
Master 2 Physics ENS-Lyon UCBL Advanced Fluid Mechanics and Turbulence

Turbulent transport of a passive scalar

In this problem, we study the effect of turbulence on the transport of quantities like temper-
ature or chemical species in a fluid. Such quantities can be represented in an abstract manner
by a dimensionless scalar field, governed by an advection-diffusion equation:

∂tθ + u · ∇θ = κ∆θ, (1)

where κ is the molecular diffusivity of the scalar, and u a given (deterministic or random)
velocity field, assumed divergence-free. For definiteness, we assume that the domain is a 3D
cube of side L with periodic boundary conditions. The scalar is said passive because it does not
affect the properties of the velocity field (e.g. it does not appear in the Navier-Stokes equations,
or the prescribed statistics of u do not depend on θ). Here, we shall simply assume that the
statistics of the velocity field u are well described by Kolmogorov theory. We denote by ν the
molecular viscosity of the fluid and let Pr = ν

κ
.

We shall further assume that the statistics of all the fields are stationary, homogeneous and
isotropic, and denote by 〈·〉 the average value with respect to the invariant measure.

We define the mean energy dissipation rate ε = ν〈‖∇u‖2〉 = ν〈∂iuj∂iuj〉.

1 Phenomenology
1. We define the variance of the passive scalar Ξ = 〈θ2〉/2, and we introduce a source term
Q in the right-hand side of (1). Show that

dΞ

dt
= 〈Qθ〉 − εθ, (2)

with εθ = −κ〈θ∆θ〉 the mean scalar variance dissipation rate. What is the sign of εθ?

2. When Q = κ = 0, Ξ is a conserved quantity. Under the same conditions, are there other
invariants?

3. In practice, the scalar may be forced for instance by imposing a mean scalar gradient Γ
in an arbitrary direction (say the z direction); what is the form of the source term Q in
that case?

In the sequel, we shall assume that the passive scalar source acts at a spatial scale com-
parable to the scale `F of the mechanism generating the turbulent flow. That scale is
assumed to be close to the size of the domain L. What is the corresponding condition on
Γ?

4. Explain qualitatively how the term u · ∇θ acts to transfer scalar variance across scales.

5. How many (independent) non-dimensional numbers characterize the statistical properties
of solutions of (1)? By analogy with the first Kolmogorov assumption of universality
for the velocity field, list the parameters upon which the statistics (two-point correlation
functions) of the scalar field should depend.
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6. We introduce the scalar variance spectrum Fθ(k) such that Ξ =
∫ +∞
0

Fθ(k)dk.
Using dimensional analysis, show that if there exists a range of scales where dissipative
effects can be discarded, the spectrum should take the form Fθ(k) = Cθε

−3β
θ εβk2β−1 in

that range, with Cθ a non-dimensional constant. Why is there a free parameter β?

7. (a) By analogy with the Kolmogorov scale η, define a scale ηθ where inertial and diffusive
effects equilibrate.

(b) By considering separately velocity increments in the inertial and dissipative range,
establish two scaling laws for ηθ/η with respect to the non-dimensional numbers.

(c) By comparing ηθ and η, show that these two scaling laws correspond to the two
regimes Pr < 1 and Pr > 1.

8. We assume that Pr < 1 and we consider the inertial-convective range of scales `F ≥ ` ≥ ηθ.

(a) Estimate the typical time scale for velocity fluctuations (the eddy-turnover time) in
that range of scales, as a function of the scale k and the energy spectrum E(k).

(b) Similarly, relate the scalar variance at scale k to the scalar variance spectrum Fθ(k),
estimate the scalar dissipation rate εθ, and deduce the expression of Fθ(k) as a
function of εθ, ε and k only. This is the Kolmogorov-Obhukov-Corrsin spectrum. Is
it compatible with dimensional analysis?

(c) Draw a schematic picture of the scalar variance spectrum.

9. We now consider the Pr > 1 regime.

(a) Is the Kolmogorov-Obhukov-Corrsin spectrum still relevant in this case?
(b) We consider the viscous-convective range ηθ ≤ ` ≤ η. Using the typical timescale

for viscous dissipation instead of the eddy-turnover time, derive the expression of
the passive scalar spectrum Fθ(k). This is the Batchelor spectrum. Is it compatible
with dimensional analysis? Why?

(c) Draw a schematic picture of the scalar variance spectrum.

2 Karman-Howarth equation
Let us define the passive scalar covariance:

R(x,x + r, t) = 〈θ(x, t)θ(x + r, t)〉 , (3)

and the velocity and scalar increments δu = u(x + r, t)− u(x, t) and δθ = θ(x + r, t)− θ(x, t).
1. Derive the evolution equation for R. Simplify it as much as possible by exploiting statis-

tical homogeneity.

2. Still making use of the symmetries, show that, in the stationary state,

−∇r ·
〈
δθ2δu

〉
= 2 〈Q(x, t)[θ(x + r, t) + θ(x− r, t)]〉 − 2κ∆r

〈
δθ2
〉
. (4)

Give a physical interpretation of this relation.
Justify that for r � `F , the first term in the right-hand side can be replaced by 4εθ.

3. By integrating (4) on the ball with center x and radius r, show that〈
δθ2δu‖

〉
= −4

3
εθr + 2κ

d 〈δθ2〉
dr

. (5)

What can you deduce about the direction of the cascade of passive scalar variance?
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