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These lecture notes cover the material for the course Advanced
Fluid Mechanics and Turbulence, which is part of the Masters pro-
gram Physics: concepts and applications offered at ENS de Lyon. This
class is mostly an introduction to classical fluid turbulence, aimed
at physicists. Typically, the class covers the Navier-Stokes equations,
Kolmogorov Theory, and touches briefly upon intermittency and 2D
and geophysical turbulence. This corresponds to Chapters 1– 7 in the
lecture notes. Some additional paragraphs about other topics are in-
cluded in this document as a bonus, I might add more in the future.
The class on 2D and geophysical turbulence will be presented as a
seminar and is not covered in this version of the lecture notes.

Many topics which could be treated in an Advanced Fluid Me-
chanics class, such as hydrodynamic instabilities, waves in fluids,
buoyancy driven flows, compressible and reactive flows, complex
fluids, etc, will be left aside here, for lack of time. Geophysical Fluid
Dynamics will be very briefly touched upon as a seminar at the end
of the term.

These notes are based mostly on classical textbooks and the lecture
notes from my colleagues who taught the class previously: Laurent
Chevillard and Freddy Bouchet. The class is taught jointly by Mickael
Bourgoin and myself: this document covers only the material that
I teach (essentially Kolmogorov theory) and leaves aside topics like
Lagrangian approaches and experimental aspects. For the sake of
precision, I sometimes give references in the text which go beyond
the scope of the present course. You should feel free to have a look
at these, but if I were to single out only one reference, it would be
the book by Uriel Frisch (1995), which is closest in spirit to a course
like this one. A second useful reference for this course is the book
by Pope (2000).

These lecture notes are still pretty much in a draft stage; please let
me know if you find any mistakes, inaccurracies or typos.





Part I

Homogeneous Isotropic
Turbulence





1
Introduction: What is turbulence?

Turbulence is the name given to the seemingly random fluctu-
ations appearing in fluid flows under certain conditions, basically
when the flow speed is large or when the scale of the flow is large.

Turbulence is essentially a very efficient way to dissipate energy
or mix stuff. There are exceptions to this rule in geophysical flows,
where turbulence plays a part on the large scale organization of the
flow.

1.1 Some examples of turbulent flows
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Figure 1.1: Examples of classi-
cal laboratory experiments for
turbulent flows: turbulent jet
(top left), grid turbulence (top
right), boundary layer (bottom
left) and pipe flows (bottom
right).

1.2 The impact of turbulence

1.2.1 Mixing: the coffee cup

Let us consider the diffusion of a particle in a medium with diffusiv-
ity D, described by a Wiener process. As is well known, the mean-
square displacement grows linearly with time, i.e. ⟨∆x2⟩ = 6Dt in 3D
space. The mass diffusion coefficient D depends on the two species
involved, but typically for an aqueous solution at room temperature,
it is on the order of 10−5 cm2.s-1. This means that the typical time
for diffusion of sugar in a cup of coffee (a few centimeters wide) is
on the order of 10/(6D), i.e. ≈ 2 days. Because thermal diffusion

D ∼ 10−5 cm2.s-1

κ ∼ 10−3 cm2.s-1is faster by about two orders of magnitude (not even taking into ac-
count convection above the cup), one would be doomed to choose be-
tween drinking hot and sweet coffee. The answer to this conundrum
is twofold: first, don’t put sugar in your coffee. Second, turbulence.
As we know from experience, stirring the cup dramatically speeds up
the mixing process. The trajectory R(t) of a particle is now governed
by:

dR(t) = u(R, t)dt +
√

2DdW(t), (1.1)

where u is the Eulerian velocity field and dW(t) is the standard
Wiener process (i.e. Brownian motion). The mean-square displace-
ment ⟨∆x2⟩ = 2Defftα now depends on the statistical properties of
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the velocity field u: both subdiffusion (α < 1) and superdiffusion
(α > 1) can be observed. Computing the effective diffusivity Deff

based on the statistical properties of u and molecular diffusivity D is
an outstanding challenge. In a turbulent flow, we expect Deff ≫ D; In the particular case of the coffee

cup, the turbulent character of the
flow can be questioned. Although the
Reynolds number is quite modest (it
can be reasonably estimated to be of
order 100, using the viscosity of water
ν on the order of 10−6 m2.s-1), mixing
milk in a cup of coffee exhibits features
characteristic of turbulent flows.

turbulent diffusion is much more efficient than molecular diffusion.
An intuitive understanding of this fact is that stirring the fluid de-
forms the isodensity contours of the substance we are mixing. First
of all, there is the simple effect that advection alleviates the burden of
travelling throughout the volume by diffusion only, but in addition to
it, the isodensity contours develop finer and finer scales, which make
it easier for molecular diffusion to do its job.

1.2.2 Dissipation: the Rhône river

Let us estimate the velocity of the Rhône river if the flow was lami-
nar. We note α ∼ h/d the angle of the canal with the horizontal, H
the depth, g the gravity acceleration and ν the kinematic viscosity.

d = 350 km

h = 170 m

ex

ez

u = U(z)ex

g
α

Estimating the total energy (per unit mass) dissipated over the
course of the flow from Lyon to the Mediterranean sea as νU2/H2 ×
d/U, and balancing it with the potential energy (per unit mass) in
Lyon gh, we get the back-of-the-enveloppe estimate U ∼ gH2α/ν.

To be slightly more precise, we remember from kindergarten that
the flow should be of Poiseuille type: we should have νU′′(z) =

−g sin α. It follows that the flow profile is parabolic, and the velocity
BC:

{
U(z = 0) = 0,
U′(z = H) = 0at the surface is given by U = gH2 sin α/(2ν).

z = 0

z = H

U(z) = g sin α
ν z

(
H − z

2

)

In the case of the Rhône, the elevation of Lyon is about 170m,
the distance to the sea is roughly 350 km, so that α ≈ 5.10−4. We
obtain the following order of magnitude for the flow velocity: U ≈
0.5 × 10 × 5.10−4 × 102/10−6 ≈ 2.5 × 105 m.s-1.

Two conclusions can be drawn:

• The Rhône is an example of a relativistic flow.

• Alternatively, there exists a dissipation mechanism which transfers
energy towards smaller scales, where viscosity acts much more
efficiently to dissipate energy. In that case, there is not a direct At large Reynolds number, there is

no steady solution: the Poiseuille
flow becomes unstable, and the flow
fluctuates around a different mean
profile.

balance between forcing and dissipation, that balance is mediated
by the nonlinear term, which is the mechanism transferring energy
towards smaller scales. One of the main goals of this course is to
give a precise meaning to this statement.

1.2.3 Dissipation: the drag force

Of course, the efficiency of turbulence as a dissipation mechanism
has many practical consequences.
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Let us consider the drag force F acting on a body (e.g. a car) with
cross-section L2 moving through a fluid with viscosity ν and density
ρ at constant velocity U. The drag coefficient CD is defined as (twice)
the fraction of the momentum ρL2U2τ transferred to the object in a
time τ, which yields the drag equation:

F =
CD
2

ρL2U2. (1.2)

The drag coefficient should depend on the shape of the body, and the
Reynolds number.

Figure 1.2: Drag coefficient
as a function of the Reynolds
number for a circular cylin-
der, based on experimental
data (Tritton 2012, p. 33).

At low Reynolds number, the drag force is proportional to the
velocity (i.e. the drag coefficient varies as Re−1), but it becomes
quadratic at higher Reynolds number (i.e. the drag coefficient be-
comes constant). The associated energy dissipation (per unit mass) ϵ = W

ρL3 = FU
ρL3 . We implicitly assume

that the injected energy is dissipated
(into heat) in a region of the fluid of
volume L3, in the wake of the flow past
the object.

is ϵ = CD
2

U3

L ; constant drag is equivalent to a finite limit for energy
dissipation as ν → 0. This is called anomalous dissipation (see § 5.1)
and is due to turbulence.

1.2.4 Summary

Turbulence has good and bad sides. On the good side, it allows rivers
to flow without encountering unnerving relativistic effects. On the Exercise: estimate the contribution of

turbulence to global warming.bad side, it makes it much more difficult to move around for animals,
people and the things they make, beyond a certain speed. Turbu-
lence also allows you to drink coffee at the same time hot and sweet.
Whether this is on the good or on the bad side remains disputed.
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The Euler and Navier-Stokes equations

A natural model to consider for turbulence is the Navier-Stokes
equations for incompressible flows:

∂tu + u · ∇u = −∇p + ν∆u, (2.1)

∇ · u = 0, (2.2)

or in coordinates

∂tui + uj∂
jui = −∂i p + ν∂j∂

jui, (2.3)

∂iui = 0, (2.4)

where u is the velocity field, p the pressure and ν the kinematic vis-
cosity. Here and in the rest of these notes, we have adopted the Ein-
stein summation convention for repeated indices. When ν = 0, these
equations are referred to as the Euler equations1. 1 Of course, historically the Euler

equations came first (1757).These equations are well-defined on a domain of arbitrary di-
mension, i.e. for u a vector field in Rd or more generally on a d-
dimensional manifold. However, the most common case for appli-
cations is d = 3, and we should stick to this case for the purpose of
this course. The two-dimensional case also reveals many interesting
aspects, with applications for instance to geophysical flows, but we
should barely touch upon those (see § ??).

In this course, we shall take these equations for granted; we refer
to classical fluid mechanics textbooks for further discussion of their
validity (e.g. Landau and Lifchitz 1971). In particular, we should
work in the simplest possible framework and ignore phenomena such
as compressibility, density variations, rotation, magnetic fields,etc.

2.1 Domain walls, turbulence generation and the random char-
acter of turbulence

The Euler and Navier-Stokes equations should be supplemented by
boundary conditions. For the Euler equations, the impermeability
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condition u · n = 0 suffices, where the vector n is locally normal to
the domain boundary. Because they involve a second-order differen-
tial operator, the Navier-Stokes equations require all the components
of the velocity to be specified on the domain boundary. For simplic-
ity, we shall work with the no-slip condition here, i.e. u = 0 on the
domain boundary, or sometimes with periodic boundary conditions.

Experimental Evidence of a Phase Transition in a Closed Turbulent Flow

P.-P. Cortet, A. Chiffaudel, F. Daviaud, and B. Dubrulle
CEA, IRAMIS, SPEC, CNRS URA 2464, Groupe Instabilités et Turbulence, 91191 Gif-sur-Yvette, France

(Received 3 May 2010; published 19 November 2010)

We experimentally study the susceptibility to symmetry breaking of a closed turbulent von Kármán

swirling flow from Re ¼ 150 to Re ’ 106. We report a divergence of this susceptibility at an intermediate

Reynolds number Re ¼ Re! ’ 90 000 which gives experimental evidence that such a highly space and

time fluctuating system can undergo a ‘‘phase transition.’’ This transition is furthermore associated with a

peak in the amplitude of fluctuations of the instantaneous flow symmetry corresponding to intermittencies

between spontaneously symmetry breaking metastable states.

DOI: 10.1103/PhysRevLett.105.214501 PACS numbers: 47.20.Ky, 47.27.Cn

Phase transitions are ubiquitous in physical systems and
are generally associated with symmetry breaking. For ex-
ample, ferromagnetic systems are well known to undergo a
phase transition from paramagnetism to ferromagnetism at
the Curie temperature Tc. This transition is associated with
a symmetry breaking from the disordered paramagnetic—
associated with a zero magnetization—toward the ordered
ferromagnetic phase—associated with a finite magnetiza-
tion [1]. In the vicinity of Tc, a singular behavior charac-
terized by critical exponents is observed, e.g., for the
magnetic susceptibility to an external field. In the context
of fluid dynamics, symmetry breaking also governs the
transition to turbulence, that usually proceeds, as the
Reynolds number Re increases, through a sequence of
bifurcations breaking successively the various symmetries
allowed by the Navier-Stokes equations coupled to the
boundary conditions [2]. Finally, at large Reynolds num-
ber, when the fully developed turbulent regime is reached,
it is commonly admitted that all the broken symmetries are
restored in a statistical sense, the statistical properties of
the flow not depending anymore on Re [3]. However,
recent experimental studies of turbulent flows have dis-
turbed this vision raising intriguing features such as finite
lifetime turbulence [4]—questioning the stability of the
turbulent regime—and the possible existence of turbulent
transitions [5–11]. Consequently, despite the fact that tur-
bulent flows are intrinsically out-of-equilibrium systems,
one may wonder whether the observed transitions can be
interpreted in terms of phase transitions with a symmetry-
breaking or susceptibility divergence signature. In this
Letter, we introduce a susceptibility to symmetry breaking
in a von Kármán turbulent flow and investigate its evolu-
tion as Re increases from 150 to 106 using stereoscopic
particle image velocimetry (PIV). We observe a divergence
of susceptibility at a critical Reynolds number Re ¼ Re! ’
90 000, which sets the threshold for a possible turbulent
‘‘phase transition.’’ Moreover, this divergence is associated
with a peak in the amplitude of the fluctuations of the flow
instantaneous symmetry.

Our experimental setup consists of a Plexiglas cylinder
of radius R ¼ 100 mm filled up with either water or water-
glycerol mixtures. The fluid is mechanically stirred by a
pair of coaxial impellers rotating in opposite directions
(Fig. 1). The impellers are flat disks of radius 0:925R, fitted
with 16 radial blades of height 0:2R and curvature radius
0:4625R. The disks’ inner surfaces are 1:8R apart setting
the axial distance between impellers from blades to blades
to 1:4R. The impellers rotate, with the convex face of the
blades pushing the fluid forward, driven by two indepen-
dent brushless 1.8 kW motors. The rotation frequencies f1
and f2 can be varied independently from 1 to 12 Hz.
Velocity measurements are performed with a stereoscopic
PIV system provided by DANTEC Dynamics. The data
provide the radial ur, axial uz, and azimuthal u’ velocity
components in a meridian plane on a 95" 66 points grid
with 2.08 mm spatial resolution through time series of 400
to 27 000 fields regularly sampled, at frequencies from 1 to
15 Hz, depending on the turbulence intensity and the
related need for statistics. The control parameters of the

FIG. 1 (color online). Schematic viewof the experimental setup
and the impellers’ blade profile. The arrow on the shaft indicates
the impeller rotation direction studied. Symmetry: The system is
symmetric regarding anyR" rotation of angle " around any line
of the equatorial plane which crosses the rotation axis.

PRL 105, 214501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

0031-9007=10=105(21)=214501(4) 214501-1 ! 2010 The American Physical Society

Figure 2.1: In Couette flow or
van Karman flow, turbulence is
generated by the motion of the
domain boundaries.

In experiments, energy is virtually always injected through the
interaction of a wall with the fluid, be it the domain boundary or
an object moving in the fluid. The flow may be forced steadily (e.g.
von Karman flow, wind tunnel) or freely decaying after an initial
perturbation (e.g. moving a grid through a tank). In both cases, the
general idea is that if we shake the fluid sufficiently vigorously, we
will try to impose a flow which will be unstable, thereby generating
turbulence.

In numerical simulations, on the other hand, the effect of walls is
more cumbersome to represent. An easier way to generate turbulence
is either to pick a sufficiently energetic initial condition (decaying
turbulence) or to inject energy in the system continuously by adding a
forcing term on the right hand side of Eq. (2.1). We are free to choose
the space and time structure of this forcing term.

In principle we expect the experimental process as well as the laws
of motion to be deterministic. Yet, carrying out the same experiment
multiple times yields different outcomes; as turbulence develops,
the flow takes on a random character and only statistical properties
of the flow should be robustly reproducible. As a consequence, it is
quite common in numerical simulations and in theoretical studies
to add explicitly a random forcing term f in the right hand side of
the Navier-Stokes equations (2.1), which become stochastic partial
differential equations. Such equations make sense only for random
velocity fields. Alternatively, we may stick to deterministic initial
value problems but with random initial conditions. In both cases,
we are interested in the statistical properties of the solutions of the
Euler and Navier-Stokes equations. It is expected that these statistical
properties, at scales small enough to be unaltered by the shape of the
container or details of the energy injection mechanism, should not
depend on the experimental setup or the space-time structure of the
imposed forcing. This is referred to as universality.

In this chapter, we start with a few reminders about some im-
portant aspects of the Euler and Navier-Stokes equations seen as
deterministic systems before actually diving into the stochastic nature
of turbulent flows.
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2.2 Pressure and incompressibility

2.2.1 Solving the Poisson equation

Using incompressibility, the pressure can be deduced by taking the
divergence of the Navier-Stokes equations:

∇ · (u · ∇u) = −∆p. (2.5)

This is a Poisson problem. The Laplacian can be inverted by consid-
ering the Green function G(x): ∆G(x) = δ(x), where δ is the Dirac
distribution. In arbitrary dimension d (let us not

be cheap), the Green function of the
Laplacian reads:

G(x) =

{
1

2π ln∥x∥ if d = 2,
1

(2−d)Ωd
∥x∥2−d if d ≥ 3,

(2.6)
where Ωd = 2πd/2/Γ(d/2) is the
surface of the unit sphere in dimension
d, and Γ(x) =

´ +∞
0 tx−1e−tdt is the

Gamma function.

Hence, the pressure reads:

p(x) = −
ˆ

dyG(x − y)∇ · (u · ∇u)(y). (2.7)

In particular, in dimension d = 3, G(x) = −1/(4π∥x∥), so that

p(x) =
1

4π

ˆ
R3

dy
1

∥x − y∥∂iuj(y)∂jui(y). (2.8)

It is clear based on this formula that pressure is a non-local quantity.
It is also clear (and reassuring) that the Navier-Stokes equations are
closed equations. They can be written in the form:

∂ui(x)
∂t

+ uj(x)
∂ui(x)

∂xj
=

1
4π

ˆ
R3

dy
xi − yi
∥x − y∥3

∂uj(y)
∂yk

∂uk(y)
∂yj

+ ν
∂

∂xj

∂

∂xj ui(x),

(2.9)

or in more compact form,

∂tu + u · ∇u =
1

4π

ˆ
R3

dy
x − y

∥x − y∥3 Tr(∇u)2(y) + ν∆u.

(2.10)

It is important to keep in mind that pressure acts to maintain
incompressibility.

2.2.2 Vorticity

Another way to eliminate the pressure is to work with vorticity.
Let us define the vector field ω = ∇× u. In coordinates, we have

ωi = ϵijk∂juk, where ϵijk is the standard, rank 3, totally antisymmetric
Levi-Civita tensor. Taking the curl of the Navier-Stokes equations (2.3)
(hint: with the tensor contraction identity ϵijkϵilm = δl

jδ
m
k − δm

j δl
k,

prove and use the vector identity u ×∇× u = ∇u2/2 − u · ∇u), we
obtain the equation governing vorticity dynamics:

∂tω = ∇× (u × ω) + ν∆ω, (2.11)

∂tω = ω · ∇u − u · ∇ω + ν∆ω. (2.12)
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The second term on the right-hand side is just advection of vorticity
by the flow, while the first term describes vorticity stretching.

Of course, no miracle occurs: the vorticity equation depends on
the velocity field u. To close it, we need to invert vorticity first, which
again introduces a non-local operator. Nevertheless, it can some-
times be useful to work with vorticity rather than velocity, This is
particularly true in two-dimensional turbulence, where the vorticity
stretching term vanishes, implying that vorticity is a material invari-
ant in 2D inviscid flows.

2.3 The Reynolds number

2.3.1 Naive definition

Figure 2.2: Flow past a cylinder
as a function of the Reynolds
number (Feynman, Leighton,
and Sands 1965).

Two physical effects compete in the Navier-Stokes equations: inertia
(represented by the advection term u · ∇u) and viscous dissipation
(represented by the diffusion term ν∆u). Roughly speaking, turbu-
lence occurs when inertia prevails over viscosity.

A very naive way to measure this competition is to estimate the or-
der of magnitude of the advection and dissipation terms as U2/L and
νU/L2, respectively, where U and L are characteristic velocity and
length scales, respectively. The ratio of these two quantities defines a
non-dimensional number, the Reynolds number:

Re =
UL
ν

. (2.13)

Based on the above reasoning, we expect turbulence to occur when
the Reynolds number is large. We can already guess that a large
Reynolds number also means that nonlinearity will play a crucial
part. In fact, we shall see later that the Reynolds number provides
an estimate of the range of scales coupled by the nonlinear term (see
§ 6.1.4).

Note that there is some arbitrariness in the choice of the char-
acteristic velocity U and length scale L; we shall come back to this
problem later (see § 3.1.4 and § 3.1.5).2 2 While viscosity ν is a property of the

fluid, Re is a property of the flow.

2.3.2 Hydrodynamic similarity principle

Let us make the above arguments a little more precise by non-
dimensionalizing the Navier-Stokes equations. We introduce arbi-
trary length and time scales L and T, and denote U = L/T. Now, we
define non-dimensional coordinates:

x′ = x/L, t′ = t/T. (2.14)
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Figure 2.3: The classical ex-
periment of flow in a pipe by
Osborne Reynolds (1883).

Non-dimensional velocity and pressure read:

u′(x′, t′) = u(x′L, t′T)/U, p′(x′, t′) = p(x′L, t′T)/U2, (2.15)

which satisfy the non-dimensional Navier-Stokes equations:

∂t′u
′ + u′ · ∇′u′ = −∇′p′ + Re−1∆′u′,

∇′ · u′ = 0,

where the Reynolds number is given by Eq. (2.13).
This means that the behavior of solutions of the Navier-Stokes

equations is governed by only one non-dimensional number, the
Reynolds number.

From a more pragmatic point of view, two flows are “the same”
if they have the same Reynolds number. This is referred to as the A caveat is the role of boundary con-

ditions, on which we shall modestly
refrain from commenting.

hydrodynamic similarity principle. It is the basis on which engineers
rely to design aircrafts or other vehicles by studying models in wind
tunnels, for instance (prior to the advent of numerical simulations, it
was essentially the only option).

In the limit of large Reynolds number, we would expect to recover
the Euler equations. However, it is far from clear whether solutions of
the Navier-Stokes equations (or their statistical properties) converge
to solutions of the Euler equations in some sense when Re → +∞.

2.4 Symmetries

As is customary in theoretical physics, we shall say that dynamical
equations have a symmetry group G if the space of solutions is in-
variant under the action of G. We refer to a course on group theory
for more formal definitions.
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Let us start by listing the symmetries of the Euler equations in an
infinite domain.

Continuous symmetries:

• Space and time translation invariance: (t, x, u) 7−→ (t, x + x0, u) for
x0 ∈ Rd and (t, x, u) 7−→ (t + t0, x, u) for t0 ∈ R.

• Galilean transforms: (t, x, u) 7−→ (t, x + tU, u + U) for U ∈ Rd.

• Rotations: (t, x, u) 7−→ (t, Rx, Ru) for R ∈ SO(d).

• Scaling transforms: (t, x, u) 7−→ (λ1−ht, λx, λhu) for λ ∈ R+, h ∈
R.

Discrete symmetries:

• Parity: (t, x, u) 7−→ (t,−x,−u).

• Time reversal: (t, x, u) 7−→ (−t, x,−u).

With finite viscosity, i.e. for the Navier-Stokes equations, all these
symmetries hold except for time reversal (broken by molecular diffu-
sion) and some scaling transforms (only the h = −1 scaling transfor-
mation group remains).

It should be noted that, except for scale invariance, all the above
symmetries of the hydrodynamic equations correspond to symme-
tries of the underlying microscopic equations.

Note that some of these symmetries may be broken explicitly, for
instance by the domain boundaries, the forcing mechanism, or by
imposing a transverse field (e.g. gravity or magnetic field) on the
flow (see § ??).

In any case, those symmetries are expected to be restored at a
statistical level (i.e. for the invariant measure of the system or cor-
relation functions), away from the mechanisms which break them
(e.g. at small scales). In particular, we shall focus in the following on
stationary, homogeneous and isotropic turbulence, which essentially
means that ensemble averages should be invariant under time and
space translations as well as rotations.

A symmetry which is not restored at a statistical level is referred
to as an anomaly. Perhaps the most famous examples of anomalies
in turbulence are the dissipation anomaly (time reversal invariance is
not restored in the limit ν → 0, see § 5.1) or anomalous scaling, i.e.
intermittency (see § 7).
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2.5 Energy budget
E.g. Landau and Lifchitz (1971, § 16).

From the Navier-Stokes equations (2.1), it is easy to obtain the evolu-
tion equations for the kinetic energy density u2 = u2:

1
2

∂u2

∂t
= −uiuj

∂ui

∂xj
− ui

∂p
∂xi

+ νui
∂

∂xj

∂

∂xj ui + ui f i, (2.16)

= −∂j[(u2/2 + p)uj] + νui∂j∂
jui + ui f i, (2.17)

exploiting incompressibility. The first term in Eq. (2.17) vanishes
upon integration over the whole domain D, using the Gauss theorem
and the no-penetration condition. Integrating by parts, we obtain the
evolution of the global energy E = 1/2

´
D u2:

∂E
∂t

= Pinj + ν

˛
∂D

ui∂
juidSj − ν

ˆ
D

∂jui∂
jui, (2.18)

where Pinj =
´
D u · f is the energy injection rate. The surface integral

again vanishes, and we have

∂E
∂t

= Pinj − ϵ, (2.19)

where ϵ = ν
´
D (∇u)2 > 0 is the energy dissipation rate.

Using the classical relation ϵijkϵilm = δl
jδ

m
k − δm

j δl
k and incompress-

ibility, we can write ∂jui∂
jui = ωiω

i + ∂i(uj∂
jui). The surface term

vanishes once more, and we obtain ϵ = 2νΩ, where Ω =
´
D ω2/2 is

the enstrophy.
Alternatively, the energy budget can be written by replacing the

velocity gradient tensor ∂iuj with the strain rate sij = (∂iuj + ∂jui)/2,
i.e. the symmetric part of the velocity gradient tensor. Indeed, ∂iuj

can be decomposed as usual into symmetric and antisymmetric parts,
sij and Ωij = (∂iuj − ∂jui)/2 (often called rotation rate tensor). A
general result is that antisymmetric matrices in 3D are entirely deter-
mined by a vector: in the case of the rotation rate, this vector is just
vorticity: Ωij =

1
2 ϵijkωk. It follows that

ϵ = ν

ˆ
D

sijsij + ν

ˆ
D

ΩijΩij = ν

ˆ
D

sijsij + ν

ˆ
D

ωiω
i

2
. (2.20)

Because we have seen in the previous paragraph that ϵ = 2νΩ, it
follows that we also have ϵ = 2ν

´
D sijsij.
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Figure 2.4: Helicity measures
the knottedness of vortex
lines (Moffatt and Tsinober
1992).

In the absence of forcing, inviscid flows (i.e. flows with ν = 0) con-
serve energy. This is related to the fact that the Euler equations are
reversible, while the Navier-Stokes equations are dissipative. Inviscid
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flows in 3D conserve another global quantity, helicity H =
´
D u · ω,

related to topological properties (see Frisch (1995, § 2.3), or Moffatt
and Tsinober (1992) for more details). Roughly speaking, helicity
measures parity breaking: H 7→ −H under P, so that parity invariant
flows must have H = 0. Note that to derive the conservation

laws, we have assumed that the velocity
field was sufficiently smooth. This
is a reasonable assumption for finite
viscosity (the velocity field needs to
be at least twice differentiable for
the Navier-Stokes equations to make
sense) but not necessarily for the Euler
equations. In principle, singularities
could break energy conservation, as
observed early on by Onsager (1949).

Inviscid 2D flows have an infinity of additional conservation laws:
all the moments of the vorticity field are conserved: d

dt
´
D ωn = 0

(more generally, d
dt
´
D s(ω) = 0). This fundamental property has

far-reaching consequences (see § ??).



3
Statistical Description of Homogeneous Isotropic Turbu-
lence

Statistics and probabilities are the proper tools to characterize
turbulent flows, since they are fluctuating by nature. In this section,
we introduce basic objects to describe the statistical properties of
turbulent flows (essentially the velocity covariance and the kinetic
energy spectrum), and exploit symmetries to simplify as much as
possible these objects. This approach is quite old1. At the end of the 1 Most of the results shown here can al-

ready be found in the book of Batchelor
(1953)

chapter, we show that the statistics cannot be determined directly
from first principles; in future chapters we will see how they can be
determined empirically and explained phenomenologically.

3.1 Real space statistics

3.1.1 Statistical Symmetries

It is natural to assume that the symmetries of the Navier-Stokes
equations, which may be broken by the forcing, are restored in a
statistical sense, i.e. should be recovered at the level of moments,
correlation functions, PDFs or joint PDFs. For instance, translation
invariance implies that averages of the form ⟨ϕ1(x1) · · · ϕn(xn)⟩ =

⟨ϕ1(x1 + x) · · · ϕn(xn + x)⟩ are homogeneous. In particular, this means
that quantities observed at a given point have a space-independent
average: e.g. ⟨ui(x)⟩ does not depend on the position x, the only pos-
sible mean-flow in homogeneous turbulence is trivial. In the sequel,
we shall assume ⟨ui(x)⟩ = 0.

When there is no mean-flow, the typical velocity estimate, used for
instance to compute the Reynolds number, is based on the root mean

square velocity: Urms =
√
⟨ui(x)

2⟩. It is also the standard deviation
of the turbulent velocity. By homogeneity and isotropy this does not
depend on the choice of x or the index i (no summation here).
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3.1.2 Local energy budget in homogeneous isotropic turbulence

The global energy budget derived in Sec. 2.5 holds locally in an ho-
mogeneous turbulent flow.

Indeed, let us now consider a random velocity field u solution
of the Navier-Stokes equations. We introduce the ensemble aver-
age ⟨·⟩. Assuming that the statistics are homogeneous, we have
⟨·⟩ = limV→∞

1
V
´

dr. Assuming in addition isotropy, we have
⟨u2⟩ = 3U2

rms, where U2
rms = ⟨u2

x⟩ = ⟨u2
y⟩ = ⟨u2

z⟩. To make it
clear that we are using isotropy, we shall denote as u∥ the projection
of the velocity field on an arbitrary direction, and write U2

rms = ⟨u2
∥⟩.

