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Introduction

The present document contains descriptions of results I obtained in the last few years. I chose
these specific results because I feel they correspond to the most significant steps towards
achieving my main long-term research goals. The purpose of the document is to provide an
overview without forcing the reader to delve into the technical proofs of the corresponding
articles. The interested reader can however easily access to precisions, as the research articles
corresponding to the described results are appended to the text.

My research focuses on devising and analysing faster algorithms for Euclidean lattices
and their applications. Lattice algorithms are often classified into two categories: Polynomial-
time algorithms for providing interesting representations of lattices, which often means
LLL-type algorithms (although Hermite Normal Form algorithms would nicely fit in this
category); And slower algorithms that attempt to achieve computationally more demand-
ing tasks. This distinction is clearly artificial (as originally observed by Claus-Peter Schnorr,
there exists a whole continuum between the two categories), and tends to become even more
so, as ideas developed for one tend to prove useful as well for the other. Nevertheless, the
algorithms of the first category deserve specific attention, as they tend to be more practical
and have progressively become widespread tools in many fields of computational mathe-
matics and computer science: Amazingly, LLL sometimes seems more famous than the ob-
jects it handles! The applications of lattice algorithms are numerous and occur in a very wide
variety of fields of mathematics and computer science. The seminal article of Arjen Lenstra,
Hendrik Lenstra Jr and László Lovász already considered applications in Computer Algebra
(for factoring integer polynomials), Combinatorial Optimisation (for solving Integer Linear
Programming instances) and Algorithmic Number Theory (for simultaneous Diophantine
approximation). The range of applications of lattices has considerably widened, now in-
cluding Cryptography (for cryptanalytic purposes, and more recently, for devising crypto-
graphic schemes), Computer Arithmetic, Communications Theory, Computational Group
Theory, GPS, etc. For some applications, well-known lattice algorithms can be applied di-
rectly, whereas others lead to new mathematical and computational problems on lattices,
thus reviving the field.

My PhD thesis was already centred on lattice algorithms and their applications. First,
I studied and proposed improvements to lattice reduction algorithms, focusing on strong
reductions in tiny dimensions, and on the Lenstra-Lenstra-Lovász reduction in arbitrary di-
mensions. An important result in that direction was the elaboration, empirical study and
implementation of the L2 algorithm [82, 85, 83, 16]. L2 was the first algorithm to compute
LLL-reduced bases with run-time bounded quadratically with respect to the bit-sizes of the
input matrix entries. The algorithmic acceleration was due to the efficient and reliable use of
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low-precision floating-point arithmetic to compute (an approximation to) the Gram-Schmidt
orthogonalisation of the current lattice basis. This established a link between lattice reduc-
tion, traditionally seen as an algebraic procedure, and computer arithmetic and numerical
analysis. The second theme of my PhD thesis was the use of lattice reduction to solve diffi-
cult problems from the field of computer arithmetic. The main such problem I tackled was
the so-called Table’s Maker Dilemma: Given a function f over R, an interval I and a preci-
sion p f (e.g., f = exp on [1/2, 1) with precision p f = 53), compute the minimal sufficient
precision pc such that for any precision p f floating-point number x in I, the closest preci-
sion p f floating-point number to f (x) can be determined from a precision pc floating-point
approximation to f (x). I proposed a new approach for solving this problem, combining
non-linear polynomial approximations to f and Coppersmith’s method for finding small
roots of bivariate polynomials modulo an integer. The latter itself relies on an LLL-reduction
algorithm [117, 116].

After the completion of my PhD thesis, I chose to focus mainly on lattice reduction. I
continued investigating numerical analysis techniques for speeding up LLL-reduction algo-
rithms. In particular, with Gilles Villard, we started to progressively replace the Cholesky
factorisation used within L2 for handling the Gram-Schmidt orthogonalisation computa-
tions, by the QR-factorisation. These are mathematically equivalent, but the numerical prop-
erties of the QR-factorisation are superior, in the sense that smaller precisions may be used
while still obtaining meaningful results. Xiao-Wen Chang helped us analysing the sensitivity
of the R-factor of the QR-factorisation for LLL-reduced bases, which led to the introduction
of a perturbation-friendly modified definition of LLL-reducedness [20]. This study helped
us devising an alternative to L2 relying on Householder’s QR-factorisation algorithm [78],
and later devising the first LLL-reduction algorithm with quasi-linear complexity with re-
spect to the bit-sizes of the input matrix entries and polynomial complexity with respect to
the dimension [88]. Chapter 1 contains the background and reminders necessary for the full
document, whereas Chapter 2 is an overview of these results on the LLL-reduction. The
reader interested in obtaining more details is referred to the following accompanying arti-
cles:

• X.-W. Chang, D. Stehlé and G. Villard. Perturbation Analysis of the QR factor R in the
Context of LLL Lattice Basis Reduction. To appear in Mathematics of Computation.

• I. Morel, D. Stehlé and G. Villard. H-LLL: Using Householder inside LLL. In the pro-
ceedings of ISSAC 2009.

• A. Novocin, D. Stehlé and G. Villard. An LLL-reduction algorithm with quasi-linear
time complexity. In the proceedings of STOC 2011.

Chapter 3 is devoted to algorithms for solving problems on Euclidean lattices that are out
of reach of LLL-type algorithms. In 2006, Guillaume Hanrot and I started working on the
Kannan-Fincke-Pohst algorithm for solving the Shortest and Closest Lattice Vector Problems.
We improved its complexity analysis, and then, together with Xavier Pujol, we studied its
numerical and implementation facets [44, 95, 23]. More recently, we investigated the use
of a low-dimensional SVP solver for computing bases that are reduced in a stronger sense
than LLL’s. More specifically, we showed that a slightly simplified version of the Schnorr
and Euchner BKZ algorithm [105, 106] may be terminated within a polynomial number of
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iterations while still providing bases of excellent quality [43]. The results of this chapter
correspond to the following accompanying articles:

• G. Hanrot and D. Stehlé. Improved Analysis of Kannan’s Shortest Lattice Vector Algo-
rithm. In the proceedings of CRYPTO 2007.

• G. Hanrot, X. Pujol and D. Stehlé. Analyzing Blockwise Lattice Algorithms using Dy-
namical Systems. To appear in the proceedings of CRYPTO 2011.

During my secondment to the University of Sydney and to Macquarie University (be-
tween 2008 and 2010), and in collaboration with Ron Steinfeld, I started working in a third
field related to the computational aspects of Euclidean lattices. Instead of devising faster
algorithms for solving computational problems, the aim was to exploit the apparent com-
putational hardness of some problems on lattices to derive secure cryptographic functions.
Lattice-based cryptography started in the mid-90’s with Ajtai’s seminal worst-case to average-
case reduction [3]. It boomed about five years ago, with the elaboration of numerous cryp-
tographic schemes (see [74] for a recent survey). The facet I am most interested in is to use
structured lattices corresponding to ideals and modules over rings of integers of some num-
ber fields (typically a cyclotomic fields of orders that are powers of 2) to achieve improved
efficiency and/or new functionalities. In this vein, together with Ron Steinfeld, Keisuke
Tanaka and Keita Xagawa, we proposed the first encryption scheme with quasi-optimal key
sizes and encryption/decryption performances, that is provably secure, assuming the expo-
nential quantum worst-case hardness of standard problems on ideal lattices [119]. By build-
ing upon recent tools concurrently and independently developed by Lyubashevsky, Peikert
and Regev [69], we proved that the famous NTRU encryption scheme [54, 55] can be slightly
modified so that it allows for a security proof under a similar assumption [118]. Chapter 4 is
devoted to these results.

• D. Stehlé, R. Steinfeld, K. Tanaka and K. Xagawa. Efficient Public-Key Encryption
Based on Ideal Lattices. In the proceedings of ASIACRYPT 2009.

• D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices. In the proceedings of EUROCRYPT 2011.

Writing this document was an excellent opportunity for me to clarify and put in perspec-
tive the results I obtained in the last few years. In particular, it has allowed me to take the
time to re-think and structure my research targets. These goals are succinctly overviewed in
the “Perspectives” sections of each one of the different chapters. Although lattice algorithms
and cryptographic applications will remain my core research area, I intend to broaden my
research scope to a larger range of applications of Euclidean lattices, including communi-
cations theory (e.g., MIMO technology), numerical analysis (e.g., using lattice algorithms to
improve numerical stability), and computational number theory (e.g., units of and modules
over the rings of integers of number fields). Looking at the same object from many different
angles will hopefully leads to a deeper understanding of its inner workings.





Notations

For a matrix B, we let BT denote the transpose of B. Furthermore, if B is square, then we will
let B−T denote the transpose of its inverse. Also, for any matrix B, the notation |B| will refer
to the same matrix where the coefficients have been replaced by their absolute values. The
identity matrix will be denoted by I. If (xi)i≤n ∈ Rn, we let diag(xi) denote the diagonal
matrix whose diagonal coefficients are the xi’s. We let Dn and D+

n respectively denote the
sets of n-dimensional diagonal matrices and n-dimensional diagonal matrices with positive
diagonal coefficients. The notation ‖B‖2 refers to the standard matrix norm induced by the
vectorial Euclidean norm.

Vectors will always be denoted by bold-case letters. If two vector b and c have matching
dimensions, their inner product ∑i bici will be denoted by 〈b, c〉. By default, the notation ‖b‖
corresponds to the Euclidean norm of b. If S ⊆ Rn, we let Span(S) denote the vectorial
subspace of Rn spanned by the elements of S. The set of all n × n matrices over a ring R
that are invertible (over R) will be denoted by GLn(R). The notation Bn(c, r) refers to the
n-dimensional (closed) ball of centre c and radius r.

If S is a finite set, its cardinality is denoted by |S|. If S is countable set and f is a function
defined over S taking non-negative values, then we let f (S) ∈ [0,+∞] denote ∑x∈S f (x).

We use the standard Landau notations O(·), o(·), ω(·) and Ω(·). We also use the no-
tations Õ(·) and Ω̃(·) fro hiding poly-logarithmic factors. E.g., the function n 7→ n2 logc n
is Õ(n2) for any constant c. The notation poly(n) denotes any polynomial in n. When a func-
tion decreases faster than n−c for any constant c > 0, we say it is negligible (or, equivalently,
that it is n−ω(1)).

If D is a distribution, the notation x ←↩ D means we sample x with distribution D. If a
set S is finite, we let U(S) denote the uniform distribution on S. Also, the probability that
an event X occurs will be denoted by Pr[X]. If two distributions D1 and D2 are defined over
the same support S and if that support is countable, then the statistical distance between D1
and D2 is defined as ∆(D1, D2) =

1
2 ∑x∈S |D1(x)− D2(x)|.

The notation bxe denotes an arbitrary integer closest to x. We will use a standard base-2
arbitrary precision floating-point model, such as described in [50, Sec. 2.1]. The notation �(a)
refers to the floating-point rounding of a (the working precision being given by the context).





CHAPTER 1
Reminders on Euclidean Lattices

The aim of this chapter is to recall the necessary mathematical background. More in-depth
and comprehensive introductions to lattices are available in [41, 115]. Detailed accounts on
the computational aspects of lattices include [66, 86, 72, 26, 97].

1.1 Euclidean lattices

A Euclidean lattice L a discrete additive subgroup of a Euclidean space. When the lat-
ter is Rn, we call n the embedding dimension of the lattice. Equivalently, a lattice in Rn

can be defined as the set of all linear integer combinations of linearly independent vec-
tors b1, . . . , bd ∈ Rn, in which case we write:

L
[
(bi)i≤d

]
=

{
∑
i≤d

xibi : (xi)i≤d ∈ Zd

}
= ∑

i≤d
Zbi.

We say that the bi’s form a basis of the lattice they span. A lattice may have many bases,
but they share the same cardinality d (≤ n), which is called the dimension of the lattice. The
most common way to represent a lattice is to encode it by a basis, i.e., by an n × d matrix
whose columns are the coordinates of the basis vectors. Several situations are of particular
interest: When d = n, the lattice is said full-rank; and when L ⊆ Zn (resp. Qn), the lattice is
said integral (resp. rational). For the sake of simplicity, we will restrict ourselves to full-rank
lattices, and very often (but not always) to rational lattices.

Unless d = n ≤ 1, a (full-rank) lattice has infinitely many bases. The bases of a given
lattice are obtained from one another by unimodular transformations, i.e., invertible integer
linear maps. More precisely, if (bi)i≤n is a basis of a lattice L, a tuple (ci)i≤n is also a basis
of L if and only if there exists U ∈ GLn(Z) such that (ci)i≤n = (bi)i≤n ·U. Figure 1.1 gives a
two-dimensional lattice with two different bases.

Given a basis of a lattice L, it is of interest to obtain information that is intrinsic to L,
i.e., independent of the particular representation of L. The dimension n and embedding
dimension n are two such lattice invariants. Popular lattice invariants also include:

• The minimum λ1(L) is the (Euclidean) norm of a shortest non-zero vector of L,

• The successive minima are defined by λi(L) = min(r : dim Span(L ∩ Bn(0, r)) ≥ i) for
all i ≤ n;

• The determinant det(L) = limr→∞ |Bn(0, r) ∩ L|/vol(Bn(0, r)) quantifies the density
of the lattice in its linear span;
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Figure 1.1: A two-dimensional lattice along with two of its bases.

• The covering radius ρ(L) is the largest distance to L of a point in the linear span of L.

Minkowski’s theorem provides a link between the minima and the determinant. It states
that any lattice L of dimension n satisfies:

∏
i≤n

λi(L) ≤
√

nn · det(L).

