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1 Security proofs in the random oracle model

1.1 The Boneh-Lynn-Shacham signature ([1])

1.1.1 Reminder : The BLS signature

Keygen(λ): choose cyclic groups (G,GT ) of prime order p > 2λ with a

bilinear map e : G × G → GT and a generator g
R← G. Choose a hash

function H : {0, 1}∗ → G. Generate a key pair (PK,SK) with

PK := {(G,GT ), g, X = gx, H}
SK := x ∈R Zp.

Sign(SK,M): compute and output σ = H(M)x ∈ G.
Verify(PK,M, σ): Return 1 if e(σ, g) = e(H(M), X). Otherwise, return 0.

1.1.2 Security

Theorem 1. The BLS signature scheme is secure against chosen-message
attacks in the Random Oracle Model (ROM) if the CDH assumption holds
in G.

Proof. Let A be an attacker against the BLS signature, with advantage ε.
We build an algorithm B that solves CDH with advantage ε

c(q+1) , where c is
a constant and q is the number of signing queries of A.

Algorithm B takes as input (g, ga, gb) and has to compute gab. To this
end, B defines the public key PK so that X = ga and also controls the
random oracle H : {0, 1}∗ → G.

Hash queries: when A asks for the hash value H(M), B responds as
follows.
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• B returns the previously defined H(M) if it exists.

• Otherwise, B flips a coin bM ∈ {0, 1} such that Pr[bM = 1] = δ and
Pr[bM = 0] = 1− δ (δ will be chosen later).

∗ if bM = 0, B defines H(M) = gαM where αM
R← Zp.

∗ if bM = 1, B defines H(M) = (gb)αM where αM
R← Zp.

In both cases, B stores (M, bM , αM ) in a list L (initially empty).

Signing queries: when A wants to obtain a signature for a message M ,
B does the following. Without loss of generality, we assume that A has
previously queried H(M) (otherwise, B can make the hash query H(M) for
itself). The list L thus contains an entry (M, bM , αM ).

• If bM = 1, then B fails since it does not know σ = H(M)a = (gab)αM .

• If bM = 0, B computes and returns σ = H(M)a = (ga)αM .

Output: A outputs (M∗, σ∗). IfA is successful, its output (M∗, σ∗) satisfies
e(σ∗, g) = e(H(M∗), ga), so that σ∗ = H(M∗)a. Since H is a random func-
tion from A’s point of view , A cannot predict H(M∗) with non-negligible
probability without explicitly making the hash query H(M∗). So, we can
assume that A asked for the hash value H(M∗).
B looks into the list L to find an entry (M∗, bM∗ , αM∗), which necessarily

exists since H(M∗) was asked by A. Then, B fails if bM∗ = 0 (since, in this
case, H(M∗) = gαM∗ , which does not depend on gb). Otherwise, we have
H(M∗) = (gb)αM∗ and B can compute gab = σ∗1/αM∗ (note that αM∗ is
invertible modulo p and p is public, so that B can compute α−M∗1 mod p
with the extended euclidean algorithm).

Success Probability of B: We denote by M1, ...,Mq the messages for
which A obtains signatures.

Pr[B does not fail] = Pr[bM∗ = 1] · Pr[
∧
i=1..q

bMi = 0]

=δ · (1− δ)q

This is optimal for δ = 1
q+1 , and we obtain

Pr[B does not fail] =
1

q + 1
· (1− 1

q + 1
)q

≈ 1

exp(1)(q + 1)
for large values of q.
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Finally, Pr[B succeeds] = Pr[B does not fail] · Pr[A succeeds]. So if A has
advantage ε, then B solves CDH with advantage ε

exp(1)(q+1) , where exp(1)
is the base for the natural logarithm. Since q is polynomial in λ, the latter
advantage is non-negligible whenever ε is non-negligible.