Now, using incompressibility again, we have

3
2

∂U2
rms

∂t
= ⟨ui f i⟩ − ν⟨∂jui∂

jui⟩. (3.1)

We shall denote
ϵ = ν⟨∂jui∂

jui⟩ (3.2)

the energy dissipation rate. Most often, we shall consider stationary
statistics, so that ϵ also coincides with the energy injection rate.

As in section 2.5 it can be expressed using vorticity or strain rate:
ϵ = ν⟨ω2⟩ = 2ν⟨sijsij⟩.

3.1.3 Two-point statistics: velocity covariance tensor
Batchelor (1953, § 3.4)

Let us introduce the velocity covariance:

Uij(x, y) = ⟨ui(x)uj(y)⟩. (3.3)

Assuming homogeneity, Uij is only a function of r = x − y, and
assuming isotropy, it can be written as (see § B.1)

Uij(r) = F(r)rirj + G(r)δij. (3.4)

The functions F and G are directly related to the longitudinal and
r

u(x)

u(x + r)

u∥(x) u∥(x + r)

u⊥(x)

u⊥(x + r)

transverse autocorrelation functions: introducing, as above, the nota-
tions u∥ = u · r/r and u⊥ = u − u∥r/r, we have

f and g are even functions: f (−r) =
f (r), g(−r) = g(r).
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Fig. 6.6. Measurements of the longitudinal velocity autocorrelation functions f(r, t) in
grid turbulence: x1/M = 42, ◦; 98,✷; 172,△. (From Comte-Bellot and Corrsin (1971).)

There are two distinct longitudinal lengthscales, L11(t) and λf(t), that can
be defined from f; and then there are corresponding transverse lengthscales
L22(t) and λg(t) defined from g.

Integral lengthscales

The first of the lengthscales obtained from f(r, t) is the longitudinal integral
scale

L11(t) ≡
∫ ∞

0

f(r, t) dr, (6.47)

which we have already encountered (e.g., in Section 5.1, Fig. 5.13on page
110). The integral scale L11(t) is simply the area under the curve of f(r, t), so
inspection of Fig. 6.6 immediately reveals that L11 grows with time (in grid
turbulence). As previously observed, L11 is characteristic of the larger eddies.
In isotropic turbulence, the transverse integral scale

L22(t) ≡
∫ ∞

0

g(r, t) dr (6.48)

is just half of L11(t) (see Exercise 6.4).

EXERCISES

6.4 Show that Eq. (6.46) can be rewritten

g(r, t) = 1
2

(
f(r, t) +

∂

∂r
[rf(r, t)]

)
, (6.49)

Autocorrelation function in grid turbu-
lence, after Comte-Bellot and Corrsin
(1971).

f (r) = ⟨u∥(x)u∥(x + r)⟩, (3.5)

=
rirj

r2 Uij(r), (3.6)

= F(r)r2 + G(r), (3.7)

and

g(r) = ⟨u⊥(x) · u⊥(x + r)⟩/2, (3.8)

= (Ui
i (r)− f (r))/2, (3.9)

= G(r). (3.10)
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Incompressibility implies
∂Uij(r)

∂rj
= 0, which yields after some algebra

g(r) = f (r) + r f ′(r)/2. This shows that the longitudinal autocorrela-
tion function determines the whole velocity covariance.

Lesieur (2008, § 5.9.6); be careful, our
definition of helicity differs by a factor
2.

Helical flows The form of the velocity covariance tensor given by
Eq. (3.4) holds if we include reflection symmetry in the definition of
isotropy, rather than only rotations. If we do not enforce reflection
symmetry, an additional term arises (see § B.1):

Uij(r) = F(r)rirj + G(r)δij + H(r)ϵijkrk. (3.11)

The coefficient H(r) contains information about the helical character
of the flow. For instance, it can be easily shown that H(0) = −H/6,
where H = ⟨u · ω⟩ is the mean helicity:

H = ⟨ϵijkui∂juk⟩, (3.12)

= lim
r→0

ϵijk
∂

∂rj
Uik(r), (3.13)

= lim
r→0

ϵijkϵikl ∂

∂rj
H(r)rl , (3.14)

= lim
r→0

−2δl
j [δ

j
l H(r) +

rjrl
r

H′(r)], (3.15)

= −6H(0). (3.16)

3.1.4 Integral scale

The integral scale is the length scale associated with the largest eddies
in the flow, or in other words, the energy containing scale. It could
be approximated very roughly as the size of the domain (in a finite
domain).

A more precise definition is the autocorrelation scale of velocity:

L0 =

ˆ +∞

0

⟨u∥(x)u∥(x + r)⟩
U2

rms
dr, (3.17)

where we have used the shorthand u∥(x) = u(x) · r/r. By isotropy,
this does not depend on the direction of the r vector.

Technically, this is the longitudinal
integral scale; using the notations from
§ 3.1.3, we have L0 =

´ ∞
0 f (r)dr/ f (0).

Note that some references (e.g. Pope
2000, p. 197) factor out the RMS energy
U2

rms = f (0) = g(0) out of f and g
in the velocity autocorrelation tensor;
in this case the integral scale is simply
the integral of the longitudinal velocity
autocorrelation function f . One could
define similarly a transverse integral
scale L⊥

0 =
´ ∞

0 g(r)dr/g(0). In isotropic
turbulence, the two are directly related:
the relation between f and g established
in § 3.1.3 yields L⊥

0 = L0/2.

In decaying turbulence, the integral scale is typically used to es-
timate the Reynolds number and the energy injection rate: Re =

UrmsL0/ν, ϵ = U3
rms/L0. In the presence of a forcing acting at a def-

inite scale (e.g. in many Direct Numerical Simulation (DNS) studies),
the forcing scale is often preferred.

3.1.5 Taylor scale
Taylor (1935)

We are interested in the universal properties of velocity fluctua-
tions, which should be independent of the forcing mechanism or
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the boundaries. It would be useful to construct a Reynolds num-
ber independent of the large scales properties (like, for instance, the
integral scale, which is difficult to estimate precisely in practice). An-
other way to define a characteristic length scale is to combine the rms
velocity and the velocity gradients: let us define the Taylor microscale
λ such that

U2
rms

λ2 =

〈(
∂ui
∂xi

(x)
)2
〉

, (3.18)

again independently of the index i by isotropy (no summation is
implied).
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Fig. 6.7. A sketch of the longitudinal velocity autocorrelation function showing the
definition of the Taylor microscale λf.

= −
〈(

∂2u 1

∂x2
1

)
u 1

〉

= −
〈

∂

∂x1

(
u 1

∂u 1

∂x1

)
−

(
∂u 1

∂x1

)2
〉

=

〈(
∂u 1

∂x1

)2
〉
. (6.55)

Thus we obtain 〈(
∂u 1

∂x1

)2
〉

=
2u ′2

λ2
f

. (6.56)

The transverse Taylor microscale λg(t), defined by

λg(t) =
[
− 1

2
g′′(0, t)

]−1/2
, (6.57)

is, in isotropic turbulence, equal to λf(t)/
√

2 (see Exercise 6.6). It then follows
from these two equations and the relation ε = 15ν⟨(∂u 1/∂x1)2⟩ (Eq. (5.171))
that the dissipation is given by

ε = 15νu ′2/λ2
g. (6.58)

In a classic paper marking the start of the study of isotropic turbulence,
Taylor (1935a) defined λg and obtained the above equation for ε. He then
stated that ‘λg may roughly be regarded as a measure of the diameter of

The parabola osculating the autocor-
relation function f intersects the axis at
r = λ f =

√
2λ.

The Taylor scale is related to the longitudinal autocorrelation func-
tion: it can be easily shown that ⟨(∂∥u∥)

2⟩ = − f ′′(0), from which it
follows that λ2 = − f (0)/ f ′′(0).

Based on that definition, we can introduce the Reynolds number at
the Taylor microscale:

Rλ =
Urmsλ

ν
. (3.19)

Taylor initially thought that λ was the scale of the smallest eddies
dissipating energy. This incorrectly assumes that the velocity at the
Taylor scale is Urms, i.e. that Rλ = Re(λ) = 1. In fact, the scale which
plays that role is the Kolmogorov scale.

3.1.6 Energy dissipation rate as a function of the longitudinal velocity
gradient

Computing the energy dissipation rate using Eq. (3.2) requires the
knowledge of all the components of the velocity gradient tensor.
Even with the progress of velocimetry techniques (see lecture by
Mickael Bourgoin), this is difficult to achieve in laboratory exper-
iments. A classical technique is hot-wire measurements, which
gives access only to longitudinal velocity gradients (under the Tay-
lor hypothesis, see § A). But exploiting statistical homogeneity and
isotropy, it should be possible to express the mean energy dissipation
rate as a function of the longitudinal velocity gradient only. Let us do
so by relying on the results of Sec. 3.1.3.

The energy dissipation rate is given by

ϵ = ν⟨∂jui∂
jui⟩, (3.20)

= −ν∆rUi
i (r)|r=0, (3.21)

= −ν[8 f ′(r)/r + 7 f ′′(r) + r f ′′′(r)]r=0, (3.22)

= −15ν f ′′(0), (3.23)

= 15ν⟨(∂∥u∥)
2⟩. (3.24)

where we have used the expression of the Laplacian in spherical
coordinates ∆ = r−2∂rr2∂r and the fact that f is an even function.
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The energy dissipation rate can be expressed conveniently in terms
of the Taylor microscale: ϵ = 15νU2

rms/λ2 (Taylor 1935).

3.1.7 Second-order structure functions

Above we have considered the velocity covariance tensor; another
statistical quantity of interest is the second-order structure function:
Dij(r) = ⟨[ui(x + r)− ui(x)][uj(x + r)− uj(x)]⟩. Like in Sec. 3.1.3, this
tensor can be decomposed as follows:

Dij(r) = D⊥(r)δij + [D∥(r)− D⊥(r)]
rirj

r2 . (3.25)

Choosing the coordinate system such that r is one of the base vectors
(e.g. r = e1), we see that D∥(r) = S2(r) = ⟨(δ∥u)2⟩ is the usual
longitudinal structure function (from i = j = 1) and D⊥(r) =

⟨(δu⊥)
2⟩/2 the transverse structure function (form i = j = 2 or 3).

Again, the second-order structure function is entirely determined
by the longitudinal velocity autocorrelation function: we first express
the structure function in terms of the velocity covariance tensor:

Dij(r) = ⟨[ui(x + r)− ui(x)][uj(x + r)− uj(x)]⟩, (3.26)

= 2Uij(0)− Uij(r)− Uji(r), (3.27)

which, using Uij(0) = g(0)δij = f (0)δij and assuming reflection
symmetry, yields

= 2g(0)δij − 2Uij(r), (3.28)

= 2[g(0)− g(r)]δij − 2[ f (r)− g(r)]
rirj

r2 . (3.29)

By identification, we find:

D∥(r) = S2(r) = 2[ f (0)− f (r)], D⊥(r) = 2[g(0)− g(r)]. (3.30)

From the relation between f and g (due to incompressibility), we
deduce a relation between D∥ and D⊥:

D⊥(r) = D∥(r) +
rD′

∥(r)

2
. (3.31)

3.2 Spectral description of homogeneous turbulence

3.2.1 Navier-Stokes equations in Fourier space
See for instance Lesieur (2008, chap. 5).

Let us first introduce the Fourier transform operator F :

F : ϕ 7−→ ϕ̂ such that ϕ̂(k) =
1

(2π)3

ˆ
dxϕ(x)e−ik·x, (3.32)
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and the inverse Fourier transform:

F−1 : ϕ̂ 7−→ ϕ such that ϕ(x) =
ˆ

dkϕ̂(k)eik·x. (3.33)

In particular, the Fourier transform of the velocity fields writes As usual with Fourier transforms,
alternative normalizations may be
chosen.

ûi(k) = F [ui](k). Note that for the velocity field to be real-valued,
the hermitian condition ûi(−k) = ûi(k)

∗ should hold. From a com-
putational point of view, it means that we only need to solve the
equations on half the Fourier space.

Taking the Fourier transform of the Navier-Stokes equations (2.3),
we obtain

∂tûi(k) + ûj∂
jui(k) = −iki p̂(k)− νk2ûi(k),

kiûi(k) = 0.

It should be noted that incompressibility in Fourier space corre-
sponds to the fact that each Fourier coefficient is orthogonal to the
wave vector. Before treating the non-linear term, let us note that the
Fourier transform of pressure can be obtained readily using equa-

tion (2.5): k2 p̂(k) = ikjûl∂luj(k), so that the Navier-Stokes equations
in Fourier space now read:

(∂t + νk2)ûi(k) = −Pij(k)ûl∂luj(k), (3.34)

with Pij(k) = δij − kik j/k2. Now, using incompressibility, ûl∂luj(k) = Pij(k) is actually the Fourier transform
of the operator P : u 7−→ u −∇∆−1∇ ·
u: (̂Pu)i(k) = Pij(k)ûj(k). As can
be checked explicitly, P is a projector
(P2 = P , or Pij(k)Pj

l (k) = Pil(k)) on
the space of divergence-free velocity
fields (∇ · Pu = 0, or ki Pij(k) = 0).

ikl ûluj(k), and because the tensor ûluj is symmetric, we can also
symmetrize kl Pij(k): let Pijl(k) = k jPil(k) + kl Pij(k), and because the
Fourier transform of a product is a convolution, we can finally write
the closed Navier-Stokes equations in Fourier space:

(∂t + νk2)ûi(k) = − i
2
P jl

i (k)
ˆ

dpdqδ(p + q − k)ûj(p)ûl(q). (3.35)

This equation involves the interaction of three modes with wavevec-
tors satisfying k = p + q, referred to as a triad.

kp

q

Figure 3.1: An example of a
triadic interaction.

3.2.2 Scale-by-scale energy budget

As an aside, let us note that writing the Navier-Stokes equations
in Fourier space allows us to derive easily a scale-by-scale energy
budget: from the Parseval-Plancherel theorem, energy, enstrophy and
helicity now read

E =
1
2

ˆ
dkûj(k)ûj(k)

∗, (3.36)

Ω =
1
2

ˆ
dkω̂ j(k)ω̂j(k)

∗ =
1
2

ˆ
dkk2ûj(k)ûj(k)

∗, (3.37)

H =
1
2

ˆ
dkω̂ j(k)ûj(k)

∗ =
i
2

ϵjlm

ˆ
dkkjûl(k)ûm(k)∗, (3.38)
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where ϵ is the standard, rank 3, totally antisymmetric, Levi-Civita
tensor. Let us now define the cumulative energy spectrum E<(k) (resp.
enstrophy spectrum Ω<(k)) by restricting the integration above to the
ball of radius k: ∥k∥ ≤ k, and the energy spectrum E(k) = dE<(k)/dk.
E<(k) measures the kinetic energy at wave numbers smaller than k,
i.e. scales larger than 1/k. One could define similarly the enstrophy
spectrum Ω(k) = dΩ<(k)/dk; as is easily checked, Ω(k) = k2E(k).
From equation (3.35), ading a forcing term f , it is straightforward to
obtain the scale-by-scale energy budget:

∂tE<(k) = −Π(k)− 2νΩ<(k) + F<(k), (3.39)

and

(∂t + 2νk2)E(k) = −∂kΠ(k) + F(k), (3.40)

with

Π(k) =
i
2

ˆ
∥k∥≤k

dkP ijl(k)ûi(k)
∗
ˆ

dpdqδ(p + q − k)ûj(p)ûl(q).

(3.41)

There are three contributions to the scale-by-scale energy budget: en-
ergy injection by the forcing, viscous dissipation, and inertial transfer.
When Π(k) > 0, the energy is transferred, by the nonlinear term,
on average from wave numbers smaller than k (i.e. scales larger than
1/k) to wave numbers larger than k (i.e. scales smaller than 1/k). This
is called a direct energy transfer. When Π(k) < 0, the converse is true.
This is called an inverse energy transfer.

Note that by definition, Π(0) = 0, but we also have limk→+∞ Π(k) =
0 i.e.

´ +∞
0 ∂kΠ(k)dk = 0: the nonlinear term only acts to redistribute

energy across scales, but does not have any net effect on the global
budget, as seen above (§ 2.5).

3.2.3 Autocovariance in Fourier space: energy and helicity spectra

We introduce the Fourier transform of the velocity field:

ûi(k) =
1

(2π)3

ˆ
dxui(x)e−ik·x., (3.42)

and we consider the covariance tensor for the Fourier coefficients:

⟨ûi(k)ûj(p)⟩ =
1

(2π)6

ˆ
⟨ui(x)uj(y)⟩e−ik·x−ip·ydxdy, (3.43)

=
1

(2π)6

ˆ
drUij(r)e−ip·r

ˆ
dxe−i(k+p)·x, (3.44)

which, using
´

dxe−ik·x = (2π)3δ(k), yields

= δ(k + p)Ûij(p). (3.45)
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The Dirac delta is the signature of homogeneity: translations in real
space corresponds to multiplication by a phase factor in Fourier
space. The average of products of Fourier coefficients should be
invariant under such transforms, i.e. the phase factors should cancel
out. In general, this means that a product of the form ⟨ûi1(k1) · · · ûin(kn)⟩
will vanish unless k1 + · · ·+ kn = 0.

Like in the above, the tensor Ûij(k) can be decomposed in the
following manner (we treat directly the general case of a flow with
nonzero mean helicity, i.e. without enforcing reflection symmetry):

Ûij(k) = A(k)δij + B(k)kik j + C(k)ϵijlkl . (3.46)

The incompressibility condition in Fourier space reads kiûi(k) = 0;
taking the scalar product with the velocity covariance in Fourier
space yields kiÛij(k) = 0 = A(k)k j + B(k)k2k j, from which we obtain

Ûij(k) = A(k)Pij(k) + C(k)ϵijlkl , (3.47)

with Pij(k) = δij −
kikj
k2 . The mean kinetic energy per unit mass is E =

Ui
i (0)/2 =

´
A(k)dk =

´ +∞
0 4πk2 A(k)dk. In other words, the trace

part of the tensor, A(k), is related to E(k) the kinetic energy density
in Fourier space integrated over a sphere of radius k, often simply
called “the energy spectrum” and defined such that E =

´ +∞
0 E(k)dk,

by the relation E(k) = 4πk2 A(k).
The traceless part, on the other hand, is related to the mean helic-

ity (per unit mass):

H = ⟨u · ω⟩ = lim
r→0

ϵijl
∂

∂rj
Uil(r), (3.48)

= iϵijl

ˆ
kjÛil(k)dk, (3.49)

= −2iδm
j

ˆ
kjkmC(k)dk, (3.50)

= −2i
ˆ +∞

0
4πk4C(k)dk, (3.51)

so that H(k) = −8πik4C(k). Finally, the velocity covariance tensor in
Fourier space reads:

Ûij(k) =
E(k)
4πk2 Pij(k) + i

H(k)
8πk4 ϵijlkl . (3.52)

We note that in general, Ûij(k) is a Hermitian tensor: Ûji(k) =

Ûij(k)
∗; it is symmetric only if there is no mean helicity (in that,

case, it takes real values).
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3.3 Turbulence, an out-of-equilibrium phenomenon: failure of equi-
librium statistical mechanics

Because inviscid flows form a Hamiltonian system, a very natural
question to ask is how well does equilibrium statistical mechanics
describe the statistics of turbulent velocity fields? The idea is simply
to introduce a measure on phase space which is proportional to the
Lebesgue measure, and whose density depends only on conserved
quantities (e.g. the microcanonical measure which is uniform on
surfaces of constant energy) or their associated Lagrange multiplier
(e.g. the canonical measure).

uj(x) = ∑
k

ûj(k)eik·x,

E =
1
2

ˆ
u2 =

1
2 ∑

k
ûj(k)ûj(k)∗,

p({ûj(k)}k) =
1
Z e−βE,

Z = ∏
k

2π

β
,

⟨E⟩ = − ∂ lnZ
∂β

,

= ∑
k

1
β

,

E =

ˆ
E(k)dk,

⟨E(k)⟩ = 4πk2

β
.

Let us first note that unlike the systems considered in undergrad-
uate statistical physics courses, we are dealing here with classical
fields, i.e. an infinite dimensional phase space. This implies con-
siderable technical difficulties. Let us therefore consider a finite-
dimensional approximation of the system: a typical approach is
Galerkin truncation, which retains only a finite number of Fourier
modes (hoping that we can take the limit of an infinite number of
modes later). It has been shown in this context (Lee 1952) that the
Lebesgue measure is invariant under the Hamiltonian flow, i.e. the
Liouville theorem holds, and the classical equilibrium measure are
indeed invariant measures. As noted early on by Lee (1952), the
canonical measure corresponds to energy equipartition, which leads
to an energy spectrum of the form E(k) ∝ k2: the energy concentrates
in the small scales. If we let the cutoff wave-number tend to infin-
ity, we obtain an infinite energy. This ultraviolet catastrophe, typical
of classical fields, is known as the Rayleigh-Jeans paradox (Pomeau
1995).

Taking helicity into account does not change fundamentally the
conclusions (Kraichnan 1973), unless specific constraints are en-
forced (Herbert 2014).

2D flows, on the other hand, because of their different conserva-
tion laws (§ 2.5), can be described to some extent using equilibrium
statistical mechanics methods (see § ?? or Eyink and Sreenivasan
(2006), Bouchet and Venaille (2012), and Herbert (2015) for reviews).

3.4 Turbulence, a non-linear phenomenon: The closure problem

We have just seen that turbulence is an out-of-equilibrium statistical
physics problem. As a consequence, the dynamics cannot be dis-
missed2. Let us go back to the Navier-Stokes equations and try to 2 An interesting read in this respect

is Ruelle (2004).deduce the statistical properties of the velocity field from there.
Let us assume that the statistics are homogeneous and introduce

the Fourier transform of the velocity covariance Ûij(k). Using the
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Navier-Stokes equations in Fourier space (3.35), we easily obtain the
equation governing the dynamics of Ûij: The idea may be conveyed simply by

denoting in a symbolic manner the
Navier-Stokes equations as Lu = uu,
where L is a linear operator, so that:

L1⟨u⟩ = ⟨uu⟩
L2⟨uu⟩ = ⟨uuu⟩

L3⟨uuu⟩ = ⟨uuuu⟩
. . .

In general the linear operators on the
left hand side are not all the same; they
do in the inviscid case where they boil
down to the time derivative.

(∂t + 2νk2)Ûij(k) = − i
2
P lm

i (k)
ˆ

dpTjlm(−k, p)− i
2
P lm

j (−k)
ˆ

dpTilm(k, p),

(3.53)
with Tijk(k, p) = (2π)−6 ´ drdr′⟨ui(x)uj(x + r)uk(x + r′)⟩e−ik·r−ip·r′ .
In other words, the equations governing the evolution of the second
order statistics depend on the third order statistics. If we were to
write the equations for the third-order tensor Tijk, it would involve
the fourth-order statistics, and so on. This is the problem of clo-
sure of the hierarchy of momentum for the Navier-Stokes equations.
Many strategies have been developed to close this hierarchy, but they
all contain some degree of arbitrariness (see § 9 or Orszag (1970) for
more details).



4
Simulation and Modelling

Building a statistical theory of turbulence from the ground
up (i.e. starting from the Navier-Stokes equations) is a very difficult
task, as we have just seen. We will therefore need to rely on some
empirical understanding of turbulence. This can be achieved essen-
tially by two means: laboratory experiments and numerical simula-
tions. In this chapter, I explain the basic principles of direct numer-
ical simulations, before touching briefly upon turbulence modeling
techniques (§ 4.2), used in practical applications.

4.1 Direct Numerical Simulations

A reference for this section is Pope
(2000, chap. 9).Arguably the most natural approach to numerical simulation of tur-

bulent flows is to solve directly the Navier-Stokes equations. As Please note that the goal of this sec-
tion is not to teach you how to run
numerical simulations of turbulent
flows in practice, but rather to address
the fundamental question: “Can tur-
bulence be solved by brute-force? Is it
a computational problem or a physics
problem?”.

we shall see, this requires to resolve the entire range of nonlinearly-
coupled scales. For a long time, this requirement led to prohibitive
numerical costs, and Direct Numerical Simulation (DNS) remained
out-of-reach (in other words, DNS were restricted to very low Reynolds
numbers). Technological progress (powerful computers, Fast Fourier
Transform algorithm1, and later, massive parallelization) brought 1 Cooley and Tukey (1965). The basic

idea of the algorithm was in fact known
to Gauss.

DNS into the realm of possibilities. Here, I shall describe briefly the
principle of pseudospectral methods (§ 3.2.1), which are the most ef-
ficient numerical methods for DNS of the Navier-Stokes equations.
Notwithstanding, these methods still fall short of industry require-
ments, which still recourse to turbulence modelling (briefly touched
upon in § 4.2). Besides, practical applications often impose domain
geometries incompatible with pseudospectral methods: for the sake
of brevity, we leave aside here all other types of discretizations (finite
differences, finite elements, Lattice-Boltzmann methods,. . . )2. 2 See e.g. Hinch (2020) and Durran

(2010).
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4.1.1 Pseudospectral methods

The principle For simplicity, let us assume that we are considering
a cubic domain of linear length L with periodic boundary condi-
tions in all directions3 (i.e. a domain with the topology of a flat torus 3 See Boyd (2001) for a more general

presentation.R3/(LZ3)), so that the set of wave vectors (pedantically the Pontrya-
gin dual of the torus) is simply 2π/LZ3. Then, all the integrals above
become discrete sums.

In practical computations, the equations must of course be dis-
cretized to be solved by a computer: let us introduce a truncation in
spectral space and retain only N wave vectors in each direction.

A pure spectral method would compute explicitly the convolution
product in (3.35). However, because Fast Fourier Transforms are
relatively cheap, it is much more efficient to compute the non-linear
term in real space, and then its Fourier transform. In other words,
pseudospectral methods (Orszag and Patterson 1972; Rogallo 1981)
actually solve the equation:

(∂t + νk2)ûi(k) = − i
2
P jl

i (k)F [F−1[ûj]F−1[ûl ]](k). (4.1)

Note that different implementations may actually compute differently
the nonlinear term (depending on at which point they compute the
derivative). The important point is that derivatives are computed in
Fourier space and products in real space.

As an illustration, assuming there is no better way of evaluating
the convolution product than the naive one, the number of operations
required at each time step is O(N6). By contrast, the complexity of
the Fast Fourier Transform algorithm is O(N3 ln N).

Some more details The discretization introduced above is equivalent
to considering a regular grid on the torus with N grid points in each
direction. The grid points are described by vectors x = nxL/Nex +

nyL/Ney + nzL/Nez (you can think of it as a Bravais lattice if you
wish), with integer coefficients 0 ≤ nx, ny, nz < N. Equivalently, the
wave vectors are k = kx2π/Lex + ky2π/Ley + kz2π/Lez. Instead of
the Fourier transform F we use the Discrete Fourier Transform:

ûi(k) = ∑
x

ui(x)e−ix·k, (4.2)

i.e.

ûi(kx, ky, kz) =
N−1

∑
nx=0

N−1

∑
ny=0

N−1

∑
nz=0

ui(nx, ny, nz)e−
2iπ
N (nxkx+nyky+nzkz). (4.3)

It is clear that the Discrete Fourier Transform is N-periodic in each
index. In other words, the set of wave vectors described above can be
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translated by any vector with coordinates multiple of 2π/L in any
direction. This means that the first half of the Fourier coefficients
correspond to positive wave numbers and the second half to nega-
tive wave numbers. The largest wave number represented in each
direction is kmax = N/2 × 2π/L = Nπ/L.

In principle, ûi(kx, ky, kz) should be an array of N3 complex num-
bers. This would occupy twice as much memory as in real space.
Indeed, because of the Hermitian symmetry (ûi(N − kx, N − ky, N −
kz) = ûi(kx, ky, kz)

∗), one may choose arbitrarily a dimension (say
the z dimension) and store only half the Fourier coefficients in this
direction (i.e. 0 ≤ kz ≤ N/2). This is still more than would be strictly
necessary.

The resolution is strongly linked to the choice of viscosity. The
basic idea is that the smallest resolved scales must be smaller than
the scales at which dissipation occurs. This can be achieved by using
the Kolmogorov phenomenology (see § 6) and enforcing kmaxη ≥ 1
(actually, for the small scales to be well-resolved, it should be slightly
larger), i.e. ν ≥ ϵ1/3k−4/3

max . ϵ is unknown in principle, but in practice
we can more or less control its value. Clearly, higher resolutions give
access to smaller viscosities, i.e. higher Reynolds numbers. Indeed,
the above inequality gives an estimate of the resolution required to
reach a given Reynolds number: N ∼ Re3/4.

350 9 Direct numerical simulation
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Fig. 9.3. The time in days TG required to perform DNS of homogeneous isotropic
turbulence on a gigaflop computer as a function of the Reynolds number. Solid line,
estimate from Eqs. (9.7), (9.11), and (9.13); dashed line, asymptote (Rλ/70)6; symbols,
based on DNS timings for a 40-node IBM SP2.

is smaller. It is a matter of simple arithmetic (Exercise 9.2) to show that
99.98% of the modes represented have wavenumbers |κ| greater than κDI;
less than 0.02% of the modes represent motions in the energy-containing
range or in the inertial subrange.

EXERCISES

9.1 The time step ∆t dictated by the Courant number (Eq. (9.10)) is
a restriction imposed by the numerical methods that are currently
employed. The intrinsic restriction on ∆t imposed by the turbulence
is that ∆t/τη should be small. If the Courant-number restriction (Eq.
(9.10)) is replaced by

∆t

τη
= 0.1, (9.14)

obtain the revised estimates

M = 4
√

15 Rλ, (9.15)

N3M ∼ 0.93R11/2
λ , (9.16)

TG ∼
(

Rλ

100

)11/2

. (9.17)

Figure 4.1: Moore’s law (left)
and time in days required to
perform DNS on a gigaflop
computer (typical commer-
cial computer of the 2000s)
as a function of the Reynolds
number (Pope 2000, Fig. 9.3).

