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Introduction

The present document contains descriptions of results I obtained in the last few years. I chose
these specific results because I feel they correspond to the most significant steps towards
achieving my main long-term research goals. The purpose of the document is to provide an
overview without forcing the reader to delve into the technical proofs of the corresponding
articles. The interested reader can however easily access to precisions, as the research articles
corresponding to the described results are appended to the text.

My research focuses on devising and analysing faster algorithms for Euclidean lattices
and their applications. Lattice algorithms are often classified into two categories: Polynomial-
time algorithms for providing interesting representations of lattices, which often means
LLL-type algorithms (although Hermite Normal Form algorithms would nicely fit in this
category); And slower algorithms that attempt to achieve computationally more demand-
ing tasks. This distinction is clearly artificial (as originally observed by Claus-Peter Schnorr,
there exists a whole continuum between the two categories), and tends to become even more
so, as ideas developed for one tend to prove useful as well for the other. Nevertheless, the
algorithms of the first category deserve specific attention, as they tend to be more practical
and have progressively become widespread tools in many fields of computational mathe-
matics and computer science: Amazingly, LLL sometimes seems more famous than the ob-
jects it handles! The applications of lattice algorithms are numerous and occur in a very wide
variety of fields of mathematics and computer science. The seminal article of Arjen Lenstra,
Hendrik Lenstra Jr and Laszl6 Lovész already considered applications in Computer Algebra
(for factoring integer polynomials), Combinatorial Optimisation (for solving Integer Linear
Programming instances) and Algorithmic Number Theory (for simultaneous Diophantine
approximation). The range of applications of lattices has considerably widened, now in-
cluding Cryptography (for cryptanalytic purposes, and more recently, for devising crypto-
graphic schemes), Computer Arithmetic, Communications Theory, Computational Group
Theory, GPS, etc. For some applications, well-known lattice algorithms can be applied di-
rectly, whereas others lead to new mathematical and computational problems on lattices,
thus reviving the field.

My PhD thesis was already centred on lattice algorithms and their applications. First,
I studied and proposed improvements to lattice reduction algorithms, focusing on strong
reductions in tiny dimensions, and on the Lenstra-Lenstra-Lovasz reduction in arbitrary di-
mensions. An important result in that direction was the elaboration, empirical study and
implementation of the L2 algorithm [82, 85, 83, 16]. L2 was the first algorithm to compute
LLL-reduced bases with run-time bounded quadratically with respect to the bit-sizes of the
input matrix entries. The algorithmic acceleration was due to the efficient and reliable use of
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low-precision floating-point arithmetic to compute (an approximation to) the Gram-Schmidt
orthogonalisation of the current lattice basis. This established a link between lattice reduc-
tion, traditionally seen as an algebraic procedure, and computer arithmetic and numerical
analysis. The second theme of my PhD thesis was the use of lattice reduction to solve diffi-
cult problems from the field of computer arithmetic. The main such problem I tackled was
the so-called Table’s Maker Dilemma: Given a function f over R, an interval I and a preci-
sion py (e.g., f = exp on [1/2,1) with precision ps = 53), compute the minimal sufficient
precision p. such that for any precision py floating-point number x in I, the closest preci-
sion py floating-point number to f(x) can be determined from a precision p, floating-point
approximation to f(x). I proposed a new approach for solving this problem, combining
non-linear polynomial approximations to f and Coppersmith’s method for finding small
roots of bivariate polynomials modulo an integer. The latter itself relies on an LLL-reduction
algorithm [117, 116].

After the completion of my PhD thesis, I chose to focus mainly on lattice reduction. I
continued investigating numerical analysis techniques for speeding up LLL-reduction algo-
rithms. In particular, with Gilles Villard, we started to progressively replace the Cholesky
factorisation used within L? for handling the Gram-Schmidt orthogonalisation computa-
tions, by the QR-factorisation. These are mathematically equivalent, but the numerical prop-
erties of the QR-factorisation are superior, in the sense that smaller precisions may be used
while still obtaining meaningful results. Xiao-Wen Chang helped us analysing the sensitivity
of the R-factor of the QR-factorisation for LLL-reduced bases, which led to the introduction
of a perturbation-friendly modified definition of LLL-reducedness [20]. This study helped
us devising an alternative to L? relying on Householder’s QR-factorisation algorithm [78],
and later devising the first LLL-reduction algorithm with quasi-linear complexity with re-
spect to the bit-sizes of the input matrix entries and polynomial complexity with respect to
the dimension [88]. Chapter 1 contains the background and reminders necessary for the full
document, whereas Chapter 2 is an overview of these results on the LLL-reduction. The
reader interested in obtaining more details is referred to the following accompanying arti-
cles:

e X.-W. Chang, D. Stehlé and G. Villard. Perturbation Analysis of the QR factor R in the
Context of LLL Lattice Basis Reduction. To appear in Mathematics of Computation.

e 1. Morel, D. Stehlé and G. Villard. H-LLL: Using Householder inside LLL. In the pro-
ceedings of ISSAC 2009.

e A. Novocin, D. Stehlé and G. Villard. An LLL-reduction algorithm with quasi-linear
time complexity. In the proceedings of STOC 2011.

Chapter 3 is devoted to algorithms for solving problems on Euclidean lattices that are out
of reach of LLL-type algorithms. In 2006, Guillaume Hanrot and I started working on the
Kannan-Fincke-Pohst algorithm for solving the Shortest and Closest Lattice Vector Problems.
We improved its complexity analysis, and then, together with Xavier Pujol, we studied its
numerical and implementation facets [44, 95, 23]. More recently, we investigated the use
of a low-dimensional SVP solver for computing bases that are reduced in a stronger sense
than LLL’s. More specifically, we showed that a slightly simplified version of the Schnorr
and Euchner BKZ algorithm [105, 106] may be terminated within a polynomial number of
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iterations while still providing bases of excellent quality [43]. The results of this chapter
correspond to the following accompanying articles:

e G. Hanrot and D. Stehlé. Improved Analysis of Kannan’s Shortest Lattice Vector Algo-
rithm. In the proceedings of CRYPTO 2007.

e G. Hanrot, X. Pujol and D. Stehlé. Analyzing Blockwise Lattice Algorithms using Dy-
namical Systems. To appear in the proceedings of CRYPTO 2011.

During my secondment to the University of Sydney and to Macquarie University (be-
tween 2008 and 2010), and in collaboration with Ron Steinfeld, I started working in a third
tield related to the computational aspects of Euclidean lattices. Instead of devising faster
algorithms for solving computational problems, the aim was to exploit the apparent com-
putational hardness of some problems on lattices to derive secure cryptographic functions.
Lattice-based cryptography started in the mid-90’s with Ajtai’s seminal worst-case to average-
case reduction [3]. It boomed about five years ago, with the elaboration of numerous cryp-
tographic schemes (see [74] for a recent survey). The facet I am most interested in is to use
structured lattices corresponding to ideals and modules over rings of integers of some num-
ber fields (typically a cyclotomic fields of orders that are powers of 2) to achieve improved
efficiency and/or new functionalities. In this vein, together with Ron Steinfeld, Keisuke
Tanaka and Keita Xagawa, we proposed the first encryption scheme with quasi-optimal key
sizes and encryption/decryption performances, that is provably secure, assuming the expo-
nential quantum worst-case hardness of standard problems on ideal lattices [119]. By build-
ing upon recent tools concurrently and independently developed by Lyubashevsky, Peikert
and Regev [69], we proved that the famous NTRU encryption scheme [54, 55] can be slightly
modified so that it allows for a security proof under a similar assumption [118]. Chapter 4 is
devoted to these results.

e D. Stehlé, R. Steinfeld, K. Tanaka and K. Xagawa. Efficient Public-Key Encryption
Based on Ideal Lattices. In the proceedings of ASTACRYPT 2009.

e D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices. In the proceedings of EUROCRYPT 2011.

Writing this document was an excellent opportunity for me to clarify and put in perspec-
tive the results I obtained in the last few years. In particular, it has allowed me to take the
time to re-think and structure my research targets. These goals are succinctly overviewed in
the “Perspectives” sections of each one of the different chapters. Although lattice algorithms
and cryptographic applications will remain my core research area, I intend to broaden my
research scope to a larger range of applications of Euclidean lattices, including communi-
cations theory (e.g., MIMO technology), numerical analysis (e.g., using lattice algorithms to
improve numerical stability), and computational number theory (e.g., units of and modules
over the rings of integers of number fields). Looking at the same object from many different
angles will hopefully leads to a deeper understanding of its inner workings.






Notations

For a matrix B, we let BT denote the transpose of B. Furthermore, if B is square, then we will
let B~T denote the transpose of its inverse. Also, for any matrix B, the notation |B| will refer
to the same matrix where the coefficients have been replaced by their absolute values. The
identity matrix will be denoted by I. If (x;)i<, € R", we let diag(x;) denote the diagonal
matrix whose diagonal coefficients are the x;’s. We let D,, and D, respectively denote the
sets of n-dimensional diagonal matrices and n-dimensional diagonal matrices with positive
diagonal coefficients. The notation || B||, refers to the standard matrix norm induced by the
vectorial Euclidean norm.

Vectors will always be denoted by bold-case letters. If two vector b and ¢ have matching
dimensions, their inner product }_; b;c; will be denoted by (b, ¢). By default, the notation ||b||
corresponds to the Euclidean norm of b. If S C R”, we let Span(S) denote the vectorial
subspace of R" spanned by the elements of S. The set of all n X n matrices over a ring R
that are invertible (over R) will be denoted by GL,(R). The notation B,(c, ) refers to the
n-dimensional (closed) ball of centre ¢ and radius .

If S is a finite set, its cardinality is denoted by |S|. If S is countable set and f is a function
defined over S taking non-negative values, then we let f(S) € [0, +-o0] denote Y, 5 f(x).

We use the standard Landau notations O(-), o(+), w(-) and Q(-). We also use the no-
tations O(-) and Q)(-) fro hiding poly-logarithmic factors. E.g., the function 1 — n2log‘n
is O(n?) for any constant c. The notation poly (1) denotes any polynomial in 2. When a func-
tion decreases faster than n~ for any constant ¢ > 0, we say it is negligible (or, equivalently,
that it is n=«).

If D is a distribution, the notation x <= D means we sample x with distribution D. If a
set S is finite, we let U(S) denote the uniform distribution on S. Also, the probability that
an event X occurs will be denoted by Pr[X]. If two distributions Dy and D, are defined over
the same support S and if that support is countable, then the statistical distance between D,
and D, is defined as A(D1, D) = 1 ¥y |D1(x) — Da(x)].

The notation | x| denotes an arbitrary integer closest to x. We will use a standard base-2
arbitrary precision floating-point model, such as described in [50, Sec. 2.1]. The notation ¢(a)
refers to the floating-point rounding of a (the working precision being given by the context).






CHAPTER

Reminders on Euclidean Lattices

The aim of this chapter is to recall the necessary mathematical background. More in-depth
and comprehensive introductions to lattices are available in [41, 115]. Detailed accounts on
the computational aspects of lattices include [66, 86, 72, 26, 97].

1.1 Euclidean lattices

A Euclidean lattice L a discrete additive subgroup of a Euclidean space. When the lat-
ter is R", we call n the embedding dimension of the lattice. Equivalently, a lattice in R”
can be defined as the set of all linear integer combinations of linearly independent vec-
tors by, ...,b; € R", in which case we write:

L [(bi)iéd} = {Exibi D (xi)i<d € Zd} =) Zb;.
i<d i<d
We say that the b;’s form a basis of the lattice they span. A lattice may have many bases,
but they share the same cardinality d (< n), which is called the dimension of the lattice. The
most common way to represent a lattice is to encode it by a basis, i.e., by an n x d matrix
whose columns are the coordinates of the basis vectors. Several situations are of particular
interest: When d = n, the lattice is said full-rank; and when L C Z" (resp. Q"), the lattice is
said integral (resp. rational). For the sake of simplicity, we will restrict ourselves to full-rank
lattices, and very often (but not always) to rational lattices.

Unless d = n < 1, a (full-rank) lattice has infinitely many bases. The bases of a given
lattice are obtained from one another by unimodular transformations, i.e., invertible integer
linear maps. More precisely, if (b;)i<, is a basis of a lattice L, a tuple (c;);<, is also a basis
of L if and only if there exists U € GL,(Z) such that (¢;)j<, = (b;)i<, - U. Figure 1.1 gives a
two-dimensional lattice with two different bases.

Given a basis of a lattice L, it is of interest to obtain information that is intrinsic to L,
i.e., independent of the particular representation of L. The dimension n and embedding
dimension n are two such lattice invariants. Popular lattice invariants also include:

e The minimum A4 (L) is the (Euclidean) norm of a shortest non-zero vector of L,

e The successive minima are defined by A;(L) = min(r : dim Span(L N B,(0,r)) > i) for
alli <wmn;

e The determinant det(L) = lim,_, |B,(0,7) N L|/vol(B,(0,r)) quantifies the density
of the lattice in its linear span;
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Figure 1.1: A two-dimensional lattice along with two of its bases.

e The covering radius p(L) is the largest distance to L of a point in the linear span of L.

Minkowski’s theorem provides a link between the minima and the determinant. It states
that any lattice L of dimension 7 satisfies:

[TA(L) < vn" - det(L).

i<n

This implies that the finiteness of the maximum over all n-dimensional lattices L of the
quantity Aq(L)?/ det(L)?/". This maximum, called Hermite’s constant in dimension 1, will
be denoted by <y, (and we have v, < n).

Finally, in order to study a given lattice L, it often proves useful to consider its dual
lattice L = {c € Span(L) : Vb € L,(b,c) € Z}. If B is a basis matrix of L, then as the
columns of the matrix B~ form a basis of the dual L.

1.2 Algorithmic problems on lattices

The most studied algorithmic problems on Euclidean lattices are computational tasks nat-
urally related to the lattice invariants described in the previous section. There exist many
variants of the problems we give below, but describing them all is not the purpose of this
chapter. We only give those we will consider later on. Also, in order to avoid irrelevant tech-
nicalities due to real numbers, the inputs to these problems are restricted to being rational.

SVP,. The Shortest Vector Problem with parameter 7y > 1 is as follows: Given a basis (b;)i<y
of a rational lattice L, find b € L such that 0 < ||b|| < - A1(L).

SIVP,. The Shortest Independent Vectors Problem with parameter v > 1 is as follows:
Given a basis (b;)i<, of a rational lattice L, find (¢;)i<, € L" linearly independent such
that max; ||¢;|| < - An(L).

HSVP,. The Hermite Shortest Vector Problem with parameter o > 1 is as follows: Given a
basis (b;);<, of a rational lattice L, find b € L such that 0 < ||b|| < - (det L)/

CVP,. The Closest Vector Problem with parameter y > 1 is as follows: Given a basis (b;)i<y
of a rational lattice L and a target t € Span(L), find b € L such that ||b — t|| < v - dist(t, L).
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BDD,,. The Bounded Distance Decoding Problem with parameter y > 1 is as follows: Given
a basis (b;);<, of a rational lattice L and a target t € Span(L) such that dist(t,L) < ¢! -
A (L), find b € L such that ||b — t|| = dist(t, L).

Clearly, the complexity of these problems grows with n and decreases with y. The de-
cisional variant of SVP, (deciding whether the minimum of a given lattice is < 1 or > 7,
under the promise that we are in one of these situations) is known to be NP-hard under ran-
domised reductions for small values of <y [4, 47]. The same holds for SIVP., and CVP,, under
deterministic reductions [28, 24]. Unfortunately, the largest values of y for which such results
are known to hold remain quite small (smaller than n° for any ¢ > 0), but these problems
seem to remain very hard to solve even for larger values of 7. The best known algorithms
for solving these problems for v < poly(n) all have exponential complexity bounds and are
believed to be at least exponential-time in the worst case [77, 76, 44, 96] and the survey [42].
Schnorr’s algorithm [104] using [76] as a subroutine allows one to trade cost for output qual-
ity. It is the best known algorithm for intermediate values of -y, reaching ¢ = k°("/%) in time

and space poly(n) - 20 (up to a factor that is polynomial in the bit-size of the input). By

loglogn
(n =R e

choosing k = O(log 1), one obtains a polynomial-time algorithm for y = 2°
the trade-off achieved by Schnorr’s hierarchy is a long-standing open problem.

It is also worth noting at this stage that it is not currently known how to exploit quan-
tum computing to outperform classical algorithms for solving these problems. However, no
argument is known either for discrediting such a possibility.

. Beating

1.3 Lattice reduction

Lattice reduction is a representation paradigm. Given a basis of a lattice, the aim is to find
another basis of the same lattice with guaranteed norm and orthogonality properties. All the
known algorithms for solving the problems mentioned in the previous section rely at least at
some stage, or completely, on lattice reduction. Note that the word reduction is ambiguous,
as it can equally refer to the state of being reduced, or to the process of reducing. However,
the meaning is usually clear from the context.

In order to be able to properly define several notions of reduction, we first recall some
facts on the QR matrix factorisation and its relationship to the Gram-Schmidt orthogonalisa-
tion.

Any full column rank matrix B € R"*" (which can be seen as the basis matrix of a lattice)
can be factored as B = QR where Q € R"*" is an orthogonal matrix (i.e.,, Q- QT = QT - Q =
I), and R € R"*" is upper triangular with positive diagonal coefficients. Note that the R-
factor of B can also be obtained from the Cholesky factorisation G = RTR of the positive
definite matrix G = BB, called the Gram matrix of B. The QR matrix factorisation encodes
the same information as the Gram-Schmidt orthogonalisation (GSO for short): the former
lends itself more easily to algebraic and numeric techniques, while the latter conveys more
geometrical intuition. The Gram-Schmidt orthogonalisation of a basis (b;);<, is the orthog-
onal family (b});<, where b’ is the projection of b; orthogonally to the span of by, ..., b;_;.
More explicitly

j<i
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If B= (b )1<n has QR-factorisation B = QR and GSO (b} );<,, then for i < n the ith column
of Qis Hb*ll’ and for 1 <i <j < nwehaver; = p;||b;|| = pjiri.

The QR-factorisation and GSO provide informations on the lattice invariants. If (b;);<,
is a basis of a lattice L, then we have:

>
G
AV

min ||b;|| foralli <n,
j>i

Ai(L) < max|bj|| foralli <n,
j<i

[T,

i<n

HEPT
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We say that a basis (b;);<, is size-reduced if |p;j| < 1/2 (or, equivalently, if |r;| < 7j;/2)
foralli > j. Other definitions of size-reducedness have been introduced, with computational
advantages over this classical definition, but we postpone this discussion to Chapter 2. The
basis (b;)i<, is said Lenstra-Lenstra-Lovdsz-reduced with parameter § € (1 /4,1] (5 LLL-
reduced for short) if it is size- reduced and for all i < d we have 6% < r? i1 T e 4 (or,
equivalently, 5||b}||> < ||bf,; + p;,;bf||*). The latter condition, often ascribed to Lovasz,
states that once projected orthogonally to by,...,b;_1, the i + 1th vector is almost longer
than the ith vector. Figure 2.1 illustrates this definition in dimension 2.

b2

Figure 1.2: The hashed area is the set of possible locations for (b1, b,) to be J-LLL-reduced.

LLL-reduction has the twofold advantage of being computable in polynomial-time (us-
ing the LLL algorithm [65]) and providing bases of quite decent quality. Among others,
an LLL-reduced basis (b;);<, of a lattice L satisfies the following properties (with a =
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(6—1/4)"1>/3/2):
ri <w-rijqi4q foralli <m,
|b;|| <a'~t-r; foralli <,
w4y < M(L) < af-ry foralli <n,
Ibal| < a2 - (det(L))",
TTIbjll < a™" - det(L).

j<n

Oppositely, the quality of Hermite-Korkine-Zolotarev-reduced bases (HKZ-reduced for
short) is much higher, but computing an HKZ-reduced basis of a lattice L from an arbitrary
basis of L is polynomial-time equivalent to solving SVP,, for v = 1. A basis (b;)i<, is said
HKZ-reduced if it is size-reduced and if for any i < n, we have ||b}| = Al(L[(b](Z)) j=il)s
where b]@ = b; — Yk<i pjbj is the projection of the vector b; orthogonally to by, ..., b; 1.
As a direct consequence of Minkowski’s theorem, we have:

1
n n—i+1
Vi<n, b < VAi—iF1 (1‘[||b;f||> .
=i

In 1987, Schnorr introduced a hierarchy of reductions ranging from LLL to HKZ [103]. All
known algorithms mentioned in the previous section for solving the four mentioned prob-
lems for intermediate values of y attempt to achieve Schnorr’s Block-Korkine-Zolotarev re-
duction (BKZ for short) or variants thereof (see, e.g., [103, 105, 106, 33, 34]). A basis (b;);<, is

said BKZg-reduced for B € [2, n] if it is size-reduced and if for alli < n the vectors b}, bgil, L,
b

min(i+f—1,,) form an HKZ-reduced basis (in dimension min(n —i+1,p)).

1.4 Lattice Gaussians

Discrete Gaussian distributions with lattice supports have recently arisen as a powerful tool
in lattice-based cryptography. They have been first used by Micciancio and Regev [73] to
improve on Ajtai’'s worst-case to average-case reduction [3]. Another major breakthrough
occurred in 2008, when Gentry, Peikert and Vaikutanathan [39] showed that Klein’s algo-
rithm [61] may be used to sample points according to these distributions (or, more precisely,
from distributions whose statistical distances to desired discrete Gaussians is small).

Let L C R" be a full-rank lattice. The discrete Gaussian distribution Dy , . of support L,
centre ¢ € R" and standard deviation ¢ is defined by:

where pc s (x) = exp(—7||x — b||?>/0?). The subscripts ¢ and L will be omitted when ¢ = 0
and L = Z" respectively. Two Gaussian distributions with centre 0 and support Z? but
different standard deviations are presented in Figure 1.4.

As can be observed, the larger the standard deviation, the smoother the distribution
looks. In fact, the larger the standard deviation, the closer the behaviour of the discrete
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§=2

s=4

Figure 1.3: Three discrete Gaussian distributions with support Z? and centre 0, but different
standard deviations s.

Gaussian to that of a continuous Gaussian. This phenomenon is quantified by the so-called
smoothing parameter. For a lattice L and a parameter € > 0, the e-smoothing parameter of L
is defined by #,(L) = min(c : pg,1/-(L \ 0) < ¢). For any € € (0,1), we have (see [73, 91]):

In2n+1/¢)) . 1
7e(L) < — - 'min </\n(L), m) ,

where AP (f) stands for the first minimum of the dual L with respect to the infinity norm.
We will use the following properties of lattice Gaussians (proved in [39, 73]):

e For any full-rank lattice L C R"”, ¢ € R", ¢ € (0,1/3) and ¢ > #,(L), we have
Prycp, . [[bl| > o] <2771,

e For any full-rank lattices L’ C L C R", ¢ € R", ¢ € (0,1/2) and 0 > #5.(L), we
have A(Dp s mod L';U(L/L")) < 2e.

Finally, as we mentioned above, any Gaussian distribution with support a full-rank lat-
tice L C Q" may be sampled from efficiently using a basis (b;);<, of L, provided that the
desired standard deviation is sufficiently large.

Theorem 1 ([39, Th. 4.1]) There exists a polynomial-time algorithm that takes as input any
basis (b;)i<, of any lattice L C Q", any centre ¢ € Q" and any ¢ = w(/logn) - max || b;||
(resp. 0 = Q(y/n) - max ||b;||), and returns samples from a distribution whose statistical
distance to Dy ;. is negligible (resp. exponentially small) with respect to n.



CHAPTER

Computing LLL-Reduced Bases

In their seminal article [65], Lenstra, Lenstra and Lovész both introduced the notion of LLL-
reducedness (recalled in Chapter 1), and an algorithm for computing LLL-reduced bases.
This algorithm, commonly referred to as LLL or L3, is recalled in Figure 2.1.

Input: A basis (b;)j<, of LC Z"and d € (1/4,1).

Output: A §-LLL-reduced basis.