1.2 The Boneh-Franklin IBE ([2])

1.2.1 Description

Setup(λ): choose groups (G,GT ) of prime order p > 2λ with a bilinear

map e : G × G → GT and a generator g
R← G. Choose a hash function

H : {0, 1}∗ → G. Choose α
R← Zp. Define MSK = α and

MPK = {(G,GT ), g, g1 = gα, H}.

Keygen(MSK, ID): return the private key dID = H(ID)α.

Encrypt(MPK, ID,M): To encrypt M ∈ GT for the identity ID, choose

r
R← Zp and compute

C = (C1, C2) = (gr,M · e(g1, H(ID))r).

Decrypt(MPK, dID, C): Compute M = C2/e(C1, dID).

1.2.2 Security

Theorem 2. The Boneh-Franklin IBE is IND-ID-CPA secure in the ran-
dom oracle model if the DBDH assumption holds in (G,GT ).

Proof. Let A be an attacker against the BF IBE with advantage ε. We build
a DBDH distinguisher B with advantage ε

exp(1)·(q+1) , where q is the number
of private key queries made by A.

Algorithm B takes as input (g, ga, gb, gc, T ) where either T = e(g, g)abc

or T ∈R GT and B has to decide which is the case. To this end, B defines
MPK so that g1 = ga (implicitly, MSK = a) and answers A’s queries as
follows.

Hash queries: when A asks for the hash value H(ID),

• B returns the previously defined H(ID) if it exists.
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• Otherwise, B flips a coin bID ∈ {0, 1} such that Pr[bID = 1] = 1
q+1

and Pr[bID = 0] = q
q+1 .

∗ if bID = 0, B defines H(ID) = gβID where βID
R← Zp.

∗ if bM = 1, B defines H(ID) = (gb)βID where βID
R← Zp.

In both cases, B stores (ID, bID, βID) in a list L (initially empty).

Private key queries: when A queries the private key dID of an identity
ID, B responds as follows. Again, we assume w.l.o.g. that every private key
query for an identity ID is preceded by a hash query for the same identity.
Hence, B can recover the entry (ID, bID, βID) in the list L.

• If bID = 1, then B fails and outputs a random bit β
R← {0, 1}.

• If bID = 0, B can compute dID = H(ID)a = (gβID)a = (ga)βID .

Challenge: A chooses M0,M1 ∈ GT and an identity ID∗ that has never
been queried for private key extraction.
We assume w.l.o.g. that H(ID∗) was queried by A since, otherwise, B can
make the hash query H(ID∗) for itself. So, B can recover (ID∗, bID∗ , βID∗)
from the list L.

• If bID∗ = 0, B fails and outputs a random bit β
R← {0, 1}.

• If bID∗ = 1, B chooses γ
R← {0, 1} and computes the challenge cipher-

text as
C∗ = (C1, C2) = (gc,Mγ · T βID∗ ),

where γ ∈R {0, 1} is chosen at random.

If T = e(g, g)abc, then C∗ can be written

C∗ =(gc,Mγ · e(ga, (gb)βID∗ )c)

=(gc,Mγ · e(g1, H(ID∗))c),

which means that it is a valid encryption of Mγ . Otherwise, if T ∈R GT ,
then C∗ can be written as C∗ = (gc,Mrand ·e(g1, H(ID∗))c) for some random
message Mrand ∈R GT . This is because we can write T = e(g, g)abc+z, for
some uniformly random z ∈R Zp that does not appear anywhere else during
the game. This means that

C∗ = (gc,Mγ · e(g, g)z·βID∗ · e(g1, H(ID∗))c).
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Hence, C∗ is distributed as an encryption of Mrand = Mγ · e(g, g)z·βID∗ ,
which is uniformly distributed in GT . Since z ∈R Zp is independent of A’s
view, Mγ is perfectly hidden by the factor e(g, g)z·βID∗ and C∗ contains no
information on the bit γ ∈R {0, 1}.

Output: A outputs γ′ ∈ {0, 1}. If γ = γ′, B outputs 1 (meaning that
T = e(g, g)abc). If γ 6= γ′, B outputs 0 (meaning that T ∈R GT ).