As λ1(L) ≤ λ2(L) ≤ . . . ,≤ λn(L), this implies that the finiteness of the maximum over
all n-dimensional lattices L of the quantity λ1(L)2/ det(L)2/n. This maximum, called Her-
mite’s constant in dimension n, will be denoted by γn (and we have γn ≤ n).

Finally, in order to study a given lattice L, it often proves useful to consider its dual
lattice L̂ = {c ∈ Span(L) : ∀b ∈ L, 〈b, c〉 ∈ Z}. If B is a basis matrix of L, then as the
columns of the matrix B−T form a basis of the dual L̂.

1.2 Algorithmic problems on lattices

The most studied algorithmic problems on Euclidean lattices are computational tasks nat-
urally related to the lattice invariants described in the previous section. There exist many
variants of the problems we give below, but describing them all is not the purpose of this
chapter. We only give those we will consider later on. Also, in order to avoid irrelevant tech-
nicalities due to real numbers, the inputs to these problems are restricted to being rational.

SVPγ. The Shortest Vector Problem with parameter γ ≥ 1 is as follows: Given a basis (bi)i≤n
of a rational lattice L, find b ∈ L such that 0 < ‖b‖ ≤ γ · λ1(L).

SIVPγ. The Shortest Independent Vectors Problem with parameter γ ≥ 1 is as follows:
Given a basis (bi)i≤n of a rational lattice L, find (ci)i≤n ∈ Ln linearly independent such
that maxi ‖ci‖ ≤ γ · λn(L).

HSVPγ. The Hermite Shortest Vector Problem with parameter γ ≥ 1 is as follows: Given a
basis (bi)i≤n of a rational lattice L, find b ∈ L such that 0 < ‖b‖ ≤ γ · (det L)1/n.

CVPγ. The Closest Vector Problem with parameter γ ≥ 1 is as follows: Given a basis (bi)i≤n
of a rational lattice L and a target t ∈ Span(L), find b ∈ L such that ‖b− t‖ ≤ γ · dist(t, L).
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BDDγ. The Bounded Distance Decoding Problem with parameter γ ≥ 1 is as follows: Given
a basis (bi)i≤n of a rational lattice L and a target t ∈ Span(L) such that dist(t, L) ≤ γ−1 ·
λ1(L), find b ∈ L such that ‖b− t‖ = dist(t, L).

Clearly, the complexity of these problems grows with n and decreases with γ. The de-
cisional variant of SVPγ (deciding whether the minimum of a given lattice is ≤ 1 or ≥ γ,
under the promise that we are in one of these situations) is known to be NP-hard under ran-
domised reductions for small values of γ [4, 47]. The same holds for SIVPγ and CVPγ under
deterministic reductions [28, 24]. Unfortunately, the largest values of γ for which such results
are known to hold remain quite small (smaller than nc for any c > 0), but these problems
seem to remain very hard to solve even for larger values of γ. The best known algorithms
for solving these problems for γ ≤ poly(n) all have exponential complexity bounds and are
believed to be at least exponential-time in the worst case [77, 76, 44, 96] and the survey [42].
Schnorr’s algorithm [104] using [76] as a subroutine allows one to trade cost for output qual-
ity. It is the best known algorithm for intermediate values of γ, reaching γ = kO(n/k) in time
and space poly(n) · 2O(k) (up to a factor that is polynomial in the bit-size of the input). By

choosing k = O(log n), one obtains a polynomial-time algorithm for γ = 2O(n log log n
log n ). Beating

the trade-off achieved by Schnorr’s hierarchy is a long-standing open problem.
It is also worth noting at this stage that it is not currently known how to exploit quan-

tum computing to outperform classical algorithms for solving these problems. However, no
argument is known either for discrediting such a possibility.

1.3 Lattice reduction

Lattice reduction is a representation paradigm. Given a basis of a lattice, the aim is to find
another basis of the same lattice with guaranteed norm and orthogonality properties. All the
known algorithms for solving the problems mentioned in the previous section rely at least at
some stage, or completely, on lattice reduction. Note that the word reduction is ambiguous,
as it can equally refer to the state of being reduced, or to the process of reducing. However,
the meaning is usually clear from the context.

In order to be able to properly define several notions of reduction, we first recall some
facts on the QR matrix factorisation and its relationship to the Gram-Schmidt orthogonalisa-
tion.

Any full column rank matrix B ∈ Rn×n (which can be seen as the basis matrix of a lattice)
can be factored as B = QR where Q ∈ Rn×n is an orthogonal matrix (i.e., Q ·QT = QT ·Q =
I), and R ∈ Rn×n is upper triangular with positive diagonal coefficients. Note that the R-
factor of B can also be obtained from the Cholesky factorisation G = RTR of the positive
definite matrix G = BTB, called the Gram matrix of B. The QR matrix factorisation encodes
the same information as the Gram-Schmidt orthogonalisation (GSO for short): the former
lends itself more easily to algebraic and numeric techniques, while the latter conveys more
geometrical intuition. The Gram-Schmidt orthogonalisation of a basis (bi)i≤n is the orthog-
onal family (b∗i )i≤n where b∗i is the projection of bi orthogonally to the span of b1, . . . , bi−1.
More explicitly

b∗i = bi −∑
j<i

µijb∗j with µij =
〈bi, b∗j 〉
‖b∗j ‖2 .



18 Chapter 1. Reminders on Euclidean Lattices

If B = (bi)i≤n has QR-factorisation B = QR and GSO (b∗i )i≤n, then for i ≤ n the ith column
of Q is b∗i

‖b∗i ‖
, and for 1 ≤ i ≤ j ≤ n we have rij = µji‖b∗i ‖ = µjirii.

The QR-factorisation and GSO provide informations on the lattice invariants. If (bi)i≤n
is a basis of a lattice L, then we have:

λi(L) ≥ min
j≥i
‖b∗j ‖ for all i ≤ n,

λi(L) ≤ max
j≤i
‖bj‖ for all i ≤ n,

det(L) = ∏
i≤n
‖b∗i ‖,

ρ(L) ≤ 1
2

√
∑
i≤n
‖b∗i ‖2.

We say that a basis (bi)i≤n is size-reduced if |µij| ≤ 1/2 (or, equivalently, if |rji| ≤ rjj/2)
for all i > j. Other definitions of size-reducedness have been introduced, with computational
advantages over this classical definition, but we postpone this discussion to Chapter 2. The
basis (bi)i≤n is said Lenstra-Lenstra-Lovász-reduced with parameter δ ∈ (1/4, 1] (δ-LLL-
reduced for short) if it is size-reduced and for all i < d we have δr2

ii ≤ r2
i+1i+1 + r2

ii+1 (or,
equivalently, δ‖b∗i ‖2 ≤ ‖b∗i+1 + µi+1ib

∗
i ‖2). The latter condition, often ascribed to Lovász,

states that once projected orthogonally to b1, . . . , bi−1, the i + 1th vector is almost longer
than the ith vector. Figure 2.1 illustrates this definition in dimension 2.

Figure 1.2: The hashed area is the set of possible locations for (b1, b2) to be δ-LLL-reduced.

LLL-reduction has the twofold advantage of being computable in polynomial-time (us-
ing the LLL algorithm [65]) and providing bases of quite decent quality. Among others,
an LLL-reduced basis (bi)i≤n of a lattice L satisfies the following properties (with α =
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(δ− 1/4)−1 ≥
√

3/2):

rii ≤ α · ri+1i+1 for all i < n,

‖bi‖ ≤ αi−1 · rii for all i ≤ n,

αi−d · rii ≤ λi(L) ≤ αi · rii for all i ≤ n,

‖b1‖ ≤ α
n−1

2 · (det(L))
1
n ,

∏
j≤n
‖bj‖ ≤ α

n(n−1)
2 · det(L).

Oppositely, the quality of Hermite-Korkine-Zolotarev-reduced bases (HKZ-reduced for
short) is much higher, but computing an HKZ-reduced basis of a lattice L from an arbitrary
basis of L is polynomial-time equivalent to solving SVPγ for γ = 1. A basis (bi)i≤n is said
HKZ-reduced if it is size-reduced and if for any i ≤ n, we have ‖b∗i ‖ = λ1(L[(b(i)

j )j≥i]),

where b(i)
j = bj − ∑k<i µjkb∗k is the projection of the vector bj orthogonally to b1, . . . , bi−1.

As a direct consequence of Minkowski’s theorem, we have:

∀i ≤ n, ‖b∗i ‖ ≤
√

n− i + 1

(
n

∏
j=i
‖b∗j ‖

) 1
n−i+1

.

In 1987, Schnorr introduced a hierarchy of reductions ranging from LLL to HKZ [103]. All
known algorithms mentioned in the previous section for solving the four mentioned prob-
lems for intermediate values of γ attempt to achieve Schnorr’s Block-Korkine-Zolotarev re-
duction (BKZ for short) or variants thereof (see, e.g., [103, 105, 106, 33, 34]). A basis (bi)i≤n is
said BKZβ-reduced for β ∈ [2, n] if it is size-reduced and if for all i ≤ n the vectors b∗i , b(i)

i+1, . . . ,

b(i)
min(i+β−1,n) form an HKZ-reduced basis (in dimension min(n− i + 1, β)).

1.4 Lattice Gaussians

Discrete Gaussian distributions with lattice supports have recently arisen as a powerful tool
in lattice-based cryptography. They have been first used by Micciancio and Regev [73] to
improve on Ajtai’s worst-case to average-case reduction [3]. Another major breakthrough
occurred in 2008, when Gentry, Peikert and Vaikuntanathan [39] showed that Klein’s algo-
rithm [61] may be used to sample points according to these distributions (or, more precisely,
from distributions whose statistical distances to desired discrete Gaussians is small).

Let L ⊆ Rn be a full-rank lattice. The discrete Gaussian distribution DL,σ,c of support L,
centre c ∈ Rn and standard deviation σ is defined by:

∀x ∈ L : DL,σ,c(x) =
ρc,σ(x)

∑b∈L ρc,σ(b)
,

where ρc,σ(x) = exp(−π‖x− b‖2/σ2). The subscripts c and L will be omitted when c = 0
and L = Zn respectively. Two Gaussian distributions with centre 0 and support Z2 but
different standard deviations are presented in Figure 1.4.

As can be observed, the larger the standard deviation, the smoother the distribution
looks. In fact, the larger the standard deviation, the closer the behaviour of the discrete
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Figure 1.3: Three discrete Gaussian distributions with support Z2 and centre 0, but different
standard deviations s.

Gaussian to that of a continuous Gaussian. This phenomenon is quantified by the so-called
smoothing parameter. For a lattice L and a parameter ε > 0, the ε-smoothing parameter of L
is defined by ηε(L) = min(σ : ρ0,1/σ(L̂ \ 0) ≤ ε). For any ε ∈ (0, 1), we have (see [73, 91]):

ηε(L) ≤
√

ln(2n + 1/ε))

π
·min

(
λn(L),

1
λ∞

1 (L̂)

)
,

where λ∞
1 (L̂) stands for the first minimum of the dual L̂ with respect to the infinity norm.

We will use the following properties of lattice Gaussians (proved in [39, 73]):

• For any full-rank lattice L ⊆ Rn, c ∈ Rn, ε ∈ (0, 1/3) and σ ≥ ηε(L), we have
Prb←↩DL,σ,c [‖b‖ ≥ σ

√
n] ≤ 2−n+1.

• For any full-rank lattices L′ ⊆ L ⊆ Rn, c ∈ Rn, ε ∈ (0, 1/2) and σ ≥ ηε(L′), we
have ∆(DL,σ,c mod L′; U(L/L′)) ≤ 2ε.

Finally, as we mentioned above, any Gaussian distribution with support a full-rank lat-
tice L ⊆ Qn may be sampled from efficiently using a basis (bi)i≤n of L, provided that the
desired standard deviation is sufficiently large.

Theorem 1 ([39, Th. 4.1]) There exists a polynomial-time algorithm that takes as input any
basis (bi)i≤n of any lattice L ⊆ Qn, any centre c ∈ Qn and any σ = ω(

√
log n) ·max ‖bi‖

(resp. σ = Ω(
√

n) ·max ‖bi‖), and returns samples from a distribution whose statistical
distance to DL,σ,c is negligible (resp. exponentially small) with respect to n.



CHAPTER 2
Computing LLL-Reduced Bases

In their seminal article [65], Lenstra, Lenstra and Lovász both introduced the notion of LLL-
reducedness (recalled in Chapter 1), and an algorithm for computing LLL-reduced bases.
This algorithm, commonly referred to as LLL or L3, is recalled in Figure 2.1.

Input: A basis (bi)i≤n of L ⊆ Zn and δ ∈ (1/4, 1).
Output: A δ-LLL-reduced basis.
1. Compute the rational GSO, i.e., all the µi,j’s and b∗i ’s.
2. κ := 2. While κ ≤ n do
3. Size-reduce the vector bκ using the size-reduction algorithm of Figure 2.2.
4. If δ · ‖b∗κ−1‖2 ≤ ‖b∗κ‖2 + µ2

κκ−1‖b∗κ−1‖2, then set κ := κ + 1.
5. Else swap bκ−1 and bκ , update the GSO and set κ := max(2, κ − 1).
6. Output (bi)i≤n.

Figure 2.1: The L3 algorithm.

Input: A basis (bi)i≤n of L ⊆ Zn, its GSO and an index κ.
Output: The same basis but with the vector bκ size-reduced, and the updated GSO.
1. For i = κ − 1 down to 1 do
2. bκ := bκ − dµκ,ic · bi.
3. Update the GSO accordingly.

