Advanced Cryptographic Primitives: Lecture 7

Scribe: François Pirot

M2IF

0.1 Applications of (H)IBE to chosen-ciphertext security

0.1.1 Definition

Definition (Rackoff-Simon, Crypto'91 [1]) A public-key encryption scheme is secure against adaptive chosen ciphertext attacks (IND-CCA2) if no PPT adversary \mathcal{A} has non-negligible advantage on the following game:

- 1. The challenger generates $(PK, SK) \leftarrow \text{Keygen}(\lambda)$ and gives PK to A
- 2. \mathcal{A} invokes the decryption oracle a polynomial number of times: at each query, \mathcal{A} chooses a ciphertext C and obtains $M \leftarrow \mathrm{Decrypt}(SK, C)$ (which may be the error symbol \perp if C is an invalid ciphertext).
- 3. \mathcal{A} chooses two messages (M_0, M_1) and obtains $C^* \leftarrow \text{Encrypt}(PK, M_{\gamma})$, where $\gamma \leftarrow \mathcal{U}(\{0, 1\})$
- 4. A makes new decryption queries on arbitrary ciphertexts $C \neq C^*$
- 5. A outputs $\gamma' \in \{0,1\}$ and wins if $\gamma' = \gamma$

$$\mathbf{Adv}^{\mathrm{IND\text{-}CCA}}_{\mathcal{A}}(\lambda) := \left| \Pr[\gamma' = \gamma] - \frac{1}{2} \right|$$

Remark

- In a non-adaptive chosen-ciphertext attack (CCA1), stage 4 is removed (Naor-Yung, STOC'90): no decryption query is allowed after the challenge phase
- Elgamal is not IND-CCA2-secure: \mathcal{A} is given the challenge ciphertext

$$C^* = (g^r, M_{\gamma} \cdot X^r) = (C_1, C_2)$$

and can compute $C' = (C_1 \cdot g^{r'}, C_2 \cdot X^{r'}) = (g^{r+r'}, M_{\gamma} \cdot X^{r+r'})$, for a randomly chosen $r' \in_R \mathbb{Z}_p$, which may be submitted to the decryption oracle and reveals M_{γ} to A.

0.2 Generic IND-CCA2 PKE from any IND-sID-CPA-secure IBE (Canetti-Halevi-Katz, Eurocrypt'04)

- **Keygen**(λ): Generate $(MPK, MSK) \leftarrow \text{Setup}^{IBE}(\lambda)$. Choose a one-time signature scheme $\Sigma = (G, S, V)$. Define $PK := (MPK, \Sigma), SK := MSK$.
- $\mathbf{Encrypt}(PK, M)$:
 - 1. Generate a key pair $(SVK, SSK) \leftarrow G(\lambda)$ for the one-time signature.
 - 2. Compute $C^{IBE} \leftarrow \text{Encrypt}^{IBE}(MPK, M, SVK)$, which is an encryption of M under the identity SVK.
 - 3. Compute $\sigma \leftarrow S(SSK, C^{IBE})$ and output $C = (SVK, C^{IBE}, \sigma)$.
- $\mathbf{Decrypt}(SK, C)$:
 - 1. Return \perp if $V(SVK, C^{IBE}, \sigma) = 0$.
 - 2. Compute $d_{SVK} \leftarrow \text{Keygen}^{IBE}(MSK, SVK)$.
 - 3. Output $M \leftarrow \text{Decrypt}^{IBE}(MPK, d_{SVK}, C^{IBE})$.

Definition: Strong Unforgeability A one-time signature $\Sigma = (G, S, V)$ is strongly unforgeable under chosen-message attacks (SUF-CMA) if no PPT adversary \mathcal{A} has noticeable advantage one the following game:

- 1. The challenger generates $(SVK, SSK) \leftarrow G(\lambda)$ and gives SVK to A
- 2. A chooses exactly one message M and obtains $\sigma \leftarrow S(SSK, M)$
- 3. \mathcal{A} outputs (M^*, σ^*) and wins if
 - (a) $V(SVK, M^*, \sigma^*) = 1$
 - (b) $(M^*, \sigma^*) \neq (M, \sigma)$

In many signature schemes, signatures are not unique (i.e., a given message has many valid signatures). For such schemes, the above notion is stictly stronger than the usual notion of unforgeability, where condition (b) is replaced by $M \neq M^*$.