Success Probability: As in the case of BLS signatures, if we call Fail
the event that B fails, we have

Pr[¬Fail] =
1

q + 1
· (1− 1

q + 1
)q

≈ 1

exp(1) · (q + 1)
for large values of q.

Then, we have

Pr[B = 1|T = e(g, g)abc]

=
Pr[B = 1 ∧ ¬Fail ∧ T = e(g, g)abc]

Pr[T = e(g, g)abc]
· Pr[¬Fail ∧ T = e(g, g)abc]

Pr[¬Fail ∧ T = e(g, g)abc]

+
Pr[B = 1 ∧ Fail ∧ T = e(g, g)abc]

Pr[T = e(g, g)abc]
· Pr[Fail ∧ T = e(g, g)abc]

Pr[Fail ∧ T = e(g, g)abc]

= Pr[B = 1|T = e(g, g)abc ∧ ¬Fail] · Pr[¬Fail|T = e(g, g)abc]

+ Pr[B = 1|T = e(g, g)abc ∧ Fail] · Pr[Fail|T = e(g, g)abc]

= Pr[B = 1|T = e(g, g)abc ∧ ¬Fail] · Pr[¬Fail]

+ Pr[B = 1|T = e(g, g)abc ∧ Fail] · Pr[Fail]

= Pr[B = 1|T = e(g, g)abc ∧ ¬Fail] · Pr[¬Fail] +
1

2
· Pr[Fail]

=
1

2
+ Pr[¬Fail] · (Pr[B = 1|T = e(g, g)abc ∧ ¬Fail]− 1

2
),

where the 4-th equality is due to the fact that B outputs 1 with probability
1/2 when Fail occurs. In the case T ∈R GT , we similarly find

Pr[B = 1|T ∈R GT ] =
1

2
+ Pr[¬Fail] · (Pr[B = 1|T ∈R GT ∧ ¬Fail]− 1

2
)

=
1

2

since Pr[γ′ = γ|T ∈R GT ∧ ¬Fail] = 1/2. Moreover, conditionally on
T = e(g, g)abc∧¬Fail, we know thatA’s view is the same as in the real game,
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so that we have ε = AdvA(λ) = |Pr[B = 1|T = e(g, g)abc ∧ ¬Fail] − 1/2|.
If T ∈R GT , we have

Pr[B = 1|T ∈R GT ∧ ¬Fail] =
1

2
.

So, we finally obtain

AdvDBDH
B (λ) = |Pr[B = 1|T = e(g, g)abc]− Pr[B = 1|T ∈R GT ]|

= ε · Pr[¬Fail] =
ε

exp(1) · (q + 1)
.

We remark that the security proof uses the property that M ∈ GT to
argue that Mγ is perfectly hidden when T ∈R GT . Since GT is usually
a subgroup of the multiplicative group of some finite field, it is crucial to
encode M as an element of GT (rather than an arbitrary finite field element)
for the same reasons as in the ElGamal encryption scheme.

2 IBE in the standard model

There exist examples of cryptographic schemes which have a security proof
in the random oracle model but are insecure in any instantiation with a real
hash function H. So, we prefer having security proofs in the standard model
when it is possible, although cryptosystems in the random oracle model tend
to be more efficient.

2.1 Selective Security

As a first towards secure IBE schemes in the standard model, we will consider
an example of IBE scheme with a security proof (in the standard model) in
the sense of a weaker security definition.

Definition 1. An IBE is secure against selective-ID attacks (IND-sID-
CPA) if no PPT adversary has non negligible advantage in the following
game.

0. The adversary A chooses a target identity ID∗.

1. The challenger generates (MPK,MSK)← Setup(λ) and gives MPK
to A.
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2. A makes private key queries for ID 6= ID∗ (polynomially many times).
At each query, the challenger returns dID ← Keygen(MSK, ID).

