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1 Hierarchical Identity-Based Encryption (HIBE)[5]

Although having a single Private Key Generator (PKG) would completely elim-
inate the need for online public key lookup, it is undesirable for a large network
because generating private keys for all users becomes a bottleneck for the PKG.
Hierarchical ID-based encryption (HIBE) allows a root PKG to distribute the
workload by delegating private key generation and identity authentication to
lower-level PKGs (users or authorities organized in hierarchy.[6]

Each node at level t has a local identifier IDt and an address HID which is
obtained as the concatenation HID = H̃ID||IDt and H̃ID is the father node
of HID.

Given a private key dHID for HID = (ID1, ID2, . . . IDt), one can compute
a key dHID′ for HID′ = (ID1, ID2, . . . IDt+1) where IDt+1 ∈ {0, 1}?

1.1 Definition of HIBE scheme

An HIBE scheme is a tuple (Setup, Keygen, Derive, Encrypt, Decrypt) with the
following specifications:

Setup(λ, L): Given a security parameter λ ∈ N and the maximal number of
level L ∈ poly(λ), output a pair (MPK,MSK)

Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Generates a key dHID if t ≤ L
and outputs ⊥ otherwise.

Derive(MPK, dHID, HID
′): Given a key dHID forHID = (ID1, ID2, . . . IDt)

and another HID = (ID′1, ID
′
2, . . . ID

′
t+1), return ⊥ if ∃i ∈ {1, . . . t} such

that IDi 6= ID′i otherwise output a derived key dHID′ for HID′

Encrypt(MPK,M,HID): output a ciphertext C for the user whose hierar-
chical identity is HID

Decrypt(MPK, dHID, C): output either a message M or ⊥

Correctness For any HID = (ID1, ID2, . . . IDt):

• For any dHID′ ← Derive(MPK, dHID, HID
′) where

HID′ = (ID1, ID2, . . . IDt, IDt+1)

and for any C ← Encrypt(MPK,M,HID′), M = Decrypt(MPK, dHID, C).
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• The two distributions D0 = {dHID′ ← Derive(MPK, dHID, HID
′)} and

D1 = {dHID′ ← Keygen(MSK,HID = (ID1, ID2, . . . IDt+1)} have to be
statistically close.

1.2 Indistinguishability under chosen plaintext attack for
HIBE scheme (IND-HID-CPA)

A HIBE scheme is IND-HID-CPA if no probabilistic polynomial-time (PPT)
adversary A with non-negligible advantage wins this game:

1. The challenger generates (MPK,MSK) ← Setup(λ, L), gives MPK to
the adversary A and initializes a set Q = ∅

2. A makes private key queries:

• A chooses a hierarchical identity HID = (ID1, ID2, . . . IDt) where
t ≤ L
• The challenger returns a key dHID ← Keygen(MSK,HID) and up-

dates Q := Q ∪ {HID}

3. A chooses M0, M1, and HID? such that no prefix of HID? is in Q and
obtains C? ← Encrypt(MPK,Mγ , HID

?) where γ ←R {0, 1}

4. A makes more private key queries under the restriction that no prefix of
HID? can be in Q at any time.

5. A outputs γ′ and wins if γ = γ′

The advantage of A on this game is:

Adv(A) := |Pr[γ = γ′]− 1/2|

1.3 Hierarchical extension of the BF-IBE [5]

The scheme hereunder, due to Gentry and Silverberg [5], extends the Boneh-
Franklin IBE scheme in a natural way.

Setup(λ, L):

1. Choose cyclic groups (G,GT ) of prime order p > 2λ with a bilinear map
e : G×G→ GT and a generator g R← G

2. Choose α R← Zp and compute g1 = gα

3. Choose a hash function H : {0, 1}∗ → G

Define MPK := ((G,GT ), g, g1 = gα, H) and MSK := α
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Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Given MSK = α

• Choose r2, r3, . . . rt ←R Zp

• Compute dHID = (d1, . . . , dt) ∈ Gt where

d1 = H(ID1)α ·
t∏
i=2

H(ID1, ID2, . . . , IDi)
ri

di = gri ∀2 ≤ i ≤ t

• Return dHID

Derive(MPK, dHID, HID
′): Given a private key dHID = (d1, . . . dt) for the

identity HID = (ID1, ID2, . . . IDt) and HID′ = (ID1, ID2, . . . IDt, IDt+1)

