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ON THE EXISTENCE OF PERIODIC INVARIANT
CURVES FOR ANALYTIC FAMILIES OF TWIST MAPS

AND BILLIARDS

CORENTIN FIEROBE AND ALFONSO SORRENTINO

Abstract. In this paper we prove that in any analytic one-parameter
family of twist maps of the annulus, homotopically invariant curves
�lled with periodic points corresponding to a given rotation num-
ber, either exist for all values of the parameters or at most for a
discrete subset. This extends, in dimension 2, a previous result
by Arnaud, Massetti and Sorrentino [2]. We then apply our result
to rational caustics of billiards, considering several models such as
Birkho� billiards, outer billiards, symplectic billiards.

1. Introduction and main results

The existence of invariant curves in a two-dimensional dynamical sys-
tem is a precious ally in the study of its stability property, i.e. how
it behaves under small perturbations. This topic has been intensively
studied since Poincaré and the breakthrough of KAM theory, impulsed
by Kolmogorov [18], Arnol'd [3] and Moser [23]. KAM theory focuses
on a point of view which takes into account invariant curves with highly
irrational rotation number. It consists in considering small perturba-
tions of a completely integrable system � a system foliated by invariant
curves, and showing that there is a large (in a measure theoretic sense)
number of these curves which persist after such perturbations. We
recommend [26] for a precise overview of this theory.

Other results [10, 22, 30] proved that the other invariant curves (e.g.
with rational rotation number) tend to be destroyed by an arbitrary
small perturbation, and are replaced by zones of instability (hyperbolic
periodic point with transverse intersection of their invariant manifolds).

Recent developments [4, 14, 15, 19] around integrable billiards and
Birkho�'s conjecture suggest that the existence of invariant curves
�lled with periodic points is very rigid in the sense that the latter
contain a lot of informations on the billiard shape (that is elliptic in
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the mentioned works). In [15], it is even suggested that to generalize
their result to any domain, one could try to understand how invariant
curves �lled with periodic points behave as we embed the domain in a
one-parameter family of domains converging to an ellipse (a�ne curve
shortening �ow, see [27] for more details).

In this work, we study how a �xed invariant curve of rational rota-
tion number behaves in a given real-analytic one-parameter family of
so-called twist maps (which will be de�ned later, and include billiard
maps). This result works for any arbitrary real-analytic family of two-
dimensional maps, thus generalizing a previous result of Arnaud, Mas-
setti and Sorrentino [2] in the two-dimensional case. Our result can be
roughly stated as follows:

Theorem (see Theorem 8 for a more precise statement). Given an
interval J and a real-analytic family of exact symplectic twist maps
(Fε)ε∈J , the set of parameters ε ∈ J such that Fε has an invariant
curve �lled with periodic points of a given rotation number is either
discrete or the whole interval J .

In the rest of this section, we introduce the objects of study, and we
state more precisely our theorem (see Theorem 8).

1.1. Exact-symplectic twist maps. On the space R2 = R × R of
pairs (p, q), consider πq, πp : R2 → R the projections onto q and p.

Consider two continuous Z-periodic maps p−, p+ : R→ R∪{±∞} and
assume that the inequality p−(q) < p+(q) is satis�ed for any q ∈ R.
We de�ne the open set

Ap± = {(q, p) ∈ R2 | p−(q) < p < p+(q)}.

It is a bundle over R, whose �bers are the intervals

Ap± |q = {p ∈ R | p−(q) < p < p+(q)}.

It projects onto an interval bundle over the torus T1 := R/Z having
the same �bers. Denote by graph (p−) and graph (p+), respectively, the
graphs of p− and p+ in R2.

De�nition 1. A di�eomorphism F : Ap± −→ Ap± , where F (q, p) :=
(Q(q, p), P (q, p)), is called an exact-symplectic twist map if it satis�es
the following properties:

(i) (Periodicity) F (q+m, p) = F (q, p)+(m, 0) for any (q, p) ∈ Ap±

and m ∈ Z;
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(ii) (Twist condition) for any q ∈ R the map

p ∈ Ap±|q 7−→ Q(q, p)

is a di�eomorphism onto its image;
(iii) (Boundary preservation) For any neighborhood V of graph (p−)∪

graph (p+) in R2, there is another such neighborhood U satis-
fying

F (U ∩ Ap±) ⊆ V ∩ Ap± ;

(iv) (Generating function) There is an open set D ⊆ R2 and a
smooth map S : D → R, called generating function of F , such
that for any (q,Q) ∈ D and m ∈ Z:

(q,Q) ∈ D =⇒ (q +m,Q+m) ∈ D
S(p+m,Q+m) = S(q,Q),

and
PdQ− pdq = dS(q,Q).

