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0.1 Applications of (H)IBE to chosen-ciphertext security

0.1.1 De�nition

De�nition (Racko�-Simon, Crypto'91 [1]) A public-key encryption scheme is secure
against adaptive chosen ciphertext attacks (IND-CCA2) if no PPT adversaryA has non-negligible
advantage on the following game:

1. The challenger generates (PK,SK)← Keygen(λ) and gives PK to A

2. A invokes the decryption oracle a polynomial number of times: at each query, A chooses
a ciphertext C and obtains M ← Decrypt(SK,C) (which may be the error symbol ⊥ if C
is an invalid ciphertext).

3. A chooses two messages (M0,M1) and obtains C∗ ← Encrypt(PK,Mγ),
where γ ← U({0, 1})

4. A makes new decryption queries on arbitrary ciphertexts C 6= C∗

5. A outputs γ′ ∈ {0, 1} and wins if γ′ = γ

AdvIND-CCA
A (λ) :=

∣∣∣∣Pr[γ′ = γ]− 1

2
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Remark

• In a non-adaptive chosen-ciphertext attack (CCA1), stage 4 is removed (Naor-Yung,
STOC'90): no decryption query is allowed after the challenge phase

• Elgamal is not IND-CCA2-secure: A is given the challenge ciphertext

C∗ = (gr,Mγ ·Xr) = (C1, C2)

and can compute C ′ = (C1 · gr
′
, C2 · Xr′) = (gr+r

′
,Mγ · Xr+r′), for a randomly chosen

r′ ∈R Zp, which may be submitted to the decryption oracle and reveals Mγ to A .

0.2 Generic IND-CCA2 PKE from any IND-sID-CPA-secure IBE
(Canetti-Halevi-Katz, Eurocrypt'04)

• Keygen(λ) : Generate (MPK,MSK)← SetupIBE(λ).
Choose a one-time signature scheme Σ = (G,S, V ).
De�ne PK := (MPK,Σ), SK := MSK.

• Encrypt(PK,M) :

1. Generate a key pair (SV K,SSK)← G(λ) for the one-time signature.

2. Compute CIBE ← EncryptIBE(MPK,M,SV K), which is an encryption ofM under
the identity SV K.

3. Compute σ ← S(SSK,CIBE) and output C = (SV K,CIBE , σ).

• Decrypt(SK,C) :

1. Return ⊥ if V (SV K,CIBE , σ) = 0.

2. Compute dSV K ← KeygenIBE(MSK,SV K).

3. Output M ← DecryptIBE(MPK, dSV K , C
IBE).
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De�nition: Strong Unforgeability A one-time signature Σ = (G,S, V ) is strongly unforge-
able under chosen-message attacks (SUF-CMA) if no PPT adversary A has noticeable advantage
one the following game:

1. The challenger generates (SV K,SSK)← G(λ) and gives SV K to A

2. A chooses exactly one message M and obtains σ ← S(SSK,M)

3. A outputs (M∗, σ∗) and wins if

(a) V (SV K,M∗, σ∗) = 1

(b) (M∗, σ∗) 6= (M,σ)

In many signature schemes, signatures are not unique (i.e., a given message has many valid
signatures). For such schemes, the above notion is stictly stronger than the usual notion of
unforgeability, where condition (b) is replaced by M 6= M∗.

Theorem The PKE scheme produced by the Canetti-Halevi-Katz transformation is IND-
CCA2-secure assuming that

• Σ is strongly unforgeable

• The IBE scheme is IND-sID-CPA-secure

Proof Let C∗ = (SV K∗, CIBE
∗
, σ∗) be the challenge ciphertext given to the adversary in the

IND-CCA2 game. We consider two kinds of attacks:

• Type I attack: A makes at least one valid decryption query C = (SV K,CIBE , σ) such that
SV K 6= SV K∗ (by �valid decryption query�, we mean one where the one-time signature
σ correctly veri�es w.r.t. SV K).

• Type II attack: All valid decryption queries Ci = (SV Ki, C
IBE
i , σi) contain one-time

veri�cation keys SV Ki such that SV Ki 6= SV K∗

Type I attack contradicts the SUF-CMA-security of Σ. The proof is straightforward and omitted
here.

LetA be Type II adversary with noticeable advantage ε. UsingA , we build an IND-sID-CPA
adversary B against the IBE scheme:

• B generates a one-time signature key pair (SV K∗, SSK∗)← G(λ) and declares SV K∗ as
its target identity ID∗ = SV K∗ in the IND-sID-CPA security game.

• B obtains MPKIBE from its own challenger and gives PK = (MPKIBE ,Σ) to A as a
public key for the IND-CCA security game.