1. Compute the rational GSO, i.e., all the y; ;s and b}”s.

2.k :=2. While x < ndo

Size-reduce the vector by using the size-reduction algorithm of Figure 2.2.
If6-|bi 4[> < |bill* + p2,._|Ibi ;]| then set x :=x + 1.

Else swap by_1 and by, update the GSO and set « := max(2,x — 1).

6. Output (bi)i§n~

S

Figure 2.1: The L? algorithm.

Input: A basis (b;);<, of L C Z", its GSO and an index «.

Output: The same basis but with the vector by size-reduced, and the updated GSO.
1. Fori =x —1downto1do

2. by :=Dbx— [yK,iJ -b;.

3. Update the GSO accordingly.

Figure 2.2: The size-reduction algorithm.

In this chapter, we will use the variable f = max; log ||b;||, using the input b;’s. The costs
of LLL and its variants will be bounded with respect to both n and B.

The LLL algorithm is polynomial-time but remains quite slow. Its inefficiency stems from
the following combination of drawbacks:

e The GSO computations are performed in exact rational arithmetic, with numerators
and denominators of possibly huge bit-sizes O(np).

e The basis computations are performed in exact integer arithmetic. The involved in-
tegers have smaller bit-sizes O(n + ) than the rationals involved in the GSO com-
putations, but still significantly contribute to the cost, as there are up to O(n%g) loop
iterations (from Steps 3 to 6 of the algorithm of Figure 2.1).
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e Finally, many of the size-reduction steps are superfluous. Assume the index x remains
in some small interval [i1, ip] during some consecutive loop iterations, then for each
iteration LLL performs a full size-reduction of the current vector with respect to all the
previous basis vectors (i.e., in the algorithm of Figure 2.2, the index i goes from « all the
way down to 1 every time). But only the GSO quantities ||b}||* and p;j for i,j € [i1, i2]
are useful for correctly deciding the Lovéasz tests (Step 4 of the algorithm of Figure 2.1).

The first two sources of inefficiency are of an arithmetic flavour, while the third is related
to fast linear algebra techniques (subdividing matrices into blocks and using fast matrix
multiplication). In this chapter, we will be concerned with the arithmetic aspects of LLL
and we will not elaborate on how to save size-reduction operations (see [109, 102, 121] for
works in that direction). Table 2.1 summarises the algorithmic improvements for computing
LLL-reduced bases over the original LLL algorithm, that are of an arithmetic nature. For
the derivation of the bit-complexity upper bounds, we assume fast integer multiplication is
used [111, 32]: Two ¢-bit long integers may be multiplied in time O(¢1*¢), for some ¢ that
is 0(1). Also, it is worth noting that among the described algorithms, only those from [65]
and [58] return bases that are genuinely LLL-reduced. The others return bases that are re-
duced in a sense that is slightly weaker than the LLL-reduction (see Section 2.1 below).

Table 2.1: Bit-complexities of selected LLL-reduction algorithms.

Bit-complexity Output reducedness
[65], LLL/L? O(n>tep2+e) J-LLL-reduced
[58] O(n°B%(n + B)f) 0-LLL-reduced
[104] O(n*B(n + B)*e) (8,7)-LLL-reduced
[82, 84], L2 O(n**¢B(n+ B)) (6, n)-LLL-reduced
[78] and Section 2.2, H-LLL | O(n**¢(n + B)) (6,1,0)-LLL-reduced
[88] and Section 2.3, L O(n®*+¢B + n**€pl+e) | (5,7,0)-LLL-reduced

The L? algorithm was the first to achieve a complexity bound that is quadratic with re-
spect to B. It relies on exact integer operations for the basis matrix computations and on ap-
proximate floating-point arithmetic for the underlying GSO computations. By relying on an
exact Gram matrix computation (the Gram matrix of the basis (b;);<, is the positive symmet-
ric definite matrix ((b;, b;)); j<,) and on the Cholesky factorisation algorithm, the computed
approximations of the GSO coefficients can be proven to be close to the genuine GSO coef-
ficients, and the decisions taken by the tests of the LLL algorithm using these approximate
data thus remain sufficiently meaningful for making progress during the execution. The cost
improvement of L? stems from the fact that a low precision of O(n) bits suffices for being
able to guarantee correctness: This itself originates from the facts that at any loop iteration
the vector b, under scope is always such that (b;);, is a reduced basis and that reduced
bases are well-conditioned, guaranteeing that a low precision suffices to obtain meaningful
results.

An important drawback of L? is its reliance on the Cholesky factorisation algorithm:
First, it leads L? to require the computation and update of the (exact) Gram matrix; And
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second the Cholesky factorisation is much more sensitive to perturbations than the QR-
factorisation, leading to requiring higher precisions than a priori necessary. In Sections 2.1
and 2.2 explain how the Cholesky factorisation may be replaced by the QR-factorisation.
Section 2.3 presents another step towards improving LLL-reduction algorithms: approxi-
mate computations may also be performed on the basis matrices themselves.

2.1 A perturbation-friendly definition of LLL-reduction

The following examples in dimension 2 show that the classical notion of LLL-reduction is
not preserved under roundings of the basis vectors. Assume we round each entry of the
following matrices at t; bits of precision:

-1 2t1+t2+1

[ 1 phthtl 4 oh
Bl =
2*1‘2 _2t1+t2

1 2t1 2—1 2—21‘2
and B; := ! + + ]

Then we obtain:

. 1 2t1+t2+1 o 1 2t1+1
Br = ! _1 phthtl ] and By := lztz _ohith

The basis matrix B; is not reduced as the inner product of the two columns is 22 which
can be set arbitrarily large compared to the norm of the first column, by letting ¢, grow to
infinity. However, its approximation Bj is always reduced, as its columns are orthogonal.
Oppositely, the basis matrix B; is reduced as soon as t, > 1, while its approximation B, is
not reduced.

This phenomenon is unfortunate: It would be convenient (and more efficient!) to be able
to decide reducedness by looking only at the most significant bits of the entries of the matrix
under scope. But the above examples show that LLL-reducedness is not preserved under
roundings, or, more generally, perturbations.

As the definition of LLL-reduction expresses itself in terms of the QR matrix factorisa-
tion, it is natural to analyse the sensitivity of the R-factor of an LLL-reduced basis under
perturbations. This is a classical topic in numerical analysis [123, 19, 18], but we needed
stronger results for our purposes.

Theorem 2 ([20]) Let B € R™*" be of full column rank with QR factorisation B = QR. Let
the perturbation matrix AB € R"*" satisfy max; Iabil < ¢ 1f

[[bi
V3/2 -1

1372

cond(R) - e < with cond(R) = |||R||R7Y||,

then B + AB has a unique QR factorisation B+ AB = (Q + AQ)(R + AR), and

A
P el

< (V6+V3)n*2x(B)e,

where (With (giag(s,) 1= \/1 + max;<;(d;/6;)%):

-1 -1
¢ SolIRIRID], [D-'R],

B) =
x(B) = inf. 1T
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Given this columnwise perturbation bound, the aim is then to find a variant of the defi-
nition of LLL-reduction that is preserved under columnwise perturbations. This is provided
by the following definition (a variant of that definition was implicit in [102]).

Definition 1 ([20, Def. 5.3)) Let & = (6,7,0) withn € (1/2,1),0 > 0 and 6 € (4%1).
Let B € R?*? be non-singular with QR factorisation B = QR. The matrix B is E-LLL-reduced
if:

e Foralli < j, we have |r;;| < nri; + 0rj;

2

; 2 2
e Foralli,wehaved -r; <1 +717 ;.-

Let E; = (0;,1;,0;) be valid LLL-parameters fori € {1,2}. We say that & is stronger than &,
and write Eq > Ep if 1 > o, 111 < 12 and 01 < 6s.

Note that for § = 0, we recover the (J,#)-LLL-reduction from [82] (which was already

implicit in [104]), and that for (1,0) = (1/2,0), we recover the classical J-LLL-reduction.
Figure 2.1 illustrates these different types of reduction.

h2 b2

Figure 2.3: The hashed area is the set of vectors b, such that (b1, b,) is (from left to right)
(1,0,0)-LLL, (4,0,0)-LLL, (6, 7,0)-LLL and (9, 7, 6)-LLL.

Note that the Z-LLL-reduction and classical 6-LLL-reduction mostly differ when the 7;;’s
increase, which is the case of the two-dimensional examples above. Also, the quality prop-
erties satisfied by -LLL-reduced bases (see Section 1.3) are also satisfied by (4,7, 0)-reduced

bases, after replacing &« = (6 —1/4)7! > /3/2by a = St JUHET)0 W. Additionally,

1—y—0]at1
(|1+Z+9‘)0;—1 (14+7n+0)"" =

any (6,17, 0)-reduced basis B with R-factor R satisfies cond(R) <
20(”), allowing us to use Theorem 2.

Finally, the following result, derived from Theorem 2 and the good orthogonality proper-
ties of ZE-reduced bases, shows that the modified notion of LLL-reduction is preserved under

column-wise perturbations.

Theorem 3 ([20, Co. 5.1]) Let &; > =, be valid reduction parameters. There exists a con-
stant c such that for any Z1-LLL-reduced B € R"*" and any AB € R"*"" with max ”ﬁ:’_h“ <
27", the matrix B + AB is non-singular and Z,-LLL-reduced.
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2.2 LLL-reducing using the R-factor of the QR-factorisation

By combining the above sensitivity analysis of the R-factor under columnwise perturbations,
with the backward stability of the Householder QR-factorisation algorithm (see [50, Ch. 19]
and [20, Se. 6]), we obtain that if a basis is Z-LLL-reduced, then the matrix R computed by
Householder’s algorithm with precision p floating-point arithmetic is a good approximation
to the genuine R-factor. Note that any other algorithm computing the R-factor could be
equally used, as long as it satisfies a column-wise backward error stability bound such as the
one below (up to any multiplicative factor that is polynomial in n): This includes the Givens
algorithm based on Givens rotations, and the Modified Gram-Schmidt algorithm [50, Ch.
19].

Theorem 4 Let R be the computed R-factor of the QR factorisation of a given matrix B €
R"™*" by the Householder algorithm, with precision p floating-point arithmetic. If 80n? -
277 <1, then there exists an orthogonal matrix Q € R"*" such that

B+ AB = QR and max <
bl

Inputs: A basis B = (b;);<, of L C Z"*"; a precision p;

o(27") (for an arbitrary ¢ > 0); and a floating-point number 6.

Output: A basis of L.

1. Compute an approximation ¥; of the first column of the R-factor of B,
using Householder’s algorithm in precision p.

2.k := 2. While x <, do

Call the algorithm of Figure 2.5 on input [(bi)ignr (Fj)icx, 0(27), p} .
s := o([| o (bx)[1?); 5 := o(s — Licx—2 Ta)-

Ifo(d-o(F2 4, 1)) <s thenk :=x+1.

Else swap by_1 and by; and set x := max(x — 1,2).

. Return (b;)i<y.

W

NG

Figure 2.4: The H-LLL algorithm.

The H-LLL algorithm, given in Figure 2.4, mimics the LLL algorithm except that it relies
on an approximate R-factor computed and updated using the (floating-point) Householder
QR-factorisation algorithm. The operations performed on the exact data (the lattice basis)
are derived from approximate values. The fact that these are good approximations to the
genuine values allow us to show that H-LLL is correct: It returns E-reduced bases.

Theorem 5 ([78]) Given as inputs a basis (b;);<, of a lattice L C Z", a precision p = ©(n),
and floating-point numbers € (1/2,1) and (2-"), the H-LLL algorithm returnsa (8,1, 0)-
LLL-reduced basis (c;);<, of L, with 8,1, 0 close to 5,1/2 + ©(27") and o(2~") respectively.
Furthermore, its bit-complexity is bounded by

@)

7

P 1 |

||‘1;1’||’> 1’12+€(1’l + ,B)
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Inputs: A basis (b;);<, of L C Z"*"; a precision p; approximations (;);<, of

the x — 1 first columns of the R-factor of B; ¢(2~") (for an arbitrary ¢ > 0); a precision p.
Output: A basis (b;);<, of L, approximations (¥;);< of the « first columns of the R-factor of B.
1. Do

2. Compute ¥, using Householder’s algorithm (in precision p).
3. Forifromx —1to1,do

4. Xj:= [o(ri/Tii)]-

5. Forjfrom1toi—1,do7j := o (Fjx — o (XiFji)).

6. t:=o(||bxl|?); bx := bx — Ljor Xib;.

7. Until o([[bk||?) > o(0(27%) - ).
8. Compute T, using Householder’s algorithm (in precision p).
9. Return (b;)i<, and (¥;)i<.

Figure 2.5: The size-reduction algorithm of H-LLL.

where B = max; log ||b;||, e = 0(1) and d? (resp. d¢) is the determinant of the lattice spanned
by the first i columns of the input (resp. output) basis. The complexity bound above is
itself O(n**¢B(n + B)).

Precise conditions on p, § € (1/2,1), ©(27"), and (6,7,6) may be found in [78]. H-
LLL has three advantages over L2. First, it does not require to compute and update the
Gram matrix of the current basis. Second, its precision requirement is lower: in the case
of (6,7,0) close to (1,1/2,0), the precision required for ensuring correctness of L2 tends
to [log,3 +0(1)] - n < 1.6 - n, while that of H-LLL tends to n. This is not only an arti-
fact of the worst-case analysis, as it can be observed on actual examples that the numeri-
cal performance of H-LLL is superior to that of L? (e.g., using the input bases from http:
//perso.ens-1lyon.fr/damien.stehle/L2.html. It actually seems that the worst-
case bound on the precision required by H-LLL might not be sharp: Checking the reduced-
ness of an LLL-reduced basis can require as low as [% log,3+0(1)] - n < 0.8 - n precision, but
for the moment we do not manage to prove correctness of the size-reduction process with
that low a precision. These two facts, on the Gram matrix and the working precision, lead
to constant factor improvements. The third advantage of H-LLL over L2 is its simplified
complexity analysis. The analysis of L? from [82, 84] required a rather involved amortised
analysis for summing the cost bounds for the successive size-reductions. In H-LLL, the cor-
responding analysis is much simpler, as the cost of a size-reduction is bounded by

1og||bb||>)
O n*é(n+ <n+" ,
( () (" fog b

where b’ and b¢ denote b, before and after the call to the size-reduction algorithm, respec-
tively. Summing such quantities over the successive loop iterations is straightforward. This
simplification is not simply a technical stroke of luck: The H-LLL algorithm is vectorial in
nature, as all operations are vector operations, and it is no surprise that the cost bound for
the size-reduction directly involves the bit-sizes of the vector that is currently under scope.
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2.3 A quasi-linear-time reduction algorithm

As abroad approximation, L3, L2 and H-LLL are generalisations of Euclid’s greatest common
divisor algorithm. The successive bases computed during the execution play the role of Eu-
clid’s remainders, and the elementary matrix operations performed on the bases play the role
of Euclid’s quotients. L3 may be interpreted in such a framework. It is slow because it com-
putes its “quotients” using all the bits from the “remainders” rather than the most significant
bits only: The cost of computing one Euclidean division in an L? way is O(8!"¢), leading to
an overall O(B2*¢) bound for Euclid’s algorithm (for B-long input integers). Lehmer [64]
proposed an acceleration of Euclid’s algorithm by the means of truncations. Since the £ most
significant bits of the remainders provide the first Q(¢) bits of the sequence of quotients,
one may: Truncate the remainders to precision ¢; Compute the sequence of quotients for
the truncated remainders; Store the first ()(¢) bits of the quotients into an Q)(¢)-bit matrix;
Apply the latter to the input remainders, which are shortened by Q)(¢) bits; And iterate. The
cost gain stems from the decrease of the bit-lengths of the computed remainders. Choos-
ing ¢ ~ /B leads to a complexity bound of O(8%/2*¢). In the early 1970’s, Knuth [62] and
Schonhage [108] independently observed that using Lehmer’s idea recursively leads to a gcd
algorithm with complexity bound O(B!*). The above approach for the computation of geds
has been successfully adapted to two-dimensional lattices [122, 110, 25], and the resulting al-
gorithm was then used in [27] to reduce lattices in arbitrary dimensions in quasi-linear time.
Unfortunately, the best known cost bound for the latter is O(B'¢(log )" 1) for fixed n.

El aims at adapting the Lehmer-Knuth-Schénhage gcd framework to the case of LLL-

reduction. L' takes as inputs LLL parameters & and a non-singular B € Z"*"; terminates
within O(n°¢g + n**¢B1+¢) bit operations, where f = log max ||b;||; and returns a basis of
the lattice spanned by B which is E-LLL-reduced.

The efficiency of the fast ged algorithms stems from two sources: Performing opera-
tions on truncated remainders is meaningful (which allows one to consider remainders with
smaller bit-sizes), and the obtained transformations corresponding to the quotients sequence
have small bit-sizes (which allows one to transmit at low cost the information obtained on
the truncated remainders back to the genuine remainders). We achieve an analogue of the
latter by gradually feeding the input to the reduction algorithm, and the former is ensured
thanks to the modified notion of LLL-reduction which is resilient to truncations. The main
difficulty in adapting the fast gcd framework lies in the multi-dimensionality of lattice re-
duction. In particular, the basis vectors may have significantly differing magnitudes. This
means that basis truncations must be performed column-wise. Also, the resulting unimod-
ular transformations may have large magnitudes, hence need to be truncated for being be
stored on few bits.

To handle these difficulties, we focused on reducing bases which are a mere scalar shift
from being reduced. We call this process lift-reducing, and it can be used to provide a family
of new reduction algorithms. Lift-reducing was introduced by Belabas [13], van Hoeij and
Novocin [52], in the context of specific lattice bases that are encountered while factoring ra-
tional polynomials (e.g., with the algorithm from [51]): It was restricted to reducing specific
sub-lattices which avoid the above dimensionality difficulty. We generalise these results to
the following. Suppose that we wish to reduce a matrix B with the property that By := ¢, “B
is reduced for some k and oy is the diagonal matrix diag(Z‘i, 1,...,1). If one runs L?on B
directly then the structure of By is not being exploited. Instead, the matrix B can be slowly
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reduced allowing us to control and understand the intermediate transformations: Compute
the unimodular transform U; (with any reduction algorithm) such that oyBoU; is reduced
and repeat until we have O'éfBo U --- Uy = B(U; - - - Uy). Each entry of U; and each entry of
Uj - - - U; can be bounded sensitive to the shape of the lattice (i.e., to k).

The algorithm from Figure 2.6 shows how to LLL-reduce an arbitrary lattice basis given
a Lift-reducing algorithm (used in Step 5).

Inputs: LLL parameters Z; a non-singular B € Z"*".

Output: A E-reduced basis of L(B).

1. B:= HNF(B).

2. For k fromn —1down to1do

3. Let C be the bottom-right (n — k + 1)-dimensional submatrix of B.

4. U= [logg(bkkﬂ/ C:= Ug_le.

5. Find U’ unimodular such that ngCU’ is E-reduced.

6. Let U be the block-diagonal matrix diag(I, U’).

7. Compute B := B - U, reducing row i symmetrically modulo b;; for i < k.
8. Return B.

Figure 2.6: Reducing LLL-reduction to lift-reduction.

Lemma 1 The algorithm of Figure 2.6 E-reduces B such that max ||b;|| < 2f using

0 (n4+€(ﬁ1+€+n)) + t C

k=n—1

bit operations, where Cy is the cost of Step 5 for the specific value of k.

The above shows that we can now restrict ourselves to Lift-reducing efficiently. In or-
der to be able to Lift-reduce by means of truncations, we can use the sensitivity analysis of
Section 2.1 along with a bound on the coefficients of a lift-reducing U.

Lemma 2 Let 21, E, be valid parameters. Let { > 0, B € R"™" (with R-factor R) be &;-
reduced and U such that C = ¢,BU (with R-factor R’) is &-reduced. We have:

/
7. 7
Vi i fugl < ¢ 7]] <2l I

12 rll

for some ( that depends only on E; and Z,.

Suppose the sequence of the r;;’s is very unbalanced. As B is reduced, this can only occur
when the sequence increases sharply. In that situation, Lemma 2 does not prevent U from be-
ing arbitrarily large. However, its entries may be truncated while preserving unimodularity
and the fact that it actually lift-reduces B.

Lemma 3 Let 5y, &, E3 be valid LLL parameters with Z, > E3. There exists a constant c
such that the following holds for any ¢ > 0. Let B € R"*" (with R-factor R) be E-reduced,
and U be unimodular such that o,BU (with R-factor R’) is Ep-reduced. If AU € Z"*" satisties

|Aujj| < 2~ (fen) % foralli, j, then U+ AU is unimodular and o, B(U + AU) is E3-reduced.
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Lifting and truncation are the main conceptual ingredients for the i ft-L! algorithm,
given in Figure 2.7. Lift-L' makes use of specific compact representations of basis and
transformation matrices to handle the possible unbalancedness of the current basis vec-
tors. Lift-L' makes use of several subroutines: The BaseCase algorithm performs lift-
reduction for small values of ¢ and relies on a truncation and a call to H-LLL (see Section 2.2);
BaseCase may be used with ¢ = 0 to strengthen the reducedness of a reduced basis (i.e.,
Ep-reducing a Ei-reduced basis, for E, > E;); The MSBy function replaces a matrix B by

a truncated B 4+ AB with max H”Abb,i"H < 27k the U; © Uy operation is a matrix multiplica-

tion of U; and U, which is specifically designed to handle the specific format chosen for
the unimodular transformations (in particular, it performs a truncation after computing the
product, to ensure that the output entries have small bit-sizes).

Inputs: Valid LLL-parameters Z3 > H, > B4 > E4; a lifting target £; (B/, (¢;);) such that
B = B’ - diag(2%) € Q""" is E1-reduced and max |bl’-j| < 26+¢ for some ¢ > 0.
Output: (U, (d;);, x) such that o, BU is E;-reduced, with U = 2~ *diag(2~%) - U’ - diag(2%)
and max [uj;| < 2t42em,
1. If £ < n, then use BaseCase with lifting target /. Otherwise:
2. /% Prepare 1st recursive call * /
Call BaseCase on (B, &); Let U be the output.
3. By:= MSB([/ZJFQ,H)(B . Ul).
4. /% 1strecursive call */
Call Lift-L! on By, with lifting target £/2; Let Ug, be the output.
5. /* Prepare 2nd recursive call x/
UlRl = Ul O) URl.
Bz = U’g/zBulRl.
Call BaseCase on (B, E3). Let U; be the output.
Uigr,2 := Usr, © Uy.
B3 := MSB1/2.¢;n) (00/2BU1R,2)-
10. /* 2nd recursive call x/
Call Li ft-L' on By, with lifting target £/2; Let Ug, be the output.
11. /* Prepare output */
U1R,2R, := Uir,2 © UR,.
12. By := O'gBuH{lsz.
13. Call BaseCase on (By, Ey); Let Uz be the output.
14. U := U1R12R2 ® Uj; Return U.

O *® N

Figure 2.7: The Lif t-L! algorithm.

The L' algorithm is the algorithm from Figure 2.6, where Lif L is used to implement
lift-reduction (with appropriate pre- and post-processings to handle the input and output

=1 . . . . L. .
formats of Lift-L . A careful bit-operation count involving an amortisation analysis (over
. =1 .
the successive calls to Lift-L  leads to the following result.

Theorem 6 ([88]) Given as inputs E and a matrix B € Z"*" with max ||b;|| < 2F, the L
algorithm returns a E-reduced basis of L(B) within O(n°*¢B + n**¢B1+¢) bit operations.
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2.4 Perspectives

The complexity of the L' algorithm with respect to f = log max ||b;|| seems hard to improve
further: Up to a constant factor, it is the same as for the best known gcd algorithms [62,
108], i.e., O(M(B) log B), where M (¢) denotes the time required to multiply two ¢-bit long
integers. The remaining challenge on the cost of LLL-reduction consists in decreasing the
dependences in the lattice dimension .