• Choose r′2, r
′
3, . . . r

′
t+1

R← Zp

• Compute dHID′ = (d′1, . . . , d
′
t+1) ∈ Gt+1 where

d′1 = d1 ·
t+1∏
i=2

H(ID1, ID2, . . . , IDi)
r′i

d′i = di · gri ∀2 ≤ i ≤ t

d′t+1 = gr
′
t+1

• Return dHID′

Encrypt(MPK,M,HID): To encrypt M ∈ GT

• Choose s←R Zp

• Compute c = (c0, . . . ct) ∈ GT ×Gt where

c0 = M · e(g1, H(ID1))s

c1 = gs

ci = H(ID1, ID2, . . . , IDi)
s ∀2 ≤ i ≤ t

• Output c

Decrypt(MPK, dHID, C): Given dHID = (d1, . . . dt) and c = (c0, . . . ct),

• Compute

M = c0 ·
∏t
i=2 e(ci, di)

e(c1, d1)

• Output M
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Correctness. for any well-formed private key dHID = (d1, . . . , dt), we have

e(d1, g) = e(g1, H(ID1)) ·
t∏
i=2

e(H(ID1 · ID2 · . . . IDi), di),

so that

e(d1, g
s) = e(g1, H(ID1))s ·

t∏
i=2

e(H(ID1 · ID2 · . . . IDi)
s, di),

and then

M · e(d1, gs︸︷︷︸
c1

) = M · e(g1, H(ID1))s︸ ︷︷ ︸
c0

·
t∏
i=2

e(H(ID1 · ID2 · . . . IDi)
s︸ ︷︷ ︸

ci

, di),

which explains why the decryption algorithm correctly decrypts c = (c0, . . . ct).

Theorem ([5]). In the Random Oracle Model (ROM), any PPT adversary A
with advantage ε against the IND-HID-CPA security of the scheme implies a
PPT DBDH distinguisher B with advantage

ε ≥ 1

eL · (q + 1)2

where L is the maximal number of levels and q is the number of private key
queries.

1.4 Hierarchical extension of Boneh-Boyen IBE

In standard model, we can use the Boneh-Boyen IBE to construct a HIBE
scheme with selective security.

Setup(λ, L):

1. Choose cyclic groups (G,GT ) of prime order p > 2λ with a bilinear map
e : G×G→ GT and a generator g R← G

2. Choose α R← Zp and compute g1 = gα

3. Choose g2, h1, . . . , hL
R← G

Define MPK :=
(
(G,GT ), g, g1 = gα, g2, {hi}Li=1

)
and MSK := gα2

Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Given MSK = gα2 and the hi-
erarchical identity HID = (ID1, ID2, . . . IDt),

• Choose r1, r2, . . . rt
R← Zp

• Compute dHID = (d0, . . . , dt) ∈ Gt+1 where

d0 = gα2 ·
t∏
i=1

Hi(IDi)
ri

di = gri ∀1 ≤ i ≤ t
and with

Hi(IDi) = gIDi
1 hi ∀1 ≤ i ≤ t

• Return dHID
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Derive(MPK, dHID, HID
′): Given a private key dHID = (d1, . . . dt) for the

identity HID = (ID1, ID2, . . . IDt) and HID′ = (ID1, ID2, . . . IDt, IDt+1)

• Choose r′2, r
′
3, . . . r

′
t, r
′
t+1

R← Zp

• Compute dHID′ = (d′0, d
′
1, . . . , d

′
t+1) ∈ Gt+2 where

d′0 = d0 ·Ht+1(IDt+1)r
′
t+1 ·

t∏
i=1

Hi(IDi)
r′i

d′i = di · gri ∀2 ≤ i ≤ t

d′t+1 = gr
′
t+1

• Return dHID′

Encrypt(MPK,M,HID): To encrypt M ∈ GT
• Choose s←R Zp

• Compute c = (c0, . . . ct, ct+1) ∈ Gt+1 ×GT where

c0 = gs

ci = Hi(IDi)
s ∀1 ≤ i ≤ t

ct+1 = M · e(g1, g2)s

• Output c

Decrypt(MPK, dHID, C): Given dHID = (d1, . . . dt) and c = (c0, . . . ct),

• Compute

M = ct+1 ·
∏t
i=1 e(ci, di)

e(c0, d0)

• Output M

Correctness. For any valid private key dHID = (d0, d1, . . . , dt), we have the
equality

e(d0, g) = e(g1, g2) ·
t∏
i=1

e(Hi(IDi), di),

which implies

e(d0, g
s) = e(g1, g2)s ·

t∏
i=1

e(Hi(IDi)
s, di)

for any s ∈ Zp. Hence, we find

M · e(d0, gs︸︷︷︸
c0

) = M · e(g1, g2)s︸ ︷︷ ︸
ct+1

·
t∏
i=1

e(Hi(IDi)
s︸ ︷︷ ︸

ci

, di),

which explains whyt c = (c0, . . . ct, ct+1) is correctly decrypted by the decryption
algorithm.

