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ABSTRACT

Strong eastward jets at the equator have been observed in many planetary

atmospheres and simulated in numerical models of varying complexity. How-

ever, the nature of the transition from a conventional state of the general cir-

culation, with easterlies or weak westerlies in the tropics, to such a superro-

tating state remains unclear. Is it abrupt or continuous? This question may

have far-reaching consequences, as it may provide a mechanism for abrupt

climate change in a planetary atmosphere, both through the loss of stability of

the conventional circulation and through potential noise-induced transitions

in the bistability range. We study two previously suggested feedbacks which

may lead to bistability between a conventional and a superrotating state: the

Hadley cell feedback and a wave-jet resonance feedback. We delineate the

regime of applicability of these two mechanisms in a simple model of zonal

acceleration budget at the equator. Then, we show using numerical simu-

lations of the axisymmetric primitive equations that the wave-jet resonance

feedback indeed leads to robust bistability, while the bistability governed by

the Hadley cell feedback, although observed in our numerical simulations, is

much more fragile in a multilevel model.
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1. Introduction30

A long standing question in the study of the general circulation of the atmosphere, formulated31

early on by Lorenz (1967), is the uniqueness of the solution, for fixed boundary conditions. This32

question is an important one, because it may have deep consequences on climate dynamics. In-33

deed, in the presence of multiple attractors, the system may exhibit abrupt transitions from one to34

the other, induced either by internal variability or by an external forcing. Paleoclimatic records35

provide evidence for such abrupt climate changes (e.g. Dansgaard-Oeschger events (Dansgaard36

et al., 1993)). Events of this type have so far been linked to nonlinear behavior of the oceanic37

circulation. For instance, it is well understood from conceptual models how the Atlantic Merid-38

ional Overturning Circulation can be bistable (Dijkstra and Ghil, 2005), and some full complexity,39

high resolution ocean models show evidence of bistability (Jackson and Wood, 2018). Some feed-40

back mechanisms rely solely on internal ocean dynamics, while others invoke a coupling with ice41

sheets and sea ice (see Boers et al. (2018) for a recent example). The atmosphere itself may admit42

multiple equilibria. As a matter of fact, turbulent flows often exhibit coexisting steady-states for43

given external parameters, as well as spontaneous transitions between the two stable states, as has44

been reported in both numerical studies (Bouchet and Simonnet, 2009; Cortet et al., 2010; Bouchet45

et al., 2019) and laboratory experiments (Berhanu et al., 2007; Cortet et al., 2010; Saint-Michel46

et al., 2013; Michel et al., 2016). Some of these experiments (Weeks et al., 1997; Tian et al., 2001)47

are actually inspired by geophysical flows (Charney and DeVore, 1979). However, the question48

remains if such phenomena could occur at the level of the general circulation of the atmosphere.49

An interesting candidate for bistability of the general circulation of the atmosphere is superro-50

tation (Held, 1999): this refers to an atmospheric flow for which there exists a region carrying a51

larger angular momentum than the one associated to solid body rotation at the equator. While the52
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conventional circulation of the atmosphere of the Earth has mid-latitude westerly jets and weak53

easterlies in the tropics (Lee, 1999; Dima et al., 2005) (and everywhere smaller angular momen-54

tum than the surface at the equator), a superrotating atmosphere exhibits westerlies in the tropics.55

This is actually observed on other planets of the Solar System, such as Jupiter, Saturn (and its56

moon Titan) or Venus (see e.g. Read and Lebonnois, 2018). On Earth, superrotation may have57

played a role in the climate of the past: it was observed in numerical simulations of warm climates58

such as the Eocene (Caballero and Huber, 2010), and it has been suggested that it could explain the59

permanent El Niño conditions indicated by paleoclimatic proxies during the Pliocene (Tziperman60

and Farrell, 2009). Another indicator of the robustness of superrotation is that it has been observed61

in numerical experiments with models of varying complexity: shallow-water models (Scott and62

Polvani, 2008; Showman and Polvani, 2010, 2011; Suhas et al., 2017), two-level primitive equa-63

tions (Suarez and Duffy, 1992; Saravanan, 1993), and multilevel comprehensive GCMs (Krau-64

cunas and Hartmann, 2005; Schneider and Liu, 2009; Caballero and Huber, 2010; Showman and65

Polvani, 2011; Arnold et al., 2012; Potter et al., 2014).66

A natural question to ask first is how is superrotation maintained at a dynamical level? Because67

axisymmetric dynamics, in the absence of forcing and dissipation, conserve angular momentum,68

the mean meridional circulation cannot generate superrotation. Momentum diffusion opposes69

superrotation, since upgradient fluxes of angular momentum are required. Hence, superrotation70

can only be achieved by eddy fluxes. This is often referred to as Hide’s theorem (Hide, 1969).71

There are potentially many ways eddies could accelerate the zonal wind towards the east in the72

tropics, and several routes to superrotation have already been found. In a first series of studies,73

the basic physical parameters of the planet, such as the planetary rotation rate (Dias Pinto and74

Mitchell, 2014) or the radius of the planet (Mitchell and Vallis, 2010; Potter et al., 2014) are75

modified. The emerging scenario in this type of setup is that a hydrodynamic instability known as76
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the Kelvin-Rossby instability (Iga and Matsuda, 2005; Wang and Mitchell, 2014; Zurita-Gotor and77

Held, 2018), generates the eddies which converge momentum in the tropics. Instead of relying on78

an instability, a second thread of works has explored the possibility of stimulating wave emission79

from the tropics to account for equatorial momentum convergence, akin to the classical picture80

for mid-latitude jets (Vallis, 2006). Enhanced wave activity in the tropics can be the result of81

several physical processes: convection, day-night contrast in tidally locked exoplanets (Merlis and82

Schneider, 2010; Showman and Polvani, 2011), etc. Broadly speaking, such processes can be83

modelled as non-zonal heating of the tropics: idealized GCM studies including such an additional84

forcing term have led to abrupt transitions to superrotation once the forcing amplitude reaches85

a certain threshold (Suarez and Duffy, 1992; Saravanan, 1993; Kraucunas and Hartmann, 2005;86

Arnold et al., 2012).87

In fact, coexistence of the superrotating state with the conventional circulation for some range88

of parameters requires more than just eddy momentum flux convergence onto the equator. Indeed,89

some positive feedback mechanism is needed, so that the zonal-mean zonal wind budget may90

admit several solutions. Such a feedback mechanism may come directly from the eddy forcing,91

or alternatively, from the mean meridional circulation. The first possibility has been explored92

in particular by Arnold et al. (2012), who suggested a resonant feedback mechanism based on93

the properties of equatorial Rossby waves on a background mean-flow. Relying on an explicit94

computation of the linear response of a shallow-water atmosphere to non-zonal tropical heating,95

in the spirit of the pioneering work of Matsuno (1966) and Gill (1980), they have argued that the96

amplitude of the response depends on the background zonal wind in such a way that a resonance97

appears close to the opposite of the phase velocity of free Rossby waves.98

The second possibility was suggested by Shell and Held (2004) (hereafter SH04) who showed99

that the Hadley cell itself could admit multiple equilibrium states. Indeed, a conventional Hadley100
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cell with updraft on the equator advects low momentum air into the upper troposphere, thereby101

inhibiting the onset of superrotation. However, the contribution to the zonal momentum budget is102

the product of two terms: ω∂pu. The core idea behind the feedback structure of the Hadley cell103

is that when westerly winds increase in the tropical upper troposphere, vertical shear increases,104

but vertical velocity decreases. As a result of this nonlinear behavior, there exists a first regime,105

for weak westerly wind, where the feedback is negative, and a second regime where the feedback106

is positive. For even larger westerly wind, the feedback becomes negative again. Assuming that107

the Hadley cell and some frictional dissipation balance positive eddy momentum flux convergence108

at the equator, this feedback structure leads to multiple equilibria (SH04). These arguments are109

