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AN INTRODUCTION TO FLUID TURBULENCE

These lecture notes cover the material for the course Advanced
Fluid Mechanics and Turbulence, which is part of the Masters pro-
gram Physics: concepts and applications offered at ENS de Lyon. This
class is mostly an introduction to classical fluid turbulence, aimed
at physicists. Typically, the class covers the Navier-Stokes equations,
Kolmogorov Theory, and touches briefly upon intermittency and 2D
and geophysical turbulence. This corresponds to Chapters 1- 7 in the
lecture notes. Some additional paragraphs about other topics are in-
cluded in this document as a bonus, I might add more in the future.
The class on 2D and geophysical turbulence will be presented as a
seminar and is not covered in this version of the lecture notes.

Many topics which could be treated in an Advanced Fluid Me-
chanics class, such as hydrodynamic instabilities, waves in fluids,
buoyancy driven flows, compressible and reactive flows, complex
fluids, etc, will be left aside here, for lack of time. Geophysical Fluid
Dynamics will be very briefly touched upon as a seminar at the end
of the term.

These notes are based mostly on classical textbooks and the lecture
notes from my colleagues who taught the class previously: Laurent
Chevillard and Freddy Bouchet. The class is taught jointly by Mickael
Bourgoin and myself: this document covers only the material that
I teach (essentially Kolmogorov theory) and leaves aside topics like
Lagrangian approaches and experimental aspects. For the sake of
precision, I sometimes give references in the text which go beyond
the scope of the present course. You should feel free to have a look
at these, but if I were to single out only one reference, it would be
the book by Uriel Frisch (1995), which is closest in spirit to a course
like this one. A second useful reference for this course is the book
by Pope (2000).

These lecture notes are still pretty much in a draft stage; please let
me know if you find any mistakes, inaccurracies or typos.






Part 1

Homogeneous Isotropic

Turbulence






1
Introduction: What is turbulence?

TURBULENCE is the name given to the seemingly random fluctu-
ations appearing in fluid flows under certain conditions, basically
when the flow speed is large or when the scale of the flow is large.
Turbulence is essentially a very efficient way to dissipate energy
or mix stuff. There are exceptions to this rule in geophysical flows,
where turbulence plays a part on the large scale organization of the

flow.

1.1 Some examples of turbulent flows
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1.2 The impact of turbulence

1.2.1  Mixing: the coffee cup

Let us consider the diffusion of a particle in a medium with diffusiv-
ity D, described by a Wiener process. As is well known, the mean-
square displacement grows linearly with time, i.e. (Ax?) = 6Dt in 3D
space. The mass diffusion coefficient D depends on the two species
involved, but typically for an aqueous solution at room temperature,
it is on the order of 107> cm?.s™*. This means that the typical time
for diffusion of sugar in a cup of coffee (a few centimeters wide) is
on the order of 10/(6D), i.e. ~ 2 days. Because thermal diffusion
is faster by about two orders of magnitude (not even taking into ac-
count convection above the cup), one would be doomed to choose be-
tween drinking hot and sweet coffee. The answer to this conundrum
is twofold: first, don’t put sugar in your coffee. Second, turbulence.
As we know from experience, stirring the cup dramatically speeds up
the mixing process. The trajectory R(t) of a particle is now governed
by:

dR(t) = u(R, t)dt + vV2DdW(t), (1.1)

where u is the Eulerian velocity field and dW() is the standard
Wiener process (i.e. Brownian motion). The mean-square displace-
ment (Ax?) = 2Dgt* now depends on the statistical properties of

Figure 1.1: Examples of classi-
cal laboratory experiments for
turbulent flows: turbulent jet
(top left), grid turbulence (top
right), boundary layer (bottom
left) and pipe flows (bottom
right).

D ~107% cm?s?

x~107° cm.s™?
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the velocity field u: both subdiffusion (x < 1) and superdiffusion

(e« > 1) can be observed. Computing the effective diffusivity D
based on the statistical properties of u and molecular diffusivity D is
an outstanding challenge. In a turbulent flow, we expect Degs > D;
turbulent diffusion is much more efficient than molecular diffusion.
An intuitive understanding of this fact is that stirring the fluid de-
forms the isodensity contours of the substance we are mixing. First
of all, there is the simple effect that advection alleviates the burden of
travelling throughout the volume by diffusion only, but in addition to
it, the isodensity contours develop finer and finer scales, which make
it easier for molecular diffusion to do its job.

1.2.2  Dissipation: the Rhone river

Let us estimate the velocity of the Rhone river if the flow was lami-
nar. We note &« ~ h/d the angle of the canal with the horizontal, H
the depth, g the gravity acceleration and v the kinematic viscosity.

Estimating the total energy (per unit mass) dissipated over the
course of the flow from Lyon to the Mediterranean sea as vU?/ H? x
d/U, and balancing it with the potential energy (per unit mass) in
Lyon gh, we get the back-of-the-enveloppe estimate U ~ gH?a/v.

To be slightly more precise, we remember from kindergarten that
the flow should be of Poiseuille type: we should have vU" (z) =
—gsina. It follows that the flow profile is parabolic, and the velocity
at the surface is given by U = ¢H?sina/ (2v).

In the case of the Rhone, the elevation of Lyon is about 170m,
the distance to the sea is roughly 350 km, so that & ~ 5.107*. We
obtain the following order of magnitude for the flow velocity: U ~
0.5 %10 x 5.107* x 102/10° ~ 2.5 x 10° m.s™.

Two conclusions can be drawn:

¢ The Rhone is an example of a relativistic flow.

¢ Alternatively, there exists a dissipation mechanism which transfers
energy towards smaller scales, where viscosity acts much more
efficiently to dissipate energy. In that case, there is not a direct
balance between forcing and dissipation, that balance is mediated
by the nonlinear term, which is the mechanism transferring energy
towards smaller scales. One of the main goals of this course is to
give a precise meaning to this statement.

1.2.3 Dissipation: the drag force

Of course, the efficiency of turbulence as a dissipation mechanism
has many practical consequences.

In the particular case of the coffee

cup, the turbulent character of the
flow can be questioned. Although the
Reynolds number is quite modest (it
can be reasonably estimated to be of
order 100, using the viscosity of water
v on the order of 107° m2.s™), mixing
milk in a cup of coffee exhibits features
characteristic of turbulent flows.

€y

\v\i{y(z)ex
h=170m,
L ® @

d =350 km
se. Juz=0 =0,
U(z=H)=0
z=H
—
4>u(z):gs;mx
—

V2277222777722222722222222222222222222222222)

At large Reynolds number, there is
no steady solution: the Poiseuille
flow becomes unstable, and the flow
fluctuates around a different mean
profile.
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Let us consider the drag force F acting on a body (e.g. a car) with
cross-section L2 moving through a fluid with viscosity v and density
p at constant velocity U. The drag coefficient Cp is defined as (twice)
the fraction of the momentum pL?U?7 transferred to the object in a
time 7, which yields the drag equation:

_ %

F
2

pL2U2. (1.2)

The drag coefficient should depend on the shape of the body, and the
Reynolds number.

10* T T T T T T T
G

10+ T

10—1 1 1 1 1 1 1 1
107" 1 10 102 10° 10* 10° 108 107

Re

At low Reynolds number, the drag force is proportional to the
velocity (i.e. the drag coefficient varies as Re™!), but it becomes
quadratic at higher Reynolds number (i.e. the drag coefficient be-
comes constant). The associated energy dissipation (per unit mass)
ise = CTD UTS; constant drag is equivalent to a finite limit for energy
dissipation as v — 0. This is called anomalous dissipation (see § 5.1)

and is due to turbulence.

1.2.4 Summary

Turbulence has good and bad sides. On the good side, it allows rivers
to flow without encountering unnerving relativistic effects. On the
bad side, it makes it much more difficult to move around for animals,
people and the things they make, beyond a certain speed. Turbu-
lence also allows you to drink coffee at the same time hot and sweet.
Whether this is on the good or on the bad side remains disputed.

Figure 1.2: Drag coefficient
as a function of the Reynolds
number for a circular cylin-
der, based on experimental
data (Tritton 2012, p. 33).

€= p% = % We implicitly assume
that the injected energy is dissipated
(into heat) in a region of the fluid of
volume L3, in the wake of the flow past

the object.

Exercise: estimate the contribution of
turbulence to global warming.
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The Euler and Navier-Stokes equations

A NATURAL MODEL TO CONSIDER for turbulence is the Navier-Stokes
equations for incompressible flows:

dru+u-Vu=—-Vp+vAu, (2.1)
V-u=0, (2.2)
or in coordinates
o + u]-ajui = —0ip+ vajaju,-, (2.3)
du; =0, (2.4)

where u is the velocity field, p the pressure and v the kinematic vis-

cosity. Here and in the rest of these notes, we have adopted the Ein-

stein summation convention for repeated indices. When v = 0, these

equations are referred to as the Euler equations™. * Of course, historically the Euler
These equations are well-defined on a domain of arbitrary di- equations came first (1757).

mension, i.e. for u a vector field in R? or more generally on a d-

dimensional manifold. However, the most common case for appli-

cations is d = 3, and we should stick to this case for the purpose of

this course. The two-dimensional case also reveals many interesting

aspects, with applications for instance to geophysical flows, but we

should barely touch upon those (see § ??).
In this course, we shall take these equations for granted; we refer

to classical fluid mechanics textbooks for further discussion of their

validity (e.g. Landau and Lifchitz 1971). In particular, we should

work in the simplest possible framework and ignore phenomena such

as compressibility, density variations, rotation, magnetic fields,etc.

2.1 Domain walls, turbulence generation and the random char-
acter of turbulence

The Euler and Navier-Stokes equations should be supplemented by
boundary conditions. For the Euler equations, the impermeability
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condition u - n = 0 suffices, where the vector n is locally normal to
the domain boundary. Because they involve a second-order differen-
tial operator, the Navier-Stokes equations require all the components

of the velocity to be specified on the domain boundary. For simplic- T
ity, we shall work with the no-slip condition here, i.e. u = 0 on the
domain boundary, or sometimes with periodic boundary conditions. —

In experiments, energy is virtually always injected through the

interaction of a wall with the fluid, be it the domain boundary or Figure 2.1: In Couette flow or

an object moving in the fluid. The flow may be forced steadily (e.g. van Karman flow, turbulence is

von Karman flow, wind tunnel) or freely decaying after an initial generated by the motion of the

perturbation (e.g. moving a grid through a tank). In both cases, the domain boundaries.
general idea is that if we shake the fluid sufficiently vigorously, we
will try to impose a flow which will be unstable, thereby generating
turbulence.

In numerical simulations, on the other hand, the effect of walls is
more cumbersome to represent. An easier way to generate turbulence
is either to pick a sufficiently energetic initial condition (decaying
turbulence) or to inject energy in the system continuously by adding a
forcing term on the right hand side of Eq. (2.1). We are free to choose
the space and time structure of this forcing term.

In principle we expect the experimental process as well as the laws
of motion to be deterministic. Yet, carrying out the same experiment
multiple times yields different outcomes; as turbulence develops,
the flow takes on a random character and only statistical properties
of the flow should be robustly reproducible. As a consequence, it is
quite common in numerical simulations and in theoretical studies
to add explicitly a random forcing term f in the right hand side of
the Navier-Stokes equations (2.1), which become stochastic partial
differential equations. Such equations make sense only for random
velocity fields. Alternatively, we may stick to deterministic initial
value problems but with random initial conditions. In both cases,
we are interested in the statistical properties of the solutions of the
Euler and Navier-Stokes equations. It is expected that these statistical
properties, at scales small enough to be unaltered by the shape of the
container or details of the energy injection mechanism, should not
depend on the experimental setup or the space-time structure of the
imposed forcing. This is referred to as universality.

In this chapter, we start with a few reminders about some im-
portant aspects of the Euler and Navier-Stokes equations seen as
deterministic systems before actually diving into the stochastic nature
of turbulent flows.
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2.2 Pressure and incompressibility

2.2.1  Solving the Poisson equation

Using incompressibility, the pressure can be deduced by taking the
divergence of the Navier-Stokes equations:

V.(u-Vu) = —Ap. (2.5)

This is a Poisson problem. The Laplacian can be inverted by consid-
ering the Green function G(x): AG(x) = J(x), where ¢ is the Dirac
distribution.

Hence, the pressure reads:

p(x) = [AyGlx—y)V - (u- Vu)(y). @7
In particular, in dimension d = 3, G(x) = —1/ (47| x]|), so that
1 1 .
= — [T St
P = g [y () ). (28)

It is clear based on this formula that pressure is a non-local quantity.
It is also clear (and reassuring) that the Navier-Stokes equations are
closed equations. They can be written in the form:

oui(x) | coui(x) 1 x; —y; oui(y) duy(y) 9 9
ar T4 ox; _E/]Rg YIx=yIP o oy oxjaw
(2.9)

or in more compact form,

_ L XZy 2
dru+u-Vu= in /]R3 dny_y”3 Tr(Vu)“(y) + vAu.

(2.10)

It is important to keep in mind that pressure acts to maintain
incompressibility.

2.2.2 Vorticity

Another way to eliminate the pressure is to work with vorticity.

Let us define the vector field w = V x u. In coordinates, we have
w; = e,-jkaf uk, where €jjk is the standard, rank 3, totally antisymmetric
Levi-Civita tensor. Taking the curl of the Navier-Stokes equations (2.3)
(hint: with the tensor contraction identity el-]-ke”m = (5]15,2” — (5}”(%,
prove and use the vector identity u x V x u = Vu?/2 —u - Vu), we
obtain the equation governing vorticity dynamics:

diw =V X (u X w) +vAw, (2.11)

Jiw=w-Vu—u-Vw + vAw. (2.12)

In arbitrary dimension d (let us not
be cheap), the Green function of the
Laplacian reads:

Ao In| x| ifd=2

G(X): 2 B ) 4
{Mndlxv . lfdzf, )

2.

where Q; = 27Td/2/F(d/2) is the
surface of the unit sphere in dimension
d,and T(x) = [;*+* e tdt is the
Gamma function.
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The second term on the right-hand side is just advection of vorticity
by the flow, while the first term describes vorticity stretching.

Of course, no miracle occurs: the vorticity equation depends on
the velocity field u. To close it, we need to invert vorticity first, which
again introduces a non-local operator. Nevertheless, it can some-
times be useful to work with vorticity rather than velocity, This is
particularly true in two-dimensional turbulence, where the vorticity
stretching term vanishes, implying that vorticity is a material invari-
ant in 2D inviscid flows.

2.3 The Reynolds number

2.3.1 Naive definition

Two physical effects compete in the Navier-Stokes equations: inertia
(represented by the advection term u - Vu) and viscous dissipation
(represented by the diffusion term vAu). Roughly speaking, turbu-
lence occurs when inertia prevails over viscosity.

A very naive way to measure this competition is to estimate the or-
der of magnitude of the advection and dissipation terms as U?/L and
vU/L?, respectively, where U and L are characteristic velocity and
length scales, respectively. The ratio of these two quantities defines a
non-dimensional number, the Reynolds number:

_ Ut
===

Re (2.13)
Based on the above reasoning, we expect turbulence to occur when
the Reynolds number is large. We can already guess that a large
Reynolds number also means that nonlinearity will play a crucial
part. In fact, we shall see later that the Reynolds number provides
an estimate of the range of scales coupled by the nonlinear term (see
§ 6.1.4).

Note that there is some arbitrariness in the choice of the char-
acteristic velocity U and length scale L; we shall come back to this
problem later (see § 3.1.4 and § 3.1.5).2

2.3.2  Hydrodynamic similarity principle

Let us make the above arguments a little more precise by non-
dimensionalizing the Navier-Stokes equations. We introduce arbi-
trary length and time scales L and T, and denote U = L/T. Now, we
define non-dimensional coordinates:

x =x/L, ' =t/T. (2.14)

2z1111)

2 11y

v g/

Figure 2.2: Flow past a cylinder
as a function of the Reynolds
number (Feynman, Leighton,
and Sands 1965).

> While viscosity v is a property of the
fluid, Re is a property of the flow.



AN INTRODUCTION TO FLUID TURBULENCE

Figure 2.3: The classical ex-
periment of flow in a pipe by
Osborne Reynolds (1883).

Non-dimensional velocity and pressure read:
u(X ) =uXLIT) /U, P, ) =pXLET)/U?,  (2.15)
which satisfy the non-dimensional Navier-Stokes equations:
opu +u' - V'u' = -V'p +Re” AW,
Vi-u =0,

where the Reynolds number is given by Eq. (2.13).

This means that the behavior of solutions of the Navier-Stokes
equations is governed by only one non-dimensional number, the
Reynolds number.

From a more pragmatic point of view, two flows are “the same”

if they have the same Reynolds number. This is referred to as the A caveat is the role of boundary con-
ditions, on which we shall modestly

hydrodynamic similarity principle. It is the basis on which engineers
Y Y yp P & refrain from commenting.

rely to design aircrafts or other vehicles by studying models in wind
tunnels, for instance (prior to the advent of numerical simulations, it
was essentially the only option).

In the limit of large Reynolds number, we would expect to recover
the Euler equations. However, it is far from clear whether solutions of
the Navier-Stokes equations (or their statistical properties) converge
to solutions of the Euler equations in some sense when Re — +oo.

2.4 Symmetries

As is customary in theoretical physics, we shall say that dynamical
equations have a symmetry group G if the space of solutions is in-

variant under the action of G. We refer to a course on group theory
for more formal definitions.

17
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Let us start by listing the symmetries of the Euler equations in an
infinite domain.
Continuous symmetries:

® Space and time translation invariance: (¢,x,u) — (t,x + xo, u) for
xo € R? and (t,x,u) — (t+tg,x,u) for iy € R.

¢ Galilean transforms: (¢,x,u) — (t,x+ tU,u+ U) for U € RY.
¢ Rotations: (¢,x,u) — (£, Rx, Ru) for R € SO(d).

* Scaling transforms: (t,x,u) — (Al’ht,/\x, /\hu) forA € Ry, h €
R.

Discrete symmetries:

e Parity: (t,x,u) — (t, —x, —u).

¢ Time reversal: (t,x,u) —> (—t,x, —u).

With finite viscosity, i.e. for the Navier-Stokes equations, all these
symmetries hold except for time reversal (broken by molecular diffu-
sion) and some scaling transforms (only the i = —1 scaling transfor-
mation group remains).

It should be noted that, except for scale invariance, all the above
symmetries of the hydrodynamic equations correspond to symme-
tries of the underlying microscopic equations.

Note that some of these symmetries may be broken explicitly, for
instance by the domain boundaries, the forcing mechanism, or by
imposing a transverse field (e.g. gravity or magnetic field) on the
flow (see § ??).

In any case, those symmetries are expected to be restored at a
statistical level (i.e. for the invariant measure of the system or cor-
relation functions), away from the mechanisms which break them
(e.g. at small scales). In particular, we shall focus in the following on
stationary, homogeneous and isotropic turbulence, which essentially
means that ensemble averages should be invariant under time and
space translations as well as rotations.

A symmetry which is not restored at a statistical level is referred
to as an anomaly. Perhaps the most famous examples of anomalies
in turbulence are the dissipation anomaly (time reversal invariance is
not restored in the limit v — 0, see § 5.1) or anomalous scaling, i.e.
intermittency (see § 7).
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2.5 Energy budget

E.g. Landau and Lifchitz (1971, § 16).
From the Navier-Stokes equations (2.1), it is easy to obtain the evolu-

tion equations for the kinetic energy density u? = u%:
1 au2 aui ap 0 9 i i
EW - —uﬂ/l]aix] _ulaixl +Vu1‘aixjﬁu +Mif, (2.16)
= —aj[(u2/2 + p)ul] + vuiajajui +u;f’, (2.17)

exploiting incompressibility. The first term in Eq. (2.17) vanishes
upon integration over the whole domain D, using the Gauss theorem
and the no-penetration condition. Integrating by parts, we obtain the
evolution of the global energy E = 1/2 [, u*:

?Tf = Pinj + V§’§ w;du'ds; —v / du;du, (2.18)
oD D

where P;,; = [ u-fis the energy injection rate. The surface integral
again vanishes, and we have

oE

5 = Pinj — € (2.19)

where e = v [}, (Vu)? > 0 is the energy dissipation rate.

Using the classical relation ei]-ke”m = (5;5;” — (5]?”(5,& and incompress-
ibility, we can write 8]-u1-8f u = wiw + ai(u]-ai u;). The surface term
vanishes once more, and we obtain € = 2v(), where () = fD w?/2 is
the enstrophy.

Alternatively, the energy budget can be written by replacing the
velocity gradient tensor d;u; with the strain rate s;; = (9;u; + dju;)/2,
i.e. the symmetric part of the velocity gradient tensor. Indeed, 0;u;
can be decomposed as usual into symmetric and antisymmetric parts,
sijand Q;; = (9;u; — dju;)/2 (often called rotation rate tensor). A
general result is that antisymmetric matrices in 3D are entirely deter-
mined by a vector: in the case of the rotation rate, this vector is just
vorticity: ();; = %eijkwk. It follows that

i ij i Wi
e=v | s/ +v | Q¥ =v | spst+v [ ——. (2.20)
D D D p 2

51
Because we have seen in the previous paragraph that e = 2v(), it
follows that we also have € = 2v [}, sijsij . 2
c, C,
Conservation laws 5
2

In the absence of forcing, inviscid flows (i.e. flows with v = 0) con-
serve energy. This is related to the fact that the Euler equations are Figure 2.4: Helicity measures
reversible, while the Navier-Stokes equations are dissipative. Inviscid the knottedness of vortex

lines (Moffatt and Tsinober
1992).
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flows in 3D conserve another global quantity, helicity H = [pu - w,
related to topological properties (see Frisch (1995, § 2.3), or Moffatt
and Tsinober (1992) for more details). Roughly speaking, helicity
measures parity breaking: H — —H under P, so that parity invariant
flows must have H = 0.