Theorem ([2]). This scheme is IND-sID-CPA secure under the DBDH assump-
tion.
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1.5 HIBE with short ciphertexts [3]

Boneh, Boyen and Goh showed how to construct a HIBE scheme with short
ciphertexts [3].

Setup(λ, L):

1. Choose cyclic groups (G,GT ) of prime order p > 2λ with a bilinear map
e : G×G→ GT and a generator g R← G

2. Choose α R← Zp and compute g1 = gα

3. Choose g2, h0, h1, . . . , hL
R← G

Define MPK :=
(
(G,GT ), g, g1 = gα, g2, {hi}Li=0

)
and MSK := gα2

Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Given MSK = gα2 and the hi-
erarchical identity HID = (ID1, ID2, . . . IDt),

• Choose r R← Zp

• Compute

dHID = (D0, D1,Kt+1, . . . ,KL) =

(
gα2 ·

(
h0

t∏
i=1

hIDi
i

)r
, gr, hrt+1, . . . , h

r
L

)
∈ GL−t+2

• Return dHID

Derive(MPK, dHID, HID
′): Given a private key dHID = (D0, D1,Kt+1 . . .KL)

for the identityHID = (ID1, ID2, . . . IDt) andHID′ = (ID1, ID2, . . . IDt, IDt+1)

• Choose r′ R← Zp

• Compute dHID′ = (D′0, D
′
1,K

′
t+2, . . . ,K

′
L) where

D′0 = D0 ·KIDt+1

t+1 ·

(
h0

t+1∏
i=1

hIDi
i

)r′

D′1 = D1 · gr
′

K ′i = Ki · hr
′

i ∀t+ 2 ≤ i ≤ L

• Return dHID′

Encrypt(MPK,M,HID): To encrypt M ∈ GT
• Choose s R← Zp

• Compute

c = (c0, c1, c2) =

(
gs,

(
h0

t∏
i=1

hIDi
i

)s
,M · e(g1, g2)s

)

• Output c
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Decrypt(MPK, dHID, C): Given dHID = (D0, D1,Kt+1, . . . ,KL) and the ci-
phertext c = (c0, c1, c2),

• Compute

M = c2 ·
e(c1, D1)

e(c0, D0)

• Output M

Correctness. For any well-formed private key dHID = (D0, D1,Kt+1, . . . ,KL),
we have

e(d0, g) = e(g1, g2) · e

((
h0

t∏
i=1

hIDi
i

)
, d1

)
,

so that

e(d0, g
s) = e(g1, g2)s · e

((
h0

t∏
i=1

hIDi
i

)s
, d1

)
for any s ∈ Zp. It follows that

M · e(d0, gs︸︷︷︸
c0

) = M · e(g1, g2)s︸ ︷︷ ︸
c2

·e


(
h0

t∏
i=1

hIDi
i

)s
︸ ︷︷ ︸

c1

, d1

 ,

which explains the decryption algorithm.

Remarks. Since there are fewer ciphertext components to compute, the en-
cryption algorithm is faster and so is the decryption algorithm since only two
pairing evaluations are sufficient. Another property of the scheme is that, un-
like previous HIBE schemes, the size of the private key decreases at each key
delegation.

Theorem ([3]). The above HIBE scheme is IND-sHID-CPA secure if the weak
L-Decision Bilinear Diffie-Hellman Inversion assumption holds.

Definition 1 ([3]). The weak L-Decision Bilinear Diffie-Hellman Inversion (L-
wDBDHI) assumption says that, given

(g, h, ga, g(a
2), . . . , g(a

L), T ) ∈ GL+2 ×GT ,

where g, h R← G and a R← Zp, deciding whether T = e(g, h)1/a or T ∈R GT is
hard.

2 Application of HIBE : forward-secure encryp-
tion

2.1 Forward Security [1]

• The lifetime of a public key is divided into time periods 0, 1, ...T − 1
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• Each period uses a different SKi: at the beginning of period i, SKi−1, is
erased and replaced by an updated key SKi

• In case of key exposure at period i, the current private key SKi is com-
promised but SK0, . . . SKi−1 should remain infeasible to compute for the
adversary.