Remark 2. Given an exact symplectic twist map F , the map p ∈
Ap± |q 7→ Q(q, p) is either strictly increasing for any q, or strictly de-
creasing for any q. In the �rst case, we say that F is positive, in the
second one that it is negative. Note also that since ∂2

12S = −(∂pQ)−1

[16, Formula (9.2.4)], we observe that ∂2
12S < 0 if F is positive, and

∂2
12S > 0 if F is negative. In the proofs, we will often assume that F is
positive to simplify the redaction, since the proofs in the negative case
are analogous.

Remark 3. An exact symplectic twist map F induces a map f of the
tangent bundle TT1 ' T1 × R. More precisely, if π : R2 → T1 × R
is the canonical projection, then f : π(Ap±) → π(Ap±) is de�ned by
f ◦ π = π ◦ F. We will sometimes use the same notations for both
objects.

1.2. Periodic and invariant graphs. A rotational invariant curve
of a symplectic twist map F : Ap± → Ap± is a curve Γ ⊂ Ap± such that
F (Γ) = Γ and such that Ap± \Γ consists of two connected components.

Remark 4. A famous theorem by Birkho� (see for example [9, Theorem
15.1]) states that any rotational invariant curve Γ, if its exists, is the
graph of a Lipschitz continuous 1-periodic map γ : R→ R. Moreover,
the Lipschitz constant of γ only depends on infΓ ∂pQ > 0 ([9, Theorem
15.1] but also [13, Lemma 13.1.1] and [12, Proposition 12.3] for more
details).

This leads to the following de�nition.
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De�nition 5. Let F : Ap± → Ap± be an exact-symplectic twist map,
Γ = graph(γ) ⊂ Ap± be the graph of a 1-periodic Lipschitz-continuous
map γ : R→ R, and m ∈ Z, n ∈ N∗ coprime. We say that Γ is

(i) (m,n)-periodic if F n(q, γ(q)) = (q +m, γ(q)) for any q ∈ R;
(ii) invariant under F if F (Γ) ⊆ Γ;
(iii) Ck-smooth (resp. analytic) if γ is a Ck-smooth (resp. analytic).

We show in Proposition 13 that (m,n)-periodic graphs are automati-
cally invariant by F and have the same regularity as F .

1.3. Twist interval. An (m,n)-periodic invariant graph Γ of F can be
identi�ed with T1 and F |Γ as the lift of a di�eomorphism of T1 whose
rotation number is m/n. We introduce the set of all possible rotation
numbers of orbits of F , and call it twist interval of F . It is de�ned as
follows (see also [13, De�nition 9.3.2]):

De�nition 6. The twist interval of a symplectic twist map F is the
set TI(F ) of numbers α ∈ R for which there is a neighborhood U− of
graph (p−) and a neighborhood U+ of graph (p+) in R2 such that for
(q, p) ∈ Ap±

(q, p) ∈ U− =⇒ πq ◦ F (q, p)− q ≤ α

and

(q, p) ∈ U+ =⇒ πq ◦ F (q, p)− q ≥ α.

Remark 7. The twist interval is by construction an open interval of
R. For example, given ε ∈ R, the map Fε : R × (0, 1) → R × (0, 1)
de�ned for all (q, p) ∈ R× (0, 1) by F (q, p) = (q + p+ ε, p) is an exact
symplectic twist map whose twist interval is TI(Fε) = (ε, 1 + ε).

Another example can be given in the case of the usual billiard map.
Given a strictly convex domain Ω, the billiard map FΩ : R× (−1, 1)→
R× (−1, 1) by FΩ(q,− cosϕ) = (q1,− cosϕ1) where (q1, ϕ1) is the pair
describing the point of impact and the angle of re�ection after the
bounce of a tractetory coming from q and making an angle ϕ with the
boundary of Ω. The twist interval of FΩ is given by TI(FΩ) = (0, 1):
indeed, when ϕ goes from 0 to π, the point of impact q1 moves along
the boundary ∂Ω from q to itself, winding exactly once around ∂Ω.

1.4. Main theorem. We now consider analytic one-parameter fami-
lies of symplectic twist maps. More speci�cally, consider an interval
I ⊂ R and continuous maps p−, p+ : I × R → R ∪ {±∞} that are 1-
periodic in the second component and such that for any (ε, q) ∈ I ×R
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the inequality p−(ε, q) < p+(ε, q).
One can introduce the open set

AI,p± := {(ε, q, p) ∈ I × R2 | p−(ε, q) < p < p+(ε, q)}
and denotes their closure by

AI,p± = {(ε, q, p) ∈ I × R2 | p−(ε, q) ≤ p ≤ p+(ε, q)}.
Given ε ∈ I, we denote its ε-section by

Aε
I,p± := {(q, p) ∈ R2 | p−(ε, q) < p < p+(ε, q)}.

Theorem 8 (Main Theorem). Assume that I ⊂ R is an interval and
(m,n) ∈ Z × N∗. Suppose that for any ε ∈ I we are given an exact
symplectic twist map Fε such that:

(i) the map (ε, q, p) ∈ AI,p± 7→ Fε(q, p) is analytic;
(ii) m/n ∈ TI(Fε) for every ε ∈ I.

