semilattice morphism f : L → L′, the inverse of f is map of meet (resp. join)
semilattices from L′ to L.

Proof. Exercise!

Definition 8.38 (Semilattice Isomorphism). A map of meet (resp. join) semilattices
f : L→ L′ is an isomorphism if f is a bijection.

8.2.2 Lattices

Definition 8.39 (Lattice). A lattice is a partial order having all finite joins and all
finite meets.

Example 8.40. Given a set X, (P(X),⊆) is a lattice in which meets are given by
intersections and joins are given by unions.

Example 8.41. Given a topological space (X,Ω), (Ω,⊆) is a lattice in which meets are
given by intersections and joins are given by unions.

Of course, a finite join (resp. meet) semilattice has all joins (resp. all meets), and is thus
a (complete) lattice by Lem. 5.10. But this does not hold for infinite semilattices.

Example 8.42. Consider the partial order (L,v) where

L := N ∪ {α, β,>}

and where v is the reflexive-transitive closure of @, where

a @ b iff


a < b in N, or
a ∈ N and b ∈ {α, β}, or
a ∈ {α, β} and b = >

Then (L,v) is a join semilattice but not a lattice.

62

8 Toward Stone Duality

Proof. Exercise!

Consider a lattice (L,≤) with finite meets given by (∧,>) and finite joins given by
(∨,⊥). Then (L,≤,∧,>) and (L,≤,∨,⊥) are resp. a meet and a join semilattice. Hence
the partial orders ≤∧ and ≤∨ of Lem. 8.30 coincide since by Lem. 8.29 we have

a ≤ b iff a = a ∧ b iff b = a ∨ b

This gives a purely algebraic characterization of lattices.

Lemma 8.43. Consider a set L equipped with two binary operations ∧,∨ : L× L → L
and two constants >,⊥ ∈ L. Assume that (L,∧,>) and (L,∨,⊥) are commutative
monoids in which every element is idempotent. Then the following are equivalent:

(i) The partial order ≤∨ induced by (L,∨,⊥) coincides with the partial order ≤∧ in-
duced by (L,∧,>).

(ii) (L,∨,∧,⊥,>) satisfies the two following absorptive laws:

a ∨ (a ∧ b) = a
a ∧ (a ∨ b) = a

Proof. Exercise!

As a consequence, if (L,∨,∧,⊥,>) satisfies either of the equivalent conditions of Lem. 8.43,
then, for ≤=≤∧=≤∨, (L,≤) is a lattice with finite meets given by (∧,>) and with finite
joins given by (∨,⊥).

Example 8.44. The partial order (L(L),≤) is a lattice.

Proof. Exercise!

Definition 8.45 (Lattice (Iso)Morphism). Given lattices (L,≤) and (L′,≤′), a function
f : L → L′ is a map of lattices if f is both a map of meet and join semilattices from
(L,≤) to (L′,≤′). If moreover f is a bijection then we say that f is an isomorphism
of lattices.

Remark 8.46. It directly follows from Lem. 8.37 that f : L→ L′ is an isomorphism of
lattices if and only if there is a lattice morphism g : L→ L′ such that

g(f(a)) = a and f(g(a′)) = a′ (for all a ∈ L and all a′ ∈ L′)

Example 8.47. Given a function f : X → Y , the function f• : (P(Y),⊆)→ (P(X),⊆)
of §6.1 is a lattice morphism.

Example 8.48. Given a continuous function f : (X,ΩX) → (Y,ΩY) (Def. 6.2), the
function f• : (ΩY,⊆)→ (ΩX,⊆) is a lattice morphism.

Example 8.49. The function

© : L(L) −→ L(L)
ϕ 7−→ ©ϕ

is a lattice morphism.

Proof. Exercise!

63

8 Toward Stone Duality

8.2.3 Distributive Lattices

Lemma 8.50. In a lattice (L,∨,∧,⊥,>), the following two distributive laws are
equivalent:

∀a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
∀a, b, c ∈ L, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Proof. Exercise!

Definition 8.51 (Distributive Lattice). A lattice is distributive if it satisfies either of
the distributive laws of Lem. 8.50.

Example 8.52. Given a set X, (P(X),⊆) is a distributive lattice.

Example 8.53. Given a topological space (X,Ω), (Ω,⊆) is a distributive lattice.

Lemma 8.54. The partial order (L(L),≤) is a distributive lattice.

Proof. Exercise!

Definition 8.55 (Distributive Lattice (Iso)Morphism). Given distributive lattices (L,≤
), (L′,≤′), a function f : L → L′ is a map of distributive lattices if f is a map of
lattices from (L,≤) to (L′,≤′). If moreover f is a bijection then we say that f is an
isomorphism of distributive lattices.

Example 8.56. Given a function f : X → Y , the function f• : (P(Y),⊆)→ (P(X),⊆)
of §6.1 is a morphism of distributive lattices.

Example 8.57. Given a continuous function f : (X,ΩX) → (Y,ΩY) (Def. 6.2), the
function f• : (ΩY,⊆)→ (ΩX,⊆) is a morphism of distributive lattices.

Example 8.58. The function © : L(L) → L(L) of Ex. 8.49 is a map of distributive
lattices.

Definition 8.59. Let (L,∨,∧,⊥,>) be a lattice. Given a ∈ L, we say that c ∈ L is a
complement of a whenever both a ∨ c = > and a ∧ c = ⊥ hold.

Lemma 8.60. If (L,≤) is a distributive lattice, then a ∈ L has at most one complement.

Proof. Exercise!

8.2.4 Boolean Algebras

Definition 8.61 (Boolean Algebra). A Boolean algebra is a distributive lattice in
which every element b has a (necessarily unique) complement ¬b.

Example 8.62. Given a set X, (P(X),⊆) is a Boolean algebra.

As expected, the clopens of a topological space (X,Ω) form a Boolean algebra. This
was the content of Lem. 6.5. We reformulate it in Ex. 8.68 below, using a proper notion
of “sub-Boolean algebra”, which essentially corresponds to the usual algebraic notion of
“sub-algebra” (see e.g. [BS81, Def. 2.2]).

64

8 Toward Stone Duality

Example 8.63. The partial order (L(L),≤) is a Boolean algebra.

Lemma 8.64 (De Morgan Laws). Every Boolean algebra (B,∨,∧,⊥,>) satisfies the
following De Morgan Laws:

a ∧ b = ¬(¬a ∨ ¬b) a ∨ b = ¬(¬a ∧ ¬b) a = ¬¬a

Proof. Exercise!

It would be natural to ask morphisms of Boolean algebra to preserve all the structure
(finite meets, joins and complements). But since complements are uniquely determined
by finite meets and joins, it they are preserved by lattice morphisms.

Definition 8.65 (Boolean Algebra (Iso)Morphism). Given Boolean algebras (B,≤) and
(B′,≤′), a function f : B → B′ is a map of Boolean algebras if f is a map of
lattices from (B,≤) to (B′,≤′). If moreover f is a bijection then we say that f is an
isomorphism of Boolean algebras.

Lemma 8.66. If f is a map of Boolean algebras from (B,≤) to (B′,≤′) then f preserves
complements.

Proof. Exercise!

We can now give better statements to Lem. 6.1 and Lem. 6.5 of §6.1.

Example 8.67 (Lemma 6.1). Given a function f : X → Y , its inverse image f• :
(P(Y),⊆)→ (P(X),⊆) is a morphism of Boolean algebras.

