Advanced Cryptographic Primitives:
Lecture 7

Scribe: François Pirot

M2IF
Applications of (H)IBE to chosen-ciphertext security

0.1.1 Definition

Definition (Rackoff-Simon, Crypto’91 [1]) A public-key encryption scheme is secure against adaptive chosen-ciphertext attacks (IND-CCA2) if no PPT adversary \(A \) has non-negligible advantage on the following game:

1. The challenger generates \((PK, SK) \leftarrow \text{Keygen}(\lambda)\) and gives \(PK \) to \(A \).
2. \(A \) invokes the decryption oracle a polynomial number of times: at each query, \(A \) chooses a ciphertext \(C \) and obtains \(M \leftarrow \text{Decrypt}(SK, C) \) (which may be the error symbol \(\bot \) if \(C \) is an invalid ciphertext).
3. \(A \) chooses two messages \((M_0, M_1)\) and obtains \(C^* \leftarrow \text{Encrypt}(PK, M_\gamma) \), where \(\gamma \leftarrow \mathcal{U}\{0, 1\} \).
4. \(A \) makes new decryption queries on arbitrary ciphertexts \(C \neq C^* \).
5. \(A \) outputs \(\gamma' \in \{0, 1\} \) and wins if \(\gamma' = \gamma \)

\[
\text{Adv}^\text{IND-CCA}_A(\lambda) := \left| \Pr[\gamma' = \gamma] - \frac{1}{2} \right|
\]

Remark

- In a non-adaptive chosen-ciphertext attack (CCA1), stage 4 is removed (Naor-Yung, STOC’90): no decryption query is allowed after the challenge phase.
- Elgamal is not IND-CCA2-secure: \(A \) is given the challenge ciphertext

\[
C^* = (g^\gamma, M_\gamma \cdot X^\gamma) = (C_1, C_2)
\]

and can compute \(C' = (C_1 \cdot g'^{r'}, C_2 \cdot X'^{r'}) = (g^{\gamma+r'}, M_\gamma \cdot X^{\gamma+r'}) \), for a randomly chosen \(r' \in_R \mathbb{Z}_p \), which may be submitted to the decryption oracle and reveals \(M_\gamma \) to \(A \).

0.2 Generic IND-CCA2 PKE from any IND-sID-CPA-secure IBE (Canetti-Halevi-Katz, Eurocrypt’04)

- \textbf{Keygen}(\lambda) : Generate \((MPK, MSK) \leftarrow \text{Setup}^\text{IBE}(\lambda)\).

Choose a one-time signature scheme \(\Sigma = (G, S, V) \). Define \(PK := (MPK, \Sigma), SK := MSK \).

- \textbf{Encrypt}(PK, M) :

1. Generate a key pair \((SVK, SSK) \leftarrow G(\lambda)\) for the one-time signature.
2. Compute \(C^\text{IBE} \leftarrow \text{Encrypt}^\text{IBE}(MPK, M, SVK) \), which is an encryption of \(M \) under the identity \(SVK \).
3. Compute \(\sigma \leftarrow S(SSK, C^\text{IBE}) \) and output \(C = (SVK, C^\text{IBE}, \sigma) \).

- \textbf{Decrypt}(SK, C) :

1. Return \(\bot \) if \(V(SVK, C^\text{IBE}, \sigma) = 0 \).
2. Compute \(d_{SVK} \leftarrow \text{Keygen}^\text{IBE}(MSK, SVK) \).
3. Output \(M \leftarrow \text{Decrypt}^\text{IBE}(MPK, d_{SVK}, C^\text{IBE}) \).
Definition: Strong Unforgeability A one-time signature $\Sigma = (G, S, V)$ is strongly unforgeable under chosen-message attacks (SUF-CMA) if no PPT adversary A has noticeable advantage one the following game:

1. The challenger generates $(SVK, SSK) \leftarrow G(\lambda)$ and gives SVK to A.
2. A chooses exactly one message M and obtains $\sigma \leftarrow S(SSK, M)$.
3. A outputs (M^*, σ^*) and wins if

 (a) $V(SVK, M^*, \sigma^*) = 1$

 (b) $(M^*, \sigma^*) \neq (M, \sigma)$

In many signature schemes, signatures are not unique (i.e., a given message has many valid signatures). For such schemes, the above notion is strictly stronger than the usual notion of unforgeability, where condition (b) is replaced by $M \neq M^*$.