Inviscid 2D flows have an infinity of additional conservation laws:
all the moments of the vorticity field are conserved: % Jpw" =0
(more generally, 4 [ s(w) = 0). This fundamental property has
far-reaching consequences (see § ??).

Note that to derive the conservation
laws, we have assumed that the velocity
field was sufficiently smooth. This

is a reasonable assumption for finite
viscosity (the velocity field needs to
be at least twice differentiable for

the Navier-Stokes equations to make
sense) but not necessarily for the Euler
equations. In principle, singularities
could break energy conservation, as
observed early on by Onsager (1949).
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Statistical Description of Homogeneous Isotropic Turbu-

lence

STATISTICS AND PROBABILITIES are the proper tools to characterize
turbulent flows, since they are fluctuating by nature. In this section,
we introduce basic objects to describe the statistical properties of
turbulent flows (essentially the velocity covariance and the kinetic
energy spectrum), and exploit symmetries to simplify as much as
possible these objects. This approach is quite old*. At the end of the
chapter, we show that the statistics cannot be determined directly
from first principles; in future chapters we will see how they can be
determined empirically and explained phenomenologically.

3.1 Real space statistics

3.1.1  Statistical Symmetries

It is natural to assume that the symmetries of the Navier-Stokes
equations, which may be broken by the forcing, are restored in a
statistical sense, i.e. should be recovered at the level of moments,
correlation functions, PDFs or joint PDFs. For instance, translation
invariance implies that averages of the form (¢ (x1) - - - Pn(xn)) =
(p1(x1 +x) - - - pn(xn +x)) are homogeneous. In particular, this means
that quantities observed at a given point have a space-independent
average: e.g. (1;(x)) does not depend on the position x, the only pos-
sible mean-flow in homogeneous turbulence is trivial. In the sequel,
we shall assume (u;(x)) = 0.

When there is no mean-flow, the typical velocity estimate, used for
instance to compute the Reynolds number, is based on the root mean

square velocity: Upys = (u,-(x)z). It is also the standard deviation
of the turbulent velocity. By homogeneity and isotropy this does not
depend on the choice of x or the index 7 (no summation here).

* Most of the results shown here can al-
ready be found in the book of Batchelor
(1953)
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3.1.2  Local energy budget in homogeneous isotropic turbulence

The global energy budget derived in Sec. 2.5 holds locally in an ho-
mogeneous turbulent flow.

Indeed, let us now consider a random velocity field u solution
of the Navier-Stokes equations. We introduce the ensemble aver-
age (-). Assuming that the statistics are homogeneous, we have

(-} = limy_e v [ dr. Assuming in addition isotropy, we have
(u?) = 3U2,,, where U2 = (u2) = <u§> = (u?). To make it

clear that we are using isotropy, we shall denote as u| the projection
of the velocity field on an arbitrary direction, and write U2, = (uﬁ)
Now, using incompressibility again, we have

39U? ; i)
> o = (wf') —v(puidl). 61

We shall denote
€= v(E)]-uiajui) (3.2)

the energy dissipation rate. Most often, we shall consider stationary
statistics, so that € also coincides with the energy injection rate.

As in section 2.5 it can be expressed using vorticity or strain rate:
e =v(w?) = 2v<sijsif>.
3.1.3 Two-point statistics: velocity covariance tensor

Let us introduce the velocity covariance:

Uij(x,y) = (ui(x)u;(y))- (33)

Assuming homogeneity, Uj; is only a function of r = x —y, and
assuming isotropy, it can be written as (see § B.1)

Uij(r) = F(r)rirj + G(r)d;;. (3-4)

The functions F and G are directly related to the longitudinal and
transverse autocorrelation functions: introducing, as above, the nota-
tions uj=u- r/randu; =u— uHr/r, we have

f(r) = (uy(x)uy(x+r1)), (3.5)
= i), (6)
= F(r)r*+G(r), (7)
and
g(r) = (uL(x)-uy(x+r))/2, (3-8)
= (Ui(r) = f(r))/2, (3.9)
= G(r). (3.10)

Batchelor (1953, § 3.4)

Wy
ul(x+r)Vu(x+r)
uj(x) o uH(;(-i-r)

f and g are even functions: f(—r) =

f(r), g(=r) = g(r).

S

03
[ o2
0.1

o0 L

Autocorrelation function in grid turbu-
lence, after Comte-Bellot and Corrsin

(1971).
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BU,-]-(r)

Incompressibility implies — "
g(r) = f(r) +rf'(r)/2. This shows that the longitudinal autocorrela-
tion function determines the whole velocity covariance.

= 0, which yields after some algebra

Helical flows The form of the velocity covariance tensor given by
Eq. (3.4) holds if we include reflection symmetry in the definition of
isotropy, rather than only rotations. If we do not enforce reflection
symmetry, an additional term arises (see § B.1):

Ujj(r) = F(r)rirj + G(r)d;j + H(r)el-]-krk. (3.11)
The coefficient H(r) contains information about the helical character
of the flow. For instance, it can be easily shown that H(0) = —H/6,
where H = (u - w) is the mean helicity:
H = (eju'd/ut), (3.12)
: 9 ik
= lim EijkaT,jul (x), (3.13)
= lime;; eikliH(r)r (3-14)
r—0 ifk aT] I '
‘ j
= lim 28! [8]H(r) + ZLH' (1)), (3.15)
r—0 / r
= —6H(0). (3.16)

3.1.4 Integral scale

The integral scale is the length scale associated with the largest eddies
in the flow, or in other words, the energy containing scale. It could
be approximated very roughly as the size of the domain (in a finite
domain).

A more precise definition is the autocorrelation scale of velocity:

Ly = /0+°° () (u) (x + 1))

2
urms

dr/ (317)

where we have used the shorthand u)|(x) = u(x) - r/r. By isotropy,
this does not depend on the direction of the r vector.

In decaying turbulence, the integral scale is typically used to es-
timate the Reynolds number and the energy injection rate: Re =
UrmsLo /v,
inite scale (e.g. in many Direct Numerical Simulation (DNS) studies),

€ = U3,/ Lo. In the presence of a forcing acting at a def-

the forcing scale is often preferred.

3.1.5 Taylor scale

We are interested in the universal properties of velocity fluctua-
tions, which should be independent of the forcing mechanism or

Lesieur (2008, § 5.9.6); be careful, our
definition of helicity differs by a factor
2.

Technically, this is the longitudinal
integral scale; using the notations from
§ 3.1.3, we have Ly = [;° f(r)dr/ f(0).
Note that some references (e.g. Pope
2000, p. 197) factor out the RMS energy
Urzms = f(O) = g(o) out of f and g

in the velocity autocorrelation tensor;
in this case the integral scale is simply
the integral of the longitudinal velocity
autocorrelation function f. One could
define similarly a transverse integral
scale Ly = [;° ¢(r)dr/g(0). In isotropic
turbulence, the two are directly related:
the relation between f and g established
in § 3.1.3 yields L = Lo/2.

Taylor (1935)
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the boundaries. It would be useful to construct a Reynolds num-

ber independent of the large scales properties (like, for instance, the
integral scale, which is difficult to estimate precisely in practice). An-
other way to define a characteristic length scale is to combine the rms
velocity and the velocity gradients: let us define the Taylor microscale

A such that )
ugms _ aui
)\2 - aixl (X) 7 (318)

again independently of the index i by isotropy (no summation is

implied).

The Taylor scale is related to the longitudinal autocorrelation func-
tion: it can be easily shown that ((9)u )?) = —f"(0), from which it
follows that A2 = —£(0)/f"(0).

Based on that definition, we can introduce the Reynolds number at

the Taylor microscale:
. UrmsA
= (3.19)

Taylor initially thought that A was the scale of the smallest eddies

R)

dissipating energy. This incorrectly assumes that the velocity at the
Taylor scale is Uyys, i.e. that Ry = Re(A) = 1. In fact, the scale which
plays that role is the Kolmogorov scale.

3.1.6 Energy dissipation rate as a function of the longitudinal velocity
gradient

Computing the energy dissipation rate using Eq. (3.2) requires the
knowledge of all the components of the velocity gradient tensor.
Even with the progress of velocimetry techniques (see lecture by
Mickael Bourgoin), this is difficult to achieve in laboratory exper-
iments. A classical technique is hot-wire measurements, which
gives access only to longitudinal velocity gradients (under the Tay-
lor hypothesis, see § A). But exploiting statistical homogeneity and
isotropy, it should be possible to express the mean energy dissipation
rate as a function of the longitudinal velocity gradient only. Let us do
so by relying on the results of Sec. 3.1.3.

The energy dissipation rate is given by

€= v(E)]-uiajui}, (3.20)
= —vAU}(1) |-, (3-21)
= —v[8f'(r)/r +7f"(r) + 1" (r)] =0, (3-22)
= —15vf"(0), (3-23)
= 151/((8”u“)2>. (3.24)

where we have used the expression of the Laplacian in spherical
coordinates A = r~29,729, and the fact that f is an even function.

'
{

P! 2 r

The parabola osculating the autocor-
relation function f intersects the axis at
r=A f = \/E)\
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The energy dissipation rate can be expressed conveniently in terms
of the Taylor microscale: € = 15vU2,,,/A? (Taylor 1935).

3.1.7 Second-order structure functions

Above we have considered the velocity covariance tensor; another
statistical quantity of interest is the second-order structure function:
Djj(r) = ([ui(x + 1) — u;(x)][u;(x + 1) — u;(x)]). Like in Sec. 3.1.3, this
tensor can be decomposed as follows:
rir;
Djj(r) = D1 (r)é;j + [D)(r) — DL(”)]?;- (3-25)

Choosing the coordinate system such that r is one of the base vectors
(e.g.r = eq), wesee that D (r) = Sa(r) = <(5Hu)2> is the usual
longitudinal structure function (fromi = j = 1)and D, (r) =
((6u)?)/2 the transverse structure function (form i = j = 2 or 3).

Again, the second-order structure function is entirely determined
by the longitudinal velocity autocorrelation function: we first express
the structure function in terms of the velocity covariance tensor:

Dij(r) = ([ui(x + 1) — 1; ()] [uj(x + 1) — u;(x)]), (3.26)
= 2U;(0) — Uyj(r) — Uji(x), (3-27)

which, using U;;(0) = g(0)é;; = f(0)J;; and assuming reflection
symmetry, yields

= 2g(0)d;; — 2Uj(x), (3-28)
= 2[g(0) ~ g1y —20f() gL (3:29)

By identification, we find:

Dy(r) = Sa(r) = 2[f(0) = f(r)], D.r(r) =2[g(0) —g(r)]. (3:30)

From the relation between f and g (due to incompressibility), we
deduce a relation between Dy and D :

D, (r) =Dy(r) + — (3-31)

3.2 Spectral description of homogeneous turbulence

3.2.1  Navier-Stokes equations in Fourier space

25

See for instance Lesieur (2008, chap. 5).

Let us first introduce the Fourier transform operator F:

F : ¢ —> ¢ such that p(k) = (271_[)3 /dx<p(x)e*"k'x, (3-32)
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and the inverse Fourier transform:
F1: ¢ ¢ such that ¢(x) = /dk(ﬁ(k)eik"‘. (3-33)

In particular, the Fourier transform of the velocity fields writes
;(k) = Flu;](k). Note that for the velocity field to be real-valued,
the hermitian condition #;(—k) = #;(k)" should hold. From a com-
putational point of view, it means that we only need to solve the
equations on half the Fourier space.

Taking the Fourier transform of the Navier-Stokes equations (2.3),
we obtain

L —

e (k) + uolu; (k) = —ikip(k) — vk;(k),
kin; (k) = 0.

It should be noted that incompressibility in Fourier space corre-
sponds to the fact that each Fourier coefficient is orthogonal to the
wave vector. Before treating the non-linear term, let us note that the
Fourier transform of pressure can be obtained readily using equa-
tion (2.5): kK*p(k) = ik/ @(k), so that the Navier-Stokes equations
in Fourier space now read:

—

(0 + vk*)i(k) = —Pyj(k)u0'ul (k), (3-34)

with P;j(k) = 6;; — kik;/k*. Now, using incompressibility, ;al\u](k) =
ik’u’lﬁj(k), and because the tensor ;i is symmetric, we can also
symmetrize k' P;;(k): let Piji(k) = k;Py (k) + k;P;j(k), and because the
Fourier transform of a product is a convolution, we can finally write
the closed Navier-Stokes equations in Fourier space:

@+ 1)) = 5P/ (k) [ dpdad(p+q - 10 (p)i(a). 639)

This equation involves the interaction of three modes with wavevec-
tors satisfying k = p + q, referred to as a triad.

3.2.2  Scale-by-scale energy budget

As an aside, let us note that writing the Navier-Stokes equations

in Fourier space allows us to derive easily a scale-by-scale energy
budget: from the Parseval-Plancherel theorem, energy, enstrophy and
helicity now read

-1 / dki/ (k)i (k)" (3.36)

2
0= %/dkd)f(k)dfj(k)* - %/dkkzﬁj(k)ﬁj(k)*, (3-37)

H= % / Ak ();()" = e / Akl ()" (K)*, (.38

As usual with Fourier transforms,
alternative normalizations may be
chosen.

P;i(k) is actually the Fourier transform
of the operator P : u — u — VA1V .
w (Pu);(k) = Py(k)i/(k). As can

be checked explicitly, P is a projector
(P2 = P, or P;(k)P](k) = Py(k)) on
the space of divergence-free velocity
fields (V - Pu = 0, or k'P;;(k) = 0).

q

Figure 3.1: An example of a
triadic interaction.
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where € is the standard, rank 3, totally antisymmetric, Levi-Civita
tensor. Let us now define the cumulative energy spectrum E- (k) (resp.
enstrophy spectrum Q. (k)) by restricting the integration above to the
ball of radius k: ||k|| < k, and the energy spectrum E(k) = dE(k)/dk.
E- (k) measures the kinetic energy at wave numbers smaller than k,
i.e. scales larger than 1/k. One could define similarly the enstrophy
spectrum Q(k) = dQ (k)/dk; as is easily checked, Q(k) = k?E(k).
From equation (3.35), ading a forcing term f, it is straightforward to
obtain the scale-by-scale energy budget:

0tE< (k) = —TI(k) — 2vQ< (k) + F<(k), (3-39)
and
(0f + 2vk?)E(k) = —oI1(k) + F(k), (3.40)
with

=5 [ aP09809° [ dpdasip-+a - ki (pi(a)

(3-41)

There are three contributions to the scale-by-scale energy budget: en-

ergy injection by the forcing, viscous dissipation, and inertial transfer.

When I1(k) > 0, the energy is transferred, by the nonlinear term,

on average from wave numbers smaller than k (i.e. scales larger than

1/k) to wave numbers larger than k (i.e. scales smaller than 1/k). This

is called a direct energy transfer. When I1(k) < 0, the converse is true.

This is called an inverse energy transfer.

Note that by definition, IT(0) = 0, but we also have limy_, , ,, II(k) =
0ie. [;"9;I1(k)dk = O: the nonlinear term only acts to redistribute
energy across scales, but does not have any net effect on the global
budget, as seen above (§ 2.5).

3.2.3 Autocovariance in Fourier space: energy and helicity spectra

We introduce the Fourier transform of the velocity field:

1 )
i;(k) = /dxu' x)e kX (3.42)
i(k) 20 i(x) 3.4
and we consider the covariance tensor for the Fourier coefficients:
R N 1 ikex—ip-
(1;(k)1;(p)) = —— / (ui(x)uj(y))e ** PV dxdy, (3-43)
(2m)
o7 [ e [ et
= drl;; (r)e P [ dxe {(ktP)x )
20" ij (1) (3-44)

which, using [ dxe ** = (271)36(k), yields

= 5(k+p)l:[i]‘(p). (3-45)

27
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The Dirac delta is the signature of homogeneity: translations in real
space corresponds to multiplication by a phase factor in Fourier
space. The average of products of Fourier coefficients should be
invariant under such transforms, i.e. the phase factors should cancel
out. In general, this means that a product of the form (#;, (ki) - - - 4;, (k)
will vanish unless ki + - - - + k; = 0.

Like in the above, the tensor Clij(k) can be decomposed in the
following manner (we treat directly the general case of a flow with
nonzero mean helicity, i.e. without enforcing reflection symmetry):

A

U;;(k) = A(k);; + B(k)kik; + C(k)ejk'. (3.46)

The incompressibility condition in Fourier space reads k'i;(k) = 0;
taking the scalar product with the velocity covariance in Fourier
space yields kiaij(k) = 0 = A(k)kj + B(k)k?kj, from which we obtain

Uji(k) = A(k)P;j(k) + C(k)es k!, (3-47)

. kik; o . .
with P;j(k) = 6;j — 47" The mean kinetic energy per unit mass is E =

ui(0)/2 = [A(k)dk = 0+°° 47tk? A(k)dk. In other words, the trace
part of the tensor, A(k), is related to E(k) the kinetic energy density

in Fourier space integrated over a sphere of radius k, often simply
called “the energy spectrum” and defined such that E = [;"* E(k)dk,
by the relation E (k) = 47tk?A (k).

The traceless part, on the other hand, is related to the mean helic-
ity (per unit mass):

_ lime il
H=(u w)= }g%el]la—rjll (1), (3.48)
= i€jj / KU (k)dk, (3-49)
= —2id7" / Kk C(k)dk, (3-50)
—+o0
s / 47k C(K)dk, (3.51)
0

so that H(k) = —8ik*C(k). Finally, the velocity covariance tensor in
Fourier space reads:

. E(k CH(k
Uij(k) = ﬁﬂj(k) + Z87§k2 ek’ (3.52)

We note that in general, flij(k) is a Hermitian tensor: iji(k) =
I:Iij(k)* ; it is symmetric only if there is no mean helicity (in that,
case, it takes real values).
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3.3 Turbulence, an out-of-equilibrium phenomenon: failure of equi-
librium statistical mechanics

Because inviscid flows form a Hamiltonian system, a very natural
question to ask is how well does equilibrium statistical mechanics
describe the statistics of turbulent velocity fields? The idea is simply
to introduce a measure on phase space which is proportional to the
Lebesgue measure, and whose density depends only on conserved
quantities (e.g. the microcanonical measure which is uniform on
surfaces of constant energy) or their associated Lagrange multiplier
(e.g. the canonical measure).
Let us first note that unlike the systems considered in undergrad- ui(x) = Y_ (k)
uate statistical physics courses, we are dealing here with classical

29

k
1 1 N i
fields, i.e. an infinite dimensional phase space. This implies con- E=35 / u? = 5 21 (1) k),
k
1

siderable technical difficulties. Let us therefore consider a finite-
dimensional approximation of the system: a typical approach is P () h) = Ee_ﬁE’
Galerkin truncation, which retains only a finite number of Fourier zZ=T] 2
modes (hoping that we can take the limit of an infinite number of
modes later). It has been shown in this context (Lee 1952) that the (E) = TR
Lebesgue measure is invariant under the Hamiltonian flow, i.e. the
Liouville theorem holds, and the classical equilibrium measure are
indeed invariant measures. As noted early on by Lee (1952), the E= / E(k)dk,
canonical measure corresponds to energy equipartition, which leads

to an energy spectrum of the form E(k) « k?: the energy concentrates (E(K)) B
in the small scales. If we let the cutoff wave-number tend to infin-
ity, we obtain an infinite energy. This ultraviolet catastrophe, typical
of classical fields, is known as the Rayleigh-Jeans paradox (Pomeau
1995).

Taking helicity into account does not change fundamentally the
conclusions (Kraichnan 1973), unless specific constraints are en-
forced (Herbert 2014).

2D flows, on the other hand, because of their different conserva-
tion laws (§ 2.5), can be described to some extent using equilibrium
statistical mechanics methods (see § ?? or Eyink and Sreenivasan
(2006), Bouchet and Venaille (2012), and Herbert (2015) for reviews).

3.4 Turbulence, a non-linear phenomenon: The closure problem

We have just seen that turbulence is an out-of-equilibrium statistical

physics problem. As a consequence, the dynamics cannot be dis-

missed?. Let us go back to the Navier-Stokes equations and try to * An interesting read in this respect
deduce the statistical properties of the velocity field from there. is Ruelle (2004).
Let us assume that the statistics are homogeneous and introduce

the Fourier transform of the velocity covariance l:li]-(k). Using the
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Navier-Stokes equations in Fourier space (3.35), we easily obtain the

equation governing the dynamics of ﬁlij: The idea may be conveyed simply by
denoting in a symbolic manner the
i i Navier-Stokes equations as Lu = uu,

(at + Zsz)aij(k) = — E'Pl-lm (k) /dPlem(_k/ p) — E,lem (—k) /deilm(k, pz))ere L is a linear operator, so that:

- (53) Ly (u) = (un)
with Ty (k,p) = (271) 6 [ drdr’ (u; (x)uj(x + 1)u(x + r'))e ikr—ipr Lo (uu) = (uuu)
In other words, the equations governing the evolution of the second Ly (uuu) = (uuuu)

order statistics depend on the third order statistics. If we were to

write the equations for the third-order tensor Tjj, it would involve In general the linear operators on the
left hand side are not all the same; they
do in the inviscid case where they boil
sure of the hierarchy of momentum for the Navier-Stokes equations. down to the time derivative.

the fourth-order statistics, and so on. This is the problem of clo-

Many strategies have been developed to close this hierarchy, but they
all contain some degree of arbitrariness (see § 9 or Orszag (1970) for
more details).



