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The average time between two occurrences of the same event, referred to as its return time (or
return period), is a useful statistical concept for practical applications. For instance insurances or
public agency may be interested by the return time of a 10 m flood of the Seine river in Paris.
However, due to their scarcity, reliably estimating return times for rare events is very difficult using
either observational data or direct numerical simulations. For rare events, an estimator for return
times can be built from the extrema of the observable on trajectory blocks. Here, we show that this
estimator can be improved to remain accurate for return times of the order of the block size. More
importantly, we show that this approach can be generalised to estimate return times from numer-
ical algorithms specifically designed to sample rare events. So far those algorithms often compute
probabilities, rather than return times. The approach we propose provides a computationally ex-
tremely efficient way to estimate numerically the return times of rare events for a dynamical system,
gaining several orders of magnitude of computational costs. We illustrate the method on two kinds
of observables, instantaneous and time-averaged, using two different rare event algorithms, for a
simple stochastic process, the Ornstein–Uhlenbeck process. As an example of realistic applications
to complex systems, we finally discuss extreme values of the drag on an object in a turbulent flow.
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I. INTRODUCTION

In many physical systems, the mean state and the typical fluctuations about this state, usually studied in statistical
physics, are not the only quantities of interest. Indeed, fluctuations far away from the mean state, although they
are usually very rare, can play a crucial part in the macroscopic behaviour of the system. For instance, they can
drive the system to a new metastable state, possibly with radically different properties [1]. Such transitions arise in
a wide variety of situations, such as Josephson junctions [2], quantum oscillators [3], turbulent flows [4], magneto-
hydrodynamics dynamos [5], diffusion-controlled chemical reactions [6], protein folding [7], climate dynamics [8]. Even
if the system returns to its original state after undergoing the large fluctuation, the impact of this event may be so
large that it is worth being studied on its own. One may think for instance about heat waves [9] and tropical cyclones,
rogue waves in the ocean [10], strong dissipative events in turbulent flows [11], shocks in financial markets [12]. Here,
we are concerned with the study of such atypical fluctuations starting from the equations (deterministic or stochastic)
which govern the dynamics of the system. This approach is different from and complementary to the purely statistical
methods which try to extract the best possible information about the distribution of rare events from an existing
timeseries, such as, for instance, extreme value statistics [13–15].

The theoretical framework which has been developed over the last decades in statistical physics to tackle this
problem is that of large deviation theory [16–20]. Numerical methods have also been developed to efficiently sample
rare events, which are not amenable to classical Monte-Carlo methods [21–23]; see [24, 25] for general references on
rare event simulation. Those algorithms can be roughly divided into two main classes: those which work in state
space, and evolve a population of clones of the system according to selection rules biased to favour the appearance
of the desired rare event [26–30], and those which try to sample directly in path space the histories of the system
which exhibit the phenomenon of interest [31–36]. They can be used either for stochastic processes or deterministic
chaotic dynamical systems [37]. Most of those algorithms ultimately compute either one-time statistics (typically,
the stationary probability distribution of the system, for which they sample efficiently the tails, or alternatively,
large deviation rate functions or scale cumulant generating functions), or reactive trajectories corresponding to the
transition between two metastable states.

From a modelling perspective, it is natural to assume that successive occurrences of a rare event are independent
from one another [12, 38, 39]. Then, the average number of events occurring in a time interval is proportional to the
length of that interval. This is the definition of a Poisson process. In this case, all the statistics are encoded in a single
parameter, the rate of the Poisson process. In the following, we will assume that we are dealing with the simple case
of a well identified process that can be described by a single return time or rate. This is often a sufficient framework;
indeed the long time behaviour of many systems can be described phenomenologically, or exactly in some limits, as
Markov processes described by a set of transition rates describing independent processes (see for instance [16] for
systems driven by a weak noise). We note however that many other physical systems are not amenable to such a
simple effective Markov processes, for instance structural glasses or amorphous media.

For many practical applications, the most useful information about a rare event is the return time: it is the typical
time between two occurrences of the same event. This is how hydrologists measure the amplitude of floods for
instance [40]. As a matter of fact, one of the motivations of Gumbel, a founding father of extreme value theory, was
exactly this problem [41]. Other natural hazards, such as earthquakes [42] and landslides [43], are also ranked according
to their return time. Similarly, climatologists seek to determine how the frequency of given heat waves [44, 45] or
cold spells [46] evolves in a changing climate [47]. Public policies rely heavily on a correct estimate of return times:
for instance, in the United States, floodplains were defined in the National Flood Insurance Program in 1968 as areas
vulnerable to events with a 100-year return time. Such definitions are then used to determine insurance policies for
home owners. In the industry as well, return times are the metric used by engineers to design systems withstanding a
given class of events. Another property describing rare events of a time series is the average time between successive
records [48]; here, because of its importance in practical applications, we focus on the return time, i.e. the average
time between events of a given amplitude. Just like the extreme values of any observable, the return time of a rare
event is very difficult to estimate directly from observational or numerical data, because extremely long timeseries are
necessary.

The return time may be estimated heuristically by interpreting it as a first-passage time. The first-passage time
(sometimes also called first exit time) is defined as the time it takes a stochastic process to reach the boundary of
a given domain for the first time; the properties of this random variable have been studied extensively in statistical
physics [49, 50]. Then, the return time (or return period) r(a) for an event of amplitude a (return level) may
be at first sight related to the inverse of the stationary probability ps: r(a) = τc(a)/ps(a), where the correlation
time τc(a) usually depends on a but remains bounded when ps(a) goes to zero. This is true for instance for a
system perturbed by a small-noise ε at the level of large deviations: r(a) �

ε→0
eU(a)/ε, where the quasi-potential U

is defined by ps(a) �
ε→0

e−U(a)/ε [16]. However the return time is only roughly proportional to the inverse of the
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stationary probability [51]. In order to compute τc(a) one has to go beyond large deviation theory. For instance
for gradient dynamics and for first exit time problems, exact formulas exists [52–54], valid at leading order in ε
(we stress that different formula are obtained depending on the hypothesis made on the domain that the particle
exits). Generalisations to irreversible non gradient dynamics also exist (see [55] and references therein). From these
computations, it appears clearly that τc(a) is not simply related to ps(a) and that the return time r(a) is a trajectory
property, not amenable to a one point statistics like ps(a).

There is thus a need to develop rare event algorithms specifically designed for computing return times, valid also
when large deviation estimates are not relevant. This is the aim of this paper. The approach developed in this
work relies on the combination of two observations. First, if one assumes that rare events are described by a Poisson
process, then return times can be related to the probability of observing extrema over pieces of trajectories, which
are of duration much larger than the correlation time of the system, but typically much smaller than the computed
return times. Second, several classes of rare event algorithms can be easily generalised to compute the probability of
extrema over pieces of trajectories, rather than to compute single point statistics. We show that combining these two
remarks enables us to build a powerful tool to compute return times in an elementary way with simple and robust
algorithms. As a side remark, we also discuss a new way to construct return time plots from a timeseries, which
provides an important improvement for return times moderately larger than the sampling time, even when we are not
using a rare event algorithm.

We illustrate the method by computing return times, first for an instantaneous observable (one-point statistics) us-
ing the Adaptive Multilevel Splitting (AMS) algorithm [28, 56], and second for a time-averaged observable, using both
the AMS algorithm and the Del Moral-Garnier algorithm [27] (or equivalently the Giardina-Kurchan algorithm [57] in
a non-stationary context). The computation of return times with the AMS algorithm leads us to define a generalisa-
tion called the Trajectory-Adaptive Multilevel Sampling (TAMS) algorithm. This generalisation has several practical
advantages: it computes directly return times r(a) for a full range of return level a rather than a single one, and it
avoids the tricky estimation of time scale on an auxiliary ensemble, and the sampling from this auxiliary ensemble.
As a test, we first carry out these computations for a simple stochastic process, the Ornstein-Uhlenbeck (OU) process,
for which analytical results are available and the accuracy and efficiency of the algorithm can be tested thoroughly.
Then, to demonstrate the usefulness of the method in realistic applications, we briefly showcase a problem involving
a complex dynamical system: extreme values of the drag on an object immersed in a turbulent flow.

The structure of this paper is as follows: in section II, we introduce the method to compute return times from a
timeseries and from rare event algorithms. We define the Trajectory-Adaptive Multilevel Sampling (TAMS) algorithm
in section III. We apply the method to compute return times for the instantaneous and time-averaged observables for
an Ornstein–Uhlenbeck process, respectively, in section III (using the TAMS algorithm) and IV (using both the TAMS
and the Giardina-Kurchan-Tailleur-Lecomte (GKTL) algorithms). Finally, we introduce the application to complex
dynamical systems in section V, before presenting our conclusions in section VI. We discuss in the conclusions the
range of applicability of these algorithms.