Let w denote the fast linear algebra exponent: Two n-dimensional square matrices over
a field K may be multiplied within O(n®) arithmetic operations over K (the Coppersmith

and Winograd algorithm [22] achieves w < 2.376). Then the complexity of L' is O(n°p +
n@t1+eglte) Intuitively, the first term corresponds to O(8) LLL-reductions of n-dimensional
matrices whose entries have bit-sizes O(1) and that perform O(n?) LLL swaps, whereas the
second term corresponds to the binary tree multiplication of O() matrices of dimension n
and whose entries have bit-sizes O(n) (this originates from Steps 1 and 7 of the algorithm

of Figure 2.6). It seems the second term is intrinsic to fl, and that a new reduction ap-
proach is required for avoiding it. The first term, which currently dominates the overall cost,
could however be improved using techniques developed by Schonhage, Koy and Schnorr
and Storjohann [109, 63, 121] to lower the number of arithmetic operations arising from the
size-reductions. It remains to be seen whether these techniques can be combined with the
numerical analysis and floating-point arithmetic approaches used in L2 and H-LLL. Further-
more, even if the latter difficulty can be handled, and if no further progress is made on the
numerical analysis aspects, the required floating-point precision will remain Q(n): If R is
the R-factor of an LLL-reduced matrix, the quantity cond(R) from Theorem 2 can be as large
as 220" (see [20, Re. 7]), which can be compensated only by taking a working precision that
is Q(n).

From the discussion above, it appears that more work is required on the numerical as-
pects of LLL. A first step consists in assessing whether what has been achieved for L? and

H-LLL can be carried over to [109, 63, 121]. This will hopefully allows the complexity of L'to
be decreased down to O(n“*18). To decrease this bit-complexity further, significantly new
ingredients will be needed, in particular to avoid the Q}(n)-bit-long floating-point arithmetic,
at least for most arithmetic operations.

Independently from the cost objective, the techniques developed for L' could prove use-
tul for related computational tasks. Can they be exploited for reduction of polynomial ma-

trices [90, 79] or for Hermite Normal For computations? Also, the lifting technique of L
seems reminiscent of the PSLQ algorithm for disclosing integer relations between real num-
bers [29]: By revisiting PSLQ under this new light, one might be able to prove its correctness
under floating-point arithmetic and to investigate its bit-complexity.
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Stronger Lattice Reduction Algorithms

The LLL lattice reduction algorithm and its variants run in polynomial time but only provide
vectors that are no more than exponentially longer (with respect to the lattice dimension )
than the shortest non-zero lattice vectors. This worst-case behaviour seems to also hold in
practice [83], up to a constant factor in the exponent.

Solving the Shortest and Closest Vectors Problem exactly is much more expensive. There
exist three main families of SVP and CVP solvers, which we compare in Table 3.1. (In the
table, and more generally in the present chapter introduction, we omit the arithmetic costs,
which are all poly(n, maxlog ||b;||), where (b;);Z"*" is the input basis.) The algorithm by
Micciancio and Voulgaris [76, 75] aims at computing the Voronoi cell of the lattice, whose
knowledge facilitates the tasks of solving SVP and CVP. This algorithm allows one to solve
SVP and CVP deterministically, in time < 22n+0(n) and space < onto(n)

Single exponential time complexity had already been achieved about 10 years before by
Ajtai, Kumar and Sivakumar [8, 9], with an algorithm that consists in saturating the space
with a cloud of (perturbed) lattice points. But the saturation algorithms suffer from at least
three drawbacks: They are Monte Carlo (their success probability can be made exponentially
close to 1, though); The CVP variants of these algorithms may only find vectors that are no
more than 1 + ¢ times further away from the target than the optimal solution(s) (it is possible
to choose an arbitrary ¢ > 0, but the complexity grows quickly when ¢ tends to 0); and
their best known complexity upper bounds are higher than that of the Micciancio-Voulgaris
algorithm relying on the Voronoi cell computation. The Ajtai et al. SVP solver has been

Table 3.1: Comparing the three main families of SVP and CVP solvers.

Time complexity Space complexity Underlying
upper bound upper bound principle
| [76,75] for SVPand CVP || 22n-+o(n) pn+o(n) | Voronoi cell
[8, 97,87,77, 96] for SVP 22.465n+0(n) 21.325n+o(n)
Saturation
[9, 14] for CVPy . (2+1/¢)0m (2+1/¢)00)
[30, 31, 59, 60, 48, 44] for SVP n'/ (2¢)+o(n) poly(n) ,
Enumeration
[30, 31, 59, 60, 48, 44] for CVP p/2+o(n) poly(n)
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successively improved in [97, 87,77, 96], and the currently best time complexity upper bound
is 224651+0(n) with a space requirement bounded by 21325"+9(") Improvements on the Ajtai
et al. CVP solver have been proposed by Blomer and Naewe [14].

Before the elaboration of the saturation-based solvers by Ajtai, Kumar and Sivakumar,
the asymptotically fastest SVP and CVP solvers relied on a deterministic procedure that
enumerates all lattice vectors within a prescribed distance to a given target vector (chosen
to be 0 in the case of SVP). This procedure exploits the Gram-Schmidt orthogonalisation
of the input basis to recursively bound the integer coordinates of the candidate solutions.
Enumeration-based SVP and CVP solvers were first described by Fincke and Pohst [30, 31]
and Kannan [59, 60]. Kannan used it to propose solvers with bit-complexities n°("). These
were later refined by Helfrich [48].

The practicality of SVP solvers has attracted much attention, as it is the dominating cost
component of the generic cryptanalyses of the lattice-based cryptographic schemes. De-
termining and extrapolating the current practical limits is crucial for choosing key sizes
that are meaningful for desired security levels. For currently handleable dimensions, the
enumeration-based SVP solvers seem to outperform those of the other families. This state-
ment requires clarification, as rigorous codes providing correctness guarantees can be accel-
erated significantly by allowing heuristics, which makes the comparison task more complex.
On the rigorous side, all the available implementations providing strong correctness guar-
antees (e.g., fpl111 [16] or the SVP solvers of the Magma computational algebra system [15])
rely on the enumeration process. They seem to be currently limited to dimensions around 75.
On the heuristic side, the solvers of the saturation and enumeration families can be acceler-
ated by making reasonable but unproved assumptions. The heuristic implementations of
the enumeration families, relying on tree pruning strategies [106, 107, 120, 36], seem to out-
perform the heuristic implementations of the saturation families [87, 77]. They seem to allow
one to reach dimensions around 110. The enumeration solvers have also been implemented
in hardware [49, 23]. At the time being, the Micciancio-Voulgaris algorithm relying on the
Voronoi cell seems uncompetitive, and would require further practical investigation.

With Guillaume Hanrot, we studied in detail the cost of the enumeration procedure of
the enumeration-based solvers, in order to get a better grasp on the currently most practical
family of SVP and CVP solvers. This line of work will be described in Section 3.1. We de-
creases the best known complexity upper bounds of Kannan’s SVP solver (resp. CVP solver)
from n/2+0(") (resp. n" (M) to n/ (2¢)+0() (resp. n"/2+0(1)). The ideas underlying this result
are summarised in Section 3.1.

When the dimension of the lattice under scope is too high, all known SVP and CVP
solvers (and thus also HKZ reduction) become prohibitively expensive. However, it is still
possible to compute lattice bases of higher quality than those provided by LLL-type algo-
rithms. Schnorr’s hierarchy [103] of reduction algorithms allows one to achieve a contin-
uum between the LLL and HKZ reductions. The best known theoretical variant, in terms of
achieved basis quality for any fixed computational cost, is due to Gama and Nguyen [34].
All known realizations of Schnorr’s hierarchy (see the surveys [80, 102]) rely on an algo-
rithm that solves SVP for smaller-dimensional lattices. We let B denote the largest dimension
in which the SVP solver is used. Table 3.2 describes the time/quality trade-off reached by
Schnorr’s hierarchy. In this table, the output quality is measured by the best known Her-
mite factor upper bound of an output basis, where the Hermite factor of a basis (b;);<, of a
lattice L is defined as HF((b;);<,) = ||b1]|/(det L)/
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Table 3.2: Time/quality trade-offs reached by several reduction algorithms.

HKZ | [34] with parameter LLL
=T
Hermite factor | /n B(1+¢)f! 20(n)
Time 2000 | 290 -poly(n) | poly(n)

In practice, the heuristic and somewhat mysterious BKZ algorithm from [106] is used
instead of the slide reduction algorithm from [34] (see [35] for a detailed account on the
practical behaviour of BKZ).

With Guillaume Hanrot and Xavier Pujol, we started trying to analyse the BKZ algo-
rithm, in order to understand why it performs so well in practice. Our results so far remain
partial. However, we could provide the first non-trivial worst-case analysis on the perfor-
mance of BKZ: We showed that if stopped after a polynomial number of calls to the under-
lying low-dimensional SVP solver, the Hermite factor of the output basis admits a bound
similar to that of the basis returned by the algorithm from [34]. We elaborate on this result
in Section 3.2.

3.1 Cost analysis of the enumeration-based SVP and CVP solvers

The Enum algorithm, given in Figure 3.1, enumerates L N B,(t, A) by using the triangular
relationship between the basis (b;);<, of L and its Gram-Schmidt orthogonalisation (b} );<;.
More precisely, it relies on the two following observations:

o If x = Y x;b; belongs to L N Bn(t,A), then, for any i < n, we have xD e LN
B, i1(t%, A), where x{), L) and t(*) are the projections of x, L and t respectively,
orthogonally to the linear span of by, ..., b;_1.

e Enumerating L") N B;(t("), A) is easy and once Li+D N B,_;(ti+1), A) is known, it
is easy to enumerate L@ N Bn,iJrl(t(i),A): Assume that x e L0 n Bn,iJrl(t(i),A);
Write x(!) = x(+1) 4 (x; + ci)b; for some x; € Z and ¢; € Q; Once x(i+1) e L+ n
B,_i(t#+1), A) is fixed, we must have

A2 — ||x(i+1)||2 A2 — ||x(i+1)||2

 EZN | —c¢i— ,—Ci
i ‘i I T

(3.1)

These observations lead to interpreting Enum as a depth-first tree traversal, where the
nodes correspond to the considered (xy, ..., x;) for all i, and the sons of a node (xy, ..., xj1)
are the (x;,..., x}) such that x; = x} forall j > i + 1. The execution starts at the nodes () (i.e.,
the node whose sons are the (x,,)’s for the possible values of x,), and the goal is to obtain the
list of the tree leaves (x,, ..., x1).

Algorithm Enum may be used directly to solve SVP and CVP, once the bound A has
been set. In the case of SVD, it may be derived from Minkowski’s theorem, or from the
current basis (b;)i<,: For example, one may choose A = min(min; ||b;|, /7. (detL)!/").
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Inputs: A basis (b;);<,, of a lattice L C Q"*", t € Q", A > 0.
Output: All vectorsin L N B(t, A).

1. Compute the y; ’s and ||b} 1%s.

2. Compute the t;’s such that t = ) ; ¢,;b7.
3.5:={},0:=0,x:=0,x,:= [t, — A/|b}||],i:=n.

4. Whilei < n,do

5. L= (x; =t + Ly %) * [ bF]I%,

6. Ifi=1and Y<jc, lj < A% S:=SU{x}, x1:=x + 1.

. . . A2-y. iy
7. fi#land ¥jsi 4 < A2 i=i—1,x;:= [ti — Yisilxjpji) — 1/“3%]'2]—‘.

8. IfZ]-ZiE]- > A,theni:=i+1,x;:=x;+ 1.
9. Return S.

Figure 3.1: The Enum algorithm.

In the case of CVP, it may be derived from any bound on the covering radius p(L), such

as /% |[b#[|2. The bound may also be set heuristically using the Gaussian heuristic: The

guess for A is then derived from the equation vol(B,(t, A)) ~ det(L), and is increased if
no solution is found. The bound A can also be decreased during the execution of Enum,
every time a better solution is found. Also, the space required by Enum may be more
than poly(n,logmax ||b;||), because |S| might be exponentially large. The space require-
ment can be made poly(n,log max ||b;||) for the SVP and CVP applications, as only a single
shortest/closest vector is required: The update of S in Enum should then be replaced by an
update of the best solution found so far.

During its execution, algorithm Enum considers all points in LN B, i1 (t(i), A),fori=
n,n—1,...,1. An inherent drawback is that the complexity may be (significantly) more
than |L N B, (t, A)|. This is because it often occurs that at some stage, an element of L(+1) N
Bn_i(t(i“), A) has no descendant in LN Bn_i+1(t(i), A) (i.e., the interval in Equation (3.1)
contains no integer): This corresponds to a “dead-end” in the enumeration tree.

The cost of Enum can be bounded by Y, L™ N B,_;;1(t?, A)|, up to a small polynomial
factor. The Gaussian heuristic allows us to estimate the latter quantity: If K is a measurable
subset of the span of the n-dimensional lattice L, then |[K N L| ~ vol(K)/ det(L) (where vol
denotes the n-dimensional volume). This leads to the approximation (for i < n):

. . O(n) pAn—i+1
LD N B, (t), A)| = 24

n—i+1

(n—i+1)"+ - TT [b7]

This heuristic cost analysis of the enumeration process, given in [44], has interesting practical
implications:

e Itallows a user to assess in advance if the computation has a chance to terminate within
a reasonable amount of time. This has been implemented in the Magma computational
algebra system [15].

e Suppose the tree search corresponding to Enum is performed using parallel processors.
The heuristic cost formula above can be used to estimate the sizes of subtrees, in order
to give well-balanced tasks to slave processors [23].
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e Finally, this formula can be tweaked to account for tree pruning and thus to optimise
the pruning strategy [36, 120].

Unfortunately, from a theoretical standpoint, some of the involved balls are very small
compared to their corresponding lattice L"), and it seems hard to prove that the heuristic
is indeed valid in these cases. Though of mostly theoretical nature (because of the fuzzy
20(") factor), the following result provides theoretical evidence towards the validity of the
Gaussian heuristic in the present situation.

Theorem 7 ([44]) If given as inputs a lattice basis (b;);<, and a target vector t, the number of
arithmetic operations performed during the execution of Enum can be bounded from above

by:
A Alll
200 TT max (1, ) < 200 max .
AL e i< \ " Tl [

The latter upper bound for the cost of Enum and the heuristic cost estimate strongly
depend on A and on the decrease of the ||b||’s. This suggests that the more reduced the
basis (b;);, the lower the cost. Fincke and Pohst [30] initially used a LLL-reduced basis (b;);.
For such a basis, we have b} || > |bj[|/2 for all i, which leads to a 20(7) complexity
upper bound. Kannan [59] observed that the cost of Enum is so high that a much more
aggressive pre-processing significantly lowers the total cost while negligibly contributing to
it. Kannan’s SVP algorithm is in fact an HKZ-reduction algorithm that calls itself recursively
in lower dimensions to strengthen the reducedness before calling Enum. The bases (b;);
given as inputs to Enum always satisfy the following conditions: It is size-reduced, ||b}| >
|bi || /2 and once projected orthogonally to by, the other b;’s are HKZ-reduced. We call such
bases quasi-HKZ-reduced. A detailed analysis gives that if a basis (b;);<, is quasi-HKZ-
reduced, then:

max ( ”Hbl 1" ) < 20(m) 1/ (2¢),
ISR\ /'™ Tier 165 |

The calls to Enum dominate the overall cost of Kannan’s HKZ-reduction algorithm, so
that Kannan’s SVP solver terminates within n"/(2+°(") arithmetic operations. Kannan’s
CVP algorithm first HKZ-reduces the given lattice basis, and then calls Enum using the re-
duced basis. The number of arithmetic operations it performs can be bounded from above
by nht/2+o(n)

The cost upper bound of Kannan’s SVP algorithm is optimal. More precisely, a proba-
bilistic construction due to Ajtai [6, 7] can be adapted to prove the existence of HKZ-reduced
bases for which Enum actually performs 1"/ (2¢)+°(") bit operations [45]. The proof relies on
the following converse to Theorem 7.

Theorem 8 ([46, Se. 3]) If given as inputs a lattice basis (b;)i<, and a target vector t, the
number of arithmetic operations performed during the execution of Enum can be bounded
from below by:

O(n) = A
20T =
i=ig \/EHbe

where i is the smallest such that max;>;, || b}|| < %\/g



36 Chapter 3. Stronger Lattice Reduction Algorithms

For CVP, a gap remains between the lowest known complexity upper bound n"/2+o(%)

for Kannan'’s solver and its largest known worst-case complexity lower bound n"/ (2¢)+o(1),

3.2 Terminating the Schnorr-Euchner BKZ algorithm

As mentioned at the beginning of this chapter, slide reduction [34] seems to be outperformed
by the BKZ algorithm [35] in practice: For comparable run-times, the quality of the computed
bases seems higher with BKZ (or, equivalently, the same basis quality is reached faster with
BKZ). With respect to run-time, no reasonable bound was known on the number of calls to
the B-dimensional HKZ reduction algorithm it needs to make before termination (a naive
bound O(B)" can be proven if BKZ is slightly modified, see [43, App. A]). In practice, this
number of calls does not seem to be polynomially bounded [35] and actually becomes huge
when B > 25. Because of its large (and somewhat unpredictable) runtime, it is folklore
practice to terminate BKZ before the end of its execution, when the solution of the problem
for which it is used for is already provided by the current basis [107, 81].

Figure 3.2 illustrates the evolution of the Hermite factor during the execution of the orig-
inal BKZ and modified BKZ’ (described in Figure 3.3). We refer the reader to [43] for a
description of the (mild) differences between BKZ and BKZ’. The corresponding experiment
is as follows: We generated 64 “knapsack-like” lattice bases [83] of dimension n = 108, with
non-trivial entries of bit-lengths 1007; Each was LLL-reduced using fp111 [16] (with param-
eters 6 = 0.99 and 7 = 0.51); Then for each we ran NTL's BKZ [114] and an implementation
of BKZ’ in NTL, with blocksize 24. Figure 3.2 only shows the beginning of the executions
(more than half were more than 6 times longer). A “tour” corresponds to calling the smaller
dimensional HKZ-reduction algorithm n — B + 1 times. As can be observed, BKZ and BKZ’
quickly end up spending of lot of time making very little progress.

Quality of BKZ output

1019 i
1.018 |}
1.017 | |}

1016 - \}

Hermite factor

1.015

1.014 -

1.013 -

1.012 -

1 1 1 1
0 20 40 60 80 100
Number of tours

[[ba |
(detL)1/n

Figure 3.2: Evolution of the Hermite factor during the execution of BKZ and BKZ".

With Xavier Pujol and Guillaume Hanrot, we showed that if terminated within polyno-
mially many calls to HKZ/SVP, a slightly modified version of BKZ returns bases of excellent
quality, close to that reached by the slide reduction algorithm.

Theorem 9 There exists C > 0 such that the following holds for all n and B. Let B =
(b;)i<, be a basis of a lattice L, given as input to the modified BKZ algorithm of Figure 3.3
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with block-size B. If terminated after C m <logn + log log max; ( dthlz)Hl /n) calls to an HKZ-

reduction (or SVP solver) in dimension B, the output (¢;)i<, is a basis of L that satisfies
(with ’y’ﬁ < B defined as the maximum of Hermite’s constants in dimensions < B):

n—1
—1

I\t 1
leall < 2(7) 2552 - (det L) .

If L is a rational lattice, then the overall cost is < poly(n,log max ||b;||) - Caxz(B), where Cuxz(B) =
20() is any upper bound on the time complexity of HKZ-reducing a B-dimensional lattice
basis of bit-size < poly(p).

Input: A basis (b;);<, and a blocksize p.

Output: A basis of L[(b;)i<y].

1. Repeat while no change occurs or termination is requested:

2. Fork<1lton—B+1,

3. Modify (b;)r<i<k+p—1 50 that (bfk))kgighﬁ_l is HKZ-reduced,
4. Size-reduce (b;)i<y.

Figure 3.3: The modified BKZ algorithm: BKZ'.

To achieve this result, we used a new approach for analysing lattice reduction algorithms.
The classical approach to bound their runtimes was to introduce a quantity, sometimes called
potential, involving the current Gram-Schmidt norms ||b; ||, which always strictly decreases
every time some elementary step is performed. This technique was introduced by Lenstra,
Lenstra and Lovasz [65] for analysing their LLL algorithm, and is still used in all complexity
analyses of (current variants of) LLL. It was later adapted to stronger lattice reduction algo-
rithms [103, 33, 102, 34]. We still measure progress with the ||b?||’s, but instead of considering
a single scalar combining them all, we look at the full vector (||b}||),.,. More specifically, we
observe that each call to HKZ within BKZ has the effect of applying an affine transformation
to the vector (log ||b}||),.,: Instead of providing a lower bound to the progress made on a
“potential”, we are then led to analyse a discrete-time dynamical affine system. Its fixed-
points encode information on the output quality of BKZ, whereas its speed of convergence
provides an upper bound on the number of times BKZ calls HKZ.

Intuitively, the effect of a call to HKZ on the vector (log||b}||)i<, is to essentially re-
place B consecutive coefficients by their average. We formalise this intuition by making the
following Heuristic Sandpile Model Assumption (SMA): We assume for any HKZ-reduced
basis (b;);<s, we have x; = %log Yp—it1+ ﬁ Zf:i xj foralli < B, with x = (log ||b;||)i<.
Under this assumption, the execution of BKZ exactly matches with a dynamical system that
can be explicited and fully analysed. A BKZ tour corresponds to applying a specific affine
transformation to x: x <— Ax +I'. The fixed-points of A provide information on the output
quality of BKZ, whereas the largest singular value of AT A smaller than 1 drives the speed of
convergence.

However, the heuristic SMA is not always correct: Consider for example orthogonal b;’s
of growing norms. This difficulty can be circumvented by considering the vector (y;);<y
where y; = % 2;:1 log Hb]* || for any i. This amortisation was already used in [44] for analysing
HKZ-reduced bases. Here it allowed us to rigorously bound the evolution of (y;);<, by the
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orbit of a vector under another dynamical system. This bound holds coefficient-wise, and
relies on the result below.

Lemma 4 ([44, Le. 3)) If (b;);<p is HKZ-reduced, then

. log Tg(k),

k< B, p—pp < P

with T(k) = Y ©8J=,

This new dynamical system bounding the evolution of (y;)i<, happens to be a slight
modification of the dynamical system used in the idealised sandpile model, and the analysis
performed for the idealised model can be adapted to the rigorous set-up.

3.3 Conclusion and perspectives

Many important techniques and results on solving SVP and CVP have been discovered in the
last few years: The Ajtai et al. saturation-based solver [8] was obtained 10 years ago and has
steadily been improved since then, while the Micciancio-Voulgaris Voronoi-based [76] solver
is even more recent. The interest in this topic was revived at least in large part thanks to the
rise of lattice-based cryptography: Assessing the precise limits of the algorithms for SVP,
CVP and their approximations is the key towards providing meaningful key-sizes ensuring
specific security levels.

The saturation-based and Voronoi-based algorithms have better asymptotic complexity
bounds than the enumeration-based solvers, but in practice this comparison is reversed. It
is tempting to investigate this oddity. Is it possible to improve these algorithms further?
Are there reasonable heuristics that would allow for competing with heuristic enumeration-
based solvers? For example, saturation-based solvers make use of perturbations to hide
information to the inner sieving steps. It is unclear whether the perturbations of the lattice
vectors in saturation-based solvers are inherently necessary or just an artifact of the proof. As
these perturbations lead to increased complexity bounds, proving them unnecessary could
make these solvers competitive with [76]. Also, is it a valid heuristic to remove them in
practice? It is also completely conceivable that faster solvers exist, that remain to be discov-
ered. For example, is it possible to achieve exponential time complexity with a polynomially
bounded space requirement? Are there ways to exploit quantum computations to obtain
better complexity bounds? An important challenge in this line of research would be to de-
sign a polynomial-time algorithm that could find non-zero lattice vectors that are no more
than polynomially longer (in the dimension) than the lattice minimum. In particular, this
could render lattice-based cryptography insecure.

The newer types of efficient SVP and CVP solvers seem to at least partially circumvent
lattice reduction: The Ajtai et al. solver only uses a LLL-type algorithm and the Voronoi-
based Micciancio-Voulgaris uses strong reduction only to improve the constant in the expo-
nent of its complexity bound, whereas the cost of the enumeration is highly dependent on the
strongness of the reduction of the input basis. This raises the question of the relevance of lat-
tice reduction in the first place. An important step towards assessing this relevance consists
in determining whether a BKZ-like trade-off between cost and smallness of the computed
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vectors could be achieved (or even beaten) without lattice reduction. For example, is it pos-
sible to accelerate the Ajtai et al. and Micciancio-Voulgaris algorithms, without lowering the
output quality too much?