Given Boolean algebras B and B′, we say that B is a sub-Boolean algebra of B′ if
there is an injective morphism of Boolean algebras f : B → B′. This slightly generalizes
the usual algebraic notion (see e.g. [BS81, Def. 2.2]).

Example 8.68. Let (X,Ω) be a topological space.

(1) The clopens of X (ordered by inclusion) form a sub-Boolean algebra of (P(X),⊆)
(Lem. 6.5).

(2) In particular, if (X,Ω) is compact Hausdorff, then it follows from Lem. 6.10 and
Prop. 6.20 that (KΩ,⊆) is a sub-Boolean algebra of (P(X),⊆).

Example 8.69 (Compact-Open Sets of ω-Words). Recall from Lem. 6.10 and Prop. 6.20
that KΩ((2AP)ω) coincides with the set of clopen subsets of (2AP)ω. Hence KΩ((2AP)ω)
is a sub-Boolean algebra of P((2AP)ω).

Moreover, it follows from Prop. 6.12 and Prop. 6.15 that

J−K : L(LML) −→ KΩ((2AP)ω)
ϕ 7−→ JϕK

is bijection. It is easy to see that J−K is actually an isomorphism of Boolean algebras.

65

8 Toward Stone Duality

8.3 Representation of Boolean Algebras

We already know that L(LML) is isomorphic a sub-Boolean algebra of sets, namely as a
sub-Boolean algebra of P((2AP)ω). As alluded to in the introduction of this Section 8,
the space (2AP)ω can be exactly described as a space of prime filter over L(LML). This
generalizes to any Stone space. We present some basic definitions and facts about filters
in §8.3.1 and then turn to the representation of Boolean algebras in §8.3.2.

8.3.1 Filters and Ultrafilters

Definition 8.70 (Filter on a Partial Order). Let (A,≤) be a partial order. Then F ⊆ A
is a filter if F is:

upward-closed: if a ∈ F and a ≤ b then b ∈ F , and

codirected: F is non-empty and for all a, b ∈ F there is some c ∈ F such that c ≤ a
and c ≤ b.

Lemma 8.71 (Filter on a Meet Semilattice). Let (L,∧,>) be a meet semilattice. Then
F ⊆ L is a filter iff

(i) F is upward-closed, and

(ii) > ∈ F , and

(iii) a ∧ b ∈ F whenever a ∈ F and b ∈ F .

The notion of prime filter is standard, see e.g. [Joh82, §I.2.1 & I.2.2] or [DP02, Def.
10.7]. Note that [AC98, Def. 10.1.4] uses the terminology “coprime” filter. We stick to
the terminology of [DP02, Joh82].

Definition 8.72 (Prime Filter). Let (L,∨,⊥) be a join semilattice. A filter F on (L,≤)
is prime if

(i) ⊥ /∈ F , and

(ii) if a ∨ b ∈ F then either a ∈ F or b ∈ F .

In other words a filter F on a lattice L is prime iff for every finite S ⊆ L such that∨
S ∈ F , there is some s ∈ S such that s ∈ F .
A filter F on a lattice (L,≤) is proper if ⊥ /∈ F .

Definition 8.73 (Ultrafilter). An ultrafilter F on a lattice L is a maximal proper filter,
in the sense that for any proper filter H on L such that F ⊆ H, we have H = F .

Definition 8.74 (Finite Intersection Property). Let (L,≤) be a lattice. A subset F ⊆ L
is said to have the finite intersection property if

∧
S 6= ⊥ for all finite S ⊆ F .

66

8 Toward Stone Duality

Note that if F ⊆ L has the finite intersection property, then

Filt(F) := {a ∈ L | a ≥
∧
S for some finite S ⊆ F }

is a proper filter containing F .
The following is [DP02, Thm. 10.11].

Lemma 8.75. Let F be a filter on a distributive lattice. If F is an ultrafilter, then F
is prime.

Proof. Exercise!

In the case of Boolean algebras, we have the following neat characterization of ultrafilters
(see e.g. [DP02, Thm. 10.12]).

Proposition 8.76. Let (B,≤) be a Boolean algebra and let F ⊆ B be a filter. The
following are equivalent:

(i) F is an ultrafilter.

(ii) F is prime.

(iii) for each a ∈ B, we have (¬a ∈ F iff a /∈ F).

Proof. Exercise!

8.3.2 The Spectrum of a Boolean Algebra

Definition 8.77 (Spectrum of a Boolean Algebra (1/2)). Given a Boolean algebra B,
we let Sp(B) be the set of prime filters on B.

Definition 8.78. Given a Boolean algebra B and a ∈ B we let

ext(a) := {F ∈ Sp(B) | a ∈ F}

Lemma 8.79. Let (B,≤) be a Boolean algebra. Then we have

ext(a ∧ b) = ext(a) ∩ ext(b)
ext(a ∨ b) = ext(a) ∪ ext(b)
ext(¬a) = Sp(B) \ ext(a)
ext(>) = Sp(B)
ext(⊥) = ∅

Proof. Exercise!

Definition 8.80 (Spectrum of a Boolean Algebra (2/2)). Given a Boolean algebra B,
we equip Sp(B) with the topology Ω(Sp(B)) induced by the base B := {ext(a) | a ∈ B}.
The space (Sp(B),Ω(Sp(B))) is the spectrum of B.

67

8 Toward Stone Duality

It follows from Lem. 8.79 that B is a sub-Boolean algebra of P(Sp(B)), and that B
is isomorphic to B. Moreover, since for each U ∈ B we have Sp(B) \ U ∈ B, the space
(Sp(B),Ω(Sp(B))) has a basis of clopen sets.

As expected, Sp(B) is always a Stone space.

Lemma 8.81. The spectrum (Sp(B),Ω(Sp(B))) of a Boolean algebra B is T0 and zero-
dimensional.

Proof. Exercise!

It remains to show that Sp(B) is compact. For this, we rely on the following, sometimes
referred to as the ultrafilter lemma.

Lemma 8.82 (Ultrafilter Lemma). Let (L,≤) be a lattice. If F ⊆ L has the finite
intersection property, then F ⊆ F for some ultrafilter F on L.

The Ultrafilter Lemma 8.82 is discussed in §8.3.3 as a consequence of Zorn’s Lemma (an
equivalent formulation of the Axiom of Choice).

Lemma 8.83. The spectrum (Sp(B),Ω(Sp(B))) of a Boolean algebra B is compact.

Proof. Exercise!

We now state the simplified version of Stone’s Representation Theorem alluded to in
the introduction of this Section 8. We refer to [Joh82, Cor. II.4.4] for the full statement
of Stone’s Representation Theorem. Recall that it follows from Lem. 6.10, Prop. 6.20 and
Lem. 6.5 that for a Stone space (X,Ω), the set KΩ of compacts opens is a sub-Boolean
algebra of P(X).

Theorem 8.84 (Stone).

(1) Given a Boolean algebra B, the space (Sp(B),Ω(Sp(B)) is a Stone space, and B is
isomorphic to KΩ(Sp(B)) (as Boolean algebras).

(2) Each Stone space (X,Ω) is homeomorphic to (Sp(KΩ),Ω(Sp(KΩ))).

Corollary 8.85. (2AP)ω is homeomorphic to Sp(L(LML)).

8.3.3 On the Proof of The Ultrafilter Lemma 8.82

The Ultrafilter Lemma 8.82 follows from a formulation of the Axiom of Choice known
as Zorn’s Lemma. We consider Zorn’s Lemma in the form of [DP02, (ZL), §10.2]. A
chain (see e.g. [DP02, §1.3]) in a partial order (L,≤) is a set C ⊆ L such that for all
a, b ∈ C, we have a ≤ b or b ≤ a.

