
Solving the Shortest Lattice Vector Problem in Time 22.465n

Xavier Pujol1 and Damien Stehlé2

1 Université de Lyon, Laboratoire LIP, CNRS-ENSL-INRIA-UCBL, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
2 CNRS, Macquarie University and University of Sydney,

Department of Mathematics and Statistics F07, University of Sydney NSW 2006, Australia
{xavier.pujol,damien.stehle}@ens-lyon.fr

Abstract. The Shortest lattice Vector Problem is central in lattice-based cryptography, as well as
in many areas of computational mathematics and computer science, such as computational number
theory and combinatorial optimisation. We present an algorithm for solving it in time 22.465n+o(n)

and space 21.233n+o(n), where n is the lattice dimension. This improves the best previously known algo-
rithm, by Micciancio and Voulgaris [SODA 2010], which runs in time 23.199n+o(n) and space 21.325n+o(n).

Keywords. Lattices, Shortest Vector Problem, sieve algorithms.

1 Introduction

A lattice L is a discrete subgroup of R
n. The dimension of L is d = dim(spanL). Any lattice can be

represented as the set of integer linear combinations of d linearly independent vectors b1, . . . ,bd. These
vectors form a basis of L and we write L = L(b1, . . . ,bd). Since a lattice is discrete, it has shortest non-zero
vectors. Their norm λ(L) is called the minimum of L. The Shortest Vector Problem (SVP) consists in finding
such a vector. For the sake of simplicity, we consider only full rank integer lattices in this article, i.e., d = n
and L ⊆ Z

n. SVP is known to be NP-hard under randomized reductions [1], and to remain so even if relaxed
by arbitrary constant factors [13, 10].

SVP is of prime interest in cryptography for two reasons: first, the security of several lattice-based
cryptosystems (see, e.g., [2, 19, 8] and the survey [15]) relies on the hardness of polynomially relaxed versions
of the decisional variant of SVP (for [2], it is proved to be so in [14]); second, the main cryptanalytic
tool against lattice-based cryptosystems, namely hierarchical reduction algorithms [20, 21, 7], relies on an
algorithm that solves SVP in moderate dimensions. Note that SVP also occurs naturally in algorithmic
number theory [4] and in combinatorial optimization [5].

The currently known algorithms for SVP can be separated in two categories. On one side, deterministic
algorithms enumerate all lattice vectors shorter than a fixed bound A ≥ λ(L), by working on the Gram-
Schmidt orthogonalization of the given lattice basis. They were introduced by Kannan [12] and Fincke and

Pohst [6]. If given as input an LLL-reduced basis, the algorithm of Fincke and Pohst runs in time 2O(n2), while
the worst-case complexity of Kannan’s algorithm is n

n
2e

+o(n) (this complexity upper bound is proved in [9]).
Note that for all complexity statements, we omit a multiplicative factor that is polynomial in the bitsize of
the lattice basis. Enumeration algorithms require a polynomially bounded amount of space. On the other
side, the algorithms with the best theorical complexity are probabilistic (Monte Carlo) sieve algorithms, the
first of which was introduced by Ajtai et al. in [3]. The initial time and space complexity bounds of 2O(n)

were later improved by Regev [18], then decreased to 25.90n+o(n) and 22.95n respectively by Nguyen and
Vidick [17] and recently decreased further to 23.40n+o(n) and 21.97n+o(n) by Micciancio and Voulgaris [16].
The authors of [16] also introduced ListSieve, another sieve algorithm which solves SVP in time 23.199n+o(n)

and space 21.325n+o(n). Contrary to enumeration algorithms, sieve algorithms require an exponential amount
of space.

Our result. We present an improved version of ListSieve which solves SVP in time 22.465n+o(n) and
space 21.233n+o(n) (the constants are chosen to minimize the time complexity: a better space complexity can

be achieved at the expense of increasing the time complexity). The main new ingredient is the use of the
birthday paradox to decrease the number of vectors that must be generated to ensure that the sieve succeeds.

The improvement is most easily described with the Ajtai et al. algorithm (see the simplified description
of [17]). The latter samples iid vectors in L∩Bn(0, cλ1(L)) for a small constant c, which contains only a finite
number N of lattice points. The proof of correctness requires that the same vector is sampled twice with
high probability, and another technical constraint implies that only a small fraction 1/x of all the vectors is
taken into account. In the previous analyses, the number of required vectors was Nx. However, the birthday
paradox ensures that O(

√
Nx) vectors suffice. In the case of the Ajtai et al. algorithm, this leads to a time

complexity bound of 22.648n+o(n). We omit the proof, as the improved variant of ListSieve provides a better
complexity bound, although it requires more care to ensure that the sampled vectors are iid.

