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0 Introduction

The learning with errors problem (LWE):

• Introduced by Oded Regev (2005) [8]

• Since then, very hot topic in cryptography =⇒ Encryption, IBE,
ABE (attribute-based encryption) for all circuits, FE (functional en-
cryption), FHE (fully homomorphic encryption)

• Why is it insteresting to cryptographers?

? simple and reach problem (linear algebra  easy to devise ad-
vanced primitives - which is the focus of this course)

? it leads to asymptotically efficient primitives

? very clean security grounding

? it seems to be quantum-resistant

1 Definition

1.1 Learning with errors (LWE)

References: Oded Regev survey [9], Laguillaumie, Langlois and Stehlé survey
[5]

• Gaussian distribution: Ds,c(x) ∼ exp(−π (x−c)2
s2

) (proportionality)

s = standard deviation parameter (SD)
c = center of the distribution (Mean)

Gaussian distribution (continuous)
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• Integral Gaussian distribution: DZ,s,c(x) ∼ exp(−π (x−c)2
s2

)

x ∈ Z (whereas for the continous case, x is real)
center c does not need to be an integer!

Integral Gaussian distribution

DZ,s,c(x) =
exp(−π(x−c)2/s2)∑
k∈Z exp(−π(k−c)2/s2)

Note: Not all (nice) properties of the continuous case hold for the in-
tegral one! But may do, when s � 1.

2 properties we need today:

1. We can sample from it in quasi-linear time (with respect to output size):
see Ducas, Durmus, Lepoint, Lyubashevsky 2013 [3].

2. If s ≥ 1, ∀t > 0 : Pr
x←DZ,s,c

[|x − c| ≥ t · s] ≤ 4 · exp(−πt2) (see sub-

section 2.3 and 2.4 of Micciancio-Peikert 2012 [6])

LWE Distribution. Let n ≥ 1, q ≥ 2, α ∈ (0, 1) and ~s ∈ (Zq)n. We define
the distribution Dn,q,α(~s) over (Zq)n × Zq by:

| sample a← U(Znq ), sample e← DZ,α·q,0 (the error term)
| return (~a,< ~a,~s > +e): the inner product of ~a with ~s + some noise e

in Z, then reduced mod q.
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Search LWE. Let ~s ∈ Znq arbitrary. Given arbitrarily many samples from
Dn,q,α(~s), the goal is to find ~s.

Decision LWE. Let ~s← U(Znq ). The goal is to distinguish betweenDn,q,α(~s)
and U(Znq × Zq), given arbitrarily many samples.

What does it mean to solve Decision-LWE ?
We have a PPT (probabilistic polynomial-time) algorithm A which makes
sample requests and returns b ∈ {0, 1}. It wins if with non-negligible proba-
bility over ~s (proportion ≥ 1

nc , for some constant c > 0), we have:

Adv(A) =
∣∣∣Pr[A D(~s)→ 1]− Pr[A U→ 1]

∣∣∣ ≥ 1
nc′

, for some c′ > 0

Matrix interpretation:

m rows

n cols ...
A
...

 ,

 ...
b
...

 = A · s + e mod q

Each row is a fresh LHS (left-hand side) of Dn,q,α(~s).
m = the number of samples.

goal can be:
−→ find ~s.
−→ tell that RHS (right-hand side) is not uniform (and independent from
LHS).

Remark : Why discrete Gaussians?

• Q: why discrete? continuous Gaussians works (replacing Zq in RHS
by R/qZ).
A: simpler to explain with integers.

• Q: why Gaussian? E.g. rather than U([[−5αq,+5αq]])?
A: hardness proofs for LWE heavily rely on Gaussians.
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Remark :
−→ If α = 0, LWE is easy (no error, no noise): linear system mod q.
−→ If α ≈ 1, LWE becomes trivially impossible as the samples contain
almost no information on ~s (noise hides - covers - everything).

1.2 LWE search to decision reduction

Decision → search: easy!

? ask samples

? call Search-LWE oracle  ~s or fail

? if "fail" → reply "U(Znq × Z)"

? else if (RHS - LHS · ~s) is small → reply "LWE", else reply "Unif"

Theorem 1.1 Assume that q is prime and q ≤ poly(n). Assume there exists
a PPT algorithm A that has non-negligible distinguishing advantage between
U and D(~s) with non-negligible probability over the choice of ~s.

Then there exists a PPT algorithm B that finds ~s from the samples from
D(~s) with probability ≥ 1− 2−n for all ~s (over the internal randomness of B
and randomness of D(~s) samples).

Remark : The assumptions may be removed: see Brakerski, Langlois, Peik-
ert, Regev, Sthelé 2013 [2].