Lemma 8.86 (Zorn’s Lemma). Let (L,≤) be a partial order. If every chain in L has
an upper bound in L, then L has a maximal element (i.e. some a ∈ L such that b ≤ a
whenever a ≤ b).

Zorn’s Lemma is equivalent to the Axiom of Choice (see e.g. [DP02, Thm. 10.3]).

68

9 Bisimulation

Proof of the Ultrafilter Lemma 8.82.

Proof. Exercise!

9 Bisimulation

We essentially follow here [BK08, §7.1], with a few slight changes in notation.

9.1 Bisimulation (with Actions)

We begin with the usual notion.

Definition 9.1 (Bisimulation). Consider t.s. TS 0 and TS 1 with TS i = (Si,Act,→i

, Ii,AP, Li). A bisimulation between TS 0 and TS 1 is a relation R ⊆ S0×S1 such that
for all (s0, s1) ∈ R we have

(i) L0(s0) = L1(s1), and

(ii) for each i ∈ {0, 1} and each α ∈ Act, if si
α→i s

′
i in TS i then there is s′1−i in TS 1−i

such that s1−i
α→1−i s

′
1−i and (s′0, s

′
1) ∈ R.

Note that in Def. 9.1, TS 0 and TS 1 are required to be over the same sets Act and AP
of actions and atomic propositions.

Definition 9.2. We write TS 0 ≈ TS 1 if there is a bisimulation R between TS 0 and
TS 1 such that moreover

• for each i ∈ {0, 1}, for all si ∈ Ii there is s1−i ∈ I1−i such that (s0, s1) ∈ R.

Definition 9.2 corresponds to [BK08, Def. 7.1] (but with a slightly different notation).

Definition 9.3 (Bisimilarity). Consider transition systems TS 0 and TS 1 as in Def. 9.1.
We say that s0 ∈ S0 and s1 ∈ S1 are bisimilar (notation s0 ∼ s1) if there is a bisim-
ulation R ⊆ S0 × S1 such that (s0, s1) ∈ R. The relation ∼ is called the bisimilarity
relation over TS 0 and TS 1.

We now turn to the basic properties of bisimulations.

Lemma 9.4.

(1) Given a transition system TS, we have s ∼ s for each state s of TS.

(2) Given transition systems TS 0 and TS 1, if R is a bisimulation between TS 0 and
TS 1, then R−1 = {(s1, s0) | (s0, s1) ∈ R} is a bisimulation between TS 1 and TS 0.

(3) Given transitions systems TS 0, TS 1 and TS 2, if R is a bisimulation between TS 0

and TS 1 and T is a bisimulation between TS 1 and TS 2, then T ◦R is a bisimulation
between TS 0 and TS 2, where

T ◦ R = {(s0, s2) | ∃s1, (s0, s1) ∈ R and (s1, s2) ∈ T }

69

9 Bisimulation

Proof.

(1) Because for TS with state set S, the equality relation {(s, s) | s ∈ S} is a bisimulation
between TS and itself.

(2) Trivial from the definition.

(3) Assume (s, u) ∈ T ◦R with (s, t) ∈ R and (t, u) ∈ T . We clearly have L0(s) = L2(u).
Assume now s

α→ s′. Then there is t′
α← t with (s′, t′) ∈ R, and there is u′

α← u with
(t′, u′) ∈ T . It thus follows that (s′, u′) ∈ T ◦ R.

Lemma 9.5.

(1) Given TS 0 and TS 1, the bisimilarity relation ∼ over TS 0 and TS 1 is a bisimulation
between TS 0 and TS 1.

(2) Given TS 0 and TS 1, the bisimilarity relation ∼ is the coarsest bisimulation between
TS 0 and TS 1 (i.e. given any bisimulation R between TS 0 and TS 1, we have R ⊆ ∼).

(3) For every TS, the bisimilarity relation ∼ over TS and itself is an equivalence rela-
tion.

Proof.

(1) If s0 ∼ s1 with (s0, s1) ∈ R, we indeed have L0(s0) = L1(s1). Moreover if s′0
α← s0,

then since R is a bisimulation we have s′1
α← s1 with (s′0, s

′
1) ∈ R so that s′0 ∼ s′1.

(2) This immediately follows from the definition of ∼.

(3) Reflexivity follows from the fact that equality is a bisimulation (Lem. 9.4.(1)).

As for transitivity, assume s ∼ t with (s, t) ∈ R and t ∼ u with (t, u) ∈ T , so that
(s, u) ∈ T ◦R. We know from Lem. 9.4.(3) that T ◦R is a bisimulation, from which
it follows that s is indeed bisimilar with u.

For symmetry the reasoning is similar, using Lem. 9.4.(2) instead of Lem. 9.4.(3).

9.2 Bisimilarity and Trace Equivalence

The following is an immediate consequence of the definition.

Proposition 9.6 ([BK08, Thm. 7.6]). Given TS 0 and TS 1 over both over AP and Act,
if TS 0 ≈ TS 1 then Trω(TS 0) = Trω(TS 1).

Corollary 9.7. Given TS 0 and TS 1 over both over AP and Act, if TS 0 ≈ TS 1 then
for all LT property P ⊆ (2AP)ω, we have

TS 0 |≈ P if and only if TS 1 |≈ P

In particular, if TS 0 ≈ TS 1, then for every LTL-formula ϕ we have

TS 0 |≈ ϕ if and only if TS 1 |≈ ϕ

70

10 On Modal Logics of Transition Systems

9.3 The Bisimulation Quotient

Given a transition system TS , let TS∼ be the transition system with

• as states the equivalence classes [s]∼ of ∼,

• as initial states the equivalence classes of initial states of TS ,

• as transitions, we let [s]∼
α→ [s′]∼ if s

α→ s′,

• as labeling, note that if s ∼ t then L(s) = L(t), so that we can put L([s]∼) := L(s).

Lemma 9.8. TS ≈ TS /∼.

Proof. Because R := {(s, [s]∼) | s ∈ S} is a bisimulation in the sense of Def. 9.2.
Indeed, s and [s]∼ have the same labels and moreover given s

α→ s′ we still have
(s′, [s′]∼) ∈ R. On the other hand, if s ∼ t α→ t′, then we conclude by the fact that ∼ is
a bisimulation.

10 On Modal Logics of Transition Systems

In this Section, we study a modal logic on transition systems (in the sense of §2
and [BK08, Def. 2.1]) which properly deals with their transition structure. We consider
here the Hennessy-Milner Logic (HML). We loosely follow [Sti11] for the presentation
of HML and [BdRV02] for the general theory of modal logic.

10.1 Kripke Frames and Kripke Models

The tradition of modal logic (in the sense of e.g. [BdRV02, Chap. 1]) leads us to distin-
guish the following structure in a transition system TS = (S,Act,→, I,AP, L):

• a transition structure given by (S, (
α→)α∈Act),

• a logical (model) structure given by the state labelling L : S → P(AP),

• a “pointed” structure given by the initial states I ⊆ S.

We use the following adaptation of the notions of [BdRV02, Chap. 1].

Definition 10.1 (Kripke Frame and Model). Fix Act and AP.

• A Kripke frame over Act is given by a set of states S together with a relation
→ ⊆ S ×Act× S.