supported by numerical simulations in a simple framework (1D axisymmetric shallow-water equa-110

tions with a constant imposed torque). A natural question to ask is whether this behavior remains111

in more realistic conditions.112

In this paper, we explore the robustness of these two bistability mechanisms: Hadley cell feed-113

back and resonant response to equatorial heating. First, we explicitly show in an analytical model114

how the resonant structure of the eddy momentum flux convergence can lead to bistability, and115

observe the corresponding hysteresis phenomenon in numerical simulations of the axisymmetric116

primitive equations. Second, we investigate whether the results of SH04 extend to a multilevel117

model. We find numerically that bistability may be obtained in this framework, but that it is rel-118

atively fragile as it depends sensitively on vertical viscosity. Finally, we investigate the interplay119

between the two mechanisms. We show that depending on the parameter characterizing the width120

of the wave-jet resonance, two types of superrotating states can be found. For wide resonances,121

the superrotating state has a weaker mean meridional circulation than the conventional state, and122

the range of forcing amplitudes for which both states coexist is quite small (Hadley cell-driven123

superrotation). On the other hand, for narrow resonances, the strength of the mean meridional124
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circulation does not change much across the bifurcation point, and the coexistence range is much125

wider (resonance-driven superrotation).126

To reach these conclusions, we combine theoretical arguments obtained in a simplified frame-127

work based on the shallow-water model (Sec. 2), and numerical simulations of the axisymmetric128

primitive equations (Sec. 3). More precisely, the theoretical part relies on the fact that a linear re-129

sponse computation of the Matsuno-Gill type, has been found to agree relatively well with GCM130

results (Arnold et al., 2012). In Sec.2c, after recalling this computation, we describe the wave-jet131

resonance mechanism which provides a positive feedback. Then, we present analytical arguments132

to disentangle the effects of the two nonlinear mechanisms by studing the fixed-points of the zonal133

momentum budget at the equator (Secs. 2d and 2e). Finally, we test the scenarios outlined through134

the analytical study of the shallow-water model in a more realistic model of the atmosphere, by135

carrying out numerical simulations of the 2D axisymetric primitive equations (Sec. 3).136

2. Bistability in an analytical model of equatorial momentum balance137

a. The shallow-water model138

We first consider the simplest possible model which can account for both feedback mechanisms:139

a thin layer of fluid, described by the shallow-water equations, exchanging mass and momentum140

with a quiescent underlying layer. The fluid is forced by diabatic heating Q and dissipates energy141

through a Rayleigh friction ε . In spherical coordinates, these equations may be written as142

∂tu+
u

acosφ
∂λ u+

v
acosφ

∂φ (ucosφ)−2Ωsinφv =− g?

acosφ
∂λ h− εu+Ru, (1)

∂tv+
u

acosφ
∂λ v+

v
a

∂φ v+
u2

a
tanφ +2Ωsinφu =−g?

a
∂φ h− εv+Rv, (2)

∂th+
1

acosφ
[∂λ (hu)+∂φ (hvcosφ)] = Q, (3)
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where u and v are the zonal and meridional components of the wind, h the thickness of the fluid143

layer, φ the latitude, λ the longitude, g? the reduced gravity, Ω the rotation rate and a the planetary144

radius. The mass source/sink term Q accounts both for radiative forcing and an additional non-145

zonal heating term, confined in the tropics, which represents in a rough manner convective effects146

or day-night contrast in tidally locked exoplanets. As a consequence, the fluid layer also ex-147

changes momentum with the underlying “sponge” layer through the terms Ru =−Qu/hΘ(Q) and148

Rv = −Qv/hΘ(Q), where Θ is the Heaviside function. This mechanism provides a rudimentary149

representation of the Hadley cell in the shallow-water model. It is required to obtain superrotation150

in this setup (Showman and Polvani, 2010).151

We now decompose all the fields into their zonal average, denoted by an overbar, and their eddy152

component, denoted by a prime: u = ū+u′, v = v̄+ v′, h = h̄+h′. In this context, the zonal mean153

wind profile ū(φ) satisfies the equation:154

∂t ū+
v̄

acosφ
∂φ (ūcosφ)−2Ωsinφ v̄ =− 1

acosφ
v′∂φ (u′ cosφ)+ R̄u− ε ū. (4)

Our goal is to study the possibility of multiple equilibria in this equation. In general, this depends155

on the form of the eddy momentum flux convergence F =− 1
acosφ

v′∂φ (u′ cosφ). In a first step, we156

assume that it does not depend on ū and discuss the other feedback mechanism R̄u, associated to157

the Hadley cell (Sec. 2b). We shall discuss the wave-mean flow interaction in Sec. 2c.158

b. Simplified zonal momentum balance at the equator159

At the equator, in a perpetual equinox configuration, the steady-state zonal-mean zonal momen-160

tum budget (4) reduces to a balance between the eddy forcing F , the vertical advection by the161

Hadley cell R̄u and the frictional dissipation. This balance writes F + R̄u− ε ū = 0. In this sec-162

tion, we study the existence of multiple solutions to this balance equation. Reducing this way163
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the problem to a zero-dimensional model allows for a qualitative understanding of the physical164

mechanisms, as we can easily draw the different terms of this balance relation as functions of the165

parameters of the problem. As a matter of fact, SH04 have used this simple zonal momentum bal-166

ance model to shown how, for a constant forcing F , the Hadley cell feedback leads to bistability.167

We recall their argument in this section. As we shall only be working with zonally averaged fields,168

we should drop the overbar from now on. The value of all fields at the equator will be denoted169

with a null subscript.170

Modelling radiative forcing by a Newtonian relaxation Q = (heq−h)/τ to a prescribed radiative171

equilibrium profile heq with relaxation time τ , and recalling that R = −Qu/hΘ(Q), the balance172

relation becomes173

F0− εu0 +
u0

h0

h0−h0eq

τ
= 0, for h0 < h0eq. (5)

A relation between the layer thickness and the zonal wind velocity can be obtained through174

a simple model of the Hadley cell (Held and Hou (1980); Vallis (2006), SH04). The idea is175

that the thickness h is in geostrophic equilibrium with the angular momentum conserving wind176

um = u0+Ωasin2
φ

cosφ
in the tropics: (g?/a)∂φ h = −2Ωum sinφ , and in radiative equilibrium: h = heq177

outside. Integrating the geostrophic equilibrium equation and matching the resulting profile with178

the radiative equilibrium at a latitude determined by mass conservation yields179

h0−h0eq =−
5

18g?
(u0eq−u0)

2. (6)

Note that the model only makes sense for u0 < u0eq. Introducing the non-dimensional variables180

U and H through h0 = Hh0eq, u0 = Uu0eq, the two equations (6) and (5) reduce to the simple181

algebraic system182

1−H = p(U−1)2, (7)

q = (1−H)U + rU, (8)

9



where we have assumed H ≈ 1, with183

p =
5u2

0eq

18g?h0eq
, q =

Fτ

u0eq
, r = ετ. (9)

Parameter values are given in table 1. Hence, the balance between the forcing, Rayleigh fric-184

tion, and the Hadley cell advecting low momentum wind from the lower layer is governed by the185

equation186

pU(U−1)2 + rU−q = 0. (10)

This theory makes the feedback structure of the Hadley cell very clear: the pU(U−1)2 term acts187

as a positive feedback between the two roots of its derivative, 1/3 < U < 1, and as a negative188

feedback for U < 1/3 and for U > 1. When the forcing term is a constant imposed torque, the189

equation is a simple cubic equation, and the condition for bistability can be easily obtained. A190

necessary condition is 0 ≤ r/p ≤ 1/3: it is the condition for the function pU(U−1)2 + rU to191

have a local maximum. With the default parameter values, r/p ≈ 0.1, and the above condition is192

fulfilled. An illustration is provided in Fig. 1: we plot separately U(U−1)2 + rU/p (the sum of193

vertical advection by the Hadley cell and friction) and the constant forcing q/p for two values of194

the ratio r/p. When this ratio is small enough (0≤ r/p≤ 1/3), the positive feedback of the Hadley195

cell leads to the existence of three solutions to Eq. (10) for some range of forcing amplitude q/p196