Theorem The PKE scheme produced by the Canetti-Halevi-Katz transformation is IND-CCA2-secure assuming that

- Σ is strongly unforgeable
- The IBE scheme is IND-sID-CPA-secure

Proof Let $C^* = (SVK^*, C^{IBE^*}, \sigma^*)$ be the challenge ciphertext given to the adversary in the IND-CCA2 game. We consider two kinds of attacks:

- Type I attack: \mathcal{A} makes at least one valid decryption query $C = (SVK, C^{IBE}, \sigma)$ such that $SVK \neq SVK^*$ (by "valid decryption query", we mean one where the one-time signature σ correctly verifies w.r.t. SVK).
- Type II attack: All valid decryption queries $C_i = (SVK_i, C_i^{IBE}, \sigma_i)$ contain one-time verification keys SVK_i such that $SVK_i \neq SVK^*$

Type I attack contradicts the SUF-CMA-security of Σ . The proof is straightforward and omitted here.

Let \mathcal{A} be Type II adversary with noticeable advantage ε . Using \mathcal{A} , we build an IND-sID-CPA adversary \mathcal{B} against the IBE scheme:

- \mathcal{B} generates a one-time signature key pair $(SVK^*, SSK^*) \leftarrow G(\lambda)$ and declares SVK^* as its target identity $ID^* = SVK^*$ in the IND-sID-CPA security game.
- \mathcal{B} obtains MPK^{IBE} from its own challenger and gives $PK = (MPK^{IBE}, \Sigma)$ to \mathcal{A} as a public key for the IND-CCA security game.

Queries: suppose that \mathcal{A} queries the decryption of a ciphertext $C = (SVK, C^{IBE}, \sigma)$. Since \mathcal{A} is a Type II attacker, we necessarily have $SVK \neq SVK^*$, so that \mathcal{B} can obtain an IBE private key $d_{SVK} \leftarrow \text{Keygen}(MSK^{IBE}, SVK)$ from its challenger, and compute $M \leftarrow \text{Decrypt}^{IBE}(MPK^{IBE}, d_{SVK}, C)$.

Challenge: \mathcal{A} chooses (M_0, M_1) which \mathcal{B} sends to its own challenger. The latter returns a challenge ciphertext $C^{IBE^*} \leftarrow \text{Encrypt}^{IBE}(MPK^{IBE}, M_{\gamma}, SVK^*)$ for the IND-sID-CPA game. Then, \mathcal{B} computes $C^* = (SVK^*, C^{IBE^*}, \sigma^*)$ where $\sigma^* \leftarrow S(SSK^*, C^{IBE^*})$ and gives it as a challenge to \mathcal{A} .

Output \mathcal{A} outputs $\gamma' \in \{0,1\}$ and \mathcal{B} outputs γ' .

Clearly, if \mathcal{A} is successful in the IND-CCA game, so is \mathcal{B} in the IND-sID-CPA game.

Remark The CHK tranform turns any 2-level HIBE with an IND-sID-CCA2-secure IBE scheme.

0.3 Attribute-based encryption and fuzzy IBE

0.3.1 Definition

Definition: Fuzzy IBE (Sahai-Waters, Eurocrypt'05 [3])

- Decryption works when identities of ciphertext/key are close enough
- Identities are sets of descriptive attributes ("student", "EU citizen", "Driving license holder", etc)
- If a ciphertext is encrypted for an attribute set ω' and private key corresponds to attribute set ω , decryption works if $|\omega \cap \omega'| \ge d$ for some $d \in \mathbb{N}$.

Motivation:

- Use biometric identities (e.g., iris scan)
- Access control on encrypted data (e.g., at least 2 attributes among "research staff member", "Patent engineer", "CEO")

Selective security: Let $d \in poly(\lambda)$ be the decryption threshold.

- 0. The adversary \mathcal{A} chooses a target attribute set ω^*
- 1. The challenger generates $(MPK, MSK) \leftarrow \text{Setup}(\lambda, d)$ and gives MPK to \mathcal{A}
- 2. \mathcal{A} makes private key queries: \mathcal{A} chooses an arbitrary attribute set ω such that $|\omega \cap \omega'| < d$, and obtains $d_{\omega} \leftarrow \text{Keygen}(MSK, \omega)$.
- 3. A chooses (M_0, M_1) and obtains $C \leftarrow \text{Encrypt}(MPK, M_{\gamma}, \omega^*)$ with $\gamma \leftarrow \mathcal{U}(\{0, 1\})$
- 4. \mathcal{A} makes more private key queries
- 5. A outputs a bit $\gamma' \in \{0,1\}$ and wins if $\gamma = \gamma'$. Again, A 's advantage is defined to be

$$\mathbf{Adv}^{\mathrm{FIBE-CPA}}_{\mathcal{A}}(\lambda) := \left| \Pr[\gamma' = \gamma] - rac{1}{2}
ight|$$

In the stronger notion of full (a.k.a. adaptive) security, the adversary chooses ω^* at step 3 at the same time as M_0, M_1 .