Theorem The PKE scheme produced by the Canetti-Halevi-Katz transformation is IND-CCA2-secure assuming that

- Σ is strongly unforgeable
- The IBE scheme is IND-sID-CPA-secure

Proof Let $C^* = (SVK^*, C^{IBE^*}, \sigma^*)$ be the challenge ciphertext given to the adversary in the IND-CCA2 game. We consider two kinds of attacks:

- Type I attack: A makes at least one valid decryption query $C = (SVK, C^{IBE}, \sigma)$ such that $SVK \neq SVK^*$ (by “valid decryption query”, we mean one where the one-time signature σ correctly verifies w.r.t. SVK).

- Type II attack: All valid decryption queries $C_i = (SVK_i, C_{IBE_i}^{IBE}, \sigma_i)$ contain one-time verification keys SVK_i such that $SVK_i \neq SVK^*$.

Type I attack contradicts the SUF-CMA-security of Σ. The proof is straightforward and omitted here.

Let A be Type II adversary with noticeable advantage ε. Using A, we build an IND-sID-CPA adversary B against the IBE scheme:

- B generates a one-time signature key pair $(SVK^*, SSK^*) \leftarrow G(\lambda)$ and declares SVK^* as its target identity $ID^* = SVK^*$ in the IND-sID-CPA security game.

- B obtains MPK^{IBE} from its own challenger and gives $PK = (MPK^{IBE}, \Sigma)$ to A as a public key for the IND-CCA security game.

Queries: suppose that A queries the decryption of a ciphertext $C = (SVK, C^{IBE}, \sigma)$. Since A is a Type II attacker, we necessarily have $SVK \neq SVK^*$, so that B can obtain an IBE private key $d_{SVK} \leftarrow Keygen(MSK^{IBE}, SVK)$ from its challenger, and compute $M \leftarrow Decrypt^{IBE}(MPK^{IBE}, d_{SVK}, C)$.

Challenge: A chooses (M_0, M_1) which B sends to its own challenger. The latter returns a challenge ciphertext $C^{IBE^*} \leftarrow Encrypt^{IBE}(MPK^{IBE}, M_*, SVK^*)$ for the IND-sID-CPA game. Then, B computes $C^* = (SVK^*, C^{IBE^*}, \sigma^*)$ where $\sigma^* \leftarrow S(SSK^*, C^{IBE^*})$ and gives it as a challenge to A.

2
Output A outputs $\gamma' \in \{0,1\}$ and B outputs γ'.

Clearly, if A is successful in the IND-CCA game, so is B in the IND-sID-CPA game. □

Remark The CHK transform turns any 2-level HIBE with an IND-sID-CCA2-secure IBE scheme.

0.3 Attribute-based encryption and fuzzy IBE

0.3.1 Definition

Definition: Fuzzy IBE (Sahai-Waters, Eurocrypt’05 [3])

- Decryption works when identities of ciphertext/key are close enough
- Identities are sets of descriptive attributes (“student”, “EU citizen”, “Driving license holder”, etc)
- If a ciphertext is encrypted for an attribute set ω' and private key corresponds to attribute set ω, decryption works if $|\omega \cap \omega'| \geq d$ for some $d \in \mathbb{N}$.

Motivation:
- Use biometric identities (e.g., iris scan)
- Access control on encrypted data (e.g., at least 2 attributes among “research staff member”, “Patent engineer”, “CEO”)

Selective security: Let $d \in \text{poly}(\lambda)$ be the decryption threshold.

0. The adversary A chooses a target attribute set ω^*
1. The challenger generates $(\text{MPK}, \text{MSK}) \leftarrow \text{Setup}(\lambda, d)$ and gives MPK to A
2. A makes private key queries: A chooses an arbitrary attribute set ω such that $|\omega \cap \omega'| < d$, and obtains $d_\omega \leftarrow \text{Keygen}(\text{MSK}, \omega)$.
3. A chooses (M_0, M_1) and obtains $C \leftarrow \text{Encrypt}(\text{MPK}, M_\gamma, \omega^*)$ with $\gamma \leftarrow \mathcal{U}(\{0,1\})$
4. A makes more private key queries
5. A outputs a bit $\gamma' \in \{0,1\}$ and wins if $\gamma = \gamma'$. Again, A ’s advantage is defined to be

$$\text{Adv}_A^{\text{FIBE-CPA}}(\lambda) := \left| \Pr[\gamma' = \gamma] - \frac{1}{2} \right|$$

In the stronger notion of full (a.k.a. adaptive) security, the adversary chooses ω^* at step 3 at the same time as M_0, M_1.