• A Kripke model over Act and AP is given by a Kripke frame (S,Act,→) together
with a state labelling L : S → P(AP).

A transition system (in the sense of §2) is thus a Kripke model (S,Act,→,AP, L)
equipped with a set of initial states I ⊆ S.

71

10 On Modal Logics of Transition Systems

10.2 Syntax and Semantics of HML

Fix a set AP of atomic propositions and a set Act of actions. The formulae of HML
are given by the following grammar:

ϕ,ψ ::= > | ⊥ | a (where a ∈ AP)
| ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ
| [α]ϕ | 〈α〉ϕ (where α ∈ Act)

Notation 10.2. Other propositional connectives are defined as usual (see also Nota-
tion 7.2, §7.1.1):

ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

Consider a Kripke model M = (S,Act,→,AP, L). The interpretation JϕK ∈ P(S) of an
HML-formula ϕ is defined by induction on ϕ as follows:

JaK := {s ∈ S | a ∈ L(s)}
J>K := S
J⊥K := ∅

Jϕ ∧ ψK := JϕK ∩ JψK
Jϕ ∨ ψK := JϕK ∪ JψK

J¬ϕK := S \ JϕK
J[α]ϕK :=

{
s ∈ S | ∀s′ ∈ S, if s

α→ s′ then s′ ∈ JϕK
}

J〈α〉ϕK :=
{
s ∈ S | ∃s′ ∈ S, s α→ s′ and s′ ∈ JϕK

}
The following usual notions are presented e.g. in [BdRV02, §1.3] (with slight variations
in notation).

Definition 10.3 (Modal Satisfaction). Consider a Kripke model M = (S,Act,→,AP, L)
and an HML-formula ϕ.

(1) We say that a state s ∈ S satisfies ϕ (notation s
 ϕ) if s ∈ JϕK ([BdRV02, Def.
1.20]).

(2) We say that M satisfies ϕ (notation M |= ϕ) if s ∈ JϕK for all s ∈ S ([BdRV02,
Def. 1.21]).

We say that ϕ is valid (notation |= ϕ) if M |= ϕ for every Kripke model M (over Act
and AP).

Remark 10.4. We shall be mostly concerned with the local satisfaction relation
. The
notion of satisfaction in a given Kripke model (M |= ϕ) only interests us as a means to
define logical validity |= ϕ. As a consequence, we shall not bother in seriously considering
the possible notion for transition systems

TS |=ı ϕ iff ∀s ∈ I, s
 ϕ

since it would induce the same notion of logical validity (by changing initial states of
t.s.’s).

72

10 On Modal Logics of Transition Systems

Remark 10.5. Similarly as with LML (Rem. 7.6, §7.1.1) and LTL (§7.3.1), we can give
an inductive characterization of the relation s
 ϕ (s forces ϕ):

s
 a iff a ∈ L(s)
s
 >
s 6
 ⊥
s
 ϕ ∧ ψ iff s
 ϕ and s
 ψ
s
 ϕ ∨ ψ iff s
 ϕ or s
 ψ
s
 ¬ϕ iff s 6
 ϕ
s
 [α]ϕ iff for all s′ ∈ S such that s

α→ s′, we have s′
 ϕ
s
 〈α〉ϕ iff there is some s′ ∈ S such that s

α→ s′ and s′
 ϕ

Remark 10.6. One gets the usual basic modal logic by taking Act = 1 (see e.g. [BdRV02,
Def. 1.9]).

Example 10.7 (LML as an instance of HML). Fix Act = {•}. We define the following
Kripke model M((2AP)ω) on streams:

M
((

2AP
)ω)

:=
((

2AP
)ω
, Act, →, AP, L

)
where

σ
•→ β iff β = σ�1

a ∈ L(σ) iff a ∈ σ(0)

Then for all HML-formula ϕ and each σ ∈ (2AP)ω, we have

σ
 〈•〉ϕ iff σ�1
 ϕ
iff σ
 [•]ϕ

Hence both modalities 〈•〉 and [•] collapse to the © modality of LML. It is then easy to
see that HML and LML have the same expressive power over M((2AP)ω).

Moreover, two streams σ, β ∈ (2AP)ω are bisimilar iff they are equal.

Proof. Indeed, if σ ∼ β, then by induction on n we have σ�n ∼ β�n for all n ∈ N. It
follows that σ(n) = β(n) for all n ∈ N, and thus that σ = β.

10.3 Logical Equivalence

We shall consider two notions of logical equivalence for HML. First, the logical equiv-
alence of formulae, similar to that of LML and LTL seen in §7. Second, the logical
equivalence of states of Kripke models.

10.3.1 Logical Equivalence on Formulae

Similarly as with LML and LTL, HML has a notion of logical equivalence on formulae.

Definition 10.8 (Logical Equivalence on Formulae). Two HML-formulae ϕ and ψ are
logically equivalent (notation ϕ ≡ ψ), if |= ϕ↔ ψ.

73

10 On Modal Logics of Transition Systems

Hence ϕ ≡ ψ iff M |= ϕ ↔ ψ for every Kripke model M . But this is equivalent to
JϕK = JψK within every Kripke model M .

Lemma 10.9. We have ϕ ≡ ψ iff for every Kripke model M = (S,Act,→,AP, L) and
all s ∈ S,

s
 ϕ iff s
 ψ

Proof. First show that the condition is necessary. Assume that ϕ ≡ ψ. Consider
M = (S,Act,→,AP, L) and s ∈ S. Since M |= ϕ ↔ ψ, we have s
 ϕ → ψ and
s
 ψ → ϕ. Hence s
 ψ whenever s
 ϕ and s
 ϕ whenever s
 ψ.

Conversely, if ϕ 6≡ ψ, then there is some M = (S,Act,→,AP, L) such that (say)
M 6|= ϕ→ ψ. Hence there is some s ∈ S such that s
 ϕ and s 6
 ψ.

Lemma 10.10. We have, for α ∈ Act,

〈α〉ϕ ≡ ¬[α]¬ϕ
[α]ϕ ≡ ¬〈α〉¬ϕ

as well as
〈α〉(ϕ ∨ ψ) ≡ 〈α〉ϕ ∨ 〈α〉ψ 〈α〉⊥ ≡ ⊥
[α](ϕ ∧ ψ) ≡ [α]ϕ ∧ [α]ψ [α]> ≡ >

10.3.2 Logical Equivalence on States and Bisimilarity

In HML, it is pertinent to consider a notion of logical equivalence on states of Kripke
models.

Definition 10.11. Consider M0 and M1 with Mi = (Si,Act,→i,AP, Li). We say that
s0 ∈ S0 and s1 ∈ S1 are logically equivalent (notation s0 ≡ s1) if for all HML-formula
ϕ we have

s0
 ϕ iff s1
 ϕ

It is expected that for a modal logic, bisimilarity of states implies logical equivalence.

Theorem 10.12 ([BdRV02, Thm. 2.20 p. 67]). If s0 ∼ s1, then s0 ≡ s1.

Proof. Exercise!

10.4 The Hennessy-Milner Property

We shall look for (partial) converses to Thm. 10.12, i.e. for sufficient conditions on a
class M of Kripke models (over fixed Act and AP) such that given M0,M1 ∈ M and
s0 ∈ S0, s1 ∈ S1, we have

s0 ∼ s1 iff s0 ≡ s1

This property is called the Hennessy-Milner property for M (see e.g. [BdRV02, Def.
2.52 p. 92] or [Sti11]). As shown by Ex. 10.13 below, the class K of all Kripke models
(over fixed Act and AP) does not have the Hennessy-Milner property.