Queries: suppose that A queries the decryption of a ciphertext C = (SV K,CIBE , σ).
Since A is a Type II attacker, we necessarily have SV K 6= SV K∗, so that B can obtain
an IBE private key dSV K ← Keygen(MSKIBE , SV K) from its challenger, and compute
M ← DecryptIBE(MPKIBE , dSV K , C).

Challenge: A chooses (M0,M1) which B sends to its own challenger. The latter returns a
challenge ciphertext CIBE

∗ ← EncryptIBE(MPKIBE ,Mγ , SV K
∗) for the IND-sID-CPA

game. Then, B computes C∗ = (SV K∗, CIBE
∗
, σ∗) where σ∗ ← S(SSK∗, CIBE

∗
) and

gives it as a challenge to A .
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Output A outputs γ′ ∈ {0, 1} and B outputs γ′.

Clearly, if A is sucessful in the IND-CCA game, so is B in the IND-sID-CPA game. �

Remark The CHK tranform turns any 2-level HIBE with an IND-sID-CCA2-secure IBE
scheme.

0.3 Attribute-based encryption and fuzzy IBE

0.3.1 De�nition

De�nition: Fuzzy IBE (Sahai-Waters, Eurocrypt'05 [3])

• Decryption works when identities of ciphertext/key are close enough

• Identities are sets of descriptive attributes (�student�, �EU citizen�, �Driving license holder�,
etc)

• If a ciphertext is encrypted for an attribute set ω′ and private key corresponds to attribute
set ω, decryption works if |ω ∩ ω′| > d for some d ∈ N.

Motivation:

• Use biometric identities (e.g., iris scan)

• Access control on encrypted data (e.g., at least 2 attributes among �research sta� member�,
�Patent engineer�, �CEO�)

Selective security: Let d ∈ poly(λ) be the decryption threshold.

0. The adversary A chooses a target attribute set ω∗

1. The challenger generates (MPK,MSK)← Setup(λ, d) and gives MPK to A

2. A makes private key queries: A chooses an arbitrary attribute set ω such that |ω∩ω′| < d,
and obtains dω ← Keygen(MSK,ω).

3. A chooses (M0,M1) and obtains C ← Encrypt(MPK,Mγ , ω
∗) with γ ← U({0, 1})

4. A makes more private key queries

5. A outputs a bit γ′ ∈ {0, 1} and wins if γ = γ′. Again, A 's advantage is de�ned to be

AdvFIBE-CPA
A (λ) :=

∣∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣∣
In the stronger notion of full (a.k.a. adaptive) security, the adversary chooses ω∗ at step 3

at the same time as M0,M1.
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0.3.2 Construction for large attribute universes
(Sahai-Waters, Eurocrypt'05 [3])

• Setup(λ, d) :

1. Choose cyclic groups (G,GT ) of prime order p > 2λ with a bilinear map e : G×G→
GT and generators g, g2 ∈ G

2. Choose y ← Zp and computes g1 := gy

3. Choose a function T : Zp → G (to be de�ned later)
Set MPK := ((G,GT ), g, g1(= gy), g2, T ) and MSK := y ∈ Zp

• Keygen(MSK,ω) : Choose a random polynomial q(X) ∈ Zp[X] of degree d−1 such that

q(0) = y. For each i ∈ ω, choose ri ← Zp and compute (Di, di) = (g
q(i)
2 · T (i)ri , gri).

Return the private key
dω = {(Di, di)}i∈ω.

Note that, for each i ∈ ω, the pair (Di, di) satis�es the relation

e(Di, g) = e(g, g2)q(i) · e(T (i), di). (1)

• Encrypt(MPK,M,ω′) : To encrypt M ∈ GT under the attribute set ω′, choose s ← Zp
and compute the ciphertext

CT =
(
ω′, E′ = M · e(g1, g2)s, E = gs, {Ei = T (i)s}i∈ω′

)
.

• Decrypt(MPK, dω, CT ) : Given dω = {(Di, di)}i∈ω, �nd a set S ⊆ ω ∩ ω′ such that
|S| = d (or return ⊥ if none exists). For each i ∈ S, compute

e(Di, E)

e(Ei, di)
= e(g, g2)q(i)·s. (2)

Since e(g, g2)q(0)·s = e(g1, g2)s, if we de�ne the function

∆i,S(X) :=
∏
j ∈ S
j 6= i

X − j
i− j

,

the message M can be obtained by performing a Lagrange interpolation in the exponent
and computing

M =
E′∏

i∈S

(
e(Di, E)

e(di, Ei)

)∆i,S(0)

The correctness of the scheme can be veri�ed by observing that, if we raise both members of (1)
to the power s ∈ Zp, we obtain (2).