3
0.3.2 Construction for large attribute universes
(Sahai-Waters, Eurocrypt’05 [3])

- **Setup** (λ, d):
 1. Choose cyclic groups (G, G_T) of prime order $p > 2^\lambda$ with a bilinear map $e : G \times G \to G_T$ and generators $g, g_2 \in G$.
 2. Choose $y \leftarrow \mathbb{Z}_p$ and computes $g_1 := g^y$.
 3. Choose a function $T : \mathbb{Z}_p \to G$ (to be defined later)

Set $MPK := ((G, G_T), g, g_1 (= g^y), g_2, T)$ and $MSK := y \in \mathbb{Z}_p$.

- **Keygen** (MSK, ω):
 Choose a random polynomial $q(X) \in \mathbb{Z}_p[X]$ of degree $d - 1$ such that $q(0) = y$.

For each $i \in \omega$, choose $r_i \leftarrow \mathbb{Z}_p$ and compute $(D_i, d_i) = (g_2^{q(i)} \cdot T(i)^{r_i}, g^{r_i})$.

Return the private key $d_\omega := \{(D_i, d_i)\}_{i \in \omega}$.

Note that, for each $i \in \omega$, the pair (D_i, d_i) satisfies the relation

$$e(D_i, g) = e(g, g_2)^{q(i)} \cdot e(T(i), d_i). \quad (1)$$

- **Encrypt** (MPK, M, ω'):
 To encrypt $M \in G_T$ under the attribute set ω', choose $s \leftarrow \mathbb{Z}_p$ and compute

$$CT = (\omega', E' = M \cdot e(g_1, g_2)^s, E = g^s, \{E_i = T(i)^s\}_{i \in \omega'}).$$

- **Decrypt** (MPK, d_ω, CT):
 Given $d_\omega = \{(D_i, d_i)\}_{i \in \omega}$, find a set $S \subseteq \omega \cap \omega'$ such that $|S| = d$ (or return \perp if none exists). For each $i \in S$, compute

$$\frac{e(D_i, E)}{e(E_i, d_i)} = e(g, g_2)^{q(i) \cdot s}. \quad (2)$$

Since $e(g, g_2)^{q(0) \cdot s} = e(g_1, g_2)^s$, if we define the function

$$\Delta_{i,S}(X) := \prod_{j \in S \atop j \neq i} \frac{X - j}{i - j},$$

the message M can be obtained by performing a Lagrange interpolation in the exponent and computing

$$M = \prod_{i \in S} \left(\frac{E'}{e(D_i, E)} \right)^{\Delta_{i,S}(0)}.$$

The correctness of the scheme can be verified by observing that, if we raise both members of (1) to the power $s \in \mathbb{Z}_p$, we obtain (2).

Theorem The scheme provides selective security if the DBDH assumption holds.
Proof. Let \mathcal{A} be selective adversary with advantage ε. We build a DBDH distinguisher \mathcal{B} with advantage ε. Algorithm \mathcal{B} takes as input (g, g^a, g^b, g^c, Z) and uses \mathcal{A} to decide if $Z = e(g, g)^{abc}$ or $Z \in_R G_T$.

The adversary \mathcal{A} first chooses a target attribute set ω^*. To generate MPK, \mathcal{B} defines $g_1 = g^a, g_2 = g^b$ and chooses the function $T : Z_p \rightarrow G$ in such a way that $\forall x \in Z_p$, we can write

$$T(x) = g_2^{F(x)} \cdot g_1^J(x),$$

for certain functions $F, J : Z_p \rightarrow Z_p$ (which are kept internal to \mathcal{B}) chosen such that

$$F(x) = 0 \text{ if and only if } x \in \omega^*.$$

The adversary \mathcal{A} is given $MPK := ((G, G_T), g, g_1(= g^a), g_2(= g^b), T)$, which implicitly defines $MSK := a$ (note that MSK is not available to \mathcal{B}).

Queries: suppose that \mathcal{A} queries a private key for ω such that $|\omega \cap \omega^*| < d$. Let $\Gamma = \omega \cap \omega^*$, and Γ' be any set such that $\Gamma \subseteq \Gamma' \subseteq \omega$, and $|\Gamma'| = d - 1$.

- For each $i \in \Gamma' \subseteq \omega^*$, chooses $\lambda_i, r_i \in Z_p$, and sets $D_i := g_2^{\lambda_i} \cdot T(i)^{r_i} \quad d_i := g^{r_i}$.