II. RETURN TIMES: DEFINITION AND SAMPLING METHODS

A. Computing return times from a timeseries

1. Definition of return times

We consider a statistically time homogeneous ergodic process (a stationary timeseries) {A(t)}t≥t0 . Typically,
A : Rd → R is an observable on a system of interest, considered here as a Rd-valued stochastic process

(
Xt

)
t≥t0

,
and we should denote A(t) = A(Xt). We are interested in the statistical distribution of events where the observable
reaches a prescribed threshold a. The occurrence of such events is illustrated for a sample Ornstein-Uhlenbeck (OU)
process, defined by dXt = −αXtdt +

√
2εdWt, on Fig. 1a. We define the return time for a given threshold a as the

average time one has to wait before observing the next event with A(t) > a. More precisely, we define the waiting
time

τ(a, t) = min {τ ≥ t |A (τ) > a} − t. (1)

As an illustration, the waiting time τ(a, t) is shown for our sample Ornstein–Uhlenbeck process on Fig. 1b. Then the
return time r(a) for the threshold a is defined as

r(a) = E [τ(a, t)] , (2)
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(a) Sample timeseries (black curve), generated from an Ornstein–Uhlenbeck process (22) (α = 1, ε = 1/2; σ = 1/
√
2 is the

standard deviation). We are interested in fluctuations which reach a prescribed threshold a (red curve). These events are
identified by the red dots.
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(b) Time evolution of the waiting time τ(a, t) (see (1)) associated to the above timeseries: it is a succession of affine parts with
slope −1. Note that in principle, there should be small time intervals such that τ(a, t) = 0, corresponding to the duration of
the event with A(t) > a, separating the triangles. Here, the duration of the events is too small for such intervals to be visible.

Figure 1: An example of a random process (a) and the waiting time (b) associated to events reaching a given
threshold.

where E is the average with respect to realisations of the process X with initial condition Xt0 = x0 (hence the notation
E = Ex0,t0 in that case), or is a time average for an ergodic process. From now on, we shall omit the indices when
there is no ambiguity. The return time r(a) is independent of time because the process is homogeneous.

The problem we consider in this section is that of estimating r(a) from a sample timeseries of duration Td :
{A(t)}0≤t≤Td . The definition leads to an obvious estimator for r(a), the direct estimator r̂D defined by

r̂D(a) =
1

Td

∫ Td

0

τ(a, t) dt =
1

Td

Nd∑
n=1

τ2
n

2
, (3)

where τn is the duration of the successive intervals over which A(t) ≤ a, and Nd is the number of such intervals. The
last identity in (3) is illustrated graphically in Fig. 1b: the integral of τ(a, t) is given by computing the total area
beneath the triangles.

In the limit of rare events, the return time will also be the average time between two successive independent events.
However the definition (2) for the return time has the big advantage of not having to deal with the definition of
independent events, which is cumbersome when time correlations are not negligible. We explain this further in the
following section.

2. Return times and the distribution of successive events

Estimating return times using (3) implies computing the time intervals τn between successive events with A(t) > a.
When a is large enough, most of the times A(t) < a and very rarely A(t) > a. Then we can distinguish two kinds
of contributions to the time intervals τn. On the one hand, we have correlated events corresponding to fluctuations
around the threshold value a, on a timescale of the order of the correlation time. From our point of view, these
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Figure 2: PDF of waiting times between two consecutive fluctuations of amplitude a = 2.5, estimated from a
timeseries of length Td = 106 of the Ornstein–Uhlenbeck process (22) with α = 1 and ε = 1/2 (blue triangles), and
assuming the events follow a Poisson process with rate 1/r(a), P (τ) = e−τ/r(a)/r(a) (black solid line), where r(a) is

computed from the timeseries. The correlation time of the Ornstein–Uhlenbeck process is τc = 1/α = 1.

correspond to the same event, with a finite duration. On the other hand, there are successive events such as those
depicted in Fig. 1a, which can be considered as statistically independent events. Therefore, we expect those events
to form a Poisson point process, and the corresponding time intervals τn should be distributed according to the
distribution of time intervals of a Poisson process: P (τ) = λ exp (−λτ) [12, 38, 39].

Figure 2a shows the Probability Density Function (PDF) of the time interval between two occurrences of an event
A(t) > a, drawn from a sample timeseries generated with an Ornstein–Uhlenbeck process. One can see that most
of the contributions are indeed small intervals of the order of the correlation time. Discarding all the time intervals
below the correlation time, one obtains the PDF displayed in Fig. 2b, which coincides with the exponential distribution
corresponding to a Poisson point process.

When a is large, r(a)� τc where τc is the correlation time of the process. Then the contribution of intervals τn of
duration comparable to τc in the formula (3) becomes asymptotically negligible compared to the contribution of the
time intervals τn � τc. Graphically, this may be seen as the fact that the sum in (3) is dominated by the contribution
of very big triangles, while for small a all the triangles have roughly the same area. Then, the return time r(a)
coincides with the average time between two statistically independent events exceeding the value a. In other words,
rare fluctuations can be considered as independent from one another, their duration can be neglected compared to
their return time, and the distribution of such events is well approximated by a Poisson process of rate λ = 1/r(a).

Neglecting the duration of the extreme events yields
∑Nd
n=1 τn ≈ Td and then one can check that

1

Td

Nd∑
n=1

τ2
n

2
≈ Nd∑Nd

n=1 τn

1

Nd

Nd∑
n=1

τ2
n

2
→

Nd→∞

1

2

E
[
τ2
]

E [τ ]
=

1

λ(a)
= r(a), (4)

where the average in this computation is taken with respect to the Poisson process interval PDF P (τ) made explicit.
One may be tempted to use the estimator r̂′D(a) = 1

Nd

∑Nd
n=1 τn instead of the estimator r̂D defined by (3). For an

actual Poisson process, that would just give the same result. However this estimator would be more sensitive to the
effect of a finite correlation time, since the contributions from time intervals τn ≈ τc between successive events will
only become negligible linearly in τc/r(a), as opposed to quadratically in formula (3).

From now on, we shall assume that the statistics of rare events is Poissonian. This is a reasonable approximation
for many dynamical systems as long as there is a well-defined mixing time after which the initial conditions are
forgotten. Of course, it would not hold for systems with long-term memory. Note that this assumption is similar to
the Independent Interval Approximation used in the context of persistence [50]. In the next paragraph, we use this
assumption to derive new expressions that allow for accurate and efficient sampling of the return times.

3. Sampling return times for rare events

In this section we present an alternative way to compute return times, that provides an easier and more efficient way
to draw return time plots for rare events than using the direct estimator (3). Let us divide the timeseries {A(t)}0≤t≤Td
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Figure 3: Return time plots for the Ornstein–Uhlenbeck process (22) with ε = 1/2, α = 1, estimated from a
timeseries of length Td = 106 using the direct estimator r̂D (3) (pentagrams), the block maximum estimator r̂B (6)
(∆T = 100, solid blue line), and the enhanced block maximum estimator r̂′B (7) (∆T = 100, solid red line and white

triangles). These estimates are compared to the analytical solution (A6) (dashed black line).

in M blocks of duration ∆T � τc, so that Td = M∆T , and let us define the block maximum

am = max {A(t) |(m− 1)∆T ≤ t ≤ m∆T } , (5)

and sm(a) = 1 if am > a and 0 otherwise, for 1 ≤ m ≤M .
For rare events, i.e. r(a)� τc, the number of events N(t) =

∑
m≤dt/∆Te sm(a) is well approximated by a Poisson

process with density λ(a) = 1/r(a). Then, assuming τc � ∆T � r(a), the probability qm(a) that am be larger than
a is well approximated by qm(a) ' ∆T/r(a). As qm(a) can be estimated by 1

M

∑M
m=1 sm(a), an estimator of r(a) is

the block maximum estimator :

r̂B(a) =
Td∑M

m=1 sm(a)
. (6)

This is the classical method for computing the return time of rare events, valid when ∆T � r(a) [58].
We now introduce a new, more precise estimator, also valid when ∆T/r(a) is of order one. It is obtained by using

qm(a) = 1− e−∆T/r(a). Then, a better estimator of r(a) is the modified block maximum estimator :

r̂′B(a) = − ∆T

ln
(

1− 1
M

∑M
m=1 sm(a)

) . (7)

To compute these estimators in practice, we sort the sequence {am}1≤m≤M in decreasing order and denote the
sorted sequence {ãm}1≤m≤M such that ã1 ≥ ã2 ≥ ... ≥ ãM . Based on (6), we then associate to the threshold ãm the
return time r(ãm) = M∆T/m. Indeed,

∑M
`=1 s`(ãm) = m, which means that m events with amplitude larger than

ãm have been observed over a duration M∆T . Alternatively, using the more precise estimator r̂′B (7) we associate to
the threshold ãm the return time r (ãm) = − ∆T

log(1−m
M )

. The return time plot represents ãm as a function of r (ãm), as

illustrated for instance on Fig. 3. Let us stress again that formulas (6) and (7) and this method of plotting the return
time are meaningful only if doing block maxima, and for ranges of parameters such that τc � ∆T � r(a) for (6) or
τc � ∆T for (7).

Figure 3 illustrates the three methods for computing return times from a timeseries: from the definition (3) and the
two formulas (6) and (7). The sample timeseries used in this figure is extracted from an Ornstein–Uhlenbeck process,
for which the return time curve can also be computed analytically. One can see that both formulas (6) and (7) lead
to the same estimate for events with r(a) � ∆T . However, formula (6) fails to yield a correct estimate as soon as
r(a) ' ∆T .
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For rare events, plotting return times using (6), as is classically done, proves itself much more convenient and
efficient than the naive sampling using (3). It is important to note however, that the use of (6) is valid only after
computing maxima over an interval of duration ∆T much larger than τc, a remark that not been considered in many
previous publications. Moreover, the generalisation (7) we propose in this paper is much more accurate for events with
a return time of order of ∆T . This procedure to compute return time plots can also be generalised in combination
with the use of rare event algorithms, as we shall see in the next section.

