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Key-Policy Attribute-Based Encryption (KP-ABE)

Motivation

In a standard public-key encryption scheme, each user has his own public key and secret
key, so that if one wants to encrypt a message intended for several receivers (for example,
according to their jobs in a company), it will be necessary to compute the ciphertext for
each public key of each recipient, which implies a huge loss of time and space.

The idea of a Key-Policy Attribute-Based Encryption scheme (KP-ABE) is to have
the sender encrypt the message only once. It is the policy assigned to users’ keys that
will determine if these users will be allowed to decrypt:

• Ciphertexts are labeled with a set ω of descriptive attributes.

• Private key corresponds to an access policy P .

• Decryption works if and only if P (ω) = 1

Here are some examples:

• Attributes can be {Researcher, Teacher, Student, ENS Lyon, CNRS}.

• M. Dupont is researcher at the CNRS. So, his policy will be : (Researcher AND
CNRS).

• Mme Dupré is researcher at the ENS Lyon and also teacher at the ENS Lyon. So
her policy will be : ((Researcher OR Teacher) AND ENS Lyon).
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• M. Dupuis is researcher at the CNRS and also gives courses at the ENS Lyon. His
policy is : ((Researcher AND CNRS) OR (Teacher AND ENS Lyon)).

• Chloé is student at the ENS Lyon, her policy is : (Student AND ENS Lyon)

• If ω = {Researcher, CNRS}, which means that only researchers at the CNRS
should be able to decrypt the message, then only M. Dupont and M. Dupuis have
the good policy to read the message.

• If ω = {Researcher, ENS Lyon, CNRS}, meaning that recipients must be all the
research staff in both ENS Lyon and CNRS, then M. Dupont, Mme Dupré and M.
Dupuis can all read the message.

• If ω = {Teacher, Student, ENS Lyon}, only teachers or students at the ENS Lyon
will be able to decrypt the message. Here, Mme Dupré, M. Dupuis and Chloé have
the corresponding policy.

Definition

A KP-ABE scheme is a tuple of algorithms with the following specification:

Setup(λ) : Given λ ∈ N, outputs a master key pair (MPK,MSK).

Keygen(MSK,P ) : Given MSK and a policy P , outputs SKP .

Encrypt(MPK,M,ω) : Given an attribute set ω, outputs ciphertext CT .

Decrypt(MPK,SKP , CT ) : Given CT and SKP , outputs M or ⊥.

Correctness condition

The correctness condition expresses the fact tha,t if a message is encrypted with an
attribute set ω and if user A holds a key SKP for a policy P that accepts these attributes
(i.e., P (ω) = 1), then A can decrypt the ciphertext with his secret key SKP .

For any policy P and any attribute set ω such that P (ω) = 1,

M = Decrypt(MPK,SKP ,Encrypt(MPK,M,ω))

Selective security

The intuitive notion of security for such an encryption scheme is that an adversary A
should not be able to decrypt a ciphertext labeled with some attribute set ω? if he does
not have access to a secret key SKP ? such that the policy P ? satisfies P ?(ω?) = 1, even
if he can obtain SKP for policies P such that P (ω?) = 0. Precisely, no PPT adversary
A should have a non-negligible advantage in this game :
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The adversary A chooses ω? at the beginning (before seeing the master public key
MPK) and can adaptively obtain a polynomial number of private keys SKP for a
arbitrary policies P sucht that P (ω?) = 0. After a first series of queries, A chooses two
messages M0 and M1 and send them to challenger. The challenger chooses a random bit

γ
R←− {0, 1} and sends ciphertext c? = Encrypt(MPK,Mγ , ω

?) to A. A can make further
queries for private keys SKP such that P (ω?) = 0 and finally outputs γ′ ∈ {0, 1}. The
adversary A wins if γ′ = γ. Its advantage is defined in the usual way, as the distance
AdvA(λ) := |Pr[γ′ = γ]− 1/2|.

Formulae

For now, we restrict ourselves to the case where a policy P is defined by a monotone
Boolean formula.

A monotone Boolean formula is a directed tree where :

• leaves correspond to inputs.

• non-leaf nodes are gates (AND,OR).