3. A chooses messages M0, M1 and obtains C∗ ← Encrypt(MPK,Mγ , ID
∗)

with γ
R← {0, 1}.

4. A makes further private key queries (polynomially many times) for
identities ID 6= ID∗.

5. A outputs γ′ ∈ {0, 1} and wins if γ′ = γ.

The advantage of A is defined as AdvA(λ) = |Pr[γ′ = γ]− 1/2|.

This security notion is strictly weaker than IND-ID-CPA because the
target identity ID∗ must be chosen at the beginning of the algorithm, be-
fore the generation of the master key pair (MPK,MSK). In for some
applications, this security notion will be sufficient.

2.2 The Boneh-Boyen IBE (Eurocrypt ’04, see [3])

Setup(λ) :

1. Choose groups (G,GT ) of prime order p > 2λ with a bilinear map

e : G×G→ GT and generators g, g2, h
R← G.

2. Choose α
R← Zp and compute g1 = gα ∈ G.

3. Define MSK := gα2 ∈ G and MPK := {(G,GT ), g, g1 = gα, g2, h}.

Keygen(MSK, ID): We are given MSK = gα2 and ID ∈ Zp. We suppose
that ID ∈ Zp. If it is not the case it suffices to hash ID using a collision-
resistant hash function from {0, 1}∗ (if ID ∈ {0, 1}∗ ) to Zp. The private
key is computed as

dID = (d1, d2) = (gα2 ·HG(ID)r, gr)

using a random r
R← Zp and where HG(ID) = gID1 ·h (note that HG : Zp → G

is a number theoretic hash function which is collision-resistant).
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We have the following equalities which will be useful for the encryption
and decryption algorithms:

e(d1, g) =e(gα2 ·HG(ID)r, g)

=e(gα2 , g) · e(HG(ID)r, g)

=e(g2, g
α) · e(HG(ID), gr)

=e(g1, g2) · e(HG(ID), d2).

Encrypt(MPK, M , ID): given M ∈ GT and ID ∈ Zp, choose s
R← Zp

and compute

C = (C1, C2, C3) = (gs, HG(ID)s,M · e(g1, g2)s).

Decrypt(MPK, C, dID): given dID = (d1, d2) compute

M = C3 ·
e(C2, D2)

e(C1, d1)
.

Correctness : We know that private keys (d1, d2) satisfy

e(d1, g) = e(g1, g2) · e(HG(ID), d2).

By raising both members of this equality to the power s ∈ Zp, we obtain

e(d1, g
s) = e(g1, g2)

s · e(HG(ID)s, d2),

i.e. e(d1, C1) = e(g1, g2)
s · e(C2, d2).

Correctness follows from this last equality.

2.2.1 Security

Theorem 3. The previous scheme is IND-sID-CPA secure in the standard
model if the DBDH assumption holds in (G,GT ).

Proof. Let A be an IND-sID-CPA adversary for the Boneh-Boyen IBE with
non negligible advantage ε. We construct a DBDH distinguisher B with
advantage ε.

Algorithm B takes as input (g, ga, gb, gc, T ) where either T = e(g, g)abc

or T ∈R GT .

Init: A chooses ID∗ as a target identity.
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Setup: B defines MPK with

g1 = ga

g2 = gb

h = (ga)−ID
∗ · gω

with ω
R← Zp so that h is uniformly distributed in G. The adversary is run

on input of
MPK = {(G,GT ), g, g1, g2, h}

an MSK is implicitly defined as ga2 = gab.

Private key queries: for any identity ID 6= ID∗, B picks r
R← Zp and

computes

dID = (d1, d2)

= (HG(ID)r · (gb)−ω/(ID−ID∗), gr · (gb)−1/(ID−ID∗))

Letting r̃ = r − b/(ID − ID∗), we have

d1 = HG(ID)r · (gb)−ω/(ID−ID∗)

= HG(ID)r̃+b/(ID−ID
∗) · (gb)−ω/(ID−ID∗)

= HG(ID)r̃ · ((ga)ID−ID∗ · gω)b/(ID−ID
∗) · (gb)−ω/(ID−ID∗)

= HG(ID)r̃ · gab

and d2 = gr·(gb)−1/(ID−ID∗) = gr̃. So, the obtained dID = (gab·HG(ID)r̃, gr̃)
has the same distribution as outputs of the real Keygen algorithm.