Finally, even if the tasks of improving LLL-type algorithms and SVP/CVP solvers seem
quite distinct, the works described in Chapters 2 and 3 suggest a few possible links. Nat-
urally, it is tempting to exploit the analysis of the BKZ algorithm based on dynamical sys-
tems to simplify and maybe improve the block-based algorithms for fast LLL-type reduc-

tion [109, 63, 121]. In the other direction, the lift-reduction strategy developed for the L' of
Section 2.3 could be investigated in the context of solving SVP. At a very high level, it con-
sists in finding a sequence of small deformation steps such that: The start of the deformation

path is already handled (in the case of fl, a reduced basis of some lattice); The ending point

of the deformation path contains the solution of the problem under scope (in the case of il,
a reduced basis of the input lattice); And each deformation step is computationally easy. In
the case of SVP, this suggests starting from an easy lattice and progressively deforming it
towards the desired lattice, so that each step is cheaper to solve than a general instance of
SVP.






CHAPTER

Asymptotically Efficient Lattice-Based
Encryption Schemes

The aim of an encryption scheme is to securely transmit information between two parties.
An asymmetric, or public-key, encryption scheme allows anyone to encrypt a message using
the receiver’s public key, while only the receiver can decrypt messages encrypted under its
public key, using the associated secret key. As opposed to symmetric encryption, asymmet-
ric encryption does not require the parties to have previously agreed on a shared secret key.
Asymmetric encryption schemes were first proposed at the end of the 1970’s [101, 70]. Most
public-key encryption schemes deployed today heuristically /provably rely on the assump-
tion that (a variation of) one of the following problems is hard to solve:

e The integer factorisation problem: Given an integer N which is the product of two
large primes, factor N.

e The discrete logarithm problem in finite fields (DLP). Given a finite field [F, a genera-
tor g of the group of units F* and an element & € F*, find x € Z such that h = g*.

e The discrete logarithm problem in elliptic curves (ECDLP). Given an elliptic curve E
over a finite field, a generator g of a large subgroup of E and an element & in that
subgroup, find x € Z such thath = x - g.

It is worth noting that the actual hardness assumptions that are made involve average in-
stances for specific input distributions: Typically, DLP and ECDLP involve a random /, while
IF involves random prime factors.

All known encryption schemes relying on these problems suffer from at least two main
drawbacks. First, they are inherently slow. The operations that are performed for encryp-
tion and decryption, such as modular exponentiation, typically cost O(7%) in naive arith-
metic or O(n?*¢) using fast integer multiplication, where 7 is the bit-size of the key pair.
Further, in the case of IF and DLP (and also for ECDLP for the curves used in pairing-based
cryptography), the best known attacks are sub-exponential with respect to the key-length:
They can typically be mounted with 200" pit operations. In order to resist to attacks cost-
ing up to 2! (we call t the security parameter), then n should be set Q)(t*), making encryp-
tion and decryption typically cost Q(t°). Second, the fact that these problems can all be
solved in polynomial-time using a quantum computer [112, 113] raises the question whether
they might not share some common weakness, even against classical computers. Further,
many schemes are proved secure under the assumptions that ad-hoc variants of IF, DLP
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and ECDLP are hard, creating a myriad of related but not so clearly equivalent hardness
assumptions.

A few other mathematical objects and corresponding algorithmic problems seem to en-
able cryptographic constructions without some of the drawbacks mentioned above. These
include error correcting codes and systems of multivariate polynomial equations. However,
the natural problems on Euclidean lattices seem to be the most promising candidates. On
the one hand, schemes based on lattices have very low asymptotic complexities (they typi-
cally involve basic linear algebra operations, over small rings), which can be lowered even
further using specific subfamilies of lattices (see below). On the other hand, these schemes
admit security proofs under a small number of well-identified worst-case problems (as op-
posed to average-case hardness assumptions for specific input distributions). Additionally,
lattice-based cryptographic primitives involve simple and flexible operations: this flexibility
allows for the design of primitives that were not realized before, such as fully homomorphic
encryption [38].

Lattice-based encryption comes in two flavours: practical with heuristic security argu-
ments, and slower but with very strong security proofs. From a practical perspective, the
NTRUEncrypt scheme offers impressive encryption and decryption performances. It was
devised by Hoffstein, Pipher and Silverman, and first presented at the Crypto’96 rump ses-
sion [54]. Although its description relies on arithmetic over the polynomial ring Z[x] / (x" —
1) for n prime and g a small power of 2 (we use the notation Z, to denote the ring of inte-
gers modulo g), it was quickly observed that breaking it could be expressed as a problem
over Euclidean lattices [21]. At the ANTS'98 conference, the NTRU authors gave an im-
proved presentation including a thorough assessment of its practical security against lattice
attacks [55]. We refer to [53] for an up-to-date account on the past 15 years of security and
performance analyses. Nowadays, NTRUEncrypt is generally considered as a reasonable al-
ternative to the encryption schemes based on IF, DLP and ECDLDP, as testified by its inclusion
in the IEEE P1363 standard [56]. It is also often considered as the most viable post-quantum
public-key encryption (see, e.g., [94]).

In parallel to a rising number of attacks and practical improvements on NTRUEncrypt
the (mainly) theoretical field of provably secure lattice-based cryptography has steadily been
developed. It originated in 1996 with Ajtai’s acclaimed worst-case to average-case reduc-
tion [3], leading to a collision-resistant hash function that is as hard to break as solving sev-
eral worst-case problems defined over lattices. Ajtai’s average-case problem is now referred
to as the Small Integer Solution problem (SIS). Another major breakthrough in this field
was the introduction in 2005 of the Learning with Errors problem (LWE) by Regev [98, 99]:
LWE is both hard on the average (worst-case lattice problems quantumly reduce to it), and
sufficiently flexible to allow for the design of cryptographic functions. In the last few years,
many cryptographic schemes have been introduced that are provably at least as secure as
LWE and SIS are hard (and thus provably secure, assuming the worst-case hardness of lat-
tice problems). These include encryption schemes secure under Chosen Plaintext Attacks
and Chosen Ciphertext Attacks, identity-based encryption schemes, digital signatures, etc
(see [99, 91, 39, 17, 1] among others, and the surveys [74, 100]).

The currently easiest (and most efficient) way to build encryption schemes whose secu-
rity relies on the worst-case hardness of standard lattice problems (such as SIVP,, for approx-
imation factors <y that are polynomial in 1) is to proceed via the LWE problem. To formulate
it, we need the following notation: For an s € Z[, and a distribution x over Z,, we let Ds
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denote the distribution over Z"*! obtained by sampling a < U(Z}) and e < x and return-
ing (a, (a,s) +e¢). The Computational Learning With Errors Problem Comp-LWE, , is as
follows: Given n and an access to an oracle that samples from Ds , for some s € Zf;, find s.
The Decisional Learning With Errors Problem Dec-LWE, , is as follows: Let s < U(ZZ) ;
Given access to an oracle O which is sampling from either U(Zg“) or D y, decide in which
situation we are. Regev showed that if x is the Gaussian distribution of standard devia-
tion ag reduced modulo g and rounded to the closest integer (which we denote by x,), then:

o Ify,qg > w(\/n/a) (resp. v,q > Q(n/wa), then there exists a quantum polynomial-time
(resp. sub-exponential-time) reduction from SIVP,, to Comp-LWE, , ..

e If g < poly(n) (resp. g < 2°(")) is prime, then there exists a randomised polynomial-
time (resp. sub-exponential-time) reduction from Comp-LWE, ,, to Dec-LWE, ;..

When the number m of calls to the oracle is predetermined, then LWE has a natural
linear algebra interpretation. Comp-LWE consists in finding s € Z? from (A, As + e),
where A <= U(Z7™") and e <> x™, while stating that Dec-LWE is hard to solve means

that for s <> U(Z}), the distributions U(ZZ/"X("H)) and (A, As +e), with A < U(Z™"),
are computationally indistinguishable.

Ajtai [5] showed how to simultaneously sample, in polynomial-time, an LWE matrix A €
Z7™" and a (trapdoor) basis S = (s1,...,8m) € Z™ " of the lattice At ={beczZ":bTA=
0 mod g}, with the following properties: The distribution of A is within exponentially small
statistical distance to U(ZZ””) ; The basis vectors sy, ..., s, are short. Recently, Alwen and
Peikert [10, 11] improved Ajtai’s construction in the sense that the created basis has shorter

vectors: They achieved ||S|| = O(ry/m) with m = Q(n™ 0%; 1) for any integer r.
These results allow for the elegant design of a cryptosystem that is provably secure under

Chosen Plaintext Attacks [39, 91]:

e Key Generation: Run the Alwen-Peikert algorithm and obtain a pair (A, S) € Z§"™*" x
Z;>™"; Sample A’ <= U(Z7™") and let (A, A) be the public key while S is the secret
key;

e Encryption: To encrypt M € {0,1}", sample s <> U(Z]) and e, e’ <> x", and re-
turn (As+e, A's+¢e + |q/2|M);

e Decryption: To decrypt (C1,C2) € Z}' x Z', first compute SC; mod ¢, which should
be exactly Se (over the integers), since the entries of both S and e are small with re-
spect to g; Then recover e by multiplying by S~! and then recover s; Using C, and s,
recover e’ + |q/2]|M; At this stage, the vector M can be recovered componentwise by
assessing whether the given component is close to q/2 or to 0.

Unfortunately, this encryption scheme is bound to remain somewhat inefficient, as the
key-size is Q(m?logq) = Q(n?). In this chapter, we present two ways of waiving this re-
striction and obtaining quasi-optimal efficiency: The key-size and the run-times of encryp-
tion an?l )decryption all will be O(t), where t is the security parameter (i.e., all known attacks
cost 24(1)),
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4.1 A first attempt, from a trapdoor one-way function

In order to accelerate encryption schemes based on lattices, Micciancio [71] introduced the
class of structured cyclic lattices, which correspond to ideals in polynomial rings Z[x] / (x" —
1), and presented the first provably secure one-way function based on the worst-case hard-
ness of the restriction of poly(n)-SVP to cyclic lattices. At the same time, thanks to its al-
gebraic structure, this one-way function enjoys high efficiency: O(n) evaluation time and
storage cost. Subsequently, Lyubashevsky and Micciancio [68] and independently Peikert
and Rosen [92] showed how to modify Micciancio’s function to construct an efficient and
provably secure collision resistant hash function. For this, they introduced the more gen-
eral class of ideal lattices, which correspond to ideals in polynomial rings Z[x]/ f(x) (via
the isomorphism that consists in identifying a polynomial to its coefficient vector). In this
chapter, we will restrict ourselves to f(x) = x" + 1 with n a power of 2 (this is the 2n-th
cyclotomic polynomial, and Z[x]/(x" + 1) is the ring of integers of the 2n-th cyclotomic
number field). The collision resistance relies on the hardness of the restriction of poly(n)-
SVP to ideal lattices (called poly(n)-Ideal-SVP). The average-case collision-finding problem
is a natural computational problem called Ring-SIS, which has been shown to be as hard as
the worst-case instances of Ideal-SVP.

The Small Integer Solution problem with parameters g, m, B (SIS, ;) is as follows:
Given 7 and a matrix A sampled uniformly in Zj*", find e € Z™ \ {0} such that e’ A =
0 mod g (the modulus being taken component-wise) and ||e|| < B. The Ring Small Integer
Solution problem with parameters gq,m, p and f (Id-SISJ;/m,ﬁ) is as follows: Given n and m
polynomials g1, ...,&mn chosen uniformly and independently in Z, [x]/f, find ey, ..., e €
Z[x] not all zero such that ) ;. e;gi = 0in Z,[x]/f and [le|| < B, where e is the vector
obtained by concatenating the coefficients of the ¢;’s. 1d-SIS is exactly SIS, where G is chosen
to be rot¢(g). The matrix rotf(g) is defined as follows: If r € Z[x]/f, then rots(r) € Q™"
is the matrix whose rows are the x'r(x) mod f(x)’s, for 0 < i < n; This is extended to the
matrices A over Q[x|/ f, by applying rotf component-wise.

Our construction attempts to use a variant of LWE using a structured matrix A instead
of A <> U(ZJ]*"). More specifically, The Ideal Learning With Errors problem Comp-Id-
LWE, 1y is the same as Comp-LWE restricted to m calls to the oracle Ds y, except that A =
rots(a) with a <= U((Z,4[x]/f)™). The space saving due to using Id-LWE arises from the
fact that n rows of A may be stored with 1 elements of Z, instead of n?. This allows us to set
Id-LWE’s m to be n times smaller than LWE’s m. The efficiency improvement arises from the
fact that a multiplication rots(g) - b may be performed in quasi-linear time, as the coefficients
of the obtained vector are those of the polynomial b(x) - g(1/x) mod x" 4 1, which may be
computed efficiently using fast polynomial multiplication [37, Ch. 8]. However, it is not
straightforward to adapt Regev’s reductions from worst-case lattice problems to Dec-LWE,
to this structured setting (although this has been recently achieved by Lyubashevsky, Peikert
and Regev [69], as explained in the next section). To circumvent this difficulty, we proposed
a new reduction, directly from Id-SIS to Id-LWE, using Regev’s quantum reduction:

Theorem 10 Let q,m, n be integers with ¢ = 3mod 8, n > 32 a power of 2, poly(n) >
m > 4llogg and a < min(*,0.0%). Let x, be the normal law of standard devia-

104/In(10m)

tion aq, reduced modulo q and rounded to the closest integer. Suppose that there exists an
algorithm that solves Comp-Id-LWE, ,, x in time T and with probability ¢ > 4mexp (— 7).



4.2 A security proof for NTRUEncrypt 45

Then there exists a quantum algorithm that solves Id—SISq L,y in time poly(T, n) and with
7 2
probability g—i - 0(&) — 2—Q(n)

This result ensures that Comp-Id-LWE is indeed at least as hard to solve as worst-case
lattice problems for ideal lattices, because 1d-SIS is known to be so [68, 92]. However, it
is weaker than what could hope from a full-fledged adaptation of Regev’s worst-case to
average-case reduction, for two reasons: First, Comp-Id-LWE is restricted to a fixed m, and
second it is not clear how to derive from the result above that a decisional variant of Comp-
Id-LWE is also hard.

However, an asymptotically efficient encryption scheme can still be built. At this stage,
the hardness of Comp-Id-LWE provides us a family of one-way functions: s — rot(a) - s +
e. Furthermore, the Ajtai-Alwen-Peikert trapdoor construction for LWE can be adapted to
derive a a family of trapdoor one-way functions, see [119]. By combining this trapdoor func-
tion with the Goldreich-Levin generic hardcore function [40, Sec. 2.5] we obtain a security
proof for the following encryption scheme Id-Enc.

e Key generation. For security parameter 7, run the modified Ajtai-Alwen-Peikert algo-
rithm from [119] to get g € (Z,[x]/(x" +1))™ and a trapdoor S (such that S- g = 0
in Z;[x]/(x" +1)). Let {; = O(nlogq) = O(n), generate r € Zﬁ’MM uniformly and
define the Toeplitz matrix Mgy € ZéM xli (allowing fast multiplication [89]) whose i-th
row is [rj,...,7s,+i—1]. The public key is (g, r) and the secret key is S.

e Encryption. Given /)-bit message M with {j; = n/logn = Q)(n) and public key (g, r),
sample (s, e) withs € Z]! uniform and e sampled from y,, and evaluate C; = rot(g)" -
s +e. Compute C; = M@ (Mg -s), where s is viewed as a string over Zﬁ’, the
product M¢y, - s is computed over Z,, and the @ notation stands for the bit-wise XOR
function. Return the ciphertext (C1, Cy).

e Decryption. Given ciphertext (C;, Cz) and secret key (S, r), invert C; to compute (s, e)
such that rot¢(g)" -s + e = Cj,and return M = C; & (Mgp - ).

Theorem 11 Any chosen plaintext attack against indistinguishability of Id-Enc with run-
time T and success probability 1/2 + ¢ provides an algorithm for Id—LWE{;m,Xw with run-
time O(23*Mn3¢=3 . T) and success probability Q(2~Mn =1 . ¢).

4.2 A security proof for NTRUEncrypt

Last year, Lyubashevsky, Peikert and Regev [69] proposed in a concurrent and independent
work a full-fledged adaptation of Regev’s reductions for Dec-LWE, to the case of structured
lattices. To define the Decisional Ring Learning With Errors Problem (Dec-RLWE), we first
need a few notations.

Let R = Z[x]/(x" 4 1) for n a power of 2 and R, = Z4[x]/(x" +1) = R/(qR), for
an integer q. For s € R; and ¢ a distribution in R;, we define A;y as the distribution ob-
tained by sampling the pair (a,as + e) with (a,e) <= U(R;) x ¢. The (parametrised) dis-
tributions ¥, used by Lyubashevsky et al are a bit technical to define, but may be thought
of as n-dimensional Gaussian vectors with standard deviations ag, rounded to the closest
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integer vector and reduced modulo g. They actually differ a little from this: For instance,
the distribution v, is itself chosen randomly, from a (parametrised) distribution Y,. The im-
portant facts to be remembered are that sampling from Y, and from the sample ¥, can be
performed in quasi-linear time (with respect to nlogg), and that the samples from 1, are
small (smaller than ag/nw(+/logn) with overwhelming probability) and can be obtained
in quasi-linear time (with respect to n log g).

The Ring Learning With Errors Problem with parameters g and a (Dec-RLWE, ;) is as
follows. Let i <= Y, and s <= U(R,). Given access to an oracle O that produces samples
in R; x R,, distinguish whether O outputs samples from A y or from U(R; x R;). The dis-
tinguishing advantage should be 1/poly(n) (resp. 2-°(")) over the randomness of the input,
the randomness of the samples and the internal randomness of the algorithm. It was shown
in [69] that there exists a randomised polynomial-time (resp. sub-exponential) quantum re-
duction from -Id-SVP to Dec-RLWE, ,, with v = w(n'°logn)/a (resp. Q(n*°)/a), under
the assumptions that: ag = w(n/logn) (resp. Q(n'?)) with a € (0,1); and g = poly(n) is
prime such that x”* 4 1 has n distinct linear factors modulo g.

With Ron Steinfeld, we exploited the proven hardness of the Dec-RLWE problem to mod-
ify NTRUEncrypt so that it becomes provably secure, under the assumed quantum hard-
ness of standard worst-case lattice problems, restricted to ideal lattices. The revised scheme
NTRUEncrypt’ is as follows.

e Key generation. Sample f’ from Dz, using the Gentry et al. sampler (Theorem 1);
Let f = 2f’ + 1 and restart if f is not invertible in Ry. Similarly, sample g from U(R;).
The secret key is f, while the publickey is h = 2g/f € R7.

e Encryption. Given message M € R whose coefficients belong to {0,1}, set s,e <
¢a < Y4 and return ciphertext C = hs +2¢ + M € R,.

e Decryption. Given ciphertext C and secret key f, compute C' = f - C € R, and return
C’ mod 2.

The scheme is very similar to NTRUEncrypt, apart from minor-looking differences which
have significant impact for allowing for a security proof based on the hardness of Dec-RLWE.

1. In NTRUEncrypt, the polynomial rings are RNTRU = Z[x]/(x" — 1) with n a prime
number, and Rt]i\l TRU — Z4[x]/(x" — 1) with g a power of 2. These rings were modified
to match those for which Dec-RLWE is known to be hard.

2. As a side effect, the modification of g allows for setting NTRU’s p to 2 (in the original
scheme, p was chosen to be x + 2 or 3, because it is required to be invertible modulo 4.

3. In NTRUEncrypt, the secret key polynomial f’ and ¢ were chosen with coefficients
in {—1,0,1}, with predetermined numbers of coefficients being set to 0. Instead, we
sample f’ and g using discrete Gaussians over R, rejecting the samples that are not
invertible in R,;. This allows us for showing that f/g¢ is statistically close to uniform
over Ry

4. In NTRUEncrypt, no error term e is used in the encryption algorithm, and the nonce s
is chosen from a distribution similar to that of f’. Adding the error allows for relying
on the hardness of Dec-RLWE.
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By relying on fast arithmetic over polynomials, we obtain that the encryption and de-
cryption operations of NTRUEncrypt’ can be performed in time quasi-linear in #n. Further-
more, the key generation process is also very efficient, as the rejection probability is small:
The probability that x <= U(R,) is not invertible modulo 7 is O(n/q), and this fact can also
be shown to hold when x <= Dz, for a sufficiently large ¢.

The security of NTRUEncrypt’ relies on a mild modification of Dec-RLWE. First, us-
ing [12, Le. 2], it is possible to show that Dec-RLWE remains hard if s is sampled from 1,
(instead of s <= U(Ry)). Furthermore, the problem still remains hard if we assume that the a
of (a,as + e) is sampled from U(Ry) instead of U(R), because there are sufficiently many
invertible elements in R,. Given these modifications on Dec-RLWE, and the fact that2 € R qx ,
it follows that if & was sampled uniformly in R}, then a ciphertext 2(hs + ¢) + M would be
indistinguishable from uniform. This is our main contribution: We show that if / is sampled
as described, its statistical distance to uniformity is exponentially small. Overall, this leads
to the following result.

Theorem 12 Suppose n is a power of 2 such that ® = x" + 1 splits into n linear factors
modulo prime g = poly(n) such that q2—¢ = w(n*5log?n) (resp. 2~ = w(n®log® n)),
for arbitrary ¢ € (0,1/2). Leto = 2n/In(8nq) - g2 and a ™! = w(n®3lognc). If there
exists an Chosen Plaintext Attack against the Indistinguishability of NTRUEncrypt’ which
runs in time T = poly(n) and has success probability 1/2 4+ 1/poly(n) (resp. time T =
2°(") and success probability 1/2 +2°("), then there exists a poly(n)-time (resp. 2°") -time)
quantum algorithm for y-Id-SVP with v = O(n3log?® ng2+¢) (resp. v = O(n*log"® ng2*¢)).
Moreover, the decryption algorithm succeeds with probability 1 — n=“(}) over the choice of
the encryption randomness.

As mentioned above, the most important fact that remains to be proven is that the public
key polynomial is indeed close to uniformly distributed in R. We denote by D, the dis-
crete Gaussian Dz , restricted to qu + z, where z is an arbitrary element of Ry. The public
key uniformity is a direct consequence of the following result.

Theorem 13 Let n > 8 be a power of 2 such that ® = x" + 1 splits into n linear factors
modulo prime g > 5. Lete > 0 and o > 2n\/In(8nq) - 2*%. Letp € R, yi € Rgand z; =
—y;p~! mod g fori € {1,2}. Then

A vi+p-Dg.,

dg; U(R¥)| < 2%g7 L),
atp Do (">] =

The proof consists in showing that for every a € R, the probability that f1/f, = a is
extremely close to (g —1)™", where f; <> y1 + p - D;,,. For this, it suffices to show that for
every ay, a € RY, the probability that fia; + foa, = 0is extremely close to (9 — 1) ~". The fact
that f1 and f, are not sampled with rejection is handled via an inclusion-exclusion argument.
From now on, we assume for simplicity that fi, f, <= Dz ,. It then suffices to bound the
statistical distance to U(R;* x Ry X Ryg) of the triple (a1, a, fia1 + foa2) when a; <= U(Ry)
and f; <> Dz . The latter question is reminiscent of the left-over hash lemma [57], and a
bound can be obtained in this specific context using standard tools on discrete Gaussians [73,
39] (and some elementary algebraic number theory). The reader is referred to [118] for more
details.
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4.3 Perspectives

Replacing arbitrary lattices by ideal lattices and unstructured matrices by structured matri-
ces was a significant step towards making lattice-based cryptography practical. However, its
deployment remains curbed by a few important difficulties. First and perhaps most impor-
tantly, the practical limits of the best known attacks are still fuzzy. At the time this document
is being written, the statement from [35] that solving -SVP with v = (1.01)" is hard with
current implementations seems generally accepted. However, it gives no precise estimate of
how hard it actually is, nor how it would extrapolate for different levels of security.

