Advanced Cryptographic Primitives Course 3: *The Learning With Errors Problem*

Teacher: Damien Stehlé Scribe: Mihai-Ioan Popescu

22.09.2014

0 Introduction

The learning with errors problem (LWE):

- Introduced by Oded Regev (2005) [8]
- Since then, very hot topic in cryptography \implies Encryption, IBE, ABE (attribute-based encryption) for all circuits, FE (functional encryption), FHE (fully homomorphic encryption)
- Why is it insteresting to cryptographers?
 - \star simple and reach problem (linear algebra \leadsto easy to devise advanced primitives which is the focus of this course)
 - \star it leads to asymptotically efficient primitives
 - \star very clean security grounding
 - \star it seems to be quantum-resistant

1 Definition

1.1 Learning with errors (LWE)

References: Oded Regev survey [9], Laguillaumie, Langlois and Stehlé survey [5]

- Gaussian distribution: $D_{s,c}(x) \sim \exp(-\pi \frac{(x-c)^2}{s^2})$ (proportionality)
 - s = standard deviation parameter (SD)
 - c = center of the distribution (Mean)

Gaussian distribution (continuous)

Integral Gaussian distribution: D_{Z,s,c}(x) ~ exp(-π (x-c)²/s²))
 x ∈ Z (whereas for the continous case, x is real) center c does not need to be an integer!

Integral Gaussian distribution

$$D_{\mathbb{Z},s,c}(x) = \frac{\exp(-\pi(x-c)^2/s^2)}{\sum_{k \in \mathbb{Z}} \exp(-\pi(k-c)^2/s^2)}$$

<u>Note</u>: Not all (nice) properties of the continuous case hold for the integral one! But may do, when $s \gg 1$.

2 properties we need today:

1. We can sample from it in quasi-linear time (with respect to output size): see Ducas, Durmus, Lepoint, Lyubashevsky 2013 [3].

2. If $s \ge 1, \forall t > 0$: $\Pr_{x \leftarrow D_{\mathbb{Z},s,c}}[|x - c| \ge t \cdot s] \le 4 \cdot \exp(-\pi t^2)$ (see subsection 2.3 and 2.4 of Micciancio-Peikert 2012 [6])

LWE Distribution. Let $n \ge 1, q \ge 2, \alpha \in (0, 1)$ and $\vec{s} \in (\mathbb{Z}_q)^n$. We define the distribution $D_{n,q,\alpha}(\vec{s})$ over $(\mathbb{Z}_q)^n \times \mathbb{Z}_q$ by:

| sample $a \leftarrow U(\mathbb{Z}_q^n)$, sample $e \leftarrow D_{\mathbb{Z},\alpha \cdot q,0}$ (the error term) | return $(\vec{a}, < \vec{a}, \vec{s} > +e)$: the inner product of \vec{a} with \vec{s} + some noise e in \mathbb{Z} , then reduced mod q. **Search LWE.** Let $\vec{s} \in \mathbb{Z}_q^n$ arbitrary. Given arbitrarily many samples from $D_{n,q,\alpha}(\vec{s})$, the goal is to find \vec{s} .

Decision LWE. Let $\vec{s} \leftarrow U(\mathbb{Z}_q^n)$. The goal is to distinguish between $D_{n,q,\alpha}(\vec{s})$ and $U(\mathbb{Z}_q^n \times \mathbb{Z}_q)$, given arbitrarily many samples.

What does it mean to solve Decision-LWE ?

We have a PPT (probabilistic polynomial-time) algorithm \mathcal{A} which makes sample requests and returns $b \in \{0, 1\}$. It wins if with non-negligible probability over \vec{s} (proportion $\geq \frac{1}{n^c}$, for some constant c > 0), we have:

$$Adv(\mathcal{A}) = \left| Pr[\mathcal{A} \xrightarrow{D(\vec{s})} 1] - Pr[\mathcal{A} \xrightarrow{U} 1] \right| \ge \frac{1}{n^{c'}}, \text{ for some } c' > 0$$

Matrix interpretation:

$$m rows \begin{pmatrix} i \\ \mathbf{A} \\ \vdots \end{pmatrix}, \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod \mathbf{q}$$

Each row is a fresh LHS (left-hand side) of $D_{n,q,\alpha}(\vec{s})$.

m = the number of samples.

goal can be:

 \longrightarrow find \vec{s} .

 \rightarrow tell that *RHS* (right-hand side) is not uniform (and independent from *LHS*).

Remark: Why discrete Gaussians?

Q: why discrete? continuous Gaussians works (replacing Z_q in RHS by ℝ/qZ).

A: simpler to explain with integers.

• Q: why Gaussian? E.g. rather than $U(\llbracket -5\alpha q, +5\alpha q \rrbracket)$? A: hardness proofs for *LWE* heavily rely on Gaussians.

