
Advanced Cryptographic Primitives

Lecture 6

Scribe: Henri Derycke

October 13, 2014

1 Hierarchical Identity-Based Encryption (HIBE)[5]

Although having a single Private Key Generator (PKG) would completely elim-
inate the need for online public key lookup, it is undesirable for a large network
because generating private keys for all users becomes a bottleneck for the PKG.
Hierarchical ID-based encryption (HIBE) allows a root PKG to distribute the
workload by delegating private key generation and identity authentication to
lower-level PKGs (users or authorities organized in hierarchy.[6]

Each node at level t has a local identifier IDt and an address HID which is
obtained as the concatenation HID = H̃ID||IDt and H̃ID is the father node
of HID.

Given a private key dHID for HID = (ID1, ID2, . . . IDt), one can compute
a key dHID′ for HID′ = (ID1, ID2, . . . IDt+1) where IDt+1 ∈ {0, 1}?

1.1 Definition of HIBE scheme

An HIBE scheme is a tuple (Setup, Keygen, Derive, Encrypt, Decrypt) with the
following specifications:

Setup(λ, L): Given a security parameter λ ∈ N and the maximal number of
level L ∈ poly(λ), output a pair (MPK,MSK)

Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Generates a key dHID if t ≤ L
and outputs ⊥ otherwise.

Derive(MPK, dHID, HID
′): Given a key dHID forHID = (ID1, ID2, . . . IDt)

and another HID = (ID′1, ID
′
2, . . . ID

′
t+1), return ⊥ if ∃i ∈ {1, . . . t} such

that IDi 6= ID′i otherwise output a derived key dHID′ for HID′

Encrypt(MPK,M,HID): output a ciphertext C for the user whose hierar-
chical identity is HID

Decrypt(MPK, dHID, C): output either a message M or ⊥

Correctness For any HID = (ID1, ID2, . . . IDt):

• For any dHID′ ← Derive(MPK, dHID, HID
′) where

HID′ = (ID1, ID2, . . . IDt, IDt+1)

and for any C ← Encrypt(MPK,M,HID′), M = Decrypt(MPK, dHID, C).

1

• The two distributions D0 = {dHID′ ← Derive(MPK, dHID, HID
′)} and

D1 = {dHID′ ← Keygen(MSK,HID = (ID1, ID2, . . . IDt+1)} have to be
statistically close.

1.2 Indistinguishability under chosen plaintext attack for
HIBE scheme (IND-HID-CPA)

A HIBE scheme is IND-HID-CPA if no probabilistic polynomial-time (PPT)
adversary A with non-negligible advantage wins this game:

1. The challenger generates (MPK,MSK) ← Setup(λ, L), gives MPK to
the adversary A and initializes a set Q = ∅

2. A makes private key queries:

• A chooses a hierarchical identity HID = (ID1, ID2, . . . IDt) where
t ≤ L
• The challenger returns a key dHID ← Keygen(MSK,HID) and up-

dates Q := Q ∪ {HID}

3. A chooses M0, M1, and HID? such that no prefix of HID? is in Q and
obtains C? ← Encrypt(MPK,Mγ , HID

?) where γ ←R {0, 1}

4. A makes more private key queries under the restriction that no prefix of
HID? can be in Q at any time.

5. A outputs γ′ and wins if γ = γ′

The advantage of A on this game is:

Adv(A) := |Pr[γ = γ′]− 1/2|

1.3 Hierarchical extension of the BF-IBE [5]

The scheme hereunder, due to Gentry and Silverberg [5], extends the Boneh-
Franklin IBE scheme in a natural way.