Notations. We write ‖ · ‖ for the euclidean norm and 〈·, ·〉 for the dot product. If u and v are non-zero
vectors, we define φu,v as the angle between u and v. We use the notation log for the natural logarithm.
All balls Bn(x, r) are closed, and if x is omitted, it means that the ball is centred on 0. The bitsize |B| of a
basis B is sum of the bitsizes of its vectors. We let P(B) denote the fundamental parallelepiped spanned by
the basis B. Finally, for any u =

∑

i uibi, we write u mod P(B) for
∑

i(ui − ⌊ui⌋)bi.

2 The SVP algorithm

We first recall the ListSieve algorithm from [16], in Figure 1. It builds a list T of lattice vectors, reducing
each randomly generated vector with vectors previously added to the list. ListSieve keeps adding vectors
to T until it finds a lattice vector whose norm corresponds the guessed value µ for the lattice minimum λ.
It makes use of sampling and reduction functions, described in Figures 3 and 4. The reduction is done on
perturbed vectors u′ = u+x instead of lattice vectors u ∈ L, with randomly chosen x’s. If the perturbations
are large enough, a given perturbed vector can sometimes be obtained from several lattice vectors. The fact
that the reduction function is oblivious to the lattice vector is crucial for the proof of correctness.

Input: A basis B, µ ≃ λ(L(B)), ξ > 1
2
, N1.

Output: A shortest non-zero vector of L(B).
Choose (x1, . . . ,xN1

) randomly in Bn(0, ξµ).
T ← {0}.
For i = 1 to N1, do

(ti, t
′

i) ← Reduction(NewPair(B,xi), T),
If ∃tj ∈ T, 0 < ‖ti − tj‖ ≤ µ, then return ti − tj ;
ElseIf ti /∈ T , then T ← T ∪ {ti}.

Fig. 1. The ListSieve algorithm

The new algorithm ListSieve-Birthday is described in Figure 2. It runs ListSieve for a while, and
then adds to a second list U the vectors reduced with respect to the ListSieve list T . Hence the vectors of
the second list U are both short (with high probability) and iid.

In Section 3, we will prove the following result.

Theorem 1 Let L ⊆ Z
n be an n-dimensional lattice and B = (b1, . . . ,bn) be a basis of L. With suitable

choices for the parameters µ, ξ, r0, N1 and N2, the algorithm ListSieve-Birthday can be used to solve
SVP on B with probability 1 − 2−Ω(n) in time 22.465n+o(n) · Poly(|B|) and space 21.233n+o(n) · Poly(|B|).

3 Analysis of ListSieve-Birthday

In this section we set λ = λ(L) and fix the parameters ξ > 1/2 and r0 > 2ξ. Wlog, we assume that:

2

Input: A basis B, µ ≃ λ(L(B)), ξ > 1
2
, r0 > 2ξ, N1, N2.

Output: A shortest non-zero vector of L(B).
Choose (x1, . . . ,xN1

,y1, . . . ,yN2
) randomly in Bn(0, ξµ).

T ← ∅, U ← ∅.
For i = 1 to N1, do

(ti, t
′

i) ← Reduction(NewPair(B,xi), T),
If ‖ti‖ ≥ r0µ then T ← T ∪ {ti}.

For i = 1 to N2, do
(ui,u

′

i) ← Reduction(NewPair(B,yi), T),
U ← U ∪ {ui}.

Find closest distinct points (s1, s2) in U (fail if they do not exist).
Return s1 − s2.

Fig. 2. The SVP algorithm: ListSieve-Birthday

Input: A basis B and a perturbation x.
Output: A lattice vector u and a perturbed vector u′.
u′ ← (−x) mod P(B).
u ← u′ + x.
Return (u,u′).

Fig. 3. The NewPair algorithm

Input: A pair (u,u′) generated by NewPair and a list T ⊆ L.
Output: A reduced pair (u,u′).
While ∃w ∈ T : ‖u′ − w‖ <

`

1 − 1
n

´

‖u′‖,
(u,u′) ← (u − w,u′ − w).

Return (u,u′).