Remark:

 \longrightarrow If $\alpha = 0$, LWE is easy (no error, no noise): linear system mod q. \longrightarrow If $\alpha \approx 1$, LWE becomes trivially impossible as the samples contain almost no information on \vec{s} (noise hides - covers - everything).

1.2 LWE search to decision reduction

Decision \rightarrow search: easy!

- \star ask samples
- \star call Search-LWE oracle $\rightsquigarrow \vec{s}$ or fail
- \star if "fail" \to reply " $U(\mathbb{Z}_{q}^{n} \times \mathbb{Z})$ "
- \star else if $(RHS LHS \cdot \vec{s})$ is small \rightarrow reply "LWE", else reply "Unif"

Theorem 1.1 Assume that q is prime and $q \leq poly(n)$. Assume there exists a PPT algorithm \mathcal{A} that has non-negligible distinguishing advantage between U and $D(\vec{s})$ with non-negligible probability over the choice of \vec{s} .

Then there exists a PPT algorithm \mathcal{B} that finds \vec{s} from the samples from $D(\vec{s})$ with probability $\geq 1 - 2^{-n}$ for all \vec{s} (over the internal randomness of \mathcal{B} and randomness of $D(\vec{s})$ samples).

Remark: The assumptions may be removed: see Brakerski, Langlois, Peikert, Regev, Sthelé 2013 [2].

Proof (3 steps)

step 1: Make the distinguishing advantage of $\mathcal{A} \geq 1 - 2^{-3n}$

Run $\mathcal{A} \to N$ times If it returns 1 more than N/2 times then \implies return 1, else 0. * proof as exercise (note that we have unlimited access to samples!)

step 2: Solve Search-LWE with non-negligible probability over $\vec{s} \leftarrow U(\mathbb{Z}_q^n)$

Consider an \vec{s} such that the distinguishing advantage is $\geq 1 - 2^{-3n}$. We are to recover $\vec{s_1}$, the 1^{st} coordinate of \vec{s} . We try all s_1^* in [0, q - 1] and check whether $s_1 = s_1^*$ or not. Given a sample (\vec{a}, b) for $D(\vec{s})$, we construct a sample (\vec{a}', b') , where \vec{a}' from $D(\vec{s})$ if $s_1 = s_1^*$ or else, from $U(\mathbb{Z}_q^n \times \mathbb{Z}_q)$:

$$\begin{aligned} u \leftarrow Unif(\mathbb{Z}_q) \text{ and } (\vec{a}, b) \longmapsto (\quad \vec{a} + \begin{pmatrix} u \\ 0 \\ \vdots \\ 0 \end{pmatrix}, b + us_1^*). \\ \text{uniform, thanks to } \vec{a} \\ b + us_1^* = \langle \vec{a} + \begin{pmatrix} u \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{s} > -us_1 + us_1^* + e = \langle \vec{a} + \begin{pmatrix} u \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{s} > +u(\underbrace{s_1^* - s_1}_{if0 \Longrightarrow + e}) + e \end{aligned}$$

- If $s_1^* = s_1$, that is a sample from $D(\vec{s})$
- Else, $u(s_1^* s_1)$ uniform (using q prime) $\implies RHS$ uniform, independent of LHS.

step 3: Solving Search-LWE for all \vec{s} (using a solver that works for a non-negligible fraction of all \vec{s} 's):

- let
$$(\vec{a}, \underbrace{b}_{\langle a, s \rangle + e})$$
 from $D(\vec{s})$.
- Sample $\vec{t} \leftarrow U(\mathbb{Z}_q^n)$.
- Map (\vec{a}, b) to $(\vec{a}, \underbrace{b + \langle \vec{a}, \vec{t} \rangle}_{\langle \vec{a}, \vec{s} + \vec{t} \rangle + e}) \implies$ it maps $D(\vec{s})$ to $D(\underbrace{\vec{s} + \vec{t}}_{uniform})$

With non-negligible probability, we can recover $\vec{s} + \vec{t}$ from samples from $D(\vec{s} + \vec{t})$. Then $\vec{s} = (\vec{s} + \vec{t}) - \vec{t}$.

<u>Note</u>: We will distinguish the $D(\vec{s} + \vec{t})$ distribution from U, for some \vec{t} , so pick as many \vec{t} 's as needed

2 Hardness of LWE

2.1 Euclidean lattices

Definition (Lattice)

A lattice is a set of the form $L = \sum_{i \leq n} \mathbb{Z} \vec{b_i}$ for linearly independent $\vec{b_i}$'s. The $\vec{b_i}$'s - said basis, n - lattice dimension.