Then, the set

I(m,n)(R) := {ε ∈ I |Fε has an (m,n)-periodic invariant graph}
is either discrete or consists of the whole I.

Remark 9. In the statement of Theorem 8, we do not need to precise
the regularity of invariant graphs. In fact, it follows from Proposition
13 that they are analytic.

1.5. Application to Birkho�'s billiards. A billiard is a bounded
domain Ω ⊂ Rd, d ≥ 2, with (piecewise) smooth boundary, in which
one can study the behaviour of an in�nitely small particle evolving
inside Ω without friction. When reaching the boundary, the particle
bounces on it according to the usual re�ection law of geometrical optics
angle of incidence = angle of re�ection.

Let us consider the case when Ω is strictly convex with a smooth
boundary, which de�nes a so-called Birkho� billiard. The dynamics
of a particle in Ω is described by a discrete map, the billiard map,
acting on the space of oriented lines intersecting Ω: given such a line
`, the billiard map associates to it the line `′ naturally obtained by
re�ecting ` at the point of impact with ∂Ω. The phase space is a cylin-
der, which in the case of dimension 2 can be parametrized by pairs
(s, ϕ) ∈ R/|∂Ω|Z × [0, π], where s is an arc-length coordinate on the
boundary ∂Ω and ϕ is the angle between the tangent line of Ω at s and
the corresponding oriented line starting at s.
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Ω

Figure 1. The classical re�ection law of a particle inside
a strictly convex domain Ω with smooth boundary.

As for dynamical systems in general, one can study the so-called in-
tegrable billiards : billiards whose phase space contains an open set
foliated by curves which are invariant by the billiard map. Circles are
examples of such billiards for which the whole phase space is foliated
by invariant curves � in this case we speak about globally integrable
billiards. Let us mention also the case of ellipses which are integrable,
but not globally integrable. A famous conjecture, due to Birkho� [6]
and Poritsky [25], states that

Conjecture 10 (Birkho�-Poritsky). The only integrable billiards are
ellipses.

Bialy [4] showed that the only globally integrable billiards are circles.
Kaloshin-Sorrentino [15] proved that the only billiards close to ellipses
having invariant curves of rotation number 1/q for any q ≥ 2 are el-
lipses. Later, Koval [19] extended this result to billiards close to el-
lipses of small eccentricity having invariant curves of rotation number
r = p/q, for any r lower than an arbitrarily small bound of the form
1/q0. The rotation number of an invariant curve is de�ned as the rota-
tion number of the circle map obtained by restricting the billiard map
to the corresponding curve.

In the case of non-rational rotation number, Lazutkin [20] showed that
there is a Cantor set C ⊂ [0, 1] of non-zero measure accumulating to
0 such that each ω ∈ C is the rotation number of an invariant curve.
Popov showed [24] that these curve persists under a small deforma-
tion of the billiard. However the rotation numbers considered in these
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results are far from being rational: they are so-called Diophantine num-
bers, which are numbers badly approximated by rationals.

I do not know if this is

the right place to

mention [2] since it does

not apply to billiards.

In the case of rational rotation numbers, it is expected that correspond-
ing invariant curves are more fragile. Arnaud-Massetti-Sorrentino [2]
recently proved a result in this direction for deformations of the stan-
dard map in the class of analytic twist-maps of the cylinder (in any
dimension). Let us also mention the works of Kaloshin-Koudjinan [14]
who are studying the case of billiard domains close to a disk having
two invariant curves of rotation numbers 1/2 and 1/2q + 1 for q ≥ 1.

In this paper, we will extend [2] to the case of billiard maps. More
precisely, we will prove the following

Theorem 11 (Invariant curves in families of Birkho� billiards). Let
I be a compact interval and (Ωε)ε∈I be an analytic family of strictly
convex analytic domains. Then given a pair (m,n) ∈ Z×N∗ of coprime
integers such that m/n ∈ (0, 1), the set of ε ∈ I such that the billiard
map inside Ωε has an (m,n)-periodic invariant curve is either �nite or
consists of the whole I.

This result doesn't answer Birkho�'s conjecture, but rather tells how
fragile periodic invariant curves can be. In what follows we give more
details on the objects we will consider. Theorem 11 on billiards is a
consequence of Main Theorem (Theorem 8), as shown in Section 4.

1.6. Application to dual billiards. Given a strictly convex domain
Ω ⊂ R2 with a smooth oriented boundary, the dual or outer billiard
outside Ω can be de�ned as follows (see Figure 2). For any point
p ∈ R2 \ Ω, there are at most two tangent lines to ∂Ω passing through
p. Consider the unique one which is tangent to ∂Ω at a point q and
such that the vector ~pq has the same orientation as the boundary ∂Ω
at q. De�ne the image by p by the dual billiard map as the point F (p)
on the latter tangent line Tq∂Ω such that q is the midpoint between p
and F (p).