Fig. 4. The Reduction algorithm

– The integer basis B is LLL-reduced. This can be done in time Poly(|B|).
– We have maxi ‖bi‖ = 2O(n)λ (if the basis is LLL-reduced then the basis vectors that are too long cannot

come into play, see [17, Lemma 3.3]).
– We know µ such that λ ≤ µ <

(

1 + 1
n

)

λ. This can be ensured by trying a polynomial number of values
for µ.

3.1 Known results

The following lemmas are variants of those given in [16]. Theorem 2, which is the main tool for Lemmas 3
and 4, is proven in [11]. For the sake of completeness, we give proofs of Lemmas 3, 4 and 5 in the appendix.

Theorem 2 (Kabatiansky and Levenshtein) Let E ⊆ R
n\{0}. If there exists φ0 > 0 such that for

any u,v ∈ E, we have φu,v ≥ φ0, then |E| ≤ 2cn+o(n) with c = − 1
2 log2 [1 − cos(min(φ0, 62.99◦))] − 0.099.

Lemma 3 Let cb = log2 r0 + 0.401. For any lattice L, we have |Bn(0, r0µ) ∩ L| ≤ NB(n) = 2cbn+o(n).

Lemma 4 Let ct = − 1
2 log2

(

1 − 2ξ
r
0

)

+0.401. At any moment during the execution of ListSieve-Birthday,

the list T contains at most NT (n) = 2ctn+o(n) vectors.

Lemma 5 Let cg = − 1
2 log2

(

1 − 1
4ξ2

)

and s be a shortest non-zero vector of L. Let Is = Bn(0, ξµ) ∩
Bn(−s, ξµ). If x is chosen uniformly in Bn(0, ξµ), then Pr (x ∈ Is) ≥ 1

NG(n) with NG(n) = 2cgn+o(n).

3

3.2 Proof of Theorem 1

Let Nmax
1 = ⌈4NGNT ⌉ and N2 = ⌈8NG⌉

⌈√
NB

⌉

. We sample N1 uniformly in the interval [0, Nmax
1 − 1].

The purpose of Lemmas 6 and 7 is to prove that with high probability, there are sufficiently many
vectors ui in U such that ui is short (i.e., ‖ui‖ < r0µ) and yi ∈ Is (in that case, the perturbed vector u′

i

could be associated to another lattice vector, namely u′
i + s with the perturbation yi + s).

Lemma 6 Consider ListSieve-Birthday with N1 = Nmax
1 . For i ≤ Nmax

1 , we define the event Ei : ‖ti‖ <
r0µ. We let pi = Pr (Ei | xi ∈ Is), where the probability is taken over the randomness of x1, . . . , xi, and
J = {i ≤ Nmax

1 : pi ≤ 1
2}. Then |J | ≤ Nmax

1 /2.

Proof. Assume (for contradiction) that |J | > Nmax
1 /2. Then by Lemma 5 we have

∑

i∈J

(1 − pi)Pr (xi ∈ Is) ≥
|J |

2NG
> NT .

This contradicts the following inequalities. The last one derives from Lemma 4.

∑

i∈J

(1 − pi)Pr (xi ∈ Is) =
∑

i∈J

Pr ((¬Ei) ∩ (xi ∈ Is)) ≤
∑

i≥1

Pr (¬Ei) ≤ NT .

In the second loop of ListSieve-Birthday, we do not add any point to T . Therefore, the points that are
added to U are iid. The procedure to reduce points being the same in both loops, we have that for any i ≤ N2

such that yi ∈ Is, the probability that ‖ui‖ < r0µ is pN1+1. Since N1 is sampled uniformly in [0, Nmax
1 − 1],

we have pN1+1 ≥ 1
2 with probability ≥ 1

2 , by Lemma 6.

Lemma 7 If n is sufficiently large, then with probability ≥ 1/4 (taken over the randomness of N1, the xk’s
and the yk’s), there exist two distinct indices i, j ≤ N2 such that ui = uj and yi,yj ∈ Is.

Proof. Let N = 2⌈
√

NB⌉. Until the end of the current proof, we assume that pN1+1 ≥ 1
2 , which occurs with

probability ≥ 1
2 and implies that Pr (‖ui‖ ≤ r0µ | yi ∈ Is) ≥ 1

2 for all i ≤ N2. Let X = |{i ≤ N2 : (‖ui‖ ≤
r0µ) ∩ (yi ∈ Is)}|. Lemma 5 gives

Pr ((‖ui‖ ≤ r0µ) ∩ (yi ∈ Is)) = Pr (‖ui‖ ≤ r0µ | yi ∈ Is) Pr (yi ∈ Is) ≥
1

2NG
.

