Complete Lattices and Up-to Techniques

Damien Pous - ENS Lyon, France

APLAS'07
December 1st
Singapore

Outline

1. A concrete toy example to get started,
2. General and abstract theory of up-to techniques,
3. A new method for validating up-to context techniques.

Bisimulation, up-to techniques

- **Bisimilarity**: a behavioural equivalence associated with a proof technique: bisimulation.

 “To prove that p and q are bisimilar, it suffices to show that p and q are related by a relation which is a bisimulation”.

- Up-to techniques, “bisimulation up-to”:

 “To prove that p and q are bisimilar, it suffices to show that p and q are related by a relation which is almost a bisimulation”.

- Not only for π-calculists: growing interest in bisimulation proof methods for extensions of the λ-calculus.

A typical bisimulation proof

- Bisimilarity is the largest symmetric relation such that the following diagram holds:

 $\begin{array}{c}
p \\
\alpha \downarrow \\
p' \sim q'
\end{array}$

- Suppose we have an LTS, with a replication operator ($!$), defined by the following rule:

 $\begin{array}{c}
p \xrightarrow{\alpha} p' \\
\hline
!p \xrightarrow{\alpha} !p | p'
\end{array}$

 let’s prove that bisimilarity is preserved by this operator:

 $p \sim q \Rightarrow !p \sim !q$
A typical bisimulation proof, cont.

Assuming that $p \sim q$, we have to find a relation that contains $⟨!p, !q⟩$ and satisfies the previous diagram.

\[R_1 \triangleq \{⟨!p, !q⟩\} \]

\[\begin{array}{ccc}
P & R_1 & Q \\
α & \uparrow & α \\
!p | p' & ? & !q | q' \\
\end{array} \]

$R_2 \triangleq R_1 \cup \{⟨!p | p_1, !q | q_1⟩ \mid \forall p_1, q_1, p_1 \sim q_1\}$

\[\begin{array}{ccc}
P & R_2 & Q \\
α & \uparrow & α \\
!p | p_1 & ? & !q | q_1 \\
\end{array} \]

\[(⟨!p | p_2⟩ | p_1) \sim (⟨!q | q_2⟩ | q_1) \]

\[\ldots \]

\[R_∞ \triangleq \{⟨(\ldots (⟨!p | p_n⟩ | p_{n−1}) \ldots) | p_1, (\ldots (⟨!q | q_n⟩ | q_{n−1}) \ldots) | q_1⟩ \mid \forall n \in \mathbb{N}, \forall i \leq n, p_i \sim q_i\} \]

A typical bisimulation up-to proof

- Start again with the singleton relation: $R_1 \triangleq \{⟨!p, !q⟩\}$

\[\begin{array}{ccc}
P & R_1 & Q \\
α & \uparrow & α \\
!p | p' & ? & !q | q' \\
\end{array} \]

\[R_3 \triangleq (C(R_1) \sim !q | q' \sim !p | p') \]

\[\begin{array}{ccc}
P & R_1 & Q \\
α & \uparrow & α \\
!p | p' & ? & !q | q' \\
\end{array} \]

- R_1 is a bisimulation up-to the map $R \mapsto C(R) \sim$.

- This up-to technique is actually correct, we have proved that $R_1 \subseteq \sim$.

A Theory of Up-to Techniques

- Other examples of up-to techniques:
 - based on diagram chasing arguments:
 - $R \mapsto \sim R \sim$ (more modular proofs)
 - $R \mapsto R^*$ (small and local candidates)
 - $R \mapsto \preceq R \approx$ (patch for the weak case)
 - based on the structure of processes:
 - \mathcal{C} (keep small processes)
 - σ “injective substitution” (work with fewer names)

- Some of these techniques them may be delicate to obtain.

- We often want to combine these techniques, to obtain a powerful one.

Challenge 1: modularity
Challenge 2: abstraction

▶ Several kinds of bisimilarity:
 1. several kinds of transition systems (π, λ…)
 2. strong (∼), weak (≈), expansion (≿), coupled…
 3. labelled, barbed, hedged, typed, with environments…

▶ The notion of LTS give the first level of abstraction: we don’t need to fix the set of processes.

▶ The theory of up-to techniques can be defined at the abstract level of complete lattices; In doing this, we will reason about coinduction in general, rather than about a specific form of bisimilarity.