74

10 On Modal Logics of Transition Systems

Example 10.13 ([BdRV02, Ex. 2.23 & Fig. 2.5]). Assume Act = 1 and AP = {a}.
Consider the Kripke models

s0

~~ ��
• •

��

•

!!

· · ·

• •

!!
•

s1

~~ ��

// • // •

• •

��

•

!!

· · ·

• •

!!
•

(where all states have label a). Then we have s0 ≡ s1 but s0 6∼ s1.

Remark 10.14. Showing that s0 ≡ s1 in Ex. 10.13 can be done directly (see [BdRV02,
Ex. 2.23 & Fig. 2.5]). But it is convenient for such tasks to use appropriate tools
(e.g. [BdRV02, Prop. 2.31 & Lem. 2.33]) providing suitable induction principles on for-
mulae (actually quite similar to those for Prop. 7.26, namely variants of the Ehrenfeucht-
Fäıssé method, see e.g. [PP04, Chap. VIII]).

Note that the Hennessy-Milner property for a class M of Kripke models is equivalent to
the following condition:

• Given M0,M1 ∈ M, the logical equivalence relation on states ≡ ⊆ S0 × S1 is a
bisimulation.

It is well-known that the class of image finite Kripke models has the Hennessy-Milner
property. This is result is known as the Hennessy-Milner Theorem (see e.g. [BdRV02,
Thm. 2.24, p. 69] or [Sti11, Thm. 1.2.3 & Thm. 1.2.4]).

Definition 10.15 (Image Finite T.S.). We say that M is image finite if for every
s ∈ S and α ∈ Act, the set

Succα(s) := {s′ ∈ S | s α→ s′}

of α-successors of s is finite.

Proposition 10.16 (Hennessy-Milner Theorem). If M0 and M1 (both over AP and
Act) are image finite, then for all (s0, s1) ∈ S0 × S1 we have

s0 ∼ s1 iff s0 ≡ s1

We refer to e.g. [Sti11, Thm. 1.2.4] for a direct proof of Prop. 10.16. In §10.5 we prove
Prop. 10.16 using the model-theoretic notion of modal saturation. This notion paves
the way toward the main construction and result of this §10, namely that for each Kripke
model M there is a (modally saturated) Kripke model Uf(M) (called the ultrafilter
extension of M) and a function π : SM → SUf(M) such that

s0 ≡ s1 iff π(s0) ∼ π(s1)

75

10 On Modal Logics of Transition Systems

10.5 Modal Saturation

We follow [BdRV02, §2.5 p. 91].

Definition 10.17. Let M = (S,Act,→,AP, L).

(1) Given a set of states T ⊆ S, a set of formulae Φ is satisfiable in T if there is a
state s ∈ T such that s
 ϕ for all ϕ ∈ Φ.

(2) Given a set of states T ⊆ S, a set of formulae Φ is finitely satisfiable in T if
every finite subset of Φ is satisfiable in T .

(3) M is modally saturated if for every state s, every α ∈ Act, and every set of
formulae Φ, if Φ is finitely satisfiable in the set of α-successors of s, then Φ is
satisfiable in the set of α-successors of s.

Proposition 10.18. If M is image finite, then M is modally saturated.

Proof. Let α ∈ Act, s ∈ S and consider a set of formulae Φ. Assume that Φ is finitely
satisfiable in the set of α-successors of s. Assume toward a contradiction that for every α-
successor t of s, there is a formula ψt ∈ Φ such that t 6
 ψt. Let Ψ := {ψt | t ∈ Succα(s)}.
Since M is image finite, Ψ ⊆ Φ is finite and for all α-successor t of s, we have t 6
 ∧Ψ as
t 6
 ψt with ψt ∈ Ψ, a contradiction.

The following Prop. 10.19 and Cor. 10.20 are gathered in [BdRV02, Prop. 2.54, p. 93].

Proposition 10.19. If M0 and M1 are modally saturated, then ≡ is a bisimulation
between M0 and M1.

Proof. Assume s0 ≡ s1. Then we obviously have L0(s0) = L1(s1). Let now s′i
α← si

and let Φ be the set of formulae ϕ such that s′i
 ϕ. Hence si
 〈α〉(∧Ψ) for all finite
Ψ ⊆ Φ and s1−i ≡ si implies that s1−i
 〈α〉(∧Ψ) for all finite Ψ ⊆ Φ. In other words, Φ
is finitely satisfiable in the set of α-successors of s1−i. Since M1−i is modally-saturated,
it follows that there is some s′1−i

α← s1−i such that s′1−i
 ϕ for every ϕ ∈ Φ. Hence
s′1−i ≡ s′i.

Corollary 10.20. If M0 and M1 are modally saturated, then for every (s0, s1) ∈ S0×S1,
we have

s0 ∼ s1 iff s0 ≡ s1

Proposition 10.16 is a direct consequence of Prop. 10.18 and Cor. 10.20.

10.6 Boolean Algebras with Operators

Similarly as in Def. 8.4 (§8) we write L(HML) for the set of HML-formulae (over fixed
Act and AP) quotiented by the logical equivalence relation ≡ of Def. 10.8 (§10.2). Then
writing ϕ for [ϕ]≡ ∈ L(HML) (as in Notation 8.5), the relation

ϕ ≤ ψ := (ϕ→ ψ) ≡ >

76

10 On Modal Logics of Transition Systems

(see §8) is a partial order on L(HML), and moreover (L(HML),≤) is a Boolean algebra.
Similarly as in §8, for a Kripke model M = (S,Act,→,AP, L) the map

J−K : L(HML) −→ P(S)
ϕ 7−→ JϕK

is a morphism of Boolean algebras.
We shall now see an algebraic approach to HML via the notion of Boolean Algebra

with Operators (BAO). While this fits quite well in the general setting of Stone Duality
(see e.g. [BdRV02, Chap. 5]), we follow here a more naive approach.

Definition 10.21. Given a Kripke frame K = (S,Act,→) and α ∈ Act, define

J〈α〉K : P(S) −→ P(S)
A 7−→ {s ∈ S | ∃s′ ∈ Succα(s), s′ ∈ A}

J[α]K : P(S) −→ P(S)
A 7−→ {s ∈ S | ∀s′ ∈ Succα(s), s′ ∈ A}

In the case of a Kripke model M , we of course have

J〈α〉ϕK = J〈α〉K(JϕK)
J[α]ϕK = J[α]K(JϕK)

Moreover:

Lemma 10.22. Consider a Kripke frame K = (S,Act,→) and let α ∈ Act.

(1) The function J〈α〉K : P(S)→ P(S) is a map of join semilattices.

(2) The function J[α]K : P(S)→ P(S) is a map of meet semilattices.

Proof. Exercise!

Lemma 10.10 gives a similar situation for L(HML).

Lemma 10.23. Fix some α ∈ Act.

(1) The function
〈α〉 : L(HML) −→ L(HML)

ϕ 7−→ 〈α〉ϕ

is a map of join semilattices.

(2) The function
[α] : L(HML) −→ L(HML)

ϕ 7−→ [α]ϕ

is a map of meet semilattices.

Proof. Exercise!

77

10 On Modal Logics of Transition Systems

Of course, the maps J〈α〉K and J[α]K (as well as 〈α〉 and [α] over L(HML)) are interdefin-
able. Let us elaborate a bit on this.

