Library Controlled
Require Export Theory.
Section RelaxedExpansion.
Variables A X Y: Type.
Variable TX: reduction_t A X.
Variable TY: reduction_t A Y.
Variable B: relation X.
Hypothesis HB: wexpansion1 TX TX B.
Silent case
Let wexpansion1_ctrl_t:
forall R, evolve_t TX TY R (comp (star B) R) -> simulation_t TX TY (comp (star B) R).
Lemma 3.10
Theorem wexpansion1_ctrl: wexpansion1 TX TX B -> controlled TX TY B.
End RelaxedExpansion.
Section PlusWf.
Variable A: Type.
Variable X: Set.
Variable Y: Type.
Variable TX: reduction_t A X.
Variable TY: reduction_t A Y.
Variable B: relation X.
Hypothesis HB: evolve TX TX B (plus B).
Hypothesis HB': well_founded (trans B).
Theorem 3.11
Theorem plus_wf_controlled: controlled TX TY B.
End PlusWf.
Section StarWf.
Variable A: Type.
Variable X: Set.
Variable Y: Type.
Variable TX: reduction_t A X.
Variable TY: reduction_t A Y.
Variable B: relation X.
Hypothesis HB: evolve TX TX B (star B).
Hypothesis HB': well_founded (trans (comp (plus B) (plus (TX (T _))))).
Theorem 3.12
Theorem star_wf_controlled: controlled TX TY B.
End StarWf.