(indicated by the two dashed lines in Fig. 1, right), two stable ones (U ≈ 0.1 and U ≈ 1.2 on the197

figure) and an unstable one (U ≈ 0.6 on the figure). As the forcing amplitude sweeps the range of198

positive values, two (saddle-node) bifurcations are encountered: we start from an equilibrium with199

weak equatorial wind (U ≈ 0) for low values of the forcing, which loses stability when the forcing200

amplitude increases past some value (the dashed line at q/p ≈ 0.16 in Fig. 1, right). The system201

then jumps abruptly to the equilibrium state with strong westerly wind (U ≈ 1.3) and remains on202

this branch if the forcing is further increased. Now, this superrotating equilibrium in turn loses203

10



stability when the forcing decreases below some value (the dashed line at q/p ≈ 0.02 in Fig. 1,204

right). We have just described a hysteresis phenomenon. When the ratio r/p becomes too large,205

the negative feedback of friction overcomes the positive feedback of the Hadley cell, and there is206

only one solution to Eq. (10) (U ≈ 0.05 on the figure) for the whole range of forcing amplitude207

q/p (Fig. 1, left).208

In fact, the eddy forcing F should not be a constant. In the next section, we show that it may be209

modelled as a resonant function of U , and we discuss in Secs. 2d and 2e the consequences for the210

balance relation (10).211

c. The wave-jet resonance: Matsuno-Gill computation of the eddy momentum flux convergence212

The goal here is to compute the eddy momentum flux convergence induced by a non-zonal213

tropical heating. We rely on a classical approach, pioneered by Matsuno (1966) and Gill (1980):214

we assume that the zonal mean zonal wind evolves slowly compared to the eddies, and we compute215

the linear eddy response to the heating term with a constant background wind. A major advantage216

is that for the shallow-water equations on an equatorial beta plane, the linear response can be217

computed explicitly. Typically, the stationary response of the atmosphere to a localized heating218

consists in the superposition of an equatorially trapped Kelvin wave east of the source and a Rossby219

wave west of the source. The relative phases of the two standing waves depend on the parameters220

of the problem. In a wide range of parameter values, the Matsuno-Gill response converges westerly221

momentum at the equator (Showman and Polvani, 2010, 2011); Arnold et al. (2012) further argued222

that the response exhibits a resonant structure. Here, after briefly recalling their result, we compute223

the associated eddy momentum flux convergence and discuss its resonant structure.224
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To make the problem analytically tractable, we rewrite Eqs. (1)–(3) linearized around a uniform225

zonal mean-flow ū, using the beta plane approximation (Vallis, 2006):226

∂tu′+ ū∂xu′−βyv′ =−g?∂xh′− εu′, (11)

∂tv′+ ū∂xv′+βyu′ =−g?∂yh′− εv′, (12)

∂th′+ ū∂xh′+ h̄∂xu′+ h̄∂yv′ = Q, (13)

where x and y represent the zonal and meridional directions, respectively, and β = 2Ω/a is the beta227

effect at the equator (on Earth, β ≈ 2.289×10−11 m-1.s-1). We have assumed that the background228

flow has no meridional component (v̄ = 0) and no meridional shear (∂yū = 0, ∂yh̄ = 0). We are also229

neglecting the momentum exchange with the underlying layer. In the rest of this section, we use230

as time and length units T = 1/
√

2βcg and L =
√

cg/(2β ), with cg =
√

g?h̄ the velocity of pure231

gravity waves. For simplicity, we also absorb the g? factor into h (so in this section h is actually a232

non-dimensionalized geopotential) and Q.233

In the absence of mean-flow (ū = 0), Matsuno (1966) found the normal modes of the linear234

system (11)–(13) without forcing and dissipation (Q = ε = 0), and computed the stationary solu-235

tion to the forced-dissipative problem by projecting onto those normal modes. We refer to Vallis236

(2006, chap. 8) or Gill (1982, chap. 11) for details of the methods, including the dispersion237

relation and spatial structure of the modes. The uniform mean-flow ū Doppler-shifts the re-238

sponse without modifying the structure of the modes. For a stationary tropical heating of the239

form Q = Q0 cos(kx)e−y2/4, Arnold et al. (2012) computed the stationary response and separated240

it into two contributions, both with zonal wave number k: a Kelvin mode (u′K,v
′
K,h
′
K), with241

u′K = h′K =
−Q0γK

2ε(1+ γ2
K)

[γK cos(kx)+ sin(kx)]e−y2/4, v′K = 0, (14)
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and a Rossby mode (u′R,v
′
R,h
′
R) with meridional wave number n = 1:242

u′R =
−Q0γR

6ε(1+ γ2
R)
[γR cos(kx)+ sin(kx)](y2−3)e−y2/4, (15)

v′R =
{ −4Q0γR

3ε(1+ γ2
R)
[(ūk+ γRε)cos(kx)+(ε− ūkγR)sin(kx)]+Q0 cos(kx)

}
ye−y2/4, (16)

h′R =
−Q0γR

6ε(1+ γ2
R)
[γR cos(kx)+ sin(kx)](y2 +1)e−y2/4, (17)

with γX = ε/k(ū+cX) a non-dimensional parameter defined for the two indices X = K and X = R,243

and cX the phase velocity of the free waves: cR = −1/(3+ 2k2) and cK = 1 in non-dimensional244

units. The total response is given by u′ = u′R +u′K,v
′ = v′R,h

′ = h′R +h′K .245

From this point, an explicit formula can be obtained for the corresponding eddy momentum flux246

convergence:247

F(ū,y) =−∂y〈u′v′〉=−∂y〈(u′R +u′K)v
′
R〉, (18)

=
Q2

0ε

36[ε2 + k2(ū+ cR)
2]

{
[(y2−3)

2−6]+3
ε2 + k2(ū+ cR)

2 +4k2cR(cK− cR)

ε2 + k2(ū+ cK)
2 (y2−1)

}
e−y2/2,

(19)

where the first and second term in the braces correspond respectively to the contribution from248

the Rossby mode only (−∂y〈u′Rv′R〉), and to the interaction between the Kelvin and Rossby modes249

(−∂y〈u′Kv′R〉). The spatial structure of the eddy momentum flux convergence F(ū,y) as a func-250

tion of the background mean-flow velocity ū, and its contribution from the Rossby mode only251

(−∂y〈u′Rv′R〉), are shown in Fig. 2 in dimensional units. It is obtained using parameter values252

cg = 49 m.s-1, ε = 1 day-1 and ka = 1. Going back to the dimensional expression for the phase253

velocity of the Rossby and Kelvin waves yields the corresponding numerical values:254

cR =− β

k2 +(2n+1)β/cg
≈−16 m.s-1, cK = cg = 49 m.s-1. (20)

With these parameters, the Rossby deformation radius is L ≈ 1000 km. As expected, the eddy255

momentum flux convergence is symmetric with respect to the equator. For all the values of the256
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background mean-flow ū, the Rossby component (Fig.2, right) is positive in the equatorial region257

(within one deformation radius of the equator, roughly speaking, i.e. about 10°), inducing eastward258

acceleration of the jet, then negative (between one and two deformation radii) and positive again259

in the extratropics. A similar spatial structure is found in the full eddy momentum convergence260

flux (Fig.2, left), except when the background mean-flow coresponds to strong easterly wind. In261

that case, the contour lines are distorted, up to a point where the eddy momentum flux conver-262

gence becomes negative in the equatorial region. Both the full eddy momentum flux convergence263

and its Rossby component exhibit local maxima and minima, corresponding to resonance and an-264

tiresonance structures. Let us further describe these mechanisms by focusing on the equatorial265

area.266

Let us denote FRK(ū) the full eddy momentum flux convergence at the equator (y = 0) and FR(ū)267

the contribution from the Rossby mode:268

FRK(ū) = F(ū,0) =
Q2

0εk2(cK− cR)(2ū+ cK−3cR)