B. Computing return times from a rare event algorithm

In section IIA, we defined the return time for a time-homogeneous stochastic process and explained how to efficiently
compute it for rare events from a timeseries. However, a major difficulty remains as we still have to generate
numerically the rare events in the timeseries, which comes at a large computational cost. In the present section, we
explain how to apply the above method to the data produced by algorithms designed to sample efficiently rare events
instead of direct simulations.

Rare event algorithms provide an effective ensemble of M trajectories {Xm(t)}0≤t≤Ta (1 ≤ m ≤ M). Note that
the length Ta of the trajectories generated by the algorithm does not necessarily coincide with the length Td of the
trajectory generated by direct sampling: in practice, as we shall see, Ta � Td. For each of these trajectories, we
compute the maximum of the observable over the time evolution am = max0≤t≤Ta (A(Xm(t))). This is similar to the
block maximum method described in section IIA 3, with each trajectory playing the role of a block. There is however a
major difference: unlike in the block maximum method, the different trajectories sampled by the rare event algorithm
do not have identical statistical weight. To each trajectory Xm(t), and thus to each maximum am, is associated a
probability pm computed by the algorithm. Hence, rather than just a sequence {am}1≤m≤M , rare event algorithms
yield a sequence {am, pm}1≤m≤M . The generalisation of the block maximum formula (7) to non-equiprobable blocks
is straightforward and leads to the estimator

r̂A(a) = − Ta

ln
(

1−
∑M
m=1 pmsm(a)

) . (8)

Of course, we could construct similarly an estimator generalising (6), but as we have seen in the previous section, the
estimator (7) yields better performance.

In practice, to plot the return time curve, we sort the sequence {am, pm}1≤m≤M in decreasing order with respect
to the am, and denote the sorted sequence {ãm, p̃m}1≤m≤M such that ã1 ≥ ã2 ≥ ... ≥ ãM . We then associate to the
threshold ãm the return time

r̂A(ãm) = − Ta
ln (1−

∑m
`=1 p̃`)

. (9)

Indeed, the sum of the weights of the events with amplitude larger than ãm is
∑m
`=1 p̃`. Again, the return time plot

represents a as a function of r (a).
We stress that the method described here does not depend on the observable of interest, or on the details of the

algorithm itself. In the remainder of the paper, we provide a proof-of-concept for this method, by considering two kinds
of observables, sampled by two different algorithms: first, we study the return times for instantaneous observables
using the Adaptive Multilevel Splitting (AMS) algorithm (section III), then we turn to time-averaged observables
using both the AMS and the Giardina-Kurchan-Tailleur-Lecomte (GKTL) algorithm (section IV). We show that the
method allows to accurately compute return times at a much smaller computational cost than direct simulation. In
both cases, we apply the technique to the simple case of an Ornstein–Uhlenbeck process, for which the results are
easily compared with direct simulation and theoretical predictions, before illustrating the potential of the method for
applications in complex systems (section V).

III. RETURN TIMES SAMPLED WITH THE ADAPTIVE MULTILEVEL SPLITTING ALGORITHM

In this section, we present the computation of return times by applying the method presented in section II B to a
rare event algorithm known as Adaptive Multilevel Splitting (AMS). This algorithm follows the strategy of splitting
methods for the estimation of rare event probabilities, which dates back to the 1950s [59]. Many variants have been
proposed since then. The AMS algorithm can be interpreted as simulating a system {xi(t)} of interacting replicas
(instead of independent replicas in a crude Monte Carlo simulation), with some selection and mutation mechanism.
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We describe this mechanism in section IIIA as a method to sample trajectory space. This contains all the necessary
details for practical use of the algorithm. Then, in section III B we connect the procedure to the general framework of
the AMS algorithm, which enables us to directly benefit from the available mathematical results. In section III C, we
explain what is the optimal choice of score function for our problem and we analyse its behaviour. In section IIID,
we show how the algorithm enables us to estimate return times, under the Poisson statistics assumption made above.
Finally, we illustrate in section III E the method by computing the return times for an Ornstein–Uhlenbeck process.

A. The Trajectory-Adaptive Multilevel Sampling (TAMS) algorithm

The classical AMS algorithm is based on the evolution of an ensemble of trajectories, based on selection-mutation
rules, in order to compute rare event probabilities, and more generally committor functions. Return times can not
be estimated directly from a committor function and require the estimation of trajectory statistics. The method we
propose to compute return times involves the estimation of probabilities of trajectories with a fixed duration Ta. In
order to deal with this, we propose a specific modification of the classical AMS algorithm, called Trajectory Adaptive
Multilevel Splitting.

While the classical AMS algorithm requires to specify only a real-valued score function ξ – also called a reaction
coordinate in many works, due to connections with molecular dynamics simulations, see [56], and also [60, Section 4.3]
– the Trajectory Adaptive Multilevel Splitting requires in general a time dependent score function, see Section III C
for the optimal choice.

We consider a continuous time Markov model able to generate trajectories. It can be either a stochastic process,
for instance a diffusion, or a chaotic deterministic dynamical system. Let us now describe the algorithmic procedure.

We start by simulating N independent trajectories, denoted {x(0)
n (t)}1≤n≤N , for a fixed duration Ta. To each of

these trajectories, we associate a weight w0 = 1. Then, at iteration j ≥ 1, we evaluate the performance of all replicas
{x(j−1)

n (t)}1≤n≤N at iteration j − 1, measured by the maximum of the score function ξ over the whole trajectory:

Q(j)
n = sup

0≤t≤Ta
ξ(t, x(j−1)

n (t)). (10)

We select the trajectories corresponding to the lowest Q(j)
n : let us denote Q?j = min1≤n≤N Q(j)

n and n?j,1, . . . , n?j,`j the
indices such that:

Q(j)
n?j,1

= · · · = Q(j)
n?j,`j

= Q?j . (11)

One might expect intuitively that `j = 1. This is not necessarily the case, as explained in [60]: because of the
discretization of the dynamical equations in the numerical model, two or more trajectories may yield the same level
Q(j)
n .
We then proceed to the mutation step. For each trajectory x

(j−1)
n?j,`

(1 ≤ ` ≤ `j), we choose a trajectory x
(j−1)
n`

(n` 6= nj,1, . . . nj,`j ) randomly among the N − `j remaining trajectories, and define the time tj,` defined as the
smallest time t such that ξ(t, x(j−1)

n` (t)) > Q?j . Finally, we define the new replica x(j)
n?j,`

by copying the trajectory

x
(j−1)
n` from t0 to tj,`, and simulating the rest of the trajectory, from tj,` to Ta. For a Markov process, for instance a

diffusion, a new realisation of the noise is used in order to simulate the new trajectory from tj to Ta. For a chaotic
deterministic system, a small amplitude noise is added to the initial condition at time tj . The other trajectories are
not modified: x(j)

n = x
(j−1)
n for n 6= n?j,1, . . . , n

?
j,`. The selection-mutation process is illustrated on Fig. 4. We associate

to the trajectories x(j)
n forming the ensemble at step j the weight wj given by [28, 56, 60]:

wj =

j∏
i=1

(
1− `i

N

)
=

(
1− `j

N

)
wj−1. (12)

Note that we could mutate more replicas at each step by selecting an arbitrary number of levels Q(j)
n , instead of just

the minimum Q?j as described above. The particular case described above is sometimes referred to as the last particle
method [61].

The selection-mutation process is iterated J times (two possible definitions of J are given below). The number of
resampled trajectories is given by J̃ =

∑J
j=1 `j . Note that J̃ ≥ J , but the two need not necessarily coincide. In the

end, the algorithm generates M = N + J̃ trajectories, given explicitly by the set {x(0)
n }1≤n≤N ∪ {x(j)

n?j,`
}1≤`≤`j ,1≤j≤J ,



10

Figure 4: Illustration of one selection-mutation step in the AMS algorithm for the computation of the probability
that an observable A : Rd → R reaches values larger than Q over a trajectory of duration Ta.

or equivalently, the set {x(J)
n }1≤n≤N ∪ {x(j−1)

n?j,`
}1≤`≤`j ,1≤j≤J . Each trajectory has an associated weight, given by

the iteration until which it was a member of the ensemble: wJ for the final trajectories {x(J)
n }1≤n≤N , and wj−1 for

the trajectories {x(j−1)
n?j,`

}1≤`≤`j ,1≤j≤J mutated at iteration 1 ≤ j ≤ J . Let us relabel these trajectories and their

associated weights as {(xm, wm)}1≤m≤M . Normalising the weights with W =
∑M
m=1 wm, we obtain the probabilities

pm = wm/W associated with the trajectories.
Note that instead of just one realisation of the algorithm, one may carry out K independent realisations, thus

yielding M =
∑K
k=1(Nk + J̃k) trajectories with the associated weights, where Nk and J̃k denote the number of

initial trajectories and resampled trajectories for realisation k, respectively. The probabilities for the trajectories are
computed as above.

For any observable O[x(t)], we can define an estimator based on our sampling of trajectory space:

ÔM =

M∑
m=1

pmO[xm(t)]. (13)

For practical applications, we shall be interested in two particular cases:

• Instantaneous observable: O[X, t] = A(X(t)), for some time-independent observable A : Rd → R.

• Time-averaged observable: O[X, t] = 1
T

∫ t
t−T A(X(s))ds for some time-independent observable A : Rd → R and

prescribed width T for the averaging window. Note that this is a case where the time-dependent observable O
is defined on a different interval than the original process X, here [T, Ta].