4
Simulation and Modelling

BUILDING A STATISTICAL THEORY OF TURBULENCE from the ground
up (i.e. starting from the Navier-Stokes equations) is a very difficult
task, as we have just seen. We will therefore need to rely on some
empirical understanding of turbulence. This can be achieved essen-
tially by two means: laboratory experiments and numerical simula-
tions. In this chapter, I explain the basic principles of direct numer-
ical simulations, before touching briefly upon turbulence modeling
techniques (§ 4.2), used in practical applications.

4.1 Direct Numerical Simulations

Arguably the most natural approach to numerical simulation of tur-
bulent flows is to solve directly the Navier-Stokes equations. As

we shall see, this requires to resolve the entire range of nonlinearly-
coupled scales. For a long time, this requirement led to prohibitive
numerical costs, and Direct Numerical Simulation (DNS) remained
out-of-reach (in other words, DNS were restricted to very low Reynolds
numbers). Technological progress (powerful computers, Fast Fourier
Transform algorithm®, and later, massive parallelization) brought
DNS into the realm of possibilities. Here, I shall describe briefly the
principle of pseudospectral methods (§ 3.2.1), which are the most ef-
ficient numerical methods for DNS of the Navier-Stokes equations.
Notwithstanding, these methods still fall short of industry require-
ments, which still recourse to turbulence modelling (briefly touched
upon in § 4.2). Besides, practical applications often impose domain
geometries incompatible with pseudospectral methods: for the sake
of brevity, we leave aside here all other types of discretizations (finite
differences, finite elements, Lattice-Boltzmann methods,...)?.

A reference for this section is Pope
(2000, chap. 9).

Please note that the goal of this sec-
tion is not to teach you how to run
numerical simulations of turbulent
flows in practice, but rather to address
the fundamental question: “Can tur-
bulence be solved by brute-force? Is it
a computational problem or a physics
problem?”.

* Cooley and Tukey (1965). The basic
idea of the algorithm was in fact known
to Gauss.

*See e.g. Hinch (2020) and Durran
(2010).
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4.1.1  Pseudospectral methods

The principle For simplicity, let us assume that we are considering

a cubic domain of linear length L with periodic boundary condi-
tions in all directions? (i.e. a domain with the topology of a flat torus
R3/(LZ3)), so that the set of wave vectors (pedantically the Pontrya-
gin dual of the torus) is simply 27t/ LZ3. Then, all the integrals above
become discrete sums.

In practical computations, the equations must of course be dis-
cretized to be solved by a computer: let us introduce a truncation in
spectral space and retain only N wave vectors in each direction.

A pure spectral method would compute explicitly the convolution
product in (3.35). However, because Fast Fourier Transforms are
relatively cheap, it is much more efficient to compute the non-linear
term in real space, and then its Fourier transform. In other words,
pseudospectral methods (Orszag and Patterson 1972; Rogallo 1981)
actually solve the equation:

@1+ vR)is(k) =~ P (O FIF ] F k). ()

Note that different implementations may actually compute differently
the nonlinear term (depending on at which point they compute the
derivative). The important point is that derivatives are computed in
Fourier space and products in real space.

As an illustration, assuming there is no better way of evaluating
the convolution product than the naive one, the number of operations
required at each time step is O(N°®). By contrast, the complexity of
the Fast Fourier Transform algorithm is O(N®In N).

Some more details The discretization introduced above is equivalent
to considering a regular grid on the torus with N grid points in each
direction. The grid points are described by vectors x = nyL/Ney +
nyL/Ney + n;L/Ne; (you can think of it as a Bravais lattice if you
wish), with integer coefficients 0 < ny,n,,n; < N. Equivalently, the
wave vectors are k = ky27t/Ley + ky27/Le, + k;271/ Le;. Instead of
the Fourier transform F we use the Discrete Fourier Transform:

(k) = Y ui(x)e ™k, (4-2)

ie.

N—-1 N-1 N-1 2in ‘ ‘ ‘
ﬁi(erky/kz) = Z Z Z Mi(nx/ny/nz)eiﬁ(nx xFhyky iz Z)- (4-3)

nxy=0ny=0n;=0

It is clear that the Discrete Fourier Transform is N-periodic in each
index. In other words, the set of wave vectors described above can be

3 See Boyd (2001) for a more general
presentation.
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translated by any vector with coordinates multiple of 271/L in any
direction. This means that the first half of the Fourier coefficients
correspond to positive wave numbers and the second half to nega-
tive wave numbers. The largest wave number represented in each
direction is kmax = N/2 x 2t/L = N7/ L.

In principle, ;(ky, ky, k-) should be an array of N*> complex num-
bers. This would occupy twice as much memory as in real space.
Indeed, because of the Hermitian symmetry (4;(N — ky, N — ky, N —
ky) = di(kx, ky, k;)™), one may choose arbitrarily a dimension (say
the z dimension) and store only half the Fourier coefficients in this
direction (i.e. 0 < k; < N/2). This is still more than would be strictly
necessary.

The resolution is strongly linked to the choice of viscosity. The
basic idea is that the smallest resolved scales must be smaller than
the scales at which dissipation occurs. This can be achieved by using
the Kolmogorov phenomenology (see § 6) and enforcing kmax#y > 1
(actually, for the small scales to be well-resolved, it should be slightly
larger), i.e. v > €/3ky3. € is unknown in principle, but in practice
we can more or less control its value. Clearly, higher resolutions give
access to smaller viscosities, i.e. higher Reynolds numbers. Indeed,
the above inequality gives an estimate of the resolution required to

reach a given Reynolds number: N ~ Re%/%.

t chips (1971-2016) R

The time-step also depends on the resolution through the Courant-
Friedrichs-Lewy (CFL) condition: in physical terms, the time-step
should be smaller than the smallest eddy turnover time £/U ~
1/ (Ukmax), with U ~ 1, and the viscous time 1/ (vk?

ax)- In practice,

Courant numbers much smaller than unity are used: Urmsdt/dx ~
0.05. Hence, one should halve the time-step when doubling the res-
olution. This means that the computational cost* for doubling the
Reynolds number increases roughly by a factor 8.

To give ideas of state-of-the-art resolutions, record-breaking® DNS
were for instance 40963, R, = 1200 (Kaneda et al. 2003) or 81923,
R) = 1300 (Yeung, Zhai, and Sreenivasan 2015).

Figure 4.1: Moore’s law (left)
and time in days required to
perform DNS on a gigaflop
computer (typical commer-
cial computer of the 2000s)

as a function of the Reynolds
number (Pope 2000, Fig. 9.3).

4For a total integration time T, the
number of time steps increases linearly
with resolution N — it can be expressed
as NTy/ Ny for a reference resolution
Np — s0, assuming the computational
cost of one time step is dominated by
the FFT, the total computational cost is
C = N(To/No)N3InN = O(N*InN) =
O(Re® InRe).

5In 2019 a new record was set at N =
12288.
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The time elapsed between the two simulations slightly underper-
forms a crude estimate based on a naive interpretation of Moore’s

law, according to which resolution should double every 6 years

(Fig. 4.1). This is essentially due to the fact that the later run better

resolved the small-scales. Note that simulations of this kind (say

N = 10000), using double precision (64-bit floating point numbers,
i.e. 8 bytes), require about 8TB of memory to store each component of

the velocity field at each time.

@ E() D)

It should be noted that much of the computational effort is actu-
ally dedicated to resolving the dissipation range (Fig. 4.2): typically

insignificant

dissipation range

181> Kp,

43
@(Erwergy-ccntammg range
/ and inertial subrange

o1 1K1 <xp

this represents more than 99% of the modes.

Aliasing errors  The multiplication required to compute the non-

linear term of the Navier-Stokes equations introduces modes with

wave number larger than kmax (Fig. 4.3).

Because of the discretizations, we cannot distinguish between

wave numbers k and k + 2Zkmax. The Fourier mode k computed

by the Discrete Fourier Transform is therefore the sum of all the

Fourier coefficients with wave numbers differing from k by an integer
multiple of 2kmax (this is well explained in Pope (2000, Appendix F)).

This phenomenon is known as aliasing.

A simple strategy to remove aliasing errors is to use a larger do-
main. For instance, for actually resolving wave numbers up to kmax,
we may represent wave numbers up to 2kmax (i.e. double the resolu-
tion) and enforce 7;(k) = 0 for kmax < k < 2kmax. This implies an
eightfold increase of the computational cost. Because this additional
computational burden is unaffordable, more efficient dealiasing tech-

niques have been developed (e.g. Patterson and Orszag 1971).

Hyperviscosity A cheap way to reduce the size of the dissipative

range (and therefore increase the inertial range) is to replace the

Figure 4.2: Left: sketch of
the energy and dissipation
spectra. Right: Solution do-
main in wavenumber space
for a pseudo-spectral DNS of
homogeneous isotropic turbu-
lence (Pope 2000, Figs. 6.28 &

9-4).

Figure 4.3: The deceptively
simple principle of the alias-
ing phenomenon: sin(x)?2

(1 —cos(2x))/2.
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Laplacian A in the Navier-Stokes equations by some power of it:
—(—=A)P. In Fourier space, it amount to replacing the vk?#;(k) term
by vyk?P1i;(k). For p = 1, we have regular dissipation; otherwise,
we call this rudimentary turbulence model hyperviscosity (Borue and
Orszag 1995).

4.2 Turbulence modelling

The philosophy of DNS is to resolve explicitly all the relevant scales.
An alternative is to model the unresolved scales. This requires to
define properly the dynamical fields at different scales: this is what
we do in § 4.2.1.

4.2.1 Filtered velocity field

Let us introduce a filtering function G(x), typically with compact
support or with a fast decay (Fig. 4.4).

We assume that G is normalized: [ dxG(x)
G(x) = G(||x]|), with a slight abuse of notation.

Now let us define the dilatation Gy(x) = G(x/¢)/3, and the
filtered velocity field (a convolution with the kernel Gy)

uf (x) = (Gg*u;) (x), (4.4)
ui(y) = / dyGo(y)ui(x +y). (45)

= 1 and isotropic:

Note thatas ¢ — 0,

x) = / 203G, (Lz)ui(x + lz) = / d2G (2)u;(x + €z) — u;(x) / d2G(z)
(

4.6)
In general, the filtering operator is not a projector. If we decompose
the velocity fields into its filtered and residual parts: u;(x) = uf(x) +
u!(x), then in general G, * u} # 0.

4.2.2  Filtered Navier-Stokes equations

It is clear that the filtering operator commutes with the time deriva-
tive and (using integration by part) also with spatial derivatives.
The filtered Navier-Stokes equations read

el + Gy x (ujuj) = —3;p’ +vd9ul + £, 4-7)
d'ul =0, (4.8)
ie.
duf +udluf = —d;p’ +vadul + ff =T, (4.9)
dul =0, (4.10)

— G(x)=e"/(2m)*?
— G(x)=3xp(2)/(4m)

Figure 4.4: Example of a filter-
ing function.

= ui(x).

Because the filtering operator is a con-
volution, its action in Fourier space is
simply a product: 1f (k) = G, (k)#;(k),
with Gy(k) = [ Gy(x)e"*dx the
transfer function. It follows that the
filtered energy spectrum is simply

E¢(k) = |G (k) PE(k).

diuf (x) =

i (G[*aiuj)(x).

In general Gy x (u;u) = (uiu]-)[ # ufuf!
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with the residual stress tensor or subgrid stress tensor

T = (uiu]-)é —u

14
ij i

uf (4.11)

These equations are not closed equations for the filtered velocity
field.

4.2.3 Scale-by-scale energy budget

Let us use filtering to provide an alternative view of the scale-by-
scale energy budget. We define E~ (¢) = (u{u'’) /2 the kinetic energy
at scales larger than /.

Using the filtered Navier-Stokes equations (4.9) and incompress-
ibility, we obtain

OE~ (£) = —TI(¢) 4+ v{ut Au'y + (flu'®, (4.12)

with

T1(¢) = (u'dltf) = —(s¥'x)). (4.13) S =

Again, there are three contributions to the scale-by-scale energy
budget: energy injection by the forcing, viscous dissipation, and
inertial transfer. I1 is the energy flux across scales. It corresponds to
the work exerted by scales larger than ¢ onto scales smaller than /.
When IT(¢) > 0, the energy is transferred, by the nonlinear term,
on average from scales larger than / to scales smaller than ¢. This is
called a direct energy transfer. When I1(¢) < 0, the converse is true.
This is called an inverse energy transfer.

4.2.4 Large-eddy simulations

The idea is to close the equations (4.9) by prescribing Tf; as a func-
tion of uf. This amounts to modelling the unresolved scales; the goal
is essentially to regularize the large-scale field, i.e. dissipate energy.
Because turbulence efficiently dissipate energy by transferring it to
smaller (unresolved) scales where viscous dissipation can act effi-
ciently, the turbulence model should mimick this effect by dissipating
energy more efficiently than viscosity would do at the resolved scale.

It is therefore a natural idea that the divergence of the subgrid
stress should act like an enhanced viscosity. This can be achieved by
taking Tf} proportional to the filtered rate of strain:

T = —20.S}; (414)

The coefficient v, is called eddy viscosity. A classical choice is the
Smagorinsky model: v, = (Csl)?, /ZSijW > 0. In this model, the rate
of transfer of energy to the subgrid scales is IT(¢) = 2v, Tr(S*?) > 0.

9; u§+a/-uf
— -
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More elaborate models exist: see for instance Pope (2000, chap.
13).

4.3 Reynolds-averaged equations

Above we have separated the velocity field into two components
using filtering in real space. Only a coarse-grained version of the
velocity field, describing the large-scale eddies, is resolved in numer-
ical simulations, while the effect of small-scale eddies are modeled.
Alternatively, one may separate the flow into a statistical average

U; = (u;) and fluctuations: u! = u; — U;. ® This decomposition is 6 Assuming that ensemble averages may
be estimated as time averages, one may

known as Reynolds decomposition. The equation for the mean-flow is 4 >
also interpret the mean-flow itself as

easily deduced from the Navier-Stokes equations: the time average velocity. In that case,
the time derivative of the mean-flow
oU; + LI]a]lll = —0;P + Vaja] u; — a]<1/l;1/t;> (4.15) vanishes.

This equation is known as the Reynolds-averaged Navier-Stokes equation.
We observe that the mean-flow satisfies an equation very close to

the Navier-Stokes equations themselves, except for the addition of a
term in the right-hand side, (the opposite of) the divergence of the
so-called Reynolds stresses (i} u}) This tensor encodes the effect of the
turbulent fluctuations on the mean-flow. Its trace corresponds to the
Turbulent Kinetic Energy (TKE), k = (ugui/> /2. We also introduce
the deviatoric part, ajj = (uju) — 2kd;j/3, which is the part actually
transporting momentum: o/ (u/! u;> =a ajj — %aik and the second term
can be absorbed into a modified mean pressure. When the flow is
irrotational, the Reynolds stresses have no effect on the mean-flow.
Indeed, since the vorticity vanishes, we have <u§(8jui/ -0 u;)> =0=
djk — ai<u§u}>. Hence,

Bi(ufu;) = 9jk, (4.16)

and the whole Reynolds stress divergence can be absorbed into a
modified mean pressure. This relation is known as the Corrsin-Kistler
equation.
Unfortunately the equations for the mean-flow are not closed: to
compute the mean-flow, one also needs to compute the Reynolds
stresses. Many models have been developed. The simplest mdoels
are based on the concept of turbulent viscosity: it is assumed that the
deviatoric component of the Reynolds stresses is proportional to the
mean strain rate”: ajj = _ZVT<Sij> = —ZVT(a,‘u]‘ + ajui). In that 7 See Pope (2000, Chap. 10) for a discus-
case, the Reynolds-averaged Navier-Stokes equations reduces to the sion of this hypothesis.
standard Navier-Stokes equations with a modified effective viscosity
Vers = v+ vr. Typically the turbulent viscosity vy is much larger than
the molecular viscosity v.
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The most crude models assume that the turbulent viscosity is
constant in the homogeneous directions of the flow. If the mean-flow

varies in the direction x for instance, the turbulent viscosity is given

U(x)d(x)
Rr

direction of the mean-flow and Rt a constant chosen empirically for

by vr = where §(x) is a characteristic length scale in the
the flow of interest. The main problem of this approach is that its
applicability is limited to well-known flows.

However, the turbulent viscosity needs not be a constant. Below
we present briefly some of the classical models to estimate it.

4.3.1  Mixing-length theory

This model assumes that a space-dependent length scale ¢,,(x) char-
acteristic of momentum mixing by turbulence is known, and deter-
mines the turbulent viscosity as vy = £,ux = ¢2,|VU|.

4.3.2  k-€ model

The idea is to estimate the characteristic velocity for the turbulent vis-
cosity using kinetic turbulent energy rather than the velocity gradient
as in the mixing-length model: vy = cf,;v/k. While the mixing-length
£y, is still specified, the kinetic energy should be computed dynami-
cally.



5
Empirical Characterization of Homogeneous Isotropic

Turbulence

5.1 Anomalous dissipation

As the viscosity goes to zero (i.e. as the Reynolds number goes to
infinity), the energy dissipation € goes to a finite constant:

lim lim €,(t) = e > 0. (5.1)

v—0t—00

This limit can only depend on the macroscopic properties of the flow.
Dimensional analysis yields the formula known as the Taylor estimate
for the energy dissipation rate:

us
€ = T . (52)
As shall become clear very soon,
the Taylor estimate may be seen as
a measure of the magnitude of the
nonlinear term in the energy budget

T — T 20 u-(u-V)u

Figure 5.1 shows measurements of the energy dissipation rate as

* Figure 5.1: Energy dissipa-
4T\ T tion rate as a function of the
2or l { 1 el Reynolds number at the Taylor
I 1*. 1 x x microscale R, in grid turbu-
wof- cﬁ o ve el v R e ’ . lence experiments (left, figure
T 350 50 e from Sreenivasan (1984)) and

Ry Ry

DNS (right, D = eL/U3, fig-
ure from Ishihara, Gotoh, and

a function of the Reynolds number (at the Taylor microscale, see Kaneda (2000)).

§ 3.1.5) for various experiments and DNS runs.

We know from equation (3.24) that e, o v{(9)u )?): a direct corol-
lary of anomalous dissipation is that the velocity gradients become
arbitrarily large in the limit of vanishing viscosity. In other words, we
expect the velocity field to become everywhere non-differentiable in
this limit. Similarly, using that in a stationary state e, = 2vQ2 (§ 2.5)
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we see that the enstrophy should also diverge in this limit, i.e. rapid
vortex stretching should take place.

As we have seen in the introduction (§ 1.2), this result has dra-
matic practical consequences: it is equivalent to the drag force acting
on an object moving through a fluid increasing quadratically with the
object velocity, instead of linearly for low velocities.

5.2 2/3 law in real space: second-order structure function

Let us define the longitudinal velocity increment:
ouj(x,r) = [u(x+1) —u(x)] -1/, (5-3)

and the longitudinal structure functions:

Su(r) = ((ou(x,1))"). (54)

The structure function is independent of x because of the homogene-
ity hypothesis and independent of the orientation of the separation

vector r because of the isotropy hypothesis. The longitudinal velocity
increment Ju can be interpreted as a characteristic velocity at scale r.

sr 1 Figure 5.2: Second-order struc-
e ture function obtained in the
S ar g Q@/,“Sf,ﬁf"}” T time domain (translated to
s 5 - the space domain using the

Taylor hypothesis, see § A) in
the Modane wind tunnel of
} ‘ ] ONERA. Figure reproduced

L '
0.5 1 1. 2.5 3

% ogt from the book of Frisch (1995,

Fig. 5.1), original data from
Experimental results (hence, at large but finite Reynolds number), Y. Gagne and E. Hopfinger.

such as the one shown in Fig. 5.2, indicate that there exists a range

of scales r such that the second-order longitudinal structure function

behaves like a power law:

Sa(r) ~ 1?3, (55)

This relation holds in a range of scales called the inertial range:

n K r < L (where 7 is the Kolmogorov scale, see Eq. 6.1), i.e. for
scales which feel neither the effect of molecular viscosity, neither the
boundaries of the domain.

In the limit of vanishing viscosity, the Kolmogorov scale goes to
zero, and the 2/3-law is consistent with the above remark (§ 5.1)
that singularities develop in the velocity field: it essentially says that
5u‘| ~ /3 and aHuH = lim,_,q 5uH /r, which diverges.
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5.3 2/3 law in Fourier space: the energy spectrum

The longitudinal structure function S,(r) is a second order statistical
quantity for velocity; intuitively we expect it to be related to the
energy spectrum. Hence, the 2/3-law should have a counterpart in
spectral space.