Definition (*Minimum of L*)

The minimum of a lattice L (denoted by $\lambda(L)$) is the Euclidean norm of a shortest non-zero vector of the lattice:

$$\lambda(L) = \min_{\vec{b} \in L \setminus \{0\}} \|\vec{b}\|$$

Definition (*GapSVP*)

Let $n \ge 1, \gamma \ge 1$. Given a basis of a lattice L (dimension n) and $a \in \mathbb{R}, a > 0$, GapSVP requires to reply:

| YES, if $\lambda(L) \leq a$ | NO, if $\lambda(L) \geq \gamma \cdot a$

(hardness increases with n, decreases with γ)

Remark: GapSVP is

- NP-hard under randomized reductions, for γ = 2^{(log n)^{1-ε}}, for all ε > 0 (Haviv-Regev 2007 [4]).
- In NP \cap coNP for $\gamma = \sqrt{n}$ (Aharonov-Regev [1]) hence, unlikely to be NP-hard.

• In P for $\gamma = 2^{n \frac{\log \log(n)}{\log(n)}}$ (Schnorr'87 [10] + Micciancio-Voulgaris'10 [7]).

Best known algorithms:

- \star for small $\gamma: 2^{O(n)}$ [7]
- * for $\gamma \ge poly(n) : \left(\frac{n}{\log \gamma}\right)^{O\left(\frac{n}{\log \gamma}\right)}$ [10]

Definition (Bounded Distance Decoding Problem BDD_{γ}) Given L and $t \in \mathbb{R}^n$ such that there exists \vec{b} with $\|\vec{t} - \vec{b}\| \leq \frac{\lambda(L)}{2\gamma}$, the goal is to find \vec{b} .

Best known algorithms: same as for GapSVP.

2.2 LWE as a lattice problem

$$L(A) = \left\{ \vec{x} \in \mathbb{Z}^m : \exists \vec{s} \in \mathbb{Z}_q^n : \vec{x} = A \cdot \vec{s} [q] \right\} = \underbrace{A \cdot \mathbb{Z}_q^n + (q\mathbb{Z})^m}_{\text{see figure of } LWE \text{ matrix interpretation}}$$

<u>Note</u>: dim(L(A)) = n

- A $\cdot \vec{s} + \vec{e}$ is the \vec{t} in BDD.
- A $\cdot \vec{s}$ is the \vec{b} in $BDD \rightsquigarrow$ easy to recover \vec{s} from A $\cdot \vec{s}$.

 $\vec{b} - \vec{t} = \vec{e}$ and $\|\vec{e}\|$ is small \implies Most efficient *LWE* solver relies on [10] and [7] for BDD_{γ} :

$$\left(\frac{n \cdot \log(q)}{\log^2(\alpha)}\right)^{O\left(\frac{n \cdot \log(q)}{\log^2(\alpha)}\right)} \approx 2^{\widetilde{O}\left(\frac{n \cdot \log(q)}{\log^2(\alpha)}\right)}$$

<u>*Note*</u>: as α tends to 0, the exponent $O\left(\frac{n \cdot \log(q)}{\log^2(\alpha)}\right)$ tends to 0.

2.3 LWE at least as hard as lattice problems

Theorem 2.1 (Regev'05 [8], Brakerski, Langlois, Peikert, Regev and Stehlé '13 [2])

Let $\alpha, q > 0$ such that $\alpha q \ge 2\sqrt{n}$.

If q prime and $q \leq poly(n)$, there exists a poly-time quantum reduction from $GapSVP_{\gamma}^{(n)}$ to $LWE_{n,q,\alpha}$ with $\gamma = \widetilde{O}(n/\alpha)$. For all q, there exists a poly-time classical reduction from $GapSVP_{\gamma}^{\sqrt{n}}$ to $LWE_{n,q,\alpha}$, with $\widetilde{O}(n/\alpha) = \gamma$.

<u>Note:</u> soft-O notation (\widetilde{O}) is used to forget poly-logarithmic multiplicative terms.

Bibliography

- [1] Dorit Aharonov and Oded Regev. Lattice problems in NP \cap coNP. J. ACM, 52(5):749–765 (electronic), 2005.
- [2] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of learning with errors. In STOC'13, pages 575–584, 2013.
- [3] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal gaussians. Cryptology ePrint Archive, 2013. https://eprint.iacr.org/2013/383.
- [4] I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In *Proc. of STOC*, pages 469–477. ACM, 2007.
- [5] F. Laguillaumie, A. Langlois, and D. Stehlé. Chiffrement avancé à partir du problème learning with errors. Presses Universitaires de Perpignan, 2014. Chapitre de l'ouvrage "Informatique Mathématique, une photographie en 2014".
- [6] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In *Proc. of Eurocrypt*, volume 7237 of *LNCS*, pages 700–718. Springer, 2012.
- [7] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. In *Proc. of SODA*. ACM, 2010.
- [8] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proc. of STOC, pages 84–93. ACM, 2005.
- [9] O. Regev. The learning with errors problem, 2010. Invited survey in CCC 2010, available at http://www.cs.tau.ac.il/~odedr/.

[10] C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. *Theor. Comput. Science*, 53:201–224, 1987.