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0 Introduction
The learning with errors problem (LWE):

e Introduced by Oded Regev (2005) (8]

e Since then, very hot topic in cryptography = Encryption, IBE,
ABE (attribute-based encryption) for all circuits, FE (functional en-
cryption), FHE (fully homomorphic encryption)

e Why is it insteresting to cryptographers?

* simple and reach problem (linear algebra ~~ easy to devise ad-
vanced primitives - which is the focus of this course)

* it leads to asymptotically efficient primitives

* very clean security grounding

* it seems to be quantum-resistant

1 Definition

1.1 Learning with errors (LWE)

References: Oded Regev survey |9], Laguillaumie, Langlois and Stehlé survey
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e Gaussian distribution: Ds.(7) ~ exp(—m-—

(proportionality)

s = standard deviation parameter (SD)
¢ = center of the distribution (Mean)
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Gaussian distribution (continuous)
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e Integral Gaussian distribution: Dz s .(7) ~ exp(—7-—

x € Z (whereas for the continous case, x is real)
center ¢ does not need to be an integer!

C

Integral Gaussian distribution

. exp(—m(z—c)?/s?)
DZ,s,c(x) T Yrezexp(—m(k—c)?/s?)

Note: Not all (nice) properties of the continuous case hold for the in-
tegral one! But may do, when s > 1.

2 properties we need today:

1. We can sample from it in quasi-linear time (with respect to output size):
see Ducas, Durmus, Lepoint, Lyubashevsky 2013 [3].

2. Ifs>1,vt>0: Pr [[x—cl >t-s] <4 exp(—nt?) (see sub-
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section 2.3 and 2.4 of Micciancio-Peikert 2012 [6])

LWE Distribution. Let n > 1,¢ > 2, € (0,1) and 5 € (Z,)". We define
the distribution D, ¢.(5) over (Zy)™ X Zq by:

| sample a <+ U(Zy), sample e <= Dz, .40 (the error term)
| return (d,< @,§ > +e): the inner product of @ with § + some noise e
in Z, then reduced mod gq.



Search LWE. Let § € Zj arbitrary. Given arbitrarily many samples from
Dy, q.a(5), the goal is to find 5.

Decision LWE. Let 8« U(Zy). The goalis to distinguish between D;, 4 o (3)
and U(Zy x Zg), given arbitrarily many samples.

What does it mean to solve Decision-LW E 7

We have a PPT (probabilistic polynomial-time) algorithm .4 which makes
sample requests and returns b € {0, 1}. It wins if with non-negligible proba-
bility over § (proportion > #, for some constant ¢ > 0), we have:

Adv(A) = |Pr[A 2 1] — Pr[A 4 1]| > ﬁ, for some ¢/ > 0

Matrix interpretation:

n cols

m rows A , b :A'S—l_e mOdq

Each row is a fresh LHS (left-hand side) of D, ¢.4(5).
m = the number of samples.
goal can be:
— find s.
— tell that RHS (right-hand side) is not uniform (and independent from

LHS).

Remark: Why discrete Gaussians?

e Q: why discrete? continuous Gaussians works (replacing Z, in RHS
by R/qZ).
A: simpler to explain with integers.

e Q: why Gaussian? E.g. rather than U([—5aq, +5aq])?
A: hardness proofs for LW E heavily rely on Gaussians.



Remark:

— If @ =0, LWE is easy (no error, no noise): linear system mod q.

— If a = 1, LWE becomes trivially impossible as the samples contain
almost no information on § (noise hides - covers - everything).

1.2 LWE search to decision reduction
Decision — search: easy!
* ask samples
* call Search-LW E oracle ~» § or fail
 if "fail" — reply "U(Zy x Z)"
* else if (RHS - LHS - §) is small — reply "LWE", else reply "Unif"

Theorem 1.1 Assume that q is prime and g < poly(n). Assume there exists
a PPT algorithm A that has non-negligible distinguishing advantage between
U and D(S) with non-negligible probability over the choice of §.

Then there exists a PPT algorithm B that finds § from the samples from
D(8) with probability > 1 — 27" for all § (over the internal randomness of B
and randomness of D(8) samples).

Remark: The assumptions may be removed: see Brakerski, Langlois, Peik-
ert, Regev, Sthelé 2013 [2].

