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Chapter 1

Encryption and IBE from LWE

1.1 Probabilistic interlude

Let D; and D4 be two distributions on a countable domain X.
The statistical distance (or I; distance or total variation distance) between Dy and Ds is:

DDy =5 3 |Da(a) - Dae)
zeX

Properties:
e It’s a distance (it is positive, symmetric and satistifies the triangular inequality)

e For all (randomized) function f, we have:
A(f(D1), f(D2)) < A(D1, D2)

As a consequence, for any randomized algorithm A : X — {0,1},
if we define:

Advu(Dy,Dg) :=| Pr [A(z) =1]— Pr [A(z) =1]

x<—Dq x<+—Do

Then we have:
Adva(D1, Ds) < A(Dy, D)

e For any distributions D 1, D12, D21, D22 with Dy ; independent from D; 2 and Dy ; in-
dependent from D 5, we have:

A((D1,1,D12),(D21,D22)) < A(D11,D21) + A(D12, D2 2)

e Forany event I/ C X:

Dy(E) > Dy(E) — A(D1,D2) where D(E) := EI“D [z € E]



Leftover Hash Lemma (LHL):
Leth:S x X — Y (where S, X, Y are finite sets).

The mapping h is said to be a 2-universal familly of hash functions if:

/ P — / _
Ve #2' € X, Sklrjs [h(s,z) = h(s, )] v

Let D be a distribution over X such that max,cx D(z) < 2~ for some constant H called the
min entropy (2~ is called the guessing probability). Then, given s € S, the value of h(s, D) is
close to uniform:

Al(s, h(s,2)), (5,1)] < CagdH(Y) where (s,z,y) < (U(S), D, U(Y))

Example: h(A,r):=rTA
Let ¢ be a prime number, A < U(Z;"*") and D := U({0, 1}") the distribution of 7.
Given r # 1/, we have:

1?41" [h(A,r) = [ TA=/TA4 | ]]

(r—7")TA=(0)1.n [q]]
[T—T)TG,EO [q]])n

n
[ r—1r)Ta, = _ [q]D where ig is such that r;, # r;,

o
(o
(v

Thus, h is 2-universal, and we can apply the leftover hash lemma (with max, D(r) = 27™):

A((A,rTA), (A,u)) < ;LZ where (1, A, u) < (U({0, 1}"™), U(Z™), U (Z))

Knowing A, the vector r ! A can be considered uniform when A is small, so when m > n log, q.
For example, if m = 3nlog, ¢, then A < ¢7".

1.2 Encrypting from LWE

Encryption Scheme: This is the dual-Regev encryption, a scheme easier to extend to schemes
with more advanced functionalities than the version introduced by Regev with LWE. It was
first introduced in [1].

KeyGen:
o skir« U({0,1}™)

e PK:u€Z! suchthatu' =r"A [q]
Remark: A <— U(Zy™) is a matrix shared by everyone using the scheme.



Enc(PK,M € {0,1}):
o« s U2
o ¢ (Dzag)™
o ¢/ Dz0q

e Return (¢, o) with:

Dec(sk =1, (c1,c2)):

T

e computeca — 1 ' ¢ [q]

o if thisis > % return M = 1, otherwise return M = 0

Correctness: We have the following:

CQ—TTxclz(uT><s+e’+LgJM)—rT><(A><s+e)

:TT><A><s+e'+L%JM—rT><A><8—TT><e

= [3IM +( =1 xe) [d]

Thus, the decryption error is:

e — rTe’ < |e’| + |le]]

< agy/m + vm(y/m.agy/m) with proba > 1 —27%m)

§2aqm%
If « < —L then thisis < 1. And:
16m2
T q
M:O:‘CQ—T ><C1‘§Z
T q
M:1:>’02—7“ xc1‘>1

Remarks:

e The correctness is only probabilistic. This can be avoided by cutting the tail of Dz 4, or
by choosing the parameters to have a unrealistic probability of failure.

o 2aqms3 is very far from a tight bound.

e Design strategy: compute a bound on the magnitude of error in the decryption, then set
a such that the correctness is garanteed. Then set all other parameters such that LWE,, .,
is hard.



Security: proving an IND-CPA security

Goal: The adversary A is given pk, and an encryption of either 0 or 1. The adversary A has to
distinguish (A, u, Enc(0)) and (A, u, Enc(1))

Game 0 Real IND-CPA game

Game 1 Same game, except that we sample v uniformly
A((A,rTA), (Au) < g™ if m>3nlogg
|Adv 4(Game 0) — Adv4(Game 1)| < 2¢™"

Game 2 Same as 1, but we remplace As + e and u ' s + ¢’ by something uniform mod ¢ in Enc.
If A sees a difference between Game 1 and Game 2, it can break LWE,, ,,: we can
construct B such that:

Adv 4(Game 2) > Adv 4(Game 1) — Advp(Breaking LWE)

Setting parameters: To have a scheme 2* secure, choose the parameters as follow:
1
3
16mz2

aq = o9m> m > 3nlog, q

n=0(\) o=

With thoses parameters, the cost of the scheme is:
PK length: O(Xlog \) time to encrypt one bit: mn logs ¢ = O(\?)
sk length: O(Alog \) decryption cost: O(\)
ciphertext size: O(\)

Encrypting several bits at once:
We can modify the scheme to use several distincts u’s to encrypt several bits:

c1 A e 0

co | =1uf | x (s) +le | + | &M

3 Uy e L2 M;
Ct+1 U: €t L%JMt

Choosing t is a tradeof between the size of the keys and the number of bits encrypted at once:
The size of the keys is multiplied by ¢, and the ciphertext now encrypt ¢ bits using A + ¢ bits.

1.3 IBE from LWE in the Random Oracle Model

Lemma 1: [2] [3] [4]
There exists a probabilistic polynomial time algorithm GenBasis that takes n, m, ¢ with m >
Q(nlogn) as inputs, and returns (7', A) € (Z;**", Zg**") such that :
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o A(AU(Zy™) <27
e max||t;|| = O(nlogn) where ¢; is the i-th row of T’

e the (t;)1<i<, form a basis of AL(A) = {z € Z™, 2T A =0 [¢]}

Remark 1: This can be used to solve LWE, as distinguishing (4, A x s + e) and (A, u) become
easy just by multiplying by 7"

o T'x (A xs+e)=T x eis small with high probability.

e T x uis uniform as 7" is non-singular.
Remark 2: Given just A, it is hard to find such a 7.
Lemma2: [1][5]

Let L be a n-dimentional lattice in Z". Let (b;)1<i<, be abasis of L, and let s > € (max||b;||v/Iog n).
There exists a probabilistic polynomial time algorithm GPVSample that samples from a distri-

bution Dy, s . such that:
b_ cll?
Dps,e(b) ~ exp <—7T||zc”>

S

For such an s: maxyer, Dp 5.0(b) < 27" and Pryep, , ([[b—c| > sy/n) <277

Properties:

e Procpy,, [le—cl = yas] <27

e max,cr D(z) < 27" assuming s > max||b||2 (vIog n)
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