Here is an example of a formula that calculates (x1 ∧ x2) ∧ ((x3 ∨ x4) ∨ x5) :

x1 x2 x3 x4 x5

The inputs (leaves) are the attributes. An attribute is set to TRUE if it belongs to
the ω, and FALSE otherwise. A formula corresponds in that way to an access policy :
its accepts or reject an attribute set ω.
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It must be stressed out that this definition of formula is not as general as the notion
of Boolean circuit (a circuit is a directed acyclic graph, which may not be a tree since the
output of a gate may be the input of several other gates). However, Boolean formulas
are sufficient for many applications. Here is an example of Boolean circuit that is not a
formula:

x1 x2 x3 x4 x5

Access structure

Let P = {1, . . . , n} be a set of positive integers, representing the set of all possible
attributes. An access structure A ⊆ 2P is a collection of non-empty subsets of P. It
corresponds exactly to the notion of access policy : P (ω) = 1 if and only if ω ∈ A.

It is called monotone if:

∀B,C ∈ 2P ·B ∈ A ∧ B ⊆ C ⇒ C ∈ A

It is easy to see that access structures obtained by formulae as above are monotone.
This is due to the fact that we do not allow NOT gates in the definition of formulae.

Monotone Span Program

Let K be a field and let {x1, . . . , xn} be a set of variables.

A Monotone Span Program (MSP) is a pair (M , ρ), where M ∈ Kl×k is a matrix
and ρ : {1, . . . , l} → {x1, . . . , xn} is a labelling function.
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For any γ ⊆ {x1, . . . , xn}, define the submatrix Mγ of M obtained by keeping only
the rows of index i such that ρ(i) ∈ γ :

Mγ = (Mij)i∈ρ−1(γ)
1≤j≤k

(M , ρ) accepts γ if and only if
−→
1 = (1, 0, . . . , 0) ∈ rowspan(Mγ).

A MSP (M , ρ) computes a Boolean function fM over {x1, . . . , xn} if it accepts
exactly those γ such that fM (γ) = 1. Note that the access structure A defined here by
its characteristic function is clearly monotone (because the notion of linear spanning is
monotone).

Linear Secret Sharing

Let P = {1, . . . , n} be a set of parties, let M ∈ Fl×kp be a matrix over a finite field Fp
and let ρ : {1, . . . , l} → P be a function that maps the rows of M to P for labelling. A
Linear Secret Sharing Scheme (LSSS) for a (monotone) access structure A ⊆ 2P repre-
sented by (M , ρ) consists of algorithms :

Share(M , ρ, s) : Given (M , ρ) and a secret s ∈ Fp, picks β = (s, β2, . . . βk)

with β2, . . . , βk
R←− Fp and defines λi = MT

i β which is the
share assigned to party ρ(i).

Reconstruct(M , ρ, S) : Given an access set S ∈ A, lets I = {i | ρ(i) ∈ S}. It outputs

constants {µi}i∈I such that s =
∑
i∈I

µiλi.

The idea behind such a scheme is the following. A secret s is split into several
shares λi. If ones wants to reconstruct the secret s, one can do that by taking a linear
combination of the {λi}i∈I such that I corresponds (via ρ) to a valid S ∈ A. The
following proposition makes the link with MSP defining an access structure A :

Proposition. There exists an efficient LSSS for a monotone access structure A if and
only if there exists a small MSP for the characteristic function of A.

KP-ABE for monotone Boolean formulae (Goyal, Pandey, Sahai, Wa-
ters, ACM-CCS ’06 [2])

Here, we present a concrete KP-ABE scheme that can represent all monotone access
structures A defined using a MSP (M , ρ):

• Setup(λ) :

1. Chooses groups (G,GT ) of prime order p > 2λ with a pairing e : G×G→ GT

and generators g, g2
R←− G.
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2. Chooses y
R←− Fp and computes g1 = gy.

3. Chooses a function T : Fp → G (to be specified later) and sets:

MPK = ((G,GT ), g, g1 = gy, g2, T ) and MSK = y

• Keygen(MSK, (M , ρ)) :

To generate a key for A = (M , ρ) where M ∈ Fl×kp and ρ : {1, . . . , l} → P, choose

a random vector β
R←− Fkp such that β · (1, 0, . . . , 0) = y. For each row M i of

M ∈ Fl×kp , choose ri
R←− Fp and compute a pair

(Di, di) =
(
gM i·β
2 · T (ρ(i))ri , gri

)
.