Setup(λ, L):

1. Choose cyclic groups (G,GT) of prime order p > 2λ with a bilinear map
e : G×G→ GT and a generator g R← G

2. Choose α R← Zp and compute g1 = gα

3. Choose a hash function H : {0, 1}∗ → G

Define MPK := ((G,GT), g, g1 = gα, H) and MSK := α

2

Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Given MSK = α

• Choose r2, r3, . . . rt ←R Zp

• Compute dHID = (d1, . . . , dt) ∈ Gt where

d1 = H(ID1)α ·
t∏
i=2

H(ID1, ID2, . . . , IDi)
ri

di = gri ∀2 ≤ i ≤ t

• Return dHID

Derive(MPK, dHID, HID
′): Given a private key dHID = (d1, . . . dt) for the

identity HID = (ID1, ID2, . . . IDt) and HID′ = (ID1, ID2, . . . IDt, IDt+1)

• Choose r′2, r
′
3, . . . r

′
t+1

R← Zp

• Compute dHID′ = (d′1, . . . , d
′
t+1) ∈ Gt+1 where

d′1 = d1 ·
t+1∏
i=2

H(ID1, ID2, . . . , IDi)
r′i

d′i = di · gri ∀2 ≤ i ≤ t

d′t+1 = gr
′
t+1

• Return dHID′

Encrypt(MPK,M,HID): To encrypt M ∈ GT

• Choose s←R Zp

• Compute c = (c0, . . . ct) ∈ GT ×Gt where

c0 = M · e(g1, H(ID1))s

c1 = gs

ci = H(ID1, ID2, . . . , IDi)
s ∀2 ≤ i ≤ t

• Output c

Decrypt(MPK, dHID, C): Given dHID = (d1, . . . dt) and c = (c0, . . . ct),

• Compute

M = c0 ·
∏t
i=2 e(ci, di)

e(c1, d1)

• Output M

3

Correctness. for any well-formed private key dHID = (d1, . . . , dt), we have

e(d1, g) = e(g1, H(ID1)) ·
t∏
i=2

e(H(ID1 · ID2 · . . . IDi), di),

so that

e(d1, g
s) = e(g1, H(ID1))s ·

t∏
i=2

e(H(ID1 · ID2 · . . . IDi)
s, di),

and then

M · e(d1, gs︸︷︷︸
c1

) = M · e(g1, H(ID1))s︸ ︷︷ ︸
c0

·
t∏
i=2

e(H(ID1 · ID2 · . . . IDi)
s︸ ︷︷ ︸

ci

, di),

which explains why the decryption algorithm correctly decrypts c = (c0, . . . ct).

Theorem ([5]). In the Random Oracle Model (ROM), any PPT adversary A
with advantage ε against the IND-HID-CPA security of the scheme implies a
PPT DBDH distinguisher B with advantage

ε ≥ 1

eL · (q + 1)2

where L is the maximal number of levels and q is the number of private key
queries.

1.4 Hierarchical extension of Boneh-Boyen IBE

In standard model, we can use the Boneh-Boyen IBE to construct a HIBE
scheme with selective security.

Setup(λ, L):

1. Choose cyclic groups (G,GT) of prime order p > 2λ with a bilinear map
e : G×G→ GT and a generator g R← G

2. Choose α R← Zp and compute g1 = gα

3. Choose g2, h1, . . . , hL
R← G

Define MPK :=
(
(G,GT), g, g1 = gα, g2, {hi}Li=1

)
and MSK := gα2

Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Given MSK = gα2 and the hi-
erarchical identity HID = (ID1, ID2, . . . IDt),

• Choose r1, r2, . . . rt
R← Zp

• Compute dHID = (d0, . . . , dt) ∈ Gt+1 where

d0 = gα2 ·
t∏
i=1

Hi(IDi)
ri

di = gri ∀1 ≤ i ≤ t
and with

Hi(IDi) = gIDi
1 hi ∀1 ≤ i ≤ t

• Return dHID

4

Derive(MPK, dHID, HID
′): Given a private key dHID = (d1, . . . dt) for the

identity HID = (ID1, ID2, . . . IDt) and HID′ = (ID1, ID2, . . . IDt, IDt+1)