The time-step also depends on the resolution through the Courant-
Friedrichs-Lewy (CFL) condition: in physical terms, the time-step
should be smaller than the smallest eddy turnover time ℓ/U ∼
1/(Ukmax), with U ∼ 1, and the viscous time 1/(νk2

max). In practice,
Courant numbers much smaller than unity are used: Urmsdt/dx ≈
0.05. Hence, one should halve the time-step when doubling the res-
olution. This means that the computational cost4 for doubling the 4 For a total integration time T, the

number of time steps increases linearly
with resolution N — it can be expressed
as NT0/N0 for a reference resolution
N0 — so, assuming the computational
cost of one time step is dominated by
the FFT, the total computational cost is
C = N(T0/N0)N3 ln N = O(N4 ln N) =
O(Re3 ln Re).

Reynolds number increases roughly by a factor 8.
To give ideas of state-of-the-art resolutions, record-breaking5 DNS

5 In 2019 a new record was set at N =
12288.

were for instance 4096
3, Rλ = 1200 (Kaneda et al. 2003) or 8192

3,
Rλ = 1300 (Yeung, Zhai, and Sreenivasan 2015).
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The time elapsed between the two simulations slightly underper-
forms a crude estimate based on a naive interpretation of Moore’s
law, according to which resolution should double every 6 years
(Fig. 4.1). This is essentially due to the fact that the later run better
resolved the small-scales. Note that simulations of this kind (say
N = 10000), using double precision (64-bit floating point numbers,
i.e. 8 bytes), require about 8TB of memory to store each component of
the velocity field at each time.

6.6 The spectral view of the energy cascade 251
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Fig. 6.28. For homogeneous turbulence at very high Reynolds number, sketches of (a)
the energy and dissipation spectra, (b) the contributions to the balance equation for
E(κ, t) (Eq. (6.284)), and (c) the spectral energy-transfer rate.

effect that mean velocity gradients have on the spectrum. The final term in
Eq. (6.284) is the dissipation spectrum D(κ, t) = 2νκ2E(κ, t).

Figure 6.28 is a sketch of the quantities appearing in the balance equation
for E(κ, t). In the energy-containing range, all the terms are significant
except for dissipation. With the approximations k(0,κEI) ≈ k, ε(0,κEI) ≈ 0 and
P(0,κEI) ≈ P , when it is integrated over the energy-containing range (0, κEI),
Eq. (6.284) yields

dk

dt
≈ P − TEI, (6.290)

where TEI = Tκ(κEI). In the inertial subrange, spectral transfer is the only
significant process so that (when it is integrated from κEI to κDI) Eq. (6.284)
yields

0 ≈ TEI − TDI, (6.291)

where TDI = Tκ(κDI). Whereas in the dissipation range, spectral transfer
balances dissipation so that (when it is integrated from κDI to infinity)
Eq. (6.284) yields

0 ≈ TDI − ε. (6.292)
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κmax

κ
E

energy-containing range
and inertial subrange

| κ | < κDI
κ

DI

κ maxκ max

insignificant
modes

dissipation range

| κ | > κDI

Fig. 9.4. The solution domain in wavenumber space for a pseudo-spectral DNS of
isotropic turbulence. The modes represented lie within the cube of side 2κmax (dashed
line). The three spheres shown are: of radius κmax, the maximum wavenumber resolved
in all directions (κmaxη = 1.5); of radius κDI, the wavenumber of the largest dissipative
motions (κDIη = 0.1); and of radius κE, the wavenumber corresponding to the peak of
the energy spectrum at Rλ = 70 (κEL11 = 1.3). Only 0.016% of the modes represented
lie within the sphere of radius κDI, corresponding to motions in the energy-containing
range and in the inertial subrange.

(For Rλ = 1,000, this estimate yields TG ≈ 0.3 × 106, compared with
the value TG = 8.5 × 106 given by Eq. (9.13).)

9.2 Consider DNS of homogeneous isotropic turbulence in which the
small-scale resolution is characterized by κmaxη = 1.5, as depicted
in Fig. 9.4. The dissipation range is defined (see Section 6.5.4) as
|κ| > κDI, where κDIη = 0.1. Show that the fraction of the N3

wavenumber modes represented that are not in the dissipation range
is 15−3π/6 ≈ 0.00016; and correspondingly that 99.98% of the modes
are in the dissipation range. Estimate that, at Rλ = 70, the peak of
the energy spectrum occurs at κE ≈ 0.01κmax. What fraction of the
modes is insignificant, i.e., with |κ| > κmax?

Figure 4.2: Left: sketch of
the energy and dissipation
spectra. Right: Solution do-
main in wavenumber space
for a pseudo-spectral DNS of
homogeneous isotropic turbu-
lence (Pope 2000, Figs. 6.28 &
9.4).

It should be noted that much of the computational effort is actu-
ally dedicated to resolving the dissipation range (Fig. 4.2): typically
this represents more than 99% of the modes.

Aliasing errors The multiplication required to compute the non-
linear term of the Navier-Stokes equations introduces modes with
wave number larger than kmax (Fig. 4.3).
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Figure 4.3: The deceptively
simple principle of the alias-
ing phenomenon: sin(x)2 =

(1 − cos(2x))/2.

Because of the discretizations, we cannot distinguish between
wave numbers k and k + 2Zkmax. The Fourier mode k computed
by the Discrete Fourier Transform is therefore the sum of all the
Fourier coefficients with wave numbers differing from k by an integer
multiple of 2kmax (this is well explained in Pope (2000, Appendix F)).
This phenomenon is known as aliasing.

A simple strategy to remove aliasing errors is to use a larger do-
main. For instance, for actually resolving wave numbers up to kmax,
we may represent wave numbers up to 2kmax (i.e. double the resolu-
tion) and enforce ûi(k) = 0 for kmax < k ≤ 2kmax. This implies an
eightfold increase of the computational cost. Because this additional
computational burden is unaffordable, more efficient dealiasing tech-
niques have been developed (e.g. Patterson and Orszag 1971).

Hyperviscosity A cheap way to reduce the size of the dissipative
range (and therefore increase the inertial range) is to replace the
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Laplacian ∆ in the Navier-Stokes equations by some power of it:
−(−∆)p. In Fourier space, it amount to replacing the νk2ûi(k) term
by νHk2pûi(k). For p = 1, we have regular dissipation; otherwise,
we call this rudimentary turbulence model hyperviscosity (Borue and
Orszag 1995).

4.2 Turbulence modelling

The philosophy of DNS is to resolve explicitly all the relevant scales.
An alternative is to model the unresolved scales. This requires to
define properly the dynamical fields at different scales: this is what
we do in § 4.2.1.

4.2.1 Filtered velocity field

Let us introduce a filtering function G(x), typically with compact
support or with a fast decay (Fig. 4.4).
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G(x) = e−x2/2/(2π)3/2

G(x) = 3χ[0, 1](x)/(4π)

Figure 4.4: Example of a filter-
ing function.

We assume that G is normalized:
´

dxG(x) = 1 and isotropic:
G(x) = G(∥x∥), with a slight abuse of notation.

Now let us define the dilatation Gℓ(x) = G(x/ℓ)/ℓ3, and the
filtered velocity field (a convolution with the kernel Gℓ)

uℓ
i (x) = (Gℓ ⋆ ui)(x), (4.4)

=

ˆ
dyGℓ(x − y)ui(y) =

ˆ
dyGℓ(y)ui(x + y). (4.5)

Note that as ℓ → 0,

uℓ
i (x) =

ˆ
dzℓ3Gℓ(ℓz)ui(x + ℓz) =

ˆ
dzG(z)ui(x + ℓz) → ui(x)

ˆ
dzG(z) = ui(x).

(4.6)

In general, the filtering operator is not a projector. If we decompose
the velocity fields into its filtered and residual parts: ui(x) = uℓ

i (x) +
u′

i(x), then in general Gℓ ⋆ u′
i ̸= 0.

Because the filtering operator is a con-
volution, its action in Fourier space is
simply a product: ûℓ

i (k) = Ĝℓ(k)ûi(k),
with Ĝℓ(k) =

´
Gℓ(x)e−ik·xdx the

transfer function. It follows that the
filtered energy spectrum is simply
Eℓ(k) = |Ĝℓ(k)|2E(k).4.2.2 Filtered Navier-Stokes equations

It is clear that the filtering operator commutes with the time deriva-
tive and (using integration by part) also with spatial derivatives. ∂iuℓ

j (x) = (Gℓ ⋆ ∂iuj)(x).

The filtered Navier-Stokes equations read
In general Gℓ ⋆ (uiuj) = (uiuj)

ℓ ̸= uℓ
i uℓ

j !
∂tuℓ

i + ∂jGℓ ⋆ (uiuj) = −∂i pℓ + ν∂j∂
juℓ

i + f ℓi , (4.7)

∂iuℓ
i = 0, (4.8)

i.e.

∂tuℓ
i + uℓ

j ∂juℓ
i = −∂i pℓ + ν∂j∂

juℓ
i + f ℓi − ∂jτℓ

ij, (4.9)

∂iuℓ
i = 0, (4.10)
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with the residual stress tensor or subgrid stress tensor

τℓ
ij = (uiuj)

ℓ − uℓ
i uℓ

j . (4.11)

These equations are not closed equations for the filtered velocity
field.

4.2.3 Scale-by-scale energy budget

Let us use filtering to provide an alternative view of the scale-by-
scale energy budget. We define E>(ℓ) = ⟨uℓ

i uiℓ⟩/2 the kinetic energy
at scales larger than ℓ.

Using the filtered Navier-Stokes equations (4.9) and incompress-
ibility, we obtain

∂tE>(ℓ) = −Π(ℓ) + ν⟨uℓ
i ∆uiℓ⟩+ ⟨ f ℓi uiℓ⟩, (4.12)

with

Π(ℓ) = ⟨uiℓ∂jτℓ
ij⟩ = −⟨Sijℓτℓ

ij⟩. (4.13)

Again, there are three contributions to the scale-by-scale energy

Sℓ
ij =

∂iuℓj +∂juℓi
2 .

budget: energy injection by the forcing, viscous dissipation, and
inertial transfer. Π is the energy flux across scales. It corresponds to
the work exerted by scales larger than ℓ onto scales smaller than ℓ.
When Π(ℓ) > 0, the energy is transferred, by the nonlinear term,
on average from scales larger than ℓ to scales smaller than ℓ. This is
called a direct energy transfer. When Π(ℓ) < 0, the converse is true.
This is called an inverse energy transfer.

4.2.4 Large-eddy simulations

The idea is to close the equations (4.9) by prescribing τℓ
ij as a func-

tion of uℓ
i . This amounts to modelling the unresolved scales; the goal

is essentially to regularize the large-scale field, i.e. dissipate energy.
Because turbulence efficiently dissipate energy by transferring it to
smaller (unresolved) scales where viscous dissipation can act effi-
ciently, the turbulence model should mimick this effect by dissipating
energy more efficiently than viscosity would do at the resolved scale.

It is therefore a natural idea that the divergence of the subgrid
stress should act like an enhanced viscosity. This can be achieved by
taking τℓ

ij proportional to the filtered rate of strain:

τℓ
ij = −2νℓSℓ

ij. (4.14)

The coefficient νℓ is called eddy viscosity. A classical choice is the
Smagorinsky model: νℓ = (CSℓ)

2
√

2Sℓ
ijS

ijℓ > 0. In this model, the rate

of transfer of energy to the subgrid scales is Π(ℓ) = 2νℓ Tr(Sℓ2) > 0.
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More elaborate models exist: see for instance Pope (2000, chap.
13).

4.3 Reynolds-averaged equations

Above we have separated the velocity field into two components
using filtering in real space. Only a coarse-grained version of the
velocity field, describing the large-scale eddies, is resolved in numer-
ical simulations, while the effect of small-scale eddies are modeled.
Alternatively, one may separate the flow into a statistical average
Ui = ⟨ui⟩ and fluctuations: u′

i = ui − Ui. 6 This decomposition is 6 Assuming that ensemble averages may
be estimated as time averages, one may
also interpret the mean-flow itself as
the time average velocity. In that case,
the time derivative of the mean-flow
vanishes.

known as Reynolds decomposition. The equation for the mean-flow is
easily deduced from the Navier-Stokes equations:

∂tUi + Uj∂jUi = −∂iP + ν∂j∂
jUi − ∂j⟨u′

iu
′
j⟩. (4.15)

This equation is known as the Reynolds-averaged Navier-Stokes equation.
We observe that the mean-flow satisfies an equation very close to
the Navier-Stokes equations themselves, except for the addition of a
term in the right-hand side, (the opposite of) the divergence of the
so-called Reynolds stresses ⟨u′

iu
′
j⟩. This tensor encodes the effect of the

turbulent fluctuations on the mean-flow. Its trace corresponds to the
Turbulent Kinetic Energy (TKE), k = ⟨u′

iu
i ′⟩/2. We also introduce

the deviatoric part, aij = ⟨u′
iu

′
j⟩ − 2kδij/3, which is the part actually

transporting momentum: ∂j⟨u′
iu

′
j⟩ = ∂jaij − 2

3 ∂ik and the second term
can be absorbed into a modified mean pressure. When the flow is
irrotational, the Reynolds stresses have no effect on the mean-flow.
Indeed, since the vorticity vanishes, we have ⟨u′

i(∂jui ′ − ∂iu′
j)⟩ = 0 =

∂jk − ∂i⟨u′
iu

′
j⟩. Hence,

∂i⟨u′
iu

′
j⟩ = ∂jk, (4.16)

and the whole Reynolds stress divergence can be absorbed into a
modified mean pressure. This relation is known as the Corrsin-Kistler
equation.

Unfortunately the equations for the mean-flow are not closed: to
compute the mean-flow, one also needs to compute the Reynolds
stresses. Many models have been developed. The simplest mdoels
are based on the concept of turbulent viscosity: it is assumed that the
deviatoric component of the Reynolds stresses is proportional to the
mean strain rate7: aij = −2νT⟨Sij⟩ = −2νT(∂iUj + ∂jUi). In that 7 See Pope (2000, Chap. 10) for a discus-

sion of this hypothesis.case, the Reynolds-averaged Navier-Stokes equations reduces to the
standard Navier-Stokes equations with a modified effective viscosity
νe f f = ν + νT . Typically the turbulent viscosity νT is much larger than
the molecular viscosity ν.
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The most crude models assume that the turbulent viscosity is
constant in the homogeneous directions of the flow. If the mean-flow
varies in the direction x for instance, the turbulent viscosity is given
by νT = U(x)δ(x)

RT
where δ(x) is a characteristic length scale in the

direction of the mean-flow and RT a constant chosen empirically for
the flow of interest. The main problem of this approach is that its
applicability is limited to well-known flows.

However, the turbulent viscosity needs not be a constant. Below
we present briefly some of the classical models to estimate it.

4.3.1 Mixing-length theory

This model assumes that a space-dependent length scale ℓm(x) char-
acteristic of momentum mixing by turbulence is known, and deter-
mines the turbulent viscosity as νT = ℓmu∗ = ℓ2

m|∇U|.

4.3.2 k-ϵ model

The idea is to estimate the characteristic velocity for the turbulent vis-
cosity using kinetic turbulent energy rather than the velocity gradient
as in the mixing-length model: νT = cℓm

√
k. While the mixing-length

ℓm is still specified, the kinetic energy should be computed dynami-
cally.



5
Empirical Characterization of Homogeneous Isotropic
Turbulence

5.1 Anomalous dissipation

As the viscosity goes to zero (i.e. as the Reynolds number goes to
infinity), the energy dissipation ϵ goes to a finite constant:

lim
ν→0

lim
t→∞

ϵν(t) = ϵ > 0. (5.1)

This limit can only depend on the macroscopic properties of the flow.
Dimensional analysis yields the formula known as the Taylor estimate
for the energy dissipation rate:

ϵ =
U3

L
. (5.2)

Figure 5.1 shows measurements of the energy dissipation rate as
As shall become clear very soon,
the Taylor estimate may be seen as
a measure of the magnitude of the
nonlinear term in the energy budget
u · (u · ∇)u.
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Figure 2
Normalized dissipation rate D versus Rλ. Direct numerical simulation data from Gotoh et al. (2002),
Ishihara & Kaneda (2002), and Kaneda et al. (2003), together with those compiled by Sreenivasan (1998),
i.e., the data from Cao et al. (1999), Jiménez et al. (1993), Wang et al. (1996), and Yeung & Zhou (1997).
Figure redrawn from Kaneda et al. 2003.

spectrum is of the form

E(k)/(⟨ε⟩ ν5)1/4 = φ(kη) (1)

in the wave-number range k ≫ kL ≡ 1/L, and in particular

E(k) ≈ Ko ⟨ε⟩2/3k−5/3 (2)

in the inertial subrange kL ≪ k ≪ kd , where φ is a universal function of kη, kd ≡ 1/η, and Ko is a
nondimensional universal constant.

One can stringently examine Equation 2 by viewing a plot of the compensated spectrum
Ê(kη) = k5/3 E(k)/⟨ε⟩2/3 (Figure 3). If Equation 2 holds, the curves must be flat. The curves
are nearly, but not strictly, flat at kη ≈ 0.01. The curves of Ê(kη) are close to each other at large
kη and Rλ, in accordance with K41. The same is also true for the energy-flux &(k) across wave
number k defined as &(k) =

∫ ∞
k T(k)dk,where T(k) is the energy transfer function. A bump is

observed in Ê(kη) at kη ≈ 0.1, but its height is lower for larger Rλ. A similar, but less prominent,
bump is also observed in the one-dimensional spectrum, E11(k1) (Gotoh et al. 2002, Saddoughi &
Veeravalli 1994, Yeung & Zhou 1997).

The existence of a sufficiently wide inertial subrange kL ≪ k ≪ kd with

&(k) = ⟨ε⟩ (3)

is a prerequisite for theories and analyses of statistics in the inertial subrange. However, at Rλ !
200, such a range is not observed in Figure 3a. Misidentification of the range near the peak of
the bump (i.e., kη ≈ 0.1) as the inertial subrange results in an overestimate of the Kolmogorov
constant Ko . kη must be as small as ∼0.01 to realize Equations 2 and 3. The plots give Ko = 1.5–
1.7. This value is close to the experimental value Kexp = 1.62 (Sreenivasan 1995) and consistent
with DNSs by Gotoh & Fukayama (2001), Kaneda (2001), and Yeung & Zhou (1997). However,
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Figure 5.1: Energy dissipa-
tion rate as a function of the
Reynolds number at the Taylor
microscale Rλ in grid turbu-
lence experiments (left, figure
from Sreenivasan (1984)) and
DNS (right, D = ϵL/U3, fig-
ure from Ishihara, Gotoh, and
Kaneda (2009)).a function of the Reynolds number (at the Taylor microscale, see

§ 3.1.5) for various experiments and DNS runs.
We know from equation (3.24) that ϵν ∝ ν⟨(∂∥u∥)

2⟩: a direct corol-
lary of anomalous dissipation is that the velocity gradients become
arbitrarily large in the limit of vanishing viscosity. In other words, we
expect the velocity field to become everywhere non-differentiable in
this limit. Similarly, using that in a stationary state ϵν = 2νΩ (§ 2.5)
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we see that the enstrophy should also diverge in this limit, i.e. rapid
vortex stretching should take place.

As we have seen in the introduction (§ 1.2), this result has dra-
matic practical consequences: it is equivalent to the drag force acting
on an object moving through a fluid increasing quadratically with the
object velocity, instead of linearly for low velocities.

5.2 2/3 law in real space: second-order structure function

Let us define the longitudinal velocity increment:

δu∥(x, r) = [u(x + r)− u(x)] · r/r, (5.3)

and the longitudinal structure functions:

Sn(r) = ⟨(δu∥(x, r))n⟩. (5.4)

The structure function is independent of x because of the homogene-
ity hypothesis and independent of the orientation of the separation
vector r because of the isotropy hypothesis. The longitudinal velocity
increment δu∥ can be interpreted as a characteristic velocity at scale r.

Figure 5.2: Second-order struc-
ture function obtained in the
time domain (translated to
the space domain using the
Taylor hypothesis, see § A) in
the Modane wind tunnel of
ONERA. Figure reproduced
from the book of Frisch (1995,
Fig. 5.1), original data from
Y. Gagne and E. Hopfinger.Experimental results (hence, at large but finite Reynolds number),

such as the one shown in Fig. 5.2, indicate that there exists a range
of scales r such that the second-order longitudinal structure function
behaves like a power law:

S2(r) ∼ r2/3. (5.5)

This relation holds in a range of scales called the inertial range:
η ≪ r ≪ L (where η is the Kolmogorov scale, see Eq. 6.1), i.e. for
scales which feel neither the effect of molecular viscosity, neither the
boundaries of the domain.

In the limit of vanishing viscosity, the Kolmogorov scale goes to
zero, and the 2/3-law is consistent with the above remark (§ 5.1)
that singularities develop in the velocity field: it essentially says that
δu∥ ∼ r1/3, and ∂∥u∥ = limr→0 δu∥/r, which diverges.
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5.3 2/3 law in Fourier space: the energy spectrum

The longitudinal structure function S2(r) is a second order statistical
quantity for velocity; intuitively we expect it to be related to the
energy spectrum. Hence, the 2/3-law should have a counterpart in
spectral space.

5.3.1 A rough argument

Let us consider an eddy of size r, or equivalently scale k = r−1,
with typical kinetic energy S2(r), or equivalently kE(k). Then the 2/3

law corresponds to an energy spectrum E(k) ∼ k−5/3. The k−5/3
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The statistics of the energy and helicity fluxes in isotropic turbulence are studied using high
resolution direct numerical simulation. The scaling exponents of the energy flux agree with those of
the transverse velocity structure functions through refined similarity hypothesis, consistent with
Kraichnan’s prediction. The helicity flux is even more intermittent than the energy flux. Consistent
with this observation, the spatial helicity-flux structures are finer than those of energy flux and more
tubelike in geometry.
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The classical theories of fully developed turbulence [1]
were dominated by the concept of the energy cascade to
small scales. However, kinetic energy is not the only local
conserved integral of the inviscid equations of motion,
the three-dimensional (3D) incompressible Euler equa-
tions. Since the classical theories were developed, it was
discovered [2,3] that there is a second quadratic invariant,
the helicity:

H!t" #
Z

dxu!x; t" $!!x; t": (1)

Here u is the velocity field and ! # r% u is the vorticity
field. Nonzero mean values of the helicity are now known
to occur naturally in a wide variety of geophysical flows,
such as hurricanes and tornadoes [4]. It was proposed in
Refs. [5,6] that, if the large scales of the flow are helical
(parity noninvariant), then there should be a joint cascade
of both energy and helicity to small scales. In that case,
the helicity spectrum as well as the energy spectrum
should satisfy a &5=3 law in the inertial range: H!k" '
CH!!="1=3"k&5=3. Just as for a passive scalar, the spec-
trum of helicity was predicted to be linearly proportional
to its mean flux ! [7]. In the Gledzer-Ohkitani-Yamada
(GOY) shell models, it has been found numerically in
Ref. [8] that the scaling exponents of the energy flux are
nearly identical to those for 3D Navier-Stokes (NS) pre-
cisely for the members of the family which have a ‘‘hel-
icity’’ invariant. The statistics of the ‘‘helicity flux’’ itself
have also been studied in the GOY models [9] and in a
related class of helical shell models [10]. However, so far
the statistics of the helicity flux have yet to be explored in
3D turbulence. It is the purpose of this Letter to study the
statistics of energy and helicity fluxes in 3D hydrody-
namical turbulence by direct numerical simulations, both
with and without a nonzero mean helicity.

We have simulated the NS equation in a 5123 domain at
Re# # 210. The kinetic energy is forced in the first two

shells [11]. To add positive mean helicity into the flow, we
rotate the real and imaginary parts of the velocity vector
Fourier amplitude also in the first two shells to be always
perpendicular to each other with the same handedness
[12]. The NS equation was solved using a pseudospectral
parallel code with full dealiasing and time stepping by a
second-order Adam-Bashforth method. A statistical sta-
tionary state was achieved after ten large-eddy turnover
times. In Fig. 1 we plot the energy and helicity spectra of
this final steady state, in the case with mean helicity
input. (See Ref. [13] for appropriate definitions.) Both
spectra have about a decade and a half where a &5=3
power law holds. In the inset we show for the same
simulation the mean spectral fluxes of energy and helicity
as a function of wave number, normalized by mean en-
ergy dissipation " # $hjruj2i and mean helicity dissipa-
tion ! # 2$hru:r!i. There is about a decade of inertial
range where these fluxes are constant.

k-5/3
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FIG. 1. Energy and helicity spectra. In the inset is shown
normalized energy and helicity fluxes.
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Figure 5.3: Energy spectrum
in a wind tunnel (left, Frisch
(1995)) and in a DNS of homo-
geneous isotropic turbulence in
a box (right, Chen et al. (2003)).

spectrum is ubiquitous in 3D turbulence. Examples from the ONERA
S1 wind tunnel (in the time domain, which can be related to spatial
scales using the Taylor hypothesis, see § A) and from a DNS are shown
in Fig. 5.3. Read § 5.1 in the book by Frisch (1995) for more examples.

5.3.2 A more precise relation

Let us first note that the second-order structure function S2(r) can
be related to the longitudinal velocity autocorrelation function f
introduced in Eq. (3.5):

S2(r) = 2[ f (0)− f (r)], (5.6)

and therefore also to the velocity covariance tensor:

U i
i (r) = 3 f (r) + r f ′(r) = 3U2

rms −
3
2

S2(r)−
r
2

S′
2(r). (5.7)

The energy spectrum is also related to the trace of the velocity covari-
ance Uij(r), through the relation E(k) = 2πk2Ûi

i (k). Let us simplify
this relation by using the fact that the trace of the velocity covariance
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tensor depends only on the norm of the vector:

Ûi
i =

1
(2π)3

ˆ
Ui

i (r)e
−ikrdr, (5.8)

=
1

(2π)2

ˆ π

0
sin θdθ

ˆ +∞

0
r2drUi

i (r)e
−ikr cos θ ,

(5.9)

=
2

(2π)2

ˆ +∞

0

r
k

sin(kr)Ui
i (r)dr, (5.10)

from which it follows that

E(k) =
1
π

ˆ +∞

0
kr sin(kr)Ui

i (r)dr, (5.11)

and conversely,

Ui
i (r)
2

=

ˆ +∞

0
E(k)

sin(kr)
kr

dk. (5.12)

As a consequence, for r ≪ L,

3
2

U2
rms

︸ ︷︷ ︸
=E

− 1
4r2

d
dr

[r3S2(r)] =
ˆ 2π

L

0
E(k)

sin(kr)
kr︸ ︷︷ ︸
≈1

dk

︸ ︷︷ ︸
≈E

+

ˆ +∞

2π
L

E(k)
sin(kr)

kr
dk.

(5.13)

Assuming that S2(r) = Arα and E(k) = Bkβ, we obtain

−3 + α

4
Arα = Br−β−1

ˆ +∞

2πr
L

uβ−1 sin udu, (5.14)

which yields the relationship α = −β − 1, provided that the integral
depends weakly on r.

An argument relating the second order
structure function and the energy spec-
trum, similar to the one presented here,
can be found in the book by Lesieur
(2008, § 6.4.5), although the book pro-
ceeds in a different order. Yet another
formulation of the same relation can be
found in Frisch (1995, § 4.5).

5.4 Velocity PDF
Batchelor (1953, § 8)

The PDF of the one-point velocity ui(x) is found experimentally to be
close to Gaussian (see FIg. 5.4). This result has been known for a very
long time (Simmons and Salter 1934); this is remarkable, given that
no digital treatment of experimental data was available at the time.

On the other hand, the joint distribution of the velocity at multiple
points ui1(x1), . . . , uin(xn) is not a normal distribution. Fig. 5.5 shows
for instance that the flatness ⟨δu∥(r)

4⟩/⟨δu∥(r)
2⟩2 is close to 3 only

when the velocity at the two points becomes statistically indepen-
dent, and that the skewness ⟨δu∥(r)

3⟩/⟨δu∥(r)
2⟩3/2 remains finite all

the way to the integral scale.
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Figure 5.4: PDF of the velocity
at one point in grid turbu-
lence (Batchelor 1953).

Figure 5.5: Flatness (left) and
skewness (right, Stewart (1951))
of the velocity increment in grid
turbulence (Batchelor 1953).

The statistical properties at small distances can also be studied by
considering the longitudinal velocity gradient ∂∥u∥. Its PDF is not
Gaussian, as Fig. 5.6 reveals. In particular, it has negative skewness
(negative velocity gradients are more probable than positive velocity
gradients), as shown in Fig. 5.7. We will further study the statistical
properties of velocity increments (and in particular, the deviations
from Gaussianity) in the chapter about intermittency (Chap. 7).
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258 6 The scales of turbulent motion
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Fig. 6.32. The PDF fZ (z) of the normalized velocity derivative Z ≡
(∂u1/ ∂x1)/ ⟨(∂u1/ ∂x1)2⟩1/ 2 measured by Van Atta and Chen (1970) in the atmospheric
boundary layer (high Re). The solid line is a Gaussian; the dashed lines correspond
to exponential tails (Eqs. (6.309) and (6.310)).

(Note that the slower decay for negative z is consistent with the observed
negative skewness S .) This exponential decay is of course much slower than
that of the standardized Gaussian, which is also shown in Fig. 6.32.

