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Chapter 1

Encryption and IBE from LWE

1.1 Probabilistic interlude

Let D1 and D2 be two distributions on a countable domain X .
The statistical distance (or l1 distance or total variation distance) between D1 and D2 is:

∆(D1, D2) :=
1

2

∑
x∈X
|D1(x)−D2(x)|

Properties:

• It’s a distance (it is positive, symmetric and satistifies the triangular inequality)

• For all (randomized) function f , we have:

∆(f(D1), f(D2)) ≤ ∆(D1, D2)

As a consequence, for any randomized algorithm A : X → {0, 1},
if we define:

AdvA(D1, D2) :=

∣∣∣∣ Pr
x←D1

[A(x) = 1]− Pr
x←D2

[A(x) = 1]

∣∣∣∣
Then we have:

AdvA(D1, D2) ≤ ∆(D1, D2)

• For any distributions D1,1, D1,2, D2,1, D2,2 with D1,1 independent from D1,2 and D2,1 in-
dependent from D2,2, we have:

∆((D1,1, D1,2), (D2,1, D2,2)) ≤ ∆(D1,1, D2,1) + ∆(D1,2, D2,2)

• For any event E ⊆ X :

D1(E) ≥ D2(E)−∆(D1, D2) where D(E) := Pr
x←D

[x ∈ E]
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Leftover Hash Lemma (LHL):
Let h : S ×X → Y (where S,X, Y are finite sets).

The mapping h is said to be a 2-universal familly of hash functions if:

∀x 6= x′ ∈ X, Pr
s←US

[
h(s, x) = h(s, x′)

]
=

1

|Y |

Let D be a distribution over X such that maxx∈X D(x) ≤ 2−H for some constant H called the
min entropy (2−H is called the guessing probability). Then, given s ∈ S, the value of h(s,D) is
close to uniform:

∆[(s, h(s, x)), (s, y)] ≤
√

Card(Y )

2H
where (s, x, y)← (U(S), D, U(Y ))

Example: h(A, r) := r>A
Let q be a prime number, A← U(Zm×nq ) and D := U({0, 1}m) the distribution of r.
Given r 6= r′, we have:

Pr
A

[
h(A, r) = h(A, r′)

]
= Pr

A

[
r>A ≡ r′>A [q]

]
= Pr

A

[
(r − r′)>A ≡ (0)1..n [q]

]
=
(

Pr
a

[
(r − r′)>a ≡ 0 [q]

])n
=
(

Pr
a

[
(r − r′)>ai0 ≡ _ [q]

])n
where i0 is such that ri0 6= r′i0

=

(
1

q

)n
Thus, h is 2-universal, and we can apply the leftover hash lemma (with maxrD(r) = 2−m):

∆((A, r>A), (A, u)) ≤
√
qn

2m
where (r,A, u)← (U({0, 1}m), U(Zmnq ), U(Znq ))

KnowingA, the vector r>A can be considered uniform when ∆ is small, so whenm� n log2 q.
For example, if m = 3n log2 q, then ∆ ≤ q−n.

1.2 Encrypting from LWE

Encryption Scheme: This is the dual-Regev encryption, a scheme easier to extend to schemes
with more advanced functionalities than the version introduced by Regev with LWE. It was
first introduced in [1].

KeyGen:

• sk: r ← U({0, 1}m)

• PK: u ∈ Znq such that u> ≡ r>A [q]
Remark: A← U(Znmq ) is a matrix shared by everyone using the scheme.
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Enc(PK,M ∈ {0, 1}):

• s← U(Znq )

• e← (DZ,αq)
m

• e′ ← DZ,αq

• Return (c1, c2) with: c1

c2

 =

 A

u>

×
s
+

e
e′

+

 0

b q2cM


Dec(sk = r, (c1, c2)):

• compute c2 − r>c1 [q]

• if this is > q
4 return M = 1, otherwise return M = 0

Correctness: We have the following:

c2 − r> × c1 = (u> × s+ e′ + bq
2
cM)− r> × (A× s+ e)

= r> ×A× s+ e′ + bq
2
cM − r> ×A× s− r> × e

= bq
2
cM + (e′ − r> × e) [q]