Dual billiards were introduced by B. H. Newman (Reference?) and
their properties were largely studied since then. They are known to be
symplectic twist maps of the in�nite annulus T1 × (0,+∞), and thus
can be investigated in the context of Aubry-Mather theory [7]. Douady
[8] showed that if the boundary ∂Ω is su�ciently smooth (at least C6),
then there is a positive measure set of invariant curves accumulating
to the boundary, as well as a positive measure set of invariant curves
accumulating at in�nity. In paticular this gives a negative answer to
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Ω

q

F (p)

p

Figure 2. The point F (p) is the image of p by the dual
billiard map around the domain Ω. The point q is the
midpoint between p and F (p) which are supported by a
line tangent to ∂Ω at q.

the famous question of the existence of unbounded orbits. Adapting
a result of Mather for Birkho� billiards (see [9]) Boyland [7] proved
that in the context of simple convexity, if the curvature of the domain
vanishes, or has jump discontinuities, then there is a neighborhood of
the boundary without invariant curves.

A version of Birkho�'s conjecture is also studied for dual billiards. It
is indeed known that the phase space of dual billiards around ellipses
is foliated by invariant curves, induced by any bigger ellipse homoth-
etically equivalent to the initial billiard. The question is to ask wether
the converse is also true. Bialy [5] proved a total integrability result:
if the phase space of a dual billiard is foliated by continuous invariant
curves then the billiard is an ellipse. If we assume the foliation to be
only in a open set of the phase space (local integrability), some partial
positive results were given in [11, 29].

Theorem 12 (Invariant curves in families of outer billiards). Let I be
a compact interval and (Ωε)ε∈I be an analytic family of strictly convex
analytic domains. Then given a pair (m,n) ∈ Z× N∗ of coprime inte-
gers such that m/n ∈ (0, 1), the set of ε ∈ I such that the outer billiard
map associated to Ωε has an (m,n)-periodic invariant curve is either
�nite or consists of the whole I.

Theorem 12 on billiards is a consequence of Main Theorem (Theorem
8), as shown in Section 5.



9

Maybe I would mention Symplectic billiards. As for the other billiard-
like models, as in Albers-Tabachnikov, we could add a remark that
there are many other models to which our result applies yielding to
similar results, and refer to the article by Albers and Tab.

2. Preliminary results on periodic graphs

In this section we prove some preliminary results on invariant periodic
graphs of a symplectic twist map F : Ap± → Ap± with generating
function S : D → R. The main results in this section are Proposition
13 and Proposition 15.

We �rst recall some basic notions related to the orbits of F , and we
refer the reader to [12] for more details about them. The projection
πq : R2 → R onto the q-component induces a bijection between orbits
(qk, pk)k∈Z of F , where for all k ∈ Z

F (qk, pk) = (qk+1, pk+1),

and so-called stationary con�gurations (qk)k∈Z, which are sequences
satisfying for all k ∈ Z

(qk, qk+1) ∈ D and ∂2S(qk−1, qk) + ∂1S(qk, qk+1) = 0.

An orbit (qk, pk)k∈Z or its associated stationary con�guration (qk)k∈Z
are called minimal if for any integers u ≤ v the family (qk)u≤k≤v mini-
mizes the functionnal

x = (xk)u≤k≤v 7−→
v−1∑
k=u

S(xk, xk+1)

among all families x ∈ Rv−u+1 with xu = qu and xv = qv.

It is known (see [4, proof of Theorem A], which applies to any symplec-
tic twist maps, or [1] Proposition 6), that a minimal orbit (qk, pk)k∈Z
has no conjugate points, which means that any two points (qk, pk) and
(q`, p`) = F `−k(qk, pk) along the orbit satisfy

∂p
(
πq ◦ F `−k) (qk, pk) 6= 0.

Proposition 13. Let F : Ap± −→ Ap± be an exact-symplectic twist
map and Γ ⊂ Ap± be an (m,n)-periodic Lipschitz continuous graph of
F , for some m ∈ Z, n ∈ N∗ coprime. Then:

(i) Γ is invariant by F ;
(ii) the projection of an orbit intersecting Γ is a minimal con�gu-

ration, and hence has no conjugate points;
(iii) Γ is as smooth as F is;
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(iv) F has no other (m,n)-periodic Lipschitz continuous graph.

Remark 14. Note that in general two invariant graphs with the same
rational rotation number might coexist; in this case, their intersection
consists of periodic orbits and the two graphs should contain also non-
periodic ones. For instance, consider the twist map corresponding to
an elliptic billiard (non-circular): its phase space contains two invariant
graphs of rotation number 1/2. On the other hand, there might exist at
most one invariant rotational curve for each irrational rotation number
in the twist interval [16, Theorem 13.2.9].