What is the significance of these tails? First, they correspond to rare
events: taking Eq. (6.310) as an approximation for large |z|, it follows that
there is less than 0.3% probability of |Z | exceeding 5. However, these low-
probability tails can make vast contributions to higher moments. Table 6.3
shows the tail contribution (|Z | > 5) to the moments

M(5)
n ≡ 2

∫ ∞

5

znfZ (z) dz, (6.311)

for fZ (z) being given by Eq. (6.310). Observe, for example, that the contribu-
tion to the superskewness M6 is 220, compared with the Gaussian value of
15. Some laboratory measurements of the PDF of ∂u1/ ∂x1 and its moments
over a range of Reynolds number are described by Belin et al. (1997).

6.7.3 Internal intermittency

The discrepancies between the Kolmogorov predictions and the experimental
values of the higher-order moments Mn and Dn(r) are attributed to the
phenomenon of internal intermittency, and are largely accounted for in the
refined similarity hypotheses proposed by Obukhov (1962) and Kolmogorov

ANRV365-FL41-10 ARI 12 November 2008 14:55

a b

100 η 100 η

Figure 4
Snapshot of the intensity distributions of (a) the energy-dissipation rate ε̃ = ε/(2ν) and (b) the enstrophy # = ω2/2 on a cross section in
DNS-ES at Rλ = 675 in arbitrary units.

distribution functions (PDFs), as in Figure 5. As expected, the PDF is far from Gaussian. It is
also slightly skewed, and the skirts of the PDF increase with Re.

To understand how the PDF depends on Re, Ishihara et al. (2007) analyzed the dependence
on Rλ of the skewness S of the longitudinal velocity derivative and found that −S tends to-
ward a constant (∼0.5) with increasing Rλ up to Rλ ! 200, whereas it increases algebraically
(0.34 R0.11

λ ) with Rλ when Rλ > 200, in agreement with the experimental data compiled by Sreeni-
vasan & Antonia (1997). This implies that the PDF of the gradient normalized by its standard
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(∂
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∂x
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Figure 5
Normalized probability density functions of (a) the longitudinal velocity gradients ∂u/∂x and (b) δuL

r for various separation distances
rn = 2n(x, n = 0, 1, 2, . . . 9, where (x = 2π/1024. The inertial range separation corresponds to n = 5 and 6, which is rn =
98η and 196η, respectively. The orange curve is Gaussian, the green ones comprise the energy-containing range, the blue curve is the
inertial range, and the red curve is the dissipation range at Rλ = 460. Panel a redrawn from Ishihara et al. 2007, and panel b is from
Gotoh et al. 2002.
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Figure 5.6: PDF of the lon-
gitudinal velocity gradient in
grid turbulence (top, Batche-
lor (1953)),in the atmospheric
boundary layer (middle, z =

(∂u1/∂x1)/⟨(∂u1/∂x1)
2⟩1/2, VanAtta1970),

and in DNS (bottom, Ishihara,
Gotoh, and Kaneda (2009).
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Figure 5.7: Skewness of the
longitudinal velocity gradient
in grid turbulence as a function
of the Reynolds number (Batch-
elor 1953).





6
Kolmogorov theory of fully developed turbulence

This is the core chapter of this course, which delves into the
most important results of classical turbulence theory. The main reference for this chapter is

the book by Frisch (1995) (chapter 6).

6.1 Phenomenology
Phenomenology is an approach of a
physical problem which does not rely
on fundamental principles (such as
momentum conservation) but rather
on a qualitative understanding of the
phenomenon, using for instance dimen-
sional analysis, scaling hypotheses or
other physical arguments.

6.1.1 Kolmogorov theory (1941)

Figure 6.1: Andrey Nikolaevich
Kolmogorov (1903–1987).

Kolmogorov scale There is only one way to build a length scale based
on viscosity ν and energy dissipation rate ϵ: it is the Kolmogorov scale

η =

(
ν3

ϵ

)1/4

. (6.1)

As we will show later, the Kolmogorov scale can be interpreted as the
scale at which viscous dissipation balances inertia:

u · (u · ∇)u ∼ νu · ∆u,

i.e. the scale at which the Reynolds number is of order one: Uη/ν ∼
1.

First Kolmogorov assumption of universality: At large but finite Reynolds
numbers, all the small-scale statistical properties are uniquely and
universally determined by the scale r, the average energy dissipation
rate ϵ and the viscosity ν (or equivalently, r, ϵ and η).

Second Kolmogorov assumption of universality: In the limit of infi-
nite Reynolds numbers, all the small-scale statistical properties are
uniquely and universally determined by the scale r and the average
energy dissipation rate ϵ.
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Energy spectrum By a simple dimensional argument, it follows from
the first universality assumption that there exists a universal function
F such that the energy spectrum reads:

[E(k)] = L3.T−2,

[ϵ] = L2.T−3,

[k] = L−1,

[η] = L.

E(k) = F(kη)ϵ2/3k−5/3. (6.2)

In agreement with the second universality assumption, the function
F has a finite limit for η → 0, referred to as the Kolmogorov constant
and denoted CK. It should take a universal value (independent of the
flow), and experiments report CK ≈ 1.5.

CK 

0.01 
10' 102 103 104 105 

FIG. 3. The Kolmogorov constant C, ~zrsus the microscale Reynolds num- 
ber R, for a variety of flows listed in TabIes I-IV. A single symbol is used 
to denote all data from each single table. Ignoring data for R,<50 (where 
there may be an increasing trend with Rx), the mean value of all the data is 
0.53, with a standard deviation of 0.055. 

conditions which are nearly steady-and thus provide valu- 
able high-Reynolds-number data. Following the pioneering 
measurements of Grant et al. in a tidal channel, many sets of 
spectral data have been obtained in the atmosphere over land 
as well as water. These are collected in Table IV. The Rey- 
nolds number estimates in some cases are somewhat uncer- 
tain, but the conclusions to he reached remain unaffected by 
this artifact. 

V. DISCUSSION AND CONCLUSIONS 

So far, we have separately tabulated data in various shear 
flows as well as grid turbulence. In the initial phase of this 
study, separate plots were prepared for each class of flows. 
However, a brief examination of those plots showed that the 
differences among them are not large enough to persist with 
this treatment. In fact, given that the Reynolds number range 
for any class of flows is not too large, there are definite 
advantages in plotting all the data together, which makes the 
point about universality more unequivocally. It is conceiv- 
able, however, that the shear may have some influence on the 
value of the Kolmogorov constant, but this issue seems to be 
of secondary importance at least for the non-dimensional 
shear rates encountered in standard shear flows. 

Figure 3 shows all the data tabulated so far, with each 
symbol representing data from each table. It appears that 
C, increases with Reynolds numbers for R,<50, as has al- 
ready been made by Bradshaw,b and is consistent with 
Sreenivasan’s observation6’ that other quantities, such as the 
normalized dissipation rate, also possess a Reynolds number 
trend at the low end. 

If we agree to ignore the data at the very low end of the 
Rx range, our first reaction to the figure is one of wonder: 
hundreds of experiments made in different flows under dif- 
ferent conditions yield approximately the same value of the 
Kolmogorov constant. It is therefore clear, at least for the 
conditions covered by these experiments, that the Kolmog- 
orov constant is more or less universal, essentially indepen- 
dent of the flow as well as the Reynolds number (for 
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R,150 or so). The scatter in the data is undoubtedly large. 
However, ignoring the outliers, a case can be made that the 
scatter represents the uncertainty in flow conditions as well 
as measurement limitations (especially in obtaining the en- 
ergy dissipation), rather than the non-universality of the Kol- 
mogorov constant. In the former category belong, for in- 
stance, aspects such as variability of wind speed and 
direction in atmospheric flows. In the latter category belong 
uncertainties relating to spatial and temporal resolutions of 
the hotwire. As an example, Wyngaard and Cote’” noted that 
a large fraction of the scatter in their own measurements was 
due to hotwire driit, and that the standard deviation of the 
measurements was halved when they selectively picked 
records with little drift. It is true that hotwire drift and related 
issues have undergone significant improvement since the 
196Os, but the fact remains that no systematic change exists 
between the “old data” and the “new data” when taken col- 
lectively. Finally, some scatter is undoubtedly due to differ- 
ences in data processing techniques. 

It also appears that the data do not support the existence 
of a trend with Reynolds number; no trend is apparent even 
if one examines (as indeed we have) data for each individual 
classes of flows separately. It is clear that any trend that may 
exist, if at all, must be weak enough to be hidden in the 
scatter exhibited by the data. To be certain about the exist- 
ence or otherwise of such a trend, one has to cover a wide 
range of Reynolds numbers in a single, well-controlled flow, 
and use instrumentation whose resolving power and quality 
remains equally good in the entire range. Further, one has to 
be aware that certain data processing quirks could artificially 
introduce weak trends. Such experiments and efforts are not 
yet on the horizon at present; in their absence, the best that is 
possible is precisely what has been done here. 

Two remarks may be useful. First, as already mentioned, 
the data collected here come nearly entirely from the longi- 
tudinal spectra. In shear tlows, the behavior of the transverse 
spectra at all but high Reynolds numbers is quite complex: as 
has already been pointed out in Ref. 70, the spectral roll-off 
rates at low Rx seem to be less steep than 513, up to an R, of 
1000 or so. The few data sets of transverse spectra available 
at higher Reynolds numbers also yield the same C,. The 
difference is that the meaning of “high enough” Reynolds 
number has to be upgraded from an R, of 50 or so for the 
longitudinal spectra to one that is perhaps as high as 1000 for 
the transverse spectra.71 

The second point concerns the effects of the stability of 
the atmospheric flows on the value of the Kolmogorov con- 
stant. It may be recalled that we did not pay special attention 
in Table IV to whether or not the atmospheric surface layer 
was stable, neutrally stratified or unstable. While an ex- 
tremely stable atmosphere inhibits turbulence altogether, ail 
available data (see Fig. 4, taken from,Ref. 64) suggest that 
there is little effect on C, whether the atmosphere is strongly 
unstable or stable. It appears that the Kolmogorov constant is 
remarkably robust. 

In summary, for “high enough” Reynolds numbers, 
the average value of the Kolmogorov constant from Fig. 3 is 
0.53 with a standard deviation of about 0.055. However, 
it should be recalled that this value is based on the as- 
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Figure 6.2: Measurements of the
Kolmogorov constant as a func-
tion of the Reynolds number
Rλ for many flows (Sreenivasan
1995). The constant measured is
the one of the 1D energy spec-
trum, which is related to the
constant of the isotropic spec-
trum by a factor 55/18 ≈ 3 (see
§ C.2).

Structure functions Similarly, under the first universality assumption,
dimensional analysis gives the form of the structure function of order
n:

Sn(r) = Fn

(η

r

)
(ϵr)n/3, (6.3)

with Fn a universal function. This becomes, in the limit η → 0

Sn(r) = Cn(ϵr)n/3, (6.4)

where Cn = Fn(0) are universal constants. Experimental measure-
ments give the value C2 ≈ 2.0.

6.1.2 The inertial range

The Kolmogorov theory predicts S2(r) ∼ r2/3. As briefly alluded to
earlier, this scaling cannot hold for all r.

In the limit r → 0, it would lead to a non-differentiable velocity
field at fixed viscosity, but we need the velocity field (at fixed ν)
to be twice differentiable for the Navier-Stokes equations to make
sense. In fact, for a smooth field1, a Taylor expansion (u∥(x + r) =

1 Based on the Taylor expansion we
expect S2(r) ∼ r2 for a smooth field
without doing the computation, but
computing the tensor structure allows
for properly matching the different
ranges.

u∥(x) + ri∂
iu∥(x) + o(r)) yields

You might notice that the tricks used
in this computation are very similar to
those used in § 3.1.6.

S2(r) = rirj⟨∂iu∥∂ju∥⟩, (6.5)

= −rirj ∂

∂xi
∂

∂xj f (x)|x=0, (6.6)

= −rirj ∂

∂xi

xj

x
f ′(x)|x=0, (6.7)

= −rirj
[ xixj

x2 f ′′(x) +
δij

x
f ′(x)− xixj

x3 f ′(x)
]

x=0
, (6.8)

= −r2 f ′′(0), (6.9)

= r2⟨(∂∥u∥)
2⟩, (6.10)

=
ϵr2

15ν
= U2

rms

( r
λ

)2
. (6.11)

Alternatively, one can find the same
result by working with the more gen-
eral rank-4 velocity gradient covariance
tensor:

S2(r) =
rirjrkrl

r2 ⟨∂iuj∂kul⟩,

= 2
rirjrkrl

r2 ⟨(∂∥u∥)
2⟩
[

δijδkl −
1
4

δikδjl −
1
4

δjkδil

]
,

= r2⟨(∂∥u∥)
2⟩,

but that just leads to unnecessarily
more complicated computations.
Note that this computation also means
that Fn(ξ) ∼ 1

15 ξ−4/3 for ξ = η/r →
+∞, i.e. r → 0 at fixed η. This is not
incompatible with the definition of the
constants Cn, which is the limit η → 0
at fixed r.
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The scale at which equations (6.4) and (6.11) match, denoted η, can
be easily computed:

η = (15C2)
3/4
(

ν3

ϵ

)1/4

. (6.12)

We recover, up to a numerical factor, the Kolmogorov scale identified
by dimensional analysis (Eq. 6.1).

In the limit r → +∞, S2(r) must go to a constant. Indeed, the
longitudinal autocorrelation function f (r) = ⟨u∥(x)u∥(x + r)⟩ decays
to zero at infinity, and S2(r) = 2U2

rms − 2 f (r) −→ 2U2
rms. Let us

define a (large) scale L such that S2(L) = 2U2
rms. This scale should

correspond, up to an order one numerical factor, to the integral scale
(see § 3.1.4) in the freely decaying case or the pumping scale in the
forced case. Then, matching with equation (6.4), we can relate that
scale to the energy dissipation rate:

L =

(
2

C2

)3/2 U3
rms
ϵ

, or equivalently, ϵ =

(
2

C2

)3/2 U3
rms
L

. (6.13)

This is, up to a numerical factor, the Taylor estimate (5.2) for the

i.e. L =
(

2
C2

)3/2
L0.

energy dissipation rate.
The Kolmogorov scale can be compared to the Taylor microscale

and the integral scale2:

2 e.g. Tennekes and Lumley (1972, pp.
66–68)

λ/L0 ∼ Re−1/2 ∼ R−1
λ , (6.14)

λ/η ∼ Re1/4 ∼ R1/2
λ . (6.15)

Note in particular that Rλ ∼
√

Re.

ϵ =
U3

rms
L0

= 15ν
U2

rms
λ2

−→ λ

L0
= 15

ν

Urmsλ
∼ R−1

λ

−→ λ2

L2
0
= 15

ν

Urms L0
∼ Re−1

ϵ = ν3η−4 = 15νU2
rmsλ−2.All those estimates, except λ/η ∼ R1/2

λ , rely on the Taylor estimate
ϵ = U3

rms/L0.
We can now estimate the size of the inertial range, for which the

scaling law (6.4) holds:
η

L
∼ Re−3/4. (6.16)

This explains how the Reynolds number measures the range of scales
which are coupled by nonlinearity. In a way, it gives a rough estimate
of the effective number of degrees of freedom of the system: in 3D, it
goes like Re9/4.

These arguments are summarized in Fig. 6.3: the 2/3-law is ex-
pected to hold in the inertial range η < r < L, where η is the
Kolmogorov scale and L is approximately the integral scale or the
pumping scale. Below η, the velocity field is regularized by viscosity.

6.1.3 Energy flux in the inertial range

In spectral space The scale-by-scale energy budget in Fourier space (3.40)
holds for a statistically stationary velocity field solution of the Navier-
Stokes equations, i.e. by averaging E, Π and F over random Fourier
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η λ L

2U2
rms

r2/3

r2

3/4 ln Re

r

S 2
(r
)

Figure 6.3: Skecth of the ex-
pected behavior of the second-
order structure function, illus-
trating the inertial range and its
boundaries.

modes distributed according to the invariant measure of the system.
We obtain 2νk2E(k) = −∂kΠ(k) + F(k). For fixed k, we can take the
limit ν → 0 and the left-hand side vanishes. Now, we assume that
the forcing acts at large scale, such that f̂ (k) = 0 for k > k f . Then,
for k > k f , the energy flux is constant: ∂kΠ(k) = 0. The equation
for the cumulative energy spectrum in the limit t → ∞, ν → 0 yields
Π(k) = ϵ for k > k f . In particular,

lim
k→+∞

lim
ν→0

lim
t→+∞

Π(k) = ϵ. (6.17)

For finite ν > 0, we expect Π(k) ≈ ϵ
should hold as long as dissipation is
weak, i.e. 2ν

´ k
0 p2 E(p)︸︷︷︸

CK ϵ2/3 p−5/3

dp ≪ ϵ.

This is fulfilled for kη ≪ 1: indeed, then
2ν
´ k

0 p2E(p)dp ≤ 2CKνϵ2/3 ´ k
0 p1/3dp =

3
2 CKϵ(kη)4/3 ≪ ϵ.

This simply means that in a stationary state, the average energy
injected by the forcing (at the large scales) equals the energy flux
through the inertial range equals the energy dissipation rate (in the
dissipative range).

In real space The same reasoning applies based on the scale-by-scale
energy budget for the filtered velocity field from § 4.2.3.

At finite ℓ, the viscous term goes to zero as ν → 0: There is no dissipation anomaly in the
filtered velocity field: as we push the
dissipative range downscale, it ends up
below the cutoff scale, and no explicit
dissipation can occur.

We have used the Cauchy-Schwarz
inequality: ⟨ui(y)ui(z)⟩ ≤√
⟨ui(y)ui(y)⟩⟨ui(z)ui(z)⟩ = 3U2

rms.

0 ≤ −ν⟨uℓ
i ∆uiℓ⟩ = ν⟨∂juℓ

i ∂juiℓ⟩, (6.18)

= ν

〈ˆ
dy
ˆ

dz∂jGℓ(x − y)∂jGℓ(x − z)ui(y)ui(z)
〉

,

(6.19)

= ν

ˆ
dy
ˆ

dz∂jGℓ(x − y)∂jGℓ(x − z)⟨ui(y)ui(z)⟩,
(6.20)

≤ 3νU2
rms

ˆ
dy
ˆ

dz∂jGℓ(x − y)∂jGℓ(x − z)
︸ ︷︷ ︸

−−→
ν→0

0

. (6.21)
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Therefore, in a statistically stationnary state,

Basically, fℓ(x) ≈ f(x) as soon as ℓ ≪ ℓ f
the correlation scale of the forcing.

Π(ℓ) = ⟨uℓ
i f iℓ⟩, (6.22)

= ⟨uℓ
i f i⟩, (6.23)

Because the forcing is at large scales,

=

〈ˆ
dyGℓ(y)ui(y) f i(0)

〉
, (6.24)

=

ˆ
dyGℓ(y)⟨ui(y) f i(0)⟩, (6.25)

= ⟨ui(0)
ˆ

dyGℓ(y) f i(−y)⟩, (6.26)

= ⟨ui(0) f i(0)⟩, (6.27)

= ϵ. (6.28)

More precisely,
lim
ℓ→0

lim
ν→0

lim
t→+∞

Π(ℓ) = ϵ. (6.29)

6.1.4 The Richardson cascade picture
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Figure 6.4: Lewis Fry Richard-
son (1881–1953). An interest-
ing bibliography was written
by Hunt (1998).

Let us now describe the physical picture of stationary homogeneous
isotropic turbulence associated with the phenomenology described
above. Let us assume that energy is continuously injected at large
scales by some forcing mechanism, and that the system reaches a
statistically stationary state. The large-scale structure of the flow de-
pends on the details of the system: boundaries, stirring mechanism,
etc. These scales contain most of the energy. Large-scale motion gen-
erates motion at smaller and smaller scales through nonlinear inter-
actions. Energy is transferred in this process towards the small scales.
No dissipation occurs through the inertial range, and the energy flux
is constant. Below the Kolmogorov scale, viscous dissipation acts effi-
ciently to ensure stationarity. This process is called the energy cascade
3. This is why turbulent flows dissipate much more energy than lam- 3 sometimes direct energy cascade to

distinguish it from the inverse energy
cascade which occurs in 2D, see § ??

inar flows: turbulence transfers energy to scales where viscosity can
dissipate it efficiently.

Let us now consider an eddy of size ℓ, with typical velocity vℓ. We
define the eddy turnover time tℓ = ℓ/vℓ; it is the typical time during
which the eddy should retain its structure, before being distorted due
to the differential motion in its interior. tℓ is also the time scale for
energy transfer from scales close to ℓ to scales smaller than ℓ: we may
thus estimate the energy flux as Π ∼ v3

ℓ/ℓ. Constancy of the energy
flux in the inertial range yields the following scaling:

vℓ ∼ (ϵℓ)1/3, and tℓ ∼ ϵ−1/3ℓ2/3, (6.30)
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which also entails the scaling law for the structure functions — Note that the velocity scaling, applied
to the Kolmogorov scale, shows that the
Reynolds number at that scale is indeed
one: (ϵη)1/3η/ν ∼ 1.

Sn(ℓ) ∼ (ϵℓ)n/3 — and the energy spectrum. The energy flux con-
stancy expressed at the integral scale yields the Taylor estimate (5.2)
for the energy dissipation rate. Finally, estimating the typical time for
diffusion at scale ℓ as tν = ℓ2/ν, we see that the eddy turnover time
and the dissipation time coincide if and only if ℓ = η the Kolmogorov
scale. This is another way to show that the Kolmogorov scale is the
scale at which dissipative and inertial effects are comparable.

The above phenomenology can be put in a more poetic manner:

Big whorls have little whorls,
Which feed on their velocity,
And little whorls have lesser whorls,
And so on to viscosity.

L. F. Richardson (1922)

Big whorls have little whorls,
Which feed on their velocity,
And little whorls have lesser whorls,
And so on to viscosity.

Richardson pictured that small vortices obtain their energy from break-ups of
larger ones, only to find themselves breaking to even smaller ones, and so on in a
self-similar way, see Fig. 2.1. The largest vortices in the Richardson cascade
picture obtain their energy from an external forcing (e.g. a mechanical forcing or
an instability mechanism to release the internal energy into the kinetic one) and the
smallest vortices are dissipated by viscosity [2]. The total rate of the energy
injection at large scales is equal on average to the energy dissipation rate at small
scales, so that a statistically steady turbulent state forms.

The Richardson cascade is best represented in Fourier k-space, see Fig. 2.2.
Here, the lengthscale is 1/k (where k = |k|), so that we have our turbulence source
at small kf, and the energy cascade is in the positive k-direction towards the
dissipation scale at large kv.

2.1.2 Kolmogorov–Obukhov Theory

In 1941, Kolmogorov [3, 4] and Obukhov [5] introduced the universality
hypothesis for the inertial range, i.e. for kf ! k ! kv. The idea is that far away
from the source and the sink turbulence properties only depend on the energy
cascade rate (equal to the energy dissipation rate in the steady state), and not on
details of the forcing or the dissipation of energy. This is because the Richardson

Energy injection

Viscous dissipation

Fig. 2.1 Richardson’s
energy cascade

2.1 Basic Facts about Hydrodynamic Turbulence 19

Figure 6.5: Schematic view
of the Richardson energy cas-
cade of homogeneous isotropic
turbulence. Figure taken
from Nazarenko 2010.

A graphic view can also be seen in Fig. 6.5. However, one should
not expect to actually see an eddy breaking up through an hydrody-
namic instability. No such thing exists, and the cascade process rather
proceeds through energy transfers between incoherent velocity fluc-
tations. Besides, individual interactions may transfer energy upscale
or downscale; the positive average energy flux is only the result of a
small imbalance between the two.

More results obtained using phenomenological arguments like the
above can be found in Frisch (1995, Chap. 7), or in many other books
about applications of turbulence (Tennekes and Lumley 1972; Vallis
2017)4.

4 A word of caution though: this kind of
elegant and seemingly simple physical
arguments can lead to all sorts of totally
wrong predictions. . . Proceed with care!

6.2 The 4/5-law Kolmogorov (1941)

6.2.1 Karman-Howarth-Monin relation

The Karman-Howarth-Monin relation describes the evolution of the
second-order (two-point) correlation function.

Let us consider an incompressible velocity field u(x) solution of
the Navier-Stokes equations subject to a random forcing f(x). We
assume homogeneous statistics, and we note δu = u(x + r)− u(x).

Then, we have:

∂t⟨u(x) · u(x + r)⟩ = 1
2
∇r · ⟨(δu)2δu⟩+ ⟨u(x) · [f(x + r) + f(x − r)]⟩+ 2ν∆r⟨u(x) · u(x + r)⟩. (6.31)

Proof. As a shorthand, we shall omit the position and denote with primes the variables at point x+ r. From



an introduction to fluid turbulence 53

the Navier-Stokes equations, we obtain easily

∂t⟨uiu′
i⟩ = −⟨u′

iuj∂
jui⟩ − ⟨uiu′

j∂
ju′ i⟩ − ⟨u′

i∂
i p⟩ − ⟨ui∂

i p′⟩
+ ν⟨u′

i∂j∂
jui⟩+ ν⟨ui∂j∂

ju′ i⟩+ ⟨u′
i f i⟩+ ⟨ui f ′ i⟩.

(6.32)

Using integration by parts and incompressibility, it can be seen that the pressure terms vanish: ⟨u′
i∂

i p⟩ =
⟨ui∂

i p′⟩ = 0.
Using homogeneity, the viscous terms can be expressed as: ν⟨u′

i∂j∂
jui⟩ + ν⟨ui∂j∂

ju′ i⟩ = 2ν∆r⟨u′
iu

i⟩,
and the forcing terms read ⟨u′

i f i⟩+ ⟨ui f ′ i⟩ = ⟨ui(x)[ f i(x + r) + f i(x − r)]⟩.
It remains to treat the nonlinear term: using homogeneity and incompressibility,

⟨u′
iuj∂

jui⟩+ ⟨uiu′
j∂

ju′ i⟩ = ∂

∂rj
⟨u′

iu
iδuj⟩, (6.33)

and using u′
iu

i = (uiui + u′
iu′ i − δuiδui)/2, we obtain

=
1
2

∂

∂rj
⟨u′

iu
′ iδuj⟩+

1
2

∂

∂rj
⟨uiuiδuj⟩ −

1
2

∂

∂rj
⟨δuiδuiδuj⟩. (6.34)

The first two terms on the right hand side vanish because of homogeneity and incompressibility, which
leaves us with the desired result. ■

This derivation is given in the book
by Frisch (1995, § 6.2.1). An alterna-
tive derivation is given in the book
by Monin and Yaglom (1971). The
above relation was first derived with
the additional assumption of statistical
isotropy (Kármán and Howarth 1938),
before being generalized by Monin
(1959).

This relation illustrates the closure problem: the evolution of the
second-order velocity correlation function depends on third-order
statistics (the equation is not closed).

Finally, note that in the limit r = 0, the Karman-Howarth-Monin
relation reduces to the energy budget. The nonlinear term does not
contribute in this limit, because as seen before, it conserves global
energy. It only acts to redistribute energy between scales. We shall
now see how the Karman-Howarth-Monin relation allows for deriv-
ing a quantitative result describing how the nonlinear term transfers
energy across scales.

6.2.2 Derivation of the 4/5-th law

In this section we assume that the fields have isotropic statistics.

Energy budget in the inertial range Let us study the different terms
of the Karman-Howarth-Monin relation under both limits t → +∞
(stationarity) and ν → 0 (fully developed turbulence):

• Because of stationarity, the left-hand side of equation 6.31 van-
ishes.

• For distances r ≪ ℓ f the correlation length of the forcing, ⟨ui(x) f i(x+
r)⟩ = ⟨ui(x) f i(x − r)⟩ ≈ ⟨ui(x) f i(x)⟩ = ϵ.
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• For fixed r, ∆r⟨u(x) · u(x + r)⟩ remains finite as ν → 0 (similarly to
the dissipative term at finite k or ℓ in the energy budgets derived
in § 6.1.3), so the last term in the right-hand side of equation 6.31

vanishes in that limit.

Note that the two limits ν → 0 and
r → 0 do not commute:

lim
ν→0

lim
r→0

ν∆r⟨u(x) · u(x + r)⟩ = ϵ > 0,

lim
r→0

lim
ν→0

ν∆r⟨u(x) · u(x + r)⟩ = 0.

We are left with

lim
r→0

lim
ν→0

lim
t→+∞

∇r · ⟨(δu)2δu⟩ = −4ϵ. (6.35)

Relation (6.35) can readily be inte-
grated into ⟨δu3⟩ = − 4

3 ϵr, which you
might encounter, referred to as the
4/3-law (Dubrulle 2019). In the next
paragraph, we reformulate it in terms
of the longitudinal structure function
S3(r) = ⟨δu3

∥⟩, which gives a 4/5 in-
stead of a 4/3. The two are equivalent
for isotropic turbulence; what follows is
essentially manipulations of the tensor
structure of the vector structure func-
tion to express the result in terms of the
longitudinal velocity increments, which
are easier to measure experimentally.