The number of iterations J can either be a prescribed integer (in that case the stopping criterion for the algorithm
is simply j = J), or a random number such that all the trajectories in the ensemble reach a threshold level Q
(the stopping criterion is then Q(j)

n > Q for all 1 ≤ n ≤ N). The latter case is more common in existing AMS
implementations, however both cases are covered by the general framework developed in [60], and give consistent
results. We further discuss these two possible choices in section IIID.

Let us now estimate the computational cost of an AMS run. The number of trajectories generated by an AMS run
is M = N + J̃ , as pointed out above. Each resampled trajectory is not simulated over the whole duration Ta, but over
τ < Ta, with τ a random number depending on the branching point. We thus define γ ∈ [0, 1] so that E[τ ] = γTa is the
average duration of the resampled part of a mutated trajectory. Performing K identical and independent realisations
of the AMS algorithm, the average computational cost associated with a given experiment is then approximately

C = K × (N + γJ)Ta. (14)
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B. Connection with the Adaptive Multilevel Splitting (AMS) algorithm for time-dependent observables

In this section, we describe the connection between the Trajectory-Adaptive Multilevel Sampling (TAMS) algorithm
and the classical AMS algorithm. The aim is to deduce the mathematical properties of the TAMS algorithm from the
known ones for the AMS algorithm. For instance we will conclude that the optimal score function is the committor
function (17). This section can be skipped by the reader interested in the algorithm only, without trying to understand
the mathematical aspects.

The Adaptive Multilevel Splitting (AMS) algorithm has originally been designed [28] to efficiently and accurately
estimate probabilities of rare events of the type Px0,t0(τB < τA) ∈ (0, 1): the probability that a Markov process(
Xt

)
t≥t0

, initialised with Xt0 = x0, hits a set B before hitting a set A (with A∩B = ∅), where τC = inf {t > t0;Xt ∈ C}
is the hitting time of a set C. In this section, we show how the problem of estimating the maximum value of a time-
dependent observable over a trajectory (which later will be used to estimate return times) falls within the scope of
the AMS algorithm. This enables us to benefit directly from the theoretical properties of the AMS algorithm. Some
recent mathematical results about the algorithm are reviewed in appendix B. This review is not exhaustive, see for
instance [60] and references therein.

We consider a Rd-valued Markov process
(
Xt

)
t∈[0,Ta]

, with continuous trajectories, for some fixed final time Ta,
and a time-dependent observable O[X, t]: this is a (time-dependent) functional of the process X, taking value in R.
It may be defined for times belonging to a subset of [0, Ta], but for simplicity we shall still denote Ta the final time.
The aim is to estimate the probability that the observable reaches a threshold a at some point of the trajectory, i.e.

q(a) = Px0,0

[
max

0≤t≤Ta
O[X, t] > a

]
; (15)

(the notation Px0,t0 means the probability over realisations of the Markov process with initial condition Xt0 = x0).
The AMS algorithm provides an estimator q̂(a) for this quantity. Indeed, the event {max0≤t≤Ta O[X, t] > a} can be
identified with the event {τB < τA} for an auxiliary Markov process Yt, with an appropriate definition of the sets A
and B, as follows:

Yt = (t, O[X, t]) ∈ [0, Ta]× R, A = {(Ta, z); z ≤ a} , B = {(t, z); t ∈ [0, Ta], z > a} . (16)

Note that Y is not necessarily a time-homogeneous process. In section IIIA, we have described the TAMS algorithm
that gives a procedure to sample the process Y to provide a good estimate of q(a), based on a score function ξ, which
measures the distance between A and B (in many implementations of the AMS, ξ(∂A) = 0 and ξ(∂B) = 1). We
describe the corresponding estimator q̂(a), and the related estimator for return times, in section IIID.

It follows from the above paragraph that the convergence properties of the TAMS algorithm are a direct consequence
of the known results for the AMS algorithm (see appendix B). Let us, however, explain in a heuristic way the validity
of the algorithm. We refer to [28, 60] for rigorous mathematical arguments.

The algorithm iterates a selection-mutation mechanism on a system of clones. At the selection step, (typically)
one clone is removed from the system. To keep a constant number of clones, one new replica needs to be sampled.
Statistical consistency is ensured by the introduction of the weights, and appropriate rules for their update. Observe
in particular that the sum of the weights of the N−1 selected clones, before update, is equal to the sum, after update,
of the N clones. At the mutation step, the new clone is sampled by branching one of the selected clones, at the current
level. The Markov property of the dynamics is used to sample the end of the trajectory, after crossing the current
level. This ensures that, after the mutation step, the N clones observed after the first crossing of the current level,
are (conditionally) independent and identically distributed. Observe that they also have the same weight. Eventually,
at the last iteration, all the N clones reach the (rare) event of interest, by construction. The weights (or equivalently
the random number of iterations) are used to estimate the probability of this event. First, consider non-adaptive
versions of the multilevel splitting algorithm, where the levels and the number of iterations are fixed, as originally
developed in [59]. This consists in a decomposition of the probability of the rare event, as a product of conditional
probabilities. The weights are then products of standard estimators of these conditional probabilities. In the adaptive
versions, initially developed in [28], the levels are computed on-the-fly as empirical quantiles: the minima of scores
among N clones. The factor 1− 1/N can be interpreted as the associated conditional probability, hence the validity
of the approach – but the analysis in the adaptive case is more complex.

C. The optimal score function

This section is a theoretical discussion of the properties of the optimal score function; it may be skipped by readers
who are only interested in the application of the TAMS algorithm for computing return times.
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As explained in appendix B, the statistical properties, and in particular the variance of the AMS estimator q̂(a),
depend on the choice of the score function ξ. The variance is minimal for a particular choice of the score function,
sometimes referred to as the committor. In a very generic manner, for the AMS algorithm, it is given by ξ̄ = P[τB < τA].
In the specific case of the TAMS algorithm, the optimal score function takes the form:

ξ̄(t, x;Ta, a) = Px,t
[

max
t≤s≤Ta

O[X, s] > a

]
, (17)

for all (t, x) ∈ [0, Ta] × Rd, where we denote Px,t the probability over the process initialised at position x at time t,
and the threshold a and trajectory duration Ta are fixed parameters. Note that the optimal score function depends
both on time and space. Of course, we cannot use this score function in practice, because it is exactly what we are
trying to compute. Indeed, as mentioned above, the algorithm ultimately provides an estimate of the probability
q(a) = ξ̄(0, x0;Ta, a). Nevertheless, a crucial point to implement the AMS algorithm is to choose a score function
that provides a good approximation of the committor. In practical applications, constructing the score function will
often be based on heuristic considerations, but it may also be useful to have theoretical results about the optimal
score function.

Here, we want to explain the qualitative properties of the time-dependent committor (17) specific to the TAMS
algorithm. For simplicity, we shall only discuss the case of an instantaneous observable: O[X, t] = A(Xt). Moreover,
for the precision of the discussion, we assume that the stochastic process X solves the stochastic differential equation
dXt = b(Xt)dt+

√
2εdWt, where b is a vector field with a single fixed-point x?. We further assume that the basin of

attraction of x? is the full phase space. With this hypothesis, the invariant measure of the diffusion is concentrated
close to the attractor x? when ε� 1. Let us assume that the set C = {x | A(x) ≤ 0} is a neighbourhood of x? on which
most of the invariant measure mass is concentrated. We call C the attractor. The target set D = {x | A(x) ≥ a} is
similarly defined. The hitting times for the sets C and D are the random variables given by τ? = inf{t > 0 | A(Xt) ≤ 0}
and τa = inf{t > 0 | A(Xt) ≥ a}, respectively, where the process is started from a point x at time t = 0, such that
0 ≤ A(x) ≤ a. We finally define the static committor ξ0(x, a) ≡ Px,0[τa < τ?]. The aim of the following discussion is
to explain the relation between the time-dependent committor (17) and the static committor ξ0(x, a).

On the one hand, the time-dependent committor ξ̄ satisfies a backward Fokker-Planck equation

∂ξ̄

∂t
= −L[ξ̄], with L = bi

∂

∂xi
+ ε

∂2

∂x2
i

, (18)

in the domain A−1([0, a]) ⊂ Rd with boundary condition ξ̄(t, x;Ta, a) = 1 for x ∈ ∂D, and final condition
ξ̄(Ta, x;Ta, a) = 0. This follows directly from the backward Fokker-Planck equation for the transition probabil-
ity P (y, s|x, t), and the fact that, with an absorbing boundary condition on ∂D, ξ̄(t, x;Ta, a) = 1−

∫
dyP (y, Ta|x, t).

Note that when Ta − t � r(a), ξ̄(t, x;Ta, a) ≈ 1 everywhere (ξ̄ converges to 1). On the other hand, ξ0(x, a) satisfies
L[ξ0] = 0, but with different boundary conditions: ξ0(x, a) = 1 if x ∈ ∂D and ξ0(x, a) = 0 if x ∈ ∂C. In the next
paragraph, we argue that when Ta − t is much smaller than r(a), the time-dependent committor ξ̄(t, x;Ta, a) given
by (17) is well approximated by the static committor ξ0(x, a), except in two boundary layers: a spatial one of size ε
for x close to the attractor, and a temporal one of size τc for t close to Ta.