5.3.1 A rough argument

Let us consider an eddy of size r, or equivalently scale k = r~1,

with typical kinetic energy S, (), or equivalently kE(k). Then the 2/3
law corresponds to an energy spectrum E(k) ~ k~5/3. The k=5/3

100 e :
> 10° ;' Eeen
= 107! ;, 0.1
2 102F i
E 10° & 0.01
E 10k g
S 10 - 0.001 ¢
8 106k g
2 107F 0.0001 |
Mot :
(U R R T R 10° T A e
10! 1 10 102 10° 10* 100 1 10 100
Frequency (s K
spectrum is ubiquitous in 3D turbulence. Examples from the ONERA Figure 5.3: Energy spectrum
S1 wind tunnel (in the time domain, which can be related to spatial in a wind tunnel (left, Frisch
scales using the Taylor hypothesis, see § A) and from a DNS are shown (1995)) and in a DNS of homo-
in Fig. 5.3. Read § 5.1 in the book by Frisch (1995) for more examples. geneous isotropic turbulence in

a box (right, Chen et al. (2003)).
5.3.2 A more precise relation

Let us first note that the second-order structure function S(r) can
be related to the longitudinal velocity autocorrelation function f
introduced in Eq. (3.5):

Sa(r) = 2[f(0) = f(r)], (5.6)
and therefore also to the velocity covariance tensor:
j 3 r
U (r) = 3f(r) +1f'(r) = 8Ups = 552(r) = 585(r).- (57)
The energy spectrum is also related to the trace of the velocity covari-

ance Uj;(r), through the relation E(k) = 27tk* Ul (k). Let us simplify
this relation by using the fact that the trace of the velocity covariance
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tensor depends only on the norm of the vector:

~ 1 o
= [ e (58)
_ 1 /n sin 6d6 /+oo r2drU (r)e~ikreos?
(270)? Jo 0 ’ '
(5.9)
2 Foo ro. i
= (271)2/0 % sin(kr)U; (r)dr, (5.10)
from which it follows that
1 [t ;
E(k) = ;/0 kr sin(kr)Uj (r)dr, (5.11)
and conversely,
ui(r too sin(kr
'2( ) = /0 E(k) k(r )dk. (5.12)

As a consequence, for r < L,

12 i%[r?’sz(r)] _ /0 P pge S g / ™ E o S g

27 TMS g2 kr 2 kr
=E ~1
~E
(5.13)

Assuming that S,(r) = Ar* and E(k) = BkP, we obtain

+o0

23 Z & Ar = BBl /2 uP~sinudu, (5.14)
T

which yields the relationship « = —p — 1, provided that the integral

depends weakly on r.

5.4 Velocity PDF

The PDF of the one-point velocity u;(x) is found experimentally to be
close to Gaussian (see FIg. 5.4). This result has been known for a very
long time (Simmons and Salter 1934); this is remarkable, given that
no digital treatment of experimental data was available at the time.

On the other hand, the joint distribution of the velocity at multiple
points u; (X1),...,u;,(xx) is not a normal distribution. Fig. 5.5 shows
for instance that the flatness (du (r)4>/<5u“ (r)?)2 is close to 3 only
when the velocity at the two points becomes statistically indepen-
dent, and that the skewness (du | (r)%)/ (Ou (r)?)3/2 remains finite all
the way to the integral scale.

An argument relating the second order
structure function and the energy spec-
trum, similar to the one presented here,
can be found in the book by Lesieur
(2008, § 6.4.5), although the book pro-
ceeds in a different order. Yet another
formulation of the same relation can be
found in Frisch (1995, § 4.5).

Batchelor (1953, § 8)
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P X Measurements
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Figure 5.4: PDF of the velocity
at one point in grid turbu-
lence (Batchelor 1953).
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The statistical properties at small distances can also be studied by

considering the longitudinal velocity gradient i . Its PDF is not

Gaussian, as Fig. 5.6 reveals. In particular, it has negative skewness

(negative velocity gradients are more probable than positive velocity

gradients), as shown in Fig. 5.7. We will further study the statistical

properties of velocity increments (and in particular, the deviations

from Gaussianity) in the chapter about intermittency (Chap. 7).

Figure 5.5: Flatness (left) and
skewness (right, Stewart (1951))
of the velocity increment in grid
turbulence (Batchelor 1953).
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Figure 5.6: PDF of the lon-

o Measurements gitudinal velocity gradient in

(x/M=25, UM/>=3-8x10")
grid turbulence (top, Batche-

— - Normal distribution with lor (1953)),in the atmospheric

the same standard deviation boundary layer (middle, z =
(Quq/9x1)/ {(9u1 /9x1)?)1/2, VanAtta1gyo),
and in DNS (bottom, Ishihara,

Gotoh, and Kaneda (2009).
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6

Kolmogorov theory of fully developed turbulence

THIS IS THE CORE CHAPTER of this course, which delves into the
most important results of classical turbulence theory.

6.1 Phenomenology

6.1.1  Kolmogorov theory (1941)

Kolmogorov scale  There is only one way to build a length scale based
on viscosity v and energy dissipation rate e: it is the Kolmogorov scale

) <V:)1/4, o0

As we will show later, the Kolmogorov scale can be interpreted as the
scale at which viscous dissipation balances inertia:

u-(u-V)u~vu-Au,

i.e. the scale at which the Reynolds number is of order one: Ur/v ~
1.

First Kolmogorov assumption of universality: At large but finite Reynolds
numbers, all the small-scale statistical properties are uniquely and
universally determined by the scale r, the average energy dissipation
rate € and the viscosity v (or equivalently, r, € and 7).

Second Kolmogorov assumption of universality: In the limit of infi-
nite Reynolds numbers, all the small-scale statistical properties are
uniquely and universally determined by the scale r and the average
energy dissipation rate €.

The main reference for this chapter is
the book by Frisch (1995) (chapter 6).

Phenomenology is an approach of a
physical problem which does not rely
on fundamental principles (such as
momentum conservation) but rather

on a qualitative understanding of the
phenomenon, using for instance dimen-
sional analysis, scaling hypotheses or
other physical arguments.

Figure 6.1: Andrey Nikolaevich
Kolmogorov (1903-1987).
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Energy spectrum By a simple dimensional argument, it follows from
the first universality assumption that there exists a universal function
F such that the energy spectrum reads:

E(k) = F(kn)e?/3k5/3. (6.2)

In agreement with the second universality assumption, the function
F has a finite limit for # — 0, referred to as the Kolmogorov constant
and denoted Ckg. It should take a universal value (independent of the
flow), and experiments report Cx ~ 1.5.

Structure functions Similarly, under the first universality assumption,
dimensional analysis gives the form of the structure function of order
n:

Su(r) = F, (g) (er)"/3, (6.3)

with F, a universal function. This becomes, in the limit 7 — 0
Sn(r) = Culer)"”?, 6.4)

where C, = F,(0) are universal constants. Experimental measure-
ments give the value C; ~ 2.0.

6.1.2  The inertial range

The Kolmogorov theory predicts S»(r) ~ r2/3. As briefly alluded to
earlier, this scaling cannot hold for all r.

In the limit r — 0, it would lead to a non-differentiable velocity
field at fixed viscosity, but we need the velocity field (at fixed v)
to be twice differentiable for the Navier-Stokes equations to make
sense. In fact, for a smooth field", a Taylor expansion (u(x + 1) =

u (X) + T’iaiuu (X) + 0(1’)) yields
Sy(r) = rirj<8-u”8-u‘|) (6.5)
= ]afﬁf( o, (66)
= i 2T () o, (67)
dii
== [+ L= w| 6
x=0
= —2£"(0), (6-9)
= 72<(8Hu”)2), (6.10)
2

er r\2

08
-
0.6 : e any
"l"h“'
Cy @.. ﬁ{
0.4
a
0.2
0.0 .
10} 102 10° 10* 10°
Ry

Figure 6.2: Measurements of the
Kolmogorov constant as a func-
tion of the Reynolds number

R, for many flows (Sreenivasan
1995). The constant measured is
the one of the 1D energy spec-
trum, which is related to the
constant of the isotropic spec-
trum by a factor 55/18 =~
§ C.2).

3 (see

* Based on the Taylor expansion we
expect Sy(r) ~ r? for a smooth field
without doing the computation, but
computing the tensor structure allows
for properly matching the different
ranges.

You might notice that the tricks used
in this computation are very similar to
those used in § 3.1.6.

Alternatively, one can find the same
result by working with the more gen-
eral rank-4 velocity gradient covariance
tensor:

ririrky

Sa(r) = 7(3 u;Oxty),

ririrkyl

1
=2’ s (@yu)?) e

2 2
=r{(9uy)7),
but that just leads to unnecessarily
more complicated computations.

Note that this computation also means
that F,,(&) ~ %(’,"4/3 ford =n/r —
+00,i.e. ¥ — 0 at fixed #. This is not
incompatible with the definition of the
constants C,, which is the limit 7 — 0
at fixed r.

2%kt |+
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The scale at which equations (6.4) and (6.11) match, denoted 7, can
be easily computed:

1/4
= (15C2>3/4 (f) . (6.12)

We recover, up to a numerical factor, the Kolmogorov scale identified
by dimensional analysis (Eq. 6.1).

In the limit r — +oo, Sz(r) must go to a constant. Indeed, the
longitudinal autocorrelation function f(r) = (uj(x)u)(x +r)) decays
to zero at infinity, and Sy(r) = 2UZ,, — 2f(r) — 2UZ. Let us
define a (large) scale L such that Sy(L) = 2U2,. This scale should
correspond, up to an order one numerical factor, to the integral scale
(see § 3.1.4) in the freely decaying case or the pumping scale in the
forced case. Then, matching with equation (6.4), we can relate that
scale to the energy dissipation rate:

2\3/213 2 \3/2 3 . 3/2
L= <C2> ’e’”s, or equivalently, € = <C2> ers. (6.13) ie. L= (37) Lo.

This is, up to a numerical factor, the Taylor estimate (5.2) for the

energy dissipation rate.

49

The Kolmogorov scale can be compared to the Taylor microscale 2e.g. Tennekes and Lumley (1972, pp.

and the integral scale: 66-68) 13, 15y Yrms
Lo A2

A/Ly ~ Re V2~ R, (6.14) LA
A/ ~ Ret/* ~ RY/2. (6.15) Lo

/\2
— — =15
L(Z] urmsLO

Note in particular that R, ~ v/ Re.
All those estimates, except A /% ~ R}\/ 2, rely on the Taylor estimate e=13y"* = 150U, A2
e = U3,/ Lo.

We can now estimate the size of the inertial range, for which the

v
15— ~R;!
Urms/\ A

~ Re™!

scaling law (6.4) holds:
% ~ Re3/4, (6.16)

This explains how the Reynolds number measures the range of scales
which are coupled by nonlinearity. In a way, it gives a rough estimate
of the effective number of degrees of freedom of the system: in 3D, it
goes like Re®/%.

These arguments are summarized in Fig. 6.3: the 2/3-law is ex-
pected to hold in the inertial range 7 < r < L, where 7 is the
Kolmogorov scale and L is approximately the integral scale or the

pumping scale. Below 7, the velocity field is regularized by viscosity.

6.1.3 Energy flux in the inertial range

In spectral space The scale-by-scale energy budget in Fourier space (3.40)
holds for a statistically stationary velocity field solution of the Navier-
Stokes equations, i.e. by averaging E, I and F over random Fourier
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2u;%115 |

Sa(r)

modes distributed according to the invariant measure of the system.
We obtain 2vk?E(k) = —d;I1(k) + F(k). For fixed k, we can take the
limit v — 0 and the left-hand side vanishes. Now, we assume that
the forcing acts at large scale, such that f(k) = 0 for k > kf. Then,
for k > k¢, the energy flux is constant: d;I1(k) = 0. The equation
for the cumulative energy spectrum in the limit t — oo, v — 0 yields
I1(k) = € for k > ky. In particular,

lim lim lim II(k) =e.

k—+oco v—0 t—+00

(6.17)

This simply means that in a stationary state, the average energy
injected by the forcing (at the large scales) equals the energy flux
through the inertial range equals the energy dissipation rate (in the
dissipative range).

In real space  The same reasoning applies based on the scale-by-scale
energy budget for the filtered velocity field from § 4.2.3.
At finite ¢, the viscous term goes to zero as v — 0:

0 < —v{utau'y = v<8juf8juw>,

=v </dy/dzang(x —y)9Gy(x — Z)”i()’)ui(z)> :

(6.18)

(6-19)
—v [ dy [ d20iGu(x ~ »)IGilx — ) (¥ @),
(6.20)
< 3vl2, / dy / d20;Gy(x —y)d/Gy(x —z). (6.21)
ﬁo

Figure 6.3: Skecth of the ex-
pected behavior of the second-
order structure function, illus-
trating the inertial range and its
boundaries.

For finite v > 0, we expect I1(k) ~ €
should hold as long as dissipation is
weak, ie. 2v [f p2  E(p) dp < e.
N
Cye2/3p=5/3
This is fulfilled for kny < 1: indeed, then
k

2v fg p*E(p)dp < 2Cxve?/3 [ pt/3dp =
%CKe(kiy)4/3 <e.

There is no dissipation anomaly in the
filtered velocity field: as we push the
dissipative range downscale, it ends up
below the cutoff scale, and no explicit
dissipation can occur.

We have used the Cauchy-Schwarz
inequality: (ui(y)ui(z)_> <
V {ui(y)ui () (ui(2)u'(2)) = 3U7,s.




AN INTRODUCTION TO FLUID TURBULENCE 51

Therefore, in a statistically stationnary state,

— (L fil
I1(¢) = <uif ), (6.22) Basically, f/(x) ~ f(x) as soon as £ < Ly
= <ui f 1>’ (6.23) the correlation scale of the forcing.

Because the forcing is at large scales,
- ([ tsGiymns ), (629
= [ ayGiy) wi(y) (0)), (629

— (1(0) [ dyGiy)F'(-y)), (6.26)

= (i(0)f(0)), (6.27)

= €. (6.28)
More precisely,

limlim lim TI(¢) =e. (6.29)

(—0v—0t—+o0

6.1.4 The Richardson cascade picture

Let us now describe the physical picture of stationary homogeneous
isotropic turbulence associated with the phenomenology described

above. Let us assume that energy is continuously injected at large Figure 6.4: Lewis Fry Richard-
scales by some forcing mechanism, and that the system reaches a son (1881-1953). An interest-
statistically stationary state. The large-scale structure of the flow de- ing bibliography was written
pends on the details of the system: boundaries, stirring mechanism, by Hunt (1998).

etc. These scales contain most of the energy. Large-scale motion gen-
erates motion at smaller and smaller scales through nonlinear inter-
actions. Energy is transferred in this process towards the small scales.
No dissipation occurs through the inertial range, and the energy flux
is constant. Below the Kolmogorov scale, viscous dissipation acts effi-
ciently to ensure stationarity. This process is called the energy cascade

3. This is why turbulent flows dissipate much more energy than lam- 3 sometimes direct energy cascade to
distinguish it from the inverse energy

inar flows: turbulence transfers energy to scales where viscosity can . )
cascade which occurs in 2D, see § ??

dissipate it efficiently.

Let us now consider an eddy of size ¢, with typical velocity vy. We
define the eddy turnover time t; = £/vy; it is the typical time during
which the eddy should retain its structure, before being distorted due
to the differential motion in its interior. t; is also the time scale for
energy transfer from scales close to ¢ to scales smaller than ¢: we may
thus estimate the energy flux as IT ~ v3/¢. Constancy of the energy
flux in the inertial range yields the following scaling:

vy~ (66)1/3, and t; ~ e 1/3¢%/3, (6.30)
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which also entails the scaling law for the structure functions —
Su(0) ~ (e£)™® — and the energy spectrum. The energy flux con-
stancy expressed at the integral scale yields the Taylor estimate (5.2)
for the energy dissipation rate. Finally, estimating the typical time for
diffusion at scale ¢ as t, = ¢2/v, we see that the eddy turnover time
and the dissipation time coincide if and only if £ = # the Kolmogorov
scale. This is another way to show that the Kolmogorov scale is the
scale at which dissipative and inertial effects are comparable.

The above phenomenology can be put in a more poetic manner:

Big whorls have little whorls,

Which feed on their velocity,

And little whorls have lesser whorls,
And so on to viscosity.

L. E Richardson (1922)

A graphic view can also be seen in Fig. 6.5. However, one should
not expect to actually see an eddy breaking up through an hydrody-
namic instability. No such thing exists, and the cascade process rather
proceeds through energy transfers between incoherent velocity fluc-
tations. Besides, individual interactions may transfer energy upscale
or downscale; the positive average energy flux is only the result of a
small imbalance between the two.

More results obtained using phenomenological arguments like the
above can be found in Frisch (1995, Chap. 7), or in many other books
about applications of turbulence (Tennekes and Lumley 1972; Vallis
2017)4.

6.2 The 4/5-law

6.2.1 Karman-Howarth-Monin relation

The Karman-Howarth-Monin relation describes the evolution of the
second-order (two-point) correlation function.

Let us consider an incompressible velocity field u(x) solution of
the Navier-Stokes equations subject to a random forcing f(x). We
assume homogeneous statistics, and we note du = u(x +r) — u(x).

Then, we have:

Note that the velocity scaling, applied
to the Kolmogorov scale, shows that the
Reynolds number at that scale is indeed
one: (en)/3y/v ~ 1.

Energy injection

Figure 6.5: Schematic view

of the Richardson energy cas-
cade of homogeneous isotropic
turbulence. Figure taken

from Nazarenko 2010.

4 A word of caution though: this kind of
elegant and seemingly simple physical

arguments can lead to all sorts of totally
wrong predictions. . . Proceed with care!

Kolmogorov (1941)

Ot(u(x) - u(x+r)) = %Vr ((6u)?6u) + (u(x) - [f(x+ 1) + f(x — 1)]) + 2vA (u(x) - u(x +1)). (6.31)

Proof. As a shorthand, we shall omit the position and denote with primes the variables at point x +r. From
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the Navier-Stokes equations, we obtain easily

(u9'p’) = 0.

o o P ,
(uiu;olu')y + (uiu}afu”> = aTj(ufu’&uj),
and using u/u’ = (uu’ + W' — du;ou') /2, we obtain

1o, 1
281’] i 2 0r;

leaves us with the desired result.

This relation illustrates the closure problem: the evolution of the
second-order velocity correlation function depends on third-order
statistics (the equation is not closed).

Finally, note that in the limit r = 0, the Karman-Howarth-Monin
relation reduces to the energy budget. The nonlinear term does not
contribute in this limit, because as seen before, it conserves global
energy. It only acts to redistribute energy between scales. We shall
now see how the Karman-Howarth-Monin relation allows for deriv-
ing a quantitative result describing how the nonlinear term transfers
energy across scales.

6.2.2  Derivation of the 4/5-th law

In this section we assume that the fields have isotropic statistics.

Energy budget in the inertial range Let us study the different terms
of the Karman-Howarth-Monin relation under both limits  — 40
(stationarity) and v — 0 (fully developed turbulence):

* Because of stationarity, the left-hand side of equation 6.31 van-
ishes.

* For distances r < ¢ the correlation length of the forcing, (u;(x)f f(x+

1) = ()£ (x— 1) = () f (X)) =e.

o (utuf) = — (ufud/u) — (@) — (ufd'p) — (u;d'p')
+v(uddu’) + v (D) + (i) + (wif").