From the energy flux to the third-order structure function Using homo-
geneity and isotropy, the third-order velocity structure function S3(r)
can be related to the tensor Sij,k(r) = ⟨ui(x)uj(x)uk(x + r)⟩:

S3(r) =
rirjrk

r3 ⟨δuiδujδuk⟩, (6.36)

= 2
rirjrk

r3 [Sij,k(r) + Sik,j(r) + Skj,i(r)]. (6.37)

Now, the most general form for Sij,k is

Sij,k(r) = A(r)δij
rk
r
+ B(r)

(
δik

rj

r
+ δjk

ri
r

)
+ C(r)

rirjrk

r3 . (6.38)

Injecting into the above equation, we obtain

S3(r) = 2
rirjrk

r3

[
A(r)δij

rk
r
+ B(r)

(
δik

rj

r
+ δjk

ri
r

)
+ C(r)

rirjrk

r3

A(r)δik
rj

r
+ B(r)

(
δij

rk
r
+ δjk

ri
r

)
+ C(r)

rirjrk

r3

A(r)δkj
ri
r
+ B(r)

(
δik

rj

r
+ δij

rk
r

)
+ C(r)

rirjrk

r3

]
, (6.39)

= 2
rirjrk

r3

[
(A + 2B)δij

rk
r
+ (A + 2B)δik

rj

r
+ (A + 2B)δjk

ri
r
+ 3C

rirjrk

r3

]
,

(6.40)

= 6(A + 2B) + 6C. (6.41)

Enforcing incompressibility: ∂kSij,k = 0, we obtain relations between
the functions A, B and C. Using the relations ∂k f (r) = rk/r f ′(r) and
∂k(ri/r) = δik/r − rirk/r3, we obtain:

∂kSij,k(r) =
[

A′(r) + 2
A(r) + B(r)

r

]
δij +

[
2B′(r) + C′(r)− 2

B(r)− C(r)
r

] rirj

r2 .

(6.42)
The two terms in brackets vanish: in principle these two relations
allow to express B and C as functions of A. A particular combination
of these two terms yields simpler computations: it corresponds to
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taking the trace of the tensor: ∂kS jk
i = 0:

3
[

A′(r) + 2
A(r) + B(r)

r

]
+

[
2B′(r) + C′(r)− 2

B(r)− C(r)
r

]
= 0,

(6.43)

[3A′(r) + 2B′(r) + C′(r)] +
2
r
[3A(r) + 2B(r) + C(r)] = 0.

(6.44)

The only solution of the differential equation y′ + 2y/r = 0 which is
finite at r = 0 is the one which vanishes identiquely. This yields





A′ + 2
r (A + B) = 0,

3A + 2B + C = 0.
i.e.





B = −A − r
2 A′,

C = rA′ − A,
(6.45)

from which S3(r) = −12A(r) follows.
Above, we have used the relation ⟨δuiδujδuk⟩ = 2(Sij,k + Sik,j +

Skj,i) which yields in particular ∇r · ⟨(δu)2δu⟩ = 4∂jSij
i. On the other

hand,

∂jSij
i = ∂j(A + 4B + C)

rj

r
, (6.46)

=
2
r
(A + 4B + C) + A′ + 4B′ + C′, (6.47)

= −rA′′ − 7A′ − 8A/r. (6.48)

Taking the limits t → +∞ and ν → 0, and r ≪ ℓ f in the Karman-
Howarth-Monin relation, we consider the differential equation

rA′′ + 7rA′ + 8
A
r
= ϵ. (6.49)

Under the change of variable y = A/r, x = ln r, the differential
equation becomes

y′′ + 6y′ + 15y = ϵ. (6.50)

The general solution is of the form y = αeρ+x + βeρ−x + ϵ/15, with
ρ± = −3 ± i

√
6. The only solution with a finite limit when x → −∞

(r → 0) is y = ϵ/15, which yields

lim
r→0

lim
ν→0

lim
t→+∞

S3(r)
r

= −4
5

ϵ. (6.51)

This is the 4/5-law.
Note that we are assuming that S3(r)/r does not diverge, which is

not guaranteed a priori after taking the limit ν → 0, but is compatible
with the phenomenology described above (according to which δu∥ ∼
r1/3) and supported by empirical evidence.

In the isotropic case, the Karman-Howarth relation can be written
as:

∂S2

∂t
= − 1

3r4
∂

∂r
(r4S3)−

4
3

ϵ +
2ν

r4
∂

∂r

(
r4 ∂S2

∂r

)
, (6.52)
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which directly relates the structure functions S2 and S3 (Landau
and Lifchitz 1971; Falkovich 2011). From here the 4/5-law follows
seemingly faster than in our derivation, but the above form of the
Karman-Howarth relation actually involves most of the work we did
above.

Finally, it should be noted that the 4/5 law expresses the irre-
versibility of turbulence: under the time reversal transform, S3 should
change sign, but according to the 4/5 law, S3 < 0 as long as the
energy dissipation rate ϵ > 0 is finite.

6.3 Universality and self-similarity

6.3.1 Landau’s objection to universality

Soon after Kolmogorov’s 1941 theory was published, it was argued
by Landau that the non-dimensional constants could not be univer-
sal5. 5 see Frisch (1995, § 6.4)

The basic idea is to consider N experiments with different average
energy dissipation rates ϵi. Assuming universality, we may write in
each case S(i)

n (r) = Cn(ϵir)n/3. Now we further assume that the en-
semble average still has the same scaling, with Sn(r) = ∑i S(i)

n (r)/N
and ϵ = ∑i ϵi/N, which yields

(
1
N

N

∑
i=1

ϵi

)n/3

=
1
N

N

∑
i=1

ϵn/3
i , (6.53)

which only holds for all values of ϵi if n = 3.

Figure 6.6: Exemple of grid
turbulence setup illustrating
Landau’s objection (from Frisch
(1995)).

Instead of relying on the Kolmogorov universality hypotheses,
which directly postulates universality, one may think in terms of
symmetries6.

6 this is the presentation adopted in
the book by Frisch (1995) from the
beginning

6.3.2 Self-similarity in the Kolmogorov theory

Probability distribution function for longitudinal velocity increments under
Kolmogorov’s universality hypotheses Under the second universality
hypothesis of Kolmogorov (see § 6.1), the PDF of the longitudinal
velocity increment δu∥(r) of a statistically homogeneous and isotropic
random field u can only depend on r, the average energy dissipa-
tion rate ϵ and the argument δu∥ itself. Hence, dimensional analysis
yields the following form:

pr(δu∥) = (ϵr)−1/3 p0

(
δu∥(ϵr)−1/3

)
, (6.54)

where p0 is a universal (non-dimensional) function. This means The fact that pr has the dimension of
the inverse of a velocity can be seen
easily by considering the normalization
condition.

that the PDF retains its shape across scales. It can for instance be
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expressed using the PDF at large-scale:

pr(δu∥) =
( r

L

)−1/3
pL

(
δu∥
( r

L

)−1/3
)

. (6.55)

This can also be expressed by consider-
ing the random variable δu∥(r): in law,

δu∥(r) = (r/L)1/3δu∥(L).

Of course, computing the moments of the PDF (6.54), we recover
the expected form for the structure functions: Sn(r) = Cn(ϵr)n/3,
with Cn =

´
R

un p0(u)du. For larger and larger values of n, the coeffi-
cient Cn is more and more determined by the tails of the distribution
p0.

Self-similarity A random field ϕ(x) is said to be self-similar if there
exists a real number h such that for all λ ∈ R, the random fields
ϕ(λx) and λhϕ(x) have the same probability law. Assuming the prob-
ability densities defined by P[ϕ(x) ∈ [u, u + du]] = px(u)du exist,
self-similarity amounts to the condition7: 7 as can be seen from

P[ϕ(λx) ∈ [u, u + du]] = pλx(u)du,

P[λhϕ(x) ∈ [u, u + du]] = P[ϕ(x) ∈ [λ−hu, λ−h(u + du)]]

= λ−h px(λ
−hu)du.

pλx(u) = λ−h px(λ
−hu), (6.56)

From (6.54), it is clear that, under the Kolmogorov universality as-
sumptions, the velocity increments satisfy condition (6.56), and there-
fore, are self-similar.

Figure 6.7: Self-similar random
function: the statistical proper-
ties of the signal do not change
when zooming in (Frisch 1995).

6.3.3 Another look at Kolmogorov theory

We have just shown that the Kolmogorov universality hypotheses im-
ply self-similarity of the velocity increments. Let us now investigate
the converse.

Let us make the following assumptions:

H1 — Symmetries In the limit of infinite Reynolds numbers, all the
possible symmetries of the Navier-Stokes equations, usually broken
by the mechanism producing the turbulent flow, are restored in a
statistical sense at small-scales and away from the boundaries.

H2 — Self-similarity In the limit of infinite Reynolds numbers, the
turbulent flow is self-similar at small scales, i.e. it possesses a unique
scaling exponent h.

H3 — Dissipation anomaly In the limit of infinite Reynolds numbers,
the turbulent flow has a finite non-vanishing mean rate of energy
dissipation ϵ per unit mass.

Structure functions From the self-similarity hypothesis, we have
Sn(λr) = λhnSn(r), from which it follows that Sn(r) ∝ rhn. Using the
4/5-law, it follows that the scaling exponent is h = 1/3, and

Sn(r) = Cn(ϵr)n/3, (6.57)
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with dimensionless constants Cn. The 4/5-law also implies C3 =

−4/5, which is clearly universal, but we do not assume that the other
constants are.

Furthermore, it can be directly checked that self-similarity implies
the PDF (6.54) for longitudinal velocity gradients, using pλr(u) =

λ−h pr(λ−hu).



7
Intermittency

Reference: Frisch (1995, Chapter 8)
7.1 The intermittency phenomenon

7.1.1 Non-Gaussianity of small-scale increments

K41 theory predicts that the PDF of longitudinal velocity increments
retains its shape across scales (see Eq. (6.55)): if it is Gaussian at large
scale, it remains Gaussian at all scales.
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Figure 7.1: PDF of longitudinal
velocity increments at various
scales (figure by L. Chevillard).

This is incompatible with observations (Fig. 7.1); while velocity
increments have Gaussian statistics at large separations (like the ve-
locity field itself), they develop fat tails as we move to smaller and
smaller separations. This means that extreme (positive or negative)
values of velocity increments are much more frequent in reality than
predicted by Kolmogorov theory. Note that the PDF of velocity gradi-
ents is also non-Gaussian.

Self-similarity also makes Gaussian large-scale statistics incompat-
ible with the 4/5-law: in Kolmogorov theory, skewness in the inertial
range, required by the 4/5-law cannot be generated spontaneously.

For self-similar velocity increments,
S3(r) = (r/L)⟨δu∥(L)3⟩.

It seems clear that the scale invariance symmetry is broken.

Figure 7.2: An example of an
intermittent signal, the Devil’s
staircase, from Frisch (1995).

We shall briefly study in a problem set the multifractal model,
which assumes that instead of just one (1/3), the velocity increment
has a whole spectrum of scaling exponents (see Sec. 7.4).

7.1.2 Anomalous scaling

Let us introduce the scaling exponents of the structure functions:

Sn(r) ∼ rζ(n). (7.1)

Kolmogorov theory predicts ζ(n) = n/3 (6.4).
In practice, we observe a deviation from Kolmogorov theory (see

Fig. 7.3). This is called anomalous scaling, or intermittency. It means
that, while low-order statistics (energy spectrum) are accurately de-
scribed by Kolmogorov theory, higher-order statistics are not. For
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such observables, the energy cascade process cannot be characterized
by the average energy dissipation rate ϵ alone; the fluctuations of the
energy dissipation field matter. Phenomenological models consider-
ing ϵ as a random variable with known statistical properties provide
a much better fit to the scaling exponents ζ(n) (Fig. 7.3).

Figure 7.3: Scaling exponents
ζ(n) as measured in experi-
ments (points) and predicted
by Kolmogorov theory or other
models (Frisch 1995).

It should be noted that anomalous scaling is not restricted to solu-
tions of the Navier-Stokes equations. For instance, let us consider the
problem of passive scalar advection:

∂tθ + v · ∇θ = κ∆θ, (7.2)

where v is a random field. Instead of being described by the invari-
ant measure for the Navier-Stokes equations, v can be taken as a
Gaussian, white in time random field (this is the Kraichnan model).
Under those circumstances, the anomalous exponents for the scalar
⟨δθn⟩ ∼ rζ(n) have been computed analytically (Falkovich, Gawedzki,
and Vergassola 2001). Another exemple is Burgers turbulence (e.g.
Bec and Khanin 2007).

PASSIVE SCALARS IN TURBULENT FLOWS 223

Figure 11 The scaling exponent fn for the scalar structure function ![Dh(r)]n" within the
inertial subrange as a function of n. Squares are from the data of Antonia et al (1984)
(heated jet), crosses are from the data of Ruiz-Chavarvia et al (1996) (heated wake),
triangles are from the data of Meneveau et al (1990) (heated wake), circles are from the
data of Mydlarski & Warhaft (1998a) (grid turbulence), and plus signs are from the full,
three dimensional Navier-Stokes numerical simulations of Chen & Kraichnan (1998). Ver-
tical bars represent uncertainty for the Mydlarski & Warhaft data. The long-dashed line
is the white-noise estimate from Kraichnan (1994). The short-dashed line is for the velocity
field from Anselmet (1984). The solid line is the KOC prediction.

exponent is not strongly affected when shorter reords are used, although the value
of the moment changes. (This point was made earlier for the velocity data by
Anselmet et al 1984.) The Antonia et al data are consistent with the (Navier-
Stokes) Direct Numerical Simulations (DNS) of Chen & Kraichnan (1998), also
shown in Figure 11. L. Mydlarski & Z. Warhaft (unpublished data) have analyzed
their active grid data and extended the set to order 16. Their data are also con-
sistent with Antonia et al (1984). Ruiz-Chavarria et al (1996) have used a form
of extended self similarity to provide a larger scaling range (Benzi et al 1993),
and their results lie on the same curve. The data of Meneveau et al (1990),
obtained from analysis of experimental data by using joint multifractal formalism,
tend to flatten out at n # 6, suggesting stronger intermittency at higher orders.
The above measurements and computations suggest that the true curve prob-

ably lies somewhere between the Antonia et al (1984) curve and that of Meneveau
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Figure 7.4: Scaling exponents
for the passive scalar in lab
experiments (points), for the
velocity field (short dash), and
Kolmogorov-Obhukov-Corrsin
scaling (solid line).

7.2 The log-normal model (KO62)

7.2.1 Fluctuations of the energy dissipation rate

(Monin and Yaglom 1971, § 25.1 and
25.2)

To account for the intermittency phenomenon, the K41 theory was
revised with various models of the energy cascade. The first one
was due to Kolmogorov (1962) and Obukhov (1962). We describe the
main ideas below, at a qualitative level.

In Chapter 6, we obtained predictions for the statistical properties
of the velocity field by assuming that they only depended on the
average energy dissipation. In fact, energy dissipation is a random
field (see Fig. 7.5), itself with complex statistical properties, deriving
from the velocity field.

ANRV365-FL41-10 ARI 12 November 2008 14:55

a b

100 η 100 η

Figure 4
Snapshot of the intensity distributions of (a) the energy-dissipation rate ε̃ = ε/(2ν) and (b) the enstrophy # = ω2/2 on a cross section in
DNS-ES at Rλ = 675 in arbitrary units.

distribution functions (PDFs), as in Figure 5. As expected, the PDF is far from Gaussian. It is
also slightly skewed, and the skirts of the PDF increase with Re.

To understand how the PDF depends on Re, Ishihara et al. (2007) analyzed the dependence
on Rλ of the skewness S of the longitudinal velocity derivative and found that −S tends to-
ward a constant (∼0.5) with increasing Rλ up to Rλ ! 200, whereas it increases algebraically
(0.34 R0.11

λ ) with Rλ when Rλ > 200, in agreement with the experimental data compiled by Sreeni-
vasan & Antonia (1997). This implies that the PDF of the gradient normalized by its standard
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(∂u/∂x)/σ δuL/σδuL

σΡ
(∂

u/
∂x

)

σ δ
uL Ρ

(δ
uL , r

)

Inertial
Energy containing

Dissipation

n = 0 n = 0n = 9 n = 9

Gaussian

Figure 5
Normalized probability density functions of (a) the longitudinal velocity gradients ∂u/∂x and (b) δuL

r for various separation distances
rn = 2n(x, n = 0, 1, 2, . . . 9, where (x = 2π/1024. The inertial range separation corresponds to n = 5 and 6, which is rn =
98η and 196η, respectively. The orange curve is Gaussian, the green ones comprise the energy-containing range, the blue curve is the
inertial range, and the red curve is the dissipation range at Rλ = 460. Panel a redrawn from Ishihara et al. 2007, and panel b is from
Gotoh et al. 2002.
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Figure 7.5: A snapshot of the
dissipation field in a DNS (Ishi-
hara, Gotoh, and Kaneda 2009).

The refined similarity hypothesis replaces the average energy dis-
sipation rate ε used in Chapter 6 by a local average of the energy
dissipation field εℓ:

εℓ(x) =
3

4πℓ3

ˆ
∥x−y∥≤ℓ

ν(∇u)2dy. (7.3)

This can be seen as a filtered version of the energy dissipation field.
All the statistical properties obtained above remain valid, only if

they are understood as conditioned on the value of this local energy
dissipation rate. Then, to obtain the unconditioned statistics, one
should average over the probability distribution p(εℓ) for the local
energy dissipation rate εℓ.
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7.2.2 Structure functions

Because it is linear in ε, the 4/5-law holds regardless of the proba-
bility distribution p(εℓ). This means that the third-order structure
function is only determined by the mean energy dissipation rate.
On the other hand, other structure functions are affected by this ap-
proach; they depend on the full probability distribution of the energy
dissipation rate. This holds for high-order structure functions but
also for the energy spectrum, which should in principle exhibit inter-
mittency corrections. As we shall see, these corrections are quite small
for the energy spectrum.

7.2.3 PDF of the energy dissipation rate
(Monin and Yaglom 1971, pp. 611–612)

Kolmogorov (1962) and Obukhov (1962) suggested that the local
energy dissipation rate follows a log-normal distribution (i.e. ln εℓ is
a Gaussian random variable at all scales). They further assumed

p(εℓ) = 1√
2πσ2

ℓ ε2
ℓ

e
− (ln εℓ−mℓ )

2

2σ2
ℓ

that, for large Reynolds numbers, the variance behaves as follows:
σ2
ℓ ≡ E(ln εℓ − E[ln εℓ])

2 = Λ0 − µ ln ℓ. The mean energy dissipation

rate is given by E[εℓ] = emℓ+σ2
ℓ /2, with mℓ = E[ln εℓ]. Because it

should not depend on scale, we can impose mℓ = m − σ2
ℓ /2, with

m = ln E[εℓ].

7.2.4 Intermittency corrections
(Monin and Yaglom 1971, § 25.4)

A direct computation yields

Sn(ℓ) = E[Cn(εℓℓ)
n/3] = Cnℓ

n/3enmℓ/3+n2σ2
ℓ /18, (7.4)

= Cnenm/3+Λ0n(n−3)/18ℓn/3−µn(n−3)/18, (7.5)

= Cn(E[εℓ]ℓ)
n
3

(
ℓ

L

)−µn(n−3)/18
, (7.6)

assuming Λ0 = µ ln L with L the integral scale. Hence, the scaling ex-
ponents are given by ζn = n/3 − µn(n − 3)/18. They are represented
in Fig. 7.3; it is clear that they present a better fit to experimental
data than the Kolmogorov 41 theory. However, the relative agree-
ment holds only until approximately n = 12. In fact, the scaling
exponents should ultimately become negative, which does not make
much physical sense. Furthermore, the Kolmogorov-Obukhov theory
breaks the Novikov inequality.

Because ζ2 = 2/3 + µ/9, the energy spectrum should scale like
E(k) ∝ k−5/3−µ/9.

In practice the measured value of the intermittency parameter is
µ ≈ 0.23. Clearly, this corresponds to a very small correction for the
energy spectrum.
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7.3 The β-model

In § 7.2, we have assumed that the local energy dissipation rate has
a log-normal distribution; we do not know where this distribution
comes from. An alternative strategy is to modify the phenomenol-
ogy of the energy cascade: the β-model is an example of such an
approach, based on the velocity field. The idea is that the energy cas-
cade is not “space filling”: energy transfers to smaller scales occur in
a localized manner in space. The location of “active” eddies form a
subset of the domain, on which the velocity increments are still self-
similar (in the inertial range). This set has a fractal structure, and it is
characterized by its codimension D (i.e. it has dimension 3 − D).

Figure 7.6: The cascade picture
modified to account for inter-
mittency according to the beta
model (Frisch 1995).

The cascade phenomenology is then easily adapted from the Kol-
mogorov case (§ 6.1.4): the typical energy at scale ℓ is given by pℓv2

ℓ ,
where pℓ = (ℓ/L0)

3−D is the fraction of space filled with active ed-
dies. The timescale for energy transfers to scale smaller than ℓ is still
given by the eddy turnover time tℓ ∼ ℓ/vℓ, and requiring the energy
flux to be constant in the inertial range, we obtain Πℓ ∼ ϵ ∼ pℓv3

ℓ/ℓ,
and therefore:

vℓ ∼ v0

(
ℓ

L0

)1/3−(3−D)/3
∼ (ϵℓ)1/3

(
ℓ

L0

)−(3−D)/3
. (7.7)

As mentioned above, the velocity increments are still self-similar, but
the scaling exponent is now h = 1/3 − (3 − D)/3. The structure
functions can be obtained directly:

Sn(ℓ) ∼ pℓvn
ℓ ∼ vn

0

(
ℓ

L0

)ζ(n)
, with ζ(n) =

n
3
+ (3 − D)

(
1 − n

3

)
. (7.8)

The scaling exponents are still linear in n; we have only modified
the slope of the line. Figure 7.3 shows that, with D = 2.8 it fits rea-
sonably well the experimental data at low n, but not at all at large
n.

We have still not explained why this model is called the β-model.
This parameter comes from a discretization of the cascade: at each
step eddies of size ℓn “break up” into eddies of size ℓn+1 = γℓn,

with 0 < γ < 1. Then pℓn = βn = β
ln(ℓn/L0)

ln γ = (ℓn/L0)
3−D, hence

3 − D = ln β/ ln γ.

7.4 The multifractal approach

We have seen above that the self-similarity assumption means that
the longitudinal velocity increment at scale ℓ is related to the incre-

ment at the integral scale through δu∥(ℓ) = ( ℓL )
h
δu∥(L), with the
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choice h = 1/3 determined by the 4/5-law. Experimentally, we ob-
serve δu∥(ℓ) to be a Gaussian random variable at large-scale (ℓ = L)
but not at small scale (e.g. ℓ = λ). We have discussed in 7.1 the mani-
festations of the breakdown of self-similarity.

An approach which has been suggested to account for intermit-
tency is to represent the longitudinal velocity increment as the prod-
uct of a Gaussian random variable corresponding to the velocity in-
crement at the integral scale and a scale factor which is itself random.
More precisely,

δu∥(ℓ) =
(
ℓ

L

)h
× δu∥(L), (7.9)

with δu∥(L) ∼ N(0, σ2) and h a random exponent with PDF

pℓ(h) =
1

Z(ℓ)

(
ℓ

L

)1−D(h)
, (7.10)

and D(h) is a function independent of the scale ℓ.
It can be shown that the PDF for the velocity increment takes the

form:

pℓ(δu∥) =
1
σ

(
ℓ

L

)−h ˆ
p0

(
δu∥
σ

(
ℓ

L

)−h
)

pℓ(h)dh, (7.11)

with p0(x) = e−x2/2/
√

2π the standard Gaussian distribution, which
is interpreted as a sum of self-similar PDFs with different exponents
h. The interpretation is that there exists a range of scaling exponents
h, corresponding to coexisting self-similar energy transfers through
scales occurring on regions in space with fractal dimension D(h).

The structure functions of even order can be shown to have power-

law scalings: S2n(ℓ) ∼
(

ℓ
L

)ζ2n
, with ζn = infh[nh + 1 − D(h)] the

Legendre-Fenchel transform of the multifractal spectrum D (assum-
ing infh[1 − D(h)] = 0). As a consequence, ζn is always a concave
function of n in this model.

The log-normal model (see § 7.2) is recovered with the choice

D(h) = 1 − (h−c1)
2

2c2
, which yields ζn = c1n − c2

2 n2, which coincides
with the KO62 prediction for the choice c1 = 1/3 + µ/6, c2 = µ/9.

Another well-known model which fits quite well the experimental
data is the She-Leveque model1, corresponding to the choice D(h) = 1 The model is presented in a less

cryptic form in She and Leveque (1994).−1 + 3
[

1+ln(ln(3/2))
ln(3/2) − 1

] (
h − 1

9

)
− 3

ln(3/2)

(
h − 1

9

)
ln
(

h − 1
9

)
. After

a little bit of algebra, we get ζn = n
9 + 2

[
1 −

( 2
3
) n

3
]
. This model is

compatible with the 4/5-law, as it gives ζ3 = 1, and predicts a small
correction to the 2/3-law: ζ2 ≈ 0.7.





8
The passive scalar problem

See for instance Lesieur (2008, § 6.10).
Let us consider the problem of passive scalar advection-diffusion:

∂tθ + u · ∇θ = κ∆θ. (8.1)

We consider this as an abstract problem, with θ a dimensionless
scalar field. In reality, it could represent the concentration of some
chemical species for instance, or the temperature field. The velocity
field u is prescribed (usually it is a random field) and we assume it is
divergence free. It can be a solution of the Navier-Stokes equations,
but it does not have to (see for instance the Kraichnan model in § ??).

Adding a source term Q in the right-hand side of (8.1), passive
scalar variance budget reads

dΞ
dt

= ⟨Qθ⟩ − ϵθ , (8.2)

with Ξ = ⟨θ2⟩/2 the scalar variance and ϵθ = −κ⟨θ∆θ⟩ = κ⟨(∇θ)2⟩
the mean scalar variance dissipation rate.

favorable case in this respect. The fact that fronts still
form and that the saturation takes place points to gen-
erality of the phenomenon for scalar turbulence. The
order of the moments and the value where the !N curve
flattens out might depend on the statistics of the advect-
ing velocity, but the saturation itself should generally
hold. Direct evidence for the advection by a 2D inverse
cascade flow is provided in (Celani et al., 2000, 2001).
Saturation is equivalent to the scalar increment PDF
taking the form P("r#)!r!$q("r#/#rms) for amplitudes
larger than #rms . The tails at various r can thus be all
collapsed by plotting r"!$P, as shown in Fig. 7. Note
finally that the saturation exponent !$ coincides with the
fractal codimension of the fronts, see Celani et al. (2001)
for a more detailed discussion.

As far as the compressible Kraichnan model is con-
cerned, applying even qualitative predictions requires
much more care than in the incompressible case. Indeed,
the compressibility of the flow makes the sum of the
Lyapunov exponents nonzero and leads to the perma-
nent growth of density perturbations described in Sec.
III.A.4. In a real fluid, such growth is stopped by the
back reaction of the density on the velocity, providing
for a long-time memory of the divergence “•v of the
velocity along the Lagrangian trajectory. This shows that
some characteristics of the Lagrangian velocity may be
considered short correlated (like the off-diagonal com-
ponents of the strain tensor), while others are long cor-
related (like the trace of the strain).

In summary, the situation with the Kraichnan model

FIG. 6. A typical snapshot of a scalar field transported by a turbulent flow.
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Figure 8.1: A snapshot
of passive scalar turbu-
lence (Falkovich, Gawedzki,
and Vergassola 2001).

Without forcing and dissipation (Q = κ = 0), all the norms of the
scalar field are conserved (including the scalar variance Ξ), or more
generally,

´
s(θ(x))dx for any function s. The scalar field also remains

bounded. These properties are the same as in 2D turbulence.

8.1 Phenomenology

We assume that the statistics of the velocity field are well described
by Kolmogorov theory. We denote by ν the molecular viscosity of the
fluid, and introduce the Prandtl number Pr = ν/κ.

We further assume that the statistics of all the fields are stationary,
homogeneous and isotropic, and denote by ⟨·⟩ the average with re-
spect to the invariant measure. The mean energy dissipation rate is
ϵ = ⟨∥∇u∥2⟩.

The statistical properties of the scalar field are a priori governed by
two non-dimensional numbers: the Reynolds number and the Prandtl
number.
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By analogy with the first Kolmogorov assumption of universal-
ity (see § 6.1), we may assume that the (small-scale) statistics of the
scalar field are entirely determined by only five parameters: the scale
r, the energy and scalar variance dissipation rates ϵ and ϵθ , the vis-
cosity ν and the diffusivity κ.

If we assume that there exists and inertial range where neither
dissipation nor diffusion are felt, dimensional analysis tells us that
the scalar variance spectrum in that range should read

Fθ(k) = Cθϵ
−3β
θ ϵβk2β−1, (8.3)

with β an undetermined exponant and Cθ a non-dimensional con-

[Fθ(k)] = L,

[ϵθ ] = T−1,

[ϵ] = L2.T−3,

[k] = L−1.

stant.
By analogy with the Kolmogorov scale η, we introduce a scale ηθ

where inertial effects and diffusion become comparable, i.e. the local
Péclet number δuηθ/κ is of order one. That scale depends on the
scaling properties of the velocity increment δu, and two cases should
be considered:

• If ηθ > η, δu is in the inertial range and the Kolmogorov scaling
δu ∼ (ϵr)1/3 should be used. We obtain ηθ/η ∼ Pr−3/4. This
corresponds to the Pr < 1 regime.

In this regime, for η < ηθ < ℓ < ℓ f in the inertial-convective range,
the scalar variance dissipation rate can be estimated as the scalar
variance at scale k = ℓ−1, kFθ(k), divided by the eddy turnover
time τk = 1/

√
k3E(k):

ϵθ ∼ kFθ(k)
τk

, Fθ(k) ∼ ϵθϵ−1/3k−5/3. (8.4)

This is the Kolmogorov-Obhukov-Corrsin spectrum. It corresponds to
the parameter β = −1/3 in the generic spectrum above.
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Figure 6.10. Schematic inertial-convective and inertial-conductive ranges of the
temperature spectrum in the Kolmogorov inertial range of the kinetic energy spec-
trum (low Prandtl number).