Using the notations of section III B, the events {τB < τA} can be decomposed into the disjoint union of events
for which the observable reaches the threshold a before or after hitting 0. The typical time for X to reach C is
the correlation time τc. If we assume that Ta − t � τc, we have the approximation ξ̄(t, x;Ta, a) ' ξ0(x, a) +
[1 − ξ0(x, a)]ξ̄(t, x?;Ta, a) (we have used here the approximations ξ̄(τ?, y;Ta, a) ' ξ̄(τ?, x?;Ta, a) for any y ∈ ∂C,
and ξ̄(τ?, x?;Ta, a) ' ξ̄(t, x?;Ta, a)). Moreover, when Ta − t � r(a), the Poisson approximation ξ̄(t, x?;Ta, a) '
(Ta − t)/r(a) holds. To sum up, in the limit τc � Ta − t� r(a),

ξ̄(t, x;Ta, a) ' ξ0(x, a) +
Ta − t
r(a)

[1− ξ0(x, a)]. (19)

Let us now introduce the quasipotential V . We note that ξ0(x, a) �
ε→0

exp(−(infy∈A−1({a}) V (y) − V (x))/ε), while
r(a) �

ε→0
exp((infy∈A−1({a}) V (y))/ε). We can thus conclude that ξ0(x, a) dominates this expression for all x except

in a region of size ε around the attractor x?.
As a conclusion, when Ta − t is much smaller than r(a), the time-dependent committor ξ̄(t, x;Ta, a) (17) is well

approximated by the static committor ξ0(x, a), except in two boundary layers: a spatial one of size ε for x close to
the attractor, and a temporal one of size τc for t close to Ta. This is illustrated in Fig. 5, representing the committor
ξ̄(t, x;Ta, a) for the Ornstein–Uhlenbeck process (with α = 1, ε = 1/2), obtained by solving numerically the backward
Fokker-Planck equation (18), with a = 4, Ta = 5.
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Figure 5: Contour lines of the time-dependent committor ξ̄(t, x;Ta, a) for the Ornstein–Uhlenbeck process (with
α = 1, ε = 1/2; in particular τc = 1), obtained by solving numerically the backward Fokker-Planck equation (18),

with a = 4, Ta = 5.

D. Computing return times

As explained in section IIIA, the algorithm generates an ensemble of M trajectories xm(t) with associated proba-
bility pm. It follows directly from (13) that an estimator of q(a) is:

q̂M (a) =

M∑
m=1

pmsm(a), (20)

where am = max0≤t≤Ta A(xm(t)) is the maximum value for the observable over the trajectory m, pm the associated
probability (see IIIA), and sm(a) = 1 if am > a, 0 otherwise (IIA 3).

As explained in IIA 3, the return time is related to q(a) by the hypothesis that these events are Poissonian, and we
obtain the estimator for the return time r̂M (a) = Ta

ln(1−q̂M (a)) given by (8) (alternatively, we could use r̂M (a) = Ta
q̂M (a) ).

In essence, to draw return time plots, it suffices to sort the set {(am, pm)}1≤m≤M according to the am and use (9), as
described in II B. Note that in practice, with the particular choice of score function ξ(t, x) = A(x), storing the levels
Q(j)
n for the killed trajectories directly provides the corresponding values am.
By definition, the estimators q̂M (a) and r̂M (a) are random variables. In appendix B, we describe their statistical

properties, and how to interpret them in terms of consistency and efficiency of the AMS algorithm. In particular,
we show that q̂M (a) is an unbiased estimator of q(a), study the variance, and show the existence of a Central Limit
Theorem.

In section IIIA, we proposed two choices for the number of iterations in the algorithm. First, we described the
algorithm with a fixed number of iterations J . Alternatively, as is often seen in the AMS literature, one may decide
to iterate the algorithm until all trajectories reach set B. Then J is a random number. In that case, the threshold
a which defines the set B becomes the control parameter for the stopping criterion. Under those circumstances, the
estimator q̂M can be expressed as

q̂M (a) =

J∏
j=1

(
1− `j

N

)
. (21)

This formula remains valid in the case where the number of iterations J is prescribed: it suffices to define the set B
a posteriori, by choosing a = min1≤n≤N a

(J)
n the minimum value of the am among the final trajectories. The formula

could also be used to compute q̂M (b) with b < a, simply by changing the number of iterations required to meet the
stopping criterion. In practice, the easiest approach is to use the expression given in (20).

In the above, we have defined the AMS estimators q̂M and r̂M based only on the number of trajectories generated by
the algorithm. In fact, the N initial trajectories and the J̃ resampled trajectories (generated during the J iterations)
are qualitatively different. In practice, the user does not choose the parameter M directly, but rather the number of
ensemble members N on the one hand, and either the threshold a or the number of iterations J on the other hand.
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As explained in appendix B, the number of initial trajectories N governs the convergence of the estimators. Another
practical constraint on the choice ofN is the problem of extinction: for some systems, ifN is too small, all the members
of the ensemble become identical after a number of iterations. The other parameter (the threshold a or the number
of iterations J) selects the type of events we are interested in. Indeed, from (21), we obtain an approximate relation
between the number of resampled trajectories J̃ and the target return times: we write ln q̂M (a) =

∑J
j=1 ln

(
1− `j

N

)
.

For large N , this leads to ln q̂M (a) ≈ −
∑J
j=1 `j/N ≈ −J̃/N . Targeting rare events with probability 10−β , i.e. return

times of order 10βTa, J̃ is then O(Nβ). This indicates how to choose the number of iterations J in practice. In
particular, for rare events, we should often be in the regime J = Nβ.

To sum up, to compute return time plots r(a), one may either fix the target amplitude a, and run the algorithm
for a random number of iterations, until the observable reaches a for all the trajectories (i.e. until all the trajectories
reach set B), or fix the target return time r(a), and iterate the algorithm a fixed number of times by choosing
J = N ln(r(a)/Ta). In the former case, the prescribed amplitude a needs not correspond to the largest event for
which we should estimate the return time, but it will approximately be the case as soon as N � J , i.e. if a is large
enough for fixed N . Similarly, in the latter case, the largest return time computed by the algorithm will approximately
be equal to the prescribed target return time when N � J .

Please note that this method computes the probability to exceed a threshold a, by averaging over trajectories or
over K algorithm realisations the sampled value of q(a). This gives an unbiased estimator of q(a), as explained in
appendix B. The standard deviation of this estimator is of order 1/

√
KN . When computing r(a) through the nonlinear

relation r̂(a) = −Ta/ ln (1− q̂(a)), we thus obtain an estimator of r(a) with a bias of order of 1/(KN) and a standard
deviation of order 1/

√
KN . If however we had made averages over return times among algorithm realisations, then

the estimator for each realisation would have been biased with a bias of order 1/N (see appendix B), and the final
estimator after K realisations would still be biased with a bias of order 1/N .

E. Return times for the Ornstein–Uhlenbeck process from the Trajectory-Adaptive Multilevel Sampling
algorithm

We consider the Ornstein–Ulhenbeck process Xt defined as

dXt = −αXtdt+
√

2εdWt (22)

with α = 1 and ε = 1/2. The correlation time is τc = 1 and the variance is σ2 = 1/2. We now illustrate the use of
the TAMS algorithm for computing the return times r(a) for the variable Xt being larger than a threshold a. This
amounts to choose the observable as A(x) = x. We use the TAMS algorithm described in IIIA with a score function
ξ(x, t) = x. This choice of score function is motivated by the fact that the optimal score function is nearly independent
of time, except on a small boundary layer, as explained in III C, and that in dimension 1, the level set of x will be the
same as the level set of the static committor function.

The algorithm relies on three numerical parameters : the length of the generated trajectories Ta, the maximum
threshold value amax and the number of replicas N . As explained in appendix B, the relative error depends on N .
Additionally, one has to choose Ta � τc, as explained in section IIA 3. We see empirically that a good trade-off
between this requirement and computational burden is to choose trajectories of length Ta equal to a few correlation
times.

Figure 6 shows the return time plot computed using N = 100 replicas, Ta = 5τc and a = 7σ, using the TAMS in
conjunction with the methodology described in section IIID. For comparison, figure 6 also features the theoretical
value, estimated by computing the mean first-passage time (see appendix A), and the estimate obtained from a direct
sampling with the same computational cost as the TAMS run. We see that return times are very well recovered by the
AMS algorithm. Furthermore, figure 6 clearly illustrates the computational gain from the TAMS algorithm. Indeed,
for the same computational cost as direct sampling, the use of the TAMS algorithm gives access to return times for
much rarer events: we can now accurately compute return times on the order of 1013, about seven orders of magnitude
larger than direct sampling.

IV. RETURN TIMES SAMPLED WITH THE GIARDINA-KURCHAN-TAILLEUR-LECOMTE
ALGORITHM

In this section, we illustrate the computation of return times using the method described in section II B for a time-
averaged observable. Even though it could be done using the TAMS algorithm presented in section III B, we instead
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Figure 6: Return time plot for a random variable following an Ornstein–Uhlenbeck process (22) with α = 1 and
ε = 1/2 (σ = 1/

√
2 is the standard deviation). The solid red line represents the estimate obtained using the TAMS

with N = 100 replica, Ta = 5τc and a = 7σ. The total number of trajectories (both initial and resampled) is
M ≈ 2× 103 so that the total computational cost is O(106τc). It is compared to the modified block maximum

estimator r̂′B applied to a sample timeseries of length Td = 106τc (blue stars) and to the analytical result (A6). The
shaded area represents the confidence interval on the estimation of the fluctuation amplitude a, for a fixed value for
the return time r(a). It is computed as the empirical mean over the 100 interpolated return time curves originating

from the 100 independent realisations of the algorithm.

illustrate the use of a different rare-event algorithm, specifically designed to compute large deviations of time-averaged
dynamical observables: the Giardina-Kurchan-Tailleur-Lecomte (GKTL) algorithm [29, 57, 62].