From a security viewpoint, the restriction to ideal lattices further narrows the link to
NP-hardness results. The LWE and SIS problems were already only known to be no easier
than y-SIVP and y-CVP for values of 7y for which no NP-hardness result is known to hold.
In fact, it is even strongly suspected that these problem relaxations are not NP-hard, as they
belong to NPNcoNP [2]. But in the case of ideal lattices, no NP-hardness result is known
to hold even for v = 1. On the other hand, there is no known significant computational
advantage when standard lattice problems are restricted to ideal lattices (apart from the gap
decisional version of SVP). The assumption that the restriction to ideal lattices creates no
vulnerability needs further investigation. On a related topic, the argument that lattice-based
cryptography (including schemes based on ideal lattices) resists would-be quantum comput-
ers needs further backing. For the moment, it relies on the single observation that it is not
known how to exploit quantum computing to solve standard lattice problems significantly
more efficiently than with classical computers. Proving a quantum hardness result (such as
QMA-hardness, the quantum equivalent to NP-hardness) for a lattice problem would sub-
stantiate the assumption.

Finally, cryptography is far from being restricted to encryption resisting to Chosen Plain-
text Attacks. Far more functionalities and efficient implementations thereof would be re-
quired if lattice-based cryptography were to be deployed widely. There has already been
quite some effort spent on signatures (see, e.g., [67]) and hash functions [68, 93]. On the
other hand, at the time being there is no lattice-based encryption scheme both resisting Cho-
sen Ciphertext Attacks and consisting of quasi-linear time algorithms. An interesting goal in
this context would be to discover an equivalent to pairings on elliptic curves in the context
of lattices, as these have allowed for the efficient realization of many cryptographic function-
alities.
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PERTURBATION ANALYSIS OF THE QR FACTOR R
IN THE CONTEXT OF LLL LATTICE BASIS REDUCTION

XIAO-WEN CHANG, DAMIEN STEHLE, AND GILLES VILLARD

ABSTRACT. In 1982, Arjen Lenstra, Hendrik Lenstra Jr. and Lészl6é Lovész in-
troduced an efficiently computable notion of reduction of basis of a Euclidean
lattice that is now commonly referred to as LLL-reduction. The precise def-
inition involves the R-factor of the QR factorisation of the basis matrix. In
order to circumvent the use of rational/exact arithmetic with large bit-sizes,
it is tempting to consider using floating-point arithmetic with small precision
to compute the R-factor. In the present article, we investigate the accuracy
of the factor R of the QR factorisation of an LLL-reduced basis. Our main
contribution is the first fully rigorous perturbation analysis of the R-factor of
LLL-reduced matrices under column-wise perturbations. Our results are very
useful to devise LLL-type algorithms relying on floating-point approximations.

1. INTRODUCTION

Let B € R™*™ be of a full column rank matrix. It has a unique QR factor-
ization B = @QR, where the Q-factor Q € R™*"™ has orthonormal columns, i.e.,
QTQ = I (where I is the identity matrix), and the R-factor R € R™*" is upper
triangular with positive diagonal entries (see, e.g., [6, §5]). This fundamental tool
in matrix computations is central to the LLL reduction algorithm, named after the
authors of [12], which aims at efficiently finding reduced bases of Euclidean lattices.

A FEuclidean lattice L is a discrete subgroup of R™ and it can always be repre-
sented by a full column rank basis matrix B € R™*": L = {Bx,x € Z"}. If n > 2,
L has infinitely many bases. They are related by unimodular transforms, i.e., mul-
tiplication on the right of B by an n X n integer matrix with determinant =+1.
Given a lattice, one is often interested in obtaining a basis whose vectors are short
and close to being orthogonal. Refining the quality of a basis is generically called
lattice reduction. Among many others, lattice reduction has applications in cryp-
tology [19], algorithmic number theory [4], communications [16], etc. LLL takes
as input a basis matrix B and returns a basis of the same lattice which is made
of vectors whose norm product is not arbitrarily larger than the lattice determi-
nant det L = y/det(BT B) (see Theorem 5.2). More informatively, LLL returns a
new basis matrix of the same lattice whose jth basis vector has norm not arbitrar-
ily larger than the norm of the orthogonal projection of this basis vector onto the

2000 Mathematics Subject Classification. Primary 11H06, 65F25; Secondary 11Y99, 65F35.
Key words and phrases. lattice reduction, LLL, QR factorization, perturbation analysis.
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orthogonal complement of the space spanned by the first j — 1 basis vectors for each
i>2

The original LLL algorithm [12] assumed that the input basis is integral and
used integer arithmetic for the operations on the basis and rational arithmetic for
the operations on the R-factor. The bit-size of each rational (the bit-size of a/b
with a,b € Z is the sum of the bit-sizes of a and b) is bounded by a polynomial
in the bit-sizes of the input matrix entries. Nevertheless, the cost of the rational
arithmetic grows quickly and dominates the overall cost. Schnorr [22] was the
first to use approximations of these rationals in a rigorous way. His algorithm was
improved recently by Nguyen and Stehlé [17, 18] who significantly decreased the bit-
size required for each approximation, and thus the overall complexity of the LLL-
reduction. (Note that contrarily to [17, 18] Schnorr’s approximations are not relying
on standard floating-point arithmetic.) To further decrease the required precision
and therefore the cost, Schnorr [11, 23, 24] suggested using the Householder QR
factorization algorithm instead of the Cholesky factorization algorithm as was used
in [17, 18], since it is known that the R-factor computed by Householder’s algorithm
is more accurate than the one computed with the Cholesky factorization of BT B.

The R-factor of the matrix B varies continuously with B. If we consider a per-
turbed matrix B + AB that is sufficiently close to B (note that in the perturbation
matrix AB, A does not represent anything, i.e., AB is not a product of A and B),
then its R-factor R + AR remains close to R. The goal of the present article is to
investigate how AB affects AR, for LLL-reduced matrices B. This perturbation
analysis helps understanding and providing (a priori) guarantees on the quality of
numerically computed factors R. The QR-factorization is typically computed by
Householder reflections, Givens rotations or the modified Gram-Schmidt orthogo-
nalization. These algorithms are backward stable with respect to the R-factor: if
the computations are performed in floating-point arithmetic, then the computed R
is the true R-factor of a matrix B which is very close to the input matrix B (see [7,
§18]). Along with the backward stability analysis, a perturbation analysis pro-
vides accuracy bounds on the computed R. In the present paper, we consider a
perturbation AB that satisfies

(L1) AB| < C|B],

where ¢; ; = 1forall 4, j and € > 0 is a small scalar (it will be specified in the relevant
theorems to be given in the paper how small it needs to be for the results to hold).
The motivation for considering such a class of perturbations is that the backward
rounding error from a rounding error analysis of the standard QR factorization
algorithms fits in this class with € = O(u), where we omitted the dependence with
respect to the matrix dimensions and u is the unit roundoff (see [7, Th. 18.4] and
Theorem 6.4 given later).!

OUR RESULTS. Our main contribution is the first fully rigorous perturbation
analysis of the R-factor of LLL-reduced matrices under the perturbation (1.1) (The-
orem 5.6). In order to make this result consistent with the LLL-reduction (i.e., the

INote that the description of the backward error in [7, Th. 18.4] was modified in the newer
edition [8, Th. 19.4]. In the latter, the matrix equation (1.1) is replaced by ||Ab;|| < g||b;]|, for
all i. The two formulations are equivalent (up to a small factor that is polynomial in the matrix
dimensions), but the matrix equation (1.1) is more suited for our sensitivity analysis.
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perturbed reduced basis remains reduced, possibly with respect to weaker reduc-
tion parameters), we introduce a new notion of LLL-reduction (Definition 5.3).
Matrices reduced in this new sense satisfy essentially the same properties as those
satisfied by matrices reduced in the classical sense. But the new notion of reduction
is more natural with respect to column-wise perturbations, as the perturbation of
a reduced basis remains reduced (this is not the case with the classical notion of
reduction). Another important ingredient of the main result, that may be of inde-
pendent interest, is the improvement of the perturbation analyses of [1] and [2§]
for general full column rank matrices (section 2). More precisely, all our bounds
are fully rigorous, in the sense that no higher order error term is neglicted, and
explicit constant factors are provided. Explicit and rigorous bounds are invaluable
for guaranteeing computational accuracy: one can choose a precision that will be
known in advance to provide a certain degree of accuracy in the result. In [1, §6],
a rigorous error bound was proved. A (much) smaller bound was given in [1, §§],
but it is a first-order bound, i.e., high-order terms were neglected. Our rigorous
bound is close to this improved bound. Our approach to deriving this rigorous
bound is new and has been extended to the perturbation analysis of some other
important matrix factorizations [3]. Finally, we give explicit constants in the back-
ward stability analysis of Householder’s algorithm from [8, §19], which, along with
the perturbation analysis, provides fully rigorous and explicit error bounds for the
computed R-factor of a LLL-reduced matrix.

IMPLICATIONS. Our results are descriptive in nature. However, the rigorous
and explicit error analysis and the new notion of LLL-reducedness should lead to
significant algorithmic improvements. Intuitively, we formalize the idea that only
the O(n) most significant bits of the vectors matter for their LLL-reducedness.
Such a property has dramatic algorithmic consequences, as it implies that instead
of computing with all bits we shall try to make use of only O(n) bits for each matrix
entry. For instance, in a context similar to [27], our result implies that in order to
check the LLL-reducedness of a matrix, one only needs to consider O(n) most sig-
nificant bits of each column. This provides a O(n%)-time (resp. O(n**¢)-time) LLL
certificate with naive integer arithmetic (resp. with FFT-based arithmetic [26]).
Also, our results have been used to devise an efficient algorithm that improves
the LLL-reducedness of an already LLL-reduced basis [15]. That algorithm finds
a good unimodular transform by looking only at the O(n) most significant bits of
each column of the input matrix. Furthermore, the present work is the first step
towards achieving Schnorr’s goal of an LLL algorithm relying on the floating-point
Householder algorithm. This goal has been reached in [14], which relies on the
present results. Finally, these results helped devising an LLL-reduction algorithm
whose bit-complexity is quasi-linear in fixed dimension [21], in the fashion of the
Knuth-Schénhage quasi-linear time ged algorithm [10, 25]. Roughly speaking, the
first k£ bits of the quotients sequence of Euclid’s ged algorithm depends only on the
first 2k bits of the two input integers. Knuth and Schénhage use that property
to compute the quotients sequence by looking only at the first bits of the remain-
ders sequence. Adapting this strategy to lattices involves truncations and hence
perturbations of the basis vectors.

ROAD MAP. In section 2, we give our perturbation analysis of the R-factor for
general full column matrices. Sections 3, 4 and 5 specialize the analysis to different
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sets of matrices, including LLL-reduced matrices. Finally, in section 6, we provide
explicit backward error bounds for Householder’s QR factorization algorithm.

NortaTION. If b is a vector, then |b|, denotes its ¢, norm. If p = 2, we
omit the subscript. The jth column of a matrix A = (a;;) is denoted by a;
and |A| denotes (|a; ;|). We use the MATLAB notation to denote submatrices:
The matrix A(iy : i2,71 : j2) consists of rows i1 to i3 and columns j; to jo of A;
If 41 and i5 (resp. j; and ja) are omitted, then all the rows (resp. columns) of A
are kept; Finally, if i1 = 4o (resp. j1 = j2), we will write A(41,71 : j2) (resp.
A(i1 142, j1)). The Frobenius norm is [|Alr = (32, ; aaj)lm. The ¢, matrix norm
is [|Allp = supxern ||A%|p/||1%|lp- We use ||Al|l1,00 to denote either the 1-norm or the
oo-norm. We have | A||z < ||A]|r. If A and B are of compatible sizes, then ||AB||r <
Al 7||Bll2 (see [8, Pbm. 6.5]) and ||ABll2 < ||A||2]|Bll2- If A is a square matrix,
then up(A) denotes the upper triangular matrix whose ith diagonal entry is a; ;/2
and whose upper-diagonal entries match those of A. We let D,, C R™*" be the set
of diagonal matrices with positive diagonal entries. For any nonsingular matrix X
we define

(1.2) condy(X) = ||| X[|X Y]], -

If a is a real number, then fi(a) denotes the floating-point number closest to a
(with even mantissa when a is exactly half-way from two consecutive floating-point
numbers). As a side-effect of our bounds being fully explicit, and since we tried to
give tight and explicit perturbation bounds, some of theses bounds involve rather
complicated and uninteresting terms. To make the presentation more compact, we
encapsulate them in the variables ¢y, co, .. ..

2. REFINED PERTURBATION ANALYSIS OF THE R-FACTOR

In this section, we first give a general matrix-norm perturbation bound, then
derive a column-wise perturbation bound.

2.1. A matrix-norm perturbation bound. We will present a rigorous bound
(i.e., without any implicit higher order term) on the perturbation of the R-factor
when B is under the perturbation (1.1). In order to do that, we need the following
two technical lemmas.

Lemma 2.1. Let n > 0, X € R**" and D = diag(dy,...,0n) € D,. We de-
fine {p =1 forn =1 and, for n > 2:

(2.1) (D:\/1+ max  (5;/6,)°.

1<i<j<n
Then we have
(2:2) [up(X) + D™ up(XT) D[ r < Gl X,
and in particular, when XT =X and D =1,

(2.3) lup ()17 < %HXHF.

Proof. The inequality (2.2) was given in [2, Lemma 5.1]. The inequality (2.3),
which was given in [2, Eq. (2.3)], can also be derived from (2.2). O
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The following provides a sufficient condition for the rank to be preserved during
a continuous change from a full column-rank matrix B to B + AB. This ensures
that the R-factor is well-defined on the full path. This is of course not true if the
matrix B is close to being rank deficient and the perturbation AB is not small, but
that situation is prevented by assumption (2.4).

Lemma 2.2. Let B € R™*"™ be of full column rank with QR factorization B = QR.
Let the perturbation matric AB € R™*™ satisfy (1.1). If

(2.4) conds(R)e < mL\/ﬁ’

for some constant 0 < ¢ < 1, then the matriz B + tAB has full column rank for
any |t| < 1. Furthermore, |ABR™Y||r < c.

Proof. The second assertion follows from (2.4). In fact, from (1.1) and (2.4), we
obtain

|aBR~ | << ClQIEIR] . < el el JIRIA ],
= emy/n condz(R) < c.
We now consider the first assertion. Notice that
QT(B+tAB)=R+tQTAB = (I +tQ"ABR™ ") R.

But [tQTABR™ || < ||[ABR™ Y2 < 1, thus I +tQTABR™" is non-singular. So
is QT (B +tAB), and hence B + tAB must have full column rank. O

Using the above two lemmas, we can prove the following perturbation theorem.

Theorem 2.3. Let B € R"™*" be of full column rank with QR factorization B =
QR. Let the perturbation matric AB € R™*" satisfy (1.1). If

V32 -1

(25) COHdQ(R)€ < T\/’ﬁ’
then B + AB has a unique QR factorization
(2.6) B+ AB=(Q+ AQ)(R+ AR),
and

AR
(2.7) IAR|r <eci(m,n)x(B)e,

Rl
where, with ¢, defined in (2.1):
(2.8) c1(myn) = (VB + V3)mnt/2,

. ¢ol|lIRIIR~YD||_|D~*R

(29)  x(B)=infpep, x(R.D), x(R,D)= W olLlo R,

Proof. The condition (2.5) ensures that (2.4) holds with ¢ = 4/3/2 — 1. Then, by
Lemma 2.2, B+ tAB is of full column rank for any |¢| < 1. Thus B + tAB has the
unique QR factorization

(2.10) B +1tAB = (Q + AQ(t))(R + AR(t)),

which, with AQ(1) = AQ and AR(1) = AR, gives (2.6).
From (2.10), we obtain (B + tAB)”(B +tAB) = (R + AR(t))T (R + AR(t)),
leading to

RTAR(t) + AR(t)TR=tRTQTAB +tABTQR + t?ABTAB — AR(t)T AR(t).
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Multiplying the above by R~7 from the left and R~' from the right, we obtain
RTARM)T + AR(t)R™!
=tQTABR™' +tR"TAB"Q+ R T (PABTAB — AR(t)"AR(t)) R™".
Since AR(t)R™! is upper triangular, it follows that
211) AR()R™' = uwp(tQTABR™ ! +tR"TAB* Q)
+up(®R"TABTABR™") —up[R"TAR(t)"AR(t)R™!].

Taking the F-norm on both sides of (2.11) and using Lemma 2.1 and the orthogo-
nality of @, we obtain

_ _ 1 _ 1 ~
(212) [IAR()R™||r < V2ItHABR 1||F+5152HABR 1II?E+EIIAR(¢)R Yz

Let p(t) = |AR(t)R~"||p and §(t) = [t|- |ABR="||p. Then from (2.12)
p(t)(V2 — p(t)) < 6(t)(2 + 6(t)).

Here the left hand side has its maximum of 1/2 with p(t) = 1/1/2 and is increasing
with respect to p(t) € [0,1/v/2]. But, by Lemma 2.2, for [¢| <1,

(2.13) 0<d(t) < ||ABR Yp <c=+/3/2—1.

This implies that 0 < 6(¢)(2 + 6(¢)) < 1/2 and p(t), starting from 0, cannot reach
its maximum. Hence p(t) < 1/4/2 for any |¢t| < 1. In particular, when ¢ = 1,

(2.14) |ARR™Y|F < 1/V2.

For any matrices X € R"*" and D € D,,, we have up(XD) = up(X)D. Thus

from (2.11) with ¢t = 1 it follows that
2.15) ARR™'D =up [(Q"TABR™'D)+ D~ (DR"T"AB"Q)D]
' +up(R"TABTABR™'D) — up(R"TARTARR™'D).

Then, using Lemma 2.1, the inequality |Jup(X)||r < || X||# for any X € R™*™ and
the orthogonality of @), we obtain from (2.15) that

IARR™'D|p < C|ABR™'D||p + [|ABR™|p|ABR™'D||F
+IARRT|p|ARR™' D] .
Therefore, with (1.1), (2.13) and (2.14), we have
kR Dl < 2o i)
< (V6 + V3)¢omn'/? |||R||R7Y D],
where in deriving the second inequality we used the fact that (, > 1. Therefore,
|AR|p = |[ARR™'DD™'R||p < |ARR™'D||p||D7'R]
< (V6 + V3)¢omn'/? |||RIIR(D]|, | D~ R]|2,
leading to the bound (2.7). O
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Remark 1. Theorem 2.3 is a rigorous version of a first-order perturbation bound
given in [1, §8], which also involves x(B). The new bound given here shows that
if (2.4) holds then the high-order terms ignored in [1, §8] are indeed negligible.
Numerical tests given in [1, §9] indicated that the first-order bound is a good
approximation to the relative perturbation error in the R-factor. This suggests
that the rigorous bound (2.7) is a good bound. By taking D = I in (2.9), we
obtain x(B) < v/2condy(R). The quantity conds(R) is involved in the rigorous
perturbation bound obtained in [1, §6] and can be arbitrarily larger than x(B).

Remark 2. If the assumptions of Theorem 2.3 hold for B with perturbation AB,
then they also hold for B.S, for any arbitrary column scaling S € D,,, with per-
turbation ABS. The new R-factor is RS and the corresponding error is ARS.
However, the quantity x(B) is not preserved under column scaling.

2.2. A column-wise perturbation bound. For j = 1,...,n, we define R; =
R(1:5,1:4), AR; = AR(1:4,1:j), r; = R(1:4,j) and Ar; = AR(1:4,7). Using
Zha’s approach [28, Cor. 2.2], we derive the following result.

Corollary 2.4. If the assumptions of Theorem 2.8 hold, then for j =1,....n,
A, |

(2.16) I

< er(m, )X (B, j)e,

where

Col[|R; IR D[, 1D~ eyl
(2.17) x(B,j) = inf Xx(R,D,j)>1, x(R,D,j) = ¢ 2 :
) X(B.j) = jnf ( o1

Proof. For any j < n, we define B; = B(:,1:j) and AB; = AB(:,1:j). Note that
|AB;| < eC|B,| and conda(Rj)e < conds(R)e < (1/3/2 —1)/(m+/n). Thanks to
Remark 2, we can apply Theorem 2.3 to B;S for an arbitrary S € D; with the
perturbation matrix AB;S. Therefore, for any D € Dy,

|AR;S||r < c1(m, §)Col|Rs1|R; D], || D7 R; S| .

Now, let the jth diagonal entry of S be 1 and the others tend to zero. Taking the
limit provides (2.16). The lower bound on x(B,j) in (2.17) follows from ¢, > 1
and

[IRARG DD || > (IRl RF DD gl = (|| Ry By gl = e

O

Remark 3. The quantity x(B,j) can be interpreted as an upper bound on the
condition number of the jth column of R with respect to the perturbation AB
of B. It is easy to check that the lower bound 1 on x(B,j) in (2.17) is reached
when j =1, i.e., that x(B,1) = 1.

In the following sections, we specialize Theorem 2.3 and Corollary 2.4 to several
different classes of matrices, that are naturally linked to the LLL reduction.

3. PERTURBATION ANALYSIS FOR SIZE-REDUCED MATRICES
We now study x(B,j) for the class of size-reduced matrices, defined as follows.

Definition 3.1. Let n > 0. A full column-rank matrix B € R™*" with R-factor R
is n-size-reduced if for any 1 <i < j <n, we have |r; ;| < n-r,.
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A matrix is 1-size-reduced if the largest element in magnitude in each row of
the R-factor is reached on the diagonal. An example is the QR factorization with
standard column pivoting (see, e.g., [6, Sec. 5.4.1]): one permutes the columns of the
considered matrix so that for any j < n, the jth column is the one maximising 7; ;
among the last n — j + 1 columns. If column pivoting is used, then the sorted
matrix is 1-size-reduced. The LLL algorithm [12] has a sub-routine usually called
size-reduction which aims at computing a 1/2-size-reduced matrix by multiplying
the initial matrix on the right by an integer matrix whose determinant is equal to 1
or —1. In the L? algorithm from [18], a similar sub-routine, relying on floating-point
arithmetic, aims at computing an 7-size-reduced matrix, for any specified > 1/2.

In subsection 3.1, we establish an upper bound on x(B,j). That upper bound
corresponds to a particular choice of scaling D in x(R, D, j). In subsection 3.2, we
compare our particular scaling with the different scalings discussed in [1, §9]. We
then give a geometric interpretation of the result we obtain in subsection 3.3.

3.1. Perturbation bounds for size-reduced matrices. We first propose a way
of selecting a good diagonal matrix D in (2.9) and in (2.17) to bound x(B) and
x(B, j), respectively. Combined with Theorem 2.3 and Corollary 2.4, this directly
provides matrix-norm and column-wise perturbation bounds.

Theorem 3.2. Let B € R™*™ with full column rank be n-size-reduced and let R
be its R-factor. For j = 1,...,n, we define 1 ; = r; ;/ maxi<k<; g,k and D} =
diag(ry 1,775 ;). Then

(31)  x(B) <21+ (n =1L +n)""" (o,

(3.2) X(B,j) < ea(d,n)(1+ n)jCD;(lglggj rek) /Il 7=1,m,

J

where (p is defined in (2.1) for any arbitrary positive diagonal matriz D, and

(3-3) c2(dym) = 2v14 (G = n? /(1 +n).

