
Intermittency and multifractal formalism

1 Gaussian description of the Kolmogorov (1941) theory

Let us consider the random field defined by

ugη(x) =

∫
R
ϕL(x− y)

dW (y)√
|x− y|2 + η2

1/2−H ,

for a given exponent 0 < H < 1, η > 0, W a Gaussian white measure, and ϕL a cutoff function
at scale L (which we assume smooth and compactly supported). We shall admit the following
rules:

E [dW (y)] = 0 and E [dW (y)dW (y′)] = δ(y − y′)dydy′.

1. For fixed η > 0, justify that ugη is well-defined and smooth. Draw the graph of a possible
choice for ϕL. Give a physical interpretation of the parameter η.

2. Justify that the random field ugη is gaussian.

3. Show that it is homogeneous and has zero mean, i.e. E[ugη] = 0.

4. Compute its variance and show that it admits a finite (non-zero) limit when η → 0. We
shall denote ug the limit process.

Let us define the velocity increment at scale `:

δ`u
g(x) = ug(x+ `)− ug(x) =

∫
R
φ`(x− y)dW (y),

with

φ`(x) = ϕL(x+ `)
1

|x+ `|1/2−H
− ϕL(x)

1

|x|1/2−H
.

4. Show that the random field δ`u
g is gaussian.

5. Show that the variance E[(δ`u
g)2] is finite, and determine its asymptotic value for `→ 0.

Under which condition on H is it compatible with the Kolmogorov theory?

6. Show that the velocity increment can be written as

δ`u
g =

law
σ

(
`

L

)H
× ω,

where ω is a Gaussian random variable with zero mean and unit variance, with σ2 =
〈(δLu)2〉 the variance of the velocity increment at large scale. The above equality means
that the two random variables have the same probability law.

7. Compute E[(δ`u
g)3].

8. Show that E[(δ`u
g)2n] is proportional to

(
E[(δ`u

g)2]
)n

. Deduce the scaling exponents ζn
for the structure functions, defined by E(δ`u

g)2n ∼
`→0

`ζ2n .



2 Intermittency and non-gaussianity

Let us now study the properties of velocity increments with a random variance at each scale.
More precisely, let us assume that the velocity increment can be written as the product of two
independent random variables:

δ`u =
law

β` × ω,

where ω is still a standard normally distributed random variable and β` is a positive random
variable of the form

β` = σ

(
`

L

)h
,

where σ2 = 〈(δLu)2〉 is the variance of velocity increments at large scale, and h is a random
scaling exponent (called Hölder exponent), with density

P(`)
h (h) =

1

Z(`)

(
`

L

)1−D(h)

,

and D(h) is a function, independent of the scale ` but which may depend on parameters, and
Z(`) is a normalization constant.

1. Show that the Probability Distribution Function (PDF) of the velocity increment δ`u can
be written as

P`(δu) =

∫ hmax

hmin

1

σ

(
`

L

)−h
Pω

[
δu

σ

(
`

L

)−h]
P(`)
h (h)dh,

where Pω(x) = exp(−x2/2)/
√

2π is the standard normal distribution.

After recalling the shape of a self-similar PDF, suggest an interpretation of this model.

2. Compute the structure function of order n, Sn(`) = E|δ`u|n. We shall use that E|ω|n =
Γ
(
n+1
2

)
/
√

2nπ.

3. Show that in the small scale limit ` → 0, the structure functions follow a power-law
scaling:

Sn(`) ∼
(
`

L

)ζn
.

Assuming minh [1−D(h)] = 0, show that

ζn = min
h

[nh+ 1−D(h)] .

4. Let us now consider the log-normal model corresponding to

DLN(h) = 1− (h− c1)2

2c2
.

The coefficient c2 is called the intermittency coefficient.

Why is this model called log-normal?

Compute ζLNn .

Is this model compatible with the 2/3-law and the 4/5-law?

5. Finally we consider the She-Lévêque model:

DSL(h) = −1 + 3

[
1 + ln(ln(3/2))

ln(3/2)
− 1

]
(h− 1/9)− 3

ln(3/2)
(h− 1/9) ln(h− 1/9).

Compute ζSLn .

Is this model compatible with the 2/3-law and the 4/5-law?