Proof (3 steps)
step 1: Make the distinguishing advantage of A > 1 — 2737
Run A — N times
If it returns 1 more than N/2 times then = return 1, else 0.
* proof as exercise (note that we have unlimmited access to samples!)
step 2: Solve Search- LW E with non-negligible probability over § < U (Zg)
Consider an 5 such that the distinguishing advantage is > 1 — 2737,

We are to recover si, the 1%¢ coordinate of 3.
We try all s7 in [0,¢ — 1] and check whether s; = s} or not.



Given a sample (a@,b) for D(3), we construct a sample (@',b'), where a’
from D(8) if s; = s or else, from U(Zy x Zy):

u
0
u <+ Unif(Zy) and (a,b) — ( a+ | . b+ usy).
0
——
uniform, thanks to @
u u
0 0
btusi =< ad+| . |,5§> —usitusj+e =< da+| . |,5>4u( s]—s1 )+e
: : N——
0 0 if0 = +e

o If 57 = s1, that is a sample from D(5)

e Else, u(s] — s1) uniform (using ¢ prime) = RHS uniform, indepen-
dent of LHS.

step 3: Solving Search-LWE for all § (using a solver that works for a
non-negligible fraction of all §’s):

-let (@, _b ) from D(S).
<a,s>+te
- Sample # + U(Zg).
- Map (@,b) to (@,b+ < d@,t >) = it maps D(5) to D(
—_———

541 )
~
<@ FHi>te uniform
With non-negligible probability, we can recover § + ¢ from samples from
D(§+1). Then §= (§+1) —t.
Note: We will distinguish the D(5+ ) distribution from U, for some £, so
pick as many ¢ ’s as needed W



2 Hardness of LWE

2.1 FEuclidean lattices

Definition (Lattice)
A lattice is a set of the form L = Zz‘gn Zb; for linearly independent b;’s.

The b:-’s - said basis, n - lattice dimension.
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Lattice basis

Definition (Minimum of L)
The minimum of a lattice L (denoted by A(L)) is the Euclidean norm of a
shortest non-zero vector of the lattice:

ML) = min |B]
beL\{0}

Definition (GapSVP)
Let n > 1, > 1. Given a basis of a lattice L (dimension n) and a € R, a > 0,
GapSV P requires to reply:

| YES, if A\(L) <a
| NO,if AM(L) >~v-a

(hardness increases with n, decreases with )
Remark: GapSV P is

e NP-hard under randomized reductions, for vy = 208 ”)1_6, foralle >0
(Haviv-Regev 2007 [4]).

e In NP N coNP for v = \/n (Aharonov-Regev [1]) - hence, unlikely to
be NP-hard.



log log(n)

e In P for v = 2" e (Schnorr’87 [10] + Micciancio-Voulgaris’10 [7]).

Best known algorithms:
* for small ~ : 200" [7]

* for v > poly(n) : (%)O(ﬁ) [10]

Definition (Bounded Distance Decoding Problem BDD.,)
Given L and ¢ € R™ such that there exists b with [|£'— b]| < %S), the goal is
to find .

Best known algorithms: same as for GapSV P.

2.2 LWE as a lattice problem
LA) = {Fezm:35el}: =A%} = A-Zy + (qZ)"

~
see figure of LW E matrix interpretation

Note: dim(L(A)) =n

e A -§+¢ is the f in BDD.
e A -3 isthebin BDD ~ easy to recover § from A -S.

b—1#=¢&and ||&]| is small = Most efficient LW E solver relies on [10] and
[7] for BDD,:

(’I’L . log(q)>0(?olgo2g(ij))) - 26(nqog(4))

3 log? (o)
log™()

Note: as a tends to 0, the exponent O(%g(f))) tends to 0.



2.3 LWE at least as hard as lattice problems

Theorem 2.1 (Regev’05 [8], Brakerski, Langlois, Peikert, Regev and Stehlé

13 [2])
Let a,q > 0 such that aq > 2+/n.
If q prime and q < poly(n), there exists a poly-time quantum reduc-

tion from GapSVPW(n) to LWE, 4o with v = 5(n/a) For all q, there
exists a poly-time classical reduction from GapSVPA}/?7 to LWEy 4o, with
O(n/a) =~.

Note: soft-O notation (5) is used to forget poly-logarithmic multiplica-
tive terms.
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