A. The algorithm

The underlying idea of the Giardina-Kurchan-Tailleur-Lecomte (GKTL) algorithm is to perform a biased sampling
of trajectory space. It relies on the simulation of a population of trajectories, which, unlike direct Monte-Carlo
methods, interact dynamically: at regular time intervals, some members of the ensemble are killed and some are
cloned according to a weight which depends on the history of the replica. The weights are chosen such that, after
several iterations of the algorithm, generated trajectories are distributed according to a probability distribution that
is tilted in order to favour trajectories with large values of a chosen time averaged observable. This sort of algorithm
has first been proposed by [57] and has been used to study rare events in both stochastic [57, 63–65] and deterministic
systems [57, 62]. The idea of sampling quantities of interest from a distribution biased in a controlled way is very
general; it is referred to as importance sampling, and was used in many different contexts (see e.g. [66, 67] and the
general references [24, 25]).

More precisely, we perform simulations of an ensemble of N trajectories {Xn(t)} (with n = 1, 2, ..., N) starting from
random initial conditions. Like in section III, the total integration time of the trajectories is denoted Ta. We consider
an observable of interest A(X(t)) and a resampling time τ . At times ti = iτ (with i = 1, 2, ..., Ta/τ) we assign to each
trajectory n a weight W i

n defined as

W i
n =

e
k
∫ ti
ti−1

A(Xn(t))dt

Ri
with Ri =

1

N

N∑
n=1

e
k
∫ ti
ti−1

A(Xn(t))dt
. (23)

For each trajectory Xn, a random number of copies of the trajectory are generated, on average proportional to the
weight W i

n and such that the total number of trajectories produced at each event is equal to N . The parameter k
is chosen by the user in order to control the strength of the selection and thus to target a class of extreme events of
interest. The larger the value of k, the more trajectories with large values of the time average observable will survive
the selection.
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As mentioned above, the GKTL algorithm performs importance sampling in the space of trajectories, which is
relevant for out-of-equilibrium systems. Let us denote formally P0

(
{X(t)}0≤t≤Ta = {x(t)}0≤t≤Ta

)
the probability to

observe a trajectory {x(t)}0≤t≤Ta in the model, and Pk
(
{X(t)}0≤t≤Ta = {x(t)}0≤t≤Ta

)
the probability to observe

the same trajectory with the algorithm. By construction of the algorithm through the weights (23), we have

Pk
(
{X(t)}0≤t≤Ta = {x(t)}0≤t≤Ta

)
∼

N→∞

ek
∫ Ta
0

A(x(t))dt

Z(k, Ta)
P0

(
{X(t)}0≤t≤Ta = {x(t)}0≤t≤Ta

)
. (24)

where the normalisation factor is given by Z(k, Ta) = E0

[
ek

∫ Ta
0

A(X(t))dt
]
, denoting by E0 the expectation value with

respect to P0, and ∼
N→∞

means that this is true only asymptotically for large N . The typical error is of order 1/
√
N

when evaluating averages over observables. Equation (24) is obtained by assuming the mean field approximation

R1 =
1

N

N∑
n=1

ek
∫ t

1
0 A(Xn(t))dt ∼

N→∞
Z(k, t1) = E0

[
ek

∫ t1
0 A(X(t))dt

]
, (25)

which, by induction, and using a formula similar to (25) at each step of the induction, leads to [29, 57]:

Ta/τ∏
i=1

Ri ∼
N→∞

Z(k, Ta) = E0

[
ek

∫ Ta
0

A(X(t))dt
]
. (26)

The validity of the mean field approximation and the fact that the typical relative error due to this approximation is
of order 1/

√
N has been proven [68, 69] to be true for a family of rare event algorithms including the one adopted in

this paper.
Formula (24) is valid only for times Ta that are integer multiples of the resampling time τ . The killed trajectories

have to be discarded from the statistics. Starting from the final N trajectories at time Ta, one goes backwards in time
through the selection events attaching to each piece of trajectory its ancestor. In this way one obtains an effective
ensemble of N trajectories from time 0 to time Ta, distributed according to Pk. All trajectories reconstructed in this
way are real solutions of the model: we have not modified the dynamics, but only sampled trajectories according to
the distribution Pk rather than according to the distribution P0.

The GKTL algorithm was initially designed to compute large deviation rate functions [57]. Indeed, using λ(k, Ta) =
1
Ta

lnZ(k, Ta), the scaled cumulant generating function [19] λ(k) = limTa→+∞ λ(k, Ta) can easily be estimated from

the algorithm. From there, the large deviation rate function I(a), such that P0

[∫ Ta
0

A(X(t))dt = Taa
]
� e−TaI(a),

is recovered by the Legendre-Fenchel transform I(a) = supk(ka − λ(k)) [19]. In fact, the algorithm can be used to
compute the statistical properties with respect to the distribution P0 of any observable, from the distribution Pk.
This is done using the backward reconstructed trajectories and inverting formula (24). If, for example, one wants to
estimate the expectation value of an observable O

(
{X(t)}0≤t≤Ta

)
, an estimator is given by

E0

[
O
(
{X(t)}0≤t≤Ta

)]
∼

N→∞

1

N

N∑
n=1

O
(
{Xn(t)}0≤t≤Ta

)
e−k

∫ Ta
0

A(Xn(t))dteTaλ(k,Ta), (27)

where the Xn are the N backward reconstructed trajectories. Empirical estimators of quantities related to rare (for
P0) events of the kind of (27) (thus using data distributed according to Pk) have a dramatically lower statistical error,
due to the larger number of relevant rare events present in the effective ensemble. In particular, one can use the
reconstructed trajectories to compute return times using the method described in section II B. Of course, the above
formula will not perform well for quantities which are rare for the biased statistics, and we should carefully construct
the effective ensemble depending on the class of observables O we are trying to estimate.

B. Return times for the time-averaged Ornstein–Uhlenbeck process from the GKTL algorithm

We consider the time averaged position

XT (t) =
1

T

∫ t

t−T
x(s)ds, t ∈ [T, Ta] (28)
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Figure 7: Return time plot for the time-averaged Ornstein–Uhlenbeck process XT (28) with α = 1 and ε = 1/2

(σ = 1/
√

2 is the standard deviation), estimated from the GKTL algorithm (solid red line) and AMS algorithm
(solid blue line). The GKTL algorithm was used with N = 500 replica, Ta = 20τc and k = 0.9. It was repeated
K = 100 times. The TAMS algorithm was used with N = 100 replicas, Ta = 50 and a = 6.5σT . It was repeated
K = 10 times. Finally, the dashed black line represents the result of a direct sampling over a timeseries of length

Td = 109. Parameters of both the GKTL and AMS algorithms were chosen so that 100 realisations of the algorithms
amount to a computational cost of O(106τc). The cost of the direct sampling is 109τc.The shaded area represents

the confidence interval on the estimation of the fluctuation amplitude a, for a fixed value for the return time r(a). It
is computed as the empirical mean over the 100 interpolated return time curves originating from the 100

independent realisations of the algorithm.

where the position x follows an Ornstein–Uhlenbeck process (22) between times 0 and Ta. We call σ2
T the variance

of XT and τc,T the correlation time. In this section we illustrate the application of the GKTL algorithm to the
computation of the return times r(a) for X̄T being larger then a. We make use of the GKTL algorithm with Ta > T ,
computing the time-averaged position X̄T (t) for T ≤ t ≤ Ta as a moving average.

Similarly to the case of the TAMS (see section III E), the application of the GKTL algorithm depends on three
numerical parameters: the number of trajectories N , the length of the trajectories Ta and the bias parameter k.
The number of trajectories N governs the relative error, as explained in section IVA, and one should use Ta so that
Ta − T � τc,T , as explained in section IIA 3. Finally, as for the strength of the selection k, its relation with the
amplitude of the generated fluctuations is not known beforehand, and one has to set its value empirically [70].

In Fig. 7, we show the return times r(a) for XT , with T = 10τc, computed from the GKTL algorithm described in
section IVA, following the methodology described in II B. In order to validate the computation, the estimate obtained
from the algorithm is compared to the direct sampling method (7). For rare events (r(a) � τc,T ), the results from
the GKTL algorithm agree well with direct sampling. Furthermore, the comparison of the computational costs for
the two different methods shows the efficiency of the algorithm. Indeed, for direct sampling, the length of the sample
trajectory, 109τc in the case of Fig. 7, naturally sets an upper bound on the return times one is able to compute. By
contrast, the total cost of the GKTL estimate is 106τc and one can see in Fig. 7 that it allows to reach return times
larger by many orders of magnitude. Figure 8 shows an estimate of the PDF for X̄T along the trajectories generated
using the GKTL algorithm. Even though importance sampling is performed for the observable X̄Ta , the observable
averaged over the whole trajectory of length Ta, it better samples the tail of the PDF for X̄T , resulting in better
estimation of the corresponding return times.

Figure 7 also shows the return time for X̄T (t) being larger than a computed using the TAMS algorithm (see
section IIIA). We use as a score function the time-averaged observable itself ξ(t) = X̄T (t), for T ≤ t ≤ Ta. The
selection is then done according to the maximum value of X̄T (t) for each trajectory for T ≤ t ≤ Ta. More precisely,
following the notations of section IIIA, for iteration j we denote Q?j the lowest maximum of X̄T over the trajectories
in the set {x(j)

n (t)}0≤t≤Ta,1≤n≤N . Following the TAMS algorithm described in section IIIA, the lj new replica are
defined by copying the trajectories x(j−1)

n` from 0 to the smallest time t such that X̄(j−1)
T,n`

(t) > Q?j and simulating the
rest of the trajectory from this time to Ta.