(we will actually use this gain of generality)

▶ We enrich the complete lattice with a monoid structure to define bisimilarity, and diagram based techniques

▶ For up-to context techniques, we need to work with concrete relations, however.

Up-to techniques

▶ A diagram becomes a simple inclusion:

\[
egin{array}{ccc}
 p & R & q \\
 \alpha & \downarrow & \alpha \\
 p' & R & q' \\
 R \subseteq s(R)
\end{array}
\quad
\begin{array}{ccc}
 p & R & q \\
 \alpha & \downarrow & \alpha \\
 p' & f(R) & q' \\
 R \subseteq s(f(R))
\end{array}
\]

▶ A map \(f \) is correct if any simulation up to \(f \) is contained in similarity, or equivalently, if

\[
\nu(s \circ f) \subseteq \nu s
\]

▶ Different maps may generate the same similarity, and some of them are easier to work with; we would like to find the “largest” one.

▶ Problem with correct maps: they are not always preserved by composition or lubs.

Compatible maps

▶ An order-preserving map \(f \) is compatible (with \(s \)) if

\[
f \circ s \subseteq s \circ f
\]

Proposition.

▶ Compatible maps are correct maps.

▶ Compatible maps are closed under composition and lubs.

▶ In the case of strong/weak bisimilarity, all known up-to techniques can be expressed by means of compatible maps [San98]…

▶ except for recent ones, that go beyond the “up to expansion” technique by using termination hypotheses [Pou05].

Coinduction

▶ Assume a complete lattice \((X, \subseteq, \bigcup) \) (elements of \(X \) \((R, S \ldots) \) intuitively represent binary relations)

▶ Knaster-Tarski theorem ensures that any order preserving map \(s : X \rightarrow X \) has a greatest fixpoint, obtained as the lub of its post-fixpoints:

\[
\nu s \triangleq \bigcup \{ R \in X \mid R \subseteq s(R) \}
\]

▶ We introduce the following terminology:

▶ \(\nu s \) is called the similarity,

▶ a simulation is an element \(R \) s.t. \(R \subseteq s(R) \),

“similarity is the greatest simulation”

(almost all notions of bisimilarity can be defined in this way)

▶ a simulation up to \(f \) is an element \(R \) s.t. \(R \subseteq s(f(R)) \),
Combining correct and compatible maps

These recent techniques being only correct, they could not be combined for free, even with standard (compatible) techniques.

The following theorem gives a sufficient condition for such a combination to remain correct:

Composition Theorem.
Let g be correct and f be compatible.
If f is compatible with g, then $g \circ f$ is correct.
(surprisingly, the sufficient condition is a compatibility property)

An application of the composition theorem

Complex technique. Let \succ be a relation. If $\succ^+ \cdot \rightarrow^+$ is strongly normalising, then the following map is correct:
$$t_\succ : R \mapsto (R \cap \succ)^* \cdot R.$$

Standard technique. The following map is compatible
$$f : R \mapsto C(R)^= \cdot \approx.$$

To combine both techniques, it suffices that f be compatible with t_\succ. A sufficient condition for that is $C(\succ) \subseteq \succ$.

Combined, scary technique. If $\succ^+ \cdot \rightarrow^+$ is strongly normalising, and $C(\succ) \subseteq \succ$, then any symmetric relation satisfying the following diagram is contained in \approx:

\[
\begin{array}{ccc}
p & R & q \\
\alpha \downarrow & \Downarrow & \alpha \downarrow \\
p' & ((C(R) \cup \approx) \cap \succ)^* \cdot C(R)^= \cdot \approx & q'
\end{array}
\]

Up to context techniques

- The following situation may appear in a bisimulation game:

\[
\begin{array}{ccc}
p & R & q \\
\alpha \downarrow & \Downarrow & \alpha \downarrow \\
c[p'] & C(R) & c[q'] \\
q' & R & q'
\end{array}
\]

- In this case, we would like to reason “up to context”, and just remove the context part of the processes.