Figure 2.2: The size-reduction algorithm.

In this chapter, we will use the variable β = maxi log ‖bi‖, using the input bi’s. The costs
of LLL and its variants will be bounded with respect to both n and β.

The LLL algorithm is polynomial-time but remains quite slow. Its inefficiency stems from
the following combination of drawbacks:

• The GSO computations are performed in exact rational arithmetic, with numerators
and denominators of possibly huge bit-sizes O(nβ).

• The basis computations are performed in exact integer arithmetic. The involved in-
tegers have smaller bit-sizes O(n + β) than the rationals involved in the GSO com-
putations, but still significantly contribute to the cost, as there are up to O(n2β) loop
iterations (from Steps 3 to 6 of the algorithm of Figure 2.1).
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• Finally, many of the size-reduction steps are superfluous. Assume the index κ remains
in some small interval [i1, i2] during some consecutive loop iterations, then for each
iteration LLL performs a full size-reduction of the current vector with respect to all the
previous basis vectors (i.e., in the algorithm of Figure 2.2, the index i goes from κ all the
way down to 1 every time). But only the GSO quantities ‖b∗i ‖2 and µij for i, j ∈ [i1, i2]
are useful for correctly deciding the Lovász tests (Step 4 of the algorithm of Figure 2.1).

The first two sources of inefficiency are of an arithmetic flavour, while the third is related
to fast linear algebra techniques (subdividing matrices into blocks and using fast matrix
multiplication). In this chapter, we will be concerned with the arithmetic aspects of LLL
and we will not elaborate on how to save size-reduction operations (see [109, 102, 121] for
works in that direction). Table 2.1 summarises the algorithmic improvements for computing
LLL-reduced bases over the original LLL algorithm, that are of an arithmetic nature. For
the derivation of the bit-complexity upper bounds, we assume fast integer multiplication is
used [111, 32]: Two `-bit long integers may be multiplied in time O(`1+ε), for some ε that
is o(1). Also, it is worth noting that among the described algorithms, only those from [65]
and [58] return bases that are genuinely LLL-reduced. The others return bases that are re-
duced in a sense that is slightly weaker than the LLL-reduction (see Section 2.1 below).

Table 2.1: Bit-complexities of selected LLL-reduction algorithms.

Bit-complexity Output reducedness
[65], LLL/L3 O(n5+εβ2+ε) δ-LLL-reduced

[58] O(n5β2(n + β)ε) δ-LLL-reduced
[104] O(n4β(n + β)1+ε) (δ, η)-LLL-reduced

[82, 84], L2 O(n4+εβ(n + β)) (δ, η)-LLL-reduced
[78] and Section 2.2, H-LLL O(n4+εβ(n + β)) (δ, η, θ)-LLL-reduced

[88] and Section 2.3, L̃
1

O(n5+εβ + n4+εβ1+ε) (δ, η, θ)-LLL-reduced

The L2 algorithm was the first to achieve a complexity bound that is quadratic with re-
spect to β. It relies on exact integer operations for the basis matrix computations and on ap-
proximate floating-point arithmetic for the underlying GSO computations. By relying on an
exact Gram matrix computation (the Gram matrix of the basis (bi)i≤n is the positive symmet-
ric definite matrix (〈bi, bj〉)i,j≤n) and on the Cholesky factorisation algorithm, the computed
approximations of the GSO coefficients can be proven to be close to the genuine GSO coef-
ficients, and the decisions taken by the tests of the LLL algorithm using these approximate
data thus remain sufficiently meaningful for making progress during the execution. The cost
improvement of L2 stems from the fact that a low precision of O(n) bits suffices for being
able to guarantee correctness: This itself originates from the facts that at any loop iteration
the vector bκ under scope is always such that (bi)i<κ is a reduced basis and that reduced
bases are well-conditioned, guaranteeing that a low precision suffices to obtain meaningful
results.

An important drawback of L2 is its reliance on the Cholesky factorisation algorithm:
First, it leads L2 to require the computation and update of the (exact) Gram matrix; And
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second the Cholesky factorisation is much more sensitive to perturbations than the QR-
factorisation, leading to requiring higher precisions than a priori necessary. In Sections 2.1
and 2.2 explain how the Cholesky factorisation may be replaced by the QR-factorisation.
Section 2.3 presents another step towards improving LLL-reduction algorithms: approxi-
mate computations may also be performed on the basis matrices themselves.

2.1 A perturbation-friendly definition of LLL-reduction

The following examples in dimension 2 show that the classical notion of LLL-reduction is
not preserved under roundings of the basis vectors. Assume we round each entry of the
following matrices at t1 bits of precision:

B1 :=

[
1 2t1+t2+1 + 2t2

−1 2t1+t2+1

]
and B2 :=

[
1 2t1 + 2−1 + 2−2t2

2−t2 −2t1+t2

]
.

Then we obtain:

B1 :=

[
1 2t1+t2+1

−1 2t1+t2+1

]
and B2 :=

[
1 2t1 + 1

2−t2 −2t1+t2

]
.

The basis matrix B1 is not reduced as the inner product of the two columns is 2t2 , which
can be set arbitrarily large compared to the norm of the first column, by letting t2 grow to
infinity. However, its approximation B1 is always reduced, as its columns are orthogonal.
Oppositely, the basis matrix B2 is reduced as soon as t2 ≥ 1, while its approximation B2 is
not reduced.

This phenomenon is unfortunate: It would be convenient (and more efficient!) to be able
to decide reducedness by looking only at the most significant bits of the entries of the matrix
under scope. But the above examples show that LLL-reducedness is not preserved under
roundings, or, more generally, perturbations.

As the definition of LLL-reduction expresses itself in terms of the QR matrix factorisa-
tion, it is natural to analyse the sensitivity of the R-factor of an LLL-reduced basis under
perturbations. This is a classical topic in numerical analysis [123, 19, 18], but we needed
stronger results for our purposes.

Theorem 2 ([20]) Let B ∈ Rn×n be of full column rank with QR factorisation B = QR. Let
the perturbation matrix ∆B ∈ Rn×n satisfy maxi

‖∆bi‖
‖bi‖ ≤ ε. If

cond(R) · ε <
√

3/2− 1
n3/2 with cond(R) = ‖|R||R−1|‖,

then B + ∆B has a unique QR factorisation B + ∆B = (Q + ∆Q)(R + ∆R), and

max
i

‖∆ri‖
‖ri‖

≤ (
√

6 +
√

3)n3/2χ(B) ε,

where (with ζdiag(δi) :=
√

1 + maxi<j(δj/δi)2):

χ(B) = inf
D∈D+

n

ζD
∥∥|R||R−1|D

∥∥
2

∥∥D−1R
∥∥

2
‖R‖2

.
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Given this columnwise perturbation bound, the aim is then to find a variant of the defi-
nition of LLL-reduction that is preserved under columnwise perturbations. This is provided
by the following definition (a variant of that definition was implicit in [102]).

Definition 1 ([20, Def. 5.3]) Let Ξ = (δ, η, θ) with η ∈ (1/2, 1), θ > 0 and δ ∈ (η2, 1).
Let B ∈ Rd×d be non-singular with QR factorisation B = QR. The matrix B is Ξ-LLL-reduced
if:

• For all i < j, we have |rij| ≤ ηrii + θrjj;

• For all i, we have δ · r2
ii ≤ r2

ii+1 + r2
i+1i+1.

Let Ξi = (δi, ηi, θi) be valid LLL-parameters for i ∈ {1, 2}. We say that Ξ1 is stronger than Ξ2
and write Ξ1 > Ξ2 if δ1 > δ2, η1 < η2 and θ1 < θ2.

Note that for θ = 0, we recover the (δ, η)-LLL-reduction from [82] (which was already
implicit in [104]), and that for (η, θ) = (1/2, 0), we recover the classical δ-LLL-reduction.
Figure 2.1 illustrates these different types of reduction.

Figure 2.3: The hashed area is the set of vectors b2 such that (b1, b2) is (from left to right)
(1, 0, 0)-LLL, (δ, 0, 0)-LLL, (δ, η, 0)-LLL and (δ, η, θ)-LLL.

Note that the Ξ-LLL-reduction and classical δ-LLL-reduction mostly differ when the rii’s
increase, which is the case of the two-dimensional examples above. Also, the quality prop-
erties satisfied by δ-LLL-reduced bases (see Section 1.3) are also satisfied by (δ, η, θ)-reduced

bases, after replacing α = (δ − 1/4)−1 ≥
√

3/2 by α =
θη+
√

(1+θ2)δ−η2

δ−η2 . Additionally,

any (δ, η, θ)-reduced basis B with R-factor R satisfies cond(R) ≤ |1−η−θ|α+1
(1+η+θ)α−1 (1+ η + θ)nαn =

2O(n), allowing us to use Theorem 2.
Finally, the following result, derived from Theorem 2 and the good orthogonality proper-

ties of Ξ-reduced bases, shows that the modified notion of LLL-reduction is preserved under
column-wise perturbations.

Theorem 3 ([20, Co. 5.1]) Let Ξ1 > Ξ2 be valid reduction parameters. There exists a con-
stant c such that for any Ξ1-LLL-reduced B ∈ Rn×n and any ∆B ∈ Rn×n with max ‖∆bi‖

‖bi‖ ≤
2−c·n, the matrix B + ∆B is non-singular and Ξ2-LLL-reduced.
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2.2 LLL-reducing using the R-factor of the QR-factorisation

By combining the above sensitivity analysis of the R-factor under columnwise perturbations,
with the backward stability of the Householder QR-factorisation algorithm (see [50, Ch. 19]
and [20, Se. 6]), we obtain that if a basis is Ξ-LLL-reduced, then the matrix R computed by
Householder’s algorithm with precision p floating-point arithmetic is a good approximation
to the genuine R-factor. Note that any other algorithm computing the R-factor could be
equally used, as long as it satisfies a column-wise backward error stability bound such as the
one below (up to any multiplicative factor that is polynomial in n): This includes the Givens
algorithm based on Givens rotations, and the Modified Gram-Schmidt algorithm [50, Ch.
19].

Theorem 4 Let R be the computed R-factor of the QR factorisation of a given matrix B ∈
Rn×n by the Householder algorithm, with precision p floating-point arithmetic. If 80n2 ·
2−p ≤ 1, then there exists an orthogonal matrix Q ∈ Rn×n such that

B + ∆B = QR and max
‖∆bi‖
‖bi‖

≤ 80n2 · 2−p.

Inputs: A basis B = (bi)i≤n of L ⊆ Zn×n; a precision p;
�(2−cn) (for an arbitrary c > 0); and a floating-point number δ.
Output: A basis of L.
1. Compute an approximation r1 of the first column of the R-factor of B,
using Householder’s algorithm in precision p.
2. κ := 2. While κ ≤ n, do
3. Call the algorithm of Figure 2.5 on input

[
(bi)i≤n, (ri)i<κ , �(2−cd), p

]
.

4. s := �(‖ � (bκ)‖2); s := �(s−∑i≤κ−2 r2
iκ).

5. If �(δ · �(r2
κ−1κ−1)) ≤ s, then κ := κ + 1.

6. Else swap bκ−1 and bκ ; and set κ := max(κ − 1, 2).
7. Return (bi)i≤n.

Figure 2.4: The H-LLL algorithm.

The H-LLL algorithm, given in Figure 2.4, mimics the LLL algorithm except that it relies
on an approximate R-factor computed and updated using the (floating-point) Householder
QR-factorisation algorithm. The operations performed on the exact data (the lattice basis)
are derived from approximate values. The fact that these are good approximations to the
genuine values allow us to show that H-LLL is correct: It returns Ξ-reduced bases.

Theorem 5 ([78]) Given as inputs a basis (bi)i≤n of a lattice L ⊆ Zn, a precision p = Θ(n),
and floating-point numbers δ ∈ (1/2, 1) and �(2−cn), the H-LLL algorithm returns a (δ, η, θ)-
LLL-reduced basis (ci)i≤n of L, with δ, η, θ close to δ, 1/2+ �(2−cn) and �(2−cn) respectively.
Furthermore, its bit-complexity is bounded by

O

[(
n + log ∏

db
i

dc
i
+

1
n

log ∏
‖bi‖
‖ci‖

)
n2+ε(n + β)

]
,
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Inputs: A basis (bi)i≤n of L ⊆ Zn×n; a precision p; approximations (ri)i<κ of
the κ − 1 first columns of the R-factor of B; �(2−cn) (for an arbitrary c > 0); a precision p.
Output: A basis (bi)i≤n of L, approximations (ri)i≤κ of the κ first columns of the R-factor of B.
1. Do
2. Compute rκ using Householder’s algorithm (in precision p).
3. For i from κ − 1 to 1, do
4. Xi := b�(riκ/rii)e.
5. For j from 1 to i− 1, do rjκ := �

(
rjκ − �

(
Xirji

))
.

6. t := �(‖bκ‖2); bκ := bκ −∑i<κ Xibi.
7. Until �(‖bκ‖2) > �(�(2−cd) · t).
8. Compute rκ using Householder’s algorithm (in precision p).
9. Return (bi)i≤n and (ri)i≤κ .

Figure 2.5: The size-reduction algorithm of H-LLL.

where β = maxi log ‖bi‖, ε = o(1) and db
i (resp. dc

i ) is the determinant of the lattice spanned
by the first i columns of the input (resp. output) basis. The complexity bound above is
itself O(n4+εβ(n + β)).