Definition 10.24. Given Boolean algebras B, B′ and a function f : B → B′, the dual
of f is the function

f∂ : B −→ B′

b 7−→ ¬′f(¬b)

Lemma 10.25. Consider a Kripke frame K = (S,Act,→) and let α ∈ Act. Then

J[α]K = J〈α〉K∂
J〈α〉K = J[α]K∂

Proof. Exercise!

Lemma 10.26. Given α ∈ Act, in (L(HML),≤) we have

[α] = 〈α〉∂
〈α〉 = [α]∂

Proof. Exercise!

Lemma 10.27. Let B, B′ be Boolean algebras, and consider a function f : B → B′.

(1) We have f∂
∂

= f .

(2) If f is a map of join (resp. meet) semilattices, then f∂ is a map of meet (resp. join)
semilattices.

(3) If f is a map of lattices, then f∂ = f .

Proof. Exercise!

There are two equivalent presentations of Boolean Algebra with Operators (BAO) in
the literature. The first one consists of a Boolean algebra B together with maps of join
semilattices B → B. The second one consists of a Boolean algebra B together with
maps of meet semilattices B → B. These two notions are equivalent by Lem. 10.27. We
choose the first option as it is the one adopted in [BdRV02]. In the context of HML, this
leads to the following notion.

Definition 10.28 (Boolean Algebra with Operators). A Boolean algebra with op-
erators (BAO) B+ of type Act is a Boolean algebra B equipped with a family (fα)α∈Act

of join semilattice morphisms fα : B → B.

Example 10.29. L(HML)+ := (L(HML), (〈α〉)α∈Act) is a BAO of type Act.

Example 10.30. Given a Kripke frame K = (S,Act,→), K+ := (P(S), (J〈α〉K)α∈Act)
is a BAO of type Act.

78

10 On Modal Logics of Transition Systems

The crux of the algebraic approach to modal logic is that one can go the other way
around. The following is the adaptation of [BdRV02, Def. 5.40, §5.3] to HML.

Definition 10.31 (Ultrafilter Frames). Given a BAO B+ = (B, (fα)α∈Act), the ultra-
filter frame Uf(B) is defined as

Uf(B+) := (Sp(B), Act, →)

where:

• Sp(B) is the set of ultrafilters (or equivalently prime filters) over B (see §8.3.1),

• given F ,H ∈ Sp(B) and α ∈ Act, we have

F α→ H iff ∀b ∈ B, b ∈ H =⇒ fα(b) ∈ F

Lemma 10.32. Consider a BAO B+ = (B, (fα)α∈Act). In the ultrafilter frame Uf(B+),
given α ∈ Act and F ,H ∈ Sp(B) we have

F α→ H iff ∀b ∈ B, f∂α(b) ∈ F =⇒ b ∈ H

Proof. Assume first F α→ H and let b ∈ B such that b /∈ H. Then by Prop. 8.76 (§8.3.1),
we have ¬b ∈ H, so that fα(¬b) ∈ F . But then we cannot have f∂α(b) = ¬fα(¬b) ∈ F
since F is a prime filter.

Conversely, assume F 6 α→ H, so that we have b ∈ H and fα(b) /∈ F for some b ∈ B.
Since H is a prime filter, we cannot have ¬b ∈ H. We claim that f∂α(¬b) ∈ F . But we
have f∂α(¬b) = ¬fα(b), while ¬fα(b) ∈ F by Prop. 8.76 since fα(b) /∈ F .

We refer to e.g. [BdRV02] (and in particular to [BdRV02, Chap. 5]) for uses of this
construction (and in particular in the context of Stone duality). We shall just see in §10.7
how this construction, applied to the BAO (P(S), (J〈α〉K)α∈Act) of a Kripke model M =
(S,Act,→,AP, L), induces a Kripke model with the Hennessy-Milner property.

10.7 Ultrafilter Extensions of Kripke Models

The ultrafilter frame construction of Def. 10.31 turns a BAO into a frame. If one starts
from the BAO K+ induced by the frame structure K of a Kripke model M , we can extend
Uf(K+) to a Kripke model Uf(M), the ultrafilter extension of M , which is modally
saturated (and in particular satisfies the Hennessy-Milner property). We essentially
follow [BdRV02, §2.5].

We take the material of §8.3.1 for granted. We begin by specializing it to ultrafilters
over powerset algebras.

Definition 10.33. Let X be a set.

(1) A (proper) filter on X is a (proper) filter on (P(X),⊆).

79

10 On Modal Logics of Transition Systems

(2) An ultrafilter on X is an ultrafilter (or equivalently a prime filter) on (P(X),⊆).
We write Uf(X) for the set of ultrafilters on X.

Hence Uf(X) = Sp(P(X),⊆).

Lemma 10.34. Let X be a set. If G ⊆ P(X) has the finite intersection property, then

F :=
⋂
{E | E is a proper filter ⊇ G}

is a proper filter.

Note that if there is some G ⊆ P(X) with the finite intersection property, we necessarily
have X non empty, since otherwise the intersection of the empty family, which is the
top element of (P(X),⊆) (i.e. X), would be empty.

Proof. Let G ⊆ P(X) with the finite intersection property.

• First, F is non-empty as X belongs to every filter E, and in particular to every
proper filter E ⊇ G.

• If A ∈ F then A ∈ E for all filter E ⊇ G, so that if furthermore B ⊇ A we also
have B ∈ E for all filter E ⊇ G, and thus B ∈ F .

• Similarly, if A,B ∈ F , then for all filter E ⊇ G we have A,B ∈ E, hence A∩B ∈ E,
and thus A ∩B ∈ G.

• Assume ∅ ∈ F . If there exists a proper filter E ⊇ G, then ∅ ∈ E, a contradiction.
Hence we must show that G is included in some proper filter E. But we now from
§8.3.1 that Filt(G) is a proper filter containing G.

• We also trivially have X ∈ F .

Example 10.35.

(1) For each x ∈ X, the principal ultrafilter on x is the ultrafilter

π(x) := {A ∈ P(X) | x ∈ A}

(2) If X is a finite set, then the ultrafilters on X are exactly the principal filters on X.
In particular, Uf(X) is in bijection with X.

Proof. Exercise!

(3) It follows from the Ultrafilter Lemma 8.82 that every family G ⊆ P(X) with the
finite intersection property is contained in an ultrafilter.

(4) This in particular gives ultrafilters of co-finite sets (for X infinite), namely ultra-
filters F containing all A ⊆ X such that X \A is finite.

80

10 On Modal Logics of Transition Systems

We shall now use the ultrafilter extension of a Kripke model M in order to produce
modally saturated models. In the following, we assume that the labelings L : S → P(AP)
are described by their transpose V : AP→ P(S) (where s ∈ V (a) iff a ∈ L(s)).

Definition 10.36 (Ultrafilter Extension of a Kripke Model). Consider a Kripke model
M = (S,Act,→,AP, L). The ultrafilter extension of M is the Kripke model Uf(M)
over AP and Act with

• as state set the set Uf(S) of ultrafilters on S,

• as transition relation, F α→ H iff J〈α〉K(A) ∈ F whenever A ∈ H,

• as state labelling, the map taking a ∈ AP to the set of ultrafilters F such that
V (a) ∈ F ,

In the case of as t.s. TS = (S,Act,→, I,AP, L), Uf(TS) has underlying Kripke model
Uf(S,Act,→,AP, L) and initial states {π(s) | s ∈ I}.