12[ε2 + k2(ū+ cR)
2][ε2 + k2(ū+ cK)

2]
, (21)

FR(ū) =
Q2

0ε

12[ε2 + k2(ū+ cR)
2]
. (22)

It is easily seen from (21) that the eddy momentum flux convergence at the equator FRK(ū) is269

positive as long as ū > (3cR− cK)/2. FR(ū), on the other hand, is always positive. Besides, FR(ū)270

has the shape of a Lorentz curve. The curves FRK(ū) and FR(ū) are shown in Fig. 3, using the same271

parameter values as above. Both cases exhibit a resonance for background velocities ū ≈ −cR.272

When the Kelvin mode is taken into account, there is a secondary peak with opposite sign for273

ū ≈ −cK . For the existence of multiple steady-states, a critical point is the sign of the feedback274

associated to the eddy momentum flux convergence, i.e. the sign of the derivative with respect275

to ū, dFRK(ū)
dū or dFR(ū)

dū . From Fig. 3, it is clear that the feedback is positive below the resonance276

(dFRK(ū)
dū > 0 for −cK < ū <−cR) and negative above it (dFRK(ū)

dū < 0 for ū >−cR). Ultimately, the277
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existence of multiple steady-states for the mean-flow ū depends on the other acceleration terms:278

qualitatively, bistability with a superrotating steady-state hinges on the positive feedback described279

above overcoming the negative feedbacks due to other effects, such as linear friction for instance280

(see Sec. 2d).281

Of course, it seems natural that the linear response framework should break down when the282

amplitude of the forcing becomes too large. Then, the dynamical feedback of the eddies on the283

mean flow cannot be neglected anymore. The linear and nonlinear responses have been compared284

for instance analytically using perturbative expansion (Gill and Phlips, 1986), or numerically using285

idealized models (Nobre, 1983) and full GCM simulation (Lutsko, 2018). In practice however, it286

has been found in many studies that the linear response computation provides a useful starting287

point for interpreting results from observations or full nonlinear GCMs (Moura and Shukla, 1981;288

Gill and Rasmusson, 1983; Neelin, 1988; Jin and Hoskins, 1995; Kraucunas and Hartmann, 2005;289

Norton, 2006; Sobel and Maloney, 2012; Arnold et al., 2012). Here, it should be kept in mind290

that the spatial structure of the response may differ significantly from the linear response in the291

superrotating state (Lutsko, 2018). However, most of our reasoning does not depend on the details292

of the spatial structure, but rather on the resonant behavior which has been reported to hold in a293

full nonlinear GCM (Arnold et al., 2012) for heating rates and spatial structure similar to those294

considered here. Hence, we shall consider that the eddy momentum flux convergence computed295

in this section is a reasonable working hypothesis, and we shall now study how it may lead to296

bistability.297

d. Qualitative behavior of the wave-jet resonance298

As shown in Fig. 3, the eddy momentum flux convergence associated to the full response (i.e.299

including the projection on the Kelvin mode) is amplified compared to the Rossby mode response,300
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but the overall structure remains qualitatively similar (if we except the negative tail for strong east-301

erly background winds). The functional form of the Rossby wave forcing FR(ū) (it is a Lorentzian302

function) makes it simpler than the full resonant eddy forcing FRK(ū), and it also reduces the num-303

ber of free parameters. In this section, we exploit this to obtain a qualitative understanding of the304

steady-states of the momentum budget (10).305

Injecting (22), in dimensional units, into the normalized parameters (9), we obtain the corre-306

sponding forcing term for the zonal momentum balance model:307

qR(U) =
Q̃

1+Λ(U + cR/u0eq)
2 , (23)

with Q̃ = βQ2
0τ2/(6ru0eq) and Λ = (ku0eq/ε)2, where k is the zonal wave number of the forcing308

and ε the friction coefficient. In addition to the parameter r/p discussed in Sec. 2b, which governs309

the competition between the feedbacks of the two damping mechanisms, vertical advection by310

the Hadley cell and friction, there are two parameters characterizing the eddy forcing. First, the311

position of the resonance is governed by a purely dynamical quantity−cR/u0eq, the phase velocity312

of free Rossby waves, non-dimensionalized by the velocity associated to the radiative forcing.313

Second, the width of the resonance peak is governed by the parameter Λ, which depends upon314

the wave number of the non-zonal forcing, but also the radiative forcing and friction. Together,315

these parameters select the range of background wind values which can be maintained by the eddy316

forcing.317

Ideally, we would like to know when, in the 3D parameter space (r/p,Λ,cR/u0eq), Eq. (10)318

admits multiple solutions for some range of forcing amplitude Q̃. Even within this simplified319

framework, it is difficult to obtain such a full classification (in general, it amounts to counting the320

real roots of a fifth-order polynomial), and we shall not attempt to do so. Instead, let us try to get321
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some qualitative insight by discussing some cases of physical relevance. Let us first discriminate322

the possibilities based on the parameter r/p.323

When r/p > 1/3, the negative feedback of friction overcomes the positive feedback of the324

Hadley cell. The sum of the two is a monotonously increasing function of U . For bistability325

to appear, we need the wave-jet resonance to be sufficiently peaked for the positive feedback due326

to the eddy forcing to overcome the negative feedback of friction close to the resonance peak.327

This requires that the region with a significant positive feedback (i.e. the bump of the Lorentzian)328

is entirely contained in the U > 0 range, which can be expressed as Λ� (u0eq/cR)
2. This can329

be checked explicitly by setting R = 0 in the simplified zonal momentum balance, which yields330

the equation qR(U) = rU : this is a cubic equation which can be solved exactly. In this case, a331

bistability range appears as soon as Λ > 3. Then, provided the forcing amplitude is large enough,332

there are three solutions to the balance equation: an unstable one and two stable ones. We refer333

to this case as resonance-driven bistability: it is illustrated in Fig. 4 (top left). One of the stable334

states corresponds to U ≈ 0 — on the left flank of the resonance peak —, and the other one is a335

superrotating state, with u0 ≈−cR (for an infinitely narrow resonance) — on the right flank of the336

resonance peak. A first saddle-node bifurcation occurs when Q̃ increases and the resonance peak337

intersects the friction curve, corresponding to the appearance of the superrotating state. A second338

saddle-node bifurcation occurs when the forcing becomes significantly non-zero for U close to339

zero, corresponding to the loss of stability of the conventional circulation. However, this second340

bifurcation is expected to occur for very large forcing amplitudes: in other words, the range of341

forcing amplitude for which bistability occurs should be very wide in this scenario. Note that the342

stable superrotating state is very close to the unstable state.343

When r/p < 1/3, the positive feedback of the Hadley cell acts in the region 1/3 < U < 1.344

Multiple steady-states may also exist in this case. First, for an infinitely wide resonance (Λ� 1),345
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we should recover the case studied in Sec. 2b, governed entirely by the Hadley cell feedback.346

Second, for a very narrow resonance (Λ� 1), bistability should also be obtained similarly to the347

case r/p > 1/3 discussed in the previous paragraph (in this case, it might even be possible to348

obtain three coexisting stable states). Now, let us discuss the case of a resonant eddy forcing with349

finite width (for the figures, we choose Λ = 10). We distinguish three cases, based on the position350

of the resonance, for a fixed value of r/p.351

• When −cR/u0eq < 1/3 (Fig. 4, top right), the same kind of scenario as in the previous para-352

graph unfolds, except that in the regime where three equilibria exist, they are all on the right353

flank of the resonance peak, i.e. in the region where the eddy forcing feedback is negative.354