Thus, the decryption error is:∣∣∣e′ − r>e∣∣∣ ≤ ∣∣e′∣∣+ ‖e‖

≤ αq
√
m+

√
m(
√
m.αq

√
m) with proba ≥ 1− 2−Ω(m)

≤ 2αqm
3
2

If α ≤ 1

16m
3
2

then this is ≤ q
8 . And:

M = 0⇒
∣∣∣c2 − r> × c1

∣∣∣ ≤ q

4

M = 1⇒
∣∣∣c2 − r> × c1

∣∣∣ > q
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Remarks:

• The correctness is only probabilistic. This can be avoided by cutting the tail of DZ,αq, or
by choosing the parameters to have a unrealistic probability of failure.

• 2αqm
3
2 is very far from a tight bound.

• Design strategy: compute a bound on the magnitude of error in the decryption, then set
α such that the correctness is garanteed. Then set all other parameters such that LWEn,αq
is hard.
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Security: proving an IND-CPA security

Goal: The adversary A is given pk, and an encryption of either 0 or 1. The adversary A has to
distinguish (A, u,Enc(0)) and (A, u,Enc(1))

Game 0 Real IND-CPA game

Game 1 Same game, except that we sample u uniformly

∆((A, r>A), (A, u)) ≤ q−n if m ≥ 3n log q

|AdvA(Game 0)−AdvA(Game 1)| ≤ 2q−n

Game 2 Same as 1, but we remplace As+ e and u>s+ e′ by something uniform mod q in Enc.
If A sees a difference between Game 1 and Game 2, it can break LWEn,αq: we can
construct B such that:

AdvA(Game 2) ≥ AdvA(Game 1)−AdvB(Breaking LWE)

Setting parameters: To have a scheme 2λ secure, choose the parameters as follow:

n = Θ(λ) α =
1

16m
3
2

αq = 2m
1
2 m ≥ 3n log2 q

With thoses parameters, the cost of the scheme is:

PK length: O(λ log λ) time to encrypt one bit: mn log2
2 q = Õ(λ2)

sk length: O(λ log λ) decryption cost: Õ(λ)

ciphertext size: Õ(λ)

Encrypting several bits at once:
We can modify the scheme to use several distincts u’s to encrypt several bits:

c1

c2

c3

...
ct+1


=



A

u>1
u>2
...
u>t


×

s
+



e

e1

e2

...
et


+



0

b q2cM1

b q2cM2

...
b q2cMt


Choosing t is a tradeof between the size of the keys and the number of bits encrypted at once:
The size of the keys is multiplied by t, and the ciphertext now encrypt t bits using λ+ t bits.

1.3 IBE from LWE in the Random Oracle Model

Lemma 1: [2] [3] [4]
There exists a probabilistic polynomial time algorithm GenBasis that takes n,m, q with m ≥
Ω(n log n) as inputs, and returns (T,A) ∈ (Zm×nq ,Zm×nq ) such that :
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• ∆(A,U(Zmnq )) ≤ 2−n

• max‖ti‖ = O(n log n) where ti is the i-th row of T

• the (ti)1≤i≤n form a basis of Λ⊥(A) =
{
x ∈ Zm, x>A ≡ 0 [q]

}
Remark 1: This can be used to solve LWE, as distinguishing (A,A × s + e) and (A, u) become
easy just by multiplying by T :

• T × (A× s+ e) = T × e is small with high probability.

• T × u is uniform as T is non-singular.

Remark 2: Given just A, it is hard to find such a T .

Lemma 2: [1] [5]
LetL be a n-dimentional lattice in Zn. Let (bi)1≤i≤n be a basis ofL, and let s ≥ Ω

(
max‖bi‖

√
log n

)
.

There exists a probabilistic polynomial time algorithm GPVSample that samples from a distri-
bution DL,s,c such that:

DL,s,c(b) ∼ exp

(
−π‖b− c‖

2

s2

)

For such an s: maxb∈LDL,s,c(b) ≤ 2−n and Prb∈DL,s,c
(‖b− c‖ ≥ s

√
n) ≤ 2−n

Properties:

• Prx←DL,s,c
[‖x− c‖ ≥

√
ns] ≤ 2−n

• maxx∈LD(x) ≤ 2−n assuming s ≥ max‖bi‖Ω
(√

log n
)
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