The agreement between the two estimates illustrates that the method to compute return times from rare event
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Figure 8: PDF of the time-averaged observable X̄T , with T = 10τc, for the Ornstein–Uhlenbeck process with α = 1
and ε = 1/2 (σ = 1/

√
2 is the standard deviation): computed from a direct simulation of length Td = 106 (black

curve), and based on the trajectories generated by the GKTL algorithm with 500 replicas, Ta = 20τc and k = 0.9
(blue curve).

algorithms proposed in II B can be applied to any rare event algorithm suitable for the type of observable under
study. Here, while the AMS algorithm allows for computing return times for both the instantaneous and time-
averaged observables, the GKTL algorithm is not suited for instantaneous observables.

V. APPLICATION: EXTREME DRAG FORCE ON AN OBJECT IMMERSED IN A TURBULENT
FLOW

A key issue with rare event algorithms is to understand if they are actually useful to compute rare events and their
probabilities for actual complex dynamical systems. The AMS algorithm has shown to be very efficient for partial
differential equations with noise [30]. In this section, we give a brief illustration that more complex dynamics can be
studied. We illustrate the computation of return times using rare event algorithms for a turbulent flow. The possible
limitations of rare event algorithms are further discussed in the conclusion.

Unlike simple low-dimensional models, such as the Ornstein-Uhlenbeck process, numerical simulations of turbulent
flows of interest for physicists and/or engineers require tremendous computational efforts. As a consequence, direct
sampling of rare events based on a long time series is simply unthinkable for such systems. A common practice in
the engineering community is to generate synthetic turbulent flows, without resolving explicitly the small scales, to
study numerically the physical phenomena of interest [71, 72]. However, the main difficulty is to capture synthetically
the correct long-range (spatio-temporal) correlations of turbulence and such approaches can not capture the essential
effects of coherent structures. We show here that rare event methods such as the GKTL and the AMS algorithms can
be used in order to study extremes in turbulent flows without having to rely on such modelling.

The example we consider is the sampling of extreme fluctuations of the mechanical stresses caused by a turbulent
flow on an immersed object. Being able to compute flow trajectories associated to such extremes is of great interest
both for fundamental issues and applied problems, such as reliability assessment for industrial structures. More
specifically, we focus here on the averaged drag FT (t) = 1

T

∫ t+T
t

fd(t
′)dt′, which corresponds to the averaged sum of

the efforts from the flow, projected along the flow direction. The length of the averaging window depends on the
nature of the application. For instance, it could be related to the typical response time of a material, in order to
average out high frequency excitation that has a minor impact on the deformation of the structure. Note that the
choice of the observable is arbitrary and one could choose to study other related physical quantities, such as the lift
or torque.

In order to provide a proof-of-concept for such rare events approaches for turbulent flows, we compute the return
time for extreme values of the drag in a simple academic flow. The setup we consider, illustrated in Fig. 9, is that of a
two-dimensional channel flow, with a square obstacle immersed in the middle of the domain. Turbulence is generated
upstream by means of a grid. This flow is simple enough so that long time series can be obtained in a reasonable
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Figure 9: Snapshot of a typical vorticity field of the flow under study. A steady parabolic velocity profile is imposed
at the inlet. Turbulence is then generated by a grid. We used the GKTL algorithm the compute the return times of

the average drag over the square here marked by the grey area.

amount of computational time, allowing for the computation of reference return times. In practice, we carry out
a direct numerical simulation using the Lattice Boltzmann Method [73], which offers low implementation effort for
performances comparable to other methods for such simple geometries and boundary conditions. The application of
the GKTL and AMS algorithms to deterministic dynamics requires that some randomness is artificially introduced in
the dynamics so that copies originated from the same parent follow different paths. This can be achieved by randomly
perturbing the restart state at branching points.
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Figure 10: Illustration of the computation of return times for the averaged drag over the square obstacle pictured in
Fig. 9. The averaging window is 5 correlation times. The dashed black line represents the reference return times

computed from a timeseries spanning 106 correlation times, using (7). The solid blue line represents the return times
obtained using the GKTL algorithm.

Figure 10 illustrates the computation of the return times for the drag averaged over 5 correlation times using the
GKTL algorithm. It shows that the use of the algorithm makes accessible the computation of rare events at a much
lower computational cost than direct sampling. More precisely, the algorithm was applied using N = 128 replicas
simulated over 10 correlation times. The return time curve presented in Fig. 10 is based on the data from K = 10
repetitions of the algorithm, leading to an overall computational cost of, roughly, 104 correlation times. From a direct
sampling of similar computational cost, the rarest accessible event has a return time close to the computational cost
itself, in this case is 104. Figure 10 shows that the use of the GKTL algorithm allows for the computation of return
times of much rarer events. The reference curve was computed from a time series spanning 106 correlation times. For
events having a return time close to 5 · 105 correlation times, the computational cost of estimating the return times
using the GKTL algorithm is 50 times lower than direct sampling.

The occurrence of plateaus in Fig. 10 is due to the increasing multiplicity of trajectories as the amplitude a increases.
Indeed, because of the selection procedure involved in the GKTL algorithm, a subset of trajectories can share the
same ancestor. Henceforth, they are likely to differ only by a small time-interval at the end of their whole duration.
In such cases, it is common that the maximum over the trajectory is attained in earlier times. As a consequence,
this subset of trajectories will contribute the same value to the set of maxima from which return times are computed.
This effect is accentuated in the present case of a deterministic system, as it takes some time for copies to separate
after being perturbed at a branching point. A straightforward way of mitigating the occurrence of such plateaus is



20

to increase the number of trajectories or/and the number of repetitions of the algorithm. As an illustration, Fig. 11
shows the return time plot obtained using 50 repetitions instead of 10 in Fig. 10.
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Figure 11: Illustration of the computation of return times for the averaged drag over the square obstacle pictured in
Fig. 9, using 50 repetitions of the GKTL algorithm. The parameters are the same as in Fig. 10. This figure

illustrates the reduction in the occurrence of plateaus for the return time curve obtained using the GKTL algorithm.
The dashed black line represents the reference return times. The solid blue line represents the return times obtained

using the GKTL algorithm.

VI. CONCLUSION

In this paper, we have considered the question of estimating the return time of rare events in dynamical systems. We
have compared several estimators, using both usual timeseries (generated with direct numerical simulations) and rare
event algorithms, by generalising the approach relating the return times to the extrema over trajectory blocks. This
approach relies on the fact that rare events behave, to a good approximation, like a Poisson process: this allows for the
derivation of a simple formula (see (6)) for estimating the return times based on block maxima. We slightly improved
this formula (see (7)), and further showed that it was possible, provided only minor modifications, to evaluate it with
data produced by rare event algorithms. Indeed, while the traditional block maximum method consists in dividing
a given trajectory in blocks with arbitrary length (larger than the correlation time of the system, and smaller than
the return time one seeks to estimate), there is a class of rare event algorithms which yields precisely an ensemble
of trajectories exhibiting the rare event more often than direct simulation, together with the probability of observing
each member of the ensemble. Hence, we have generalised the block maximum formula to non-equiprobable trajectory
blocks; this allowed us to use directly rare event algorithms, such as the AMS and the GKTL algorithm, to estimate
return times for rare events. Using the Ornstein–Uhlenbeck process as an illustration, we showed that the method is
easy to use and accurately computes return times in a computationally efficient manner. Indeed, compared to direct
sampling, combining the generalised block maximum approach to rare event algorithms allowed for computing return
times many orders of magnitude larger, at fixed computational cost. This method does not depend on the dynamics
of the system or on the type of observable, as long as a suitable rare event algorithm is selected. As an illustration, we
computed return time plots for both instantaneous and time-average observables for the Ornstein–Uhlenbeck process,
using the AMS and the GKTL algorithms. This approach paves the way to numerical computation of return times in
complex dynamical systems. To showcase the potential of the method, we discussed briefly an application of practical
interest: extreme values of the drag force on an object immersed in turbulent flows. Another example of application
given very recently is the study of heat waves [74].

A key issue with rare event algorithms is to understand if they are actually useful to compute rare events and their
probabilities for actual complex dynamical systems. Many of the proposed approaches fail to pass such a test, either
because the algorithm is too complex to be used for complex dynamical systems, or the algorithm is restricted to
specific systems (equilibrium or reversible dynamics, diffusions with small noises), or the algorithm simply fails. A key
issue with many potentially successful rare event algorithms, for instance the AMS algorithm and the GKTL algorithm
among others, is that their success depends much on the quality of the rule used for selecting trajectories. For instance
the AMS or the TAMS algorithm rely on a score function, and the GKTL use as a selection rule the increment of a the
time average which one aims at computing. Whenever one uses a good score function, those algorithms are extremely
useful and show tremendous sampling improvements [30]. For the AMS algorithm, the choice of a good score function
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often relies on a good rough qualitative understanding by the user of the effective dynamics that leads to the rare
events. Then the AMS algorithm leads to excellent quantitative results, even with complex dynamical systems (see
for instance [30]). Several examples have illustrated than those algorithm may fail to lead to improvement in other
cases, see for instance [75]. Faced with such difficulties, one may either use an empirical approach, or try to improve
the algorithms in order to cure potential problems, as we explain now.