Notet that (Di, di) satisfy the following relations :

e(Di, g) = e(g2, g)M i·β · e(T (ρ(i)), di)
e(Di, g

s) = e(g2, g
s)M i·β · e(T (ρ(i))s, di),

for any s ∈ Fp.

Return SKA = {(Di, di)}1≤1≤l.

• Encrypt(MPK,Msg, ω) : To encrypt Msg ∈ GT under ω, chooses s
R←− Fp and

computes :

CT =
(
ω,E′ = Msg · e(g1, g2)s, E = gs, {Ei = T (i)s}i∈ω

)
• Decrypt(MPK,SKA, CT ) :

Given SKA for A = (M , ρ) and CT = (ω,E′, E, {Ei}i∈ω), define the index set

I = {i ∈ {1, . . . , l} | ρ(i) ∈ ω} .

Since A(ω) = 1, there exist coefficients {µi}i∈I such that (1, 0, . . . , 0) =
∑
i∈I

µiM i.

For each i ∈ I, compute

Θi =
e(di, Ei)

e(Di, E)
= e(g2, g)−s·M i·β.

Then, return

Msg = E′ ·
∏
i∈I

Θµi
i = E′ · e(g, g2)−s·y
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Theorem ([2]). The scheme provides selective security under the DBDH assumption.

Proof. We will first need the following lemma from linear algebra :

Lemma. A vector π ∈ Fkp is linearly independent of the rows of a matrix N ∈ Fl′×kp if

and only if there exists a vector w ∈ Fkp such that Nw = 0 and π ·w 6= 0.

Let A be a selective adversary with advantage ε. We build a DBDH distinguisher
B that takes as input (g, ga, gb, gc, Z) and uses A to decide whether Z = e(g, g)abc or
Z ∈R GT .

A begins the game by choosing some attribute set ω?. To generate MPK, B defines
g1 = ga and g2 = gb. Then, B chooses a function T : Fp → G such that:

T (x) = g
F (x)
2 · gJ(x) ∀x ∈ Fp

for certain functions F, J : Fp → Fp, which are kept internal to B, that satisfy the
conditions

F (x) = 0 ∀x ∈ ω?
F (x) 6= 0 ∀x /∈ ω?

For example, if we fix an upper bound n ≥ |ω?| on the cardinality of any attribute
set, F (X) and J(X) can be chosen as polynomials

F (X) =
∏
i∈ω?(X − i) =

∑n
j=0 FjX

j

J(X) =
∑n

j=0 JjX
j R←− Fp[X]

and we can define T (X) =
∏n
j=0 u

Xj

j , where uj = g
Fj
2 · gJj for each j ∈ {0, . . . , n} and

{uj}nj=0 are included in MPK.

A is given MPK =
(
(G,GT ), g, g1 = ga, g2 = gb, T

)
, meaning that B implicitely

defines MSK = a (which is unknown).

Queries: Suppose A queries SKA such that A(ω?) = 0, where A = (M , ρ) with
M ∈ Fl×kp . B defines I = {i ∈ {1, . . . , l} | ρ(i) ∈ ω?}. Since A(ω?) = 0, (1, 0, . . . , 0) is
not in the row space of M I , the submatrix of M obtained by keeping only the rows M i

of M such that i ∈ I. Hence ∃w ∈ Fkp ·M I ·w = 0 and (1, 0, . . . , 0) ·w 6= 0 (so w1 6= 0).

B chooses v = (v1, . . . , vk)
R←− Fkp and implicitely defines u = v+ψw where ψ = a−v1

w1

(not computable by B). Note that u · (1, 0, . . . , 0) = v1 + a−v1
w1
w · (1, 0, . . . 0) = a.

For each i ∈ I (so that ρ(i) ∈ ω?), we have λi = M i ·u = M i ·v and B can compute
:

(Di, di) =
(
gM i·v
2 · T (ρ(i))ri , gri

)
where ri

R←− Fp

For each i ∈ {1, . . . , l}\ I (so that ρ(i) /∈ ω?), we have T (ρ(i)) = g
F (ρ(i))
2 ·gJ(ρ(i)) such

that F (ρ(i)) 6= 0. So, B can compute a pair

(D′i, d
′
i) =

(
ga2 · T (ρ(i))r̃i , gr̃i

)
(1)
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for some r̃i ∈R Fp using the Boney-Boyen technique. To this end, B chooses a random
˜̃ri ∈R Fp and implicitly defines ˜̃ri = r̃i + a