Definition. A Forward-Secure Public Key Encryption (FS-PKE) scheme is a
tuple of algorithms:

Keygen(λ, T ): output a public key PK and an initial SK0

Update(SKi, PK) : if i = T − 1 return ⊥, otherwise return SKi+1 and erase
SKi+1

Encrypt(PK,M, i): output a ciphertext c for M

Decrypt(SKi, i, c): output a message M for c or ⊥

Definition. A FS-PKE is IND-CPA secure if no probabilistic polynomial time
adversary A has a non-negligible advantage in the following game:

1. The challenger generates (PK,SK0)← Keygen(λ, T ) and gives PK to A

2. A makes exactly one query to each one of these two oracles:

• Break-in (i): for the period i ∈ {1 . . . T − 1}, A obtains SKi

• Challenge (j,M0,M1): for a time period j ∈ {0 . . . T − 1} and equal-
length messages M0,M1, the adversary A obtains a challenge cipher-
text Cj = Encrypt(PK,Mγ , j) where γ ←R {0, 1}

under the constraint that 0 ≤ j < i < T

3. A outputs γ′ ∈ {0, 1} and wins if γ′ = γ

The advantage of A in this game is:

AdvFS-PKE
A (λ) = |Pr[γ′ = γ]− 1/2|

2.2 FS-PKE from IBE

It is known [4] that one can obtain a limited construction of FS-PKE scheme
using any IBE scheme.

Keygen(λ, T ):

• Generate (MPK,MSK)← SetupIBE(λ)

• Set PKFS := MPK

• For each i ∈ {0 . . . T − 1}, compute SKi ← KeygenIBE(MSK, i)

• Set SKFS
0 := {SK0, . . . , SKT−1}
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Update(SKFS
i , PKFS):

• Parse SKFS
i as {SKi, . . . , SKT−1}

• Output SKFS
i+1 := {SKi+1, . . . , SKT−1} and erase SKFS

i

Encrypt(PKFS ,M, i):

• Compute c = EncryptIBE(MPK,M, i)

Decrypt(SKFS
i , i, c)):

• Parse SKFS
i as {SKi, . . . , SKT−1}

• Compute M = DecryptIBE(MPK,SKi, c)

The limitation of the latter construction is that private keys have size O(T ).
The key generation phase also takes time O(T ). It is desirable to have a con-
struction where the complexity is at most poly-logarithmic in T in all perfor-
mance metrics.

2.3 FS-PKE with poly-logarithmic complexity in T from
any Selectively Secure HIBE [4]

Consider a binary tree with L = log T levels. In the tree, each node at depth
` has an `-bit label. The root of the tree, at depth 0, has the empty string ε.

We associate the time periods with all nodes of the tree according to a pre-
order traversal. (Let wi denote the node associated with period i In a pre-order
traversal, w0 = ε and if wi is an internal node then wi+1 = wi0. If wi is a leaf
node and i < N − 1 then wi+1 = w′1 where w′ is the longest string such that
w′0 is a prefix of wi.) The secret key for period i consists of the secret key for
node wi as well as those for all right siblings of the nodes on the path from the
root to wi.

Keygen(λ, T ):

• Generate (MPK,MSK)← SetupHIBE(λ, L), where L = log(T )

• Define SKε = MSK

• Set PKFS := MPK and SKFS
0 := {SKε}

Update(SKFS
i , PKFS):

• Parse SKFS
i as a stack of SKi with SKwi on the top.

• Pop SKwi from the stack,

– if wi is a internal node, compute

SKwi0 ← DeriveHIBE(MPK,SKwi , wi0)

and SKwi1 ← DeriveHIBE(MPK,SKwi , wi1), push SKwi1 then
SKwi0 on the stack

– if wi is a leaf, the next key on top of the stack is SKwi+1

• Set SKFS
i+1 := the new stack
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Encrypt(PKFS ,M, i):

• Compute c = EncryptHIBE(MPK,M,wi)

Decrypt(SKFS
i , i, c):

• Compute M = DecryptHIBE(MPK,SKwi , c) (Note that SKwi is stored
as a part of SKFS

i )

Theorem ([4]). The above FS-PKE is IND-CPA secure if the underlying HIBE
is IND-sHID-CPA secure.

Remarks:

- The number T of time periods is assumed to be polynomial in λ to guar-
antee a polynomial reduction in the above theorem.

- Private keys SKFS
i consist of O(log T ) HIBE private keys.

- Ciphertext size is the same as in the HIBE.

• The Boneh-Boyen HIBE implies a FS-PKE with ciphertexts of size
O(log T ) and private keys of size O(log2 T ).

• The Boneh-Boyen-Goh HIBE implies a FS-PKE with ciphertexts of
size O(1) and private keys of size O(log2 T ).

- The Canetti-Halevi-Katz construction [4] assigns time periods to all nodes
of the tree in order to have faster key update and key generation algorithms
(their complexity reduces from O(log T ) to O(1)). It is also possible to
only assign time periods to the leaves of the tree. This was the approach
taken in [7].
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