(uiuiéuj) -

(6.32)

Using integration by parts and incompressibility, it can be seen that the pressure terms vanish: (1/0'p) =

Using homogeneity, the viscous terms can be expressed as: v(u/d;0/u’) + v(uiajafu’i> = A (ulu'),
and the forcing terms read (u/f") + (u;f"") = (w;(x)[f' (x + 1) + fi(x — 1)]).
It remains to treat the nonlinear term: using homogeneity and incompressibility,

(6.33)

1

9 A
= —(du;0u'du;). (6.34)
2 8r] ! /

The first two terms on the right hand side vanish because of homogeneity and incompressibility, which

This derivation is given in the book

by Frisch (1995, § 6.2.1). An alterna-
tive derivation is given in the book

by Monin and Yaglom (1971). The
above relation was first derived with
the additional assumption of statistical
isotropy (Karmén and Howarth 1938),
before being generalized by Monin
(1959).
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e For fixed r, Ar(u(x) - u(x + r)) remains finite as v — 0 (similarly to Note that the two limits v — 0 and
the dissipative term at finite k or ¢ in the energy budgets derived r = 0 do not commute:
in § 6.1.3), so the last term in the right-hand side of equation 6.31 lim lim vA(u(x) - u(x +1)) =€ >0,
vanishes in that limit. lim lim vAy(u(x) -u(x+1)) = 0.
r—0v—

We are left with

limlim lim V- ((6u)?u) = —4e. (6.35)

r—0v—0t—+c0

Relation (6.35) can readily be inte-

grated into (6u’) = —%er, which you
' ) ) might encounter, referred to as the
From the energy flux to the third-order structure function Using homo- 4/3-law (Dubrulle 2019). In the next
geneity and isotropy, the third-order velocity structure function S3(r) paragraph, we reformulate it in terms
. of the longitudinal structure function
can be related to the tensor S;;x(r) = (u;(x)u;(x)ur(x +1)): S3(r) = {ou3), which gives a 4/5 in-
stead of a 4/3. The two are equivalent
ririrk for isotropic turbulence; what follows is
S3 (1’) = 3 <5u ou jéuk> (6'36) essentially manipulations of the tensor

ik structure of the vector structure func-
rrr i h 1t in terms of the
=2— (S (r S (1 S, ()], 6. tion to express the resu
r3 [ g ’k( ) + ikj ( ) + k]’l( )] (6:37) longitudinal velocity increments, which
are easier to measure experimentally.
Now, the most general form for S;; 4 is

r ri 7 Fit itk
Siji(r) = A(V)(sij?k + B(r) (5ikr] + (Sjkr’) + C(r) Iré (639

Injecting into the above equation, we obtain

rirj rk ri T]' Tk

Sa(r) = 22 (A6 4 B(r) (652 +64 70 ) +C
a(r) = 205 [ Aoy~ + B(r) (8L + 857t ) +C(n) =5

7’]‘ Tk v; it rk
A(r)éyL +B(r) (51-]7 + 5jk?l) )k, (6:39)

1’]' Tk rirjrk

A()d +Bm(mr+%r)+qmr3}
r r]r 1 r]rk
=205 [(A+2B)(5 (A+ZB)(51k— (A +2B)s +3c ]

(6-40)
= 6(A +2B) + 6C. (6.41)

Enforcing incompressibility: of Sijx = 0, we obtain relations between
the functions A, B and C. Using the relations oy f () = r¢/rf’(r) and
ak(l’l‘/i’) = 5ik/7’ - T’il’k/l’?’, we obtain:

A(r)+B

r 2’
(6.42)
The two terms in brackets vanish: in principle these two relations

aksl’]‘,k(i’) = A,(V) +2

allow to express B and C as functions of A. A particular combination
of these two terms yields simpler computations: it corresponds to
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taking the trace of the tensor: d;5 ij g

3[4 +2ATB0) ‘:B(r)} + {23’@) Lo —2B0=C0T

r
(6.43)
BA'(r) + 2B/ () + C'(r)] + 2[BA(r) +2B(r) + C(r)] =0.
(6.44)

The only solution of the differential equation y’ + 2y/r = 0 which is
finite at ¥ = 0 is the one which vanishes identiquely. This yields
A'+2(A+B) =0, B=-A-%A,
7 ( ) ie. 2 (6.45)
3A+2B+C=0. C=rA"—A,
from which S3(r) = —12A(r) follows.
Above, we have used the relation (du;ou;oux) = 2(Sjjx + Sixj +
Skj,i) which yields in particular V, - ((6u)?6u) = 481'51-]-1'. On the other

hand,
9IS, = 9(A+4B +C) %’ (6.46)
_ %(A Y4B+ C)+ A+ 4B+ C, (6.47)
= —rA" —7A" —8A/r. (6.48)

Taking the limits  — +ooand v — 0, and r < { in the Karman-
Howarth-Monin relation, we consider the differential equation

A
rA" +7rA" + 87 =e€. (6.49)

Under the change of variable y = A/r, x = Inv, the differential
equation becomes

y' +6y +15y =e. (6.50)
The general solution is of the form y = aef+* + Bef~* + €/15, with
o+ = —3=% i\@. The only solution with a finite limit when x — —oo
(r — 0) is y = €/15, which yields

lim lim li = ——€. .
i i i, = = ~5° 659

This is the 4/5-law.

Note that we are assuming that S3(r)/r does not diverge, which is
not guaranteed a priori after taking the limit v — 0, but is compatible
with the phenomenology described above (according to which du ~
r1/3) and supported by empirical evidence.

In the isotropic case, the Karman-Howarth relation can be written

as 1 0 4 2v 9 as
72 = _77(7453) — §€+ ]"745 (T4a:> P (652)

as:
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which directly relates the structure functions S, and S; (Landau

and Lifchitz 1971; Falkovich 2011). From here the 4/5-law follows
seemingly faster than in our derivation, but the above form of the
Karman-Howarth relation actually involves most of the work we did
above.

Finally, it should be noted that the 4/5 law expresses the irre-
versibility of turbulence: under the time reversal transform, S3 should
change sign, but according to the 4/5 law, S3 < 0 as long as the
energy dissipation rate € > 0 is finite.

6.3 Universality and self-similarity

6.3.1 Landau’s objection to universality

Soon after Kolmogorov’s 1941 theory was published, it was argued
by Landau that the non-dimensional constants could not be univer-
sal’.

The basic idea is to consider N experiments with different average
energy dissipation rates €;. Assuming universality, we may write in
each case S,(li) (r) = Cu(e;r)"’3. Now we further assume that the en-
semble average still has the same scaling, with S, (r) = }_; S,(f) (r)/N
and € =} ;€;/ N, which yields

1 N 1 N

n/3
(w .ZGZ) =y’ (653)
i=1 i=1
which only holds for all values of €; if n = 3.

Instead of relying on the Kolmogorov universality hypotheses,
which directly postulates universality, one may think in terms of

symmetries®.

6.3.2  Self-similarity in the Kolmogorov theory

Probability distribution function for longitudinal velocity increments under
Kolmogorov's universality hypotheses Under the second universality
hypothesis of Kolmogorov (see § 6.1), the PDF of the longitudinal
velocity increment du (r) of a statistically homogeneous and isotropic
random field u can only depend on r, the average energy dissipa-
tion rate € and the argument Ju itself. Hence, dimensional analysis
yields the following form:

pr(6uy) = (er)po (Juy(en)17) (6.54)

where py is a universal (non-dimensional) function. This means
that the PDF retains its shape across scales. It can for instance be

5 see Frisch (1995, § 6.4)

1\@@@@@@ coo

~ 100 meshes

—

~ 1000 meshes

O00000 e 000

Figure 6.6: Exemple of grid
turbulence setup illustrating
Landau’s objection (from Frisch

(1995)).

¢ this is the presentation adopted in
the book by Frisch (1995) from the
beginning

The fact that p, has the dimension of
the inverse of a velocity can be seen
easily by considering the normalization
condition.
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expressed using the PDF at large-scale:

pr(duy) = (%)71/3PL <5u| (2)1/3> : (6.55)

Of course, computing the moments of the PDF (6.54), we recover
the expected form for the structure functions: S,(r) = Cy(er)"/3,
with C, = [ u"po(u)du. For larger and larger values of n, the coeffi-

cient C, is more and more determined by the tails of the distribution

Po-

Self-similarity A random field ¢(x) is said to be self-similar if there
exists a real number & such that for all A € R, the random fields
¢(Ax) and A"¢(x) have the same probability law. Assuming the prob-
ability densities defined by P[¢(x) € [u,u + du]] = px(u)du exist,
self-similarity amounts to the condition?:

Pax() = A py (A M), (6.56)

From (6.54), it is clear that, under the Kolmogorov universality as-
sumptions, the velocity increments satisfy condition (6.56), and there-
fore, are self-similar.

6.3.3 Another look at Kolmogorov theory

We have just shown that the Kolmogorov universality hypotheses im-
ply self-similarity of the velocity increments. Let us now investigate
the converse.

Let us make the following assumptions:

H1 — Symmetries In the limit of infinite Reynolds numbers, all the
possible symmetries of the Navier-Stokes equations, usually broken
by the mechanism producing the turbulent flow, are restored in a
statistical sense at small-scales and away from the boundaries.

H2 — Self-similarity In the limit of infinite Reynolds numbers, the
turbulent flow is self-similar at small scales, i.e. it possesses a unique
scaling exponent /.

H3 — Dissipation anomaly In the limit of infinite Reynolds numbers,
the turbulent flow has a finite non-vanishing mean rate of energy
dissipation € per unit mass.

Structure functions From the self-similarity hypothesis, we have
Su(Ar) = A8, (r), from which it follows that S, (r) o . Using the
4/5-law, it follows that the scaling exponent is # = 1/3, and

Su(r) = Culer)"’?, 6.57)

This can also be expressed by consider-
ing the random variable du (r): in law,

duy (r) = (r/ L) ou (L).

7 as can be seen from
Plp(Ax) € [u,u + du]] = pax(u)du,
PMp(x) € [u,u+du]] = Plp(x) € [A"u, A" (u + du)]]
= A" (A7) du,

Figure 6.7: Self-similar random
function: the statistical proper-
ties of the signal do not change
when zooming in (Frisch 1995).



58 CORENTIN HERBERT

with dimensionless constants C,,. The 4/5-law also implies C3 =
—4/5, which is clearly universal, but we do not assume that the other
constants are.

Furthermore, it can be directly checked that self-similarity implies
the PDF (6.54) for longitudinal velocity gradients, using p,(u) =
A, (A7),



7
Intermittency

7.1 The intermittency phenomenon

7.1.1  Non-Gaussianity of small-scale increments

K41 theory predicts that the PDF of longitudinal velocity increments
retains its shape across scales (see Eq. (6.55)): if it is Gaussian at large
scale, it remains Gaussian at all scales.

This is incompatible with observations (Fig. 7.1); while velocity
increments have Gaussian statistics at large separations (like the ve-
locity field itself), they develop fat tails as we move to smaller and
smaller separations. This means that extreme (positive or negative)
values of velocity increments are much more frequent in reality than
predicted by Kolmogorov theory. Note that the PDF of velocity gradi-
ents is also non-Gaussian.

Self-similarity also makes Gaussian large-scale statistics incompat-
ible with the 4/5-law: in Kolmogorov theory, skewness in the inertial
range, required by the 4/5-law cannot be generated spontaneously.

It seems clear that the scale invariance symmetry is broken.

We shall briefly study in a problem set the multifractal model,
which assumes that instead of just one (1/3), the velocity increment
has a whole spectrum of scaling exponents (see Sec. 7.4).

7.1.2  Anomalous scaling

Let us introduce the scaling exponents of the structure functions:
Su(r) ~ 50, (7.1)

Kolmogorov theory predicts {(n) = n/3 (6.4).

In practice, we observe a deviation from Kolmogorov theory (see
Fig. 7.3). This is called anomalous scaling, or intermittency. It means
that, while low-order statistics (energy spectrum) are accurately de-
scribed by Kolmogorov theory, higher-order statistics are not. For

Reference: Frisch (1995, Chapter 8)

0

I !
® L
8 3

inP(u/c,)

]
&
8

-40

Figure 7.1: PDF of longitudinal
velocity increments at various
scales (figure by L. Chevillard).

For self-similar velocity increments,

S3(r) = (r/L){6uy(L)%).

Figure 7.2: An example of an
intermittent signal, the Devil’s
staircase, from Frisch (1995).
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such observables, the energy cascade process cannot be characterized
by the average energy dissipation rate € alone; the fluctuations of the
energy dissipation field matter. Phenomenological models consider-
ing € as a random variable with known statistical properties provide
a much better fit to the scaling exponents {(n) (Fig. 7.3).

It should be noted that anomalous scaling is not restricted to solu-
tions of the Navier-Stokes equations. For instance, let us consider the
problem of passive scalar advection:

9180+ v - Vo = kAf, (7.2)

where v is a random field. Instead of being described by the invari-
ant measure for the Navier-Stokes equations, v can be taken as a
Gaussian, white in time random field (this is the Kraichnan model).
Under those circumstances, the anomalous exponents for the scalar
(66™) ~ 15" have been computed analytically (Falkovich, Gawedzki,
and Vergassola 2001). Another exemple is Burgers turbulence (e.g.
Bec and Khanin 2007).

7.2 The log-normal model (KO62)

7.2.1  Fluctuations of the energy dissipation rate

To account for the intermittency phenomenon, the K41 theory was
revised with various models of the energy cascade. The first one
was due to Kolmogorov (1962) and Obukhov (1962). We describe the
main ideas below, at a qualitative level.

In Chapter 6, we obtained predictions for the statistical properties
of the velocity field by assuming that they only depended on the
average energy dissipation. In fact, energy dissipation is a random
field (see Fig. 7.5), itself with complex statistical properties, deriving
from the velocity field.

The refined similarity hypothesis replaces the average energy dis-
sipation rate ¢ used in Chapter 6 by a local average of the energy
dissipation field €;:

3

= — v(Vu)3dy. .
el (Vu)~dy (7.3)

£¢(x)
This can be seen as a filtered version of the energy dissipation field.
All the statistical properties obtained above remain valid, only if
they are understood as conditioned on the value of this local energy
dissipation rate. Then, to obtain the unconditioned statistics, one
should average over the probability distribution p(e;) for the local
energy dissipation rate ¢,.

Figure 7.3: Scaling exponents
{(n) as measured in experi-
ments (points) and predicted
by Kolmogorov theory or other
models (Frisch 1995).

Scaling Exponent for Scalar and Velocity
Structure Functions
%)

0 5 10 15 20

Structure Function Order

Figure 7.4: Scaling exponents
for the passive scalar in lab
experiments (points), for the
velocity field (short dash), and
Kolmogorov-Obhukov-Corrsin
scaling (solid line).

(Monin and Yaglom 1971, § 25.1 and
25.2)

Figure 7.5: A snapshot of the
dissipation field in a DNS (Ishi-
hara, Gotoh, and Kaneda 2009).
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7.2.2  Structure functions

Because it is linear in ¢, the 4/5-law holds regardless of the proba-
bility distribution p(e/). This means that the third-order structure
function is only determined by the mean energy dissipation rate.

On the other hand, other structure functions are affected by this ap-
proach; they depend on the full probability distribution of the energy
dissipation rate. This holds for high-order structure functions but
also for the energy spectrum, which should in principle exhibit inter-
mittency corrections. As we shall see, these corrections are quite small
for the energy spectrum.

7.2.3 PDF of the energy dissipation rate

Kolmogorov (1962) and Obukhov (1962) suggested that the local
energy dissipation rate follows a log-normal distribution (i.e. Ingy is
a Gaussian random variable at all scales). They further assumed
that, for large Reynolds numbers, the variance behaves as follows:

07 = E(Ingy — E[ln ¢/])> = Ag — uIn /. The mean energy dissipation

H’I(+G'é2~/2

rate is given by E[e/] = e , with my = E[lng/]. Because it

should not depend on scale, we can impose m; = m — 07 /2, with
m = InlE[e,].
7.2.4 Intermittency corrections

A direct computation yields

Su(€) = E[Cu(efl)"?] = Cpl/3enme/3+m 0 /18, (7.4)
_ Cnenm/3+A0n(n—3)/18611/3—;111(71—3)/18’ (75)

g —un(n—3)/18
= Cn(E[e/]¢)3 <L> , (7.6)

assuming Ag = yIn L with L the integral scale. Hence, the scaling ex-
ponents are given by {, = n/3 — un(n — 3)/18. They are represented
in Fig. 7.3; it is clear that they present a better fit to experimental
data than the Kolmogorov 41 theory. However, the relative agree-
ment holds only until approximately n = 12. In fact, the scaling
exponents should ultimately become negative, which does not make
much physical sense. Furthermore, the Kolmogorov-Obukhov theory
breaks the Novikov inequality.

Because {» = 2/3 4 u/9, the energy spectrum should scale like
E(k) o k=5/3—n/9.

In practice the measured value of the intermittency parameter is
u ~ 0.23. Clearly, this corresponds to a very small correction for the
energy spectrum.

61

(Monin and Yaglom 1971, pp. 611-612)

_ (lne[—m{)z

2
N 1, 207

(Monin and Yaglom 1971, § 25.4)
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7.3 The B-model

In § 7.2, we have assumed that the local energy dissipation rate has

a log-normal distribution; we do not know where this distribution
comes from. An alternative strategy is to modify the phenomenol-
ogy of the energy cascade: the f-model is an example of such an
approach, based on the velocity field. The idea is that the energy cas-
cade is not “space filling”: energy transfers to smaller scales occur in
a localized manner in space. The location of “active” eddies form a
subset of the domain, on which the velocity increments are still self-
similar (in the inertial range). This set has a fractal structure, and it is
characterized by its codimension D (i.e. it has dimension 3 — D).

The cascade phenomenology is then easily adapted from the Kol-
mogorov case (§ 6.1.4): the typical energy at scale / is given by pyv?,
where p; = (£/Lg)* " is the fraction of space filled with active ed-
dies. The timescale for energy transfers to scale smaller than ¢ is still
given by the eddy turnover time t;, ~ {/vy, and requiring the energy
flux to be constant in the inertial range, we obtain I, ~ € ~ p gU% /¢,
and therefore:

¢ \1/3-3-D)/3 ¢\ ~B-D)/3
vy ~ Vg (L) ~ (e0)!? (L) . (7.7)
0 0

As mentioned above, the velocity increments are still self-similar, but
the scaling exponent is now 1 = 1/3 — (3 — D) /3. The structure
functions can be obtained directly:

s L/Injection of
0 energy <
(@0) ’_‘ Flux of
o

energy &

£y @)

. Dissipation of

\incrgy £

Figure 7.6: The cascade picture
modified to account for inter-
mittency according to the beta
model (Frisch 1995).

n

)
$u() ~ pevlt ~ ol (5)  withg(n) = 5 +(3-D) (1-5). (78)

Lo

The scaling exponents are still linear in 7; we have only modified
the slope of the line. Figure 7.3 shows that, with D = 2.8 it fits rea-
sonably well the experimental data at low 7, but not at all at large
n.

We have still not explained why this model is called the f-model.
This parameter comes from a discretization of the cascade: at each
step eddies of size ¢, “break up” into eddies of size ¢, 1 = Y{y,

. In(¢n/Lg) 3-D
with0 <y < 1. Thenpy, = p" =p ™ = ({,/Ly)” ~, hence

3—D=InpB/Invy.

7.4  The multifractal approach

We have seen above that the self-similarity assumption means that
the longitudinal velocity increment at scale ¢ is related to the incre-

ment at the integral scale through ou (¢) = (%)h&uﬂ (L), with the
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choice h = 1/3 determined by the 4/5-law. Experimentally, we ob-
serve ou| (¢) to be a Gaussian random variable at large-scale (¢ = L)
but not at small scale (e.g. £ = A). We have discussed in 7.1 the mani-
festations of the breakdown of self-similarity.

An approach which has been suggested to account for intermit-
tency is to represent the longitudinal velocity increment as the prod-
uct of a Gaussian random variable corresponding to the velocity in-
crement at the integral scale and a scale factor which is itself random.
More precisely,

h
ouy(£) = (i) x 6uy (L), (7.9)

with éu (L) ~ N(0, 0?) and & a random exponent with PDF

o\ 1-D()
pe(h) = Ziﬁ) <L> , (7.10)

and D(h) is a function independent of the scale /.
It can be shown that the PDF for the velocity increment takes the

form:
po)=2(5)" [ (‘L' (f)h> piidn, )

with po(x) = e=¥"/2/\/27t the standard Gaussian distribution, which
is interpreted as a sum of self-similar PDFs with different exponents
h. The interpretation is that there exists a range of scaling exponents
h, corresponding to coexisting self-similar energy transfers through
scales occurring on regions in space with fractal dimension D(h).

The structure functions of even order can be shown to have power-

law scalings: Sy, (¢) ~ (%)ézn, with {, = inf,[nh +1 — D(h)] the

Legendre-Fenchel transform of the multifractal spectrum D (assum-
ing inf,[1 — D(h)] = 0). As a consequence, {, is always a concave
function of n in this model.

The log-normal model (see § 7.2) is recovered with the choice
Dh) =1- %, which yields ¢, = ¢in — %nz, which coincides
with the KO62 prediction for the choice c; =1/3+ /6, co = u/9.

Another well-known model which fits quite well the experimental

63

data is the She-Leveque model®, corresponding to the choice D(h) = * The model is presented in a less
1+In(In(3/2)) 1 3 1 1 cryptic form in She and Leveque (1994).
13 [EHRO) ] (1)~ 8 () in (- ). After

a little bit of algebra, we get {,, = § +2 [1 - (3) %} . This model is
compatible with the 4/5-law, as it gives (3 = 1, and predicts a small
correction to the 2/3-law: {, =~ 0.7.






8
The passive scalar problem

Let us consider the problem of passive scalar advection-diffusion:
0:0 + u - VO = kA6. (8.1)

We consider this as an abstract problem, with 6 a dimensionless
scalar field. In reality, it could represent the concentration of some
chemical species for instance, or the temperature field. The velocity
field u is prescribed (usually it is a random field) and we assume it is
divergence free. It can be a solution of the Navier-Stokes equations,
but it does not have to (see for instance the Kraichnan model in § ??).

Adding a source term Q in the right-hand side of (8.1), passive
scalar variance budget reads

T a0 e 82)
with & = (02)/2 the scalar variance and €5 = —x(0A8) = x((V8)?)
the mean scalar variance dissipation rate.

Without forcing and dissipation (Q = x = 0), all the norms of the
scalar field are conserved (including the scalar variance Z), or more
generally, ['s(0(x))dx for any function s. The scalar field also remains
bounded. These properties are the same as in 2D turbulence.

8.1 Phenomenology

We assume that the statistics of the velocity field are well described
by Kolmogorov theory. We denote by v the molecular viscosity of the
fluid, and introduce the Prandtl number Pr = v/x.

We further assume that the statistics of all the fields are stationary,
homogeneous and isotropic, and denote by (-) the average with re-
spect to the invariant measure. The mean energy dissipation rate is
e = (|Vul]).

The statistical properties of the scalar field are a priori governed by
two non-dimensional numbers: the Reynolds number and the Prandtl
number.

See for instance Lesieur (2008, § 6.10).