The variable X has a binomial distribution of parameter p ≥ 1
2NG

. We have E(X) = pN2 ≥ 2N and
Var(X) = p(1 − p)N2 ≤ E(X). Therefore, by using Chebyshev’s inequality, we have (since NB ≥ 25 holds
for n large enough, we have N ≥ 10):

Pr (X ≤ N) ≤ Pr (|X − E(X)| ≥ E(X) − N) ≤ Var(X)

(E(X) − N)2

≤ E(X)

(E(X) − N)2
≤ 2

N
≤ 1

5
.

So with high probability ListSieve-Birthday samples at least N iid points in S0 = Bn(r0µ) ∩ L. The
probability that a collision occurs is minimized when the distribution is uniform, i.e., the probability of each
point is 1/|S0|. Since we have chosen N ≥

√

|S0| (by Lemma 3), the birthday paradox implies that the
probability will be large. More precisely it is greater than

4

5

(

1 −
∏

i<N

(

1 − i

|S0|

)

)

≥ 4

5

(

1 − exp

(

−N(N − 1)

2NB

))

≥ 4

5

(

1 − 1

e

)

,

where we used the fact that |S0| ≤ NB (by Lemma 3).

4

In order to prove that ListSieve-Birthday returns a shortest non-zero vector with high probability,
we introduce a modified version ListSieve-Birthday2. Recall that in Lemma 5, we have fixed a shortest
vector s and defined Is = Bn(0, ξµ) ∩ Bn(−s, ξµ). For x in Bn(0, ξµ), let τ(x) = x + s if x ∈ Is and
τ(x) = −x if x /∈ Is. The difference between ListSieve-Birthday and ListSieve-Birthday2 is that in
the latter the function τ is applied to each yi with probability 1

2 immediately after it is chosen. If x is
sampled uniformly in Bn(0, ξµ), then so is τ(x). As a consequence, the outputs of ListSieve-Birthday and
ListSieve-Birthday2 follow the same distribution. For x ∈ Is, let (u,u′) = Reduction(NewPair(x), T)
and (v,v′) = Reduction(NewPair(τ(x)), T). The fact that x ∈ Is implies that x = τ(x) mod P(B). The
actions of Reduction depend only on the perturbed vector, so we have v′ = u′ and v = u + s.

Lemma 8 Let ctime = max(cg + 2ct, 2cg + cb) and cspace = max(ct, cg + cb/2). Then with probability ≥ 1
16

and for sufficiently large n, ListSieve-Birthday returns a shortest non-zero vector of L in time 2ctimen+o(n)

and space 2cspacen+o(n).

Proof. We start with the correctness property. Assume that we run the algorithms ListSieve-Birthday

and ListSieve-Birthday2 on the same input and that they make the same random choices for N1 and the
perturbations. By Lemma 7, with probability ≥ 1

4 , there exist two distinct indices i and j such that ui = uj

and yi,yj ∈ Is in ListSieve-Birthday. With probability ≥ 1
4 , ListSieve-Birthday2 applies τ to yi

but not to yj . Therefore it outputs ui + s and uj = ui, because it chooses the same perturbations as

ListSieve-Birthday. Thus, with probability ≥ 1
16 , there exist two vectors s1 and s2 in the second list of

ListSieve-Birthday2 such that ‖s1 − s2‖ = λ(L). This also holds for ListSieve-Birthday, since it has
the same output distribution.

The space complexity is |T | + |U |. By Lemma 4, we have |T | ≤ 2ctn+o(n), and, by definition of N2, we
have |U | ≤ 2(cg+cb/2)n+o(n). Since ‖bi‖ = 2O(n)µ for all i, the complexity of Reduction is |T |Poly(n, |B|).
Omitting the polynomial factor, the time complexity of the first loop is |T |N1 ≤ |T |Nmax

1 ≤ 2(cg+2ct)n+o(n).
The time required to find a closest pair of points in U with the naive algorithm is |U |2. Finally, the time
complexity of the second loop is |T | · |U | ≤ 2(ct+cg+cb/2)n+o(n), which is negligibly smaller than the cost of
one of the other components.