The empirical approach consists in identifying a priori the conditions for success of the algorithms and identify
relevant dynamical phenomena that fulfil these conditions. For the AMS algorithm this amounts to understanding
sufficiently well the dynamics, in order to be able to define a macroscopic variable that will describe well the dynamics
leading to the extremes, and to propose a related score function. The algorithm may also be used to test some
hypothesis on such macroscopic variables, and learn about the dynamics. The GKTL algorithm is usually successful
in conditions when the sampling of time averages is dominated by a persistent macroscopic state.

Several authors have proposed new algorithms to cure some of the problems. A class of algorithms seek at changing
the dynamics such that the computation will be more efficient (see for instance [76] for diffusions with small noise,
or [75] in relation with the GKTL algorithm and references therein). Those methods are limited to diffusions, as
they require to relate the statistics of paths for different dynamics, for instance through the Girsanov formula. They
can involve recursive learning of an optimal dynamics and be very successful for dynamics with a few degrees of
freedom [75]. Another class of algorithms, milestoning (see [77]), is aimed at computing a reduced description of the
original dynamics, that can afterwards permits to efficiently compute dynamical quantities, for instance first passage
times (see [78] and references therein).
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Appendix A: Mean first-passage time for the Ornstein–Uhlenbeck process

Throughout the paper, we consider as an example the Ornstein–Uhlenbeck process:

dXt = b(Xt)dt+
√

2εdWt, (A1)

where Wt is the standard Wiener process and the drift term is linear: b(x) = −αx. We write the corresponding
Fokker-Planck equation for the probability density P (x, t) of the random variable Xt:

∂P

∂t
= LP, with LP = −∂[b(x)P (x, t)]

∂x
+ ε

∂P (x, t)

∂x2
. (A2)

The stationary probability density is Ps(x) =
√

α
2πεe

−αx22ε : LPs = 0. We shall denote the standard deviation by
σ =

√
ε/α.

For a threshold value a much larger than the standard deviation (a �
√
ε/α), the return time r(a) should be

well approximated by the mean first-passage time E[τa], where τa = min{t ≥ 0|Xt ≥ a}. Computing the mean
first-passage time for such a simple stochastic process is a classical textbook problem (see for instance [53, § 5.5]): we
consider the transition probability P (x′, t|x, 0), which also satisfies the Fokker-Planck equation, with initial condition
P (x′, 0|x, 0) = δ(x′ − x).

We now introduce the quantity G(x, t) =
∫ a
−∞ dx′P (x′, t|x, 0), with the initial condition G(x, 0) = χ]−∞,a[(x),

where χ is the indicator function, and with absorbing boundary conditions at a, G(a, t) = 0. Using the backwards
Kolmogorov equation for the transition probability: ∂tP (x′, 0|x, t) = L†P (x′, 0|x, t), and using time-homogeneity
P (x′, t|x, 0) = P (x′, 0|x,−t), we see that the evolution of G is also governed by ∂tG = L†G. G(x, t) is the probability
that a particle initially at position x has not reached a after time t. In other words, it is the probability, conditioned
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on the initial condition x, that τa > t. The moments of the first-passage time follow directly:

Ex[τna ] = −
∫ +∞

0

tn∂tG(x, t)dt = n

∫ +∞

0

tn−1G(x, t)dt. (A3)

From there, a recursion relation can be obtained for the moments of τa:

Ex[τna ] = − 1

n+ 1

[
b(x)

∂

∂x
+ ε

∂2

∂x2

]
Ex[τn+1

a ]. (A4)

In particular, with Ex[τ0
a ] = 1, we obtain an exact formula for Ex[τa]:

Ex[τa] =
1

ε

∫ a

x

dye
αy2

2ε

∫ y

−∞
dze−

αz2

2ε =
π

α

{
erfi
(√

α

2ε
a

)
− erfi

(√
α

2ε
x

)}
−
√
π

α

∫ √ α
2εa

√
α
2εx

dueu
2

erfc(u), (A5)

when x < a, and 0 otherwise, where erfc and erfi are the complementary and imaginary error functions, respec-
tively [79]. It is straightforward to obtain the mean first passage time conditioned on the stationary measure:

Es[τa] =

∫ +∞

−∞
dxPs(x)Ex[τa] =

√
α

2πε3

∫ a

−∞
dye

αy2

2ε

(∫ y

−∞
dze−

αz2

2ε

)2

. (A6)

The above formula provides the theoretical prediction against which numerical estimates of return times for the
Ornstein–Uhlenbeck process are compared in the paper.

Appendix B: Statistical properties of AMS estimators

The standard way of analysing the efficiency of an estimator θ̂N (or rather, a family of estimators indexed by a
parameter N , e.g. a sample size) of a quantity θ is to consider the mean-square error:

MSE(N) = E|θ̂N − θ|2 =
(
E[θ̂N ]− θ

)2
+ Var

(
θ̂N
)
, (B1)

which is decomposed into the contributions of the bias b(N) = E[θ̂N ]− θ (which represents the systematic, or model,
error) and of the variance Var

(
θ̂N
)
(which represents the statistical error). For some error tolerance ε > 0, the cost of

the simulation is the expected cost of one realisation of the algorithm using a parameter N such that MSE(N) ≤ ε2:
finding optimal N requires a bias-variance trade-off. The precision of the estimation is improved by controlling the
bias, and the fluctuations by controlling the variance.

We now consider the AMS estimator q̂N (a), defined in section IIID. Note that we index this estimator with the
number of initial trajectories N : as we shall see, this is the parameter which controls the statistical properties, and
not the total number of sampled trajectories M = N + J̃ . One of the main properties of the AMS algorithm is
the following unbiasedness result, see [60] for more general statements, and discussion on the influence of the time
discretization of the Markov dynamics.

Theorem 1 For every N , for every score function ξ, q̂N is an unbiased estimator of q:

E[q̂N ] = q. (B2)

Thus only the statistical error Var(q̂N ) depends on the choice of N , and, more importantly, on the score function ξ;
see [60, 80] for extensive numerical simulations concerning the role of the score function. In practice, it is recommended
in [60] that one computes empirical averages qN,K = 1

K

∑K
k=1 q̂

(k)
N over K independent realisations of the algorithm,

with large K: the associated mean-square error is MSE(N ,K) = Var(q̂N )
K . Moreover, repeating the experience with

different choices of score functions is a way to validate the results, checking the overlap of confidence intervals.
In addition, it has been proved, in different contexts, see [81, 82], that q̂N is a consistent estimator of q: the

convergence q̂N →
N→∞

q holds true, in probability. More precisely, it is proved in [82], that the estimator q̂N satisfies
a Central Limit Theorem,

√
N
(
q̂N − q

)
→

N→∞
N (0, σ2(ξ, q)), (B3)
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with an asymptotic variance σ2(ξ, q) ∈ [−q2 ln q, 2q(1− q)]. The minimal variance −q2 ln q is obtained when choosing

ξ(y) = ξ(y) ≡ Py(τB < τA). (B4)

In practice, the optimal score function ξ, also referred to as the committor, is of course not known; note that the
estimated probability satisfies q = ξ(y0). Below we will discuss more precisely the statistical properties of the
estimators q̂N and r̂N when choosing ξ as the score function.

Note that σ2(ξ, q) ≤ 2q(1−q) = 2Var(P), where P is a Bernoulli random variable with mean q. This ensures that in
terms of variance the AMS algorithm performs better than or similarly to the crude Monte Carlo method, in the rare
event regime q → 0; moreover, the AMS algorithm with optimal score function outperforms the crude Monte-Carlo
method (please note that this is the variance normalised by N , where N is the number of initial trajectories, and not
by M , where M = N + J̃ is the total number of computed trajectories).

Note that E[r̂N ] 6= r, and thus r̂N is not an unbiased estimator of r. However, a Central Limit Theorem still holds
true: since r̂N = φ(q̂N ) and r = φ(q) for some function φ, such that φ′(q) 6= 0, the δ-method [83] implies

√
N
(
r̂N − r

)
→

N→∞
N
(
0, σ2(ξ, q)(φ′(q))2

)
, (B5)

where q2φ′(q) →
q→0

Ta, with Ta the size of the window. The estimators for the return time r correspond to the choices

φ(q) = −Ta/ ln(1− q) or φ(q) = Ta/q.
For an arbitrary choice of the score function ξ, it is not possible in general to obtain precise results concerning the bias

for the return time r̂N , and the asymptotic variance. However, when the optimal score function ξ(y) = Py(τB < τA)
is used, elementary arguments are sufficient to analyse the statistical properties of estimators q̂N and r̂N = 1

q̂N
(with

Ta = 1). The key property [61, 81, 84], is that, when using the optimal score function, the number of iterations
J follows a Poisson distribution, with parameter −N ln q. This situation is referred to as the idealised case in the
mathematical literature. Since q̂N =

(
1− 1

N

)J , proving the following results is straightforward: first, concerning the
bias,

E[q̂N ] = q, E
[

1

q̂N

]
− 1

q
∼

N→∞

− ln q

qN
. (B6)

Second, concerning the asymptotic variance,

Var(q̂N ) = q2
(
q−

1
N − 1

)
∼

N→∞

−q2 ln q

N
, Var

(
1

q̂N

)
∼

N→∞

− ln q

Nq2
. (B7)

Note that relative bias and variance are both of size − ln q
N . The derivation of the Central Limit Theorem [85], and

Large Deviations results [86] is also straightforward in the idealised case.
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