Challenge: A chooses M0,M1 ∈ GT . Then, B chooses a random bit

γ
R← {0, 1} and computes the challenge ciphertext as

C∗ = (C1, C2, C3) = (gc, (gc)ω,Mγ · T ).

We know that

HG(ID∗)c = (gID
∗

1 · h)c

= (gID
∗

1 · g−ID∗

1 · gω)c

= (gω)c,

so that C2 = HG(ID∗)c.
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• If T = e(g, g)abc, then

C∗ =(C1, C2, C3)

=(gc, HG(ID∗)c,Mγ · e(ga, gb)c)
=(gc, HG(ID∗)c,Mγ · e(g1, g2)c)

The distribution of C∗ is the same as in a valid encryption of Mγ .

• If T ∈R GT , then we can write T = e(g, g)abc+z for some uniformly
random z ∈R Zp. Therefore we can write

C∗ = (gc, HG(ID∗)c,Mrand · e(g1, g2)c),

where Mrand = Mγ · e(g, g)z. In this case, the factor e(g, g)z perfectly
hides Mγ since z is random and independent of A’s view. This means
that C∗ does not reveal any information on γ ∈ {0, 1}.

Output: A outputs γ′ ∈ {0, 1}. If γ′ = γ, B returns 1 (meaning that
T = e(g, g)abc). Otherwise, B returns 0 (meaning that T ∈R GT ). The same
arguments as in the security proof of ElGamal show that B’s advantage as a
DBDH distinguisher is identical toA’s advantage as a selective-ID adversary:

AdvDBDH
B (λ) = |Pr[B = 1|T = e(g, g)abc]− Pr[B = 1|T ∈R GT ]| = ε.

2.2.2 Full Security (Waters, Eurocrypt’05, see [4])

Idea: The function HG(ID) = gID1 h is replaced by a different identity-
hashing algorithm

HG(ID) = u0 ·
L∏
i=1

u
ID[i]
i ,

where ID[i] is the i-th bit of the identity ID ∈ {0, 1}L, which is represented
as a L-bit string, for some L ∈ poly(λ), and {ui}i∈{0,...,L} is a sequence of
elements of G, contained in MPK.

Waters [4] proved that, with this choice of the HG function, the Boneh-
Boyen IBE scheme is upgraded to achieve full security (IND-ID-CPA) in the
standard model.
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Remarks

• The notion of IND-ID-CPA security is strictly stronger than that of
IND-sID-CPA security when the universe of identities has exponen-
tial size in the security parameter λ. If the identity space {0, 1}L is
sufficiently small (for example, when L ≈ log λ), then IND-sID-CPA
security implies IND-ID-CPA security under a polynomial reduction
which consists in guessing the target identity ID∗ beforehand. When
the number of possible identites is exponential (as is the case in most
applications of IBE), the latter reduction is not polynomial since ID∗

cannot be guessed with non-negligible probability. In [4], Waters gives
a proof of IND-ID-CPA security with a polynomial reduction when L
is polynomial in λ.

• It is possible to show (see [2]) that any IND-ID-CPA secure IBE scheme
generically implies a signature scheme that provides security under
chosen-message attacks. The key pair of the signature scheme is the
master key pair (MPK,MSK) of the IBE system and a message M
is signed by deriving a private key dM for the identity M . Verification
is achieved by IBE-encrypting a random plaintext under the identity
M and checking if the signature dM allows recevoring the encrypted
plaintext. In most cases, the signature verification algorithm can be
re-written as a deterministic algorithm (as in the Boneh-Franklin IBE,
which implies BLS signatures).
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