Proof of Theorem 1. The time complexity is minimized when 2ct = cg + cb. By Lemmas 3, 4 and 5, this

is equivalent to r0 = 2ξ + 20.401
√

1 − 1
4ξ2 . Optimizing with respect to ξ leads to ξ ≃ 0.9476, r0 ≃ 3.0169,

ctime ≤ 2.465 and cspace ≤ 1.233. Calling the algorithm n times ensures that it succeeds with probability
exponentially close to 1. ⊓⊔

4 Open Problems

In [16] the authors drew a list of important open problems about ListSieve, in particular on the necessity
of perturbing the initial lattice vectors. These carry over to ListSieve-Birthday. Another question that is
specific to the latter is whether it is necessary to divide it into two steps to ensure that the vectors of the
second list are iid. At first sight, it seems to be an artefact of the proof, but we did not manage to avoid it.

Acknowledgments This work is part of the Australian Research Council Discovery Project DP0880724 “In-
tegral lattices and their theta series”. We thank D. Micciancio and P. Voulgaris for helpful discussions.

References

1. M. Ajtai. The shortest vector problem in l2 is NP-hard for randomized reductions (extended abstract). In
Proceedings of the 30th Symposium on the Theory of Computing (STOC 1998), pages 284–293. ACM Press, 1998.

2. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In Proceedings of
the 29th Symposium on the Theory of Computing (STOC 1997), pages 284–293. ACM Press, 1997.

5

3. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proceedings
of the 33rd Symposium on the Theory of Computing (STOC 2001), pages 601–610. ACM Press, 2001.

4. H. Cohen. A Course in Computational Algebraic Number Theory, 2nd edition. Springer-Verlag, 1995.
5. F. Eisenbrand. 50 Years of Integer Programming 1958-2008, From the Early Years to the State-of-the-Art, chapter

Integer Programming and Algorithmic Geometry of Numbers. Springer-Verlag, 2009.
6. U. Fincke and M. Pohst. A procedure for determining algebraic integers of given norm. In Proceedings of

EUROCAL, volume 162 of Lecture Notes in Computer Science, pages 194–202. Springer-Verlag, 1983.
7. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In Proceedings of the 40th

Symposium on the Theory of Computing (STOC 2008). ACM, 2008.
8. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.

In Proceedings of the 40th Symposium on the Theory of Computing (STOC 2008), pages 197–206. ACM Press,
2008.

9. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm. In Proceedings of
Crypto 2007, volume 4622 of Lecture Notes in Computer Science, pages 170–186. Springer-Verlag, 2007.

10. I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors.
In Proceedings of the 39th Symposium on the Theory of Computing STOC 2007, pages 469–477. ACM, 2007.

11. G. A. Kabatiansky and V. I. Levenshtein. Bounds for packings on a sphere and in space. Problemy Peredachi
Informatsii, 14(1):3–25, 1978. Available in English in Problems of Information Transmission 14(1):1–17.

12. R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proceedings of the
15th Symposium on the Theory of Computing (STOC 1983), pages 99–108. ACM Press, 1983.

13. S. Khot. Hardness of approximating the shortest vector problem in lattices. Journal of the ACM, 52(5):789–808,
2005.

14. V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum
distance problem. In Proceedings of Crypto 2009, pages 577–594, 2009.

15. D. Micciancio and O. Regev. Post-Quantum Cryptography, chapter Lattice-based Cryptography. Springer-Verlag,
2008.

16. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem, 2010. To
appear in the proceedings of SODA’10, preliminary versions available at the URLs http://eccc.hpi-web.de/

report/2009/065 and http://cseweb.ucsd.edu/~pvoulgar/.
17. P. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical

Cryptology, 2(2), 2008.
18. O. Regev. Lattices in computer science, 2004. Lecture notes of a course given at the Tel Aviv University. Available

at the URL http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/.
19. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the 37th

Symposium on the Theory of Computing (STOC 2005), pages 84–93. ACM Press, 2005.
20. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput. Sci, 53:201–224,

1987.
21. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum

problems. Mathematics of Programming, 66:181–199, 1994.