Precise conditions on p, δ ∈ (1/2, 1), �(2−cn), and (δ, η, θ) may be found in [78]. H-
LLL has three advantages over L2. First, it does not require to compute and update the
Gram matrix of the current basis. Second, its precision requirement is lower: in the case
of (δ, η, θ) close to (1, 1/2, 0), the precision required for ensuring correctness of L2 tends
to [log2 3 + o(1)] · n <∼ 1.6 · n, while that of H-LLL tends to n. This is not only an arti-
fact of the worst-case analysis, as it can be observed on actual examples that the numeri-
cal performance of H-LLL is superior to that of L2 (e.g., using the input bases from http:
//perso.ens-lyon.fr/damien.stehle/L2.html. It actually seems that the worst-
case bound on the precision required by H-LLL might not be sharp: Checking the reduced-
ness of an LLL-reduced basis can require as low as [ 1

2 log2 3+ o(1)] · n <∼ 0.8 · n precision, but
for the moment we do not manage to prove correctness of the size-reduction process with
that low a precision. These two facts, on the Gram matrix and the working precision, lead
to constant factor improvements. The third advantage of H-LLL over L2 is its simplified
complexity analysis. The analysis of L2 from [82, 84] required a rather involved amortised
analysis for summing the cost bounds for the successive size-reductions. In H-LLL, the cor-
responding analysis is much simpler, as the cost of a size-reduction is bounded by

O
(

n1+ε(n + β)

(
n +

log ‖bb
κ‖

log ‖be
κ‖

))
,

where bb
κ and be

κ denote bκ before and after the call to the size-reduction algorithm, respec-
tively. Summing such quantities over the successive loop iterations is straightforward. This
simplification is not simply a technical stroke of luck: The H-LLL algorithm is vectorial in
nature, as all operations are vector operations, and it is no surprise that the cost bound for
the size-reduction directly involves the bit-sizes of the vector that is currently under scope.

http://perso.ens-lyon.fr/damien.stehle/L2.html
http://perso.ens-lyon.fr/damien.stehle/L2.html
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2.3 A quasi-linear-time reduction algorithm

As a broad approximation, L3, L2 and H-LLL are generalisations of Euclid’s greatest common
divisor algorithm. The successive bases computed during the execution play the role of Eu-
clid’s remainders, and the elementary matrix operations performed on the bases play the role
of Euclid’s quotients. L3 may be interpreted in such a framework. It is slow because it com-
putes its “quotients” using all the bits from the “remainders” rather than the most significant
bits only: The cost of computing one Euclidean division in an L3 way is O(β1+ε), leading to
an overall O(β2+ε) bound for Euclid’s algorithm (for β-long input integers). Lehmer [64]
proposed an acceleration of Euclid’s algorithm by the means of truncations. Since the ` most
significant bits of the remainders provide the first Ω(`) bits of the sequence of quotients,
one may: Truncate the remainders to precision `; Compute the sequence of quotients for
the truncated remainders; Store the first Ω(`) bits of the quotients into an Ω(`)-bit matrix;
Apply the latter to the input remainders, which are shortened by Ω(`) bits; And iterate. The
cost gain stems from the decrease of the bit-lengths of the computed remainders. Choos-
ing ` ≈

√
β leads to a complexity bound of O(β3/2+ε). In the early 1970’s, Knuth [62] and

Schönhage [108] independently observed that using Lehmer’s idea recursively leads to a gcd
algorithm with complexity bound O(β1+ε). The above approach for the computation of gcds
has been successfully adapted to two-dimensional lattices [122, 110, 25], and the resulting al-
gorithm was then used in [27] to reduce lattices in arbitrary dimensions in quasi-linear time.
Unfortunately, the best known cost bound for the latter is O(β1+ε(log β)n−1) for fixed n.

L̃
1

aims at adapting the Lehmer-Knuth-Schönhage gcd framework to the case of LLL-

reduction. L̃
1

takes as inputs LLL parameters Ξ and a non-singular B ∈ Zn×n; terminates
within O(n5+εβ + n4+εβ1+ε) bit operations, where β = log max ‖bi‖; and returns a basis of
the lattice spanned by B which is Ξ-LLL-reduced.

The efficiency of the fast gcd algorithms stems from two sources: Performing opera-
tions on truncated remainders is meaningful (which allows one to consider remainders with
smaller bit-sizes), and the obtained transformations corresponding to the quotients sequence
have small bit-sizes (which allows one to transmit at low cost the information obtained on
the truncated remainders back to the genuine remainders). We achieve an analogue of the
latter by gradually feeding the input to the reduction algorithm, and the former is ensured
thanks to the modified notion of LLL-reduction which is resilient to truncations. The main
difficulty in adapting the fast gcd framework lies in the multi-dimensionality of lattice re-
duction. In particular, the basis vectors may have significantly differing magnitudes. This
means that basis truncations must be performed column-wise. Also, the resulting unimod-
ular transformations may have large magnitudes, hence need to be truncated for being be
stored on few bits.

To handle these difficulties, we focused on reducing bases which are a mere scalar shift
from being reduced. We call this process lift-reducing, and it can be used to provide a family
of new reduction algorithms. Lift-reducing was introduced by Belabas [13], van Hoeij and
Novocin [52], in the context of specific lattice bases that are encountered while factoring ra-
tional polynomials (e.g., with the algorithm from [51]): It was restricted to reducing specific
sub-lattices which avoid the above dimensionality difficulty. We generalise these results to
the following. Suppose that we wish to reduce a matrix B with the property that B0 := σ−k

` B
is reduced for some k and σ` is the diagonal matrix diag(2`, 1, . . . , 1). If one runs L3 on B
directly then the structure of B0 is not being exploited. Instead, the matrix B can be slowly
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reduced allowing us to control and understand the intermediate transformations: Compute
the unimodular transform U1 (with any reduction algorithm) such that σ`B0U1 is reduced
and repeat until we have σk

` B0U1 · · ·Uk = B(U1 · · ·Uk). Each entry of Ui and each entry of
U1 · · ·Ui can be bounded sensitive to the shape of the lattice (i.e., to k).

The algorithm from Figure 2.6 shows how to LLL-reduce an arbitrary lattice basis given
a Lift-reducing algorithm (used in Step 5).

Inputs: LLL parameters Ξ; a non-singular B ∈ Zn×n.
Output: A Ξ-reduced basis of L(B).
1. B := HNF(B).
2. For k from n− 1 down to 1 do
3. Let C be the bottom-right (n− k + 1)-dimensional submatrix of B.
4. `k := dlog2(bkk)e, C := σ−1

`k
C.

5. Find U′ unimodular such that σ`k
CU′ is Ξ-reduced.

6. Let U be the block-diagonal matrix diag(I, U′).
7. Compute B := B ·U, reducing row i symmetrically modulo bii for i < k.
8. Return B.

Figure 2.6: Reducing LLL-reduction to lift-reduction.

Lemma 1 The algorithm of Figure 2.6 Ξ-reduces B such that max ‖bi‖ ≤ 2β using

O
(

n4+ε(β1+ε + n)
)
+

1

∑
k=n−1

Ck

bit operations, where Ck is the cost of Step 5 for the specific value of k.

The above shows that we can now restrict ourselves to Lift-reducing efficiently. In or-
der to be able to Lift-reduce by means of truncations, we can use the sensitivity analysis of
Section 2.1 along with a bound on the coefficients of a lift-reducing U.

Lemma 2 Let Ξ1, Ξ2 be valid parameters. Let ` ≥ 0, B ∈ Rn×n (with R-factor R) be Ξ1-
reduced and U such that C = σ`BU (with R-factor R′) is Ξ2-reduced. We have:

∀i, j : |uij| ≤ ζn ·
r′jj
rii
≤ 2`ζ2n ·

rjj

rii
,

for some ζ that depends only on Ξ1 and Ξ2.

Suppose the sequence of the rii’s is very unbalanced. As B is reduced, this can only occur
when the sequence increases sharply. In that situation, Lemma 2 does not prevent U from be-
ing arbitrarily large. However, its entries may be truncated while preserving unimodularity
and the fact that it actually lift-reduces B.

Lemma 3 Let Ξ1, Ξ2, Ξ3 be valid LLL parameters with Ξ2 > Ξ3. There exists a constant c
such that the following holds for any ` ≥ 0. Let B ∈ Rn×n (with R-factor R) be Ξ1-reduced,
and U be unimodular such that σ`BU (with R-factor R′) is Ξ2-reduced. If ∆U ∈ Zn×n satisfies

|∆uij| ≤ 2−(`+c·n) · r′j,j
ri,i

for all i, j, then U +∆U is unimodular and σ`B(U +∆U) is Ξ3-reduced.
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Lifting and truncation are the main conceptual ingredients for the Lift-L̃1 algorithm,
given in Figure 2.7. Lift-L̃1 makes use of specific compact representations of basis and
transformation matrices to handle the possible unbalancedness of the current basis vec-
tors. Lift-L̃1 makes use of several subroutines: The BaseCase algorithm performs lift-
reduction for small values of ` and relies on a truncation and a call to H-LLL (see Section 2.2);
BaseCase may be used with ` = 0 to strengthen the reducedness of a reduced basis (i.e.,
Ξ2-reducing a Ξ1-reduced basis, for Ξ2 > Ξ1); The MSBk function replaces a matrix B by
a truncated B + ∆B with max ‖∆bi‖

‖bi‖ ≤ 2−k; the U1 � U2 operation is a matrix multiplica-
tion of U1 and U2 which is specifically designed to handle the specific format chosen for
the unimodular transformations (in particular, it performs a truncation after computing the
product, to ensure that the output entries have small bit-sizes).

Inputs: Valid LLL-parameters Ξ3 > Ξ2 ≥ Ξ4 > Ξ1; a lifting target `; (B′, (ei)i) such that
B = B′ · diag(2ei ) ∈ Qn×n is Ξ1-reduced and max |b′ij| ≤ 2`+c·n for some c > 0.
Output: (U′, (di)i , x) such that σ`BU is Ξ1-reduced, with U = 2−xdiag(2−di ) ·U′ · diag(2di )
and max |u′ij| ≤ 22`+2c·n.
1. If ` ≤ n, then use BaseCase with lifting target `. Otherwise:
2. /∗ Prepare 1st recursive call ∗/

Call BaseCase on (B, Ξ2); Let U1 be the output.
3. B1 := MSB(`/2+c3·n)(B ·U1).
4. /∗ 1st recursive call ∗/

Call Lift-L̃1 on B1, with lifting target `/2; Let UR1 be the output.
5. /∗ Prepare 2nd recursive call ∗/

U1R1 := U1 �UR1 .
6. B2 := σ`/2BU1R1 .
7. Call BaseCase on (B2, Ξ3). Let U2 be the output.
8. U1R12 := U1R1 �U2.
9. B3 := MSB(`/2+c3·n)(σ`/2BU1R12).
10. /∗ 2nd recursive call ∗/

Call Lift-L̃1 on B3, with lifting target `/2; Let UR2 be the output.
11. /∗ Prepare output ∗/

U1R12R2 := U1R12 �UR2 .
12. B4 := σ`BU1R12R2 .
13. Call BaseCase on (B4, Ξ4); Let U3 be the output.
14. U := U1R12R2 �U3; Return U.

Figure 2.7: The Lift-L̃1 algorithm.

The L̃
1

algorithm is the algorithm from Figure 2.6, where Lift-L̃
1

is used to implement
lift-reduction (with appropriate pre- and post-processings to handle the input and output

formats of Lift-L̃
1
. A careful bit-operation count involving an amortisation analysis (over

the successive calls to Lift-L̃
1

leads to the following result.

Theorem 6 ([88]) Given as inputs Ξ and a matrix B ∈ Zn×n with max ‖bi‖ ≤ 2β, the L̃
1

algorithm returns a Ξ-reduced basis of L(B) within O(n5+εβ + n4+εβ1+ε) bit operations.
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2.4 Perspectives

The complexity of the L̃
1

algorithm with respect to β = log max ‖bi‖ seems hard to improve
further: Up to a constant factor, it is the same as for the best known gcd algorithms [62,
108], i.e., O(M(β) log β), whereM(`) denotes the time required to multiply two `-bit long
integers. The remaining challenge on the cost of LLL-reduction consists in decreasing the
dependences in the lattice dimension n.

Let ω denote the fast linear algebra exponent: Two n-dimensional square matrices over
a field K may be multiplied within O(nω) arithmetic operations over K (the Coppersmith

and Winograd algorithm [22] achieves ω ≤ 2.376). Then the complexity of L̃
1

is O(n5+εβ +
nω+1+εβ1+ε). Intuitively, the first term corresponds to O(β) LLL-reductions of n-dimensional
matrices whose entries have bit-sizes O(n) and that perform O(n2) LLL swaps, whereas the
second term corresponds to the binary tree multiplication of O(β) matrices of dimension n
and whose entries have bit-sizes O(n) (this originates from Steps 1 and 7 of the algorithm

of Figure 2.6). It seems the second term is intrinsic to L̃
1
, and that a new reduction ap-

proach is required for avoiding it. The first term, which currently dominates the overall cost,
could however be improved using techniques developed by Schönhage, Koy and Schnorr
and Storjohann [109, 63, 121] to lower the number of arithmetic operations arising from the
size-reductions. It remains to be seen whether these techniques can be combined with the
numerical analysis and floating-point arithmetic approaches used in L2 and H-LLL. Further-
more, even if the latter difficulty can be handled, and if no further progress is made on the
numerical analysis aspects, the required floating-point precision will remain Ω(n): If R is
the R-factor of an LLL-reduced matrix, the quantity cond(R) from Theorem 2 can be as large
as 2Ω(n) (see [20, Re. 7]), which can be compensated only by taking a working precision that
is Ω(n).