Proof. It is well-known that Items (i) and (ii) are equivalent, see for
example [9, Theorem 17.4] for the implication (i)⇒ (ii), and [2, Propo-
sition 2.5] for the reverse implication. So to prove the result it is enough
to show that items (i), (iii) and (iv) are satis�ed.

(i) To show that Γ is invariant by F , we extend F to a symplectic
twist map G : R2 → R2, coinciding with F in a neighborhood of Γ and
satisfying the superlinearity condition at in�nity, namely

lim
|q−Q|→+∞

SG(q,Q)

|Q− q|
= +∞,

where SG denotes the generating function of G. If such a G exists,
then the orbits of G intersecting Γ are minimal by [2, Proposition 2.5];
therefore, Γ is invariant by G, and hence by F .

The construction of such a G is quite standard, and we refer to [9,
Section 8] or [12, Lemma 8.2]. It is however not necessarily analytic,
but this does not a�ect the result. Let us assume that F is positive,
and let S be the generating function of F : it is de�ned on an open
set D. Consider the set of pairs (q,Q) ∈ D such that there is a point
x ∈ Γ and an integer k ∈ {0, . . . , n − 1} for which πq ◦ F k(x) = q
and πq ◦ F k+1(x) = Q; this set is contained in a compact set K ⊂ D.
On this compact set the twist condition is uniform, which means that
there is a > 0 such that ∂2

12S|K < −a. Hence applying [9, Section
8], or [12, Lemma 8.2] we deduce the existence of a symplectic twist
map G : R2 −→ R2 whose generating function SG is de�ned on R2,
coincides with S on K and has the uniform twist everywhere, that is
∂2

12S < −a′ everywhere, for some a′ > 0. This implies together with
[12, Proposition 11.2] that the map G has the announced properties,
which concludes the result.

(iii) The smoothness comes from the property that an orbit corre-
sponding to an action-minimizing con�guration has no conjugate points
(see the proof of [4, Theorem A], which applies to any symplectic twist
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maps, or [1, Proposition 6]). Hence following the argument of [2, Propo-
sition 2.5], this implies that the map R : (q, p) 7→ πq ◦F n(q, p)− q−m
which vanishes on Γ satis�es ∂pR(q, p) 6= 0 for (q, p) ∈ Γ. By the im-
plicit mapping theorem, Γ can be described locally as a graph of a map
which is as smooth as F , which proves the assertion.

(iv) We apply [13, Lemma 13.2.10]: if F has an invariant curve Γ of
rotation number m/n, then any order-preserving orbit of F whose clo-
sure is distinct from Γ has rotation number 6= m/n (the de�nition of
order-preserving orbit is given in [13], and periodic orbits are a partic-
ular case of them). Hence any periodic orbit of rotation number m/n
should have a point on Γ, and consequently be entirely contained in Γ
since Γ is invariant by F . �

Let us show a localisation result when one consider a family of sym-
plectic twist maps.

Proposition 15. Assume that I ⊂ R is a compact interval and (m,n) ∈
Z × N∗. Suppose that for any ε ∈ I we are given an exact symplectic
twist map Fε such that:

(i) the map (ε, q, p) ∈ AI,p± 7−→ Fε(q, p) is C1-smooth;
(ii) m/n ∈ TI(Fε) for any ε ∈ I.

Then, there is a neighborhood U of graph (p−)∪graph (p+) in I×R×R
such that for any ε ∈ I, any (m,n)-periodic orbit of Fε is contained in
K := AI,p± \ U .

From this result together with Remark 4, we immediately deduce the
following result.

Corollary 16. Under the assumption of Proposition 15, there is a
constant k > 0 depending only on infK ∂pπqF such that for any ε > 0,
an (m,n)-periodic invariant graph Γ of Fε is Lipschitz continuous with
Lipschitz constant k.

In order to prove Proposition 15, we need the following Lemma, whose
proof can be found in [16, Theorem 9.3.7 and its proof].

Lemma 17. Let F be an exact-symplectic twist map of the open an-
nulus Ap± and m/n ∈ TI(F ). Then, given a, b ∈ TI(F ) such that
a < m/n < b, there exists a neighborhood U− of graph (p−) and a
neighborhood U+ of graph (p+) such that for any k ∈ {0, . . . , n− 1}

(1) ∀(q, p) ∈ U− πq ◦ F k+1(q, p)− πq ◦ F k(q, p) < a
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and

(2) ∀(q, p) ∈ U+ πq ◦ F k+1(q, p)− πq ◦ F k(q, p) > b.

We can now prove Proposition 15.

Proof of Proposition 15. Consider a decreasing sequence Uj of neigh-
borhoods of graph (p−) ∪ graph (p+) in I × R × R such that ∩jUj =
graph (p−)∪graph (p+) and assume by contradiction that there are two
sequences (x(j))j and (εj)j such that for each j, x

(j) is an (m,n)-periodic
orbits of Fεj having a point in ({εj} × Aεj

I,p±) ∩ Uj.