Proof. Let R;- be obtained from R; by dividing the kth column by maxi<i<k i,
for k = 1,...,j. The diagonal entries of R} match r; s from D’. Since R; is 7-
size-reduced, so is R}. Let T = D;flR;. We have ¢;; = 1 and ¢;, < n for k > i.
Therefore, we have |Tj_1| < Uj_l, where U; € R7*J is upper triangular with u; ; = 1
and u; p = —n for k > i, see, e.g., [8, Th. 8.12]. Since V; = Uj_1 satisfies v; ; = 1
and v; , = n(1 + 7)1 for k > i (see, e.g., [8, Eq. (8.4)]), we obtain

;—1

|R;||R; D} = |R}||R; ™| D = Dj|T5||T; Y|
1 2n 2p(1+n) - 2n(1+n)2

1 2n - 2(L4n)—3
< D}|U,|1v;| = D S
1 2n
1
Since |r; ;| <1 for any i, we have
j—2
(3.4) I1R;1|1R; D, o < (1429 > (@+n)k) <201+n)"

k=0
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Notice that |r,ql/7,, = |rpelMaXicp<p Tk /Tpp < MMaxi<p<p - 1t follows
that |D§-_1Rj| < (maxi<g<; Tk,k)|U;j|. Therefore,

)1, : Tl < TG =D
105 Rilloo < (1 G = 1)m) oo ris [Df 7 wsf| < V14 G = 1n? max i

Then from the above and (3.4), and using the fact that ||S|l2 < (||S||1]|S||ss)*/? for
any matrix S (see, e.g., [8, Eq. (6.19)]), we obtain

[|RIIR(Dy, |, 1D, Rll2 _—
<2(1+(m—1)n)(X+n)""7,

| R2
1R 1R 105 ][, 125~y | = 2V14 G = D+ n) T maxy < Tk
] - [[r;]] '

Thus from (2.9) and (2.17) we conclude that (3.1) and (3.2) hold, respectively. O

Remark 4. Suppose we use the standard column pivoting strategy in computing
the QR factorization of B. Then 7;; > r 1 for ¢« < k < j, implying that (D} <.

Then, if P is the pivoting permutation matrix
X(BP) <V2n2" and x(BP,j) < V25271 1 /||rj ]l
A similar bound on x(BP) was given in [1, Th. 8.2].

3.2. Choosing the row scaling in y(R, D). In [1, §9], Chang and Paige suggest
different ways of choosing D in x(R, D) to approximate x(B). One way is to
choose D, := diag(||R(%,:)||) and D = I and take min{x (R, D,),x(R,I)} as an
approximation to x(B). The other way is to choose D = D, (see below for the
definition of D.) and use x(R, D) as an approximation to x(B).

The following matrix shows that the scaling D’ from Theorem 3.2 can provide a
much better approximation to x(B) than min(x(R, D,), x(R,I)). Let

1 0 0
B=R=10 v v
0 0 1/y

When ~ goes to infinity, both x(R,D,) and x(R,I) tend to infinity, whereas
X(R,D’) remains bounded. This also indicates that min{x(R, D.),x(R,I)} can
be significantly larger than x(B).

The scaling D, is constructed from D.R™! with D. = diag(||r;||1). If we as-
sume that B is a generic 7-size-reduced matrix (or, more formally, that each r; ;
is uniformly and independently distributed in [—n - r;;,n - 7;,]), then with high
probability D, is the same as diag(maxi<p<;7kk), up to a polynomial factor
in n. We have D.D™! < D.|R™!| < D |V|D™!, where V is as in the proof of
Theorem 3.2 and D = diag(r; ;). This implies that up to a factor exponential
in n, [(DeR™Y)(:,4)|| is 1/r],;. The diagonal matrix D, is defined by D, (i,1) =
ming <x<; 1/[[(D.RY)(:, k)||2. Up to factors exponential in n and for generic n-
size-reduced matrices, the scaling D, can be equivalently defined by D.(i,i) =
minj<k<; 7} ;- A bound similar to the one of Theorem 3.2 can be derived for the

latter scaling. Nevertheless, if R is diagonal, then D, = I and x(R, D.) = v/2, but
X(R, D) can be significantly larger. Finally, one may note that it is not known how

2The description of D in [1, §9] has an unintended error.
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to compute D, from R in O(n?) arithmetic operations or less, while computing D’
requires only O(n) arithmetic operations.

3.3. Geometric interpretation of Theorem 3.2. It is easy to verify that

| dnax (7/h) < Gop S V2 max (r]/1).
When (maxi<;<;ri;)/|lrj|| = O(1), e.g., for a generic 7-size-reduced matrix with
|ri ;| expected to be somewhat proportional to r;,;, we see from (3.2) that the
quantity maxi<g<i<;(77;/7 ) bounds (up to a multiplicative factor that depends
only on j) the sensitivity of the jth column of the R-factor. Let x +— r(z) be
the piecewise affine interpolating function defined on [1,n] such that r(j) = r;;
for j = 1,...,n. For 1 and x5 in [1,n] such that r(z1) = r(x2), we consider the
quantity max,e(z, 2, 7(21)/7(2) = maxX,e(z, o, 7(22)/r(2), Which, as illustrated by
Figure 1, represents the multiplicative depth of the graph of r between x; and z5.

logr

log H

1 n

FIGURE 1. A possible graph of logr: on the left hand side, with
a depth h between z; and x5 (the multiplicative depth is exp(h));
on the right hand side, with the additive height function log H.

We define the maximum depth before r; ; as:

H; = max max r(z1) ,
1<z1<z2 <), r(z1)=r(z2) \z€[z1,22] T‘(.%‘)
which is illustrated on the right hand side of Figure 1. We now show the equivalence
between ( D! and H;. Without loss of generality, we consider only H,,.

_ L ’ /
Lemma 3.3. We have H, = maxi<;<j<n (7} ;/7i ;)

Proof. We first prove that for any ¢ and j such that 1 < ¢ < 5 < n, H, >
7 /i ;- We distinguish two cases, depending on the smallest index ko at which
maxi<g<j ',k is reached. If kg < ¢, then r;)j/rgﬂ- =1, ;/riq. r;; <ri;, the result
holds since H,, > 1; otherwise, we have r; ; > r; ;, leading to H,, > Tj,j/ri,Z' (in the
definition of H,,, consider x = i, x5 = j and a1 € [ko, ] such that r(z1) = r(z2)).
Suppose now that ¢ < kg. Since r}yj < 1, we have T;-,j/rg’l- < maxi<k<i Tk k/Tii-
The latter is not greater than H,, (in the definition of H,,, consider x =i, z1 < i
such that r(z1) = maxi<p<; % x and x2 € [i, ko] such that r(z2) = r(z1)).

We now prove that maxlgigjgn(r;j/r;,i) > H,. Let v1 <z < z9 in [1,n]
be such that H, = r(x1)/r(z) = r(x2)/r(xz). We suppose that 1 < z < z3 as
otherwise H,, = 1 < maxi<;<j<n(r};/7i,;). By the definition of r(-), the real x



PERTURBATION OF THE QR FACTOR R AND LLL REDUCTION 11

must be an integer. Similarly, either z1 or x5 is an integer. We consider these
two cases separately. Suppose first that z; € Z. Then r(z1) < r([x2]). We
must have max;<p<|z,| Tkk = Toy 2, a0 MAX)<p<[00] Thk = T[ao],[22]- LNIS gives
that r}, , =74 4/74, 2, and T’uz])[wz] =1. Thus H, =74, 5, /To,z = r'[wz]hzw/r;’m.
Suppose now that xo € Z. Then r(|z1]) > r(z2). Since maxi<k<q, r'k,k is reached

/ / _ —
before x1, we have . /7% » = Tuy 2y [Twx = Hy. O

If (max;<; 73,:)/||r;|| = O(1), then from Corollary 2.4 and Theorem 3.2 it follows
that | Arjl|/[[r;] & (1+n)’ Hje.

4. PERTURBATION ANALYSIS FOR WEAKLY-SIZE-REDUCED MATRICES

The perturbation bounds given in Theorem 3.2 does not indicate that size-
reducedness, as defined in section 3, is preserved after 7-size-reduced B is perturbed
to B+ AB. In fact, from (2.16) and (3.2),

(A1) JAr] < Ak < er(m, ea(iym) (1 + Y o ( max m e,
1<k<j

and in particular,

(4.2) |Ar; | < er(m,i)ea(d, n)(1+n)" (o ( lrg?%(i rk,k>5.

If the ry’s are increasing, then the upper bound in (4.1) with ¢ < j can be
arbitrarily larger than the upper bound in (4.2). Thus we cannot ensure that
|ri; + Ari ;| < nlri; + Ar;;|. Suppose we restrict ourselves to setting € as a
function of n only. Computationally, this corresponds to allowing ourselves to use
arbitrary precision arithmetic, but with a precision that shall depend only on the
dimension and not on the matrix entries. Then for any 1’ > 7, one may choose
Tr k'S so that the perturbed basis cannot be guaranteed 7'-size-reduced by the
perturbation bound. Overall, this means that given a basis that we are told is 7-
size-reduced, and given 1’ > 7, we cannot always ensure that it is 7’-size-reduced,
without setting the precision as a function of the matrix entries. This is a very
undesirable computational property. For this reason, we modify the notion of size-
reducedness. We will not be able to show that this new definition is preserved under
the perturbation analysis of the R-factor (although the counter-example above will
not work anymore): to obtain such a property, we will need a LLL-type set of
conditions relying on the weakened size-reduction (see section 5).

Definition 4.1. Let 1,6 > 0. A full column-rank matrix B € R™*" with R-
factor R is (1, 0)-weakly-size-reduced ((n,0)-WSR for short) if |r; ;| < nri; + 0r; ;
for any i < j.

The following matrix illustrates Definition 4.1: the magnitude of the coeffi-
cient 7; ; is bounded with respect to both r; ; and r; ;.

Tij < Tij

Lo

T35,
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As in the previous section, we analyze the quantity x(B,j) by looking at the
diagonal elements of the R-factor, i.e., the sequence of 7; ;’s.

Theorem 4.2. Let B € R™*™ with full column rank be (n,0)-WSR for somen >0
and @ > 0. Let R be its R-factor. Forj=1,...,n, weletr} ; =r;;/ maxi<i<; Tk k,

’
I 1 / ’ _ Thtl,k+1
D’ = diag(r} 1,...,7} ;) and §oy = H1§k<j max (T’ 1). Then

MB);ABJ)S¢%ﬂ$n+0xr+n+m%%(£%§m£WmﬂL ji=1,...,n
Proof. Without loss of generality, we assume that r1; = maxi<p<prgi. If this
is not the case, we divide the jth column of R by maxi<g<;j s for j = 1,...,n.
Note that x(B,j) is column-scaling invariant (see (2.17)), and that the quantities
(maxi<k<; 7k,k)/|[r;]l and §py are invariant under this particular scaling.

Let D = diag({p;,...,&p, ) and let R = RD~'. As x(B,j) is invariant under
column-scaling, we have x(B,j) = x(BD™!,j). The most important part of the
proof is to show that R is f-size-reduced with 7 = n + 6. Once this is established,
we will apply Theorem 3.2 to R to derive (4.3).

We want to prove that for any i < j, we have |r; ;| < 777, ;. Because of the (7, 0)-
WSR assumption, this will hold if

oy T T4
nﬂ +0 77 < (77 4 0) 1, .
$oj Lo €p;
Since & oy 2 & when j > i, it suffices to prove that 2]77 < g;j, or equivalently
. /

that the sequence of the 7;;’s is non-increasing. This is equivalent to showing

that gJ—J < 7”2’17]’1 holds for any j > 2, which is a direct consequence of the
D; D3.71

definition of & /-

We now apply Theorem 3.2 to BD~!. For any 1 < j < n, we have

X(B,j) = x(BD™',j) < e2(4,m)(1 + ﬁ)'jCB; ( lfgggj o) /1T

with D} = diag (mfi . The fact that the sequence of the 7; ;’s is non-

axX1<k<i Thk ) 1<i<j
increasing implies that D;» = diag (%)
11/ 1<i<

/2. This also gives that max;<<; 7). = 71,1. Finally, we have ||F,| = lx;ll/&0; =

. For the same reason, we have ¢ o/ <

[rjll/€p,. Since we assumed that r1; = maxi<k<n Tk,k, this completes the proof.
O

Remark 5. Naturally, as the assumption on B in Theorem 4.2 is weaker than in
Theorem 3.2, the bound obtained for x(B,j) is weaker as well. Indeed, it is easy
to show that we always have CD} < \ﬁﬁpg- Furthermore, fD} can be arbitrarily
larger than CDQ- For instance, consider {r;;}i1<i<5 defined by r11 =133 =155 =
1 and r99 = 744 = €, where € > 0 tends to 0. In this case, CD;, = 0O(1/e),
whereas £,/ = 0(1/?).

Remark 6. Similarly to size-reduced matrices, we cannot argue from the perturba-
tion results given in Corollary 2.4 and Theorem 4.2 that the weak size-reducedness
is preserved after the perturbation (cf. the discussion given at the beginning of
section 4). However, LLL-reduced matrices, which rely on weak size-reduction and
will be introduced in section 5, do not have this drawback.
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5. LLL REDUCTION IS A FIX-POINT UNDER COLUMN-WISE PERTURBATION

In the present section, after some reminders on Euclidean lattices, we will in-
troduce a modification of the LLL reduction [12] which is compatible with the
perturbation analysis of the R-factor that we performed in the previous sections.

5.1. Background on Euclidean lattices. We give below the background on lat-
tices that is necessary to the upcoming discussion. For more details, we refer to [13].
A Euclidean lattice is the set of all integer linear combinations of the columns of a
full column rank basis matrix B € R™*": L = {Bx,x € Z"}. The matrix B is said
to be a basis matrix of L and its columns are a basis of L. If n > 2, a given lat-
tice has infinitely lattice bases, but they are related to one another by unimodular
transforms, i.e., by right-multiplication by n x n integer matrices of determinant +1.
A lattice invariant is a quantity that does not depend on the particular choice of
a basis of a given lattice. The simplest such invariant is the lattice dimension n.
Let R be the R-factor of the basis matrix B. The determinant of the lattice L is
defined as the product of the diagonal entries of R: det(L) = [[,<;<,, 7i,i- Since
lattice bases are related by unimodular matrices, the determinant is a lattice in-
variant. Another important invariant is the minimum A(L) defined as the norm of
a shortest non-zero vector of L.

Lattice reduction is a major paradigm in the theory of Euclidean lattices. The
aim is to find a basis of good quality of a lattice given by an arbitrary basis. One
usually targets orthogonality and norm properties. A simple reason why one is
interested in short vectors is that they require less space to store. One is interested
in basis matrices whose columns are fairly orthogonal relatively to their norms
(which can be achieved by requiring the off-diagonal r; ;’s to be small and the
sequence of the 7;;’s to not decrease too fast), for several different reasons. For
example, it is crucial to bound the complexity of enumeration-type algorithms
that find shortest lattice vectors and closest lattice vectors to given targets in
the space [9, 5]. In 1982, Lenstra, Lenstra and Lovasz [12] described a notion
of reduction, called LLL reduction, that can be reached in time polynomial in the
size of the input basis and that ensures some orthogonality and norm properties.
Their algorithm immediately had great impact on various fields of mathematics
and computer science (we refer to [20] for an overview).

Definition 5.1. Let 7 € [1/2,1) and 6 € (n?,1]. Let B be a lattice basis matrix
and R be its R-factor. The basis matrix B is (d,n)-LLL-reduced if it is n-size-
reduced and if for any i we have §- 77, <77, 1 +77 4.

Originally in [12], the parameter n was set to 1/2, but this condition was relaxed
later by Schnorr [22] to allow inaccuracies in the computation of the entries of the
matrix R. Allowing > 1/2 does not change significantly the guaranteed quality of
LLL-reduced matrices (see below). The parameter § was chosen to be 3/4 in [12],
because this simplifies the expressions of the constants appearing in the quality
bounds of (8, 1/2)-LLL-reduced matrices (the a in Theorem 5.2 becomes v/2). The
second condition in Definition 5.1 means that after projection onto the orthogonal
complement of the first i — 1 columns, the ith one is approximately shorter (i.e., not
much longer) than the (i + 1)th. Together, the two conditions imply that the r;;’s
cannot decrease too quickly and that the norm of the ¢th column is essentially r; ;
(up to a factor that depends only of the dimension). The theorem below gives the
main properties of LLL-reduced matrices.
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2 — 1 mxn
Theorem 5.2. Letn € [1/2,1) and § € (n?,1]. Let a = T IfBeR is a

(6,m)-LLL-reduced basis matriz of a lattice L, then we have:

rii < a-rig e, J=1,...,n—1,
[[b; |l < ol ‘Tige J=1,...,m,
[bi]] <™t AL),
b1l < QT (det(L))™,
IT Iyl < o™ . det(L).

1<j<n

We do not give a proof, since Theorem 5.2 is a simple corollary of Theorem 5.4.

5.2. A weakening of the LLL-reduction. LLL-reduction suffers from the same
drawback as size-reduction with respect to column-wise perturbations. If the ¢
parameter of a column-wise perturbation is set as a function of n, then for any n’ >
n and any ¢ < J, one may choose 74 ’s so that the initial basis is (d,7)-LLL-
reduced but the perturbed basis cannot be guaranteed (¢’, n')-size-reduced. Indeed,

consider the matrix {(1) S}, where «y grows to infinity. We can choose Ar;; =0

and Ary 2 = ev. The latter grows linearly with v and eventually becomes bigger
than any fixed 7/, thus preventing the perturbed matrix from being size-reduced.

For this reason, we introduce a weakening of LLL-reduction that relies on weak-
size-reduction instead of size-reduction. This seems to be more coherent with the
approximate computation of the R-factor of the QR factorization by Householder
reflections, Givens rotations or the Modified Gram-Schmidt orthogonalization. The
weakening has the nice property that if a basis is reduced according to this defini-
tion and the corresponding R-factor is computed by any of these algorithms using
floating-point arithmetic, then it suffices to show that the basis is indeed reduced
according to this weakening (up to a small additional relaxation of the same type).
This relaxation is thus somehow a fix-point with respect to floating-point compu-
tation of the R-factor by these algorithms. We will make this statement precise in
Corollary 6.5. The need for such a weakening was discovered by Schnorr [23, 24],
though he did not define it formally nor proved any quality property.

Definition 5.3. Let n € [1/2,1),0 > 0 and 6 € (5% 1]. Let B be a lattice basis
matrix and R be its R-factor. The basis matrix B is (4,7, 6)-LLL-reduced if it
s (1,0)-WSR and if for any i we have: §-77; <77, +717 11

Figure 2 illustrates the different definitions of LLL-reduction. If the r;;’s are
decreasing, then a (4,7, 0)-LLL-reduced basis matrix is (§,n + 6)-reduced. The
weakening becomes more interesting when the r; ;’s do not decrease. In any case,
it does not worsen significantly the bounds of Theorem 5.2.
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FIGURE 2. The hashed area is the set of vectors by such that
(b1, by) is (from left to right) (1,0,0)-LLL, (4,0,0)-LLL, (4,7, 0)-
LLL and (6,7, 6)-LLL.
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Theorem 5.4. Let n € [1/2,1),0 > 0 and § € (n?,1]. Let a = UARVASS A L W.
If B € R™*™ js a (0,m,0)-LLL-reduced basis matriz of a lattice L, then we have

(5.1) rii < a-rig v, J=1,...,n—1,
(5.2) (bl Saj_l'rj,j, ji=1,...,n,
(5.3) [b1]| < a" - A(L),

(5.4) ot

(5.5)

b1 < a™F - (det(L))7,
T Il < o™ - det(L).

1<j<n

the value of o« defined in

Here « is always greater than or equal to =,
-7

Theorem 5.2. However, when 6 tends to 0, the former tends to the latter.

Proof. By the given conditions, we have:

2 2 2 2,2 2\,.2
615 < (rjg +0rje1541)" 7500 gy S5 2007570 541 + (L4 07)150 40

This implies that x := T:iJ - satisfies the following degree-2 inequality:
(5.6) (6 —n?)a® = 2nhx — (1 +6%) <0.

The discriminant is 4 ((1+6%)6 —n?) > 0 and the leading coefficient is non-
negative. As a consequence, we have:

N5 2
x§0n+\/(1+9)5 n”

0 —n?

a,

leading to (5.1).
Now we show (5.2). From (5.6), we have (§ — n?)a? — 2nfa — (1 + 62) = 0.
But § < 1. Thus (1-7%)a?—2nfa—(1+62) > 0, or equivalently (§+na)? < a?—1.
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Using this fact and a > 1 as well, we have

lbjl*= > rfy<wd;+ D (0P -rdi+20n-ryria+6%-17)
1<i<y 1<i<y
(1 3 P st )
1<2<]
< ( 772042 + 20na + %)« 2(7'7"*1)) -r]%j
1<z<]
23-1) _q .
2 a 2 20j—1) .2
( (0 +na) ﬁ) iy < a0l agg,

leading to (5.2).
From (5.1), we have r; ; > a*~7 -ry 1. Suppose that z € Z" satisfies z; # 0 while
zj=0for j=4i+1,...,n. Then

1Bzl = ||Ral| > |ri zi| > ris > o' 'y = ol ~|by.

We thus have A\(L) = min,ezn 50 || Bz|| > o' ~"||by ||, which proves (5.3).
Since det(L) = H1§J§nrw 2 ngggn(alﬂ ra) = aln=hn/2| by ||, (5.4)
holds. The inequality (5.5) follows from (5.2). O

5.3. Application to LLL-reduced matrices. We first show that the assump-
tion of Theorem 2.3 is fulfilled for (d,n, #)-reduced basis matrices. To do this, we
bound conds(R) for any upper triangular basis matrix R which is reduced.

Lemma 5.5. Let n,0 > 0 and o > 1. Suppose an upper triangular matrizx R €
R™ "™ with positive diagonal entries satisfies

5.7 rigl <mrii+0r;i, ri; <ariii0, j=i+1,...,n, i=1,...,n—1.
J nri, 4,d , +1,i4
Then
[1—n—0la+1
5.8 (R < ——x——— (1 "o
(5.8) COnQ()‘(l—i—n—i—G)a 1( +n+0)"a

Proof. In the proof, we will use the following fact a few times: for any strictly upper
triangular matrix U € R™*", we have (I —U)~' =3, . U

Write R = R - D, where D = diag(r1,1,...,7n,) and 7; ; = :Jj for i < j. From
the assumption (5.7) it follows that |7; ;| < (na?~* 4 6) for i < j. Define T to be
the strictly upper triangular matrix with ¢; ; = 7; ; for ¢ < j. Let J be the matrix
whose all entries are 0, except that all (i,7 + 1) entries are 1’s. The matrix T is
nilpotent and satisfies

T <(m+6) Y () =n+0alI—al)!

1<k<n
Since R =1 + T, we have

IRI<T+(n+0)aJI—ad) ' =T—(1-n—-0a)I—aJ)™?
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Since T is strictly upper triangular, R~! = ZO§k<n(_T)k' As a consequence,
RY< S rr < Y [+ et —ad)7Y)"
0<k<n 0<k<n
—[I—(n+0)aJ(I—a) ']
—(I—al)I-0+n+0a))"

=(I-aJ) Y (1+n+0) ars"
0<k<n

using the fact that ||J||2 = 1, we obtain
IRIAR M, <1 = (1 =n=0)adly > [[(1+n+0)Faks*
0<k<n
<(1—-m-0la+1) Z (14+n+60)ka”

0<k<n

I

[1—n—0la+1

S Axytga_Tatntora®

Using the equality conds(R) = condy(R) allows us to assert that (5.8) holds. O

Remark 7. Let R be the upper triangular matrix with 7,; = =% and r;; =
na~t(=1)=I+ for i < j. Then R satisfies (5.7) with § = 0, and we have condy(R) >
na™~1(1+n)"~2, which is very close to the upper bound (5.8) with # = 0. Indeed,
if we use the same notations as in the proof of Lemma 5.5, we have condy(R) =
condy(R) with R = I +naJ —na?J? +... = I +naJ( +aJ)"!. Then R7! =
I —naJ(I + (1 +n)aJ)~t. The proof is completed by noting that conds(R) is
not smaller than the (1,n)-entry of |R|-|R™!|, which itself is not smaller than
nan—l(l _'_,'7)n—2.

We now specialize our perturbation analysis of the previous sections to the case
of (4,7, 0)-LLL-reduced basis matrices.