From the discussion above, it appears that more work is required on the numerical as-
pects of LLL. A first step consists in assessing whether what has been achieved for L2 and

H-LLL can be carried over to [109, 63, 121]. This will hopefully allows the complexity of L̃
1

to
be decreased down to Õ(nω+1β). To decrease this bit-complexity further, significantly new
ingredients will be needed, in particular to avoid the Ω(n)-bit-long floating-point arithmetic,
at least for most arithmetic operations.

Independently from the cost objective, the techniques developed for L̃
1

could prove use-
ful for related computational tasks. Can they be exploited for reduction of polynomial ma-

trices [90, 79] or for Hermite Normal For computations? Also, the lifting technique of L̃
1

seems reminiscent of the PSLQ algorithm for disclosing integer relations between real num-
bers [29]: By revisiting PSLQ under this new light, one might be able to prove its correctness
under floating-point arithmetic and to investigate its bit-complexity.
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Stronger Lattice Reduction Algorithms

The LLL lattice reduction algorithm and its variants run in polynomial time but only provide
vectors that are no more than exponentially longer (with respect to the lattice dimension n)
than the shortest non-zero lattice vectors. This worst-case behaviour seems to also hold in
practice [83], up to a constant factor in the exponent.

Solving the Shortest and Closest Vectors Problem exactly is much more expensive. There
exist three main families of SVP and CVP solvers, which we compare in Table 3.1. (In the
table, and more generally in the present chapter introduction, we omit the arithmetic costs,
which are all poly(n, max log ‖bi‖), where (bi)iZ

n×n is the input basis.) The algorithm by
Micciancio and Voulgaris [76, 75] aims at computing the Voronoi cell of the lattice, whose
knowledge facilitates the tasks of solving SVP and CVP. This algorithm allows one to solve
SVP and CVP deterministically, in time ≤ 22n+o(n) and space ≤ 2n+o(n).

Single exponential time complexity had already been achieved about 10 years before by
Ajtai, Kumar and Sivakumar [8, 9], with an algorithm that consists in saturating the space
with a cloud of (perturbed) lattice points. But the saturation algorithms suffer from at least
three drawbacks: They are Monte Carlo (their success probability can be made exponentially
close to 1, though); The CVP variants of these algorithms may only find vectors that are no
more than 1+ ε times further away from the target than the optimal solution(s) (it is possible
to choose an arbitrary ε > 0, but the complexity grows quickly when ε tends to 0); and
their best known complexity upper bounds are higher than that of the Micciancio-Voulgaris
algorithm relying on the Voronoi cell computation. The Ajtai et al. SVP solver has been

Table 3.1: Comparing the three main families of SVP and CVP solvers.

Time complexity
upper bound

Space complexity
upper bound

Underlying
principle

[76, 75] for SVP and CVP 22n+o(n) 2n+o(n) Voronoi cell

[8, 97, 87, 77, 96] for SVP 22.465n+o(n) 21.325n+o(n)
Saturation

[9, 14] for CVP1+ε (2 + 1/ε)O(n) (2 + 1/ε)O(n)

[30, 31, 59, 60, 48, 44] for SVP nn/(2e)+o(n) poly(n)
Enumeration

[30, 31, 59, 60, 48, 44] for CVP nn/2+o(n) poly(n)



32 Chapter 3. Stronger Lattice Reduction Algorithms

successively improved in [97, 87, 77, 96], and the currently best time complexity upper bound
is 22.465n+o(n), with a space requirement bounded by 21.325n+o(n). Improvements on the Ajtai
et al. CVP solver have been proposed by Blömer and Naewe [14].

Before the elaboration of the saturation-based solvers by Ajtai, Kumar and Sivakumar,
the asymptotically fastest SVP and CVP solvers relied on a deterministic procedure that
enumerates all lattice vectors within a prescribed distance to a given target vector (chosen
to be 0 in the case of SVP). This procedure exploits the Gram-Schmidt orthogonalisation
of the input basis to recursively bound the integer coordinates of the candidate solutions.
Enumeration-based SVP and CVP solvers were first described by Fincke and Pohst [30, 31]
and Kannan [59, 60]. Kannan used it to propose solvers with bit-complexities nO(n). These
were later refined by Helfrich [48].

The practicality of SVP solvers has attracted much attention, as it is the dominating cost
component of the generic cryptanalyses of the lattice-based cryptographic schemes. De-
termining and extrapolating the current practical limits is crucial for choosing key sizes
that are meaningful for desired security levels. For currently handleable dimensions, the
enumeration-based SVP solvers seem to outperform those of the other families. This state-
ment requires clarification, as rigorous codes providing correctness guarantees can be accel-
erated significantly by allowing heuristics, which makes the comparison task more complex.
On the rigorous side, all the available implementations providing strong correctness guar-
antees (e.g., fplll [16] or the SVP solvers of the Magma computational algebra system [15])
rely on the enumeration process. They seem to be currently limited to dimensions around 75.
On the heuristic side, the solvers of the saturation and enumeration families can be acceler-
ated by making reasonable but unproved assumptions. The heuristic implementations of
the enumeration families, relying on tree pruning strategies [106, 107, 120, 36], seem to out-
perform the heuristic implementations of the saturation families [87, 77]. They seem to allow
one to reach dimensions around 110. The enumeration solvers have also been implemented
in hardware [49, 23]. At the time being, the Micciancio-Voulgaris algorithm relying on the
Voronoi cell seems uncompetitive, and would require further practical investigation.

With Guillaume Hanrot, we studied in detail the cost of the enumeration procedure of
the enumeration-based solvers, in order to get a better grasp on the currently most practical
family of SVP and CVP solvers. This line of work will be described in Section 3.1. We de-
creases the best known complexity upper bounds of Kannan’s SVP solver (resp. CVP solver)
from nn/2+o(n) (resp. nn+o(n)) to nn/(2e)+o(n) (resp. nn/2+o(n)). The ideas underlying this result
are summarised in Section 3.1.

When the dimension of the lattice under scope is too high, all known SVP and CVP
solvers (and thus also HKZ reduction) become prohibitively expensive. However, it is still
possible to compute lattice bases of higher quality than those provided by LLL-type algo-
rithms. Schnorr’s hierarchy [103] of reduction algorithms allows one to achieve a contin-
uum between the LLL and HKZ reductions. The best known theoretical variant, in terms of
achieved basis quality for any fixed computational cost, is due to Gama and Nguyen [34].
All known realizations of Schnorr’s hierarchy (see the surveys [80, 102]) rely on an algo-
rithm that solves SVP for smaller-dimensional lattices. We let β denote the largest dimension
in which the SVP solver is used. Table 3.2 describes the time/quality trade-off reached by
Schnorr’s hierarchy. In this table, the output quality is measured by the best known Her-
mite factor upper bound of an output basis, where the Hermite factor of a basis (bi)i≤n of a
lattice L is defined as HF((bi)i≤n) = ‖b1‖/(det L)1/n.
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Table 3.2: Time/quality trade-offs reached by several reduction algorithms.

HKZ [34] with parameter β LLL

Hermite factor
√

n
√

β(1 + ε)
n−1
β−1 2O(n)

Time 2O(n) 2O(β) · poly(n) poly(n)

In practice, the heuristic and somewhat mysterious BKZ algorithm from [106] is used
instead of the slide reduction algorithm from [34] (see [35] for a detailed account on the
practical behaviour of BKZ).

With Guillaume Hanrot and Xavier Pujol, we started trying to analyse the BKZ algo-
rithm, in order to understand why it performs so well in practice. Our results so far remain
partial. However, we could provide the first non-trivial worst-case analysis on the perfor-
mance of BKZ: We showed that if stopped after a polynomial number of calls to the under-
lying low-dimensional SVP solver, the Hermite factor of the output basis admits a bound
similar to that of the basis returned by the algorithm from [34]. We elaborate on this result
in Section 3.2.

3.1 Cost analysis of the enumeration-based SVP and CVP solvers

The Enum algorithm, given in Figure 3.1, enumerates L ∩ Bn(t, A) by using the triangular
relationship between the basis (bi)i≤n of L and its Gram-Schmidt orthogonalisation (b∗i )i≤n.
More precisely, it relies on the two following observations:

• If x = ∑i xibi belongs to L ∩ Bn(t, A), then, for any i ≤ n, we have x(i) ∈ L(i) ∩
Bn−i+1(t(i), A), where x(i), L(i) and t(i) are the projections of x, L and t respectively,
orthogonally to the linear span of b1, . . . , bi−1.

• Enumerating L(n) ∩ B1(t(n), A) is easy and once L(i+1) ∩ Bn−i(t(i+1), A) is known, it
is easy to enumerate L(i) ∩ Bn−i+1(t(i), A): Assume that x(i) ∈ L(i) ∩ Bn−i+1(t(i), A);
Write x(i) = x(i+1) + (xi + ci)b∗i for some xi ∈ Z and ci ∈ Q; Once x(i+1) ∈ L(i+1) ∩
Bn−i(t(i+1), A) is fixed, we must have

xi ∈ Z∩

−ci −

√
A2 − ‖x(i+1)‖2

‖b∗i ‖
,−ci +

√
A2 − ‖x(i+1)‖2

‖b∗i ‖

 (3.1)

These observations lead to interpreting Enum as a depth-first tree traversal, where the
nodes correspond to the considered (xn, . . . , xi) for all i, and the sons of a node (xn, . . . , xi+1)
are the (x′n, . . . , x′i) such that xj = x′j for all j ≥ i + 1. The execution starts at the nodes () (i.e.,
the node whose sons are the (xn)’s for the possible values of xn), and the goal is to obtain the
list of the tree leaves (xn, . . . , x1).

Algorithm Enum may be used directly to solve SVP and CVP, once the bound A has
been set. In the case of SVP, it may be derived from Minkowski’s theorem, or from the
current basis (bi)i≤n: For example, one may choose A = min(mini ‖bi‖,

√
γn(det L)1/n).
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Inputs: A basis (bi)i≤n of a lattice L ⊆ Qn×n, t ∈ Qn, A > 0.
Output: All vectors in L ∩ B(t, A).
1. Compute the µi,j’s and ‖b∗i ‖2’s.
2. Compute the ti’s such that t = ∑i tib

∗
i .

3. S := {}, ` := 0, x := 0, xn := dtn − A/‖b∗n‖e, i := n.
4. While i ≤ n, do
5. `i := (xi − ti + ∑j>i xjµji)

2‖b∗i ‖2,
6. If i = 1 and ∑1≤j≤n `j ≤ A2, S := S ∪ {x}, x1 := x1 + 1.

7. If i 6= 1 and ∑j≥i `j ≤ A2, i := i− 1, xi :=
⌈

ti −∑j>i(xjµji)−
√

A2−∑j>i `j
‖b∗i ‖2

⌉
.

8. If ∑j≥i `j > A, then i := i + 1, xi := xi + 1.
9. Return S.

Figure 3.1: The Enum algorithm.

In the case of CVP, it may be derived from any bound on the covering radius ρ(L), such

as 1
2

√
∑i ‖b∗i ‖2. The bound may also be set heuristically using the Gaussian heuristic: The

guess for A is then derived from the equation vol(Bn(t, A)) ≈ det(L), and is increased if
no solution is found. The bound A can also be decreased during the execution of Enum,
every time a better solution is found. Also, the space required by Enum may be more
than poly(n, log max ‖bi‖), because |S| might be exponentially large. The space require-
ment can be made poly(n, log max ‖bi‖) for the SVP and CVP applications, as only a single
shortest/closest vector is required: The update of S in Enum should then be replaced by an
update of the best solution found so far.

During its execution, algorithm Enum considers all points in L(i) ∩Bn−i+1(t(i), A), for i =
n, n − 1, . . . , 1. An inherent drawback is that the complexity may be (significantly) more
than |L ∩ Bn(t, A)|. This is because it often occurs that at some stage, an element of L(i+1) ∩
Bn−i(t(i+1), A) has no descendant in L(i) ∩ Bn−i+1(t(i), A) (i.e., the interval in Equation (3.1)
contains no integer): This corresponds to a “dead-end” in the enumeration tree.

The cost of Enum can be bounded by ∑i |L(i) ∩ Bn−i+1(t(i), A)|, up to a small polynomial
factor. The Gaussian heuristic allows us to estimate the latter quantity: If K is a measurable
subset of the span of the n-dimensional lattice L, then |K ∩ L| ≈ vol(K)/ det(L) (where vol
denotes the n-dimensional volume). This leads to the approximation (for i ≤ n):

|L(i) ∩ Bn−i+1(t(i), A)| ≈ 2O(n)An−i+1

(n− i + 1)
n−i+1

2 ·∏n
j=i ‖b∗j ‖

.

This heuristic cost analysis of the enumeration process, given in [44], has interesting practical
implications:

• It allows a user to assess in advance if the computation has a chance to terminate within
a reasonable amount of time. This has been implemented in the Magma computational
algebra system [15].

• Suppose the tree search corresponding to Enum is performed using parallel processors.
The heuristic cost formula above can be used to estimate the sizes of subtrees, in order
to give well-balanced tasks to slave processors [23].
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• Finally, this formula can be tweaked to account for tree pruning and thus to optimise
the pruning strategy [36, 120].

Unfortunately, from a theoretical standpoint, some of the involved balls are very small
compared to their corresponding lattice L(i), and it seems hard to prove that the heuristic
is indeed valid in these cases. Though of mostly theoretical nature (because of the fuzzy
2O(n) factor), the following result provides theoretical evidence towards the validity of the
Gaussian heuristic in the present situation.