Figure 8.1: A snapshot

of passive scalar turbu-
lence (Falkovich, Gawedzki,
and Vergassola 2001).
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By analogy with the first Kolmogorov assumption of universal-
ity (see § 6.1), we may assume that the (small-scale) statistics of the
scalar field are entirely determined by only five parameters: the scale
r, the energy and scalar variance dissipation rates € and €y, the vis-
cosity v and the diffusivity .

If we assume that there exists and inertial range where neither
dissipation nor diffusion are felt, dimensional analysis tells us that
the scalar variance spectrum in that range should read

Fa(k) = Cye, PePi?P1, (8.3)

with B an undetermined exponant and Cy a non-dimensional con-
stant.

By analogy with the Kolmogorov scale #, we introduce a scale 1y
where inertial effects and diffusion become comparable, i.e. the local
Péclet number durg/x is of order one. That scale depends on the
scaling properties of the velocity increment du, and two cases should
be considered:

e If 59 > 1, du is in the inertial range and the Kolmogorov scaling
u ~ (er)'/® should be used. We obtain 175/57 ~ Pr—3/%. This
corresponds to the Pr < 1 regime.

In this regime, for 7 < 179 < £ < {; in the inertial-convective range,
the scalar variance dissipation rate can be estimated as the scalar
variance at scale k = ¢!, kFy(k), divided by the eddy turnover

time 7 = 1//k3E(k):

kEy(k —1/3,—
€ ~ f’qf) Ey(k) ~ epe™ /37573, (8.4)
This is the Kolmogorov-Obhukov-Corrsin spectrum. It corresponds to
the parameter f = —1/3 in the generic spectrum above.

e If 7 > 1, du is in the dissipative range and we can estimate Ju ~
v/n, which yields 79/5 ~ Pr~!, with Pr > 1. We should still
observe the Kolmogorov-Obhukov-Corrsin spectrum in the range
of scales 7 < ¢ < [y. Now, in the range of scales 779 < £ < 7,
called the viscous-convective range, the typical time scale becomes
the viscous time T, ~ 172 /v, from which we obtain:

€ ~ kFG(k), Fy(k) ~ 69\/Zk_1~ (8-5)

Ty

This is known as the Batchelor spectrum. Note that it does not fit
the general form by dimensional analysis above, which assumed
that viscous effects were negligible.

[Fo(k)] =L,
leg] =T,
le] = L2.T73,
k=171

£2/3 ~5/3

Figure 8.2: Schematic passive
scalar spectrum in the Pr <
case (Lesieur 2008).

Figure 8.3: Schematic passive
scalar spectrum in the Pr >
case (Lesieur 2008).
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8.2 Karman-Howarth equation

Let us denote 60 = 0(x + r) — 6(x) the scalar increments, and
R = (6(x)8(x + r)) the scalar covariance. We assume homogeneous
statistics, so that 60 and R only depend on r.

The evolution of the scalar covariance is given by an equation
analogous to the Karman-Howarth-Monin equation (6.31):

AR = 2V (66%5u) + (0([Q0x + 1) + Q(x — 1)]) + 26AR.  (86)

It follows that, at scales smaller than the correlation scale of the
source (or the scalar itself) and in a stationary state, we have the
relation:

(66%6u) = —%691‘ + 2k (66%), (8.7)

and in terms of longitudinal increments:

4 d
2 = 2
(60%0u) = 3e9r+2K—dr (66). (8.8)
In particular, the relation ((592(5u”> = —4/3eyr should hold in the

inertial range corresponding to the direct cascade of scalar variance.
This relation is analogous to the 4/5-law.
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9
Closure methods

This chapter is mainly written after Lesieur (2008, Chap. 7).

NAVIER - STOKES STOCHASTIC MODELS . .
EQUATION ] random _phases ¢ Figure 9.1: Schematic of
- e oI5 > the different closure theo-
ierarchy o L . .
8.5
the moments &g ries (Lesieur 2008).
=
equations o @

Let us write in a symbolic manner the first few equations in the
hierarchy of moments:

(@ +v(k> +K2))(0:(k)1;(K')) = (aan), (9-1)
(O +v(k* + p? + g)) (i (k)2 (p) i (q)) = (aaad). (9-2)

Due to the non-linearity in the Navier-Stokes equations, moments of
order n depend on moments of order n 4 1. This is the closure problem
already alluded to earlier. In this chapter, we present some classical
theories to close the hierarchy of moments and compute directly the
statistics of homogeneous isotropic turbulence. All these theories are
based on some arbitrary assumptions. While many closure theories
have been suggested (see Fig. 9.1), we focus here on the quasi-normal
family of closures.
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9.1  Quasi-normal closure

. . ) ) Chou (1940), Millionshchikov (1941),
It would be tempting to start by assuming that the Fourier coeffi- Proudman and Reid (1954), Tatsumi

cients of the velocity field have a joint Gaussian distribution (in this (1957), and Tatsumi (1980)

case, the statistics would be entirely determined by the velocity co-

variance tensor, which would satisfy a closed equation), however

we have already seen before that non-Gaussianities are essential to

the properties of homogeneous turbulence (for instance, according

to Eq. (3.41), the energy flux across scales is due to a non-zero third

order moment). Hence, the simplest (and earliest) closure approx-

imation is to assume that the fourth-order cumulant vanishes, but

third-order cumulants need not. In that case, fourth-order moments

are given as combinations of second-order moments®, which we shall ' For a centered Gaussian random
write symbolically as (27a1d) = Y (4i1) (i1d). Hence, Eq. (9.2) is re- ‘C’frj}zj _thse mfzurth-order cumulant is
placed by

(@ + (k> + p? + ) (@) (p) i (@) = Y (an)(an),  (9.3)

and the hierarchy is closed. Integrating this equation allows to write
explicitly third-order moments in terms of the velocity covariance.
This expression can then be injected into Eq. (9.1) to obtain a closed
equation for the velocity covariance in Fourier space lflij(k), and then,
after taking the trace, a closed equation for the energy spectrum:

t
(3¢ + 2vk2)E(k, t) = / dt / dpdge "7+ (=1)g(k p, q,T),
0

(9-4)
with
K3 k ) )
S(k,p,q 1) = ﬁa(k,p,q)E(P, T)E(q,T) — %E(kﬂ)[iﬂ b(k,p,q)E(q,T) +9°b(k,q,p)E(p, T)],
(9:5)
1 — xyz — 21222 xy + 23
a(k/ P/ CI) = %/ b(k/ P/ q) = %/ (96)
P q k-q p-k
=, Yy=—]1—, z2="—. (9.7)
pq Y kg pk

Using a(k,p,q) = (b(k,p,q) + b(k,q,p))/2, the equation can be
further simplified into:

@i+ 2R)EK D) = [ v / dpdqe-V<k2+P2+42><f—T>;‘qb(k, p, @) ICE(p, 7) — pPE(k, T)]E(g, ).
0
(9-8)
This equation has been solved numerically: at large enough (but still
very moderate) Reynolds numbers, the energy spectrum becomes
negative (see Fig. 9.2). Similar results have been obtained for the
spectrum of a passive scalar (O’Brien and Francis 1962). The reason
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Figure 9.2: Numerical solution
of Eq. (9.8): after some time
(@ the energy spectrum becomes

negative (Ogura 1963).

{ I I SO T O | 1 1
24 26 28 30 32

for this behavior is that in the quasi-normal approximation, third
order moments develop in an excessive manner. In reality, fourth-
order cumulants (which are neglected here) should act to damp this
growth. Better theories should account for this effect: we present
below simple attemps to fix this problem.

9.2 Eddy-damped quasi-normal markovian closure

The first suggestion (Orszag 1970) to fix the realizability issue of the
quasi-normal closure was to introduce explicitly a linear damping
term for third-order moments in Eq. (9.3):

(O + V(I + p* + %) + pipg) (i (k)2 (p) 1y (q)) = Y_ () (@), (9.9)

For isotropic flows, it was suggested to construct the eddy-damping
rate pyp, from the eddy-turnover time in a symmetric way: p,; =
pk + p + pg with e = \/K3E(k). If E(k) is steeper than k=2, jiy be-
comes a decreasing function of k: the effect of damping is smaller
towards smaller scales, which is counter-intuitive. As a consequence,

the alternative choice yy = 1/ fé‘ p2E(p)dp, which increases mono-

tonically with k, has also been used (Pouquet et al. 1975, e.g.). The
equation for the energy spectrum becomes:

(0 +2vk*)E(k,t) = / e / dpdqe Man tV P4 (-0) ;qb(k, p,q)[F*E(p, T) — p*E(k, T)]E(q,7),
0
(9.10)

referred to as the Eddy-Damped Quasi-Normal (EDQN) model.

In fact, the eddy-damping term is not sufficient to ensure real-
izability (positive energy spectrum). Orszag showed that this can
be achieved by a process referred to as Markovianization. It consists
in assuming that there is a time-scale separation between the char-
acteristic time with which velocity covariance evolves (assumed
to be on the order of the large eddy-turnover time, i.e. the char-
acteristic time scale of energy containing scales) and the timescale
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[Hipg + v(k* + p* + %))~ which controls the exponential damping

of contributions to the third-order moment, assumed to be much
smaller. The resulting equations are the Eddy-Damped Quasi-Normal
Markovian (EDQNM) equations:

(3¢ + 2vk?)E(k, t) = / dpdq@kpqpkqb(k, p,q)[K°E(p, t) — p*E(k, t)]E(q, 1),
(9.11)

t
Okpg = /0 dre gtV IE4P4)](0-T), (9.12)

In principle, i, depends on the energy spectrum so the integral
defining 6y, should be computed dynamically at each timestep

when solving numerically the EDQNM equations. It is customary to
neglect this dependence, so that 6y, = (1— e_[}‘kpﬂ+v(k2+172+‘72)]t) / [#rpqg +
v(k + p? +¢%)).

The EDQNM approximation can be shown to be realizable: it al-
ways leads to positive energy spectra. A comparison with experimen-
tal data is shown in Fig. 9.3. The main advantage of this approach
is that it has of course a much smaller numerical cost than solving
the Navier-Stokes equations. Hence, very high “Reynolds numbers”
can be achieved (see Fig. 9.4). This approach has been extended to
anisotropic flows, where difficulties arise due to the existence of other
relevant timescales characterizing the propagation of waves (Sagaut
and Cambon 2008).

SZ— o

-} / feamne Figure 9.3: Comparison be-

0] — 1V tween experimental (black) and
—~ 50 1Up/M =98
:; / 1 EDQNM data for the energy
i . L/ . spectrum (left) and the energy
S e < transfer (right), from Sagaut

| e and Cambon (2008, § 3.5).
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Figure 9.4: Energy spectrum
(top) and transfer (bottom) for
R, = 30 (leftyand R, = 10°
(right), from Sagaut and Cam-
bon (2008, § 3.5).
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10
Free shear flows

10.1 Classical shear flows

Figure 10.1: Classical shear

\ Us U, flows (Pope 2000).
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10.2  The round jet

We study a jet through a circular nozzle of diameter D. The fluid

is injected into an ambient made of the same fluid, with density p
and viscosity v. The jet velocity Uj is constant across the nozzle. We
denote x the axis orthogonal to the diameter of the nozzle and set
xp = 0 the position of the nozzle.

We assume that the statistics of the flow are axisymmetric. It
follows directly that the mean velocity field has only two non-
vanishing components, the axial velocity U and the radial velocity
V: U(x,r)ex + V(x,r)e,. We will denote the centerline velocity with a
subset 0: Up(x) = U(x,0) and similarly for V. The half-width of the
jet r1,2(x) is defined by U(x,r1,2(x)) = Up(x)/2.

10.2.1 Experimental observations

e self-similarity of the jet profile: ¢ = r/ry/5(x), U(x,r) = Up(x)f(E)
(Fig. 10.2).

¢ axial variations: spreading of the jet and centerline velocity (Fig. 10.3).
e lateral velocity: V < U, entrainment (Fig. 10.4).

* Reynolds stresses (Fig. 10.5).

1.0 Figure 10.2: Left: velocity pro-

W * file at several axial distances.

. Right: velocity profile rescaled

* by centerline velocity, as a func-

05— s tion of radius normalized by
half-width, exhibiting a self-

B similar character.

00 |
0.0 10 20

10.2.2 Dimensional analysis

From the problem parameters, we can construct two non-dimensional
numbers: the Reynolds number Re = U;D /v and the axial distance
x/D.

We assume that the large-scale properties of the jet do not de-
pend on the Reynolds number. Then, the half-width of the jet should
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25 [ Figure 10.3: Inverse of the cen-
terline velocity as a function of

the axial distance.

0 40 80 120
x/d

Figure 10.4: Self-similar profile
0.02

of mean radial velocity.

(W,

0.00 : .
1.0

-0.02
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0.10
Figure 10.5: Left: Self-similar
0.08

Ué 0.06

profile of the Reynolds stresses.
Right: Self-similar profile of
turbulence intensity.

0.04

o 3.0
Ty

satisfy r15(x) = Ro(x/d)x where Ry is a universal function. Em-
pirically, we observe that the function R has a finite limit when
x/D — +o00; we denote it tanw, & ~ 12.5 is the angle of the jet. It
does not depend on the properties of the fluid (viscosity, density) or
the properties of the nozzle.

The flow rates of mass Q, momentum P and energy I1 (across a
plane orthogonal to the x axis) are proportional to r2 s2Uo, r2 /ZU(Z) and
r2 /ZUS’, respectively. A momentum conservation argument yields that
r1/2Up is conserved, and from the paragraph above we deduce that
Uy o« 1/x. It also follow that Q « x (entrainment) and IT « 1/x. In
section 10.2.3 we show these results in the context of the boundary
layer approximation.

The flux of kinetic energy decreases with x due to kinetic energy
dissipation, which is converted into heat. This flux is mostly due to
the large scales of the flow, which do not depend on the Reynolds
number: hence there remains a finite energy dissipation rate in the
limit of infinite Reynolds number, another manifestation of the dissi-
pation anomaly.

10.2.3 Momentum budget

Boundary-layer equations The mean axial and radial momentum
equations read:

ox or  podx  9x2  ror \ or ror ax 7
(10.1)

oV _aV 10P  9*V v (V) 19 — —

Uayc+var’__pf)r+vaac2+ré)r<ra1f)_rarrv T
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We first neglect all the terms involving V and the axial derivative of
Reynolds stresses in the radial momentum equation:

10P 190 —
55 = ;grv , (10.3)
which after integration, yields
— too 1
P_B_m +/ l,v’%lr', (10.4)
P p ro T

with Py the pressure in the free stream region (r — +o0).
In the equation for the mean axial momentum, we neglect the axial
diffusion term to obtain:

ou ou 10Py v d ou 190 — 0 — — 0 [t®1—
ey = 20 P ) 2 e — — (w2 — p2) — — — 024y
uax * or p 0x +rar (rar> rarmv ax<” v%) ax/, r’v dr

(10.5)

In the free stream the fluid is quiescent 0,P) = 0. We can again
neglect the axial derivatives of the Reynolds stresses, even if this
approximation is not so well controlled.

Finally, the boundary-layer equations for the round jet are:

U _ou va [aUu\ 19 —
Ug + Vﬁ = ;g (Tar) — ;aru v, (10.6)
U 19(rv)
g ; » =0. (10.7)

Flow rate of mass, momentum and energy ~Simple budget arguments
yield the (instantaneous) flow rates of mass Q, momentum P and
energy I1 across a plane orthogonal to the x axis:

+o0

Qx) = an/ ru(x,r)dr, (10.8)
O+oo

P(x) = 27rp/ ru?(x,r)dr, (10.9)
0

I1(x) =2mp /+oo rmm’. (10.10)
0

Writing the left-hand side of the boundary-layer equations in flux
form (using the continuity equation), neglecting viscosity and multi-
plying by r yields

a(ru?) 9 —
w T §(rUV +ru'v’') =0, (10.11)

which upon integration becomes

dP ——
i —27mp {ruv+ru v }0 , (10.12)

=0, (10.13)

81
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assuming that UV goes to zero sufficiently fast. In other words, the
mean momentum flow rate P is conserved. Injecting the self-similar
profile U(x,r) = Up(x)f({), it can be expressed as

00
P(x) = an/ rU?(x, r)dr, (10.14)
0

o0
=omprp(Pth()? [ eP@dE  Goas)

and similarly,

— too

Q(x) = 2mpry /o (x)*Up(x) I (10.16)

+

TI(x) = 27pr /2(x)Up(x)° /0 TRp@dE (10a9)

It follows that the product 7y /5 (x)Up(x) is conserved in the axial
direction.

Self-similar solution of the boundary-layer equations Assuming U(x,r) =
U (x)f (&) with & = r/ry/(x) and v/ = Up(x)?g(&), we obtain from
the continuity equation

r d71/2 , 19
TR dx @@+ 25 V), (10.18)

0= f(5)Uo(x)

¢ d ¢
rV = —12 ,Uj /0 EF(ENdE + 11,2 ;Zzuo /0 F2f(ENdE,  (10.19)

/ g ! ! ’ d é , , ,
:_V%/zuo/o ¢'f(&)dg + 112 ;Zzuo ng(g)—z/o & f(e )d(;],
(10.20)
d : p
= _E(”%/ZUO)/O §'f(&dS + 112 ;136/2 Uol2£(£). (10.21)

Then, injecting this relation into the mean axial velocity equation
(neglecting the viscous term), we obtain

71/2du0 / §/ N 7’1/2du0 drl/z _ d
e {2 fo) - [Cerer {200 122l - Lo

(10.22)

It follows that

r1/2 dllo _ d?‘l/z —g
Uy dx ’ dx ’
and therefore, 1/, = Sx. We know from the previous section that the

product rq /Uy does not depend on x, so C = S and U « x~ L

(10.23)

Another consequence is that the flow rate of mass increases with
axial distance x, which means that fluid is entrained from the quies-
cent region into the jet, and the flow rate of energy, on the other hand

decreases as x 1.
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Turbulent viscosity hypothesis Solving the general equation for the
self-similar profile in the above paragraph seems difficult... Instead,
let us close the boundary-layer equations by making a uniform tur-
bulent viscosity hypothesis: /v = —UT%—I;I with v constant. The

boundary layer equation for axial momentum becomes:

udd o _vivr o (r%f).

ox or  r or (1024)

This is the same equation as for a laminar boundary layer, replacing
the viscosity v by v + vr. In general, the turbulent viscosity vr is
much larger than the molecular viscosity v. The solution of these
equations was obtained by Schlichting1933: the self-similar profile is

33

— 1 i — —
f(@) = o) witha = v2 - 1.
1.0 Figure 10.6: Mean velocity pro-
: file in the self-similar round
[ jet: experimental data (solid
08 line) and uniform turbulent
< U > : viscosity solution (dashed line).
[ From Pope (2000).
Yo 06 -
041
02F
0.0 1.0 2.0
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10.2.4 Energy budget
Reynolds decomposition: u; = U; 4 u}, U; = ii;. The Reynolds-

averaged Navier-Stokes equations read

o ois 1. i 7
oil; + 11;0'11; = —Eaip +vo;0/i; — Bfugu;,

(10.25)

1. . S

= —Eaip + 21/8]51']' - afu;u;,
(10.26)

which after multiplying by @ yields the local mean energy budget:
D @? [P . — J— R
WPy 2vi'S;; + a'ulu' | = datulu —2vS5;5Y . (10.27)
Dt 2 0 ] ) ij ij ]
N / \—\_/—/
—P €

Similarly, starting from the equation for fluctuations
F) / =04, 1] 7 Ij 0 1 / j g/
st + w0 u; + w0l + ujohu; = —Eaip +2vd'Sj;,  (10.28)

we obtain after contracting with u' and averaging:

D | P : 1—— -
—k+o | — - 2vu1/51’-]- + fugullu;. =P- 21/5%5”’, (10.29)
Dt 1Y 2 N —

4

with k = “7/2 the turbulent kinetic energy. These equations both take
the form of local conservation equations with additional source and
sink terms. Upon integration over some volume, the divergence term
becomes a flux across the surface enclosing the volume. This term
describes the transport of mean or turbulent kinetic energy into or
out of the volume.

The terms € and ¢’ are the traces of a positive symmetric matrix,
so they are always positive. They correspond to local dissipation of
mean or turbulent kinetic energy, respectively.

Finally the term P can be interpreted as the kinetic energy ex-
changed locally between the mean-flow and the fluctuations. While
we cannot know its sign a priori, it is in general positive and is re-
ferred to as the production term. It should be noted that turbulent
kinetic energy is extracted from the mean-flow through the action of
Reynolds stresses against the mean velocity gradient.

Note that

¢ Turbulent kinetic energy production is affected only by the main

strain rate tensor: P = fS_ijugu;..
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¢ Only the anisotropic part of the Reynolds stress tensor contributes

to the production term: if ugu;. = %kéij + aj; then P = —S_ifaij.

* Using a turbulent viscosity model for Reynolds stresses: a;; =
—2vrS;j, we obtain P = 2vup S Sij > 0. Here the production has the
same form as the dissipation of mean kinetic energy g, replacing v

by vr.
¢ In the turbulent boundary layer approximation for the round jet
(see § 10.2.3), the production term reads: P = —%%—?, which

2
becomes P = vr (%—lrl) with a turbulent viscosity hypothesis.

We can revisit the anomalous dissipation issue from the evolution
equation for turbulent kinetic energy (Eq. (10.29)). Indeed, assum-
ing that the jet is self-similar, both k/ U% and P/ (US’ /11/2) are self-
similar and independent of the Reynolds number (asymptotically). In
other words, both Dk/Dt and P scale like U] /1 /5. We can therefore
expect ¢ to have the same scaling, so that ¢’/ (Uj /r1,2) should be
self-similar and independent of the Reynolds number. This is indeed
observed in experimental measurements.