Theorem 5.6. Let 1 € [1/2,1), 6 > 0, 6 € (1*,1] and o = PO
Let B € R™*"™ be a (8,n,0)-LLL-reduced basis matriz and R be its R-factor.
Let AB € R™*™ be a perturbation matriz satisfying (1.1), where € satisfies

(5.9) es(1+n+0)"a"e <1,
with
(5.10) o — (1 =n—=~0la+1)myn

(L+n+0)a—1)(1/3/2-1)
Then B + AB has a unique R-factor R+ AR and
(5.11)  [JAry]| < V2ei(m, j)ea(isn+0)(1+n+0)a"r e, j=1,....m,

where ¢1 and co are defined by (2.8) and (3.3), respectively, and k; is the number
of indices © such that i < j and r;; > ri11,iy1-
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Proof. From Lemma 5.5, we see that the condition (5.9) ensures that the assump-
tion (2.5) in Theorem 2.3 is satisfied. From Corollary 2.4 and Theorem 4.2 it follows
that

(5:12) |An; | < V2er(m, j)ea(Gon+0)6o; (L +1+0) (maxrii)e, j=1,....m,
<i<j
where £/ = H] 1 max( Tii1is1/ i 1) with iy = g/ maxicicrig. i >

Tit1,i+1 holds then with (5.1) we have 7“;,1/7"§+1,¢+1 =rii/rit1i01 < @, thus 1 <
@7y i11/7i;- Then it follows that

j—1 r j—1 v v
1 a1 1 a1 . »
§D/v — H M . H OZM S O(k] JsJ — O[k7’l"/
J r! r! r 33
Pt iyi Pt iyi 1,1
7"::+1,1:+1 > 7":1 Tiz > 7";+1,1:+1
which, combined with (5.12), results in (5.11). O

Remark 8. It is also possible to obtain an upper bound on ”Tr’H by using (5.2),
Corollary 2.4 with D = I, and Lemma 5.5. This allows to circumvent the more
tedious analysis corresponding to sections 3 and 4. However, the bound obtained
in this way is (much) larger.

We can now conclude that the set of LLL-reduced matrices is a fix-point under

column-wise perturbations.

Corollary 5.7. Letn € [1/2,1), 0 > 0, § € (n,1] and a = LUARYAS e Ll W.
Let B € R™*™ be a (d,n,0)-LLL-reduced basis matriz. Let AB € R™™ be a
perturbation matrix satisfying (1.1), where € is such that

ei=c(l+n+0)"a"e <1,
with
(5.13) ¢4 = max(cs, V2¢i (m,n)ea(n,n + 6)),
and with c1, co and cs defined by (2.8), (3.3) and (5.10), respectively. Then B+AB
is (0',n',0")-LLL-reduced with
"2 /
o= 5(1 +s’)28 +;5)’(770¢ +0))’ "= I—Ls’ and 0" = fi—i’

Proof. Let R = R+ AR be the R-factor of B+ AB. From Theorem 5.6, it follows
that for all 1 <i < j <n, we have |Ar; ;| < &'r; ;. Therefore,

(L= <riy <A+, and |ri;| <mrip+ (0 +€)r);

9+€

As a consequence, we have |r] ;| < 757}, + which gives us the weak-size-

reduction. We also have

JJ’

|7"§,i+1| > |riip1] — €' i1
(T;JH) > 7‘1 Jit1 25/|7“i,i+1\7‘i+1,i+1
2 7"1 Jit1 — 2" (rii + Oris1iv1) Tig1it1

/ 2
2 ri,i—i—l —2e'(ma+ 0)riyq i1
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Therefore:
1)
A+e2 (r1)? <riin i i S i + 0p)? 26 (na + 0)rd
1+ 2¢'(na + 0)
S— e ((rii)® + (rf41)?) -
(1-¢)
This completes the proof. |

If the initial parameters §,n and € are such that n € (1/2,1), 8 > 0, and § €
(n?,1), then ¢ can be chosen as a function of 6,71,6,m and n so that the resulting
parameters ¢, 7', 0’ also satisfy the domain conditions ' € (1/2,1), 8’ > 0 and ¢’ €
((n")2,1). Overall, this means that the set of basis matrices that are (8,7, #)-LLL-
reduced for some parameters n € (1/2,1), § > 0, and § € (n?,1) is stable under
column-wise perturbations when ¢ is limited to a function of the parameters and the
dimensions m and n only. Note that if we fix § = 0, we cannot guarantee that the
perturbed basis is reduced with 8’ = 0. This is why the weakened LLL-reduction
is more appropriate with respect to column-wise perturbations.

6. PracTICAL COMPUTATION

In many cases, the perturbation matrix considered in a perturbation analysis
comes from a backward stability result on some algorithm. In the case of QR
factorization, the algorithms for which backward stability is established are the
Householder algorithm, the Givens algorithm and the Modified Gram-Schmidt al-
gorithm [8, §19]. In this section, we give a precise backward stability result for
Householder’s algorithm. We then apply it to LLL reduced bases. Similar results
hold for the Givens and Modified Gram-Schmidt algorithms.

6.1. Backward stability of Householder’s algorithm. Columnwise error anal-
ysis of the Householder QR factorization algorithm has been given in [8; §19]. But
the constant in the backward error bound is not precisely computed. However, this
information is crucial for some applications, such as the LLL reduction, since it will
allow one to select floating-point precision to provide correctness guarantees. The
purpose of the present section is to give a precise backward error bound. The model
of floating-point arithmetic that we use is formally described in [8, Eq. (2.4)].

Suppose we are given an m X n matrix B that has full column rank and that we
aim at computing its R-factor R. Householder’s algorithm proceeds column-wise
by transforming B to R. Suppose that after j steps we have transformed B into a
matrix of the following form:

!/ !
1,1 1,2
( 0 | By ) ’

where BLl is an j X j upper triangular matrix with positive diagonal entries. In the
(7 + 1)th step, we apply a Householder transformation ;41 (which is orthogonal)
to Bj 5 from the left such that the first column of B, becomes [x,0, ... ,0]T. For
the computation of the Householder transformation, see Figure 3, which gives two
variants and is taken from [8, Lemma 19.1] with some changes. The Householder

algorithm computes the full form of the QR factorization: B = Q []ﬂ, where

Q € R™*™ is orthogonal and R € R™*"™ is upper triangular. Some of the diagonal
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entries of R may be negative, but if we want them to be positive, we can multiply
the corresponding rows of R and columns of @ by —1.

Input: A vector b € R™.
Output: A vector v € R™ such that Q =T — vv7 is
orthogonal and @ - b = (%||b||,0,...,0)".

1. v:=b.
2. s:=sign(b1) - [|b||.
m 2
3. v1:=b; + s (variant A) or vlzz% (variant B).
4. V::\/;T1 -v (variant A) or V::\/%m - v (variant B).

FI1GURE 3. Two variants of computing the Householder transformation.

The algorithm of Figure 3 is performed with floating-point arithmetic. The com-
putational details are straightforward, except for Step 3 of variant B: the numerator
is a term that appears in the computation of Step 2, and thus does not need being
re-computed. In our rounding error analysis, all given numbers are assumed to be
real numbers (so they may not be floating-point numbers), and all algorithms are
assumed to be run with unit roundoff w, i.e., uw = 27P, where p is the precision. We
use a hat to denote a computed quantity. For convenience, we use d to denote a
quantity satisfying |§| < u. The quantity v, := %= will be used a few times.
The computations of some bounds contained in the proofs of the following lemmas
were performed by MAPLE. The corresponding MAPLE work-sheet is available at
http://perso.ens-1lyon.fr/damien.stehle/RPERTURB.html.

The following lemma is a modified version of [8, Lemma 19.1].

Lemma 6.1. Suppose we run either variant of the algorithm of Figure 3 on a
nonzero vector b € R™ with unit roundoff u satisfying c5-u < 1, where:

(6.1) ¢35 =4(6m+ 63) for variant A, and cs = 8(6m +39) for variant B.

Let ¥ be the computed vector and v be the vector that would have been computed
with infinite precision. Then ¥ = v + Av with |Av| < (m+11)u - |v| for variant A
(resp. |Av] < $(5m + 29)u - |v| for variant B).

Proof. Let ¢ = bTb. Then ¢ = fI(b”b) where |b — b| < u|b|. By following 8,
p. 63], it is easy to verify that

(6.2)

Note that the above result is different from [8, Eq. (3.5)], since here the b;’s are not
assumed to be floating-point numbers. Since 7,42 < 1, using (6.2) we have

63) Vée—el _le—c 1 c_led o dmee . 5.
Ve Ve Vet e T 20T =Ymi2 T 2T = Ymg2

Then it follows that at Step 2,

6 -5 _ Wa1L+5)— Vel
] NG

(6.4) SA+6)A+u)—1=:fs.
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We now consider variants A and B of the algorithm separately. For variant A
and at Step 3, the quantities b; and s have the same sign, so |b1] + |s| = |b1 + s].
Thus, using (6.4) we have

K [(by + 8)(1 +6) — (b1 + s)| < b1 (14 6) — by| + |3(1 +6) — s
(6.5) vz |b1 + s - |b1 + s
‘ bul[(14+w)? — 1]+ |s|[(1 + B2) (1 +u) — 1
< | 1“( U’) ] |5|[( 62)( u) ] < (14-52)(1"'“) —1=:8s,
b1 + s
Then, using (6.4) and (6.5) we have
ld—d|  |301(1+6) — svi
|d| |sv1

The MAPLE work-sheet shows that 8, < 1. Let e = v/d = /sv;. Then, by the
same derivation for (6.4) (see (6.3)), using (6.6) we have

e—el  |Vd(1+48) -V Ba A
o= s (1 e ) (1=

The MAPLE work-sheet shows that 85 < 1. Then from (6.5) and (6.7) we obtain
the following componentwise bound:

(6.6) ST +6)1+B3)14+u)—1=:p54.

(6.7)

. 1+
(6:5) o< (200 - 1) vl = Al
1-055
where (g = %(1 +u) —1 < (m+ 11)u, as indicated by the MAPLE work-sheet.

Now we consider variant B. The quantity Y., b7 from Step 3 has been computed
at Step 2. The relative error in the computed value is bounded by v;,4+1. Thus,
using this fact and (6.5) (for the denominator) we conclude that

|01 —vi] _ 1+
vl T 1-p05

According to the MAPLE work-sheet, we have 85 < 1. The rest analysis is similar

to the derivation for (6.6)—(6.8) and we have the following componentwise bound:

(6.9) (1+u)—1=: g

. 1+ 3%
(6.10) vl (PR a0 - 1) v =
5
where 3, = <1 + 2\/%) (1+u)—1, B = 1+ B2)(1+B4)(1 +u) — 1 and B :=
4
}jgé (1+u) — 1. The MAPLE work-sheet shows that 35 < 3(5m + 29)u. O

At step j + 1 of the QR factorization, once the Householder vector v is com-
puted, the Householder matrix is applied to all the remaining column vectors of the
matrix Bj 5. The following lemma, a modified version of [8, Lemma 19.2], provides
a backward analysis for this step.

Lemma 6.2. Suppose that the assumptions of Lemma 6.1 hold. Let ¢ € R™,
Q=I-vvl andy = Qc = c—v(vTc). In computingy, the computed Householder
vector Vv is used. Then there exists AQ € R™*™ such that

(6.11) y=(Q+AQ)c and ||AQ|r < ic5u.
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Proof. The proofs for both variants of the algorithm of Figure 3 are the same, so
we only consider variant A. Let ¢t = vc. Then = flI(vT¢), where |& — ¢| < ulc|
and [V—v| < fg|v], by Lemma 6.1. Then by following the derivation of [8, Eq. (3.4)],
we can show that

(6.12) [E =] < (14 Bo) (L +u)(1+vm) — 1 [v[Tle| = Bz |v|Tel,

where 37 := (14 06)(1+u)(1+7,)—1. Let w = v(v'c) = vt. Then w = vi(1+96).
Using (6.8), (6.10) and (6.12) we obtain the following bound:

[W = w] < ((1+ f6)(1+ Br) (1 +w) = D) |vIv["le| = Bs|v][v|"[e],
where O3 = (14 06)(1+ 87)(1 +u) — 1. Then it follows that
(6.13) |y—y| = [fi(e=W)—(c—w)| < [(1+u)*=1][e[+[(1+05) (1+u) —1]|v[[v|"|e].
Note that the Householder vector v satisfies ||v|| = /2. Thus from (6.13) it follows
that

Iy =yl < [(1+w)? = lle]l + 2[(1 + Bs) (1 +u) = lle]l = Bollell,
where B9 = (1 + u)? +2(1 + Bs)(1 + u) — 3. We can write § = (Q + AQ)c

T

with AQ = (y y . We have ||AQ||r = ”y y“ < B. In the MAPLE work-sheet,
we see that ﬁg cou and thus (6.11) holds ]

The following lemma is a modified version of [8, Lemma 19.3]. It considers error
analysis of a sequence of Householder matrices applied to a given matrix.

Lemma 6.3. Let B € R™ ™ and let Q; = I — v;vl for i < n be a sequence
of Householder matrices. We consider the sequence of transformations By, =
Q;B;, with By = B. Suppose that these transformations are performed by using the
computed Householder vectors v; with unit roundoff u. Let

1
—Nnc,
2 5

with ¢s defined by (6.1). If cu < 1, then the computed matrix §n+1 satisfies
Bni1 = QT(B+ AB),

where QT = Q1 Qn_1...Q1 and

(6.15) [Ab;[| < cullbsll, — j=1,...,n.

(6.14) 6 =

Proof. Let bgnﬂ) be the jth column of B,;;. From Lemma 6.2 it follows that
there exist AQq,...,AQ, € R™*™ such that

(n 1
+1) (Qn + AQ’I’L) s (Ql + AQl)bJ and HAQl”F < 105’[1.

Write Q7 + AQT (Qn+AQy) ... (Q1+AQ1). Then by [8, Lemma 3.7] we have

1
1C5NU

1 n
1AQ7IIr < (14 Jesu) 1< < cgu.

Define Ab; = QAQTb;. Then
b = Q"b; + AQTb; = Q"(b; + Ab;) and || Aby|| < cgul|b,|.
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We can now conclude with a version of [7, Th. 18.4] (or [8, Th. 19.4], in the
newer edition), with generic constants replaced by explicit constants.

Theorem 6.4. Let R be the computed R-factor of the QR factorization of a given
matrix B € R™*™ by the Householder algorithm, with unit roundoff uw. If cu < 1
with c¢g = 2n(6m + 63) for variant A and 4n(6m + 39) for variant B, then there
exists an orthogonal matriz Q@ € R™*™ such that

A~

B—i—AB:Q[](ﬂ and |Abj|| < csullbyll, ji=1,...,n.

The latter implies that |AB| < cuC|B|, where ¢; j =1 for all i,j. The matriz Q
is given explicitly by QT = QnQn_1...Q1, where Q; is the Householder matriz
corresponding to the exact application of the ith step of the Householder algorithm
to Bi-

Proof. As a direct consequence of Lemma 6.3, we have:

.

B—i—AB:Q[](ﬂ and [|Abj|| < csulb;|l, j=1,...,n,

with @ = QTQY ... QL. Then

|Abi | < coullb; | < coullb; 1 = coue” by,
where e = [1,...,1]7. We thus have |Ab;| < csuee’|b;| for all j, which gives
|AB| < cguC|B| since C = ee”. O

6.2. Application to LLL-reduced matrices. By using Theorem 6.4 and Corol-
lary 5.7, we have the following result on LLL-reduced bases.

Corollary 6.5. Let n € [1/2,1],0 > 0,6 € (n*,1] and a = LUARVAS sl ki W.
Let B € R™*™ be a (6,n,0)-LLL-reduced basis matriz. Let u be such that
ui=c;(1+n+0)"a"u<1,
where ¢; = cqc and with ¢y defined by (5.13) and cg defined by (6.14). Suppose
we compute the R-factAor of B with the algorithm described in Subsection 6.1. Then
the computed matriz R is (0',n',0")-LLL-reduced with
5/26 (l_u/)Q L /:M

(14 w)2(1 4 2u/ (na + 0))’ 1—u’ 1—u"
Proof. From Theorem 6.4, we know that (1.1) holds with € = cgu. The result
directly follows from Corollary 5.7. ]

' =

The weakening of the LLL-reduction is stable under Householder’s algorithm: if
the input basis is reduced, then so is the output basis (with slightly relaxed factors).

7. CONCLUDING REMARKS

We investigated the sensitivity of the R-factor of the QR-factorisation under
column-wise perturbations, which correspond to the backward stability results
of the standard QR factorization algorithms. We focused on the case of LLL-
reduced matrices, and showed that if the classical definition of LLL-reducedness
is sligthly modified, then LLL-reducedness is preserved under column-wise pertur-
bations. This implies that by computing the R-factor of a reduced matrix with a
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standard floating-point QR factorization algorithm (e.g., Householder’s algorithm),
then one can numerically check that the LLL conditions (5.3) are indeed satis-
fied, for slightly degraded parameters. These certified reduction parameters can be
made arbitrarily close to the actual reduction parameters by setting the precision
sufficiently high. Importantly, the required precision for the above to be valid is
linear with respect to the dimension, and does not depend on the magnitudes of
the matrix entries. This study was motivated by its algorithmic implications: the
results may be used to efficiently check the LLL-reducedness of a basis and to speed
up the LLL-reduction process.
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ABSTRACT

We describe a new LLL-type algorithm, H-LLL, that relies
on Householder transformations to approximate the under-
lying Gram-Schmidt orthogonalizations. The latter com-
putations are performed with floating-point arithmetic. We
prove that a precision essentially equal to the dimension suf-
fices to ensure that the output basis is reduced. H-LLL re-
sembles the L? algorithm of Nguyen and Stehlé that relies
on a floating-point Cholesky algorithm. However, replac-
ing Cholesky’s algorithm by Householder’s is not benign,
as their numerical behaviors differ significantly. Broadly
speaking, our correctness proof is more involved, whereas
our complexity analysis is more direct. Thanks to the new
orthogonalization strategy, H-LLL is the first LLL-type al-
gorithm that admits a natural vectorial description, which
leads to a complexity upper bound that is proportional to
the progress performed on the basis (for fixed dimensions).

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems— Computations
on matrices

General Terms
Algorithms

Keywords

Lattice Reduction, LLL, Floating-Point Arithmetic, House-
holder’s Algorithm

1. INTRODUCTION

Lattice reduction is a fundamental tool in diverse fields
of computational mathematics [2] and computer science [8].
The LLL algorithm, invented in 1982 by Arjen Lenstra, Hen-
drik Lenstra Jr and Léaszlé Lovész [7], allows one to perform
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lattice reduction in time polynomial in both the dimensions
and the bit-sizes of the entries of the input matrix.

In terms of efficiency, the major weakness of the origi-
nal rational algorithm and its improved variants [5, 17] is
that they perform all computations with exact arithmetic,
leading to the use of very large integers. This considerably
slows down the algorithm, making it impractical for large
dimensions or entries. As early as 1983, Odlyzko, in his first
attempts to cryptanalyze knapsack cryptosystems [10], used
floating-point arithmetic (fpa for short) within LLL to avoid
the rational arithmetic cost overhead. The cost of updating
the basis being negligible compared to the cost of computing
and updating the Gram-Schmidt orthogonalization (GSO
for short) of the vectors, it seems natural to compute the
latter using fpa, while using exact arithmetic to update the
basis. This was at first implemented in a heuristic manner,
without ensuring the accuracy of the computations. In a pio-
neering work [13], Schnorr showed that the natural heuristic
approach can be made rigorous.

In the present paper we present a new fp LLL algorithm
that relies on the computation of the QR-factorization of
the basis using Householder’s algorithm. H-LLL computes
fp approximations to the coefficients of the R-factor and
uses them to perform exact operations on the basis. We
prove that if the precision is large enough, then H-LLL runs
correctly. The bound on the precision depends on the di-
mension only (it is actually essentially equal to it). Our
analysis relies on bounds on the errors made while comput-
ing the R-factor of a given reduced basis. Those bounds are
proved in [1]. Exploiting them while requiring a fairly small
precision is where the technical complexity of the present
work lies. In particular, the bounds do not seem sufficient
to perform a size-reduction, a crucial step in the LLL algo-
rithm (even with the weaker version of Definition 2). This
is where H-LLL differs from most LLL variants: rather than
fully size-reducing the current vector, we transform it so that
enough information is obtained to decide whether Lovész’s
condition is satisfied. The correctness of H-LLL is thus
harder to prove, but its unique design allows us to explic-
itly bound the bit-complexity in terms of the actual work
that was performed on the lattice basis. All other LLL al-
gorithms work on the underlying quadratic form, whereas
ours can be interpreted as working on vectors. Considering
a basis matrix (by, ..., bg) € Z"*?% with vectors of euclidean
norms < || B||, the total bit complexity is:

& 1 bt
OKd—Hong—f—FElogH ”bgH)nM(d)(d+log||B||) ,



where d? (resp. df) is the determinant of the lattice spanned

by the first ¢ columns of B at the beginning (resp. the end),

and M(z) = O(z?) is the cost of multiplying two 2-bit

long integers. The product []d; is classically referred to
b

as the potential. The term log[] j—é quantifies the actual

progress made with respect to the potential, while the term

b
log I HE@H quantifies the progress made with respect to the
norms of the vectors. One can note that the obvious bound
on the latter (dlog||BJ|) is negligible compared to the ob-
vious bound on the former (d*log||B||). The overall bit

complexity is O(nd>M(d)log || B||(d + log || B||))-

RELATED WORKS. As mentioned previously, the first rig-
orous fp LLL was invented by Schnorr in 1988 (see [13]).
However, the precision used in the fp computations was a
linear function of both the bit-size of the matrix entries and
the dimension, with rather large constant factors. Since
then, Schnorr et. al have described several heuristic reduc-
tion algorithms [15, 6, 14, 12], notably introducing in [15]
the concept of lazy size-reduction and in [6] the idea to use
Householder’s algorithm. The outputs of those heuristic al-
gorithms may be certified LLL-reduced with [18], but so far
there does not exist any proved variant of LLL relying on
Householder’s algorithm and using a fp precision that does
not depend on the bit-size of the matrix entries. The L2
algorithm [9] of Nguyen and Stehlé is a proven fp LLL, also
of complexity O(nd*>M(d)log||B||(d +1log | B])), that relies
on a lazy size-reduction based on Cholesky’s algorithm. Al-
though this approach is close to the present work, there are
a few key differences caused by the use of different orthog-
onalization algorithms. The first difference is the nature of
the numerical errors. Both Cholesky’s algorithm and House-
holder’s are backward stable [4] and forward stable when the
input is LLL-reduced [9, 1]. When computing the R-factor
of a given basis, the error made using Cholesky’s relates to
the diagonal coefficient of the row, which induces an abso-
lute error on the Gram-Schmidt coefficients. When using
Householder’s, the same error involves the diagonal coeffi-
cient of the column, inducing possibly much larger absolute
errors on the Gram-Schmidt coefficients. This leads us to
use a slightly relaxed definition of reduction, which is a fix-
point under perturbation of the original basis [1]. The dif-
ferent nature of the error makes the correctness harder to
obtain. The second difference is the number and type of
arithmetic operations made. Cholesky’s algorithm uses the
exact Gram matrix of the basis to compute the R-factor,
which implies additional integer arithmetic. Furthermore
the overall number of operations needed to compute and up-
date the GSO-related quantities using Cholesky’s algorithm
is roughly twice the number of operations needed when using
Householder’s. Also, the precision required is higher when
using the Cholesky factorization, which can be explained
intuitively by its condition number being greater than the
condition number of the QR-factorization. This leads to the
fact that H-LLL requires a precision of ~ d bits, whereas
L? requires a precision of = 1.6d bits. Finally, the vectorial
nature of H-LLL makes its complexity analysis simpler than
that of L2: the amortized cost analysis (which allows to get
a complexity bound that is quadratic when the dimensions
are fixed) is much more direct.

RoAD-MAP. In Section 2, we give some reminders that are
necessary for the description and analysis of H-LLL. In Sec-

tion 3, we describe a new (incomplete) size-reduction al-
gorithm and analyze it. H-LLL relies on the (incomplete)
size-reduction algorithm and is presented in Section 4.