Known proofs

Proof of Lemma 3. Let α = 1+ 1
n . The ball Bn

(

λ
2

)

contains exactly one lattice point. We cover Bn(r0µ) \Bn

(

λ
2

)

with coronas Tr = Bn(αr) \Bn(r) for r = λ
2 , λ

2 α, . . . , λ
2 αk, with k = ⌈n log2(2r0)⌉ = O(n). It suffices to prove

that any corona Tr contains at most 2cbn+o(n) lattice points.
Let u and v be two distinct lattice vectors in Tr ∩ Bn(r0µ). We have 〈u − v,u − v〉 ≥ λ2, so 〈u,v〉 ≤

1
2

(

‖u‖2 + ‖v‖2 − λ2
)

. This implies that:

cos φu,v =
〈u,v〉

‖u‖ · ‖v‖ ≤ 1

2

(‖u‖
‖v‖ +

‖v‖
‖u‖ − λ2

‖u‖ · ‖v‖

)

≤ 1 +
1

n
− λ2

2r2
0µ

2
≤ 1 +

1

n
− 1

2(1 + 1
n)2r2

0

−→
n→∞

1 − 1

2r2
0

.

For any ε ∈ (0, 1
2r2

0

) and sufficiently large n we can apply Theorem 2 with φ0 = cos−1
(

1 − 1
2r2

0

+ ε
)

≤ 60◦.

⊓⊔

6

Proof of Lemma 4. First, we bound the norm of any vector of T . NewPair returns (t, t′) such that t′ ∈ P(B)
and ‖t′ − t‖ ≤ ξµ. We have assumed that maxi ‖bi‖ = 2O(n)λ. Hence ‖t′‖ ≤ nmaxi ‖bi‖ ≤ 2O(n)µ. After
applying Reduction, the norm of t′ does not increase and t′ − t is unchanged, so, for any ti ∈ T , we
have r0µ ≤ ‖ti‖ ≤ (2O(n) + ξ)µ. It now suffices to prove that any Tr = {ti ∈ T | rµ ≤ ‖ti‖ ≤

(

1 + 1
n

)

rµ}
for r ≥ r0 contains at most 2ctn+o(n) points. Indeed, the list T is contained in a union of O(n2) sets Tr.

Let i < j such that ti, tj ∈ Tr. The idea of the proof is that for large n, the angle between t′j and ti

is not far from being above π
3 because ti was already in T when tj was reduced. We use the inequality

‖tj − t′j‖ ≤ ξµ to obtain a lower bound for φt
i
,t

j
and then apply Theorem 2.

Note that ‖t′j‖ ≤ ‖tj‖ + ξµ ≤ 3rµ. Since tj was added after ti, we have:

‖t′j − ti‖ >

(

1 − 1

n

)

‖t′j‖

〈t′j − ti, t
′
j − ti〉 >

(

1 − 1

n

)2

〈t′j , t′j〉 ≥
(

1 − 2

n

)

〈t′j , t′j〉

〈t′j , ti〉 <
1

2

[

‖ti‖2 +
2

n
‖t′j‖2

]

≤ 1

2
‖ti‖2 +

1

n
(3rµ)2.

Moreover, we have 〈tj − t′j , ti〉 ≤ ξµ‖ti‖. We can now bound cos(φt
i
,t

j
).

〈tj , ti〉 = 〈t′j , ti〉 + 〈tj − t′j , ti〉 ≤
1

2
‖ti‖2 +

1

n
(3rµ)2 + ξµ‖ti‖

cos(φt
i
,t

j
) =

〈tj , ti〉
‖ti‖ · ‖tj‖

≤ 1

2

‖ti‖
‖tj‖

+
1

n
· (3rµ)2

‖ti‖ · ‖tj‖
+

ξµ

‖tj‖

≤ 1

2

(

1 +
1

n

)

+
9

n
+

ξ

r

≤ 1

2
+

ξ

r0

+ O

(

1

n

)

.

The bound on |Tr| follows directly from Theorem 2. ⊓⊔
Proof of Lemma 5. The set Bn(0, µξ) ∩ Bn(−s, µξ) is the union of two identical n-sphere caps of height
µξ − λ

2 ≥ µ
(

ξ − 1
2

)

. Let C be one of these. It contains a cone of height h = µ
(

ξ − 1
2

)

whose basis is an

(n − 1)-sphere of radius r = µ
√

ξ2 − 1
4 . Moreover Bn(r) is included in a cylinder of basis Bn−1(r) and

height 2r so we have VolBn(r) ≤ 2r VolBn−1(r). Then

VolC

VolBn(ξµ)
≥ h

n
· VolBn−1(r)

VolBn(ξµ)
≥ h

2rn
· VolBn(r)

VolBn(ξµ)
≥ ξ − 1

2

2n
√

ξ2 − 1
4

(

1 − 1

4ξ2

)n/2

.⊓⊔

7