Hence, bistability relies on the Hadley cell feedback, like in Sec. 2b.355

• When 1/3 < −cR/u0eq < 1 (Fig. 4, bottom left), bistability is again possible. This time, the356

two stable states are always on different flanks of the resonance peaks, while the unstable357

one moves from the right flank to the left flank as the forcing amplitude increases (until it358

annihilates with the low wind stable state at the saddle-node bifurcation). In other words, the359

appearance of the superrotating state occurs because the positive feedback of the Hadley cell360

sets in, like in the previous case, but, on the other hand, the loss of stability of the conventional361

state is due to the positive wave-jet feedback prevailing over the negative feedback of the362

Hadley cell.363

• When −cR/u0eq > 1, (Fig. 4, bottom right), the first saddle-node bifurcation, corresponding364

to the appearance of the superrotating case, occurs on the left flank of the resonance peak. As365

the forcing amplitude keeps increasing, the superrotating state moves to the right flank of the366

lorentzian. In this case both feedbacks contribute with the same sign.367
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e. Quantitative discussion368

In Sec. 2d, we have considered independently the role of the three non-dimensional parameters369

(r/p, Λ and cR/u0eq) characterizing the balance between zonal acceleration due to resonant eddy370

forcing, vertical advection by the Hadley cell and friction. We have given simple criteria for bista-371

bility due to the Hadley cell feedback (r/p ≤ 1/3) and the wave-jet resonance (Λ� (u0eq/cR)
2,372

i.e. k2c2
R/ε2� 1). Let us now discuss the applicability of these regimes for some typical parameter373

values.374

We first consider the parameter values from SH04, summarized in Table 1, supplemented with375

forcing parameters ka = 1 and cR = −16 m.s-1. Such values fall under the scenario where there376

is bistability, governed by the wave-jet feedback because, although r/p < 1/3, the resonance is377

very strongly peaked (k2c2
R/ε2 ≈ 6×104, Λ ≈ 106), like in the top left panel of Fig. 4. However,378

the value used for friction is lower than typical values for the atmosphere of the Earth, by sev-379

eral orders of magnitude (about 0.001 day-1, instead of 0.1–1 day-1, e.g. Held and Suarez (1994)).380

As explained by SH04, this is essentially a consequence of the simplistic vertical structure of the381

model. In reality, dissipative processes modelled by linear friction have a more complex phys-382

ical nature (eddy viscosity, wave breaking, etc). Increasing ε and keeping the other parameters383

constant, one may easily transition to a case without bistability (because r also increases and the384

resonance becomes too broad) or a case where bistability is governed by the Hadley cell if we keep385

r constant by decreasing simultaneously the radiative cooling time τ (one could equivalently de-386

crease the layer thickness at the equator, h0eq). We list in Table 2 estimates of parameter values for387

different planetary atmospheres, which indicate that the bistability regime governed by the wave-388

jet feedback seems relevant in most cases of interest, although perhaps marginally for Earth-like389

planets. However, this conclusion hinges crucially on the friction coefficient ε , which is difficult390
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to estimate, as mentioned above. Investigations with a more realistic model would be necessary391

to better understand which physical parameters govern the resonance. In Sec. 3, we adopt a re-392

fined description of the vertical structure of the atmosphere, replacing linear friction by a turbulent393

diffusion scheme, but prescribing the resonance width. Before doing so, let us comment on the394

differences between the two bistability regimes in the simple model.395

The hysteresis curves obtained by tracking the solution of the balance equation (10) as we ramp396

up and down the forcing amplitude, both for velocity U and vertical advection of zonal momentum397

R, are shown in Fig. 5. We show the same figure for two cases: one where bistability is governed398

by the Hadley cell feedback (ε = 0.01τ−1 = 1 day-1, Fig. 5, left), and one where bistability is399

governed by the resonant eddy forcing feedback (ε = 0.01τ−1 = 0.1 day-1, Fig. 5, right). As an-400

ticipated in the qualitative study, while both cases exhibit bistability, the bistability range is much401

wider in the case dominated by the resonant eddy forcing. Care should be taken with the termi-402

nology: eddy forcing with a narrow resonance (i.e. acting on a narrow range of U) corresponds to403

a wide bistability range (coexistence of two steady-states on a wide range of Q̃), and vice-versa.404

The behavior of the Hadley cell is also quite different in the two cases: it collapses in the super-405

rotating state governed by the Hadley cell feedback (R decreases sharply on the lower branch of406

the hysteresis cycle), but this is not necessarily the case in the superrotating case induced by the407

resonant eddy forcing (R remains larger than in the conventional circulation over a wide range of408

forcing amplitudes).409
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3. Bistability in the axisymmetric primitive equations410

a. Numerical setup411

We now investigate the interplay between the resonant eddy forcing and the Hadley cell feed-412

backs in a more realistic context. Instead of the zonally-averaged shallow-water equations (Eq. (4)413

for the zonal wind), we consider the axisymmetric primitive equations:414

∂u
∂ t

+
v
a

∂u
∂φ

+ω
∂u
∂ p
− uv tanφ

a
= 2Ωvsinφ +Fu +∇ · τu, (24)

∂v
∂ t

+
v
a

∂v
∂φ

+ω
∂v
∂ p

+
u2 tanφ

a
=−2Ωusinφ − 1

a
∂Φ

∂φ
+Fv +∇ · τv, (25)

∂θ

∂ t
+

v
a

∂θ

∂φ
+ω

∂θ

∂ p
=−θ −θe

τ
+∇ · τθ , (26)

∂ω

∂ p
=− 1

acosφ

∂

∂φ
(vcosφ), (27)

∂Φ

∂ p
=−RT

p
, (28)

where the zonally-averaged zonal and meridional wind u and v are now 2D fields (depending on415

latitude φ and pressure p), ω = Dp/Dt is the zonally-averaged vertical velocity in pressure coor-416

dinates, Φ, T and θ are the zonally-averaged geopotential, temperature and potential temperature.417

Dissipative effects are represented generically by the zonal and meridional components of the418

zonal-mean stress tensor, τu and τv. Fu,Fv represent the divergence of the Reynolds stress ten-419

sor, i.e. the eddy forcing. In our numerical simulations, we prescribe the eddy forcing to account420

for the wave-jet resonance in a simplified manner. The only diabatic heating term is a Newto-421

nian relaxation term which drives the temperature field towards a prescribed radiative-convective422

equilibrium: θe(p,φ) = max
(

200(p0/p)R/cp,θ?−∆h sin2
φ −∆v ln(p/p0)cos2 φ

)
. We use stan-423

dard values for the coefficients (Held and Suarez, 1994): θ? = 315K, ∆h = 60K, ∆v = 10K. The424

relaxation time τ is as in Held and Suarez (1994).425
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The main difference with the shallow-water model considered in Sec. 2 is a more accurate de-426

scription of the vertical structure of the atmosphere, which allows to properly resolve vertical427

momentum transport by the Hadley cell, through the term ω∂pu.428

The model is solved numerically using the Climt framework (Caballero et al., 2008; Monteiro429

et al., 2018), which solves the above equations in flux form, using a simple upwind scheme (Smo-430

larkiewicz, 1983). We use 91 grid points in latitude (i.e. a resolution slightly smaller than 2°),431

and 45 vertical levels. The initial condition is a state of rest (u = v = ω = 0) with a constant432

temperature field T = 283.15 K. A turbulent diffusion scheme is used for the stress tensor τ; we433

shall denote ν the kinematic viscosity (in m2.s-1) in the vertical direction. Our runs use the value434

ν = 0.5 m2.s-1 by default. Surface momentum drag is parameterized through a bulk aerodynamic435

formula (Caballero et al., 2008), akin to the linear friction considered above.436