Proof (3 steps)

step 1: Make the distinguishing advantage of A ≥ 1− 2−3n

Run A → N times
If it returns 1 more than N/2 times then =⇒ return 1, else 0.
* proof as exercise (note that we have unlimmited access to samples! )

step 2: Solve Search-LWE with non-negligible probability over ~s← U(Znq )

Consider an ~s such that the distinguishing advantage is ≥ 1− 2−3n.
We are to recover ~s1, the 1st coordinate of ~s.
We try all s∗1 in [0, q − 1] and check whether s1 = s∗1 or not.
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Given a sample (~a, b) for D(~s), we construct a sample (~a′, b′), where ~a′

from D(~s) if s1 = s∗1 or else, from U(Znq × Zq):

u← Unif(Zq) and (~a, b) 7−→ ( ~a+


u
0
...
0


︸ ︷︷ ︸

uniform, thanks to ~a

, b+ us∗1).

b+us∗1 = < ~a+


u
0
...
0

 , ~s > −us1+us∗1+e = < ~a+


u
0
...
0

 , ~s > +u( s∗1 − s1︸ ︷︷ ︸
if0 =⇒ +e

)+e

• If s∗1 = s1, that is a sample from D(~s)

• Else, u(s∗1− s1) uniform (using q prime) =⇒ RHS uniform, indepen-
dent of LHS.

step 3: Solving Search-LWE for all ~s (using a solver that works for a
non-negligible fraction of all ~s ’s):

- let (~a, b︸︷︷︸
<a,s>+e

) from D(~s).

- Sample ~t← U(Znq ).
- Map (~a, b) to (~a, b+ < ~a,~t >︸ ︷︷ ︸

<~a,~s+~t>+e

) =⇒ it maps D(~s) to D( ~s+ ~t︸︷︷︸
uniform

)

With non-negligible probability, we can recover ~s + ~t from samples from
D(~s+ ~t). Then ~s = (~s+ ~t)− ~t.
Note: We will distinguish the D(~s + ~t) distribution from U , for some ~t, so
pick as many ~t ’s as needed �
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2 Hardness of LWE

2.1 Euclidean lattices

Definition (Lattice)
A lattice is a set of the form L =

∑
i≤n Z~bi for linearly independent ~bi’s.

The ~bi’s - said basis, n - lattice dimension.

Lattice basis

Definition (Minimum of L)
The minimum of a lattice L (denoted by λ(L)) is the Euclidean norm of a
shortest non-zero vector of the lattice:

λ(L) = min
~b∈L\{0}

‖~b‖

Definition (GapSVP)
Let n ≥ 1, γ ≥ 1. Given a basis of a lattice L (dimension n) and a ∈ R, a > 0,
GapSV P requires to reply:

| YES, if λ(L) ≤ a
| NO, if λ(L) ≥ γ · a

(hardness increases with n, decreases with γ)

Remark : GapSV P is

• NP-hard under randomized reductions, for γ = 2(logn)
1−ε , for all ε > 0

(Haviv-Regev 2007 [4]).

• In NP ∩ coNP for γ =
√
n (Aharonov-Regev [1]) - hence, unlikely to

be NP-hard.
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• In P for γ = 2
n

log log(n)
log(n) (Schnorr’87 [10] + Micciancio-Voulgaris’10 [7]).

Best known algorithms:

? for small γ : 2O(n) [7]

? for γ ≥ poly(n) : ( n
log γ )

O( n
log γ

) [10]

Definition (Bounded Distance Decoding Problem BDDγ)
Given L and t ∈ Rn such that there exists ~b with ‖~t−~b‖ ≤ λ(L)

2γ , the goal is
to find ~b.

Best known algorithms: same as for GapSV P .

2.2 LWE as a lattice problem

L(A) =
{
~x ∈ Zm : ∃~s ∈ Znq : ~x = A·~s [q]

}
= A · Znq + (qZ)m︸ ︷︷ ︸

see figure of LWE matrix interpretation

Note: dim(L(A)) = n

• A ·~s+ ~e is the ~t in BDD.

• A ·~s is the ~b in BDD  easy to recover ~s from A ·~s.

~b−~t = ~e and ‖~e‖ is small =⇒ Most efficient LWE solver relies on [10] and
[7] for BDDγ : (n · log(q)

log2(α)

)O(n·log(q)
log2(α)

)
≈ 2

Õ
(
n·log(q)
log2(α)

)
Note: as α tends to 0, the exponent O

(
n·log(q)
log2(α)

)
tends to 0.
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2.3 LWE at least as hard as lattice problems

Theorem 2.1 (Regev’05 [8], Brakerski, Langlois, Peikert, Regev and Stehlé
’13 [2])

Let α, q > 0 such that αq ≥ 2
√
n.

If q prime and q ≤ poly(n), there exists a poly-time quantum reduc-
tion from GapSV P

(n)
γ to LWEn,q,α with γ = Õ(n/α). For all q, there

exists a poly-time classical reduction from GapSV P
√
n

γ to LWEn,q,α, with
Õ(n/α) = γ.

Note: soft-O notation (Õ) is used to forget poly-logarithmic multiplica-
tive terms.
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