Theorem 7 ([44]) If given as inputs a lattice basis (bi)i≤n and a target vector t, the number of
arithmetic operations performed during the execution of Enum can be bounded from above
by:

2O(n) ∏
1≤i≤n

max
(

1,
A√

n‖b∗i ‖

)
≤ 2O(n) max

I⊆[1,n]

(
A|I|

√
n|I| ·∏i∈I ‖b∗i ‖

)
.

The latter upper bound for the cost of Enum and the heuristic cost estimate strongly
depend on A and on the decrease of the ‖b∗i ‖’s. This suggests that the more reduced the
basis (bi)i, the lower the cost. Fincke and Pohst [30] initially used a LLL-reduced basis (bi)i.
For such a basis, we have ‖b∗i+1‖ ≥ ‖b∗i ‖/2 for all i, which leads to a 2O(n2) complexity
upper bound. Kannan [59] observed that the cost of Enum is so high that a much more
aggressive pre-processing significantly lowers the total cost while negligibly contributing to
it. Kannan’s SVP algorithm is in fact an HKZ-reduction algorithm that calls itself recursively
in lower dimensions to strengthen the reducedness before calling Enum. The bases (bi)i
given as inputs to Enum always satisfy the following conditions: It is size-reduced, ‖b∗2‖ ≥
‖b∗1‖/2 and once projected orthogonally to b1, the other bi’s are HKZ-reduced. We call such
bases quasi-HKZ-reduced. A detailed analysis gives that if a basis (bi)i≤n is quasi-HKZ-
reduced, then:

max
I⊆[1,n]

(
‖b1‖|I|

√
n|I| ·∏i∈I ‖b∗i ‖

)
≤ 2O(n)nn/(2e).

The calls to Enum dominate the overall cost of Kannan’s HKZ-reduction algorithm, so
that Kannan’s SVP solver terminates within nn/(2e)+o(n) arithmetic operations. Kannan’s
CVP algorithm first HKZ-reduces the given lattice basis, and then calls Enum using the re-
duced basis. The number of arithmetic operations it performs can be bounded from above
by nn/2+o(n).

The cost upper bound of Kannan’s SVP algorithm is optimal. More precisely, a proba-
bilistic construction due to Ajtai [6, 7] can be adapted to prove the existence of HKZ-reduced
bases for which Enum actually performs nn/(2e)+o(n) bit operations [45]. The proof relies on
the following converse to Theorem 7.

Theorem 8 ([46, Se. 3]) If given as inputs a lattice basis (bi)i≤n and a target vector t, the
number of arithmetic operations performed during the execution of Enum can be bounded
from below by:

2O(n)
n

∏
i=i0

A√
n‖b∗i ‖

,

where i0 is the smallest such that maxi≥i0 ‖b∗i ‖ ≤ 2
3

√
A
n .
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For CVP, a gap remains between the lowest known complexity upper bound nn/2+o(n)

for Kannan’s solver and its largest known worst-case complexity lower bound nn/(2e)+o(n).

3.2 Terminating the Schnorr-Euchner BKZ algorithm

As mentioned at the beginning of this chapter, slide reduction [34] seems to be outperformed
by the BKZ algorithm [35] in practice: For comparable run-times, the quality of the computed
bases seems higher with BKZ (or, equivalently, the same basis quality is reached faster with
BKZ). With respect to run-time, no reasonable bound was known on the number of calls to
the β-dimensional HKZ reduction algorithm it needs to make before termination (a naive
bound O(β)n can be proven if BKZ is slightly modified, see [43, App. A]). In practice, this
number of calls does not seem to be polynomially bounded [35] and actually becomes huge
when β ≥ 25. Because of its large (and somewhat unpredictable) runtime, it is folklore
practice to terminate BKZ before the end of its execution, when the solution of the problem
for which it is used for is already provided by the current basis [107, 81].

Figure 3.2 illustrates the evolution of the Hermite factor during the execution of the orig-
inal BKZ and modified BKZ’ (described in Figure 3.3). We refer the reader to [43] for a
description of the (mild) differences between BKZ and BKZ’. The corresponding experiment
is as follows: We generated 64 “knapsack-like” lattice bases [83] of dimension n = 108, with
non-trivial entries of bit-lengths 100n; Each was LLL-reduced using fplll [16] (with param-
eters δ = 0.99 and η = 0.51); Then for each we ran NTL’s BKZ [114] and an implementation
of BKZ’ in NTL, with blocksize 24. Figure 3.2 only shows the beginning of the executions
(more than half were more than 6 times longer). A “tour” corresponds to calling the smaller
dimensional HKZ-reduction algorithm n− β + 1 times. As can be observed, BKZ and BKZ’
quickly end up spending of lot of time making very little progress.
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Figure 3.2: Evolution of the Hermite factor ‖b1‖
(det L)1/n during the execution of BKZ and BKZ’.

With Xavier Pujol and Guillaume Hanrot, we showed that if terminated within polyno-
mially many calls to HKZ/SVP, a slightly modified version of BKZ returns bases of excellent
quality, close to that reached by the slide reduction algorithm.

Theorem 9 There exists C > 0 such that the following holds for all n and β. Let B =
(bi)i≤n be a basis of a lattice L, given as input to the modified BKZ algorithm of Figure 3.3
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with block-size β. If terminated after C n3

β2

(
log n + log log maxi

‖bi‖
(det L)1/n

)
calls to an HKZ-

reduction (or SVP solver) in dimension β, the output (ci)i≤n is a basis of L that satisfies
(with γ′β ≤ β defined as the maximum of Hermite’s constants in dimensions ≤ β):

‖c1‖ ≤ 2(γ′β)
n−1

2(β−1)+
3
2 · (det L)

1
n .

If L is a rational lattice, then the overall cost is≤ poly(n, log max ‖bi‖) · CHKZ(β), where CHKZ(β) =
2O(β) is any upper bound on the time complexity of HKZ-reducing a β-dimensional lattice
basis of bit-size ≤ poly(β).

Input: A basis (bi)i≤n and a blocksize β.
Output: A basis of L[(bi)i≤n].
1. Repeat while no change occurs or termination is requested:
2. For k← 1 to n− β + 1,
3. Modify (bi)k≤i≤k+β−1 so that (b(k)

i )k≤i≤k+β−1 is HKZ-reduced,
4. Size-reduce (bi)i≤n.

Figure 3.3: The modified BKZ algorithm: BKZ’.

To achieve this result, we used a new approach for analysing lattice reduction algorithms.
The classical approach to bound their runtimes was to introduce a quantity, sometimes called
potential, involving the current Gram-Schmidt norms ‖b∗i ‖, which always strictly decreases
every time some elementary step is performed. This technique was introduced by Lenstra,
Lenstra and Lovász [65] for analysing their LLL algorithm, and is still used in all complexity
analyses of (current variants of) LLL. It was later adapted to stronger lattice reduction algo-
rithms [103, 33, 102, 34]. We still measure progress with the ‖b∗i ‖’s, but instead of considering
a single scalar combining them all, we look at the full vector (‖b∗i ‖)i≤n. More specifically, we
observe that each call to HKZ within BKZ has the effect of applying an affine transformation
to the vector (log ‖b∗i ‖)i≤n: Instead of providing a lower bound to the progress made on a
“potential”, we are then led to analyse a discrete-time dynamical affine system. Its fixed-
points encode information on the output quality of BKZ, whereas its speed of convergence
provides an upper bound on the number of times BKZ calls HKZ.

Intuitively, the effect of a call to HKZ on the vector (log ‖b∗i ‖)i≤n is to essentially re-
place β consecutive coefficients by their average. We formalise this intuition by making the
following Heuristic Sandpile Model Assumption (SMA): We assume for any HKZ-reduced
basis (bi)i≤β, we have xi =

1
2 log γβ−i+1 +

1
β−i+1 ∑

β
j=i xj for all i ≤ β, with x = (log ‖b∗i ‖)i≤β.

Under this assumption, the execution of BKZ exactly matches with a dynamical system that
can be explicited and fully analysed. A BKZ tour corresponds to applying a specific affine
transformation to x: x ← Ax + Γ. The fixed-points of A provide information on the output
quality of BKZ, whereas the largest singular value of AT A smaller than 1 drives the speed of
convergence.

However, the heuristic SMA is not always correct: Consider for example orthogonal bi’s
of growing norms. This difficulty can be circumvented by considering the vector (µi)i≤n
where µi =

1
i ∑i

j=1 log ‖b∗j ‖ for any i. This amortisation was already used in [44] for analysing
HKZ-reduced bases. Here it allowed us to rigorously bound the evolution of (µi)i≤n by the
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orbit of a vector under another dynamical system. This bound holds coefficient-wise, and
relies on the result below.

Lemma 4 ([44, Le. 3]) If (bi)i≤β is HKZ-reduced, then

∀k ≤ β, µk − µβ ≤
β− k

k
log Γβ(k),

with Γβ(k) = ∑
β−1
i=β−k

log γi+1
2i .

This new dynamical system bounding the evolution of (µi)i≤n happens to be a slight
modification of the dynamical system used in the idealised sandpile model, and the analysis
performed for the idealised model can be adapted to the rigorous set-up.

3.3 Conclusion and perspectives

Many important techniques and results on solving SVP and CVP have been discovered in the
last few years: The Ajtai et al. saturation-based solver [8] was obtained 10 years ago and has
steadily been improved since then, while the Micciancio-Voulgaris Voronoi-based [76] solver
is even more recent. The interest in this topic was revived at least in large part thanks to the
rise of lattice-based cryptography: Assessing the precise limits of the algorithms for SVP,
CVP and their approximations is the key towards providing meaningful key-sizes ensuring
specific security levels.

The saturation-based and Voronoi-based algorithms have better asymptotic complexity
bounds than the enumeration-based solvers, but in practice this comparison is reversed. It
is tempting to investigate this oddity. Is it possible to improve these algorithms further?
Are there reasonable heuristics that would allow for competing with heuristic enumeration-
based solvers? For example, saturation-based solvers make use of perturbations to hide
information to the inner sieving steps. It is unclear whether the perturbations of the lattice
vectors in saturation-based solvers are inherently necessary or just an artifact of the proof. As
these perturbations lead to increased complexity bounds, proving them unnecessary could
make these solvers competitive with [76]. Also, is it a valid heuristic to remove them in
practice? It is also completely conceivable that faster solvers exist, that remain to be discov-
ered. For example, is it possible to achieve exponential time complexity with a polynomially
bounded space requirement? Are there ways to exploit quantum computations to obtain
better complexity bounds? An important challenge in this line of research would be to de-
sign a polynomial-time algorithm that could find non-zero lattice vectors that are no more
than polynomially longer (in the dimension) than the lattice minimum. In particular, this
could render lattice-based cryptography insecure.

The newer types of efficient SVP and CVP solvers seem to at least partially circumvent
lattice reduction: The Ajtai et al. solver only uses a LLL-type algorithm and the Voronoi-
based Micciancio-Voulgaris uses strong reduction only to improve the constant in the expo-
nent of its complexity bound, whereas the cost of the enumeration is highly dependent on the
strongness of the reduction of the input basis. This raises the question of the relevance of lat-
tice reduction in the first place. An important step towards assessing this relevance consists
in determining whether a BKZ-like trade-off between cost and smallness of the computed
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vectors could be achieved (or even beaten) without lattice reduction. For example, is it pos-
sible to accelerate the Ajtai et al. and Micciancio-Voulgaris algorithms, without lowering the
output quality too much?

Finally, even if the tasks of improving LLL-type algorithms and SVP/CVP solvers seem
quite distinct, the works described in Chapters 2 and 3 suggest a few possible links. Nat-
urally, it is tempting to exploit the analysis of the BKZ algorithm based on dynamical sys-
tems to simplify and maybe improve the block-based algorithms for fast LLL-type reduc-

tion [109, 63, 121]. In the other direction, the lift-reduction strategy developed for the L̃
1

of
Section 2.3 could be investigated in the context of solving SVP. At a very high level, it con-
sists in finding a sequence of small deformation steps such that: The start of the deformation

path is already handled (in the case of L̃
1
, a reduced basis of some lattice); The ending point

of the deformation path contains the solution of the problem under scope (in the case of L̃
1
,

a reduced basis of the input lattice); And each deformation step is computationally easy. In
the case of SVP, this suggests starting from an easy lattice and progressively deforming it
towards the desired lattice, so that each step is cheaper to solve than a general instance of
SVP.





CHAPTER 4
Asymptotically Efficient Lattice-Based

Encryption Schemes

The aim of an encryption scheme is to securely transmit information between two parties.
An asymmetric, or public-key, encryption scheme allows anyone to encrypt a message using
the receiver’s public key, while only the receiver can decrypt messages encrypted under its
public key, using the associated secret key. As opposed to symmetric encryption, asymmet-
ric encryption does not require the parties to have previously agreed on a shared secret key.
Asymmetric encryption schemes were first proposed at the end of the 1970’s [101, 70]. Most
public-key encryption schemes deployed today heuristically/provably rely on the assump-
tion that (a variation of) one of the following problems is hard to solve:

• The integer factorisation problem: Given an integer N which is the product of two
large primes, factor N.

• The discrete logarithm problem in finite fields (DLP). Given a finite field F, a genera-
tor g of the group of units F× and an element h ∈ F×, find x ∈ Z such that h = gx.

• The discrete logarithm problem in elliptic curves (ECDLP). Given an elliptic curve E
over a finite field, a generator g of a large subgroup of E and an element h in that
subgroup, find x ∈ Z such that h = x · g.

It is worth noting that the actual hardness assumptions that are made involve average in-
stances for specific input distributions: Typically, DLP and ECDLP involve a random h, while
IF involves random prime factors.