We carry out two series of numerical experiments, corresponding to two different kinds of pre-437

scribed eddy forcing:438

• A resonant eddy forcing Fu = FRK(u(φ = 0)) with spatial structure given by the Matsuno-Gill439

problem (Sec. 2c) and with a varying amplitude given by Eq. (21) (see Fig. 2, left). These440

experiments are designed to reproduce the behavior observed in GCM studies with non-zonal441

tropical heating, such as Suarez and Duffy (1992); Saravanan (1993); Kraucunas and Hart-442

mann (2005); Arnold et al. (2012). Since the model considered here is axisymmetric, we need443

to parameterize the effect of the eddy forcing, for which we use the analytical computation of444

the linear response of a shallow-water atmosphere to a non-zonal tropical heating carried out445

in Sec. 2c. This allows us to explore parameter space at a much lower computational cost.446
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• A constant eddy forcing Fu with the same spatial structure as above and fixed amplitude447

FRK(U = 0). These experiments amount to adding a vertical dimension to the setup of SH04448

(the meridional structure is also slightly different).449

In both cases, the vertical structure is arbitrarily chosen as a Gaussian profile e−(p−p0)/2σ2
centered450

on the p0 = 300 hPa level, as in Caballero and Carlson (2018), with vertical extent σ = 200. While451

the details of the vertical structure of the forcing affect the vertical profile of the flow, they do not452

change the results presented here, as long as the forcing acts in the upper tropical troposphere.453

In these experiments, we always have Fv = 0. Note also that we do not parameterize eddy heat454

transport. Below, we vary the forcing amplitude: this refers to the coefficient Q0 entering Eq. (19),455

non-dimensionalized in the way explained in Sec. 2. While this coefficient does not have a simple456

physical interpretation for the axisymmetric primitive equations, and may therefore be considered457

as arbitrary, values in the range 0.01–0.1 used below correspond to maximum accelerations on the458

order of 10-7 to 10-6 m.s-2.459

For both types of experiments, we shall be interested in steady-state solutions of the 2D ax-460

isymmetric primitive equations (24)–(28). Specifically, we want to know whether superrotating461

solutions exists, and whether multiple solutions may coexist for some values of the forcing param-462

eters. In particular, we shall vary the resonance width parameter ε (in the case of the resonant eddy463

forcing) to illustrate the occurrence of both kinds of bistability identified in Sec. 2. Note that while464

ε was the friction coefficient in the shallow-water model of Sec. 2, we treat it as a free parameter465

in the numerical experiments below. We shall also discuss the role of viscosity ν and the vertical466

resolution.467

23



b. Control run468

Before investigating bistability, let us first show a control run without eddy forcing (Fu = 0). The469

equilibrium zonal wind field is shown in Fig. 6. Jets (with maximum wind speed ≈ 60 m.s-1) are470

obtained in each hemisphere at the poleward edge of the Hadley cell, which extends approximately471

to 20° in both hemispheres. Easterly winds prevail in the tropical regions; in particular at the472

equator, the wind is easterly at all levels. This control run does not exhibit superrotation.473

A more realistic control run could be obtained by prescribing additional eddy momentum (or474

heat) forcing in the mid-latitudes (Schneider, 1984; Singh and Kuang, 2016), as was done in Ca-475

ballero and Carlson (2018). For simplicity, we prefer not to do so here.476

c. Resonance-driven bistability477

In a first set of experiments, using the resonant eddy forcing, we illustrate the type of hysteresis478

identified in Sec. 2 where bistability is driven by the resonant response to the forcing.479

First, we integrate the axisymmetric primitive equations until a statistically stationary state is480

reached (typically about 1500 days). We show in Fig. 7 (left) the vertically averaged (all the481

vertical averages shown here are restricted to the region withing one σ of the level of maximum482

forcing p0, i.e. to the region between 100 hPa and 500 hPa) zonal wind profile at steady-state483

for a narrow resonance (ε = 0.1 day-1), as the forcing amplitude Q0 is varied. For low values of484

the forcing amplitude, the zonal wind profile is essentially fixed by angular momentum conser-485

vation in the tropics and radiative equilibrium outside. Generally speaking, this state has similar486

characteristics as the control run: full spatial structure of the zonal wind field, mean meridional487

circulation,. . . In particular, it exhibits jets close to 20° latitude, as we have seen in the control run.488

As the forcing amplitude Q0 increases, these jets move equatorward and weak westerlies appear489

in the tropics. When Q0 further increases, there is a relatively sharp transition (between Q0 = 0.04490
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and Q0 = 0.05) to a different regime where a jet appears on the equator, which quickly becomes491

as strong as the subtropical jets. In this regime, the atmosphere is clearly in a state of equatorial492

superrotation. The full spatial structure of the wind field in the conventional state is similar to the493

control run, shown in Fig. 6. The circulation in the superrotating state, shown in the right panel of494

Fig. 10, will be discussed in more details in Sec. 3e.495

We now carry out hysteresis experiments to investigate the possibility that the conventional496

and superrotating states coexist in some range of forcing amplitude. The experiment consists in497

increasing the forcing amplitude step by step and letting the system relax to its new equilibrium498

state at each step. This introduces a discontinuity (in time) in the forcing, but it allows for clearer499

diagnostics of the response of the system. Typically, we observe a smooth relaxation to a new500

equilibrium state, possibly with an initial overshoot. As expected, relaxation to the new steady-501

state upon application of the step forcing takes longer close to the bifurcation points. To ensure502

that the system has relaxed, we choose a time interval between two steps several times longer than503

the typical relaxation time observed in previous runs. We apply this procedure up to a given value504

of the forcing amplitude (larger than the amplitude threshold for which we observe the abrupt505

transition to superrotation in the steady-state experiments above), then we reverse the procedure506

by decreasing the forcing amplitude step by step until we reach the initial forcing amplitude. Any507

observable can then be computed as a function of time, or equivalently as a function of the forcing508

amplitude, with the only difference that in the latter case, it may take one value on the way up and509

a different one on the way down.510

The results of the hysteresis experiments are shown in Fig. 7 (right), for different values of the511

parameter ε . The observable plotted in the figure is the zonal wind, averaged over a range of512

latitude around the equator (here between 5° S and 5° N) and over the upper atmosphere (between513

100 and 500 hPa). For small values of ε (narrow resonance, e.g. ε = 0.1 day-1), the averaged514
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zonal wind, initially negative, first increases slowly when the forcing amplitude is increased, then515

abruptly switches to a positive value (above 10m.s-1), characteristic of a superrotating state. This516

corresponds to the behavior observed with the steady-states experiments in the above paragraph,517

and suggests that the conventional circulation becomes unstable (saddle-node bifurcation). Once in518

the superrotating state, the averaged zonal wind again increases slowly with the forcing amplitude519

until the maximum value of the forcing amplitude is reached. When the forcing amplitude is520

decreased, the averaged zonal wind decreases slowly, down to a forcing amplitude below the521

critical point where the conventional circulation became unstable. Then, a second bifurcation522

occurs: the superrotating state becomes unstable and the averaged zonal wind suddenly switches523

back to its value in the conventional circulation.524

The forcing amplitudes corresponding to the bifurcation points depend on ε . More precisely,525

the bistability range decreases significantly as ε is increased (see the curves for ε = 0.3 day-1 and526

ε = 0.5 day-1), i.e. as the resonance broadens, as anticipated in Sec. 2. When ε is sufficiently large527

(e.g. ε = 0.7 day-1), the bifurcation points disappear entirely: the upper and lower branch of the528

hysteresis curves collapse onto a single curve, describing the smooth growth of the averaged zonal529

wind with the forcing amplitude.530

d. Hadley cell-driven bistability531

We now turn to the second series of runs, with a constant eddy forcing. Since the resonance532

mechanism is manually switched off in this case, the only possibility for bistability to occur is533

through the Hadley cell feedback. The goal is to investigate whether the bistability due to this534

feedback mechanism, obtained analytically in the simple zonal wind balance model of Sec. 2 and535

observed in numerical simulations of the 1-1/2 layer shallow-water equations (SH04), subsists in536

our multi-layer configuration.537
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Like in Sec. 3c, we start by studying the steady-states of the axisymmetric equations: the typical538

relaxation time from an initial state of rest is similar to the resonant eddy forcing (about 1500539

days), although the larger values of Q0 require longer integrations (up to about 4500 days). Fig. 8540

shows the vertically averaged zonal wind obtained in the steady-state for many forcing amplitudes541