0.02 —
Production
: ......... Lo~ Mean-flow
g 001k /’ convection
&) ' /
|/
v
......... ~ - =~ o -
0.00 L —
N T T
\
) Turbulent
% 001 |~ transport
—
Dissipation
-0.02 L l L l L
0.0 1.0 20

Note that for the round jet
3 _ _ Y npau
PIUs/ry2) = =" Uy o

Figure 10.7: Various terms of
the kinetic energy budget for
the round jet (Pope 2000).
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11
D erns ity (% Gravity The notes for this chapter are still in

a very early draft stage. They were
written rapidly, and might still contain
some mistakes or inaccurracies. Please
treat them with caution and let me
know if you find any problem.

Density was assumed to be constant in the previous chapters. Here,
we show some consequences of density variations on the dynamics,
in particular when the flow is subject to a gravity field.

11.1  Varying density and the equations of motion for a general

fluid
The main reference for this section
In chapter 2 we considered the Navier-Stokes equations for incom- is Vallis 2017, Chap. 1

pressible flows, assuming that the density is constant, and absorbed
it into the pressure gradient. In that case, pressure is entirely deter-
mined from the incompressibility condition, so that no additional
equation is required.

In general the momentum conservation equations read

Jdiu+u-Vu = —;Vp—i-vAu, (11.1)

which should be supplemented by the equations for the conservation
of mass

9ip+ V- (up) =0. (11.2)

It remains to provide an equation relating pressure to density, and
potentially other properties of the fluid, such as temperature or
chemical composition of the fluid (e.g. humidity in the atmosphere,
salinity in the ocean). This equation is referred to as an equation of
state, which may be written p = f(p, T, my,...,my) for a fluid which
is a mixture of N species with mixing ratios m; (note that in fact only
N — 1 such variables are needed). Properties such as temperature
and mixing ratios are transported by the flow and in turn satisfy
advection equations, potentially with sources and sinks.

Below are some examples of an equation of state:

* A constant density fluid has the trivial equation of state p =
const. Then it follows from conservation of mass that the flow
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is divergence-free and pressure is computed by solving the corre-
sponding Poisson problem as in chapter 2.

A barotropic* fluid has an equation of state of the form p = f(p)
(e.g. polytropic gas, p = Cp7)

e If the fluid is an ideal gas, p = pRT (e.g. dry air), or p = pRT(1 +
0.61q) for moist air, with g the specific humidity (the ratio of the
mass of water vapor contained in a parcel to the total mass). Note
that the fluid is baroclinic then.

e For water, we do not have an exact equation of state. A possible
approximation is to use a linear one: p = po[l — B7(T — Tp) +
Bp(p — po)] (fresh water), or p = po[1 — Br(T — To) + Bs(S — So) +
By(p — po)] (for seawater), where S is the salinity. This approxima-
tion is not always good enough?.

For baroclinic flows, to close the equations, we need additional
equations describing the composition of the flow:

om;+u-Vm; = M, (11.3)

where M represents sources and sinks, which depend on the partic-
ular case under study (see examples below), and a thermodynamic
equation, which describes the evolution of the temperature field.

In fact, the most general form of the equations uses a slightly
different equation of state and thermodynamic equation using the
specific entropy #:

n=n(p,I,my,..., my), (11.4)
o +u- Vi = %, (11.5)

where [ is the (specific) internal energy, Q corresponds to the heating
rate of the flow, and the pressure and density can in turn be deter-
mined from the specific entropy:

d
= ((;;) , (11.6)
O,M1,...,MN

817>
=13, , (11.7)
<al’( I,ml,...,mN

with &« = 1/p the specific volume.

HI= Hle

11.1.1 Example: the ideal gas

For an ideal gas, the equation of state is given by the equation3:

n =cyInl+ R;Ina 4+ const, (11.8)

* A barotropic fluid is a fluid in which
surface of constant pressure and sur-
faces of constant density coincide, or in
other words: Vp x Vp = 0. When this
is not the case, the fluid is said to be
baroclinic.

*See e.g. Vallis 2017, § 1.4 and § 1.7 for
more details

3 The exact value of the constant can be
computed in the case of a monoatomic
gas; it is given by the Sackur-Tetrode
formula.
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the temperature and internal energy are proportional:

1 [(on\ ¢y
1_<81>p_ I’ (11.9)
P _ 877 _ Ry
£ <306>1 =2, (11.10)

The latter equation yields the ideal gas law: p = pRyT. In this case,
the thermodynamic equation may be expressed in terms of the inter-
nal energy as:

DI Da
Dt + Por = Q, (11.11)
or using the continuity equation
DI
B +paV-u=Q, (11.12)
or finally in terms of the temperature
DT
CVﬁ +paV-u=Q. (11.13)

11.2  Fluid statics in a gravity field

From now on we assume that the fluid is subject to a gravity field,
which amounts to adding a body force g = —ge; to the right-hand
side of Eq. (11.1).

11.2.1 Hydrostatic balance

The projection of the momentum equations on the vertical yields the
following equation for vertical accelerations:

Dw 10
- 2% g (11.14)

Dt p 0z

For the fluid to be at rest, the pressure gradient and gravity forces
must balance each other. This is hydrostatic balance:

0

;Z = —pg- (11.15)
It means that pressure at any given level is determined by the weight
of fluid above it. In particular, pressure is a monotonically decreasing
function of height. This allows to use pressure as a vertical coordi-
nate, instead of height; this practice is extremely frequent in atmo-
spheric science.

Hydrostatic balance may be a useful approximation to the vertical

momentum equation, even when the fluid is not at rest. For instance,
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it is often approximately satisfied in large-scale geophysical flows,
where vertical accelerations are much smaller than horizontal accel-
erations*. Nevertheless, this approximation does not always yield a
sufficiently good approximation to the pressure field, whose horizon-
tal gradient generate lateral motion.

11.2.2  Application: vertical structure of the atmosphere and the dry adi-
abatic lapse rate

We assume that the atmosphere can be considered as an ideal gas.
We can rewrite the thermodynamic equation (11.11) using (specific)
enthalpy & = I 4 pa instead of internal energy:

Dh Dp
D zxﬁ =Q, (11.16)

which, assuming hydrostatic balance, yields

D
S(hi+gz) = Q. (11.17)

We introduce a generalized enthalpy, often referred to as the dry static
energy: h + gz = cpT + gz. We have just shown that this quantity is
conserved by adiabatic motion. The physical interpretation is that as
a fluid parcel is moved adiabatically from the surface towards higher
altitude, the potential energy gained is exactly balanced by the loss
of internal energy due to the work of pressure forces (the gas cools
down under adiabatic expansion). It follows that in the absence of

a heating term, the temperature profile in an atmospheric column is
given by the so-called dry adiabatic lapse rate:

aTr g
el —a. (11.18)
For dry air, this gives a temperature gradient of about 10K/km. Ob-
served average temperature profiles are typically less steep than

the dry adiabatic lapse rate. We give a little more explanation in

Sec. 11.2.3.

11.2.3 Static stability

In this section we would like to understand under which condition a
column of ideal gas at rest in a gravity field is stable. Clearly, a nec-
essary condition for stability is that the density should decrease with
height: g—g < 0. Invoking hydrostatic balance, we can use pressure
as a vertical coordinate, and the equivalent stability condition is that
density increases with pressure. However, this condition is not suf-
ficient: when a parcel of air is moved adiabatically over the vertical

4in the atmosphere, for instance, it only
breaks down at horizontal scales on

the order of the kilometer, and only

the numerical models with the highest
resolutions do not rely on it



AN INTRODUCTION TO FLUID TURBULENCE

column, it undergoes expansion or compression. The column is sta-
ble if the density of a parcel of air brought adiabatically to a reference
level is an increasing function of pressure.

Because of the ideal gas law p = pR;T, the density at a pressure
level is entirely determined by the temperature at the same level. Let
us choose our reference level with pressure py = poR;To, where pg
and Tj are the density and temperature. For simplicity we choose the
surface as our reference level, so that all the fluid parcels lie initially
above that level. We take a parcel of air at pressure level p; initially
it has a density p and a temperature T, satisfying p = pR;T. We
bring it adiabatically at the pressure level pg and we want to compute
its temperature 6 after it has been heated up by the work of pres-
sure forces. Under adiabatic motion, dry static energy is conserved:
cpdT + gdz = 0, or using hydrostatic balance and the ideal gas law,

—_ Rafep .
cpdT — RyTdp/p = 0, which integratesto 0 = T (%) . 8 is called
the potential temperature of the parcel. The density of the parcel after
adiabatic compression is p’ = po/(R;60) and the stability condition is
P < po,ie. Ty < 6. The static stability condition is that the poten-
tial temperature profile should increase with height, or equivalently

decrease with pressure:
a0

0z

The marginal stability condition (potential temperature independent

> 0. (11.19)

of height) corresponds to the dry adiabatic lapse rate for the temper-
ature profile. Hence, the fact that the observed temperature profile

is typically less steep can be interpreted as a consequence that the
atmosphere is in general not statically stable. Note that the condi-
tion above is for dry air, and the atmosphere contains moisture. This
affects the stability condition. In fact, the atmosphere is close to the
marginal stability condition for moist air, which corresponds to a less
steep vertical temperature gradient.

11.3 The shallow-water equations

In section 11.1 we have explained how to take into account density
variations in the equations of motion in a general way. Such den-
sity variations matter most when coupled to the effect of gravity. In
section 11.2 we have introduced some effects of gravity in a static
framework. We now turn to dynamical effects. We first do so in the
simplest system, the shallow-water equations, where the density

is assumed constant (which circumvents most of the difficulties of
section 11.1) but the upper boundary is a free surface, so that defor-
mations of the free surface lead to horizontal variations in the weight
of the fluid column, and hence to restoring motions due to gravity.

Moist convection is more complex,
because water vapor can condense
when a parcel of moist air is lifted
upwards, thereby heating the parcel.
See Vallis 2017, Chap. 18 for more
details.

Reference Vallis 2017, Chap. 3.
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Non-constant density will be considered in section 11.4.

11.3.1 Equations of motion

We consider a layer of fluid of constant density pg in a gravity field
g. We denote v = (u, w) the three dimensional velocity field, u the
horizontal velocity and w the vertical velocity. The depth of the fluid
layer is denoted &, and we assume that the bottom is flat. On top of
the fluid lies another fluid of negligible inertia (0 = 0). We assume
that hydrostatic balance holds, so that the vertical component of the
momentum conservation equation is:

dp = —pogdz, (11.20)

which after integrating from the bottom to arbitrary height z yields

p(z) — p(z=h) = pog(h — z), (11.21)

because the overlying fluid has negligible inertia, p(z = h) = 0, and
taking the horizontal gradient, we see that

V.ip=pogV_h (11.22)

In other words, the horizontal pressure gradient does not depend

on the vertical coordinate. If the horizontal velocity field is initially
independent of the vertical coordinate, it remains so at all times, and
the advection term therefore becomes v- Vu = u - Vu. The horizontal
momentum equation simplifies to

ou+u-Vu=—gVh+vAu. (11.23)

We have dropped the L index for horizontal gradients, since there is
no ambiguity anymore.

The continuity equation simplifies as well. Because density is
constant, the three-dimensional continuity equation becomes simply
V.v =0= V] -u+ J,w, which we can integrate vertically from the
bottom to the top of the fluid layer:

w(z=h)—w(z=0)=—hV -u, (11.24)

and since w = 2% and the bottom boundary condition imposes
w(z =0) =0, we have

Dh
D= —hV - u, (11.25)
or equivalently,
oh + V- (hu) =0. (11.26)

ot
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Combined with the horizontal momentum equations, these are the
shallow-water equations.

These equations are closed: due to the assumption of hydrostatic
balance, the thermodynamic properties of the fluid do not matter for
the dynamics (they are only passive). The only difference with the
incompressible case studied before is that now the upper boundary
is a free surface, with gravity as a restoring force. As we shall see
now, this new ingredient is sufficient to generate new dynamical
phenomena, such as waves.

11.3.2  Shallow-water waves

Non-rotating system Let us write H the average fluid layer depth and
h' the deviations”: h = H + I’. We consider the linearized equations:

oru = —gVH/, (11.27)
oth' + HV -u =0, (11.28)

which, after taking the time derivative of the continuity equation,
yields the wave equation
9%’

=7 = gHAN. (11.29)

This equation admits wave solutions with phase speed ¢ = /gH.
The waves are not dispersive. They are called (surface) gravity waves.

Note that we could also have diagonalized the full linear system.
This is most easily done by introducing the vorticity { = d,v — dyu,
the divergence 6 = dyu + dyv, the geopotential ¢ = gh and the Fourier
transforms {, 4, ¢. Then the linear system reads

2

4 0 0 0
X+LX=0,withX=|46|andL=]0 0 K?|. (11.30)
¢ 0 -2 0

It is clear that the spectrum of the system is {0, +iKc}. In addition to
the two wave modes, there is a vorticity mode which does not prop-
agate (its linear dynamics is trivial). We also see that the oscillations
of the free surface are directly related to oscillations of the horizontal
divergence.

Rotating system We can easily extend the analysis to a rotating
shallow-water system. The linear momentum equation becomes:

oru=—¢VH —2Q0 x u. (11.31)
The same analysis as above leads to the dispersion relation:
w? = f2 4 2K>. (11.32)

These waves are known as Poincaré waves.
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11.4 The Boussinesq approximation

In section 11.2 we have only considered fluid at rest in a gravity
field. Here, we return to dynamical effects. We first introduce an
approximation to simplify the equations: we assume that density
can be considered constant, except when it is combined with gravity.
The rationale is that density fluctuations are small, but since the
acceleration of gravity is large the product of the two may not be
neglected.

11.4.1 The Boussinesq equations

We decompose the density and pressure fields into a background
state and fluctuations: p = pg + dp, p = po + dp. We assume that
hydrostatic balance applies in the background state: dpy = —pogdz,
and that the fluctuations are small: ép < pp and dp < pg. po is a
constant and py depends on z only.

The momentum equations now write:

(po + 0p)(Oru+u-Vu) = =V (po +dp) + (po +p)sg, (11.33)
)
= (;ZO + pog> e; — Vop +opg, (11.34)
Jou+u-Vu= —lV(Sp—i— 5—pg, (11.35)
©o ©o
= —V¢ + be., (11.36)

with ¢ = dp/pp a modified pressure and b = —gdép/po the buoyancy.
The mass continuity equation writes:

(11.37)

which, assuming that the time scale in the derivative is the same as
the advective time scale, can be approximated as

V-u=0, (11.38)
i.e. incompressible flow.
Finally, the thermodynamic equation can be written as:
Db
Df B, (11.39)

where B is some source term, proportional to the heating rate, that
we do not write explicitly here5.
In particular, in the adiabatic case, the set of closed equations

Several flavors of the Boussinesq
equations, or tightly related ones,
such as the anelastic equations, exist.
Here our goal is just to show a simple
set of equations making use of the
Boussinesq approximation to discuss
internal gravity waves.

51t can be found, along with the deriva-
tion, starting from a form of the ther-
modynamic equation using pressure
and density, in Vallis 2017, p. 72.
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sometimes referred to as the simple Boussinesq equations is:

oru+u-Vu=—-V¢+ be,, (11.40)
V-u=0, (11.41)
otb+u-Vb=0. (11.42)

Let us now write a simple variant of these equations: we assume
that the background state is in fact a given density profile g which
depends on z. The derivation above still applies for fluctuations
dp = p+p', withp’ < p. Correspondingly, we decompose the
buoyancy b into b = —gp/po and b’ = —gp’/pg so that b = b + b’ with
b’ < b and the pressure dp into 6p = p + p’ with p’ < p, assuming
hydrostatic balance: dp = —pgdz. ¢ also becomes ¢ = ¢ + ¢’ in the
obvious way. Clearly be, — V¢ = 0. The equations become:

du+u-Vu=-V¢' +Vbe,, (11.43)
V-u=0, (11.44)
b +u-Vb = —N?u,, (11.45)
with N2 = @& — —5—0% the (square of the) buoyancy frequency.

11.4.2 Application: internal gravity waves

Vallis 2017, § 2.10.4 and Chap. 7.
Let us start from the Boussinesq equations for flow over a mean

density profile, Egs. (11.43)- (11.45).
We linearize the equations and assume invariance in the y direc-
tion, to obtain:

%{ = _aai;/, (11.46)
aaif = —%%l +0, (11.47)
g—z + %—:’ =0, (11.48)
aai;/ = —N?w. (11.49)

Fourier-transforming the equations, we obtain the dispersion rela-
tion for plane wave solutions:

w = j:Nik (11.50)
T2 -5
= +Ncos9, (11.51)

with k = K cos 0 the wave number in the zonal direction, m = Ksin 6
the wave number in the vertical direction. Such waves are called
internal gravity waves. The frequency of internal gravity waves is
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bounded by the buoyancy frequency N. A notable feature of gravity
waves is that the wave number does not appear in the dispersion
relation: only the direction of the wave vector (i.e. the direction of
propagation), and not its norm, determines the frequency.

We have assumed implicitly that N2 > 0 (stable background den-
sity profile, according to § 11.2.3). Indeed, in that case perturbations
to the background profile propagate but do not grow in amplitude.
On the other hand, if N2 < 0 the linear system above admits unsta-
ble modes with exponentially growing amplitude; the background
stratification is unstable.
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Geophysical Turbulence

12.1  Beta-plane turbulence

12.1.1 Beta effect

We start from the 3D momentum equations in a rotating frame of
reference’:

v+ v-Vv=—-Vp+vAv-2Q x v, (12.1)

where the latter term is the Coriolis force. The Coriolis force contains
two contributions: one involving horizontal velocities and one in-
volving vertical velocities, which can be neglected compared to the
first one. The projection of the Coriolis force on the plane normal to
the sphere (i.e. its contribution to the horizontal momentum equa-
tions) decreases from the pole to the equator. This phenomenon is
called beta effect, or differential rotation. As far as horizontal motions
are concerned, it is as if the Earth was rotating faster as we move to-
wards the poles. This effect has a major influence on the large-scale
dynamics of the atmosphere and the ocean.

The horizontal momentum equations on the sphere therefore
write?

ou+u-Vu=—-Vp+vAu— fe, xu, (12.2)

with f = 2()sin ¢ with ¢ the latitude.

The equations are sometimes projected onto a plane tangent to
the sphere at a given latitude ¢y. A corresponding approximation
is to expand the Coriolis parameter at first order: f(¢) = f(¢o) +
By + o(y), where y = a¢ is the meridional Cartesian coordinate, a the
radius of the planet, § = % cos ¢p the planetary vorticity gradient.
When only the first term (constant f) is retained, we talk about an
f-plane approximation. When the second term is also kept, this is the
beta-plane approximation.

The notes for this chapter are still in

a very early draft stage. They were
written rapidly, and might still contain
some mistakes or inaccurracies. Please
treat them with caution and let me
know if you find any problem.

Rhines (1975), Vallis (2017, § 12.1)

* We do not discuss carefully how to
obtain these equations of motion (for
instance the centrifugal force, etc);
please refer to a geophysical fluid
dynamics textbook for more details, for
instance Vallis (2017, Chap. 2).

> Here we bluntly assume that the
motion is 2D.



98 CORENTIN HERBERT

12.1.2  Barotropic vorticity equation
We start from the horizontal momentum equations on a beta-plane:

Oput + udyu 4+ voyu = —0xp + vAu + (fo + By)v, (12.3)
010 + 10y + vdyv = —dyp + VAV — (fo + By)u. (12.4)

We assume that the flow is two-dimensional (# and v do not depend
on the vertical) and non-divergent and we introduce a stream function:
oY 99

U= @, V= oy (12.5)

and the vorticity { = —Ayp = (V x u) - k. Taking the curl of the
momentum equations, we obtain:

0l +u-V{+ Bv=vAl, (12.6)
o +u-Vqg=vig, (12.7)

with g =  + By the potential vorticity. To differentiate the two, {
is sometimes called relative vorticity. By is the planetary vorticity
(associated to the rotation of the Earth).

This equation is often called barotropic vorticity equation.

The barotropic vorticity equation is very similar to the 2D Navier-
Stokes equations, with potential vorticity playing the role of vorticity.
In particular, it has analogous conservation laws: in the absence
of forcing and dissipation, the energy and the Casimir invariants
(including potential enstrophy) are conserved.

Nevertheless, the phenomenology is different from 2D turbulence.
In particular, we observe the formation of zonal jets, like in planetary
atmospheres (see Fig. 12.1). Note that when the term corresponding

to the beta effect dominates in the barotropic vorticity equation, we Figure 12.1: Vorticity field at
expect v ~ 0, which is a first hint that strong beta effect should different times (increasing from
constrain the velocity to be essentially zonal. left to right) from numerical

simulation of the barotropic
vorticity equation (Vallis 2017,

p- 450).
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12.1.3 Rhines scale

Let us consider the magnitude of the different terms in the barotropic
vorticity equation (neglecting molecular viscosity):

4 +u-Vi +pv =0,
# % pu
where U is a velocity scale and L a length scale. The inertial

term and the beta effect are of the same order of magnitude when
L = Lgr = /U/B, which is called the Rhines scale3. Typically U is > Rhines (1975)
estimated as the root-mean square velocity. This reasoning assumes
that the vorticity can be estimated as the root mean square veloc-
ity divided by the Rhines scale, which may actually be rather large.
Hence other forms for this scale could be written. Nevertheless, we
expect that at some large scale, the beta effect should dominate, while
turbulence should dominate at smaller scales.