Since I is compact, we can assume that the sequence (εj)j converges to
a certain ε ∈ I. Consider the sets U− and U+ of Lemma 17 associated
to the rotation numberm/n and the twist map Fε. De�ne U = U−∪U+.
By continuity of F , p− and p−, for ε′ su�ciently close to ε, U remains
a neighborhood of graph (p−)(ε′, ·)∪graph (p+)(ε′, ·) and Equations (1)
and (2) are also satis�ed by Fε′ . In particular, considering ε′ = εj for
su�ciently large j, (m,n)-periodic orbits of Fεj have their points in

Aεj
I,p± \ U . Now by intersection property on the sequence of Uj's, if j

is su�ciently large Uj ⊂ I × U , and the latter implies that x(j) is an
(m,n)-periodic orbit of Fεj having a point in U . This is contradictory
and concludes the proof. �

3. Proof of Main Theorem (Theorem 8)

In this section, we prove the Main Theorem, namely Theorem 8. Given
a pair (m,n) ∈ Z × N∗ of coprime integers, we �rst recall some prop-
erties of the set

I(m,n)(R) = {ε ∈ I |Fε has an (m,n)-periodic invariant graph}

de�ned in the statement of the theorem.

Lemma 18. Under the assumptions of Theorem 8.

(i) For ε ∈ I(m,n)(R), there exists a unique 1-periodic continuous
map γε : R → R such that graph(γε) is an (m,n)-periodic in-
variant graph invariant by Fε.

(ii) The map (ε, q) ∈ I(m,n)(R) × R 7→ γε(q) is continuous (for the
topology induced by I × R on I(m,n)(R)× R).

(iii) I(m,n)(R) is a closed subset of I.
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Proof. (i) The existence of such γε follows from the de�nition of I(m,n)(R).
The unicity comes from Proposition 13. Note that γε is Lipschitz con-
tinuous with a Lipschitz constant depending on ε, but which can be
chosen uniformly for any ε lying in a compact subinterval I ′ ⊂ I by
Corollary 16. This property will be useful for the rest of the proof.

(ii) Choose ε ∈ I(m,n)(R) and a sequence (εj)j ⊂ I(m,n)(R) converging
to ε. Let us how that (γεj)j converges to γε in the uniform topology.
As noticed in item (i), each γεj as well as γε is Lipschitz continuous,
and they share the same Lipschitz constant (ie equi-Lipschitz).

We do the proof in two steps:

• Step 1. We prove that any subsequence of (γεj)j converging in the
space of 1-periodic continuous maps R → R for the uniform topology
has γε as a limit;

• Step 2. We show that (γεj)j has at least one converging subsequence
(applying Ascoli-Arzelà theorem).

These two steps imply the assertion of item (ii).

Proof of Step 1. Assume that there is a subsequence (γεjk )k converging
to a 1-periodic map γ∞ : R→ R in the uniform topology. By Proposi-
tion 15, graph (γ∞) ⊂ Aε

I,p± . The identity F
n
εjk

= Id+(m, 0) is satis�ed

on graph γεjk , hence, by continuity, F n
ε = Id + (m, 0) on graph (γ∞).

Let us mention that γ∞ is Lipschitz continuous since all γεjk are Lip-
schitz continuous with the same Lipschitz constant. Hence graph γ∞
is a (m,n)-periodic graph of Fε, which is invariant by Proposition 13.
Therefore γ∞ = γε, which follows from the unicity of (m,n)-periodic
graphs, again by Proposition 13.

Proof of Step 2. Let us check that the assumptions of Ascoli-Arzelà
theorem are satis�ed by the sequence of maps (γεj)j. By Proposition
15, the maps γεj are contained in a compact subset K of AI,p± which
implies that they are bounded by the same constant (ie equibounded).
Moreover, we noticed already that they are Lipshitz continuous with
a uniform Lipschitz constant. Hence Step 2 follows from Ascoli-Arzelà
theorem, and therefore point (2) is proven.

(iii) Consider a sequence of εj ∈ I(m,n)(R) converging to a ε ∈ I. As in
item (ii), the family of maps γεj is equibounded and equi-Lipschitz. By
extracting a subsequence as in Step 2 of item (ii), we can suppose that
γεj converges to a 1-periodic Lipschitz continuous map γε : R → R,
such that {ε} × graph (γε) ⊂ AI,p± (Proposition 15), and which is
(m,n)-periodic by continuity of F as a map of (ε, q, p). By Proposition
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13, this implies that ε ∈ I(m,n)(R).
�

We can now prove the following stronger result on the topological struc-
ture of the set I(m,n)(R).

Lemma 19. Under the assumptions of Theorem 8, the set I(m,n)(R) is
either the whole I or it has empty interior.

Proof. Assume that I(m,n)(R) has non-empty interior, and let us show
that I(m,n)(R) = I. Let us de�ne a = inf I and b = sup I so that
I ∩ (a, b) = (a, b)..