6.10.2 Inertial-conductive range

We assume that the Prandtl number is smaller than one, so that the conduct-
ive wave number kc is smaller than kd and given by Eq. (6.99). For k < kc, the
temperature spectrum displays an inertial-convective range described above.
For kc < k < kd, we are still in the Kolmogorov energy cascade (that is, “iner-
tial”), but the molecular-conductive effects are predominant for the scalar (see
Figure 6.10). This allows us in Eq. (6.96) to neglect the time-derivative term
∂T/∂t. It has been proposed by Batchelor et al. [49], that the Quasi-Normal
theory (see next chapter) should be valid in this case. This makes it easy
to calculate the temperature spectrum. This calculation, already developed
by Leslie [432], is recalled here: let T̂ (k⃗, t) be the Fourier transform of the

temperature. Eq. 6.96 is then written for two wave vectors k⃗ and k⃗′:

−κk2T̂ (k⃗, t) = i

∫
ûj(p⃗, t)qj T̂ (q⃗, t)δ(k⃗ − p⃗ − q⃗)dp⃗dq⃗;

−κk′2T̂ (k⃗′, t) = i

∫
ûl(p⃗

′, t)q′
lT̂ (q⃗′, t)δ(k⃗′ − p⃗′ − q⃗′)dp⃗′dq⃗′,

and hence, after multiplication of both equations and ensemble averaging

κ2k2k′2⟨T̂ (k⃗′, t)T̂ (k⃗, t)⟩ = −
∫

⟨ûj(p⃗)ûl(p⃗
′)T̂ (q⃗)T̂ (q⃗′)⟩qjq

′
l

δ(k⃗ − p⃗ − q⃗)δ(k⃗′ − p⃗′ − q⃗′)dp⃗dq⃗dp⃗′dq⃗′. (6.112)

Figure 8.2: Schematic passive
scalar spectrum in the Pr < 1
case (Lesieur 2008).

• If η > ηθ , δu is in the dissipative range and we can estimate δu ∼
ν/η, which yields ηθ/η ∼ Pr−1, with Pr > 1. We should still
observe the Kolmogorov-Obhukov-Corrsin spectrum in the range
of scales η < ℓ < ℓ f . Now, in the range of scales ηθ < ℓ < η,
called the viscous-convective range, the typical time scale becomes
the viscous time τν ∼ η2/ν, from which we obtain:

ϵθ ∼ kFθ(k)
τν

, Fθ(k) ∼ ϵθ

√
ν

ϵ
k−1. (8.5)

This is known as the Batchelor spectrum. Note that it does not fit
the general form by dimensional analysis above, which assumed
that viscous effects were negligible.
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Figure 6.11. Schematic inertial-convective and viscous-convective ranges of the
temperature spectrum at high Prandtl number. Remark two errors in the expres-
sion of the kinetic-energy spectrum and the temperature spectrum in the inertial-
convective range.

6.11 Internal intermittency

We have already emphasized the intermittent character of the small scales
of isotropic turbulence, as a result of the process of stretching of vortex fil-
aments. This leads in particular to the formation of the long thin coherent
vortices which have been shown above to exist. Thus, in a homogeneous three-
dimensional isotropic turbulent flow, the intensity of the velocity fluctuations
is not distributed in a uniform manner in space, and presents what is called
“internal intermittency”. This intermittency is of a different nature from the
“external intermittency” which characterizes the large coherent vortices of
a turbulent flow at the frontier with the outer irrotational flow, in turbu-
lent boundary layers or jets for instance. The existence of internal intermit-
tency is not in contradiction with the assumption of homogeneity, which is
an average property of the flow. So the “local” kinetic-energy dissipation rate
ϵ = ν(∇⃗ × u⃗)2 displays important fluctuations about its mean value20 ⟨ϵ⟩. A
consequence is Kolmogorov’s 1941 [338] theory, which does not involve these
fluctuations of ϵ, must certainly be corrected in order to take into account
this intermittent character. This has been noticed by Kolmogorov himself,
who proposed a theory in 1962, based on a lognormality assumption, which
corrected his original theory (Kolmogorov [340]). The same ideas were sim-
ultaneously expressed by Oboukhov [546], and developed by Yaglom [726].

20 In the rest of the book, the notation ϵ is generally used for the quantity called
⟨ϵ⟩ in this section only.

Figure 8.3: Schematic passive
scalar spectrum in the Pr > 1
case (Lesieur 2008).
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8.2 Karman-Howarth equation

Let us denote δθ = θ(x + r) − θ(x) the scalar increments, and
R = ⟨θ(x)θ(x + r)⟩ the scalar covariance. We assume homogeneous
statistics, so that δθ and R only depend on r.

The evolution of the scalar covariance is given by an equation
analogous to the Karman-Howarth-Monin equation (6.31):

∂tR =
1
2
∇r · ⟨δθ2δu⟩+ ⟨θ(x)[Q(x + r) + Q(x − r)]⟩+ 2κ∆rR. (8.6)

It follows that, at scales smaller than the correlation scale of the
source (or the scalar itself) and in a stationary state, we have the
relation:

⟨δθ2δu⟩ = −4
3

ϵθr + 2κ∇r⟨δθ2⟩, (8.7)

and in terms of longitudinal increments:

⟨δθ2δu∥⟩ = −4
3

ϵθr + 2κ
d
dr

⟨δθ2⟩. (8.8)

In particular, the relation ⟨δθ2δu∥⟩ = −4/3ϵθr should hold in the
inertial range corresponding to the direct cascade of scalar variance.
This relation is analogous to the 4/5-law.





9
Closure methods

This chapter is mainly written after Lesieur (2008, Chap. 7).
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Figure 7.1. Map of the analytical statistical theories and stochastic models land
(see text for comments).

constitute a first step towards an analytical understanding of these theories,
which in turn will enable us to understand more deeply the phenomenological
analysis of turbulence presented in Chapter 6 . We will concentrate on isotropic
turbulence without helicity. In this case, Eq. (7.22) permits to calculate the
E.D.Q.N.M. energy flux

Π(K) =

∫ ∞

K

dk

∫∫

∆k

dp dqθkpq(t)

k

pq
b(k, p, q)E(q, t)[k2E(p, t) − p2E(k, t)]. (7.31)

We are looking for an inertial range, where viscous effects can be neglected,
and where Π(K) will be independent of K and equal to ϵ. It has been shown by
Kraichnan [354] (see also André and Lesieur [7]) that, within the E.D.Q.N.M.
or the T.F.M. theories, and in the Kolmogorov inertial range, wave numbers
in a spectral vicinity of one decade about K participate in more than 80% of
the energy flux across K. This allows us to assume that, to a first approx-
imation, the integral (7.31) is dominated by wave numbers k, p, q, of order K
(i.e. comprised for instance between K/10 and 10K). Assuming also that the
quantities under the integral vary as powers of k, p, q, and remembering a re-

mark already made in Chapter 6 that
∫ K

K/10 E(k)dk is of the order of KE(K),

we finally obtain
Π(k) ∼ θ(k)k4E(k)2 (7.32)

where θ(k) is the value taken by θkpq for k = p = q. We notice also that
if k is smaller than the Kolmogorov dissipative wave number, and for large

Figure 9.1: Schematic of
the different closure theo-
ries (Lesieur 2008).

Let us write in a symbolic manner the first few equations in the
hierarchy of moments:

(∂t + ν(k2 + k′2))⟨ûi(k)ûj(k′)⟩ = ⟨ûûû⟩, (9.1)

(∂t + ν(k2 + p2 + q2))⟨ûi(k)ûj(p)ûl(q)⟩ = ⟨ûûûû⟩. (9.2)

Due to the non-linearity in the Navier-Stokes equations, moments of
order n depend on moments of order n + 1. This is the closure problem
already alluded to earlier. In this chapter, we present some classical
theories to close the hierarchy of moments and compute directly the
statistics of homogeneous isotropic turbulence. All these theories are
based on some arbitrary assumptions. While many closure theories
have been suggested (see Fig. 9.1), we focus here on the quasi-normal
family of closures.
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9.1 Quasi-normal closure
Chou (1940), Millionshchikov (1941),
Proudman and Reid (1954), Tatsumi
(1957), and Tatsumi (1980)

It would be tempting to start by assuming that the Fourier coeffi-
cients of the velocity field have a joint Gaussian distribution (in this
case, the statistics would be entirely determined by the velocity co-
variance tensor, which would satisfy a closed equation), however
we have already seen before that non-Gaussianities are essential to
the properties of homogeneous turbulence (for instance, according
to Eq. (3.41), the energy flux across scales is due to a non-zero third
order moment). Hence, the simplest (and earliest) closure approx-
imation is to assume that the fourth-order cumulant vanishes, but
third-order cumulants need not. In that case, fourth-order moments
are given as combinations of second-order moments1, which we shall 1 For a centered Gaussian random

variable, the fourth-order cumulant is
c4 = m4 − 3m2.

write symbolically as ⟨ûûûû⟩ = ∑⟨ûû⟩⟨ûû⟩. Hence, Eq. (9.2) is re-
placed by

(∂t + ν(k2 + p2 + q2))⟨ûi(k)ûj(p)ûl(q)⟩ = ∑⟨ûû⟩⟨ûû⟩, (9.3)

and the hierarchy is closed. Integrating this equation allows to write
explicitly third-order moments in terms of the velocity covariance.
This expression can then be injected into Eq. (9.1) to obtain a closed
equation for the velocity covariance in Fourier space Ûij(k), and then,
after taking the trace, a closed equation for the energy spectrum:

(∂t + 2νk2)E(k, t) =
ˆ t

0
dτ

ˆ
dpdqe−ν(k2+p2+q2)(t−τ)S(k, p, q, τ),

(9.4)

with

S(k, p, q, τ) =
k3

pq
a(k, p, q)E(p, τ)E(q, τ)− k

2pq
E(k, τ)[p2b(k, p, q)E(q, τ) + q2b(k, q, p)E(p, τ)],

(9.5)

a(k, p, q) =
1 − xyz − 2y2z2

2
, b(k, p, q) =

p(xy + z3)

k
, (9.6)

x =
p · q

pq
, y =

k · q
kq

, z =
p · k

pk
. (9.7)

Using a(k, p, q) = (b(k, p, q) + b(k, q, p))/2, the equation can be
further simplified into:

(∂t + 2νk2)E(k, t) =
ˆ t

0
dτ

ˆ
dpdqe−ν(k2+p2+q2)(t−τ) k

pq
b(k, p, q)[k2E(p, τ)− p2E(k, τ)]E(q, τ).

(9.8)
This equation has been solved numerically: at large enough (but still
very moderate) Reynolds numbers, the energy spectrum becomes
negative (see Fig. 9.2). Similar results have been obtained for the
spectrum of a passive scalar (O’Brien and Francis 1962). The reason
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Figure 9.2: Numerical solution
of Eq. (9.8): after some time
the energy spectrum becomes
negative (Ogura 1963).

for this behavior is that in the quasi-normal approximation, third
order moments develop in an excessive manner. In reality, fourth-
order cumulants (which are neglected here) should act to damp this
growth. Better theories should account for this effect: we present
below simple attemps to fix this problem.

9.2 Eddy-damped quasi-normal markovian closure

The first suggestion (Orszag 1970) to fix the realizability issue of the
quasi-normal closure was to introduce explicitly a linear damping
term for third-order moments in Eq. (9.3):

(∂t + ν(k2 + p2 + q2) + µkpq)⟨ûi(k)ûj(p)ûl(q)⟩ = ∑⟨ûû⟩⟨ûû⟩, (9.9)

For isotropic flows, it was suggested to construct the eddy-damping
rate µkpq from the eddy-turnover time in a symmetric way: µkpq =

µk + µp + µq with µk =
√

k3E(k). If E(k) is steeper than k−3, µk be-
comes a decreasing function of k: the effect of damping is smaller
towards smaller scales, which is counter-intuitive. As a consequence,

the alternative choice µk =
√´ k

0 p2E(p)dp, which increases mono-
tonically with k, has also been used (Pouquet et al. 1975, e.g.). The
equation for the energy spectrum becomes:

(∂t + 2νk2)E(k, t) =
ˆ t

0
dτ

ˆ
dpdqe−[µkpq+ν(k2+p2+q2)](t−τ) k

pq
b(k, p, q)[k2E(p, τ)− p2E(k, τ)]E(q, τ),

(9.10)
referred to as the Eddy-Damped Quasi-Normal (EDQN) model.

In fact, the eddy-damping term is not sufficient to ensure real-
izability (positive energy spectrum). Orszag showed that this can
be achieved by a process referred to as Markovianization. It consists
in assuming that there is a time-scale separation between the char-
acteristic time with which velocity covariance evolves (assumed
to be on the order of the large eddy-turnover time, i.e. the char-
acteristic time scale of energy containing scales) and the timescale
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[µkpq + ν(k2 + p2 + q2)]−1 which controls the exponential damping
of contributions to the third-order moment, assumed to be much
smaller. The resulting equations are the Eddy-Damped Quasi-Normal
Markovian (EDQNM) equations:

(∂t + 2νk2)E(k, t) =
ˆ

dpdqθkpq
k
pq

b(k, p, q)[k2E(p, t)− p2E(k, t)]E(q, t),

(9.11)

θkpq =

ˆ t

0
dτe−[µkpq+ν(k2+p2+q2)](t−τ). (9.12)

In principle, µkpq depends on the energy spectrum so the integral
defining θkpq should be computed dynamically at each timestep
when solving numerically the EDQNM equations. It is customary to
neglect this dependence, so that θkpq = (1− e−[µkpq+ν(k2+p2+q2)]t)/[µkpq +

ν(k2 + p2 + q2)].
The EDQNM approximation can be shown to be realizable: it al-

ways leads to positive energy spectra. A comparison with experimen-
tal data is shown in Fig. 9.3. The main advantage of this approach
is that it has of course a much smaller numerical cost than solving
the Navier-Stokes equations. Hence, very high “Reynolds numbers”
can be achieved (see Fig. 9.4). This approach has been extended to
anisotropic flows, where difficulties arise due to the existence of other
relevant timescales characterizing the propagation of waves (Sagaut
and Cambon 2008).

P1: irk/QPJ/RPW P2: irk/irp/KAA/SPO QC: irk/irp

book-sagaut-cambon CUUS150-Sagaut 978 0 521 855488 April 22, 2008 22:32

3.5 Advanced Analysis of Energy Transfers in Fourier Space 91

Figure 3.11. Comparisons of EDQNM and experimental data in decaying. Top: turbulence kinetic-
energy spectrum E(k) at three different locations/elapsed times. Bottom: spectral-energy transfer
function T (k) at some locations. Data taken from Vignon and Cambon (1980) and Cambon et al.
(1981).
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Figure 3.11. Comparisons of EDQNM and experimental data in decaying. Top: turbulence kinetic-
energy spectrum E(k) at three different locations/elapsed times. Bottom: spectral-energy transfer
function T (k) at some locations. Data taken from Vignon and Cambon (1980) and Cambon et al.
(1981).

Figure 9.3: Comparison be-
tween experimental (black) and
EDQNM data for the energy
spectrum (left) and the energy
transfer (right), from Sagaut
and Cambon (2008, § 3.5).
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Figure 3.12. Typical spectra (top), nonlinear transfer and viscous dissipation (bottom) in isotropic
turbulence at Re! = 30 (left) and Re! = 105 (right); x and y scales are chosen arbitrarily. The
straight lines are related to the Kolmogorov −5/3 slope. Courtesy of W. Bos.

inertial zone appears in the energy spectrum for 102 " Re! " 103. This result is con-
sistent with experimental studies, in which the 4/5 Kolmogorov law for the third-
order structure function was recovered only at unexpectedly high Re!. Therefore
it is seen that the definition of the inertial range deserves further discussion. All
wavenumbers located within the inertial range in the energy spectrum do not have
a vanishing T (k), and are therefore dynamically sensitive to production and/or dis-
sipation. Modes that are not directly sensitive to production and viscous effects, i.e.,
modes that are governed by the sole triadic nonlinear transfer terms, are modes with
wave numbers such that T (k) = 0. This dynamical definition is much more strin-
gent than the one based on the existence of a self-similar zone in the kinetic-energy
spectrum.

These observations mean that the EDQNM model can be used to obtain addi-
tional results about statistics in physical space, as second- and third-order structure
functions, using an isotropic relationship, which is well documented in Mathieu and
Scott (2000), because many recent experiments focused on these statistics. However,

Figure 9.4: Energy spectrum
(top) and transfer (bottom) for
Rλ = 30 (left) and Rλ = 105

(right), from Sagaut and Cam-
bon (2008, § 3.5).
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10
Free shear flows

10.1 Classical shear flows

112 5 Free shear flows

(a)

(b)

(c)

(d)

〈U〉

〈U〉

〈U〉

Plane jet

y

U = Uc      s

xδ

δ

δ

δ

Plane mixing layer

y

U c

x

U s

Plane wake

y

U c

x

U s

Boundary layer

y

x

U = Uc      s

Fig. 5.14. Sketches of plane two-dimensional shear flows showing the characteristic
flow width δ(x), the characteristic convective velocity Uc, and the characteristic velocity
difference Us.

Figure 10.1: Classical shear
flows (Pope 2000).
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10.2 The round jet

We study a jet through a circular nozzle of diameter D. The fluid
is injected into an ambient made of the same fluid, with density ρ

and viscosity ν. The jet velocity UJ is constant across the nozzle. We
denote x the axis orthogonal to the diameter of the nozzle and set
x0 = 0 the position of the nozzle.

We assume that the statistics of the flow are axisymmetric. It
follows directly that the mean velocity field has only two non-
vanishing components, the axial velocity U and the radial velocity
V: U(x, r)ex + V(x, r)er. We will denote the centerline velocity with a
subset 0: U0(x) = U(x, 0) and similarly for V. The half-width of the
jet r1/2(x) is defined by U(x, r1/2(x)) = U0(x)/2.

10.2.1 Experimental observations

• self-similarity of the jet profile: ξ = r/r1/2(x), U(x, r) = U0(x) f (ξ)
(Fig. 10.2).

• axial variations: spreading of the jet and centerline velocity (Fig. 10.3).

• lateral velocity: V ≪ U, entrainment (Fig. 10.4).

• Reynolds stresses (Fig. 10.5).
98 5 Free shear flows
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Fig. 5.2. Radial profiles of mean axial velocity in a turbulent round jet, Re = 95,500.
The dashed lines indicate the half-width, r1/2(x), of the profiles. (Adapted from the
data of Hussein et al. (1994).)
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Fig. 5.3. Mean axial velocity against radial distance in a turbulent round jet, Re ≈ 105;
measurements of Wygnanski and Fiedler (1969). Symbols: ◦, x/d = 40; #, x/d = 50;
!, x/d = 60; ", x/d = 75; •, x/d = 97.5.

As the jet decays and spreads, the mean velocity profiles change, as shown
in Fig. 5.2, but the shape of the profiles does not change. Beyond the
developing region (x/d > 30, say), the profiles of 〈U〉/U0(x), plotted against
r/r1/2(x) collapse onto a single curve. Figure 5.3 shows the experimental data
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Fig. 5.3. Mean axial velocity against radial distance in a turbulent round jet, Re ≈ 105;
measurements of Wygnanski and Fiedler (1969). Symbols: ◦, x/d = 40; #, x/d = 50;
!, x/d = 60; ", x/d = 75; •, x/d = 97.5.

As the jet decays and spreads, the mean velocity profiles change, as shown
in Fig. 5.2, but the shape of the profiles does not change. Beyond the
developing region (x/d > 30, say), the profiles of 〈U〉/U0(x), plotted against
r/r1/2(x) collapse onto a single curve. Figure 5.3 shows the experimental data

Figure 10.2: Left: velocity pro-
file at several axial distances.
Right: velocity profile rescaled
by centerline velocity, as a func-
tion of radius normalized by
half-width, exhibiting a self-
similar character.

10.2.2 Dimensional analysis

From the problem parameters, we can construct two non-dimensional
numbers: the Reynolds number Re = UJ D/ν and the axial distance
x/D.

We assume that the large-scale properties of the jet do not de-
pend on the Reynolds number. Then, the half-width of the jet should
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Fig. 5.4. The variation with axial distance of the mean velocity along the centerline
in a turbulent round jet, Re = 95,500: symbols, experimental data of Hussein et al.
(1994); and line, Eq. (5.6) with x0/d = 4 and B = 5.8.

line with the abscissa defines the virtual origin, denoted by x0; so that the
straight line in Fig. 5.4 corresponds to

U0(x)

UJ

=
B

(x − x0)/d
, (5.6)

where B is an empirical constant. (Obviously the straight-line behavior and
Eq. (5.6) do not hold in the developing region close to the nozzle.)

It is found that the jet spreads linearly: the spreading rate

S ≡ dr1/2(x)

dx
(5.7)

is a constant. Or, put another way, the empirical law for r1/2(x) is

r1/2(x) = S (x − x0), (5.8)

for x in the self-similar region. We shall see in Section 5.2 that momentum
conservation implies that the product r1/2(x)U0(x) is independent of x; and
so the variations r1/2 ∼ x and U0 ∼ x−1 go hand in hand. These variations
also show that the local Reynolds number, defined by

Re0(x) ≡ r1/2(x)U0(x)/ν, (5.9)

is independent of x.

Figure 10.3: Inverse of the cen-
terline velocity as a function of
the axial distance.
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Fig. 5.5. The self-similar profile of the mean axial velocity in the self-similar round
jet: curve fit to the LDA data of Hussein et al. (1994).
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Fig. 5.6. The mean lateral velocity in the self-similar round jet. From the LDA data
of Hussein et al. (1994).

The lateral velocity

In the self-similar region of the round jet, the mean lateral velocity 〈V 〉 can
be determined from 〈U〉 via the continuity equation (see Exercises 5.4 and
5.5). Figure 5.6 shows the self-similar profile of 〈V 〉/U0 obtained in this way.
It should be observed that 〈V 〉 is very small – less than U0 by a factor of
40. Notice also that 〈V 〉 is negative at the edge of the jet, indicating that
ambient fluid is flowing into the jet and being entrained.

Figure 10.4: Self-similar profile
of mean radial velocity.
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Fig. 5.7. Profiles of Reynolds stresses in the self-similar round jet: curve fit to the
LDA data of Hussein et al. (1994).
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Fig. 5.8. The profile of the local turbulence intensity – 〈u2〉1/2/〈U〉 – in the self-similar
round jet. From the curve fit to the experimental data of Hussein et al. (1994).

(v) The shear stress is positive where ∂〈U〉/∂r is negative, and goes to
zero where ∂〈U〉/∂r goes to zero. Hence, for this flow, there is a
positive turbulent viscosity νT such that

〈uv〉 = −νT

∂〈U〉
∂r

. (5.33)
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Fig. 5.8. The profile of the local turbulence intensity – 〈u2〉1/2/〈U〉 – in the self-similar
round jet. From the curve fit to the experimental data of Hussein et al. (1994).

(v) The shear stress is positive where ∂〈U〉/∂r is negative, and goes to
zero where ∂〈U〉/∂r goes to zero. Hence, for this flow, there is a
positive turbulent viscosity νT such that

〈uv〉 = −νT

∂〈U〉
∂r

. (5.33)

Figure 10.5: Left: Self-similar
profile of the Reynolds stresses.
Right: Self-similar profile of
turbulence intensity.

satisfy r1/2(x) = R0(x/d)x where R0 is a universal function. Em-
pirically, we observe that the function R0 has a finite limit when
x/D → +∞; we denote it tan α, α ≈ 12.5 is the angle of the jet. It
does not depend on the properties of the fluid (viscosity, density) or
the properties of the nozzle.

The flow rates of mass Q, momentum P and energy Π (across a
plane orthogonal to the x axis) are proportional to r2

1/2U0, r2
1/2U2

0 and
r2

1/2U3
0 , respectively. A momentum conservation argument yields that

r1/2U0 is conserved, and from the paragraph above we deduce that
U0 ∝ 1/x. It also follow that Q ∝ x (entrainment) and Π ∝ 1/x. In
section 10.2.3 we show these results in the context of the boundary
layer approximation.

The flux of kinetic energy decreases with x due to kinetic energy
dissipation, which is converted into heat. This flux is mostly due to
the large scales of the flow, which do not depend on the Reynolds
number: hence there remains a finite energy dissipation rate in the
limit of infinite Reynolds number, another manifestation of the dissi-
pation anomaly.

10.2.3 Momentum budget

Boundary-layer equations The mean axial and radial momentum
equations read:

U
∂U
∂x

+ V
∂U
∂r

= −1
ρ

∂P
∂x

+ ν
∂2U
∂x2 +

ν

r
∂

∂r

(
r

∂U
∂r

)
− 1

r
∂

∂r
ru′v′ − ∂

∂x
u′2,

(10.1)

U
∂V
∂x

+ V
∂V
∂r

= −1
ρ

∂P
∂r

+ ν
∂2V
∂x2 +

ν

r
∂

∂r

(
r

∂V
∂r

)
− 1

r
∂

∂r
rv′2 − ∂

∂x
u′v′.

(10.2)
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We first neglect all the terms involving V and the axial derivative of
Reynolds stresses in the radial momentum equation:

1
ρ

∂P
∂r

= −1
r

∂

∂r
rv′2, (10.3)

which after integration, yields

P
ρ
=

P0

ρ
− v′2 +

ˆ +∞

r

1
r′

v′2dr′, (10.4)

with P0 the pressure in the free stream region (r → +∞).
In the equation for the mean axial momentum, we neglect the axial

diffusion term to obtain:

U
∂U
∂x

+ V
∂U
∂r

= −1
ρ

∂P0

∂x
+

ν

r
∂

∂r

(
r

∂U
∂r

)
− 1

r
∂

∂r
ru′v′ − ∂

∂x
(u′2 − v′2)− ∂

∂x

ˆ +∞

r

1
r′

v′2dr′.

(10.5)

In the free stream the fluid is quiescent ∂xP0 = 0. We can again
neglect the axial derivatives of the Reynolds stresses, even if this
approximation is not so well controlled.

Finally, the boundary-layer equations for the round jet are:

U
∂U
∂x

+ V
∂U
∂r

=
ν

r
∂

∂r

(
r

∂U
∂r

)
− 1

r
∂

∂r
ru′v′, (10.6)

∂U
∂x

+
1
r

∂(rV)

r
= 0. (10.7)

Flow rate of mass, momentum and energy Simple budget arguments
yield the (instantaneous) flow rates of mass Q, momentum P and
energy Π across a plane orthogonal to the x axis:

Q(x) = 2πρ

ˆ +∞

0
ru(x, r)dr, (10.8)

P(x) = 2πρ

ˆ +∞

0
ru2(x, r)dr, (10.9)

Π(x) = 2πρ

ˆ +∞

0
r

u3(x, r)
2

dr. (10.10)

Writing the left-hand side of the boundary-layer equations in flux
form (using the continuity equation), neglecting viscosity and multi-
plying by r yields

∂(rU2)

∂x
+

∂

∂r
(rUV + ru′v′) = 0, (10.11)

which upon integration becomes

dP
dx

= −2πρ
[
rUV + ru′v′

]+∞

0
, (10.12)

= 0, (10.13)
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assuming that UV goes to zero sufficiently fast. In other words, the
mean momentum flow rate P is conserved. Injecting the self-similar
profile U(x, r) = U0(x) f (ξ), it can be expressed as

P(x) = 2πρ

ˆ +∞

0
rU2(x, r)dr, (10.14)

= 2πρr1/2(x)2U0(x)2
ˆ +∞

0
ξ f 2(ξ)dξ, (10.15)

and similarly,

Q(x) = 2πρr1/2(x)2U0(x)
ˆ +∞

0
ξ f (ξ)dξ, (10.16)

Π(x) = 2πρr1/2(x)2U0(x)3
ˆ +∞

0
rξ f 2(ξ)dξ. (10.17)

It follows that the product r1/2(x)U0(x) is conserved in the axial
direction.

Self-similar solution of the boundary-layer equations Assuming U(x, r) =
U0(x) f (ξ) with ξ = r/r1/2(x) and u′v′ = U0(x)2g(ξ), we obtain from
the continuity equation

0 = f (ξ)Uo(x)− r
r1/2(x)2

dr1/2

dx
U0(x) f ′(ξ) +

1
r

∂

∂r
(rV), (10.18)

rV = −r2
1/2U′

0

ˆ ξ

0
ξ ′ f (ξ ′)dξ ′ + r1/2

dr1/2

dx
U0

ˆ ξ

0
ξ ′2 f ′(ξ ′)dξ ′, (10.19)

= −r2
1/2U′

0

ˆ ξ

0
ξ ′ f (ξ ′)dξ ′ + r1/2

dr1/2

dx
U0

[
ξ2 f (ξ)− 2

ˆ ξ

0
ξ ′ f (ξ ′)dξ ′

]
,

(10.20)

= − d
dx

(r2
1/2U0)

ˆ ξ

0
ξ ′ f (ξ ′)dξ ′ + r1/2

dr1/2

dx
U0ξ2 f (ξ). (10.21)

Then, injecting this relation into the mean axial velocity equation
(neglecting the viscous term), we obtain

[ξ f 2]

{
r1/2

U0

dU0

dx

}
− f ′
ˆ ξ

0
ξ ′ f (ξ ′)dξ ′

{
r1/2

U0

dU0

dx
+ 2

dr1/2

dx

}
=

d
dξ

[ξg(ξ)].

(10.22)
It follows that

r1/2

U0

dU0

dx
= C,

dr1/2

dx
= S, (10.23)

and therefore, r1/2 = Sx. We know from the previous section that the
product r1/2U0 does not depend on x, so C = S and U ∝ x−1.