Hence the Kripke frame part of Uf(M) is the ultrafilter frame Uf(S,Act,→) in the sense
of Def. 10.31. In particular, Lem. 10.32 specializes to the following.

Lemma 10.37. Consider a Kripke model M = (S,Act,→,AP, L). Then, in Uf(M) we
have

F α→ H iff ∀A ∈ P(S), J[α]K(A) ∈ F =⇒ A ∈ H

Proof. By Lem. 10.32 and Lem. 10.25.

Example 10.38. Consider a Kripke model M = (S,Act,→,AP, L) with finite set of
states S. It follows from Ex. 10.35.(2) that Uf(M) has a finite set of states Uf(S) ' S
(via π). Moreover:

• Given s ∈ S and a ∈ AP, we have a ∈ L(s) in M if and only if a ∈ L(π(s)) in
Uf(M).

Proof. Exercise!

• Given s, s′ ∈ S and α ∈ Act, we have s
α→ s′ in M if and only if π(s)

α→ π(s′) in
Uf(M).

Proof. Exercise!

Notation 10.39. In the following, given a transition system M and its ultrafilter ex-
tension Uf(M), with J−K we always refer to the semantics of HML in M rather than in
Uf(M).

81

10 On Modal Logics of Transition Systems

Recall the map ext of Def. 8.78 (§8.3.2). In the case of a Boolean algebra of the form
(P(X),⊆) for some set X, we have

ext : P(X) −→ P(Uf(X))
A 7−→ {F ∈ Uf(X) | A ∈ F}

In particular, given a Kripke model M with state set S, ext(JϕK) ∈ P(Uf(S)) for each
HML-formula ϕ.

Proposition 10.40. Let M = (S,Act,→,AP, L). Then, for all F ∈ Uf(S) and all
HML-formula ϕ, we have

F
 ϕ ⇐⇒ F ∈ ext(JϕK)

Proof. Note that if S is empty, then so is Uf(S). In the following, we assume that S is
not empty. The proof is by induction on ϕ.

Case of a (for a ∈ AP). By definition of Uf(M), we have F
 a iff V (a) ∈ F . But
V (a) = JaK.

Cases of ϕ ∧ ψ, ϕ ∨ ψ, >, ⊥ and ¬ϕ. By Lem. 8.79 (§8.3.2).

Cases of 〈α〉ϕ and [α]ϕ (for α ∈ Act). We only discuss 〈α〉ϕ. (Recall from Lem. 10.10
that [α]ϕ ≡ ¬〈α〉¬ϕ.)

First, if F
 〈α〉ϕ, then we have H
 ϕ for some H such that F α→ H. But then
JϕK ∈ H by induction hypothesis, so that J〈α〉ϕK = J〈α〉K(JϕK) ∈ F since F α→ H.

Conversely, assume J〈α〉ϕK = J〈α〉K(JϕK) ∈ F . We must show that F α→ H for
some H ∈ ext(JϕK). To this end we appeal to the Ultrafilter Lemma 8.82 (§8.3).
Let H ⊆ P(S) be the collection of all sets of the form

A ∩ JϕK (for J[α]K(A) ∈ F)

First note that H is closed under binary intersections. Indeed, given A0, A1 s.t.
Ai ∩ JϕK ∈ H for i ∈ {0, 1}, we have J[α]K(Ai) ∈ F for i ∈ {0, 1}. Hence

J[α]K(A0) ∩ J[α]K(A1) = J[α]K(A0 ∩A1) ∈ F

so that (A0 ∩ JϕK) ∩ (A1 ∩ JϕK) = (A0 ∩A1) ∩ JϕK ∈ H.

Moreover, H does not contain the emptyset. Indeed, given A ∩ JϕK ∈ H, since
J[α]K(A) ∈ F and J〈α〉ϕK ∈ F , we have J[α]K(A) ∩ J〈α〉ϕK 6= ∅. Hence there is
s ∈ J[α]K(A) such that s′ ∈ JϕK for some s′ ∈ Succα(s). But s ∈ J[α](A)K implies
s′ ∈ A and A ∩ JϕK is not empty.

Hence H is closed under binary intersections and does not contain the empty
set. It follows that finite non-empty intersections of elements of H are non-
empty. Furthermore, the empty intersection in (P(S),⊆) is S, and since S is not

82

10 On Modal Logics of Transition Systems

empty, it follows that H satisfies the finite intersection property. By the Ultrafilter
Lemma 8.82, let H be an ultrafilter on S which contains H.

We have F α→ H since given J[α]K(A) ∈ F , we have A ∩ JϕK ∈ H ⊆ H, hence
A ∈ H.

It remains to show that JϕK ∈ H. Since S = J[α]K(S) ∈ F , we have S ∩ JϕK ∈ H ⊆
H. Hence JϕK ∈ H.

Corollary 10.41. Let M = (S,Act,→,AP, L). Then, for every HML-formula ϕ we
have

(∀s ∈ S)
(
s
 ϕ ⇐⇒ π(s)
 ϕ

)
M |= ϕ ⇐⇒ Uf(M) |= ϕ

Proof. First, by Prop. 10.40, given s ∈ S, we have

s
 ϕ ⇐⇒ s ∈ JϕK
⇐⇒ JϕK ∈ π(s)
⇐⇒ π(s)
 ϕ

As for the second statement, assume that M |= ϕ. This means S = JϕK. Hence for
all F ∈ Uf(S), by Prop. 10.40 we have F
 ϕ since S ∈ F . It follows that Uf(M)
 ϕ.
Conversely, assume that Uf(M) |= ϕ and let s ∈ S. By Prop. 10.40 we have s
 ϕ since
π(s)
 ϕ.

Remark 10.42. Since the initial states of Uf(TS) are exactly the π(s) for s initial in
TS, Cor. 10.41 extends to the notion |=ı of Rem. 10.4 as

TS |=ı ϕ ⇐⇒ Uf(TS) |=ı ϕ

Proposition 10.43. Let M = (S,Act,→,AP, L). Then Uf(M) is modally saturated.

Proof. Note that if S is empty, then so is Uf(S), and the property is vacuously satisfieed
in this case (take the sempty set for Ψ ⊆fin Φ). So we assume that S is not empty.

Fix α ∈ Act. Consider a set of formulae Φ and an ultrafilter F ∈ Uf(S). Assume that
for every finite Ψ ⊆ Φ, there is some H ∈ Uf(S) such that F α→ H and H

∧
Ψ.

We use the Ultrafilter Lemma 8.82 in order to obtain some H ∈ Succα(F) such that
H
 ϕ for every ϕ ∈ Φ. Similarly as in the proof of Prop. 10.40, let H ⊆ P(S) consist
of all the sets of the form

A ∩ J
∧

ΨK (for J[α]K(A) ∈ F and Ψ ⊆ Φ finite)

Similarly as in the proof of Prop. 10.40, the set H is closed under binary intersections.
Indeed, consider Ai ∩ J

∧
ΨiK ∈ H for i ∈ {0, 1}. Then Ψ := Ψ0 ∪Ψ1 is a finite subset of

Φ. Moreover,
J[α]K(A0) ∩ J[α]K(A1) = J[α]K(A0 ∩A1) ∈ F

so that
(A0 ∩ J

∧
Ψ0K) ∩ (A1 ∩ J

∧
Ψ1K) = (A0 ∩A1) ∩ J

∧
ΨK ∈ H

83

10 On Modal Logics of Transition Systems

Also, H does not contain the emptyset. Indeed, given A ∩ J
∧

ΨK ∈ H, by assumption
there is some G ∈ Succα(F) such that G

∧
Ψ. By Prop. 10.40 we have J

∧
ΨK ∈ G.