Consider a connected component A ⊂ I(m,n)(R) which is not reduced
to a point. Let β = supA, and suppose that β < b. We will raise a
contradiction.

First note that necessarily β ∈ I(m,n)(R) since β ∈ I and the set
I(m,n)(R) is closed in I by Lemma 18; therefore, β ∈ A.

Applying again Lemma 18, we can then de�ne a family of Lipschitz
continuous maps (γε)ε∈A such that for all ε ∈ A, graph(γε) is an (m,n)-
periodic graph invariant by Fε. Moreover the map Γ : (ε, q) 7→ γε(q)
is continuous, again by Lemma 18. We will show that we can extend
Γ to the open set (β − r, β + r) × R, with r > 0, thus leading to a
contradiction, since this would imply that (β − r, β + r) ⊆ A, thus
contradicting the maximality of A.

Let us apply the implicit function theorem to the map

∆1(ε, q, p) := πq ◦ F n
ε (q, p)− q −m.

Since Fβ has no conjugate points on graph(γβ) (see Proposition 13),
∂p∆1 do not vanish on the set {(β, q, γβ(q)) | q ∈ R}. Hence we can
de�ne an analytic map (ε, q) ∈ (β − r, β + r)×R 7→ ηε(q), with r > 0,
such that ηβ = γβ and for any (ε, q, p) close to (β, q, ηβ(q)) we have

πq ◦ Fε(q, p) = q +m ⇔ p = ηε(q).

The latter implies � together with the continuity of γ � that for ε < β
and su�ciently close to β, we have ηε = γε.

Now consider, the map ∆2 : (β − r, β + r)× R→ R de�ned by

(ε, q) 7→ πp ◦ F n
ε (q, ηε(q))− ηε(q).
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Since ηε = γε for β − r < ε ≤ β and graph γε is (m,n)-periodic, ∆2

vanishes on (β − r, β]×R. Since ∆2 is analytic and (β − r, β + r)×R
is connected, ∆2 vanishes on (β − r, β + r)× R.

Combining the two results on ∆1 and ∆2, we obtain that, for any
ε ∈ (β − r, β + r), graph(ηε) is an (m,n)-periodic graph of Fε. This
contradicts the fact that ε cannot be bigger than β. �

Proof of Theorem 8. Let us suppose that I(m,n)(R) has an accumula-
tion point β ∈ I and show that in this case I(m,n)(R) = I. The proof
of Lemma 19 can be adapted to this context: there is a sequence (εn)n
converging to β with εn 6= β satisfying

∀(n, q) ∈ N× R ∆2(εn, q) = 0.

Hence ∆2 is �at at any (β, q) ∈ {β} × R, meaning that its partial
derivatives of any order in ε and q vanish. By analyticity of ∆2 and 1-
periodicity in q, it vanishes on an open set of the form J×R. Hence for ε
su�ciently close to β, ηε parametrizes an (m,n)-periodic Fε-invariant
graph. We conclude that I(m,n)(R) has non-empty interior, and by
Lemma 19 that I(m,n)(R) = I. �

4. Proof of Theorem 11 using Main Theorem

Let (Ωε)ε∈I be an analytic family of strictly convex domains with an-
alytic boundary. By applying homotheties to the di�erent Ωε, we can
suppose that each Ωε has perimeter 1 (note that homotheties do not
break the property of the billiard map in a domain of having an (m,n)-
periodic invariant graph of a �xed rotation number).

For each ε ∈ I, one can consider a parametrization s ∈ R 7→ γε(s)
of γε by arc-length which by assumption one can assume analytic in
(ε, s). The billiard map inside Ωε induces an exact symplectic twist
map Fε : R× (−1, 1)→ R× (−1, 1) de�ned for all (s, σ) ∈ R× (−1, 1)
by

Fε(s, σ) = (s1, σ1)

where, if σ = − cosϕ and ϕ ∈ (0, π), then s1 and σ1 are de�ned by
following requirements a) and b):
a) γε(s1) is the second point of intersection with ∂Ωε of the line `
passing through γε(s) and making an angle ϕ with the tangent line of
∂Ω at γε(s);
b) the line ` makes an angle ϕ1 with the tangent line of ∂Ω at γε(s1)
and this de�nes σ1 = − cosϕ1.
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Let us check that the corresponding family of billiard maps (Fε)ε sat-
is�es the assumptions of Theorem 8.

It is well-known that the billiard map written in the coordinates (s, σ)
is an exact symplectic twist map as de�ned in De�nition 1.