All known encryption schemes relying on these problems suffer from at least two main
drawbacks. First, they are inherently slow. The operations that are performed for encryp-
tion and decryption, such as modular exponentiation, typically cost O(n3) in naive arith-
metic or O(n2+ε) using fast integer multiplication, where n is the bit-size of the key pair.
Further, in the case of IF and DLP (and also for ECDLP for the curves used in pairing-based
cryptography), the best known attacks are sub-exponential with respect to the key-length:
They can typically be mounted with 2Õ(n1/3) bit operations. In order to resist to attacks cost-
ing up to 2t (we call t the security parameter), then n should be set Ω̃(t3), making encryp-
tion and decryption typically cost Ω̃(t6). Second, the fact that these problems can all be
solved in polynomial-time using a quantum computer [112, 113] raises the question whether
they might not share some common weakness, even against classical computers. Further,
many schemes are proved secure under the assumptions that ad-hoc variants of IF, DLP
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and ECDLP are hard, creating a myriad of related but not so clearly equivalent hardness
assumptions.

A few other mathematical objects and corresponding algorithmic problems seem to en-
able cryptographic constructions without some of the drawbacks mentioned above. These
include error correcting codes and systems of multivariate polynomial equations. However,
the natural problems on Euclidean lattices seem to be the most promising candidates. On
the one hand, schemes based on lattices have very low asymptotic complexities (they typi-
cally involve basic linear algebra operations, over small rings), which can be lowered even
further using specific subfamilies of lattices (see below). On the other hand, these schemes
admit security proofs under a small number of well-identified worst-case problems (as op-
posed to average-case hardness assumptions for specific input distributions). Additionally,
lattice-based cryptographic primitives involve simple and flexible operations: this flexibility
allows for the design of primitives that were not realized before, such as fully homomorphic
encryption [38].

Lattice-based encryption comes in two flavours: practical with heuristic security argu-
ments, and slower but with very strong security proofs. From a practical perspective, the
NTRUEncrypt scheme offers impressive encryption and decryption performances. It was
devised by Hoffstein, Pipher and Silverman, and first presented at the Crypto’96 rump ses-
sion [54]. Although its description relies on arithmetic over the polynomial ring Zq[x]/(xn−
1) for n prime and q a small power of 2 (we use the notation Zq to denote the ring of inte-
gers modulo q), it was quickly observed that breaking it could be expressed as a problem
over Euclidean lattices [21]. At the ANTS’98 conference, the NTRU authors gave an im-
proved presentation including a thorough assessment of its practical security against lattice
attacks [55]. We refer to [53] for an up-to-date account on the past 15 years of security and
performance analyses. Nowadays, NTRUEncrypt is generally considered as a reasonable al-
ternative to the encryption schemes based on IF, DLP and ECDLP, as testified by its inclusion
in the IEEE P1363 standard [56]. It is also often considered as the most viable post-quantum
public-key encryption (see, e.g., [94]).

In parallel to a rising number of attacks and practical improvements on NTRUEncrypt
the (mainly) theoretical field of provably secure lattice-based cryptography has steadily been
developed. It originated in 1996 with Ajtai’s acclaimed worst-case to average-case reduc-
tion [3], leading to a collision-resistant hash function that is as hard to break as solving sev-
eral worst-case problems defined over lattices. Ajtai’s average-case problem is now referred
to as the Small Integer Solution problem (SIS). Another major breakthrough in this field
was the introduction in 2005 of the Learning with Errors problem (LWE) by Regev [98, 99]:
LWE is both hard on the average (worst-case lattice problems quantumly reduce to it), and
sufficiently flexible to allow for the design of cryptographic functions. In the last few years,
many cryptographic schemes have been introduced that are provably at least as secure as
LWE and SIS are hard (and thus provably secure, assuming the worst-case hardness of lat-
tice problems). These include encryption schemes secure under Chosen Plaintext Attacks
and Chosen Ciphertext Attacks, identity-based encryption schemes, digital signatures, etc
(see [99, 91, 39, 17, 1] among others, and the surveys [74, 100]).

The currently easiest (and most efficient) way to build encryption schemes whose secu-
rity relies on the worst-case hardness of standard lattice problems (such as SIVPγ for approx-
imation factors γ that are polynomial in n) is to proceed via the LWE problem. To formulate
it, we need the following notation: For an s ∈ Zn

q , and a distribution χ over Zq, we let Ds,χ
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denote the distribution over Zn+1
q obtained by sampling a←↩ U(Zn

q ) and e←↩ χ and return-
ing (a, 〈a, s〉 + e). The Computational Learning With Errors Problem Comp-LWEq,χ is as
follows: Given n and an access to an oracle that samples from Ds,χ for some s ∈ Zn

q , find s.
The Decisional Learning With Errors Problem Dec-LWEq,χ is as follows: Let s ←↩ U(Zn

q );
Given access to an oracleO which is sampling from either U(Zn+1

q ) or Ds,χ, decide in which
situation we are. Regev showed that if χ is the Gaussian distribution of standard devia-
tion αq reduced modulo q and rounded to the closest integer (which we denote by χα), then:

• If γ, q ≥ ω(
√

n/α) (resp. γ, q ≥ Ω(n/α), then there exists a quantum polynomial-time
(resp. sub-exponential-time) reduction from SIVPγ to Comp-LWEq,χα .

• If q ≤ poly(n) (resp. q ≤ 2o(n)) is prime, then there exists a randomised polynomial-
time (resp. sub-exponential-time) reduction from Comp-LWEq,χα to Dec-LWEq,χα .

When the number m of calls to the oracle is predetermined, then LWE has a natural
linear algebra interpretation. Comp-LWE consists in finding s ∈ Zm

q from (A, As + e),
where A ←↩ U(Zm×n

q ) and e ←↩ χm, while stating that Dec-LWE is hard to solve means

that for s ←↩ U(Zn
q ), the distributions U(Z

m×(n+1)
q ) and (A, As + e), with A ←↩ U(Zm×n

q ),
are computationally indistinguishable.

Ajtai [5] showed how to simultaneously sample, in polynomial-time, an LWE matrix A ∈
Zm×n

q and a (trapdoor) basis S = (s1, . . . , sm) ∈ Zm×m of the lattice A⊥ = {b ∈ Zm : bT A =
0 mod q}, with the following properties: The distribution of A is within exponentially small
statistical distance to U(Zm×n

q ); The basis vectors s1, . . . , sm are short. Recently, Alwen and
Peikert [10, 11] improved Ajtai’s construction in the sense that the created basis has shorter

vectors: They achieved ‖S‖ = O(r
√

m) with m = Ω(n log2 q
log r ) for any integer r.

These results allow for the elegant design of a cryptosystem that is provably secure under
Chosen Plaintext Attacks [39, 91]:

• Key Generation: Run the Alwen-Peikert algorithm and obtain a pair (A, S) ∈ Zm×n
q ×

Zm×m
q ; Sample A′ ←↩ U(Zm×n

q ) and let (A, A′) be the public key while S is the secret
key;

• Encryption: To encrypt M ∈ {0, 1}m, sample s ←↩ U(Zn
q ) and e, e′ ←↩ χm, and re-

turn (As + e, A′s + e′ + bq/2cM);

• Decryption: To decrypt (C1, C2) ∈ Zm
q ×Zm

q , first compute SC1 mod q, which should
be exactly Se (over the integers), since the entries of both S and e are small with re-
spect to q; Then recover e by multiplying by S−1 and then recover s; Using C2 and s,
recover e′ + bq/2cM; At this stage, the vector M can be recovered componentwise by
assessing whether the given component is close to q/2 or to 0.

Unfortunately, this encryption scheme is bound to remain somewhat inefficient, as the
key-size is Ω(m2 log q) = Ω(n2). In this chapter, we present two ways of waiving this re-
striction and obtaining quasi-optimal efficiency: The key-size and the run-times of encryp-
tion and decryption all will be Õ(t), where t is the security parameter (i.e., all known attacks
cost 2Ω(t)).
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4.1 A first attempt, from a trapdoor one-way function

In order to accelerate encryption schemes based on lattices, Micciancio [71] introduced the
class of structured cyclic lattices, which correspond to ideals in polynomial rings Z[x]/(xn−
1), and presented the first provably secure one-way function based on the worst-case hard-
ness of the restriction of poly(n)-SVP to cyclic lattices. At the same time, thanks to its al-
gebraic structure, this one-way function enjoys high efficiency: Õ(n) evaluation time and
storage cost. Subsequently, Lyubashevsky and Micciancio [68] and independently Peikert
and Rosen [92] showed how to modify Micciancio’s function to construct an efficient and
provably secure collision resistant hash function. For this, they introduced the more gen-
eral class of ideal lattices, which correspond to ideals in polynomial rings Z[x]/ f (x) (via
the isomorphism that consists in identifying a polynomial to its coefficient vector). In this
chapter, we will restrict ourselves to f (x) = xn + 1 with n a power of 2 (this is the 2n-th
cyclotomic polynomial, and Z[x]/(xn + 1) is the ring of integers of the 2n-th cyclotomic
number field). The collision resistance relies on the hardness of the restriction of poly(n)-
SVP to ideal lattices (called poly(n)-Ideal-SVP). The average-case collision-finding problem
is a natural computational problem called Ring-SIS, which has been shown to be as hard as
the worst-case instances of Ideal-SVP.

The Small Integer Solution problem with parameters q, m, β (SISq,m,β) is as follows:
Given n and a matrix A sampled uniformly in Zm×n

q , find e ∈ Zm \ {0} such that eT A =
0 mod q (the modulus being taken component-wise) and ‖e‖ ≤ β. The Ring Small Integer
Solution problem with parameters q, m, β and f (Id-SIS f

q,m,β) is as follows: Given n and m
polynomials g1, . . . , gm chosen uniformly and independently in Zq[x]/ f , find e1, . . . , em ∈
Z[x] not all zero such that ∑i≤m eigi = 0 in Zq[x]/ f and ‖e‖ ≤ β, where e is the vector
obtained by concatenating the coefficients of the ei’s. Id-SIS is exactly SIS, where G is chosen
to be rot f (g). The matrix rot f (g) is defined as follows: If r ∈ Z[x]/ f , then rot f (r) ∈ Qn×n

is the matrix whose rows are the xir(x) mod f (x)’s, for 0 ≤ i < n; This is extended to the
matrices A over Q[x]/ f , by applying rot f component-wise.

Our construction attempts to use a variant of LWE using a structured matrix A instead
of A ←↩ U(Zm×n

q ). More specifically, The Ideal Learning With Errors problem Comp-Id-
LWEq,m,χ is the same as Comp-LWE restricted to m calls to the oracle Ds,χ, except that A =
rot f (a) with a ←↩ U((Zq[x]/ f )m). The space saving due to using Id-LWE arises from the
fact that n rows of A may be stored with n elements of Zq instead of n2. This allows us to set
Id-LWE’s m to be n times smaller than LWE’s m. The efficiency improvement arises from the
fact that a multiplication rot f (g) ·b may be performed in quasi-linear time, as the coefficients
of the obtained vector are those of the polynomial b(x) · g(1/x) mod xn + 1, which may be
computed efficiently using fast polynomial multiplication [37, Ch. 8]. However, it is not
straightforward to adapt Regev’s reductions from worst-case lattice problems to Dec-LWE,
to this structured setting (although this has been recently achieved by Lyubashevsky, Peikert
and Regev [69], as explained in the next section). To circumvent this difficulty, we proposed
a new reduction, directly from Id-SIS to Id-LWE, using Regev’s quantum reduction:

Theorem 10 Let q, m, n be integers with q ≡ 3 mod 8, n ≥ 32 a power of 2, poly(n) ≥
m ≥ 41 log q and α < min

(
1

10
√

ln(10m)
, 0.006

)
. Let χα be the normal law of standard devia-

tion αq, reduced modulo q and rounded to the closest integer. Suppose that there exists an
algorithm that solves Comp-Id-LWEq,m,χ in time T and with probability ε ≥ 4m exp

(
− π

4α2

)
.
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Then there exists a quantum algorithm that solves Id-SIS
q,m,

√
m

2α

in time poly(T, n) and with

probability ε3

64 −O(ε5)− 2−Ω(n).

This result ensures that Comp-Id-LWE is indeed at least as hard to solve as worst-case
lattice problems for ideal lattices, because Id-SIS is known to be so [68, 92]. However, it
is weaker than what could hope from a full-fledged adaptation of Regev’s worst-case to
average-case reduction, for two reasons: First, Comp-Id-LWE is restricted to a fixed m, and
second it is not clear how to derive from the result above that a decisional variant of Comp-
Id-LWE is also hard.

However, an asymptotically efficient encryption scheme can still be built. At this stage,
the hardness of Comp-Id-LWE provides us a family of one-way functions: s 7→ rot f (a) · s +
e. Furthermore, the Ajtai-Alwen-Peikert trapdoor construction for LWE can be adapted to
derive a a family of trapdoor one-way functions, see [119]. By combining this trapdoor func-
tion with the Goldreich-Levin generic hardcore function [40, Sec. 2.5] we obtain a security
proof for the following encryption scheme Id-Enc.

• Key generation. For security parameter n, run the modified Ajtai-Alwen-Peikert algo-
rithm from [119] to get g ∈ (Zq[x]/(xn + 1))m and a trapdoor S (such that S · g = 0
in Zq[x]/(xn + 1)). Let `I = O(n log q) = Õ(n), generate r ∈ Z

`I+`M
2 uniformly and

define the Toeplitz matrix MGL ∈ Z
`M×`i
2 (allowing fast multiplication [89]) whose i-th

row is [ri, . . . , r`I+i−1]. The public key is (g, r) and the secret key is S.