• Choose r′2, r
′
3, . . . r

′
t, r
′
t+1

R← Zp

• Compute dHID′ = (d′0, d
′
1, . . . , d

′
t+1) ∈ Gt+2 where

d′0 = d0 ·Ht+1(IDt+1)r
′
t+1 ·

t∏
i=1

Hi(IDi)
r′i

d′i = di · gri ∀2 ≤ i ≤ t

d′t+1 = gr
′
t+1

• Return dHID′

Encrypt(MPK,M,HID): To encrypt M ∈ GT
• Choose s←R Zp

• Compute c = (c0, . . . ct, ct+1) ∈ Gt+1 ×GT where

c0 = gs

ci = Hi(IDi)
s ∀1 ≤ i ≤ t

ct+1 = M · e(g1, g2)s

• Output c

Decrypt(MPK, dHID, C): Given dHID = (d1, . . . dt) and c = (c0, . . . ct),

• Compute

M = ct+1 ·
∏t
i=1 e(ci, di)

e(c0, d0)

• Output M

Correctness. For any valid private key dHID = (d0, d1, . . . , dt), we have the
equality

e(d0, g) = e(g1, g2) ·
t∏
i=1

e(Hi(IDi), di),

which implies

e(d0, g
s) = e(g1, g2)s ·

t∏
i=1

e(Hi(IDi)
s, di)

for any s ∈ Zp. Hence, we find

M · e(d0, gs︸︷︷︸
c0

) = M · e(g1, g2)s︸ ︷︷ ︸
ct+1

·
t∏
i=1

e(Hi(IDi)
s︸ ︷︷ ︸

ci

, di),

which explains whyt c = (c0, . . . ct, ct+1) is correctly decrypted by the decryption
algorithm.

Theorem ([2]). This scheme is IND-sID-CPA secure under the DBDH assump-
tion.

5

1.5 HIBE with short ciphertexts [3]

Boneh, Boyen and Goh showed how to construct a HIBE scheme with short
ciphertexts [3].

Setup(λ, L):

1. Choose cyclic groups (G,GT) of prime order p > 2λ with a bilinear map
e : G×G→ GT and a generator g R← G

2. Choose α R← Zp and compute g1 = gα

3. Choose g2, h0, h1, . . . , hL
R← G

Define MPK :=
(
(G,GT), g, g1 = gα, g2, {hi}Li=0

)
and MSK := gα2

Keygen(MSK,HID = (ID1, ID2, . . . IDt)): Given MSK = gα2 and the hi-
erarchical identity HID = (ID1, ID2, . . . IDt),

• Choose r R← Zp

• Compute

dHID = (D0, D1,Kt+1, . . . ,KL) =

(
gα2 ·

(
h0

t∏
i=1

hIDi
i

)r
, gr, hrt+1, . . . , h

r
L

)
∈ GL−t+2

• Return dHID

Derive(MPK, dHID, HID
′): Given a private key dHID = (D0, D1,Kt+1 . . .KL)

for the identityHID = (ID1, ID2, . . . IDt) andHID′ = (ID1, ID2, . . . IDt, IDt+1)

• Choose r′ R← Zp

• Compute dHID′ = (D′0, D
′
1,K

′
t+2, . . . ,K

′
L) where

D′0 = D0 ·KIDt+1

t+1 ·

(
h0

t+1∏
i=1

hIDi
i

)r′

D′1 = D1 · gr
′

K ′i = Ki · hr
′

i ∀t+ 2 ≤ i ≤ L

• Return dHID′

Encrypt(MPK,M,HID): To encrypt M ∈ GT
• Choose s R← Zp

• Compute

c = (c0, c1, c2) =

(
gs,

(
h0

t∏
i=1

hIDi
i

)s
,M · e(g1, g2)s

)

• Output c

6

Decrypt(MPK, dHID, C): Given dHID = (D0, D1,Kt+1, . . . ,KL) and the ci-
phertext c = (c0, c1, c2),

• Compute

M = c2 ·
e(c1, D1)

e(c0, D0)

• Output M

Correctness. For any well-formed private key dHID = (D0, D1,Kt+1, . . . ,KL),
we have

e(d0, g) = e(g1, g2) · e

((
h0

t∏
i=1

hIDi
i

)
, d1

)
,

so that

e(d0, g
s) = e(g1, g2)s · e

((
h0

t∏
i=1

hIDi
i

)s
, d1

)
for any s ∈ Zp. It follows that

M · e(d0, gs︸︷︷︸
c0

) = M · e(g1, g2)s︸ ︷︷ ︸
c2

·e

(
h0

t∏
i=1

hIDi
i

)s
︸ ︷︷ ︸

c1

, d1

 ,

which explains the decryption algorithm.