0.3.2 Construction for large attribute universes (Sahai-Waters, Eurocrypt'05 [3])

- Setup (λ, d) :
 - 1. Choose cyclic groups (G, G_T) of prime order $p > 2^{\lambda}$ with a bilinear map $e: G \times G \to G_T$ and generators $g, g_2 \in G$
 - 2. Choose $y \leftarrow \mathbb{Z}_p$ and computes $g_1 := g^y$
 - 3. Choose a function $T: \mathbb{Z}_p \to G$ (to be defined later) Set $MPK := ((G, G_T), g, g_1(=g^y), g_2, T)$ and $MSK := y \in \mathbb{Z}_p$
- **Keygen**(MSK, ω): Choose a random polynomial $q(X) \in \mathbb{Z}_p[X]$ of degree d-1 such that q(0) = y. For each $i \in \omega$, choose $r_i \leftarrow \mathbb{Z}_p$ and compute $(D_i, d_i) = (g_2^{q(i)} \cdot T(i)^{r_i}, g^{r_i})$. Return the private key

$$d_{\omega} = \{(D_i, d_i)\}_{i \in \omega}.$$

Note that, for each $i \in \omega$, the pair (D_i, d_i) satisfies the relation

$$e(D_i, g) = e(g, g_2)^{q(i)} \cdot e(T(i), d_i).$$
 (1)

• Encrypt (MPK, M, ω') : To encrypt $M \in G_T$ under the attribute set ω' , choose $s \leftarrow \mathbb{Z}_p$ and compute the ciphertext

$$CT = (\omega', E' = M \cdot e(g_1, g_2)^s, E = g^s, \{E_i = T(i)^s\}_{i \in \omega'}).$$

• **Decrypt**(MPK, d_{ω}, CT): Given $d_{\omega} = \{(D_i, d_i)\}_{i \in \omega}$, find a set $S \subseteq \omega \cap \omega'$ such that |S| = d (or return \bot if none exists). For each $i \in S$, compute

$$\frac{e(D_i, E)}{e(E_i, d_i)} = e(g, g_2)^{q(i) \cdot s}.$$
(2)

Since $e(g, g_2)^{q(0) \cdot s} = e(g_1, g_2)^s$, if we define the function

$$\Delta_{i,S}(X) := \prod_{\substack{j \in S \\ j \neq i}} \frac{X - j}{i - j},$$

the message M can be obtained by performing a Lagrange interpolation in the exponent and computing

$$M = \frac{E'}{\prod_{i \in S} \left(\frac{e(D_i, E)}{e(d_i, E_i)}\right)^{\Delta_{i,S}(0)}}$$

The correctness of the scheme can be verified by observing that, if we raise both members of (1) to the power $s \in \mathbb{Z}_p$, we obtain (2).

Theorem The scheme provides selective security if the DBDH assumption holds.

Proof Let \mathcal{A} be selective adversary with advantage ε . We build a DBDH distinguisher \mathcal{B} with advantage ε . Algorithm \mathcal{B} takes as input (g, g^a, g^b, g^c, Z) and uses \mathcal{A} to decide if $Z = e(g, g)^{abc}$ or $Z \in_R G_T$.

The adversary \mathcal{A} first chooses a target attribute set ω^* . To generate MPK, \mathcal{B} defines $g_1 = g^a, g_2 = g^b$ and chooses the function $T: \mathbb{Z}_p \to G$ in such a way that $\forall x \in \mathbb{Z}_p$, we can write

$$T(x) = g_2^{F(x)} \cdot g^{J(x)},$$

for certain functions $F, J: \mathbb{Z}_p \to \mathbb{Z}_p$ (which are kept internal to \mathcal{B}) chosen such that

$$F(x) = 0$$
 if and only if $x \in \omega^*$.

The adversary \mathcal{A} is given $MPK := ((G, G_T), g, g_1(=g^a), g_2(=g^b), T)$, which implicitly defines MSK := a (note that MSK is not available to \mathcal{B}).

Queries: suppose that \mathcal{A} queries a private key for ω such that $|\omega \cap \omega^*| < d$. Let $\Gamma = \omega \cap \omega^*$, and Γ' be any set such that $\Gamma \subseteq \Gamma' \subseteq \omega$, and $|\Gamma'| = d - 1$.