- For each $i \in \omega \setminus \Gamma'$, we know that $i \notin \omega^*$ and we thus have $T(i) = g_2^{F(i)} \cdot g_1^{J(i)}$ with $F(i) \neq 0$. Hence, \mathcal{B} can compute

$$D' = g_2^{g(i)} \cdot T(i)^{\tilde{r}} = T(i)^{\tilde{r}} \cdot (g^a)^{-\frac{J(i)}{F(i)}} \quad d' = g^\tilde{r} = g^r \cdot (g^a)^{-\frac{1}{F(i)}}$$

where $\tilde{r} = r - \frac{a}{F(i)}$ for a randomly chosen $r \in_R Z_p$. In turn, this allows \mathcal{B} to compute

$$D_i = D_i^{\Delta_0,s(i)} \cdot \prod_{j \in S} g_2^{\lambda_j \Delta_j,s(i)} \quad d_i = d_i^{\Delta_0,s(i)}$$

where $S = \Gamma' \setminus \{0\}$. Then, \mathcal{B} can return the complete private key $d_\omega = \{(D_i, d_i) = (g_2^{g(i)} \cdot T(i)^{r_i}, g^{r_i})\} = \omega$ to \mathcal{A}.

Challenge: \mathcal{A} chooses two messages $M_0, M_1 \in G_T$. At this point, \mathcal{B} picks $\gamma \leftarrow \{0, 1\}$ and computes

$$CT^* = (\omega^*, E^* = M_\gamma \cdot Z, E = g^c, \{E_i = (g^c)^{J(i)}\} = \omega^*).$$

If $Z = e(g, g)^{abc}$ then $CT^* = (\omega^*, E' = M_\gamma \cdot e(g_1, g_2)^c, E = g^c, \{E_i = T(i)^c\}) = \omega^*$, since $T(i) = g^{J(i)}$ for each $i \in \omega^*$. If $Z \in_R G_T$, we can write

$$CT^* = (\omega^*, E' = M_{\text{rand}} \cdot e(g_1, g_2)^c, E = g^c, \{E_i = T(i)^c\} = \omega^*),$$

for some uniformly random $M_{\text{rand}} \in_R G_T$.
\textbf{Output:} \(A \) outputs a bit \(\gamma' \in \{0,1\} \). Then, \(B \) outputs 1 (meaning that \(Z = e(g,g)^{abc} \)) if \(\gamma' = \gamma \). Otherwise, \(B \) outputs 0 (meaning that \(Z \in_R G_T \)). It should be clear that \(B \)'s advantage as a DBDH distinguisher is identical to \(A \)'s advantage \(\varepsilon \) as a selective adversary.

\[\Box \]

In order to choose the function \(T : \mathbb{Z}_p \rightarrow G \), one possibility is to fix an upper bound \(n \) on the cardinality of any attribute set \(\omega \) in the scheme. The function \(T \) can be defined so as to implicitly compute a polynomial of degree \(n \) in the exponent. Namely, the master public key includes random group elements \(u_0, u_1, \ldots, u_n \in_R G \) and we define \(T(x) = \prod_{i=0}^{n} u_i^{(x^i)} \) for any \(x \in \mathbb{Z}_p \). In the security proof, the reduction \(B \) can choose \(F(x) \) as the polynomial \(F[X] = \prod_{i \in \omega^*}(X - i) = \sum_{i=0}^{n} f_i X^i \) and set \(u_i = g f_i^2 \cdot g t_i \), for each \(i \in \{0, \ldots, n\} \), using randomly chosen \(t_0, t_1, \ldots, t_n \in_R \mathbb{Z}_p \). This guarantees that \(\{u_i\}_{i=0}^{n} \) have a uniform distribution.

0.4 Extension: Key-Policy Attribute-based encryption (KP-ABE)

- Ciphertext is labeled with an attribute set \(\omega \).
- Private key corresponds to an access policy \(P \) and decryption works iff \(P(\omega) = 1 \).

\textbf{Motivation} Fine-grained access control using complex policies

Example of policy \(P \):

(“Research staff” OR “Patent engineer” OR “CEO”) AND (“Hired at least one year ago”)

FIBE is a particular case of KP-ABE: \(P \) consists of a single gate | \(\text{AND gate} \)
| \(\text{OR gate} \)
| \(\text{threshold gate} \)
Bibliography

Lecture Notes in Computer Science Volume 576, 1992, pp 433-444
Advances in Cryptology — CRYPTO ’91

Springer, Heidelberg (2005)