Q0. For both kinds of forcings, the qualitative behavior is similar to the one described in Sec. 3c.542

For low values of the forcing amplitude, the zonal wind profile is similar to the control run, with543

subtropical jets at the poleward edge of the Hadley cell. As the forcing amplitude increases, there544

is a sharp transition to a superrotating circulation. The value of the threshold amplitude is similar in545

both forcing cases (Q0 ≈ 0.04), although the magnitude of the equatorial wind in the superrotating546

state is much larger with the constant forcing.547

We now carry out a hysteresis experiment following the same protocol as in Sec. 3c (Fig. 8548

(right) shows the averaged zonal wind for this hysteresis experiment): we increase step by step the549

forcing amplitude, allowing the system to relax to its new steady-state at each time, until an abrupt550

transition to a superrotating state is found. Then we further increase the forcing amplitude to show551

that the averaged zonal wind increases smoothly on the superrotating branch, before reverting the552

loop. We decrease the forcing step by step, until the superrotating state loses stability, and the553

averaged zonal wind abruptly goes back to the values found on the way up. This shows that the554

constant eddy forcing also exhibits bistability, as was found in the simple analytical model (Sec. 2)555

and in a single-layer shallow water model (SH04). However, it should be noted that the bistability556

range is much smaller than in the case of resonance-driven bistability studied in Sec. 3c.557

Like in the zero-dimensional model of zonal momentum balance studied analytically in Sec. 2,558

we can diagnose the zonal acceleration budget in our axisymmetric simulations. We show in Fig. 9559

the three dominant terms: the eddy forcing (blue curve) as well as the vertical advection of zonal560

momentum by the Hadley cell, ω∂pu (orange curve) and the turbulent momentum diffusion term561

27



∇ ·τu (green curve). While the former term is prescribed, the latter terms are dynamically adjusted.562

These curves are constructed by plotting these terms as functions of the zonal wind, both quantities563

being averaged over the tropical upper atmosphere, in the hysteresis experiment shown in Fig. 8564

(right). In particular, it contains points which correspond to transient states. The vertical transport565

by the Hadley cell exhibits the same kind of cubic behavior as in the analytical model shown in566

Fig. 1. Since the dissipative mechanism is not linear friction, the turbulent momentum diffusion567

curve is not just a straight line, but it is nevertheless an increasing function of the local zonal568

wind, apart from very low values of the wind. Both mechanisms act essentially as damping effects569

(again, except for the lower values of the zonal wind as far as turbulent diffusion is concerned). We570

also display the sum of the two effects as a separate curve (red curve): for these parameter values,571

there exists a range of wind velocities where the positive feedback of the Hadley cell prevails over572

the negative feedback of the eddy viscosity, and the net damping is not a monotonous function573

of the zonal wind. Hence, the qualitative behavior is the same as in Fig. 1: steady-state solutions574

of the zonal momentum budget should equilibrate this net damping by a prescribed eddy forcing,575

which is a straight horizontal line in this case. For a fixed forcing amplitude in a given range,576

bistability may occur. In the figure, we show the prescribed eddy forcing in the hysteresis exper-577

iment, where the forcing amplitude is time-dependent. This shows that the hysteresis experiment578

explores successive steady-states over the two increasing branches of the net damping curve. The579

decreasing branch of the net damping curve can only be seen because we have included values580

from transient states.581
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e. Comparing the two types of bistability582

There are two major differences between bistability driven by the wave-jet resonance and by583

the Hadley cell: the behavior of the Hadley cell on the superrotating branch, and the sensitivity to584

vertical diffusion.585

Figure 10 shows the 2D zonal wind field as well as the mean meridional circulation stream-586

function for the two kinds of superrotating states: one on the upper-branch of the hysteresis loop587

obtained with a constant eddy forcing (with Q0 = 0.038), and another on the upper-branch of588

the hysteresis loop obtained with a resonant eddy forcing (ε = 0.1 day-1, Q0 = 0.03). It illus-589

trates the fact that the Hadley cell is almost as strong as in the conventional circulation in the590

resonance-induced superrotating state, while it is reduced by a factor 5 in the Hadley cell-induced591

superrotating state. While in both cases, the equatorial jet is essentially confined to the upper atmo-592

sphere, it is much sharper in the case of the constant forcing: both the vertical and the meridional593

wind shear are larger than in the resonant eddy forcing case. The maximum velocity is also larger594

with the constant eddy forcing. This is consistent with the behavior of the Hadley cell in the two595

cases. If we further increase the resonant eddy forcing amplitude (not shown), we recover a state596

very similar to the superrotating state obtained with the constant eddy forcing at lower forcing597

amplitude, such as illustrated in the left panel of Fig. 10, with a sharper jet and collapsed Hadley598

cell. It should be noted that the Hadley cell in the superrotating state may be modified by physical599

mechanisms not taken into account here, such as eddy heat transport for instance.600

Note that in both cases, the zonal flow is maximum near the upper boundary. This is due to a601

combination of vertical momentum diffusion and the fact that the eddy forcing remains finite there602

because we used a relatively broad vertical structure (σ = 200).603
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Vertical momentum transport by the eddy viscosity is also expected to play an important role:604

we have seen in Sec. 2b that, in the 0D model, when bistability is driven by the Hadley cell, it605

can be destroyed by increasing the strength of dissipative processes. To test whether it is also606

the case in the 2D axisymmetric primitive equations, we show in Fig. 11 hysteresis experiments607

for several values of the vertical viscosity ν , both for the Hadley-driven and the resonance-driven608

cases. It is found that the Hadley-driven case exhibits high sensitivity of the stability thresholds609

of both the conventional and superrotating states (Fig. 11, left). We find that bistability disappears610

beyond a critical viscosity νc ≈ 0.7 m2.s-1. On the other hand, bistability governed by the wave-jet611

resonance (Fig. 11, right) is much more robust to variations of the vertical diffusivity than the612

Hadley-driven case: bistability subsists for vertical viscosities up to 2 m2.s-1, with an unaffected613

range of coexistence of the two states. Again, this is in agreement with the theoretical analysis614

of Sec. 2d, where we have found that in the 0D model resonance-driven bistability subsists when615

friction is the main damping mechanism.616

4. Conclusion617

In this paper, we have considered the question of atmospheric bistability at the planetary scale618

through the special case of equatorial superrotation. This case is particularly interesting because619

it is frequently encountered in planetary atmospheres, and is hypothesized to have played a role in620

warm climates of the past on Earth. A crucial point is the nature of the transition to superrotation:621

continuous (akin to second-order phase transitions in condensed matter physics) or abrupt (first-622

order phase transition). In the latter case, the system exhibits hysteresis. Besides, the transition623

may even occur spontaneously below the bifurcation point where the conventional state loses sta-624

bility, driven by the fluctuations inherent to a turbulent atmosphere. The mechanisms determining625

the nature of the transition may, but need not coincide with those maintaining the equatorial jet626
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by converging angular momentum at the equator. We have studied two such mechanisms corre-627

sponding to the two different cases. On the one hand, it was suggested that an abrupt transition628

to superrotation may be triggered by a resonant response to non-zonal equatorial heating, excit-629

ing tropical waves which in turn accelerate the mean flow towards the east. We have shown in a630

simple model of zonal momentum balance at the equator that such a phenomenon indeed resulted631

in the appearance of multiple equilibria and hysteresis. On the other hand, it was shown in an632

idealized framework that the Hadley cell itself could admit two different modes, which results633

in the coexistence of a conventional and a superrotating state when a constant torque is applied634

by an external operator. In the same framework, we have studied the interplay between the two635

mechanisms and showed that there were two main regimes: Hadley-driven bistability, with a small636

coexistence range, and resonance-driven bistability, with a larger coexistence range. On the other637

hand, the latter only occurs if the resonance is sufficiently peaked, which in the shallow-water638

model studied here amounts to sufficiently small linear friction. Parameter values corresponding639

to the atmosphere of the Earth lie close to the boundary separating the two idealized regimes. It640

should also be noted that, while most existing studies report a significant weakening of the Hadley641

cell in the superrotating state, our results indicate that in the resonance-driven case it is possible to642

obtain a superrotating state while maintaining a strong meridional circulation. These findings are643

confirmed by numerical simulations of an axisymmetric primitive equations model, with an arbi-644

trary number of vertical levels. Nevertheless, we find that Hadley-driven bistability is relatively645

fragile, in the sense that it depends sensitively on vertical viscosity, while the resonance-driven646

bistability is much more robust to changes in this parameter.647

These results may help shedding light on bistability and hysteresis (or the lack thereof) in full648