Another consequence is that the flow rate of mass increases with
axial distance x, which means that fluid is entrained from the quies-
cent region into the jet, and the flow rate of energy, on the other hand
decreases as x−1.
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Turbulent viscosity hypothesis Solving the general equation for the
self-similar profile in the above paragraph seems difficult... Instead,
let us close the boundary-layer equations by making a uniform tur-
bulent viscosity hypothesis: u′v′ = −νT

∂U
∂r with νT constant. The

boundary layer equation for axial momentum becomes:

U
∂U
∂x

+ V
∂U
∂r

=
ν + νT

r
∂

∂r

(
r

∂U
∂r

)
. (10.24)

This is the same equation as for a laminar boundary layer, replacing
the viscosity ν by ν + νT . In general, the turbulent viscosity νT is
much larger than the molecular viscosity ν. The solution of these
equations was obtained by Schlichting1933: the self-similar profile is
f (ξ) = 1

(1+aξ2)
2 with a =

√
2 − 1.
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Fig. 5.15. The mean velocity profile in the self-similar round jet: solid line, curve fit to
the experimental data of Hussein et al. (1994); dashed line, uniform turbulent viscosity
solution (Eq. 5.82).

was first obtained by Schlichting (1933). Here we give the solution, discuss
some of its consequences, and then give the derivation.

In terms of the similarity profile f(η) = 〈U〉/U0 with η = r/(x − x0), the
solution is

f(η) =
1

(1 + aη2)2
, (5.82)

where the coefficient a is given in terms of the spreading rate S by

a =
(√

2 − 1
)
/S 2, (5.83)

(see Exercise 5.3).
This profile (with S = 0.094) is compared with the measurements of

〈U〉/U0 in Fig. 5.15. There is good agreement between the profiles except
at the edge of the jet, where the empirically determined turbulent viscosity
ν̂T(η) decays to zero (see Fig. 5.10). The spreading rate is determined by the
specified normalized viscosity according to

S = 8
(√

2 − 1
)
ν̂T. (5.84)

The spreading rate S = 0.094 is obtained with ν̂T ≈ 0.028, which (not
surprisingly) is the average value obtained from the measurements (Fig. 5.10).

The value of ν̂T is sometimes expressed in terms of the turbulent Reynolds

Figure 10.6: Mean velocity pro-
file in the self-similar round
jet: experimental data (solid
line) and uniform turbulent
viscosity solution (dashed line).
From Pope (2000).
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10.2.4 Energy budget

Reynolds decomposition: ui = Ui + u′
i, Ui = ūi. The Reynolds-

averaged Navier-Stokes equations read

∂tūi + ūj∂
jūi = −1

ρ
∂i p̄ + ν∂j∂

jūi − ∂ju′
iu

′
j,

(10.25)

= −1
ρ

∂i p̄ + 2ν∂jS̄ij − ∂ju′
iu

′
j,

(10.26)

which after multiplying by ūi yields the local mean energy budget:

D̄
D̄t

ū2

2
+ ∂j

[
p̄
ρ

ūj − 2νūiS̄ij + ūiu′
iu

′
j

]
= ∂jūiu′

iu
′
j︸ ︷︷ ︸

−P

− 2νS̄ijS̄ij

︸ ︷︷ ︸
ε̄

. (10.27)

Similarly, starting from the equation for fluctuations

∂tu′
i + ūj∂

ju′
i + u′

j∂
jūi + u′

j∂
ju′

i = −1
ρ

∂i p′ + 2ν∂jS′
ij, (10.28)

we obtain after contracting with ui ′ and averaging:

D̄
D̄t

k + ∂j


 p′u′

j

ρ
− 2νui ′S′

ij +
1
2

u′
iu

i ′u′
j


 = P − 2νS′

ijS
ij ′

︸ ︷︷ ︸
ε′

, (10.29)

with k = u′2
2 the turbulent kinetic energy. These equations both take

the form of local conservation equations with additional source and
sink terms. Upon integration over some volume, the divergence term
becomes a flux across the surface enclosing the volume. This term
describes the transport of mean or turbulent kinetic energy into or
out of the volume.

The terms ε̄ and ε′ are the traces of a positive symmetric matrix,
so they are always positive. They correspond to local dissipation of
mean or turbulent kinetic energy, respectively.

Finally the term P can be interpreted as the kinetic energy ex-
changed locally between the mean-flow and the fluctuations. While
we cannot know its sign a priori, it is in general positive and is re-
ferred to as the production term. It should be noted that turbulent
kinetic energy is extracted from the mean-flow through the action of
Reynolds stresses against the mean velocity gradient.

Note that

• Turbulent kinetic energy production is affected only by the main
strain rate tensor: P = −S̄iju′

iu
′
j.
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• Only the anisotropic part of the Reynolds stress tensor contributes
to the production term: if u′

iu
′
j =

2
3 kδij + aij then P = −S̄ijaij.

• Using a turbulent viscosity model for Reynolds stresses: aij =

−2νT S̄ij, we obtain P = 2νT S̄ijS̄ij ≥ 0. Here the production has the
same form as the dissipation of mean kinetic energy ε̄, replacing ν

by νT .

• In the turbulent boundary layer approximation for the round jet
(see § 10.2.3), the production term reads: P = −uv ∂U

∂r , which

becomes P = νT

(
∂U
∂r

)2
with a turbulent viscosity hypothesis.

We can revisit the anomalous dissipation issue from the evolution
equation for turbulent kinetic energy (Eq. (10.29)). Indeed, assum-
ing that the jet is self-similar, both k/U2

0 and P/(U3
0 /r1/2) are self-

similar and independent of the Reynolds number (asymptotically). In Note that for the round jet
P/(U3

0 /r1/2) = − u′v′
U2

0

r1/2
U0

∂U
∂rother words, both D̄k/D̄t and P scale like U3

0 /r1/2. We can therefore
expect ε′ to have the same scaling, so that ε′/(U3

0 /r1/2) should be
self-similar and independent of the Reynolds number. This is indeed
observed in experimental measurements.
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Fig. 5.16. The turbulent-kinetic-energy budget in the self-similar round jet. Quantities
are normalized by U0 and r1/2. (From Panchapakesan and Lumley (1993a).)

and there is agreement (to within 20%, say) between different investiga-
tions. However, the other two terms are subject to considerable uncertainty,
with measurements in different experiments varying by a factor of two or
more.) Throughout the jet, dissipation is a dominant term. The production
peaks at r/r1/2 ≈ 0.6, where the ratio P/ε is about 0.8. On the centerline,
−〈uv〉 ∂〈U〉/∂r is zero (and varies as r2), so that the production there is due
to the term −(〈u2〉 − 〈v2〉) ∂〈U〉/∂x (which is neglected in the boundary-layer
approximation). At the edge of the jet P/ε goes to zero, and it is the turbulent
transport that balances ε.

Comparison of scales

It is informative to evaluate and compare different rates and timescales
associated with the mean flow and k. This is done in Table 5.2 and Fig. 5.17.
The timescales τ and τP provide measures of the lifetime of the turbulence in
the jet. It takes a time τ to dissipate an amount of energy k at the constant
rate ε; and similarly a time τP to produce k at the rate P . These timescales
are large and approximately equal: they are comparable to the flight time
from the virtual origin τJ of a particle moving on the centerline at speed
U0(x); and they are about three times the timescale of the imposed shear
S−1. Turbulence is long-lived.

Figure 5.18 shows a comparison of lengthscales. While the integral scales

Figure 10.7: Various terms of
the kinetic energy budget for
the round jet (Pope 2000).
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Density & Gravity The notes for this chapter are still in

a very early draft stage. They were
written rapidly, and might still contain
some mistakes or inaccurracies. Please
treat them with caution and let me
know if you find any problem.

Density was assumed to be constant in the previous chapters. Here,
we show some consequences of density variations on the dynamics,
in particular when the flow is subject to a gravity field.

11.1 Varying density and the equations of motion for a general
fluid

The main reference for this section
is Vallis 2017, Chap. 1In chapter 2 we considered the Navier-Stokes equations for incom-

pressible flows, assuming that the density is constant, and absorbed
it into the pressure gradient. In that case, pressure is entirely deter-
mined from the incompressibility condition, so that no additional
equation is required.

In general the momentum conservation equations read

∂tu + u · ∇u = −1
ρ
∇p + ν∆u, (11.1)

which should be supplemented by the equations for the conservation
of mass

∂tρ +∇ · (uρ) = 0. (11.2)

It remains to provide an equation relating pressure to density, and
potentially other properties of the fluid, such as temperature or
chemical composition of the fluid (e.g. humidity in the atmosphere,
salinity in the ocean). This equation is referred to as an equation of
state, which may be written ρ = f (p, T, m1, . . . , mN) for a fluid which
is a mixture of N species with mixing ratios mi (note that in fact only
N − 1 such variables are needed). Properties such as temperature
and mixing ratios are transported by the flow and in turn satisfy
advection equations, potentially with sources and sinks.

Below are some examples of an equation of state:

• A constant density fluid has the trivial equation of state ρ =

const. Then it follows from conservation of mass that the flow
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is divergence-free and pressure is computed by solving the corre-
sponding Poisson problem as in chapter 2.

• A barotropic1 fluid has an equation of state of the form ρ = f (p) 1 A barotropic fluid is a fluid in which
surface of constant pressure and sur-
faces of constant density coincide, or in
other words: ∇p ×∇ρ = 0. When this
is not the case, the fluid is said to be
baroclinic.

(e.g. polytropic gas, p = Cργ)

• If the fluid is an ideal gas, p = ρRT (e.g. dry air), or p = ρRT(1 +

0.61q) for moist air, with q the specific humidity (the ratio of the
mass of water vapor contained in a parcel to the total mass). Note
that the fluid is baroclinic then.

• For water, we do not have an exact equation of state. A possible
approximation is to use a linear one: ρ = ρ0[1 − βT(T − T0) +

βp(p − p0)] (fresh water), or ρ = ρ0[1 − βT(T − T0) + βS(S − S0) +

βp(p − p0)] (for seawater), where S is the salinity. This approxima-
tion is not always good enough2. 2 See e.g. Vallis 2017, § 1.4 and § 1.7 for

more details
For baroclinic flows, to close the equations, we need additional

equations describing the composition of the flow:

∂mi + u · ∇mi = M, (11.3)

where M represents sources and sinks, which depend on the partic-
ular case under study (see examples below), and a thermodynamic
equation, which describes the evolution of the temperature field.

In fact, the most general form of the equations uses a slightly
different equation of state and thermodynamic equation using the
specific entropy η:

η = η(ρ, I, m1, . . . , mN), (11.4)

∂tη + u · ∇η =
Q
T

, (11.5)

where I is the (specific) internal energy, Q corresponds to the heating
rate of the flow, and the pressure and density can in turn be deter-
mined from the specific entropy:

1
T

=

(
∂η

∂I

)

ρ,m1,...,mN

, (11.6)

p
T

=

(
∂η

∂α

)

I,m1,...,mN

, (11.7)

with α = 1/ρ the specific volume.

11.1.1 Example: the ideal gas

For an ideal gas, the equation of state is given by the equation3: 3 The exact value of the constant can be
computed in the case of a monoatomic
gas; it is given by the Sackur-Tetrode
formula.

η = cV ln I + Rd ln α + const, (11.8)
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the temperature and internal energy are proportional:

1
T

=

(
∂η

∂I

)

ρ

=
cV
I

, (11.9)

p
T

=

(
∂η

∂α

)

I
=

Rd
α

. (11.10)

The latter equation yields the ideal gas law: p = ρRdT. In this case,
the thermodynamic equation may be expressed in terms of the inter-
nal energy as:

DI
Dt

+ p
Dα

Dt
= Q, (11.11)

or using the continuity equation

DI
Dt

+ pα∇ · u = Q, (11.12)

or finally in terms of the temperature

cV
DT
Dt

+ pα∇ · u = Q. (11.13)

11.2 Fluid statics in a gravity field

From now on we assume that the fluid is subject to a gravity field,
which amounts to adding a body force g = −gez to the right-hand
side of Eq. (11.1).

11.2.1 Hydrostatic balance

The projection of the momentum equations on the vertical yields the
following equation for vertical accelerations:

Dw
Dt

= −1
ρ

∂p
∂z

− g. (11.14)

For the fluid to be at rest, the pressure gradient and gravity forces
must balance each other. This is hydrostatic balance:

∂p
∂z

= −ρg. (11.15)

It means that pressure at any given level is determined by the weight
of fluid above it. In particular, pressure is a monotonically decreasing
function of height. This allows to use pressure as a vertical coordi-
nate, instead of height; this practice is extremely frequent in atmo-
spheric science.

Hydrostatic balance may be a useful approximation to the vertical
momentum equation, even when the fluid is not at rest. For instance,
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it is often approximately satisfied in large-scale geophysical flows,
where vertical accelerations are much smaller than horizontal accel-
erations4. Nevertheless, this approximation does not always yield a 4 in the atmosphere, for instance, it only

breaks down at horizontal scales on
the order of the kilometer, and only
the numerical models with the highest
resolutions do not rely on it

sufficiently good approximation to the pressure field, whose horizon-
tal gradient generate lateral motion.

11.2.2 Application: vertical structure of the atmosphere and the dry adi-
abatic lapse rate

We assume that the atmosphere can be considered as an ideal gas.
We can rewrite the thermodynamic equation (11.11) using (specific)
enthalpy h = I + pα instead of internal energy:

Dh
Dt

− α
Dp
Dt

= Q, (11.16)

which, assuming hydrostatic balance, yields

D
Dt

(h + gz) = Q. (11.17)

We introduce a generalized enthalpy, often referred to as the dry static
energy: h + gz = cPT + gz. We have just shown that this quantity is
conserved by adiabatic motion. The physical interpretation is that as
a fluid parcel is moved adiabatically from the surface towards higher
altitude, the potential energy gained is exactly balanced by the loss
of internal energy due to the work of pressure forces (the gas cools
down under adiabatic expansion). It follows that in the absence of
a heating term, the temperature profile in an atmospheric column is
given by the so-called dry adiabatic lapse rate:

dT
dz

= − g
cp

. (11.18)

For dry air, this gives a temperature gradient of about 10K/km. Ob-
served average temperature profiles are typically less steep than
the dry adiabatic lapse rate. We give a little more explanation in
Sec. 11.2.3.

11.2.3 Static stability

In this section we would like to understand under which condition a
column of ideal gas at rest in a gravity field is stable. Clearly, a nec-
essary condition for stability is that the density should decrease with
height: ∂ρ

∂z < 0. Invoking hydrostatic balance, we can use pressure
as a vertical coordinate, and the equivalent stability condition is that
density increases with pressure. However, this condition is not suf-
ficient: when a parcel of air is moved adiabatically over the vertical
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column, it undergoes expansion or compression. The column is sta-
ble if the density of a parcel of air brought adiabatically to a reference
level is an increasing function of pressure.

Because of the ideal gas law p = ρRdT, the density at a pressure
level is entirely determined by the temperature at the same level. Let
us choose our reference level with pressure p0 = ρ0RdT0, where ρ0

and T0 are the density and temperature. For simplicity we choose the
surface as our reference level, so that all the fluid parcels lie initially
above that level. We take a parcel of air at pressure level p; initially
it has a density ρ and a temperature T, satisfying p = ρRdT. We
bring it adiabatically at the pressure level p0 and we want to compute
its temperature θ after it has been heated up by the work of pres-
sure forces. Under adiabatic motion, dry static energy is conserved:
cpdT + gdz = 0, or using hydrostatic balance and the ideal gas law,

cpdT − RdTdp/p = 0, which integrates to θ = T
(

p0
p

)Rd/cp
. θ is called

the potential temperature of the parcel. The density of the parcel after
adiabatic compression is ρ′ = p0/(Rdθ) and the stability condition is
ρ′ < ρ0, i.e. T0 < θ. The static stability condition is that the poten-
tial temperature profile should increase with height, or equivalently
decrease with pressure:

∂θ

∂z
> 0. (11.19)

The marginal stability condition (potential temperature independent
of height) corresponds to the dry adiabatic lapse rate for the temper-
ature profile. Hence, the fact that the observed temperature profile
is typically less steep can be interpreted as a consequence that the
atmosphere is in general not statically stable. Note that the condi-
tion above is for dry air, and the atmosphere contains moisture. This
affects the stability condition. In fact, the atmosphere is close to the
marginal stability condition for moist air, which corresponds to a less
steep vertical temperature gradient.

Moist convection is more complex,
because water vapor can condense
when a parcel of moist air is lifted
upwards, thereby heating the parcel.
See Vallis 2017, Chap. 18 for more
details.

11.3 The shallow-water equations
Reference Vallis 2017, Chap. 3.

In section 11.1 we have explained how to take into account density
variations in the equations of motion in a general way. Such den-
sity variations matter most when coupled to the effect of gravity. In
section 11.2 we have introduced some effects of gravity in a static
framework. We now turn to dynamical effects. We first do so in the
simplest system, the shallow-water equations, where the density
is assumed constant (which circumvents most of the difficulties of
section 11.1) but the upper boundary is a free surface, so that defor-
mations of the free surface lead to horizontal variations in the weight
of the fluid column, and hence to restoring motions due to gravity.



92 corentin herbert

Non-constant density will be considered in section 11.4.

11.3.1 Equations of motion

We consider a layer of fluid of constant density ρ0 in a gravity field
g. We denote v = (u, w) the three dimensional velocity field, u the
horizontal velocity and w the vertical velocity. The depth of the fluid
layer is denoted h, and we assume that the bottom is flat. On top of
the fluid lies another fluid of negligible inertia (ρ = 0). We assume
that hydrostatic balance holds, so that the vertical component of the
momentum conservation equation is:

dp = −ρ0gdz, (11.20)

which after integrating from the bottom to arbitrary height z yields

p(z)− p(z = h) = ρ0g(h − z), (11.21)

because the overlying fluid has negligible inertia, p(z = h) = 0, and
taking the horizontal gradient, we see that

∇⊥p = ρ0g∇⊥h. (11.22)

In other words, the horizontal pressure gradient does not depend
on the vertical coordinate. If the horizontal velocity field is initially
independent of the vertical coordinate, it remains so at all times, and
the advection term therefore becomes v · ∇u = u · ∇u. The horizontal
momentum equation simplifies to

∂tu + u · ∇u = −g∇h + ν∆u. (11.23)

We have dropped the ⊥ index for horizontal gradients, since there is
no ambiguity anymore.

The continuity equation simplifies as well. Because density is
constant, the three-dimensional continuity equation becomes simply
∇ · v = 0 = ∇⊥ · u + ∂zw, which we can integrate vertically from the
bottom to the top of the fluid layer:

w(z = h)− w(z = 0) = −h∇ · u, (11.24)

and since w = Dz
Dt and the bottom boundary condition imposes

w(z = 0) = 0, we have

Dh
Dt

= −h∇ · u, (11.25)

or equivalently,

∂h
∂t

+∇ · (hu) = 0. (11.26)
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Combined with the horizontal momentum equations, these are the
shallow-water equations.

These equations are closed: due to the assumption of hydrostatic
balance, the thermodynamic properties of the fluid do not matter for
the dynamics (they are only passive). The only difference with the
incompressible case studied before is that now the upper boundary
is a free surface, with gravity as a restoring force. As we shall see
now, this new ingredient is sufficient to generate new dynamical
phenomena, such as waves.

11.3.2 Shallow-water waves

Non-rotating system Let us write H the average fluid layer depth and
h′ the deviations’: h = H + h′. We consider the linearized equations:

∂tu = −g∇h′, (11.27)

∂th′ + H∇ · u = 0, (11.28)

which, after taking the time derivative of the continuity equation,
yields the wave equation

∂2h′

∂t2 = gH∆h′. (11.29)

This equation admits wave solutions with phase speed c =
√

gH.
The waves are not dispersive. They are called (surface) gravity waves.

Note that we could also have diagonalized the full linear system.
This is most easily done by introducing the vorticity ζ = ∂xv − ∂yu,
the divergence δ = ∂xu+ ∂yv, the geopotential ϕ = gh and the Fourier
transforms ζ̂, δ̂, ϕ̂. Then the linear system reads

Ẋ + LX = 0, with X =




ζ̂

δ̂

ϕ̂


 and L =




0 0 0
0 0 K2

0 −c2 0


 . (11.30)

It is clear that the spectrum of the system is {0,±iKc}. In addition to
the two wave modes, there is a vorticity mode which does not prop-
agate (its linear dynamics is trivial). We also see that the oscillations
of the free surface are directly related to oscillations of the horizontal
divergence.

Rotating system We can easily extend the analysis to a rotating
shallow-water system. The linear momentum equation becomes:

∂tu = −g∇h′ − 2Ω × u. (11.31)

The same analysis as above leads to the dispersion relation:

ω2 = f 2 + c2K2. (11.32)

These waves are known as Poincaré waves.
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11.4 The Boussinesq approximation

In section 11.2 we have only considered fluid at rest in a gravity
field. Here, we return to dynamical effects. We first introduce an
approximation to simplify the equations: we assume that density
can be considered constant, except when it is combined with gravity.
The rationale is that density fluctuations are small, but since the
acceleration of gravity is large the product of the two may not be
neglected.

11.4.1 The Boussinesq equations
Several flavors of the Boussinesq
equations, or tightly related ones,
such as the anelastic equations, exist.
Here our goal is just to show a simple
set of equations making use of the
Boussinesq approximation to discuss
internal gravity waves.

We decompose the density and pressure fields into a background
state and fluctuations: ρ = ρ0 + δρ, p = p0 + δp. We assume that
hydrostatic balance applies in the background state: dp0 = −ρ0gdz,
and that the fluctuations are small: δρ ≪ ρ0 and δp ≪ p0. ρ0 is a
constant and p0 depends on z only.

The momentum equations now write:

(ρ0 + δρ)(∂tu + u · ∇u) = −∇(p0 + δp) + (ρ0 + δρ)g, (11.33)

= −
(

∂p0

∂z
+ ρ0g

)
ez −∇δp + δρg, (11.34)

∂tu + u · ∇u = − 1
ρ0

∇δp +
δρ

ρ0
g, (11.35)

= −∇ϕ + bez, (11.36)

with ϕ = δp/ρ0 a modified pressure and b = −gδρ/ρ0 the buoyancy.
The mass continuity equation writes:

Dδρ

Dt
+ (ρ0 + δρ)∇ · u = 0, (11.37)

which, assuming that the time scale in the derivative is the same as
the advective time scale, can be approximated as

∇ · u = 0, (11.38)

i.e. incompressible flow.
Finally, the thermodynamic equation can be written as:

Db
Dt

= B, (11.39)

where B is some source term, proportional to the heating rate, that
we do not write explicitly here5. 5 It can be found, along with the deriva-

tion, starting from a form of the ther-
modynamic equation using pressure
and density, in Vallis 2017, p. 72.

In particular, in the adiabatic case, the set of closed equations
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sometimes referred to as the simple Boussinesq equations is:

∂tu + u · ∇u = −∇ϕ + bez, (11.40)

∇ · u = 0, (11.41)

∂tb + u · ∇b = 0. (11.42)

Let us now write a simple variant of these equations: we assume
that the background state is in fact a given density profile ρ̄ which
depends on z. The derivation above still applies for fluctuations
δρ = ρ̄ + ρ′, with ρ′ ≪ ρ̄. Correspondingly, we decompose the
buoyancy b into b̄ = −gρ̄/ρ0 and b′ = −gρ′/ρ0 so that b = b̄ + b′ with
b′ ≪ b̄ and the pressure δp into δp = p̄ + p′ with p′ ≪ p̄, assuming
hydrostatic balance: dp̄ = −ρ̄gdz. ϕ also becomes ϕ = ϕ̄ + ϕ′ in the
obvious way. Clearly b̄ez −∇ϕ̄ = 0. The equations become:

∂tu + u · ∇u = −∇ϕ′ + b′ez, (11.43)

∇ · u = 0, (11.44)

∂tb′ + u · ∇b′ = −N2uz, (11.45)

with N2 = db̄
dz = − g

ρ0

dρ̄
dz the (square of the) buoyancy frequency.

11.4.2 Application: internal gravity waves
Vallis 2017, § 2.10.4 and Chap. 7.

Let us start from the Boussinesq equations for flow over a mean
density profile, Eqs. (11.43)– (11.45).

We linearize the equations and assume invariance in the y direc-
tion, to obtain:

∂u
∂t

= −∂ϕ′

∂x
, (11.46)

∂w
∂t

= −∂ϕ′

∂z
+ b′, (11.47)

∂u
∂x

+
∂w
∂z

= 0, (11.48)

∂b′

∂t
= −N2w. (11.49)

Fourier-transforming the equations, we obtain the dispersion rela-
tion for plane wave solutions:

ω = ± Nk√
k2 + m2

, (11.50)

= ±N cos θ, (11.51)

with k = K cos θ the wave number in the zonal direction, m = K sin θ

the wave number in the vertical direction. Such waves are called
internal gravity waves. The frequency of internal gravity waves is
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bounded by the buoyancy frequency N. A notable feature of gravity
waves is that the wave number does not appear in the dispersion
relation: only the direction of the wave vector (i.e. the direction of
propagation), and not its norm, determines the frequency.

We have assumed implicitly that N2 > 0 (stable background den-
sity profile, according to § 11.2.3). Indeed, in that case perturbations
to the background profile propagate but do not grow in amplitude.
On the other hand, if N2 < 0 the linear system above admits unsta-
ble modes with exponentially growing amplitude; the background
stratification is unstable.



12
Geophysical Turbulence The notes for this chapter are still in

a very early draft stage. They were
written rapidly, and might still contain
some mistakes or inaccurracies. Please
treat them with caution and let me
know if you find any problem.

12.1 Beta-plane turbulence
Rhines (1975), Vallis (2017, § 12.1)

12.1.1 Beta effect

We start from the 3D momentum equations in a rotating frame of
reference1: 1 We do not discuss carefully how to

obtain these equations of motion (for
instance the centrifugal force, etc);
please refer to a geophysical fluid
dynamics textbook for more details, for
instance Vallis (2017, Chap. 2).

∂tv + v · ∇v = −∇p + ν∆v − 2Ω × v, (12.1)

where the latter term is the Coriolis force. The Coriolis force contains
two contributions: one involving horizontal velocities and one in-
volving vertical velocities, which can be neglected compared to the
first one. The projection of the Coriolis force on the plane normal to
the sphere (i.e. its contribution to the horizontal momentum equa-
tions) decreases from the pole to the equator. This phenomenon is
called beta effect, or differential rotation. As far as horizontal motions
are concerned, it is as if the Earth was rotating faster as we move to-
wards the poles. This effect has a major influence on the large-scale
dynamics of the atmosphere and the ocean.

The horizontal momentum equations on the sphere therefore
write2 2 Here we bluntly assume that the

motion is 2D.

∂tu + u · ∇u = −∇p + ν∆u − f er × u, (12.2)

with f = 2Ω sin ϕ with ϕ the latitude.
The equations are sometimes projected onto a plane tangent to

the sphere at a given latitude ϕ0. A corresponding approximation
is to expand the Coriolis parameter at first order: f (ϕ) = f (ϕ0) +

βy + o(y), where y = aϕ is the meridional Cartesian coordinate, a the
radius of the planet, β = 2Ω

a cos ϕ0 the planetary vorticity gradient.
When only the first term (constant f ) is retained, we talk about an
f -plane approximation. When the second term is also kept, this is the
beta-plane approximation.
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12.1.2 Barotropic vorticity equation

We start from the horizontal momentum equations on a beta-plane:

∂tu + u∂xu + v∂yu = −∂x p + ν∆u + ( f0 + βy)v, (12.3)

∂tv + u∂xv + v∂yv = −∂y p + ν∆v − ( f0 + βy)u. (12.4)

We assume that the flow is two-dimensional (u and v do not depend
on the vertical) and non-divergent and we introduce a stream function:

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (12.5)

and the vorticity ζ = −∆ψ = (∇ × u) · k. Taking the curl of the
momentum equations, we obtain:

∂tζ + u · ∇ζ + βv = ν∆ζ, (12.6)

∂tq + u · ∇q = ν∆q, (12.7)

with q = ζ + βy the potential vorticity. To differentiate the two, ζ

is sometimes called relative vorticity. βy is the planetary vorticity
(associated to the rotation of the Earth).

This equation is often called barotropic vorticity equation.
The barotropic vorticity equation is very similar to the 2D Navier-

Stokes equations, with potential vorticity playing the role of vorticity.
In particular, it has analogous conservation laws: in the absence
of forcing and dissipation, the energy and the Casimir invariants
(including potential enstrophy) are conserved.

Nevertheless, the phenomenology is different from 2D turbulence.
In particular, we observe the formation of zonal jets, like in planetary
atmospheres (see Fig. 12.1). Note that when the term corresponding
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Figure 12.1: Vorticity field at
different times (increasing from
left to right) from numerical
simulation of the barotropic
vorticity equation (Vallis 2017,
p. 450).

to the beta effect dominates in the barotropic vorticity equation, we
expect βv ≈ 0, which is a first hint that strong beta effect should
constrain the velocity to be essentially zonal.
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12.1.3 Rhines scale

Let us consider the magnitude of the different terms in the barotropic
vorticity equation (neglecting molecular viscosity):

∂tζ +u · ∇ζ +βv = 0,
U
LT

U2

L2 βU

where U is a velocity scale and L a length scale. The inertial
term and the beta effect are of the same order of magnitude when
L = LR =

√
U/β, which is called the Rhines scale3. Typically U is 3 Rhines (1975)

estimated as the root-mean square velocity. This reasoning assumes
that the vorticity can be estimated as the root mean square veloc-
ity divided by the Rhines scale, which may actually be rather large.
Hence other forms for this scale could be written. Nevertheless, we
expect that at some large scale, the beta effect should dominate, while
turbulence should dominate at smaller scales.

12.1.4 Rossby waves

We linearize the barotropic vorticity equation and look for plane
wave solutions: ψ = ψ0ei(kx+ly−ωt). These solutions are called Rossby
waves. They obey the dispersion relation:

ω = −β
k

k2 + l2 . (12.8)

The dispersion relation can be rewritten as

(
k +

β

2ω

)2
+ l2 =

β2

4ω2 , (12.9)

which shows that the geometric locus of the wave vector is a circle,
whose center and radius depend on the frequency. The group veloc-
ity cg = β

k2+l2 (cos α, sin α), where α is the angle between ex and the
wave vector k, points from k towards the center of the circle.