Given ε ∈ I and (s, ϕ) ∈ R×(−1, 1), the corresponding line ` (as in a))
is transverse to the boundary of Ωε at γε(s1). A simple computation
shows that it allows to apply the implicit function theorem, namely
there is a neighborhood U of (ε, s, ϕ) ∈ I×R× (−1, 1) and an analytic
map ϕ : U → R such that s1(ε′, s′, σ′) = ϕ(ε′, s′, σ′) for (ε′, s′, σ′) ∈ U .
The analytic regularity of σ1 comes from the fact that it can be written
as

σ1 =
γε(s1)− γε(s)
‖γε(s1)− γε(s)‖

· γ′ε(s1)

where u cot v denotes the scalar product of two vectors u and v. Hence
Assumption (i) of Main Theorem is satis�ed.

It is well-known that since each Ωε is strictly convex, the map Fε ex-
tends to a continuous map R × [−1, 1] satisfying for any s ∈ R the
equalities Fε(s, 0) = (s, 0) and Fε(s, 1) = (s + 1, 1). This implies that
TI(Fε) = (0, 1).

Hence the assumptions of Main Theorem are satis�ed and it implies
the result.

5. Proof of Theorem 12 using Main Theorem

Let (Ωε)ε∈I be an analytic family of strictly convex domains with an-
alytic boundary. We introduce the so-called enveloppe coordinates on
each ∂Ωε, see [7]. They are de�ned as follows.

By applying translations to the domains, one can assume that there is
a point O which remains inside all domains. Consider a �xed direction
Ox. For each ε ∈ I and any angle θ ∈ R, one can associate the oriented
line Lθ to ∂Ω which makes an angle θ+π/2 with Ox and is tangent to
it at a point α(θ) where the orientations of ∂Ω and Lθ are the same.
Let pε(θ) be the distance from O to Lθ. Under the assumptions of
Theorem 12, one can assume that p is analytic in (ε, θ).

For any point p ∈ R2 \Ω, one can �nd a unique θ such that the vector
α(θ)− z and Lθ are colinear with the same orientation. The pair (θ, γ)
where γ = ‖α(θ) − z‖2/2 is called the enveloppe coordinate of p and
uniquely determines p.
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The outer billiard map outside Ωε acts on the space of enveloppe co-
ordinates R × (0,+∞) and induces an exact symplectic twist map
Fε : R × (0,+∞) → R × (0,+∞) de�ned for all (θ, γ) ∈ R × (0,+∞)
by

Fε(θ, γ) = (θ1, γ1).

Let us check that the corresponding family of outer billiard maps (Fε)ε
satis�es the assumptions of Theorem 8.

Given ε ∈ I and p ∈ R2 \ Ωε, consider Gε(p) to be the image of p
after one outer billiard re�ection on Ωε. The map G is well-de�ned
and analytic. It is then a consequence of the implicit function theorem
that the enveloppe coordinates of a point q depend analytically on q.
Hence Assumption (i) of Main Theorem is satis�ed.

It is well-known that the twist interval of a dual billiard map is TI(Fε) =
(0, 1/2). Hence the assumptions of Main Theorem are satis�ed and it
implies the result.

6. Appendix

Proposition 20. Let f : T1 × (0, 1)→ T1 × (0, 1) be the billiard map
written in (s,− cosϕ) coordinates and Γ be an (m,n)-periodic Lipschitz
graph Γ of f . Then
(i) Γ invariant by f ;
(ii) the projection of an orbit of Γ is a minimal con�guration;
(iii) Γ is as smooth as f is.

Proof. We show �rst (ii); then (i) and (iii) will follow from Proposition
13.

(ii) Minimality. First let us show that the projection s = (sp)p∈Z of
an orbit (sp, yp)p such that (s0, y0) ∈ Γ is minimal (here y stands for
− cosϕ).

Let us write Γ = {(s, φ(s)) | s ∈ LT1} where φ : T1 → (0, 1) is a Lips-
chitz continuous map and L is the perimeter of the billiard boundary.
Denote by h : D → R the generating function of the billiard where
D = {(s, s′) | s ≤ s′ ≤ s+ 1}. For any p ≤ q, de�ne

Epq(xp, . . . , xq) =

q−1∑
k=p

h(xk, xk+1)−
∫ xq

xp

φ(u)du.

In the case of the billiard map, Epq is well-de�ned and continuous on
the compact set K = {(xp, . . . , xq) |x0 ∈ [0, 1], ∀k xk ≤ xk+1 ≤ xk+1}.
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Hence it has a global minimal value which is reached at a certain point
x = (xp, . . . , xq). Now by triangular inequality, we have the important
fact that

x ∈ int(K).

This property is speci�c to the billiard map and due to the fact that
h(x, y) + h(y, z) < h(x, x) + h(x, z) for any x < y < z. Hence x
is a critical point of Epq and by a classical argument, x is a stationary
con�guration corresponding to an orbit (xj, yj)p≤j≤q of the billiard map
such that yp = φ(xp) and yq = φ(xq).

It follows that our initial con�guration s minimizes each Epn,qn among
all con�gurations with the same endpoints spn and sqn, where p ≤ q.
Hence s minimizes the action considered between the indices pn and
qn, among all con�gurations with the same endpoints. By another
classical argument, s is minimal. �
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