– For each $i \in \Gamma' \subseteq \omega^*$, chooses $\lambda_i, r_i \in \mathbb{Z}_p$, and sets

$$D_i := g_2^{\lambda_i} \cdot T(i)^{r_i}, \qquad d_i := g^{r_i}.$$

– For each $i \in \omega \backslash \Gamma'$, we know that $i \notin \omega^*$ and we thus have $T(i) = g_2^{F(i)} \cdot g^{J(i)}$ with $F(i) \neq 0$. Hence, \mathcal{B} can compute

$$D' = g_2^{q(0)} \cdot T(i)^{\tilde{r}} = T(i)^r \cdot (g^a)^{-\frac{J(i)}{F(i)}} \qquad d' = g^{\tilde{r}} = g^r \cdot (g^a)^{-\frac{1}{F(i)}}$$

where $\tilde{r} = r - \frac{a}{F(i)}$ for a randomly chosen $r \in_R \mathbb{Z}_p$. In turn, this allows \mathcal{B} to compute

$$D_i = D'^{\Delta_{0,s}(i)} \cdot \prod_{i \in S} g_2^{\lambda_j \Delta_{j,S}(i)} \qquad d_i = d'^{\Delta_{0,S}(i)}$$

where $S = \Gamma' \setminus \{0\}$. Then, \mathcal{B} can return the complete private key

$$d_{\omega} = \{ (D_i, d_i) = (g_2^{q(i)} \cdot T(i)^{r_i}, g^{r_i}) \}_{i \in \omega}$$

to \mathcal{A} .

Challenge: \mathcal{A} chooses two messages $M_0, M_1 \in G_T$. At this point, \mathcal{B} picks $\gamma \leftarrow \{0, 1\}$ and computes

$$CT^* = \left(\omega^*, E^* = M_{\gamma} \cdot Z, E = g^c, \{E_i = (g^c)^{J(i)}\}_{i \in \omega^*}\right).$$

If $Z = e(g, g)^{abc}$ then

$$CT^* = (\omega^*, E' = M_{\gamma} \cdot e(g_1, g_2)^c, E = g^c, \{E_i = T(i)^c)\}_{i \in \omega^*}),$$

since $T(i) = g^{J(i)}$ for each $i \in \omega^*$. If $Z \in_R G_T$, we can write

$$CT^* = (\omega^*, E' = M_{rand} \cdot e(g_1, g_2)^c, E = g^c, \{E_i = T(i)^c\}_{i \in \omega^*}),$$

for some uniformly random $M_{rand} \in_R G_T$.

Output: \mathcal{A} outputs a bit $\gamma' \in \{0,1\}$. Then, \mathcal{B} outputs 1 (meaning that $Z = e(g,g)^{abc}$) if $\gamma' = \gamma$. Otherwise, \mathcal{B} outputs 0 (meaning that $Z \in_R G_T$). It should be clear that \mathcal{B} 's advantage as a DBDH distinguisher is identical to \mathcal{A} 's advantage ε as a selective adversary.

In order to choose the function $T: \mathbb{Z}_p \to G$, one possibility is to fix an upper bound n on the cardinality of any attribute set ω in the scheme. The function T can be defined so as to impicitly compute a polynomial of degree n in the exponent. Namely, the master public key includes random group elements $u_0, u_1, \ldots, u_n \in_R G$ and we define $T(x) = \prod_{i=0}^n u_i^{(x^i)}$ for any $x \in \mathbb{Z}_p$. In the security proof, the reduction \mathcal{B} can choose F(x) as the polynomial $F[X] = \prod_{i \in \omega^*} (X - i) = \sum_{i=0}^n f_i X^i$ and set $u_i = g_2^{f_i} \cdot g^{t_i}$, for each $i \in \{0, \ldots, n\}$, using randomly chosen $t_0, t_1, \ldots, t_n \in_R \mathbb{Z}_p$. This guarantees that $\{u_i\}_{i=0}^n$ have a uniform distribution.

0.4 Extension: Key-Policy Attribute-based encryption (KP-ABE)

- Ciphertext is labeled with an attribute set ω .
- Private key corresponds to an access policy P and decryption works iff $P(\omega) = 1$.

Motivation Fine-grained access control using complex policies

Example of policy P:

("Research staff" OR "Patent engineer" OR "CEO") AND ("Hired at least one year ago")

FIBE is a particular case of KP-ABE: P consists of a single gate $\begin{pmatrix} \text{AND gate} \\ \text{OR gate} \\ \text{threshold gate} \end{pmatrix}$

Bibliography

- [1] C. Rackoff, D. Simon: Non-interactive zero-knowledge proof of knowledge and chosen cipher-text attack (1991)
 - Lecture Notes in Computer Science Volume 576, 1992, pp 433-444 Advances in Cryptology — CRYPTO '91
- [2] Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption.
 - In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)
- [3] Sahai, A., Waters, B.: Fuzzy identity-based encryption.
 In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473.
 Springer, Heidelberg (2005)