Since J[α]K(A) ∈ F and F α→ G, we also have A ∈ G. It follows that A ∩ J
∧

ΨK ∈ G, so
that A ∩ J

∧
ΨK is not empty.

Hence H is closed under binary intersections and does not contain the empty set. It
follows that finite non-empty intersections of elements of H are non-empty. Further-
more, the empty intersection in (P(S),⊆) is S, and since S is not empty, it follows that
H has the finite intersection property. So by the Ultrafilter Lemma 8.82 we have H ⊆ H
for some H ∈ Uf(S).

We have F α→ H. Indeed, for J[α]K(A) ∈ F , we get A = A ∩ J>K ∈ H ⊆ H, hence
A ∈ H.

It remains to show that H
 ϕ for all ϕ ∈ Φ. But for ϕ ∈ Φ we have J[α]K(S) = S ∈ F ,
so that JϕK = S ∩ JϕK ∈ H ⊆ H. Hence JϕK ∈ H and we conclude by Prop. 10.40.

Corollary 10.44. Given Kripke models M0 and M1, both over AP and Act, for all
(s0, s1) ∈ S0 × S1 we have

s0 ≡ s1 ⇐⇒ π(s0) ∼ π(s1)

84

References

References

[AC98] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1998.
66

[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, 1985. 10

[Awo10] S. Awodey. Category Theory. Oxford University Press, Inc., USA, 2nd edition,
2010. 34, 35

[BBJ07] G. S. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic.
Cambridge University Press, fifth edition, 2007. 18

[BdRV02] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2002. 41, 43,
56, 71, 72, 73, 74, 75, 76, 77, 78, 79

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
5, 6, 7, 8, 9, 10, 11, 12, 20, 24, 27, 32, 33, 34, 41, 43, 50, 52, 53, 54, 69, 70, 71

[Bou07] N. Bourbaki. Topologie générale: Chapitres 1 à 4. Springer Berlin Heidelberg,
2007. Reprint of the original 1971 edition. 22

[BS81] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Graduate
Texts in Mathematics. Springer-Verlag, 1981. 62, 64, 65

[BW18] J. C. Bradfield and I. Walukiewicz. The mu-calculus and Model Checking. In
E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of
Model Checking, pages 871–919. Springer, 2018. 49

[DP02] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. CUP,
2nd edition, 2002. 27, 28, 30, 31, 32, 34, 35, 41, 43, 48, 49, 59, 62, 66, 67, 68

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.
18, 49

[Joh82] P.T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1982. 29, 55, 58, 59, 66, 68

[Kec95] A. S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts
in Mathematics. Springer, 1995. 17, 25

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27(3):333 – 354, 1983. Special Issue Ninth International Colloquium
on Automata, Languages and Programming (ICALP) Aarhus, Summer 1982.
49

85

References

[ML98] S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd
edition, 1998. 34, 35, 36

[Mos09] Y. N. Moschovakis. Descriptive Set Theory, volume 155 of Mathematical
Surveys and Monographs. American Mathematical Soc., second edition, 2009.
26

[Pnu77] A. Pnueli. The temporal logic of programms. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, pages
46–57. IEEE Computer Society, 1977. 41

[PP04] D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Pure and Applied Mathematics. Elsevier, 2004. 18, 26, 40, 52, 75

[Run05] V. Runde. A Taste of Topology. Universitext. Springer New York, 2005. 21,
22, 30, 38, 39, 40

[Sim10] S.G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic.
Cambridge University Press, 2nd edition, 2010. 18, 40

[Sti11] C. Stirling. Bisimulation and logic. In D. Sangiorgi and J. Rutten, editors,
Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in The-
oretical Computer Science, pages 173–196. Cambridge University Press, 2011.
71, 74, 75

[SU06] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism,
volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science Inc., 2006. 35

[TvD88] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, Volume 1,
volume 121 of Studies in Logic and the Foundations of Mathematics. Elsevier,
1988. 18

[VVK05] H. Völzer, D. Varacca, and E. Kindler. Defining Fairness. In Mart́ın Abadi
and Luca de Alfaro, editors, CONCUR 2005 - Concurrency Theory, 16th
International Conference, CONCUR 2005, San Francisco, CA, USA, August
23-26, 2005, Proceedings, volume 3653 of Lecture Notes in Computer Science,
pages 458–472. Springer, 2005. 26

[VW08] M. Y. Vardi and T. Wilke. Automata: from logics to algorithms. In Logic and
Automata, volume 2 of Texts in Logic and Games, pages 629–736. Amsterdam
University Press, 2008. 18, 49

[Wal16] I. Walukiewicz. Automata theory and higher-order model-checking. ACM
SIGLOG News, 3(4):13–31, October 2016. 13

[Wil70] S. Willard. General Topology. Addison-Wesley, 1970. 21, 22, 30, 40

86

	Introduction
	Notational Preliminaries

	Transition Systems
	Linear-Time Properties
	Linear-Time Behaviour of Transition Systems
	Safety Properties and Invariants
	Invariants
	Safety Properties
	Regular Safety Properties
	Safety Properties and Trace Equivalence
	Konig's Lemma
	Proof of Proposition 3.27

	Liveness Properties
	Safety vs Liveness

	Topological Approach
	Generalities
	Adherence
	The Topological Decomposition Theorem
	Bases and Subbases

	Spaces of -Words
	Topological Safety and Liveness

	Partial Orders and Complete Lattices
	Partial Orders
	Complete Lattices
	Closure Operators
	Galois Connections
	Prefix and Closure
	Alternative Proof of the Decomposition Theorem 3.42

	Further Properties of Closure Operators and Galois Connections
	On the Kleisli Construction

	Observable Properties
	Observable Properties as Clopen Sets
	Compactness
	The Finite Intersection Property

	Compact Hausdorff Spaces

	Linear Temporal Logic
	The Logic LML of Observable Properties
	Syntax and Semantics of LML
	Logical Equivalence
	Observable Properties

	Extending LML with Fixpoints
	The ``Eventually'' and ``Always'' Modalities
	Positive and Negative Variables in a Formula
	The Knaster-Tarski Fixpoint Theorem

	The Logic LTL
	Syntax and Semantics of LTL
	Fixpoints and Defined Modalities
	Logical Equivalence
	Positive Normal Forms
	Satisfaction of LTL-Formulae by Transition Systems

	Toward Stone Duality
	A Short Path Toward a Simplified Result
	From Lattices to Boolean Algebras
	Filters and Ultrafilters
	The Spectrum of a Boolean Algebra
	Proof of the Ultrafilter Lemma 8.16

	Lattices and Boolean Algebras
	Semilattices
	Lattices
	Distributive Lattices
	Boolean Algebras

	Representation of Boolean Algebras
	Filters and Ultrafilters
	The Spectrum of a Boolean Algebra
	On the Proof of The Ultrafilter Lemma 8.82

	Bisimulation
	Bisimulation (with Actions)
	Bisimilarity and Trace Equivalence
	The Bisimulation Quotient

	On Modal Logics of Transition Systems
	Kripke Frames and Kripke Models
	Syntax and Semantics of HML
	Logical Equivalence
	Logical Equivalence on Formulae
	Logical Equivalence on States and Bisimilarity

	The Hennessy-Milner Property
	Modal Saturation
	Boolean Algebras with Operators
	Ultrafilter Extensions of Kripke Models