Theorem The scheme provides selective security if the DBDH assumption holds.
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Proof Let A be selective adversary with advantage ε. We build a DBDH distinguisher B with
advantage ε. Algorithm B takes as input (g, ga, gb, gc, Z) and uses A to decide if Z = e(g, g)abc

or Z ∈R GT .
The adversary A �rst chooses a target attribute set ω∗. To generate MPK, B de�nes

g1 = ga, g2 = gb and chooses the function T : Zp → G in such a way that ∀x ∈ Zp, we can write

T (x) = g
F (x)
2 · gJ(x),

for certain functions F, J : Zp → Zp (which are kept internal to B) chosen such that

F (x) = 0 if and only if x ∈ ω∗.

The adversary A is given MPK := ((G,GT ), g, g1(= ga), g2(= gb), T ), which implicitly de�nes
MSK := a (note that MSK is not available to B).

Queries: suppose that A queries a private key for ω such that |ω ∩ ω∗| < d.
Let Γ = ω ∩ ω∗, and Γ′ be any set such that Γ ⊆ Γ′ ⊆ ω, and |Γ′| = d− 1.

� For each i ∈ Γ′ ⊆ ω∗, chooses λi, ri ∈ Zp, and sets

Di := gλi2 · T (i)ri , di := gri .

� For each i ∈ ω\Γ′, we know that i /∈ ω∗ and we thus have T (i) = g
F (i)
2 · gJ(i) with

F (i) 6= 0. Hence, B can compute

D′ = g
q(0)
2 · T (i)r̃ = T (i)r · (ga)−

J(i)
F (i) d′ = gr̃ = gr · (ga)−

1
F (i)

where r̃ = r− a
F (i) for a randomly chosen r ∈R Zp. In turn, this allows B to compute

Di = D′∆0,s(i) ·
∏
j∈S

g
λj∆j,S(i)
2 di = d′∆0,S(i)

where S = Γ′\{0}. Then, B can return the complete private key

dω = {(Di, di) = (g
q(i)
2 · T (i)ri , gri)}i∈ω

to A .

Challenge: A chooses two messages M0,M1 ∈ GT . At this point, B picks γ ← {0, 1} and
computes

CT ∗ =
(
ω∗, E∗ = Mγ · Z,E = gc, {Ei = (gc)J(i) }i∈ω∗

)
.

If Z = e(g, g)abc then

CT ∗ =
(
ω∗, E′ = Mγ · e(g1, g2)c, E = gc, {Ei = T (i)c)}i∈ω∗

)
,

since T (i) = gJ(i) for each i ∈ ω∗. If Z ∈R GT , we can write

CT ∗ =
(
ω∗, E′ = Mrand · e(g1, g2)c, E = gc, {Ei = T (i)c}i∈ω∗

)
,

for some uniformly random Mrand ∈R GT .

5



Output: A outputs a bit γ′ ∈ {0, 1}. Then, B outputs 1 (meaning that Z = e(g, g)abc)
if γ′ = γ. Otherwise, B outputs 0 (meaning that Z ∈R GT ). It should be clear that B's
advantage as a DBDH distinguisher is identical to A 's advantage ε as a selective adversary.

�

In order to choose the function T : Zp → G, one possibility is to �x an upper bound n
on the cardinality of any attribute set ω in the scheme. The function T can be de�ned so as
to impicitly compute a polynomial of degree n in the exponent. Namely, the master public

key includes random group elements u0, u1, . . . , un ∈R G and we de�ne T (x) =
∏n
i=0 u

(xi)
i

for any x ∈ Zp. In the security proof, the reduction B can choose F (x) as the polynomial

F [X] =
∏
i∈ω?(X− i) =

∑n
i=0 fiX

i and set ui = gfi2 ·gti , for each i ∈ {0, . . . , n}, using randomly
chosen t0, t1, . . . , tn ∈R Zp. This guarantees that {ui}ni=0 have a uniform distribution.

0.4 Extension: Key-Policy Attribute-based encryption (KP-ABE)

• Ciphertext is labeled with an attribute set ω.

• Private key corresponds to an access policy P and decryption works i� P (ω) = 1.

Motivation Fine-grained access control using complex policies

Example of policy P :

(�Research sta�� OR �Patent engineer� OR �CEO�) AND (�Hired at least one year ago�)

FIBE is a particular case of KP-ABE: P consists of a single gate

∣∣∣∣∣∣
AND gate
OR gate
threshold gate
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