- These techniques generally fall in the scope of compatible maps; however, proving this usually requires us:
 - in most cases, to consider polyadic contexts;
 - to reason by induction on the structure of these contexts.
Standard definition of context closure

Consider the case of CCS:

\[p, q ::= 0 \mid (\nu a)p \mid \alpha.p \mid p \mid q \mid !p \]

- A polyadic context \(c \) is a process whose occurrences of \(0 \) are numbered; \(c[p_1 \ldots p_n] \) is the term obtained by replacing numbered occurrences; we associate to each context the following map over relations:

\[\lfloor c \rfloor : R \mapsto \{ (c[p_1, \ldots, p_n], c[q_1, \ldots, q_n]) \mid \forall i, \ p_i R q_i \} \]

- The context closure is the map \(C \triangleq \bigcup_c \lfloor c \rfloor \).

- Proving the compatibility of \(C \) directly requires a tedious structural induction.

Characterisation by means of initial contexts

- Define the following initial contexts:

\[0 : \emptyset \mapsto 0 \]
\[(\nu a) : p \mapsto (\nu a)p \]
\[\alpha. : p \mapsto \alpha.p \]
\[| : p, q \mapsto p \mid q \]
\[! : p \mapsto !p \]

- By iterating over these contexts, we can reach the previous definition of context closure:

Proposition.

\[C = \left(\text{id} \cup \bigcup_{c \text{ initial}} \lfloor c \rfloor \right)^\omega. \]

- Therefore, it should suffice to prove that maps \(\lfloor c \rfloor \) are compatible, where \(c \) is initial. **Unfortunately**, \(\lfloor ! \rfloor \) is not compatible by itself (\(C \) is, don’t worry...).

Up-to techniques for compatibility

- Recall that \(f \) is compatible if \(f \circ s \subseteq s \circ f \).
- This property can be defined coinductively, by working in the function space (which is a complete lattice): there exist a second-order map \(\varphi \) s.t.:

\[f \subseteq \varphi(g) \iff f \circ s \subseteq s \circ g \quad (\text{notation: } f \stackrel{s}{\rightarrow} g). \]

- We have a theory of up-to techniques for compatibility!

Theorem. If \(f \stackrel{s}{\rightarrow} f^\omega \), then \(f^\omega \) is compatible.

Theorem. If \(g \) is compatible, and \(f \stackrel{s}{\rightarrow} g \circ f^\omega \), then \(g \circ f^\omega \) is compatible.

(in both cases, under some uninteresting technical conditions on \(f \) and \(g \), easily satisfied in practise)

The initial contexts method

- We want to prove that \(C \) is compatible, i.e., that \(C \stackrel{s}{\rightarrow} C \).
- Proving \(\lfloor c \rfloor \stackrel{s}{\rightarrow} \lfloor c \rfloor \) for any initial context is sufficient, but may not always be possible;
- Thanks to the “up to iteration” technique, it suffices to prove \(\lfloor c \rfloor \stackrel{s}{\rightarrow} C \) for any initial context. This amounts to checking a simple condition between each syntactic construction of the language and the map that generates the bisimilarity we consider.

- This method is complete; in CCS, in the strong case, we have:

\[\lfloor ! \rfloor \stackrel{s}{\rightarrow} \lfloor ! \rfloor^\omega \circ (\lfloor ! \rfloor \cup \text{id}) \subseteq C \]

- in the weak case, we found a mistake in the standard proof [SW01]: \(C \) itself is not compatible, we have to reason modulo unfolding of replications.
Summing up

▶ A general theory of up to techniques for coinduction: compatible and correct maps that can be composed.
▶ A theory of up to techniques for compatibility,
▶ used to define a method for validating up to context techniques in an easy way (initial contexts)
▶ More in the paper:
 ▶ going from one-sided games to two-sided games, at the abstract level.
 ▶ proof of the scary technique based on termination guarantees;
 ▶ detailed proofs for up to context in CCS,
 ▶ a counter-example for an invalid combination of up to context and a restricted form of up to transitivity.

Remarks & Future work

▶ We cannot encompass the recent “logical bisimulations” [SKS07a], but it seems that we can analyse the even more recent “environment bisimulations” [SKS07b].
▶ Up-to techniques relying on termination hypotheses can be proved at the abstract (point-free) level [DBvdW97].
▶ Parts of the theory presented here are formalised in the Coq proof assistant; in the long term, we would like to define a framework in which bisimulation proofs could be done formally and easily, in a semi-automatic way.
▶ Can SOS rule formats for congruence (tyft/tyxt, panth...) be turned into rule formats for up-to context techniques?

Thanks!