F (ρ(i)) . So, we have:

(
T (ρ(i)) = g

F (ρ(i))
2 · gJ(ρ(i))

)r̃i+ a
F (ρ(i))

= ga2 · (T (ρ(i)))r̃i · ga·
J(ρ(i))
F (ρ(i))

So, the pair (
T (ρ(i))

˜̃ri · (ga)−
J(ρ(i))
F (ρ(i)) , g

˜̃ri · (ga)−
1

F (ρ(i))

)
is computable by B and forms a valid pair (D′i, d

′
i) of the form (1). From this point, B

can obtain
(Di, di) =

(
gM i·u
2 · T (ρ(i))ri , gri

)
as

 Di = gM i·v
2 ·

(
D′i · g

−v1
2

)Mi·w
w1

di = d′i
Mi·w
w1

Then, B returns SKA = {(Di, di)}1≤i≤l to A.

Challenge : A chooses Msg0,Msg1. Then, B picks γ
R←− {0, 1} and computes

CT ? =
(
ω?, E′ = Msgγ · Z,E = gc,

{
Ei = (gc)J(i) = T (i)c

}
i∈ω?

)
(For each i ∈ ω?, we know that T (i) = g

F (i)
2 · gJ(i) = gJ(i)).

• If Z = e(g, g)abc, CT ? =
(
ω?, E′ = Msgγ · e(g1, g2)c, E = gc, {Ei = T (i)c}i∈ω?

)
is a

valid encryption of Msgγ with the attribute set ω?. In this case, A should output

γ′ = γ with probability 1
2 + ε.

• If Z
R←− GT , the challenge ciphertext CT ? is distributed as an encryption of a

random message Msgrand ∈R GT , which is completely independent of Msg0,Msg1.
So, A should output a bit γ′ ∈ {0, 1} independent of the γ chosen by B, so γ′ = γ
with probability 1/2.

Output: A outputs γ′ ∈ {0, 1}. If γ = γ′, B outputs 1 (meaning Z = e(g, g)abc).
Otherwise, B outputs 0 (meaning that Z ∈R GT ). Clearly, this gives an advantage ε to
B as a distinguisher for the DBDH problem.

Public Key Encryption with Keyword Search (PEKS) (Boneh,
Di Crescenzo, Ostrovsky, Persiano, EUROCRYPT ’04 [1])

Idea : A trapdoor tw allows testing whether c is an encryption of a given keyword W .
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A PEKS scheme consists of the following set of algorithms :

Keygen(λ) : Given a security parameter λ ∈ N, outputs (PK,SK).
Trapdoor(SK,W ) : Outputs tW for the keyword W .
Encrypt(PK,W ) : Outputs c which encrypts W .
Test(PK, tW , c) : Outputs 0 or 1.

Correctness:

For all λ ∈ N and (PK,SK)← Keygen(λ), if tW ← Trapdoor(SK,W ), then :

Test(PK,Encrypt(PK,W ), tW ) = 1 with high probability

Computational consistency:

For any PPT adversaryA, the following experiment outputs 1 with negligible probability:

1. Run (PK,SK)← Keygen(λ) and PK is given to A.

2. A outputs W,W ′ ∈ {0, 1}? such that W 6= W ′.

3. Compute c ← Encrypt(PK,W ) and tW ′ ← Trapdoor(SK,W ′). Return 1 if W 6=
W ′ and Test(PK, tW ′ , c) = 1.

Semantic Security for PEKS (a.k.a. keyword-privacy):

No PTT adversary A has non-negligible advantage in this game:

1. The challenger generates (PK,SK)← Keygen(λ), initializes a set Q← ∅ and gives
PK to A.

2. A makes queries: A chooses W and obtains tW ← Trapdoor(SK,W ). The chal-
lenger updates Q← Q ∪ {W}.

3. A chooses distinct keywordsW0,W1 /∈ Q and obtains c? ← Encrypt(PK,Wγ) where

γ
R←− 0, 1.

4. A makes more queries for keywords W /∈ {W0,W1}.

5. A outputs γ′ ∈ {0, 1} and wins if γ′ = γ.

We define the advantage of adversary A in this game:

AdvPEKS-IND-CPA
A (λ) = |Pr[γ′ = γ]− 1

2
|
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