12.1.4 Rossby waves

We linearize the barotropic vorticity equation and look for plane

kx+ly—wt)

wave solutions: ¢ = gge'( . These solutions are called Rossby

waves. They obey the dispersion relation:

k
w = —‘Bm (12.8)
The dispersion relation can be rewritten as
BN po B
(k + 5 + 17 = 102 (12.9)

which shows that the geometric locus of the wave vector is a circle,
whose center and radius depend on the frequency. The group veloc-
ity Cg = %(cos «,sina), where « is the angle between ey and the
wave vector k, points from k towards the center of the circle.

12.1.5 Deflection of the inverse cascade

We would now like to understand the role of Rossby waves in en-
ergy transfers across scales, and in particular in the formation of
anisotropic, zonal jets in beta plane turbulence. We start with a sim-
ple argument based on a comparison of timescales corresponding to
different processes.

The eddy-turnover time, associated with the inverse cascade of 2D
turbulence is Ty = 1/+/kK3E(k) ~ e 1/3K=2/3, with K = k2 + 12
the wave number. On the other hand, the timescale associated with
Rossby wave propagation is the inverse of the frequency w, which

99
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depends explicitly on the zonal wave number k. We can therefore
consider the product

WTNL, ~ ﬁ£*1/3kK*8/3, (12.10)

~ /38_1/31'(_5/3 cos 6, (12.11)

with k = Kcos . When this quantity is (much) smaller than unity, we
expect the non-linear transfers to be much faster than wave propaga-
tion, and therefore we should observe an (isotropic) inverse cascade
like in 2D. On the other hand, when it is (much) larger than unity,
wave propagation dominates and the flow should be anisotropic.

The curves of equation wty;, = const correspond to “dumbell”
shape curves. Hence, the inverse energy cascade is “deflected” by the
Rossby waves towards the axis k = 0, which explains the formation of
zonal structures (see Fig. 12.2).

Figure 12.2: 2D energy spec-
trum from numerical simula-
tions of the barotropic vorticity

equation (Vallis and Maltrud
1993). Initially the spectrum
is isotropic (left). As time pro-

ceeds, the energy condenses
around the k, = 0 axis (right).

12.1.6  The zonostrophic energy spectrum of beta-plane turbulence

If we neglect the anisotropic nature of the dispersion relation, the
above reasoning yields a scale separating the inverse cascade regime

and the wave regime: L, = ( %5 1/5. In fact, this scale is the same as
the Rhines scale defined above, if we use the Taylor estimate for the
energy dissipation rate ¢ = U3/L, assuming that the correct scale in
this formula is the Rhines scale Lg.

Now we would like to investigate the shape of the energy spec-
trum. Because of the inverse cascade, we have to add a dissipation
mechanism at large scale to reach a steady state. We add Rayleigh
friction to the barotropic vorticity equation:

ol +u-V{+ pv=vAl —al. (12.12)

Like in 2D turbulence, we can estimate easily the kinetic energy at
steady-state, by assuming that it is entirely dissipated by the linear
friction. It gives: ¢ = 2aF = 3aU?. Injecting this estimate into the
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Rhines scale yields a new scale L,z = (ﬁ) e which does not nec-
essarily coincide with the separation scale between the nonlinear and
the linear regimes derived above. This scale is in fact a combination
of the scale L; and the classical friction scale L, = v&/a3 at which
the energy cascade is arrested in 2D: L, = LY/6L3/%. One regime
where we can have a physical interpretation of the competition be-
tween the different effects (nonlinearity, beta effect and friction) is the
regime where friction is sufficiently small, so that the friction scale L,

—  Zonal kinetic ener
(and the Rhines friction scale L,g) is large. Then it can be expected "~ Eddy kineticencrgy
that the inverse energy cascade proceeds until the scale L¢; once it

is reached, the beta effect becomes dominant, the flow is anisotropic

£

and jets should form until they reach a meridional scale L,p. In this

regime it can be assumed that the energy spectrum does not depend For

on ¢ anymore, and dimensional analysis yields E(k) = Cﬁﬁzk’S .
One drawback of this reasoning is that with such a steep spec-
trum, the eddy-turnover time decreases with increasing scale, and a . .

o . ] Figure 12.3: Schematic energy
definite friction scale cannot be defined anymore. X ;
spectrum in the zonostrophic

regime of beta-plane turbu-

1 Valli , Chap. 12).
12.1.7 Momentum transport by Rossby waves ence (Vallis 2017, Chap. 12)

In § 12.1.5, we have given an argument based on energy transfer in
spectral space to explain the formation of zonal jets in beta-plane
turbulence. In this section, we give a different argument, based on
momentum transport properties of Rossby waves.

Let us carry out a Reynolds decomposition of the barotropic vor-
ticity equation: we decompose the 2D velocity field into a mean-flow
and fluctuations, and we assume that the mean flow is entirely in
the zonal direction: u = Uey + u’, where the mean-flow is indepen-
dent of x. The Reynolds-averaged Navier-Stokes equations for the
mean-flow write

o:U = —0,u'v’ + vAU. (12.13)

The first term on the right hand side describes the acceleration due to
all the non-zonally symmetric motions, like waves or turbulence. It
takes the form of the divergence of a flux, u'v’, which is a component
of the Reynolds stress tensor, which is often called eddy momentum
flux in the context of geophysical fluid dynamics. Because of the
minus sign, the term —d,u'v’ is usually called eddy momentum flux
convergence.

Now, it is easy to understand how Rossby waves transport mo-
mentum, and therefore accelerate the mean-flow through the eddy

momentum flux convergence term. Indeed, for a plane Rossby wave

we can compute directly the eddy momentum flux: u = 9dy¢p =
Figure 12.4: Momentum trans-

port by Rossby waves (Vallis
2017, p. 544)-
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—lygsin(kx + ly — wt), v = kg sin(kx + ly — wt), and therefore:
— L kI >
uw'v' = —kl— sin” (kx + ly — wt)dx = ——yj. (12.14)
27 0 2

On the other hand, the group velocity in the meridional direction is

dw = 2Bk (12.15)
ol (k2 + 12)2‘ '

& =
In particular, cgﬁ < 0: Rossby waves transport energy and momen-
tum in opposite meridional directions. If Rossby waves propagate
meridionally away from a source region, eddy momentum conver-
gence in this region should be positive and the flow should accelerate
towards the east. This is the fundamental mechanism through which
Rossby waves can generate zonal jets. It plays an important part in
the maintenance of the Jet Stream on Earth for instance4.

4+We have left aside for now the mech-
anism generating Rossby waves, which
in that case is an instability of the jet
called the baroclinic instability
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Appendix






A
Taylor Hypothesis

Until the (relatively recent) advent of velocimetry techniques based
on lasers and high-speed cameras, most measurements were done
with hot-wire devices, which only give access to the longitudinal (in
the direction of the mean-flow) component of velocity at one point,
as a function of time (see Fig. A.1). How do you extract informa-
tion about the spatial structure of the velocity field from such a time
series?

g 8

000 [

D W
<
(=3
<

1000

y (arbitrary units)
o

1000

1t

-2000 [

Veloc

-3000

4 1 s s s
000 0 1000 2000 3000 4000 5000

Time (sampling units)

Let us denote x the coordinate along the mean flow U, u the veloc-
ity in the reference frame of the laboratory and u’ the velocity in the
reference frame moving with the mean flow. We have

u(x,t) =U+u'(x — Ut,t). (A.1)

As long as 1’ is typically much smaller than U, we can assume
that the turbulence is essentially transported by the mean flow. This
means that the spatial structure of the velocity field is frozen and
travels as a block with speed U. When that happens, measuring
u(xp,t) as a function of time at one point x is equivalent to mea-
suring u(x, tp) as a function of x at a given time. The validity of this
approach is measured by the turbulent intensity: I = \/(u'?) /U, and
we should have I <1 for the Taylor hypothesis to be applicable *.

Taylor (1938)

Figure A.1: Velocity signal
recorded by a hot-wire in

a wind tunnel, sampled at
skHz (Frisch 1995).

e

*See Lumley (1965) and Pinton and
Labbé (1994) about possible corrections
to the Taylor hypothesis.






B
Some technical results

B.1 Isotropic functions: scalars, vectors and tensors

Let us assume that r is a vector and S(r), V(r) and T(r) are respec-
tively a scalar, vector and rank-2 tensor function of r. We assume

that S, V and T are isotropic, i.e. the quantities S(r), a- V(r) and
a-T(r) - b for arbitrary vectors a, b, r are invariant under the action of
O(3). Then the most general form for these functions is:

S(r) = S(r), (B.1)
Vl(l‘) = V(T)Ti, (BZ)
Tij(x) = To(r)dij + To(r)rir;. (B.3)

I shall not write a fully rigorous proof here. In a nuthshell, this result
follows from invariant theory, which states in particular that a func-
tion of vectors x*, invariant under the action of rotations SO(3) can
be expressed in terms of scalar products x* - x* and mixed products
x* . (xP x x7) = det(x*,xP,x7). It follows that:

e S(r), as a scalar invariant function of r only, can only be a function
ofr-r.

e considering a vector x, the scalar invariant V;(r)x’, which is also a
linear function of x, is proportional to r - x.

* considering two vectors x and y, the scalar invariant Tij(r)xiyf ,
which is also a quadratic form, can be expressed in terms of
the scalar products x -y, (r- x)(r - y) and the mixed products
involving the three vectors, with coefficients depending on 2

only. Because the mixed products are not invariant under re-

flections, their contribution vanishes if we impose O(3) symetry,
and we are left with the above result. If we only require symetry
with respect to rotations (SO(3)), an additional term appears:

Tij(r) = To(r)dyj + Ta(r)rirj + Tz(r)ei]«krk. Note that in general

See Robertson (1940) or Batchelor (1953,
§ 3.3) for a more detailed presentation
in the context of turbulence, or clas-
sical books on group theory for the
background material.
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T;j(r) = Tji(—r), so that reflection symmetry is equivalent to sym-
metry with respect to the two indices of the tensor.



C
The energy spectrum

In this section we discuss some additional aspects of the energy spec-
trum.

C.1  Model spectrum

In chapter 6 we will present a theory which accounts for the form of
the energy spectrum in the inertial range, where it follows a power-
law with a —5/3 slope; based on dimensional analysis, the spectrum
is given by E(k) = Ce?/3k~5/3 in that range. It can be useful to
construct an analytical function which fits the observed spectrum,
with the power law identified above in the inertial range but also in
the energy-containing and dissipative scales. Such a model could
take the form:

E(K) = Ce/3k~5 f (kL) k), (C1)

where f1 (kL) ~ 1 when kL > 1 and f; (k) ~ 1 when knp < 1. The
specific forms which have been suggested are

5/3+po
filkt) = ( 7 ) ) = e PO e e,
(kL)z +cr

(C.2)
where pg = 2,c, > 0,¢; > 0, > 0 are model constants. With such
choices, the energy spectrum goes like k? at large scale. The alterna-
tive choice pg = 4, such that E(k) ~ k* at large scale, corresponds to
the van Karman spectrum. The constant § is determined empirically;
B = 5.2is found to give good agreement with experimental data.
The constants c;, and c; are determined by requiring that E(k) (resp.
2vk?E(k)) integrates to E (resp. e).

Pope (2000, § 6.5.3)

slope —5/3

10° 102 10" 10°
]

The model spectrum Eq. (C.1) for
R, = 500.



110 CORENTIN HERBERT

C.2 The one-dimensional spectrum

Pope (2000, § 6.5)
Up to now we have only discussed the isotropic spectrum E(k), cor-

responding to the kinetic energy integrated over a sphere of radius
k in Fourier space. In isotropic flows, it is the most natural quantity
to characterize the energy content over scales. Exploiting the con-
straints of homogeneity and isotropy, it can be computed easily even
if we do not have access to the full velocity field, through the formula
E(k) = 2nk?Ul(k) = % [ Ui(r)e~™Tdr, which only requires the
knowledge of the longitudinal autocorrelation function f(r).

Alternatively, we may measure one component of the velocity co-
variance tensor in an arbitrary direction (for simplicity let us choose
a frame of reference such that this measurement direction is the first
basis vector e;.), and compute (twice) its Fourier transform:

1 [t

Eij(k1) = N Uji(rer)e ™"dr, (C3)
and conversely,
1+ ikir-e
Uji(r) = 5/ Eij(kq)e™ "1 dk;. (Cy)
From Eq. C.4 it follows that
+0oo +00 R
By =2 [ [ gk ke k. (€3)

Hence, the diagonal components of the one-dimensional spectrum
correspond to integrating the kinetic energy density in Fourier space
over a plane (here with fixed k1). Note in particular that unlike the
isotropic spectrum E(k), the one-dimensional spectra E;;(k1) contain ko
contributions from wave vectors with wave numbers larger than k;
(in fact, kq is the smallest wave number contributing to the spectrum).
As usual, one can distinguish the longitudinal and transverse spectra
Eq1(k1) and Ex (k1) = Esz(kq). Using homogeneity, they can be
written E;; (k1) = (2/7) f0+°° U;;(req) cos(kyr)dr, and with our choice
of frame of reference, Uy1(re1) = f(r), Uxn(re;) = Usz(rer) = g(r), so
that ks
2 [t 2 [t
Ell(kl) = ; 0 f(?’) COS(kli’)dT, E22(k1> = E33(k1) = ;‘/0 g(?’) cos(klr)dr,
(C.6)
and using the relation between the longitudinal and transverse auto-
correlation function ¢(r) = f(r) + rf'(r) /2, we obtain the relation

1 e
En(ki) = En(k) + - /0 FF(r) cos (ki r)dr, C)
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integrating by parts,
1 [t .
= E11 (kl) — ; 0 f(?’) [COS(k11’) — Tkl Sll‘l(k11’)]d1’, (C8)
_Eu(k) kidEu(ki) K d (Eu(k) (C.o)
2 2 dky 2dk \ k) 9

The longitudinal spectrum can also be related to the isotropic
spectrum. Injecting U;;(ky, ka, k3) = E(k)(1 — k?/k)/ (47k?) into
Eq. (C.5), we obtain

+o00 +o0 E(k kZ
E (k) :/ / 2;{2( —é) dkydks. (C.10)

Changing to polar coordinates in the plane (ka, k3), with k2 = k3 + k3,

we get
T E(k) K2
= 1— ——— | kedk,, C.
/o k%+k%< KR4+k2) (C.1x)
and under the new change of variable k = \/k? + k2,
T E(k) K
_ /kl m (1 — ). (C.12)
Differentiating with respect to k;, we get
—+0c0
dEn(k) _ —2k; / E(k)k—3dk < 0, (C.13)
dky ke

which shows that regardless of the shape of the isotropic spectrum,
the longitudinal spectrum Ejq (k) is always a decreasing function of
kq. Differentiating again,

2 “+o00
dElilz(kl) = _2/ E(k)kink-l-ZE(kl)kl*z, (C'14)
dkq K

from which we obtain the isotropic spectrum in terms of the longitu-
dinal spectrum:

K d (1dEqy(k)
E(k) = > 7 (k P ) . (C.15)

From the above relations, we see that if the longitudinal spectrum
has a power-law of the form Eq; (k1) = Ciky P then it is also the
case for the transverse and isotropic spectra: Exy (k1) = Czk;p and
E(k) = Ck P withC; = (14 p)Cy/2and C = p(2+ p)Cy/2. For
p =5/3, we have C; = 4/3Cjand C = 55/18C;.

E(K),Ey, (k). Eqpy (k)

I‘)fg | | !
" 10° 10t 10 10

Comparison of the one-dimensional

and isotropic spectra (Pope 2000).
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E (Kl)/(z“;vs)l/4

K1 Ey (i)

U&F 1969, wake 23
U&F 1969, wake 308

CBC 1971, grid turb. 72
Champagne 1970, hom. shear 130
S&M 1965, BL401

Laufer 1954, pipe 170

Tielman 1967, BL 282

K&V 1966, grid turb. 540

K&A 1991, channel 53

CAHI 1991, return channel 3180
Grant 1962, tidal channel 2000
Gibson 1963, round jet 780

C&F 1974, BL 850

Tielman 1967, BL 23

CBC 1971, grid turb. 37

S&V 1994, BL 600
S&V 1994, BL 1500

-2/3 5/3

&

@ M J O+ X+ * ¢ 4 ¥ DOV A

C.3 Refined study of the energy spectrum

Fig. C.1 shows longitudinal spectra from a variety of measurements
at different Reynolds numbers, rescaled based on Kolmogorov scal-
ings (see Chap. 6). It shows that the spectrum seems to follow a uni-
versal curve at scales smaller than the energy containing scales. We
also observe that the inertial range grows with increasing Reynolds
number. These figures also illustrate the quality of the fit obtained
from the model spectrum given by Eq. (C.1) (solid lines). By contrast,
the alternative models f;, (ki7) = e =Pk (corresponding to ¢, = 0) with
Bo = 2.094 (dashed line) and f; (ki) = ¢~ 3CUkn)*"? (dot-dashed line,
Pao (1965)) do not describe as well the energy spectrum decay in the
dissipative range.

Plotting the one-dimensional spectra in all directions in com-
pensated form, as in Fig. C.2 allows to test isotropy. Although the
measurements are made in a flow which is not isotropic (a turbulent
boundary layer), the transverse spectra Exy (k1) and Es3(kq) are quite
similar, in particular at small scales. The ratio C;/C; ~ 1.4 is close
to 4/3, which is the theoretical value for isotropic flows with a —5/3
power law spectrum.

Finally, this figure shows a departure from the Kolmogorov iner-
tial range prediction towards the end of the inertial range (here, at
kn ~ 0.1) where a bump appears in the compensated spectrum. This
phenomenon’® is referred to as the bottleneck of the energy cascade.

Figure C.1: Longitudinal ve-
locity spectrum in various
experiments (points) and using
the model spectrum Eq. (C.1),
in logarithmic coordinates (left)
revealing the inertial range and
energy containing range, and
in linear-logarithmic coordi-
nates (right), focusing on the
dissipative range (Pope 2000,
§6.5.4).

* also observed in high resolution direct
numerical simulations, e.g. Kaneda

et al. (2003) and Mininni, Alexakis, and
Pouquet (2008).
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Figure C.2: Compensated one-
dimensional spectra measured
in a turbulent boundary layer

at R, = 1450 (solid lines, Sad-
doughi and Veeravalli (1994))
and from the model spectrum
Eq. (C.1) (dashed lines). Figure
from Pope (2000, Fig. 6.17).

o
o

o
o

Ky Ep(rep)

213513

It means that the universal function F appearing in the Kolmogorov
spectrum at finite Reynolds number (see § 6.1) is not a decreasing
function of k, but rather increases throughout the inertial range, until
a scale on the order of the Kolmogorov scale, and starts decreasing
only within the dissipative range. This phenomenon is classically
interpreted as a consequence of the fact that viscosity, which can

still be seen from the lower end of the inertial range, inhibits tri-

adic interactions involving modes close to the dissipative scales and
thereby reduces slightly the energy transfer towards smaller scales,

leading to an accumulation of energy at the door of the dissipative In numerical simulations, the bottleneck
effect increases with the use of hyper-

) ) ) e ) viscosity, which is one of the arguments
tleneck is a signature of incomplete thermalization (Frisch et al. 2008). against such numerical practice.

range (Falkovich 1994). An alternative interpretation is that the bot-

It has also been suggested to be related to helicity (Kurien, Taylor,
and Matsumoto 2004).
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C.4 The energy spectrum in the energy-containing range

Let us assume that the velocity-spectrum tensor Ui]-(k) is at least
twice differentiable at k = 0, so that we can write the Taylor expan-
sion?:

Uij(k) = ajj + Eli]'lkl + Elijlmklkm + O(kz), (C.16)

where the coefficients 4;;, - - - do not depend on k. The incompress-
ibility condition k' Hij(k) for all wave vectors k means that all the
terms in the series must vanish: a,-]-ki = uijlkikl = a,-jlmkiklkm =0.In
particular, ajj = 03. Besides, for any k the hermitian form Hij(k) is
positive (non-definite): for any vector X, we have X' X/ *I:Il-j (k) > 0.
In particular, ailein k' > 0, but if aiji # 0 this quantity changes
sign with k, so necessarily 4;; = 0. It follows that the first non-
vanishing coefficient is a;;y,: Hij(k) = aiﬂmklk'” +0(k?), and therefore
E(k) = 27rk2ai]-lmkl k™ + o(k*) should scale like k* at small k (notwith-
standing the tensor structure).

In numerical simulations, both the k* and an alternative k? scalings
have been observed (Chasnov 1995), depending on the symmetries
of the inital condition. The k? scaling has been explained theoreti-
cally by Saffman (1967). Note also that k? corresponds to a statistical
equilibrium spectrum.

Figure C.3: Compensated
isotropic energy spectrum

E(k) in high-resolution DNS of
homogeneous isotropic turbu-
lence (Kaneda et al. 2003).

2 Batchelor (1953, § 3.1)

3 No such conclusion can be drawn
for other coefficients: for instance
eiﬂk’kl =0 for all k.
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