GCM simulations of superrotation. Indeed, while abrupt transitions to superrotation have been649

reported before, it is often thought that such phenomena should be absent from state-of-the-art650
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models. Here, in the simpler case of a 2D axisymmetric model, we have observed unambiguously651

the existence of hysteresis phenomena. We have also isolated some factors upon which bistability652

relies primarily: our simulations provide evidence for a very sensitive dependence on the vertical653

resolution, and on the damping mechanisms. Further research is still needed to investigate whether654

the mechanisms described here hold in full 3D GCMs. A critical factor differing from the frame-655

work considered here is that the eddy momentum convergence flux should depend dynamically on656

the full structure of the zonal wind field. Here, we have considered a prescribed forcing, which,657

although consistent with diagnostics from 3D GCMs, was computed in a linear approximation658

assuming a uniform background wind, while there may be strong meridional shear in reality, es-659

pecially in the superrotating state. Understanding how that affects the results reported here would660

be a key step towards providing a definitive answer to the question of the nature of the transition661

to superrotation.662
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A1. Numerical convergence with vertical resolution674

Bistability driven by the Hadley cell feedback had previously been observed in an axisymmetric675

model representing only one vertical mode (SH04). In Sec. 3d, we have found that it subsists676

only marginally in a multilevel setup: there is still bistability but the range of coexistence of677

the conventional and superrotating states is very narrow. To better understand this behavior, we678

have performed steady-state and hysteresis experiments with various vertical resolutions. We have679

found that the meridional profile of vertically averaged zonal wind computed with only 2 vertical680

levels is quite similar to the one obtained with full vertical resolution (see Fig. 7, left, and Fig. 8,681

left). The main differences are that the transition to the superrotating regime seems even sharper682

in the 2-level case, and that stronger equatorial jets are obtained in the resonant case.683

Our experiments indicate that the hysteresis loop is quite sensitive to the vertical resolution, and684

depends on it in a non-monotonic manner. This holds for both kinds of eddy forcings: resonant685

and constant. Several hypotheses may be done to account for this sensitivity. First of all, different686

choices of vertical levels result in different samplings of the vertical profile of the forcing. Given687

the structure of the forcing, this amounts to multiplying the forcing amplitude by a constant factor.688

Besides, since the Hadley cell feedback is proportional to vertical shear, poorly resolved vertical689

gradients may have large effects. Finally, numerical modes of the discretized vertical diffusion690

operator may also play a part.691

Ultimately, the hysteresis loop strongly depends on the number of vertical levels for low resolu-692

tions but converges for larger resolutions: for resolutions larger than 10 vertical levels (including693

a run with 90 levels), the hysteresis cycle does not change significantly. In particular, all the694

hysteresis loops shown in the above sections have converged.695
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β (m-1.s-1) cg (m.s-1) L (km) cR (m.s-1) ε (day-1) k2c2
R/ε2
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0.05 30

Hot Jupiter 7.8×10−13 2000 36000 590 0.1 100

1 18

Table 2. Parameters for different planetary atmospheres: The Earth, Jupiter (two values of ε from Warneford

and Dellar (2017) and Schneider and Liu (2009)), and Hot Jupiter exoplanets (Showman and Polvani, 2011)

such as HD189733b.
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and constant eddy forcing (yellow), as functions of the non-dimensional zonal wind U . Left: r/p ≈ 1. Right:

r/p = 0.025. The circles indicate equilibrium states, i.e. solutions of the balance equation (10).
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Figure 2. Contour levels for the eddy momentum flux convergence F(ū,y) (left) and its contribution from the

Rossby mode only (−∂y〈u′Rv′R〉, right), as functions of latitude y, normalized by the deformation radius L, and

background zonal wind ū. The thick black line indicates the null contour.
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Figure 3. Eddy momentum flux convergence at the equator from the stationary response to the tropical heating,

for the Rossby mode (FR(ū), yellow) and the total response (FRK(ū), blue), as a function of the background zonal

wind ū. The opposite of the phase velocity of free Rossby and Kelvin waves are indicated with vertical dashed

lines.
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Figure 4. Different terms in the steady-state balance relation (10): friction and vertical advection (solid

blue) and resonant eddy forcing qR(U)/p (colors indicate different forcing amplitudes), as functions of the non-

dimensional zonal wind U . Top left: Λ≈ 105, r/p≈ 1,−cR/u0eq = 0.2, the dashed black curve indicates friction

alone. Top right: Λ ≈ 10, r/p = 0.025, −cR/u0eq = 0.2. Bottom left: Λ ≈ 10, r/p = 0.025, −cR/u0eq = 0.6.

Bottom right: Λ ≈ 10, r/p = 0.025, −cR/u0eq = 1.2. Symbols indicate equilibrium states, i.e. solutions of the

balance equation (10).
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Figure 5. Hysteresis curves showing the equilibrium equatorial zonal wind U∗ and vertical momentum ad-

vection R∗ as functions of the forcing amplitude Q̃ for the two cases: bistability governed by the Hadley cell

feedback (left, ε = 1 day-1) and by the resonant eddy forcing (right, ε = 0.1 day-1). Both cases have the same

value of r = ετ . All quantities are non-dimensional.
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Figure 6. Zonal wind field (shading) and meridional mass streamfunction (contours; contour interval is 4×109

kg.s-1, negative contours are dotted) in the control run (Fu = 0).
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Figure 7. Left: Vertically averaged zonal wind profile at steady-state for the resonant eddy forcing with width

ε = 0.1 day-1 for different forcing amplitudes Q0. Right: Hysteresis curves for vertically averaged zonal wind

at the equator (averaged between 5° S and 5° N), for varying resonance width parameter ε (in days-1). Vertical

averages are between 100 and 500 hPa.
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Figure 8. Same as Fig. 7 for the constant eddy forcing.
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Figure 9. Zonal acceleration budget, averaged over the tropical upper atmosphere (between 5° S and 5° N

and between 100 and 500 hPa), in the hysteresis experiment for the constant forcing case. One should note that

the non-monotonous behavior of vertical adection by the Hadley cell (orange curve) remains (red curve) when

adding dissipation (green curve), although the decreasing part is very shallow. Each time we increase the eddy

forcing amplitude (blue curve) in the hysteresis experiment, a new steady-state is reached, corresponding to the

points at the intersection between the blue and red curves.
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Figure 10. Zonal wind field (shading) and meridional mass streamfunction (contours; contour interval is

4×109 kg.s-1, negative contours are dotted) for the two types of superrotating states: Hadley-cell driven (left,

collapsed Hadley cell) and resonance driven (right, Hadley cell not collapsed).
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Figure 11. Hysteresis experiments showing the effect of vertical momentum diffusion ν in the constant forcing

case (left) and in the resonant forcing case (right, ε = 0.1 day-1). For the constant forcing, bistability disappears

when ν increases, while it is unaffected in the resonant forcing case. The zonal wind is averaged between 5° S

and 5° N and between 100 hPa and 500 hPa.
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