• Encryption. Given `M-bit message M with `M = n/ log n = Ω̃(n) and public key (g, r),
sample (s, e) with s ∈ Zn

q uniform and e sampled from χα, and evaluate C1 = rot f (g)T ·
s + e. Compute C2 = M ⊕ (MGL · s), where s is viewed as a string over Z

`I
2 , the

product MGL · s is computed over Z2, and the ⊕ notation stands for the bit-wise XOR
function. Return the ciphertext (C1, C2).

• Decryption. Given ciphertext (C1, C2) and secret key (S, r), invert C1 to compute (s, e)
such that rot f (g)T · s + e = C1, and return M = C2 ⊕ (MGL · s).

Theorem 11 Any chosen plaintext attack against indistinguishability of Id-Enc with run-
time T and success probability 1/2 + ε provides an algorithm for Id-LWE f

q,m,χα
with run-

time O(23`M n3ε−3 · T) and success probability Ω(2−`M n−1 · ε).

4.2 A security proof for NTRUEncrypt

Last year, Lyubashevsky, Peikert and Regev [69] proposed in a concurrent and independent
work a full-fledged adaptation of Regev’s reductions for Dec-LWE, to the case of structured
lattices. To define the Decisional Ring Learning With Errors Problem (Dec-RLWE), we first
need a few notations.

Let R = Z[x]/(xn + 1) for n a power of 2 and Rq = Zq[x]/(xn + 1) = R/(qR), for
an integer q. For s ∈ Rq and ψ a distribution in Rq, we define As,ψ as the distribution ob-
tained by sampling the pair (a, as + e) with (a, e) ←↩ U(Rq) × ψ. The (parametrised) dis-
tributions ψα used by Lyubashevsky et al are a bit technical to define, but may be thought
of as n-dimensional Gaussian vectors with standard deviations αq, rounded to the closest
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integer vector and reduced modulo q. They actually differ a little from this: For instance,
the distribution ψα is itself chosen randomly, from a (parametrised) distribution Υα. The im-
portant facts to be remembered are that sampling from Υα and from the sample ψα can be
performed in quasi-linear time (with respect to n log q), and that the samples from ψα are
small (smaller than αq

√
nω(

√
log n) with overwhelming probability) and can be obtained

in quasi-linear time (with respect to n log q).
The Ring Learning With Errors Problem with parameters q and α (Dec-RLWEq,α) is as

follows. Let ψ ←↩ Υα and s ←↩ U(Rq). Given access to an oracle O that produces samples
in Rq × Rq, distinguish whether O outputs samples from As,ψ or from U(Rq × Rq). The dis-
tinguishing advantage should be 1/poly(n) (resp. 2−o(n)) over the randomness of the input,
the randomness of the samples and the internal randomness of the algorithm. It was shown
in [69] that there exists a randomised polynomial-time (resp. sub-exponential) quantum re-
duction from γ-Id-SVP to Dec-RLWEq,α, with γ = ω(n1.5 log n)/α (resp. Ω(n2.5)/α), under
the assumptions that: αq = ω(n

√
log n) (resp. Ω(n1.5)) with α ∈ (0, 1); and q = poly(n) is

prime such that xn + 1 has n distinct linear factors modulo q.

With Ron Steinfeld, we exploited the proven hardness of the Dec-RLWE problem to mod-
ify NTRUEncrypt so that it becomes provably secure, under the assumed quantum hard-
ness of standard worst-case lattice problems, restricted to ideal lattices. The revised scheme
NTRUEncrypt’ is as follows.

• Key generation. Sample f ′ from DZn ,σ using the Gentry et al. sampler (Theorem 1);
Let f = 2 f ′ + 1 and restart if f is not invertible in Rq. Similarly, sample g from U(R×q ).
The secret key is f , while the public key is h = 2g/ f ∈ R×q .

• Encryption. Given message M ∈ R whose coefficients belong to {0, 1}, set s, e ←↩
φα ←↩ Υα and return ciphertext C = hs + 2e + M ∈ Rq.

• Decryption. Given ciphertext C and secret key f , compute C′ = f · C ∈ Rq and return
C′ mod 2.

The scheme is very similar to NTRUEncrypt, apart from minor-looking differences which
have significant impact for allowing for a security proof based on the hardness of Dec-RLWE.

1. In NTRUEncrypt, the polynomial rings are RNTRU = Z[x]/(xn − 1) with n a prime
number, and RNTRU

q = Zq[x]/(xn − 1) with q a power of 2. These rings were modified
to match those for which Dec-RLWE is known to be hard.

2. As a side effect, the modification of q allows for setting NTRU’s p to 2 (in the original
scheme, p was chosen to be x + 2 or 3, because it is required to be invertible modulo q.

3. In NTRUEncrypt, the secret key polynomial f ′ and g were chosen with coefficients
in {−1, 0, 1}, with predetermined numbers of coefficients being set to 0. Instead, we
sample f ′ and g using discrete Gaussians over R, rejecting the samples that are not
invertible in Rq. This allows us for showing that f /g is statistically close to uniform
over R×q .

4. In NTRUEncrypt, no error term e is used in the encryption algorithm, and the nonce s
is chosen from a distribution similar to that of f ′. Adding the error allows for relying
on the hardness of Dec-RLWE.
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By relying on fast arithmetic over polynomials, we obtain that the encryption and de-
cryption operations of NTRUEncrypt’ can be performed in time quasi-linear in n. Further-
more, the key generation process is also very efficient, as the rejection probability is small:
The probability that x ←↩ U(Rq) is not invertible modulo n is O(n/q), and this fact can also
be shown to hold when x ←↩ DZn ,σ for a sufficiently large σ.

The security of NTRUEncrypt’ relies on a mild modification of Dec-RLWE. First, us-
ing [12, Le. 2], it is possible to show that Dec-RLWE remains hard if s is sampled from ψα

(instead of s←↩ U(Rq)). Furthermore, the problem still remains hard if we assume that the a
of (a, as + e) is sampled from U(R×q ) instead of U(Rq), because there are sufficiently many
invertible elements in Rq. Given these modifications on Dec-RLWE, and the fact that 2 ∈ R×q ,
it follows that if h was sampled uniformly in R×q , then a ciphertext 2(hs + e) + M would be
indistinguishable from uniform. This is our main contribution: We show that if h is sampled
as described, its statistical distance to uniformity is exponentially small. Overall, this leads
to the following result.

Theorem 12 Suppose n is a power of 2 such that Φ = xn + 1 splits into n linear factors
modulo prime q = poly(n) such that q

1
2−ε = ω(n2.5 log2 n) (resp. q

1
2−ε = ω(n3 log1.5 n)),

for arbitrary ε ∈ (0, 1/2). Let σ = 2n
√

ln(8nq) · q 1
2+ε and α−1 = ω(n0.5 log nσ). If there

exists an Chosen Plaintext Attack against the Indistinguishability of NTRUEncrypt’ which
runs in time T = poly(n) and has success probability 1/2 + 1/poly(n) (resp. time T =
2o(n) and success probability 1/2 + 2−o(n)), then there exists a poly(n)-time (resp. 2o(n)-time)
quantum algorithm for γ-Id-SVP with γ = O(n3 log2.5 nq

1
2+ε) (resp. γ = O(n4 log1.5 nq

1
2+ε)).

Moreover, the decryption algorithm succeeds with probability 1− n−ω(1) over the choice of
the encryption randomness.

As mentioned above, the most important fact that remains to be proven is that the public
key polynomial is indeed close to uniformly distributed in R×q . We denote by D×σ,z the dis-
crete Gaussian DZn ,σ restricted to R×q + z, where z is an arbitrary element of Rq. The public
key uniformity is a direct consequence of the following result.

Theorem 13 Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n linear factors
modulo prime q ≥ 5. Let ε > 0 and σ ≥ 2n

√
ln(8nq) · q 1

2+2ε. Let p ∈ R×q , yi ∈ Rq and zi =

−yi p−1 mod q for i ∈ {1, 2}. Then

∆
[

y1 + p · D×σ,z1

y2 + p · D×σ,z2

mod q ; U
(

R×q
)]
≤ 23nq−bεnc.

The proof consists in showing that for every a ∈ R×q , the probability that f1/ f2 = a is
extremely close to (q− 1)−n, where fi ←↩ y1 + p · D×σ,z1

. For this, it suffices to show that for
every a1, a2 ∈ R×q , the probability that f1a1 + f2a2 = 0 is extremely close to (q− 1)−n. The fact
that f1 and f2 are not sampled with rejection is handled via an inclusion-exclusion argument.
From now on, we assume for simplicity that f1, f2 ←↩ DZn ,σ. It then suffices to bound the
statistical distance to U(R×q × R×q × Rq) of the triple (a1, a2, f1a1 + f2a2) when ai ←↩ U(R×q )
and fi ←↩ DZn ,σ. The latter question is reminiscent of the left-over hash lemma [57], and a
bound can be obtained in this specific context using standard tools on discrete Gaussians [73,
39] (and some elementary algebraic number theory). The reader is referred to [118] for more
details.
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4.3 Perspectives

Replacing arbitrary lattices by ideal lattices and unstructured matrices by structured matri-
ces was a significant step towards making lattice-based cryptography practical. However, its
deployment remains curbed by a few important difficulties. First and perhaps most impor-
tantly, the practical limits of the best known attacks are still fuzzy. At the time this document
is being written, the statement from [35] that solving γ-SVP with γ = (1.01)n is hard with
current implementations seems generally accepted. However, it gives no precise estimate of
how hard it actually is, nor how it would extrapolate for different levels of security.

From a security viewpoint, the restriction to ideal lattices further narrows the link to
NP-hardness results. The LWE and SIS problems were already only known to be no easier
than γ-SIVP and γ-CVP for values of γ for which no NP-hardness result is known to hold.
In fact, it is even strongly suspected that these problem relaxations are not NP-hard, as they
belong to NP∩coNP [2]. But in the case of ideal lattices, no NP-hardness result is known
to hold even for γ = 1. On the other hand, there is no known significant computational
advantage when standard lattice problems are restricted to ideal lattices (apart from the gap
decisional version of SVP). The assumption that the restriction to ideal lattices creates no
vulnerability needs further investigation. On a related topic, the argument that lattice-based
cryptography (including schemes based on ideal lattices) resists would-be quantum comput-
ers needs further backing. For the moment, it relies on the single observation that it is not
known how to exploit quantum computing to solve standard lattice problems significantly
more efficiently than with classical computers. Proving a quantum hardness result (such as
QMA-hardness, the quantum equivalent to NP-hardness) for a lattice problem would sub-
stantiate the assumption.

Finally, cryptography is far from being restricted to encryption resisting to Chosen Plain-
text Attacks. Far more functionalities and efficient implementations thereof would be re-
quired if lattice-based cryptography were to be deployed widely. There has already been
quite some effort spent on signatures (see, e.g., [67]) and hash functions [68, 93]. On the
other hand, at the time being there is no lattice-based encryption scheme both resisting Cho-
sen Ciphertext Attacks and consisting of quasi-linear time algorithms. An interesting goal in
this context would be to discover an equivalent to pairings on elliptic curves in the context
of lattices, as these have allowed for the efficient realization of many cryptographic function-
alities.
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Résumé

Les réseaux Euclidiens sont un riche objet algébrique qui apparaît dans des contextes
variés en mathématiques et en informatique. Cette thèse considère plusieurs aspects algo-
rithmiques des réseaux. Le concept de réduction d’une base d’un réseau est étudié minu-
tieusement : nous couvrons en particulier le spectre complet des compromis qualité-temps
des algorithmes de réduction. D’une part, nous présentons et analysons des algorithmes
rapides pour trouver une base assez courte (base LLL-réduite) d’un réseau donné arbitraire.
D’autre part, nous proposons de nouvelles analyses pour des algorithmes (plus lents) per-
mettant de calculer des bases très courtes (bases HKZ et BKZ-réduites). Cette étude des al-
gorithmes de résolution efficace de problèmes portant sur les réseaux est complétée par une
application constructive exploitant leur difficulté apparente. Nous proposons et analysons
des schémas cryptographiques, dont la fonction de chiffrement NTRU, et les prouvons au
moins aussi difficiles à casser que de résoudre des problèmes pires-cas bien spécifiés portant
sur les réseaux.
Mots-clés. Réseaux Euclidiens, réductions LLL/HKZ/BKZ, cryptographie reposant sur les
réseaux Euclidiens, algorithmes hybrides numériques-algébriques, analyse d’algorithmes.

Abstract

Euclidean lattices are a rich algebraic object that occurs in a wide variety of contexts
in mathematics and in computer science. The present thesis considers several algorithmic
aspects of lattices. The concept of lattice basis reduction is thoroughly investigated: in par-
ticular, we cover the full range of time-quality trade-offs of reduction algorithms. On the
first hand, we describe and analyse fast algorithms for finding a relatively short basis (LLL-
reduced basis) of an arbitrary given lattice. On the second hand, we propose novel analy-
ses for (slower) algorithms that compute very short bases (HKZ-reduced and BKZ-reduced
bases). This study on how to efficiently solve algorithmic problems on lattices is completed
by a constructive application exploiting their apparent hardness. We propose and analyze
cryptographic schemes, including the NTRU encryption function, and prove them at least
as secure as well-specified worst-case problems on lattices.
Keywords. Euclidean lattices, LLL/HKZ/BKZ reductions, lattice-based cryptography, com-
puter algebra, hybrid symbolic-numeric algorithms, analysis of algorithms.
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