Remarks. Since there are fewer ciphertext components to compute, the en-
cryption algorithm is faster and so is the decryption algorithm since only two
pairing evaluations are sufficient. Another property of the scheme is that, un-
like previous HIBE schemes, the size of the private key decreases at each key
delegation.

Theorem ([3]). The above HIBE scheme is IND-sHID-CPA secure if the weak
L-Decision Bilinear Diffie-Hellman Inversion assumption holds.

Definition 1 ([3]). The weak L-Decision Bilinear Diffie-Hellman Inversion (L-
wDBDHI) assumption says that, given

(g, h, ga, g(a
2), . . . , g(a

L), T) ∈ GL+2 ×GT ,

where g, h R← G and a R← Zp, deciding whether T = e(g, h)1/a or T ∈R GT is
hard.

2 Application of HIBE : forward-secure encryp-
tion

2.1 Forward Security [1]

• The lifetime of a public key is divided into time periods 0, 1, ...T − 1

7

• Each period uses a different SKi: at the beginning of period i, SKi−1, is
erased and replaced by an updated key SKi

• In case of key exposure at period i, the current private key SKi is com-
promised but SK0, . . . SKi−1 should remain infeasible to compute for the
adversary.

Definition. A Forward-Secure Public Key Encryption (FS-PKE) scheme is a
tuple of algorithms:

Keygen(λ, T): output a public key PK and an initial SK0

Update(SKi, PK) : if i = T − 1 return ⊥, otherwise return SKi+1 and erase
SKi+1

Encrypt(PK,M, i): output a ciphertext c for M

Decrypt(SKi, i, c): output a message M for c or ⊥

Definition. A FS-PKE is IND-CPA secure if no probabilistic polynomial time
adversary A has a non-negligible advantage in the following game:

1. The challenger generates (PK,SK0)← Keygen(λ, T) and gives PK to A

2. A makes exactly one query to each one of these two oracles:

• Break-in (i): for the period i ∈ {1 . . . T − 1}, A obtains SKi

• Challenge (j,M0,M1): for a time period j ∈ {0 . . . T − 1} and equal-
length messages M0,M1, the adversary A obtains a challenge cipher-
text Cj = Encrypt(PK,Mγ , j) where γ ←R {0, 1}

under the constraint that 0 ≤ j < i < T

3. A outputs γ′ ∈ {0, 1} and wins if γ′ = γ

The advantage of A in this game is:

AdvFS-PKE
A (λ) = |Pr[γ′ = γ]− 1/2|

2.2 FS-PKE from IBE

It is known [4] that one can obtain a limited construction of FS-PKE scheme
using any IBE scheme.

Keygen(λ, T):

• Generate (MPK,MSK)← SetupIBE(λ)

• Set PKFS := MPK

• For each i ∈ {0 . . . T − 1}, compute SKi ← KeygenIBE(MSK, i)

• Set SKFS
0 := {SK0, . . . , SKT−1}

8

Update(SKFS
i , PKFS):

• Parse SKFS
i as {SKi, . . . , SKT−1}

• Output SKFS
i+1 := {SKi+1, . . . , SKT−1} and erase SKFS

i

Encrypt(PKFS ,M, i):

• Compute c = EncryptIBE(MPK,M, i)

Decrypt(SKFS
i , i, c)):

• Parse SKFS
i as {SKi, . . . , SKT−1}

• Compute M = DecryptIBE(MPK,SKi, c)

The limitation of the latter construction is that private keys have size O(T).
The key generation phase also takes time O(T). It is desirable to have a con-
struction where the complexity is at most poly-logarithmic in T in all perfor-
mance metrics.

2.3 FS-PKE with poly-logarithmic complexity in T from
any Selectively Secure HIBE [4]

Consider a binary tree with L = log T levels. In the tree, each node at depth
` has an `-bit label. The root of the tree, at depth 0, has the empty string ε.