12.1.5 Deflection of the inverse cascade

We would now like to understand the role of Rossby waves in en-
ergy transfers across scales, and in particular in the formation of
anisotropic, zonal jets in beta plane turbulence. We start with a sim-
ple argument based on a comparison of timescales corresponding to
different processes.

The eddy-turnover time, associated with the inverse cascade of 2D
turbulence is τNL = 1/

√
k3E(k) ∼ ε−1/3K−2/3, with K =

√
k2 + l2

the wave number. On the other hand, the timescale associated with
Rossby wave propagation is the inverse of the frequency ω, which
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depends explicitly on the zonal wave number k. We can therefore
consider the product

ωτNL ∼ βε−1/3kK−8/3, (12.10)

∼ βε−1/3K−5/3 cos θ, (12.11)

with k = K cos θ. When this quantity is (much) smaller than unity, we
expect the non-linear transfers to be much faster than wave propaga-
tion, and therefore we should observe an (isotropic) inverse cascade
like in 2D. On the other hand, when it is (much) larger than unity,
wave propagation dominates and the flow should be anisotropic.

The curves of equation ωτNL = const correspond to “dumbell”
shape curves. Hence, the inverse energy cascade is “deflected” by the
Rossby waves towards the axis k = 0, which explains the formation of
zonal structures (see Fig. 12.2).��� $IBQUFS ��� (FPTUSPQIJD 5VSCVMFODF BOE #BSPDMJOJD &EEJFT
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Figure 12.2: 2D energy spec-
trum from numerical simula-
tions of the barotropic vorticity
equation (Vallis and Maltrud
1993). Initially the spectrum
is isotropic (left). As time pro-
ceeds, the energy condenses
around the kx = 0 axis (right).

12.1.6 The zonostrophic energy spectrum of beta-plane turbulence

If we neglect the anisotropic nature of the dispersion relation, the
above reasoning yields a scale separating the inverse cascade regime

and the wave regime: Lε =
(

ε
β3

)1/5
. In fact, this scale is the same as

the Rhines scale defined above, if we use the Taylor estimate for the
energy dissipation rate ε = U3/L, assuming that the correct scale in
this formula is the Rhines scale LR.

Now we would like to investigate the shape of the energy spec-
trum. Because of the inverse cascade, we have to add a dissipation
mechanism at large scale to reach a steady state. We add Rayleigh
friction to the barotropic vorticity equation:

∂tζ + u · ∇ζ + βv = ν∆ζ − αζ. (12.12)

Like in 2D turbulence, we can estimate easily the kinetic energy at
steady-state, by assuming that it is entirely dissipated by the linear
friction. It gives: ε = 2αE = 3αU2. Injecting this estimate into the
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Rhines scale yields a new scale Lαβ =
(

ε
3αβ2

)1/4
which does not nec-

essarily coincide with the separation scale between the nonlinear and
the linear regimes derived above. This scale is in fact a combination
of the scale Lε and the classical friction scale Lα =

√
ε/α3 at which

the energy cascade is arrested in 2D: Lαβ = L1/6
α L5/6

ε . One regime
where we can have a physical interpretation of the competition be-
tween the different effects (nonlinearity, beta effect and friction) is the
regime where friction is sufficiently small, so that the friction scale Lα

(and the Rhines friction scale Lαβ) is large. Then it can be expected
that the inverse energy cascade proceeds until the scale Lε; once it
is reached, the beta effect becomes dominant, the flow is anisotropic
and jets should form until they reach a meridional scale Lαβ. In this
regime it can be assumed that the energy spectrum does not depend
on ε anymore, and dimensional analysis yields E(k) = Cββ2k−5.
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Figure 12.3: Schematic energy
spectrum in the zonostrophic
regime of beta-plane turbu-
lence (Vallis 2017, Chap. 12).

One drawback of this reasoning is that with such a steep spec-
trum, the eddy-turnover time decreases with increasing scale, and a
definite friction scale cannot be defined anymore.

12.1.7 Momentum transport by Rossby waves

In § 12.1.5, we have given an argument based on energy transfer in
spectral space to explain the formation of zonal jets in beta-plane
turbulence. In this section, we give a different argument, based on
momentum transport properties of Rossby waves.

Let us carry out a Reynolds decomposition of the barotropic vor-
ticity equation: we decompose the 2D velocity field into a mean-flow
and fluctuations, and we assume that the mean flow is entirely in
the zonal direction: u = Uex + u′, where the mean-flow is indepen-
dent of x. The Reynolds-averaged Navier-Stokes equations for the
mean-flow write

∂tU = −∂yu′v′ + ν∆U. (12.13)

The first term on the right hand side describes the acceleration due to
all the non-zonally symmetric motions, like waves or turbulence. It
takes the form of the divergence of a flux, u′v′, which is a component
of the Reynolds stress tensor, which is often called eddy momentum
flux in the context of geophysical fluid dynamics. Because of the
minus sign, the term −∂yu′v′ is usually called eddy momentum flux
convergence.
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Figure 12.4: Momentum trans-
port by Rossby waves (Vallis
2017, p. 544).

Now, it is easy to understand how Rossby waves transport mo-
mentum, and therefore accelerate the mean-flow through the eddy
momentum flux convergence term. Indeed, for a plane Rossby wave
we can compute directly the eddy momentum flux: u = ∂yψ =
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−lψ0 sin(kx + ly − ωt), v = kψ0 sin(kx + ly − ωt), and therefore:

u′v′ = −kl
ψ2

0
2π

ˆ 2π

0
sin2(kx + ly − ωt)dx = − kl

2
ψ2

0. (12.14)

On the other hand, the group velocity in the meridional direction is

cy
g =

∂ω

∂l
=

2βkl

(k2 + l2)2 . (12.15)

In particular, cy
gu′v′ < 0: Rossby waves transport energy and momen-

tum in opposite meridional directions. If Rossby waves propagate
meridionally away from a source region, eddy momentum conver-
gence in this region should be positive and the flow should accelerate
towards the east. This is the fundamental mechanism through which
Rossby waves can generate zonal jets. It plays an important part in
the maintenance of the Jet Stream on Earth for instance4. 4 We have left aside for now the mech-

anism generating Rossby waves, which
in that case is an instability of the jet
called the baroclinic instability
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A
Taylor Hypothesis

Taylor (1938)
Until the (relatively recent) advent of velocimetry techniques based
on lasers and high-speed cameras, most measurements were done
with hot-wire devices, which only give access to the longitudinal (in
the direction of the mean-flow) component of velocity at one point,
as a function of time (see Fig. A.1). How do you extract informa-
tion about the spatial structure of the velocity field from such a time
series?

Figure A.1: Velocity signal
recorded by a hot-wire in
a wind tunnel, sampled at
5kHz (Frisch 1995).

Let us denote x the coordinate along the mean flow U, u the veloc-
ity in the reference frame of the laboratory and u′ the velocity in the
reference frame moving with the mean flow. We have

u(x, t) = U + u′(x − Ut, t). (A.1) x

U

U

x = 0

u′(x = 0, t) = u′(x = −Ut, t = 0)

u′(x, 0) = u′(0,− x
U
)

As long as u′ is typically much smaller than U, we can assume
that the turbulence is essentially transported by the mean flow. This
means that the spatial structure of the velocity field is frozen and
travels as a block with speed U. When that happens, measuring
u(x0, t) as a function of time at one point x0 is equivalent to mea-
suring u(x, t0) as a function of x at a given time. The validity of this
approach is measured by the turbulent intensity: I =

√
⟨u′2⟩/U, and

we should have I ≪ 1 for the Taylor hypothesis to be applicable 1. 1 See Lumley (1965) and Pinton and
Labbé (1994) about possible corrections
to the Taylor hypothesis.





B
Some technical results

B.1 Isotropic functions: scalars, vectors and tensors
See Robertson (1940) or Batchelor (1953,
§ 3.3) for a more detailed presentation
in the context of turbulence, or clas-
sical books on group theory for the
background material.

Let us assume that r is a vector and S(r), V(r) and T(r) are respec-
tively a scalar, vector and rank-2 tensor function of r. We assume
that S, V and T are isotropic, i.e. the quantities S(r), a · V(r) and
a · T(r) · b for arbitrary vectors a, b, r are invariant under the action of
O(3). Then the most general form for these functions is:

S(r) = S(r), (B.1)

Vi(r) = V(r)ri, (B.2)

Tij(r) = T0(r)δij + T1(r)rirj. (B.3)

I shall not write a fully rigorous proof here. In a nuthshell, this result
follows from invariant theory, which states in particular that a func-
tion of vectors xα, invariant under the action of rotations SO(3) can
be expressed in terms of scalar products xα · xβ and mixed products
xα · (xβ × xγ) = det(xα, xβ, xγ). It follows that:

• S(r), as a scalar invariant function of r only, can only be a function
of r · r.

• considering a vector x, the scalar invariant Vi(r)xi, which is also a
linear function of x, is proportional to r · x.

• considering two vectors x and y, the scalar invariant Tij(r)xiyj,
which is also a quadratic form, can be expressed in terms of
the scalar products x · y, (r · x)(r · y) and the mixed products
involving the three vectors, with coefficients depending on r2

only. Because the mixed products are not invariant under re-
flections, their contribution vanishes if we impose O(3) symetry,
and we are left with the above result. If we only require symetry
with respect to rotations (SO(3)), an additional term appears:
Tij(r) = T0(r)δij + T1(r)rirj + T2(r)ϵijkrk. Note that in general
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Tij(r) = Tji(−r), so that reflection symmetry is equivalent to sym-
metry with respect to the two indices of the tensor.



C
The energy spectrum

In this section we discuss some additional aspects of the energy spec-
trum.

C.1 Model spectrum

Pope (2000, § 6.5.3)
In chapter 6 we will present a theory which accounts for the form of
the energy spectrum in the inertial range, where it follows a power-
law with a −5/3 slope; based on dimensional analysis, the spectrum
is given by E(k) = Cϵ2/3k−5/3 in that range. It can be useful to
construct an analytical function which fits the observed spectrum,
with the power law identified above in the inertial range but also in
the energy-containing and dissipative scales. Such a model could
take the form:

E(k) = Cϵ2/3k−5/3 fL(kL) fη(kη), (C.1)

where fL(kL) ≈ 1 when kL ≫ 1 and fη(kη) ≈ 1 when kη ≪ 1. The
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Fig. 6.13. The model spectrum (Eq. (6.246)) for Rλ = 500 normalized by the Kol-
mogorov scales.

The specification of fη is

fη(κη) = exp{−β{[(κη)4 + c4
η]

1/ 4 − cη}}, (6.248)

where β and cη are positive constants. Note that, for cη = 0, this reduces to

fη(κη) = exp(−βκη). (6.249)

Because the velocity field u(x) is infinitely differentiable, it follows that,
for large κ, the energy-spectrum function decays more rapidly than any
power of κ (see Appendix G). Hence the exponential decay (as suggested
by Kraichnan (1959)). Several experiments support the exponential form
with β = 5.2 (see Saddoughi and Veeravalli (1994)). However, the simple
exponential (Eq. (6.249)) departs from unity too rapidly for small κη, and the
value of β is constrained to be β ≈ 2.1 (see Exercise 6.33). These deficiencies
are remedied by Eq. (6.248).

For specified values of k, ε, and ν, the model spectrum is determined
by Eqs. (6.246)–(6.248) with C = 1.5 and β = 5.2. Alternatively, the non-
dimensional model spectrum is uniquely determined by a specified value of
Rλ. The constants cL and cη are determined by the requirements that E(κ)
and 2νκ2E(κ) integrate to k and ε, respectively: at high Reynolds number
their values are cL ≈ 6.78 and cη ≈ 0.40 (see Exercise 6.32). For isotropic
turbulence, corresponding models for the one-dimensional spectra E11(κ1)
and E22(κ2) are obtained from Eqs. (6.216)–(6.218).

Figure 6.13 is a log–log plot of the model spectrum (with Kolmogorov
scaling) for Rλ = 500. The power laws E(κ) ∼ κ2 at low wavenumber and

The model spectrum Eq. (C.1) for
Rλ = 500.

specific forms which have been suggested are

fL(kL) =


 kL√

(kL)2 + cL




5/3+p0

, fη(kη) = e−β[((kη)4+c4
η)

1/4−cη ],

(C.2)
where p0 = 2, cL > 0, cη > 0, β > 0 are model constants. With such
choices, the energy spectrum goes like k2 at large scale. The alterna-
tive choice p0 = 4, such that E(k) ∼ k4 at large scale, corresponds to
the van Karman spectrum. The constant β is determined empirically;
β = 5.2 is found to give good agreement with experimental data.
The constants cL and cη are determined by requiring that E(k) (resp.
2νk2E(k)) integrates to E (resp. ϵ).
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C.2 The one-dimensional spectrum
Pope (2000, § 6.5)

Up to now we have only discussed the isotropic spectrum E(k), cor-
responding to the kinetic energy integrated over a sphere of radius
k in Fourier space. In isotropic flows, it is the most natural quantity
to characterize the energy content over scales. Exploiting the con-
straints of homogeneity and isotropy, it can be computed easily even
if we do not have access to the full velocity field, through the formula
E(k) = 2πk2Ûi

i (k) = k2

(2π)2

´
Ui

i (r)e
−ik·rdr, which only requires the

knowledge of the longitudinal autocorrelation function f (r).
Alternatively, we may measure one component of the velocity co-

variance tensor in an arbitrary direction (for simplicity let us choose
a frame of reference such that this measurement direction is the first
basis vector e1.), and compute (twice) its Fourier transform:

Eij(k1) =
1
π

ˆ +∞

−∞
Uij(re1)e−ik1rdr, (C.3)

and conversely,

Uij(r) =
1
2

ˆ +∞

−∞
Eij(k1)eik1r·e1 dk1. (C.4)

From Eq. C.4 it follows that

Eij(k1) = 2
ˆ +∞

−∞

ˆ +∞

−∞
Ûij(k1, k2, k3)dk2dk3. (C.5)

Hence, the diagonal components of the one-dimensional spectrum
correspond to integrating the kinetic energy density in Fourier space
over a plane (here with fixed k1). Note in particular that unlike the

k1

k2

k3

isotropic spectrum E(k), the one-dimensional spectra Eii(k1) contain
contributions from wave vectors with wave numbers larger than k1

(in fact, k1 is the smallest wave number contributing to the spectrum).
As usual, one can distinguish the longitudinal and transverse spectra
E11(k1) and E22(k1) = E33(k1). Using homogeneity, they can be
written Eii(k1) = (2/π)

´ +∞
0 Uii(re1) cos(k1r)dr, and with our choice

of frame of reference, U11(re1) = f (r), U22(re1) = U33(re1) = g(r), so
that

E11(k1) =
2
π

ˆ +∞

0
f (r) cos(k1r)dr, E22(k1) = E33(k1) =

2
π

ˆ +∞

0
g(r) cos(k1r)dr,

(C.6)
and using the relation between the longitudinal and transverse auto-
correlation function g(r) = f (r) + r f ′(r)/2, we obtain the relation

E22(k1) = E11(k1) +
1
π

ˆ +∞

0
r f ′(r) cos(k1r)dr, (C.7)
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integrating by parts,

= E11(k1)−
1
π

ˆ +∞

0
f (r)[cos(k1r)− rk1 sin(k1r)]dr, (C.8)

=
E11(k1)

2
− k1

2
dE11(k1)

dk1
= − k2

1
2

d
dk1

(
E11(k1)

k1

)
. (C.9)

The longitudinal spectrum can also be related to the isotropic
spectrum. Injecting Ûii(k1, k2, k3) = E(k)(1 − k2

i /k2)/(4πk2) into
Eq. (C.5), we obtain

E11(k1) =

ˆ +∞

−∞

ˆ +∞

−∞

E(k)
2πk2

(
1 − k2

1
k2

)
dk2dk3. (C.10)

Changing to polar coordinates in the plane (k2, k3), with k2
r = k2

2 + k2
3,

we get

=

ˆ +∞

0

E(k)
k2

1 + k2
r

(
1 − k2

1
k2

1 + k2
r

)
krdkr, (C.11)

and under the new change of variable k =
√

k2
r + k2

1,

=

ˆ +∞

k1

E(k)
k

(
1 − k2

1
k2

)
dk. (C.12)

Differentiating with respect to k1, we get

dE11(k1)

dk1
= −2k1

ˆ +∞

k1

E(k)k−3dk < 0, (C.13)

which shows that regardless of the shape of the isotropic spectrum,
the longitudinal spectrum E11(k1) is always a decreasing function of
k1. Differentiating again,

d2E11(k1)

dk2
1

= −2
ˆ +∞

k1

E(k)k−3dk + 2E(k1)k−2
1 , (C.14)

from which we obtain the isotropic spectrum in terms of the longitu-
dinal spectrum:

E(k) =
k3

2
d
dk

(
1
k

dE11(k)
dk

)
. (C.15)

From the above relations, we see that if the longitudinal spectrum
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Fig. 6.11. Comparison of spectra in isotropic turbulence at Rλ = 500: solid line, E(κ);
dashed line, E11(κ1); dot-dashed line, E22(κ1). From the model spectrum, Eq. (6.246).
(Arbitrary units.)

(i) In the center of the wavenumber range, all the spectra exhibit power-
law behavior with p= 5

3
. In this range, consistent with Eqs. (6.230)

and (6.232), the values of E11, E22 and E are in the ratios 1: 4
3
: 55

18
.

(ii) At high wavenumber, the spectra decay more rapidly than a power
of κ, consistent with the underlying velocity field being infinitely
differentiable.

(iii) At low wavenumber, E(κ) tends to zero as κ2. In contrast, the one-
dimensional spectra are maximum at zero wavenumber. This again
illustrates the fact that the one-dimensional spectra contain contribu-
tions from wavenumbers κ greater than κ1 (see Eq. (6.216)).

(iv) At low wavenumber, the one-dimensional spectra E11 and E22 are in
the ratio 2:1 – consistent with the ratios of the integral length scales
L11 and L22 (see Eqs. (6.51) and (6.213)).

6.5.2 Kolmogorov spectra

According to the Kolmogorov hypotheses, in any turbulent flow at suffi-
ciently high Reynolds number, the high-wavenumber portion of the velocity

Comparison of the one-dimensional
and isotropic spectra (Pope 2000).

has a power-law of the form E11(k1) = C1k−p
1 , then it is also the

case for the transverse and isotropic spectra: E22(k1) = C2k−p
1 and

E(k) = Ck−p with C2 = (1 + p)C1/2 and C = p(2 + p)C1/2. For
p = 5/3, we have C2 = 4/3C1and C = 55/18C1.
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Fig. 6.14. Measurements of one-dimensional longitudinal velocity spectra (symbols),
and model spectra (Eq. (6.246)) for Rλ = 30, 70, 130, 300, 600, and 1,500 (lines). The
experimental data are taken from Saddoughi and Veeravalli (1994) where references
to the various experiments are given. For each experiment, the final number in the
key is the value of Rλ.

scaling are shown in Fig. 6.15 on a linear–log plot, which emphasizes the
dissipation range. For κ1η > 0.1, there is close agreement between mea-
surements in grid turbulence (Rλ ≈ 60) and in a turbulent boundary layer
(Rλ ≈ 600), again supporting the universality of the high-wavenumber spec-
tra. The straight-line behavior evident in this plot for κ1η > 0.3 corresponds
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Fig. 6.15. Compensated one-dimensional velocity spectra. Measurements of Comte-
Bellot and Corrsin (1971) in grid turbulence at Rλ ≈ 60 (triangles), and of Saddoughi
and Veeravalli (1994) in a turbulent boundary layer at Rλ ≈ 600 (circles). Solid
line, model spectrum Eq. (6.246) for Rλ = 600; dashed line, exponential spectrum
Eq. (6.253); dot–dashed line, Pao’s spectrum, Eq. (6.254).

to exponential decay of the spectrum at the highest wavenumbers. Again,
the model spectrum represents the data accurately.

Also shown in Fig. 6.15 are the one-dimensional spectra deduced from
two alternative models for fη(κη). These are the exponential

fη(κη) = exp(−βoκη), (6.253)

where βo is given by Eq. (6.258), and the Pao spectrum

fη(κη) = exp[− 3
2
C(κη)4/ 3], (6.254)

(see Pao (1965) and Section 6.6). It is evident from Fig. 6.15 that these
alternatives do not represent the data as well as the model spectrum does.

Having established that the model spectrum describes the dissipation range
accurately, we now use it to quantify the scales of the dissipative motions.
Figure 6.16 shows the dissipative spectrum D(κ) = 2νκ2E(κ) according to
the model for Rλ = 600, and also the cumulative dissipation

ε(0,κ) ≡
∫ κ

0

D(κ′) dκ′. (6.255)

Figure C.1: Longitudinal ve-
locity spectrum in various
experiments (points) and using
the model spectrum Eq. (C.1),
in logarithmic coordinates (left)
revealing the inertial range and
energy containing range, and
in linear-logarithmic coordi-
nates (right), focusing on the
dissipative range (Pope 2000,
§ 6.5.4).

C.3 Refined study of the energy spectrum

Fig. C.1 shows longitudinal spectra from a variety of measurements
at different Reynolds numbers, rescaled based on Kolmogorov scal-
ings (see Chap. 6). It shows that the spectrum seems to follow a uni-
versal curve at scales smaller than the energy containing scales. We
also observe that the inertial range grows with increasing Reynolds
number. These figures also illustrate the quality of the fit obtained
from the model spectrum given by Eq. (C.1) (solid lines). By contrast,
the alternative models fη(kη) = e−β0kη (corresponding to cη = 0) with

β0 = 2.094 (dashed line) and fη(kη) = e−
3
2 C(kη)4/3

(dot-dashed line,
Pao (1965)) do not describe as well the energy spectrum decay in the
dissipative range.

Plotting the one-dimensional spectra in all directions in com-
pensated form, as in Fig. C.2 allows to test isotropy. Although the
measurements are made in a flow which is not isotropic (a turbulent
boundary layer), the transverse spectra E22(k1) and E33(k1) are quite
similar, in particular at small scales. The ratio C′

1/C1 ≈ 1.4 is close
to 4/3, which is the theoretical value for isotropic flows with a −5/3
power law spectrum.

Finally, this figure shows a departure from the Kolmogorov iner-
tial range prediction towards the end of the inertial range (here, at
kη ≈ 0.1) where a bump appears in the compensated spectrum. This
phenomenon1 is referred to as the bottleneck of the energy cascade. 1 also observed in high resolution direct

numerical simulations, e.g. Kaneda
et al. (2003) and Mininni, Alexakis, and
Pouquet (2008).
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Fig. 6.17. Compensated one-dimensional spectra measured in a turbulent boundary
layer at Rλ ≈ 1,450. Solid lines, experimental data Saddoughi and Veeravalli (1994);
dashed lines, model spectra from Eq. (6.246); long dashed lines, C1 and C ′

1 correspond-
ing to Kolmogorov inertial-range spectra. (For E11, E22 and E33 the model spectra are
for Rλ = 1, 450, 690, and 910, respectively, corresponding to the measured values of
⟨u2

1⟩, ⟨u2
2⟩, and ⟨u2

3⟩.)

that calculated from E11(κ1) with the assumption of isotropy, Eq. (6.218).
Saddoughi and Veeravalli (1994) performed this test and found that the
measured and calculated values differ by no more than 10% throughout the
equilibrium range.

Figure C.2: Compensated one-
dimensional spectra measured
in a turbulent boundary layer
at Rλ = 1450 (solid lines, Sad-
doughi and Veeravalli (1994))
and from the model spectrum
Eq. (C.1) (dashed lines). Figure
from Pope (2000, Fig. 6.17).

It means that the universal function F appearing in the Kolmogorov
spectrum at finite Reynolds number (see § 6.1) is not a decreasing
function of k, but rather increases throughout the inertial range, until
a scale on the order of the Kolmogorov scale, and starts decreasing
only within the dissipative range. This phenomenon is classically
interpreted as a consequence of the fact that viscosity, which can
still be seen from the lower end of the inertial range, inhibits tri-
adic interactions involving modes close to the dissipative scales and
thereby reduces slightly the energy transfer towards smaller scales,
leading to an accumulation of energy at the door of the dissipative
range (Falkovich 1994). An alternative interpretation is that the bot-
tleneck is a signature of incomplete thermalization (Frisch et al. 2008).
It has also been suggested to be related to helicity (Kurien, Taylor,
and Matsumoto 2004).

In numerical simulations, the bottleneck
effect increases with the use of hyper-
viscosity, which is one of the arguments
against such numerical practice.
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Run 2048-1. Figure 4 shows !(k) at various times in Run
2048-1. The range over which !(k) is nearly constant is
quite wide; it is wider than the flat range of the correspond-
ing compensated-energy-spectrum "see Fig. 5#. The station-
arity is also much better than that of lower resolution DNSs
"figures omitted#, and !(k)/$%& is close to 1. In the study of
the universal features of small-scale statistics of turbulence,
if there are any, it is desirable to simulate or realize an iner-
tial subrange exhibiting "i#–"iii# rather than "i#– "iii#. The
present results suggest that a resolution at the level of Run
2048-1 is required for such a simulation. Such DNSs are
expected to provide valuable data for the study of turbulence,
and in particular for improving our understanding of possible
universality characteristics in the inertial subrange.

These considerations motivate us to revisit another
simple but fundamental question of turbulence: ‘‘Does the
energy spectrum E(k) in the inertial subrange follow Kol-
mogorov’s k!5/3 power law at large Reynolds numbers?’’
Figure 5 shows the compensated energy spectrum for the
present DNSs "the data were plotted in a slightly different
manner in our preliminary report4#. From the simulations
with up to N"1024, one might think that the spectrum in the
range given by

E"k #"K0%2/3k!5/3 "1#

with the Kolmogorov constant K0"1.6–1.7 is in good
agreement with experiments and numerical simulations "see,
for example, Refs. 1, 3, 9, and 10#. However, Fig. 5 also
shows that the flat region, i.e., the spectrum as described by
"1#, of the runs with N"2048 and 4096 is not much wider
than that of the lower resolution simulations. The higher
resolution spectra suggest that the compensated spectrum is
not flat, but rather tilted slightly, so that it is described by

E"k #' %2/3k!5/3!( k, "2#

with ( k)0.
The detection of such a correction to the Kolmogorov

scaling, if it in fact exists, is difficult from low-resolution
DNS databases. The least square fitting of the data of the
40963 resolution simulation for (d/d log k)logE(k) to
(!5/3!( k)log k#b (b is a constant# in the range 0.008
$k*$0.03 gives ( k"0.10. The slope with ( k"0.10 is
shown in Fig. 5.

It may be of interest to observe the scaling of the second
order moment of velocity, both in wavenumber and physical
space. For this purpose, let us consider the structure function

S2"r#"$!v"x#r,t #!v"x,t #!2&,

where S2 may, in general, be expanded in terms of the
spherical harmonics as

S2"r#" +
n"0

,

+
m"!n

n

f nm"r #Pn
m"cos -#eim. .

Here, r"!r! and -,. are the angular variables of r in spheri-
cal polar coordinates, Pn

m is the associated Legendre polyno-
mial of order n ,m , and f nm(" f n ,!m* ) is a function of only r ,
where the asterisk denotes the complex conjugate. The time
argument is omitted. For S2 satisfying the symmetry S2(r)
"S2(!r), we have f km"0 for any odd integer k . In strictly
isotropic turbulence, f nm must be zero not only for odd n ,
but also for any n and m except n"m"0. However, our
preliminary analysis of the DNS data suggests that the an-
isotropy is small but nonzero. In such cases, f nm is also small
but nonzero, and S2 itself may not be a good approximation
for f 0" f 00 . To improve the approximation for f 0 , one
might, for example, take the average of S2 over r/r

FIG. 3. Normalized energy dissipation rate D versus R/ from Ref. 5 "data
up to R/"250), Ref. 3 "!,"#, and the present DNS databases "#,$#.

FIG. 4. !(k)/$%& obtained from Run 2048-1.

FIG. 5. Compensated energy spectra from DNSs with "A# 5123, 10243, and
"B# 20483, 40963 grid points. Scales on the right and left are for "A# and "B#,
respectively.
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Figure C.3: Compensated
isotropic energy spectrum
E(k) in high-resolution DNS of
homogeneous isotropic turbu-
lence (Kaneda et al. 2003).

C.4 The energy spectrum in the energy-containing range

Let us assume that the velocity-spectrum tensor Ûij(k) is at least
twice differentiable at k = 0, so that we can write the Taylor expan-
sion2: 2 Batchelor (1953, § 3.1)

Ûij(k) = aij + aijlkl + aijlmklkm + o(k2), (C.16)

where the coefficients aij, · · · do not depend on k. The incompress-
ibility condition kiÛij(k) for all wave vectors k means that all the
terms in the series must vanish: aijki = aijlkikl = aijlmkiklkm = 0. In
particular, aij = 03. Besides, for any k the hermitian form Ûij(k) is 3 No such conclusion can be drawn

for other coefficients: for instance
ϵijlkikl = 0 for all k.

positive (non-definite): for any vector X, we have XiX j∗Ûij(k) ≥ 0.
In particular, aijlXiX j∗kl ≥ 0, but if aijl ̸= 0 this quantity changes
sign with k, so necessarily aijl = 0. It follows that the first non-
vanishing coefficient is aijlm: Ûij(k) = aijlmklkm + o(k2), and therefore
E(k) = 2πk2aijlmklkm + o(k4) should scale like k4 at small k (notwith-
standing the tensor structure).

In numerical simulations, both the k4 and an alternative k2 scalings
have been observed (Chasnov 1995), depending on the symmetries
of the inital condition. The k2 scaling has been explained theoreti-
cally by Saffman (1967). Note also that k2 corresponds to a statistical
equilibrium spectrum.
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