We associate the time periods with all nodes of the tree according to a pre-
order traversal. (Let wi denote the node associated with period i In a pre-order
traversal, w0 = ε and if wi is an internal node then wi+1 = wi0. If wi is a leaf
node and i < N − 1 then wi+1 = w′1 where w′ is the longest string such that
w′0 is a prefix of wi.) The secret key for period i consists of the secret key for
node wi as well as those for all right siblings of the nodes on the path from the
root to wi.

Keygen(λ, T):

• Generate (MPK,MSK)← SetupHIBE(λ, L), where L = log(T)

• Define SKε = MSK

• Set PKFS := MPK and SKFS
0 := {SKε}

Update(SKFS
i , PKFS):

• Parse SKFS
i as a stack of SKi with SKwi on the top.

• Pop SKwi from the stack,

– if wi is a internal node, compute

SKwi0 ← DeriveHIBE(MPK,SKwi , wi0)

and SKwi1 ← DeriveHIBE(MPK,SKwi , wi1), push SKwi1 then
SKwi0 on the stack

– if wi is a leaf, the next key on top of the stack is SKwi+1

• Set SKFS
i+1 := the new stack

9

Encrypt(PKFS ,M, i):

• Compute c = EncryptHIBE(MPK,M,wi)

Decrypt(SKFS
i , i, c):

• Compute M = DecryptHIBE(MPK,SKwi , c) (Note that SKwi is stored
as a part of SKFS

i)

Theorem ([4]). The above FS-PKE is IND-CPA secure if the underlying HIBE
is IND-sHID-CPA secure.

Remarks:

- The number T of time periods is assumed to be polynomial in λ to guar-
antee a polynomial reduction in the above theorem.

- Private keys SKFS
i consist of O(log T) HIBE private keys.

- Ciphertext size is the same as in the HIBE.

• The Boneh-Boyen HIBE implies a FS-PKE with ciphertexts of size
O(log T) and private keys of size O(log2 T).

• The Boneh-Boyen-Goh HIBE implies a FS-PKE with ciphertexts of
size O(1) and private keys of size O(log2 T).

- The Canetti-Halevi-Katz construction [4] assigns time periods to all nodes
of the tree in order to have faster key update and key generation algorithms
(their complexity reduces from O(log T) to O(1)). It is also possible to
only assign time periods to the leaves of the tree. This was the approach
taken in [7].

References

[1] R. Anderson. Two remarks on public key cryptology. ACM CCCS ’97, 1997.

[2] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryp-
tion without random oracles. In EUROCRYPT, pages 223–238, 2004.

[3] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption
with constant size ciphertext. In Advances in Cryptology–EUROCRYPT
2005, pages 440–456. Springer Berlin Heidelberg, 2005.

[4] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In E. Biham, editor, Advances in Cryptology — EUROCRYPT
2003, volume 2656 of Lecture Notes in Computer Science, pages 255–271.
Springer Berlin Heidelberg, 2003.

[5] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In
Y. Zheng, editor, Advances in Cryptology — ASIACRYPT 2002, volume
2501 of Lecture Notes in Computer Science, pages 548–566. Springer Berlin
Heidelberg, 2002.

10

[6] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In
L. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 466–481. Springer Berlin
Heidelberg, 2002.

[7] J. Katz. A forward-secure public-key encryption scheme. Cryptology ePrint
Archive: Report 2002/060, 2002.

11

	Hierarchical Identity-Based Encryption (HIBE)GS02
	Definition of HIBE scheme
	Indistinguishability under chosen plaintext attack for HIBE scheme (IND-HID-CPA)
	Hierarchical extension of the BF-IBE GS02
	Hierarchical extension of Boneh-Boyen IBE
	HIBE with short ciphertexts bbg05

	Application of HIBE : forward-secure encryption
	Forward Security anderson1997two
	FS-PKE from IBE
	FS-PKE with poly-logarithmic complexity in T from any Selectively Secure HIBE CHK03