NoOTATION. Vectors will be denoted in bold. If b is a vec-
tor, then |[b|| will denote its euclidean norm. For a ma-
trix A = (a;;) € R™*™ its j-th column will be denoted
by a;. If b is a vector and ¢ < j are two valid entry indices,
then b[i..j] is the (j —i+1)-dimensional sub-vector of b con-
sisting of its entries within indices ¢ and j. The notation |z]
denotes an arbitrary integer closest to x. We define sign(x)
as 1 if x > 0 and —1 otherwise. We use a standard base-2
arbitrary precision fp model, such as described in [4, Sec.
2.1]. The notation ¢(a) refers to the fp rounding of a. If z is
a variable, the variable T hopefully approximates x and Ax
is the distance between them. For complexity statements,
we count all elementary bit operations.

GLOSSARY. The variables «,4,6,48’,7,7,0,0 and p all refer
to parameters related to the LLL-reduction. For simplicity,
the reader may think of o ~ 2/v3, 1 ® § < § < & <
1,12 < <n~1/2,0< 60 <0 ~0and p~ 3.
The variables co, c1 are polynomially bounded functions of d
and n (and the variables above) and can be safely thought

of as constants.

2. LATTICE REDUCTION

A euclidean lattice L is a discrete subgroup of R". A
basis B = (by,...,bs) € L% of L is a tuple of linearly
independent vectors such that L is precisely the set of all
integer linear combinations of the b;’s. The integer d < n is
the dimension of L. Any lattice L of dimension d > 2 has
infinitely many bases, which can all be derived from any ar-
bitrary basis of L by applying unimodular transformations,
i.e., invertible integral operations. Lattice reduction aims
at finding ’good’ bases, i.e., bases with reasonably short and
orthogonal vectors. Having such a basis allows one to obtain
information about the lattice more easily. In the following
we consider only integer lattices, i.e., L C Z". We represent
a basis B by using the n x d integer matrix whose columns
are the b;’s. We will now introduce some elementary notions
about lattices. We refer to [8] for more details.

Orthogonalization. The Gram-Schmidt orthogonaliza-
tion maps a basis B = (b1, ...,bg) to a tuple of orthogonal
vectors (b1, ...,b}) defined by:

J<i

The GSO quantifies the orthogonality of the b;’s. If
the (b;,b})/||bj||*’s are small and the ||b}||’s do not de-
crease too fast, then the b;’s are fairly orthogonal. The GSO
is closely related to the R-factor of the QR-factorization of
the basis matrix. For a given B € R™*? of rank d, there ex-
ist matrices @ € R™*% and R € R¥*?, such that QTQ = I,
R is upper triangular with positive diagonal coefficients

and B = @QR. Such a factorization is unique and we
have R;; = ||bj|| and R;; = (b;, b;)/||bj] for any i < j.

Lattice invariants. An invariant of a lattice L is a quantity
that does not depend on the particular choice of a basis of L.
The minimum is defined by: Ar = min(||bl|,b € L\ {0}).
The determinant det L = y/det(BT B) =[] ||bj|| is another

lattice invariant.



LLL-reduction. The LLL-reduction is an efficiently com-
putable relaxation of a reduction introduced by Hermite [3].
We give a generalization of the definition of [7].

Definition 1. Let n > 1/2 and § < 1. A
basis  (bi,...,bg) is (d,7)-LLL reduced if for
any ¢ <j, |Rij| <nmRi; (size-reduction condition) and

if for any 1, 5R12_1,i_1 < Rf_lﬂ- + Rfl (Lovész’s condition).

For the purpose of this work, we need a slightly weaker
definition of reduction, introduced in [1]. One can recover
Definition 1 by taking 6 = 0.

Definition 2. Let n > 1/2, & <

< 1 and 6 >0.
A Dbasis (bi,...,bg) is (6,7m,0)-LLL reduced if for
any i < j, |Ri ;| <nRi: +0R;; (weak size-reduction con-
dition) and if Lovédsz’s condition holds.

The latter definition is essentially equivalent to the for-
mer, as it only differs when R;; > R;;, which corre-
sponds to quite orthogonal vectors. The following theorem
(from [1]) formalizes this equivalence by exhibiting prop-
erties of (9,7, 0)-reduced bases similar to the properties of
(6,m)-reduced bases [7].

THEOREM 2.1. Let n € [1/2,1], § > 0, 6 € (n* 1]
and o = 2V IO W. Let (b1,...,bgq) be a (6,n,0)-
LLL reduced basis of a lattice L. Then for all i, we
have R;; < aRi+1,+1 and R;; Ibs|l < o' 'Ry ;.
We also have ||bi| < a* 'Ar, |bi| < ozd%l(detL)%
and ] |bi]| < o™F (det L).

The LLL algorithm. LLL [7] computes a (§,7n)-LLL-
reduced basis in time polynomial both in the dimensions d
and n and the bit-size of the entries log || B||, provided that
n € [1/2,1) and 6 € (§ — n*,1). Although there are many
LLL variants, they all roughly follow the same high-level
design, described in Algorithm 1.

Algorithm 1 A generic LLL algorithm.

Input: A basis (b1,...,bq) of a lattice L.
Output: An LLL-reduced basis of L.
1: k:=2.
2: While x < d, do
3 Size-reduce b,,.
4:  If Lovész’s condition holds for x, then x := x + 1.
5 Else swap b1 and by; k := max(k — 1, 2).

Perturbation analysis of the R-factor. In this paper we
introduce a new variant of LLL that relies on the approxi-
mate computation of the R-factor of B using Householder’s
algorithm (Algorithm 2). With fpa, all operations are per-
formed in the naive order, and all sums of several terms are
computed sequentially. In order to ensure the soundness
of the operations we will perform on the basis (in H-LLL),
which are dictated by the values of the R; ;, we need to ad-
dress the issue of the accuracy of the computed R-factor.
It is known (see [4, Ch. 19]) that Householder’s algorithm
computing the R-factor is backward-stable (i.e., its output
is the R-factor of a matrix that is close to its input), but it is
not forward-stable in the general case. Theorem 2.3 (proved
in [1]) bounds the sensibility of the R-factor to column-
wise input perturbations, when the input is LLL-reduced.

Combined with the backward stability of Householder’s al-
gorithm (Theorem 2.2, proved in [1]), Corollary 2.4 shows
the forward-stability of Householder’s algorithm in the case
of LLL-reduced inputs.

Algorithm 2 Householder’s algorithm.

Input: A rank d matrix B € R"*,
Output: An approximation to the R-factor of B.
1: R:=o(B).
2: For i from 1 to d, do
For j from 1 to ¢ — 1, do
rifj..n] = rilj.n] — (virilj.n]) - visrifj] == ogrls].
r:=r;[i.n];v; :==r.

3:
4
5:
6:  o; :=sign(r[l]); s := oyr]].
7.
8
9:
10:

vill] == (= 275 e[ /(e [1] + 9).
If vi[1] # 0, then v; :=v;/y/—s - v;[1
: o rifien] == (|r]],0,...,0)T.
Return the first d rows of R.

THEOREM 2.2. Let B € R™*? be a rank d matriz given
as input to Algorithm 2. Let us assume that the com-
putations are performed with fpa in precision p such that
8d(n + 9)277 < 1. Let R € R™? be the output. Then
there exists Q@ € R™? with orthonormal columns such
that AB = B — QR satisfies:

Vi< d, Albi]l < 8d(n+9)27" - |bi].
THEOREM 2.3. Let n € [1/2,1),60 > 0 and § € (5% 1].

Let B € R™*? of rank d be (8,71,0)-LLL-reduced. Let e >0
such that cop®e < 1, where p = (1 +n+ 0)a and:

Ltllon—bla 46 b5l a4

(n+0) (- 1+\f) L+n

If AB € R™™ js such that Vi, A||b;|| < e-||b;|| and if R+AR
is the R-factor of B + AB (which exists), then:

co = max

Vi <d, Alri|| < cop'e - R

The following result provides an error bound for the R ma-
trix computed by Algorithm 2 using precision p fpa, starting
from a B in R"*? whose d—1 first columns are LLL-reduced.

COROLLARY 2.4. Letn € [1/2,1),0 > 0 and § € (n*,1).
Let B € R™? be a rank d matriz whose first (d — 1)
columns are (8,m,0)-LLL-reduced and which is given as in-
put to Algorithm 2. Let us assume that the computations
are performed with fpa in precision p such that c1p?27P < 1,
where c; = 8d(n + 9)co. Let R = R+ AR € R¥*? pe the
output matrixz. Then:

Vj<i<d, AR;; <ci1p'2 " Ry,
and
Vi<d, ARiq<ci(141/0)p" 277 (R + |[bal]).

Thus denoting the quantity c1(1+1/0)p" by ¢(i), we have
forany j <i<d:

ARjyi < 27p¢(i)R¢,i and ARi,d < Qip(;s(i)(Ri,i + ||de)



Proof. The first statement is a direct consequence of The-
orems 2.2 and 2.3. Let ¢ < d. We consider the basis
(bh,...,bi ) defined by b} = (b],0)” for j <iand b}, =
(bY R;;+ ||ball/6)T. By construction, it is (6,7, 0)-LLL re-
duced. Furthermore, calling Algorithm 2 on (bi,...,bj )
leads to exactly the same fp operations as on (bq,...,bq),
for the approximation of R; ;41 = R;,q. Therefore, using the
first part of the result:

AR; 4= AR ;4 < aptt2Tr. Riy1it1-
Then we use Riy 1,11 < Rii+ (1+1/0)||bg|. O

This result implies that if we start from a (§,7,6)-LLL-
reduced basis, then we can use Householder’s algorithm to
check that it is reduced for (arbitrarily) slightly weaker pa-
rameters. It is incorrect to say that if we start from a (4, 7)-
reduced basis, then Householder’s algorithm allows to check
that it is (6',7n")-reduced for slightly weaker parameters &’
and 7’ (a counter-example is provided in [16]). This is the
reason that underlies the weakening of the LLL-reduction.

3. AN INCOMPLETE SIZE-REDUCTION

In the present section, we present a novel algorithm (Algo-
rithm 3) that relies on a fp Householder’s algorithm (Algo-
rithm 2). It does not size-reduce the vector b, under scope,
it does not even weakly size-reduce it in general. However,
to some extent, it decreases the length of b,. This is ex-
actly the progress it attempts to make (see Step 7). Also,
we will prove that the output basis is of sufficient numerical
quality for Lovédsz’s condition to be (approximately) tested.
If the latter is satisfied, then we know a posteriori that the
basis was indeed weakly size-reduced (see Section 4). The
condition on the precision p ensures the soundness of the
computations.

The algorithm contains a main loop (Steps 1-7). The vec-
tor b, becomes more reduced with respect to the previous
ones every time the loop is iterated. Within the loop, House-
holder’s algorithm is called (Step 2) to obtain an approxi-
mation to r.. This approximation is then used to perform
a partial size-reduction (Steps 3-6), whose progress may be
limited by the inaccuracies created at Step 2. Note that only
the GSO computations are performed approximately, the
basis operations being always exact. Right before the end,
at Step 8, new approximations T, and Vv, are computed to
ensure that the output vectors r1,...,r, and vy,...,V, are
exactly those that would have been returned by Algorithm 2
given the first k¥ columns of the returned B as input.

During the execution, the quantities R; . for ¢ < x are
known only approximately, and are updated within the loop
made of Steps 3-5. To simplify the exposure, we introduce
some notation. We will denote by R; . (resp. R;,x) the ap-
proximate (resp. exact) value of R;,. at Step 2. We will
denote by E;, . the approximate value of R; . at the begin-
ning of Step 4. This is an approximation to R; , = Ri . —

i1 XjRij. Finally, we define R, = Ri,. — XiRi,
which is the new (exact) value of R;,. after Step 4. We
will also use the index ip to denote the largest ¢ < k such
that X; # 0, with i9 = 0 if not defined.

We analyze Algorithm 3 as follows. We first consider the
effect of one iteration of the loop made of Steps 3—6 on the
R;..’s and ||bkl||. This study will then lead us to correctness
and complexity results on Algorithm 3.

Algorithm 3 The incomplete size-reduction algorithm.

Input: A matrix B € Z"*% k < d and the output
fl, e ,Fn_l,Vl, . ,VK_17 O1y...,0k—1 of Algorithm 2
when given as input the first k — 1 columns of B. We
assume that the first kK — 1 columns of B are (4,7, 60)-
LLL-reduced with € (1/2,1), § € (n*,1) and 0 €
(0,n—1/2).

Input: o(27°%) (for an arbitrary ¢ > 0) and a fp preci-
sion p > 10g2(2%i+9rc3¢(/<¢)a/0).

1: Do
2:  Compute T, using Steps 3—4 of Algorithm 2.
3:  For i from k —1 to 1, do
Rix
4 Xi=|o(3=)].
5: For j from 1toi—1,do R;x := ¢ (Rjx — ¢ (XiR;,i)).
6:  t:=o(||bsl?); bk :=b, — ZKN X,;b;.
7: Until o(||by||?) > o(o(27°%) - t).
8: Compute Ty, Vx, 0, using Steps 3—9 of Algorithm 2.
9: Return B, T1,...,Tx, Vi,...,Vx and 01,...,0%.

3.1 Analysis of Steps 3-6

The aim of the next lemmata is to bound the magnitude
of R; . and its error AR} .. As is often the case in numerical
analysis, the error and magnitude bounds are intertwined.
This issue is solved by building up an induction on the two
bounds (Lemmata 3.2 and 3.3), and the induction itself is
solved in Lemma 3.4. This allows us to lower bound the
decrease of ||b.|| after an iteration of the loop (in Theo-
rem 3.7).

LEMMA 3.1. For anyi < k, the quantity |X;|R; s is upper
bounded by both
R;;

2 + (14277 6(0)[Ri | and 4R, |.

Proof. The result being obviously correct when X; = 0, we
assume that X; # 0. We have that |X;| is no greater than

1/2+o(|R; «|/Rii) <1/2+ (1 +27")|R; .|/ Rii-
Therefore, by using Corollary 2.4:

R;.; 1+277
Xil|Rii| € -+ ——F—= R
Xl < Bt LEZL R,
R;;
2

<

+ (142776 (0)) [ Ri .

Since X; # 0, we have |§;7K\ > B

éz > (1—27";5(1'))1%‘,1. Thus:

| Xil| Riil <201 +277"16(0)) R i,

which completes the proof. O

LEMMA 3.2. For any i < io, we have:

Rl SIlbwll + K0’ Rig i
i
(277 600) S0 (na? 4+ 0) (Rl

j=i+1

Proof. By using the LLL-reducedness of the first xk — 1



columns of B, we have:

iQ
Rkl < |Riwl + > 1X5[Re s
j=it1

< [br]l + Z

Jj=i+1
< Hbfﬁ” + ’fai07iRioxi0'

o+ 0)|X;|R; 5

The result is then provided by Lemma 3.1. O

LEMMA 3.3. For any i < io, we have:

AR}, < 277726 (i) (|| + Rii) + 277+ Z () Ronl.
Jj=i+1

Proof.  Using the bound [4, Eq. (3.5)], Corollary 2.4,
Lemma 3.1 and the LLL-reducedness of the first x — 1
columns of B, we have that AR] . is bounded by:

io )
R2p+1<|RZ_7K|+Z |iju.’j|> + > IX5|AR; + AR,

Jj=i+1 Jj=i+1

i0 i
< I€27p+1 <|bn| +Z |XjRi’j|>+ 22 ‘Xj|AR¢,]' +2AR¢,K

j=it1 j=it1

iQ
< R27P by + 277 Y X | (KRii + ¢() Ry ) +2A R
j=i+1
< 52_p+1|lb~|l + 277 16(0) (bl + Ri)

+927 p+3 Z

Jj=i+1

o+ 0(7) R i,

which provides the result. O

LEMMA 3.4. For any 1 < i9, we have that

|§;,€| < 2/ipi0_i (Iow |l + Rio,io).i This bound also holds

for any |Ri .| at any moment within the loop made of
Steps 3-5.

Proof. Using Lemmata 3.2 and 3.3, we bound |R; .| by:
|Rix| + AR .

0
IRl 4+ 277200 ([ball + i) 2774 S 6()[R |

<
j=it+1
< al|bu|| + 260" Ry g
i
+ > (7 0+ 2P g (i0)a’ ) R,

j=itl
We now define (u;)i<i, by wiy = |Rig,x| and, for i < do:

10
U; = O‘HbNH + ZKOélO_ZRiO,iO + Z A(i,j)uj,
j=it1
with A(4,7) = na? =" + 0 + 2775 ¢(ip)a? %, For any i < i,
we have |§;,€| < u;. Moreover, using the fact that R;; <
aRit1,i+1, we obtain that for ¢ < ip — 1:

Ui — QAUG41 S A(Z, 7 —+ 1)u2’+1 S a(n + 0)ui+1.

Thus u; < puiy1 and, by using Corollary 2.4, we have that
for any i < io:

<P (bull 4 26Rig i + (14 0) (I[brl| + ARig,x))
<207 7 (plbwl| + KarRig i + (0 + 0)27P(i0) Rig i)
which gives the result for i < ig. To conclude, note that:
uig < [[brll + ARig ke < 2(|[bi || + 2779 (d0) Rig.io)-

This completes the proof. O

We can now use Lemma 3.4 to obtain a boul)ﬂ/ on
the AR;,{’S that does not depend on the computed R;,.’s
but only on their exact values.

LEMMA 3.5. For any ¢ < i9, we have:

AR < 27772 (io) (bl + Rig.io)-

Proof. Using Lemma 3.4, we have:

i0—1
3 GOl < 20l + Fanre) 3 6110
j=i+1 j=i+1

< 26%(|[bl + Rip.ig)(io).

Together with Lemma 3.3, the latter provides the result. O

Now that we understand precisely the R; .’s, we study
the RY,.’s.

LEMMA 3.6. Let j = 1/24 277" ¢(k). We have:

2777 Rk2¢(io) (|[bell + Rig.io) i i <o
R;/H <NRi; = e 0,10 e .
AR Po(0) b i i > o
Proof. Suppose first that ¢ < i9. Then

|RII

=|Ri . — XiRi,;
< AR, + |E'Ii,n — XiRii| + | Xi|AR; ;
-/

Rin
— — X;

< AR;M +Ri;-

+ | X:|AR;

<ARM+R

1,1

R
_,’_2 pRzn""( +2RZH|>ARZ,Z

<ARW+R

1,1

Ri
+ 27 p|RM|+ <1+2|R |)AR”

< AR+ (% + 2*%@)) Rii+2776()|R;,

where we used Corollary 2.4. Therefore, using Lemmata 3.4
and 3.5, we get the result.
Suppose now that ¢ > i9. Then, using Corollary 2.4:

R .| = |Ri.| < [Rinl + AR,
<R1z/2+2 p¢ ) Hbfi‘|+Rll)

which completes the proof. O

The latter bound on the Rf,’s shows that at Step 6, the
length of the vector by is likely to decrease.



THEOREM 3.7. Consider b, at the beginning of Step 6.
Let b)! be its new value at the end of Step 6. Then

I3 < 26 max Ru + 277 () b

Proof. Using Lemma 3.6:

K 10 k—1
bl < D IR = Rew+ D IR+ > [Rixl
i=1 i=1 i1=19+1

< Ruw+ 27 k%i00(i0) Rig iy + KT] max Ri;

+ 277 1P (k) || b

The latter provides the result. O
3.2 Correctness and Cost of Algorithm 3

The following lemma ensures the soundness of the test of
Step 7. It also implies that the algorithm terminates.

LEMMA 3.8. Consider by at the beginning of Step 6. Let
b} be its new value at the end of Step 6. If the test of Step 7
succeeds, then ||bll||> > 274 Y |b,||?. If the test of Step 7
fails, then |[by{[|> < 27" ||by .

Proof. Using [4, Eq. (3.5)], we have for any b € Z" that
o(|[b[I*) € (1 £n27"F1)|[b||*. Thus o (o(27°) - o(|[bx||*)) €
(1+n27P2)2 b |2, O

The following shows that at the end of the execution of
Algorithm 3, the length of b,; and the R; ’s are small. The
algorithm is correct in the sense that the size of the output
vector is bounded.

THEOREM 3.9. Let 0 = 27 P87 % k3¢(k) and i = 1/2 +
2 P 4(k). At the end of the execution of Algorithm 3, we
have:
[bell < 3rmaxRi;,

i<k
TR + 0(|[brll + Re—1,5-1).
Proof. Lemma 3.8 gives us that ||bl|? < 2°¢*!||b,|?,
where b}, (resp. b,) is the vector b, at the beginning (resp.

at the end) of the last iteration of the loop made of Steps 1—
7. Using Theorem 3.7, we obtain:

[bx]] <2k max Riqi + 27p+7n3¢(/£)||b];||

N

Vi < K, |R~;,,§|

cd
< 2wmax Ri + 2775 52 b |
< 3kmax R; ;.
1<K
For the second inequality, note that Lemma 3.6 implies:

|Riw| <R + 277 62 ¢(w) (IIBLI| + Re1,0-1)-

It only remains to use the inequality ||bL[|> < 2°9F!||b,|%.
O

We now consider the cost of Algorithm 3. We start by
bounding the number of iterations of the main loop.

LEMMA 3.10. The number of iterations of the loop made

of Steps 1-7 is:
1[Ikl
O (1 + —log 1—% ,
d  [[bi]l

where bY (resp. bS) is b, at the beginning (resp. the end).

Proof. Let b’, be the vector b, at the beginning of Step 2 of
the last iteration of the loop made of Steps 1-7. Lemma 3.8
implies that the number of loop iterations is bounded by 1+

b
2 log HE;” If all the X;’s of the last iteration are zero,

then b¢ = b’. Otherwise, since Xy # 0, Lemma 3.1 and
Corollary 2.4 give:

=14
”bf;” Z |Re )€| 2 |Ri0,n| - Ang,m

10,

1 _ .
> Z|Xio|Rio,io —27P¢(io) (||bk]l + Rig i)

1
> gRioyio'
Furthermore, using Lemma 3.6, we get (not-
ing a = (Rix,-.-, R «,0,...,0) and b =

(0,10, RS, 41 s+ RS, 0, ..., 0)):

ol = ksl = [l = ekl
< llall + [Ib]l = [Ib]l

< (,‘gai0 +0)Rig.io +§Hb»€“

< 9(ka™ +0)||bs||.

This gives that ||b%|| < 10ka”||b%||, which provides the
bound. O

The result above leads us to the following complexity up-
per bound.

THEOREM 3.11. Let (by,...,by) € Z™*? be a valid input
to Algorithm 3. Let k be the input index. Suppose the pre-

cision satisfies p > log2(2%+9ﬁ3¢(n)a/0) and p = 20D,
Then the execution finishes within

Hbill> nM(d)
bl d

where || B|| = max;<, ||bs|| and b% (resp. b%) is b, at the
beginning of Step 1 (resp. Step 9).

(d+log||BJ|)| bit operations,

0] {(d—i—log

Proof. The bit-cost of one iteration of Steps 4 and 5
is O(dM(d)) for handling the mantissas (thanks to the sec-
ond restriction on p) and O(dlog(d + log || B]|)) for handling
the exponents (thanks to Corollary 2.4 and Lemmata 3.1
and 3.4). This implies that one iteration of the loop made of
Steps 3-5 costs O(d> M(d)+d? loglog || B||). A similar bound
O(ndM(d)+ndloglog || B||) holds for one iteration of Step 2.
The computation of ¢ at Step 6 is negligible compared to
the costs above. Theorem 3.9 implies that the update of b,
at Step 6 can be performed within O(nM/(d) log(d||B||)) bit
operations (note that though X; can be a very large inte-
ger, it is stored on < p = O(d) bits). The cost of Step 7
is also negligible compared to the costs above. Overall, the
bit-cost of one iteration of the loop consisting of Steps 1-7
is O(nM(d)(d+1log || B]|)). Lemma 3.10 provides the result.
O



4. AN LLL RELYING ON HOUSE-
HOLDER'S ALGORITHM

The H-LLL algorithm (Algorithm 4) follows the general
structure of LLL algorithms (see Algorithm 1). For the
size-reduction, it relies on Algorithm 3. The precision re-
quirement is a little stronger than in the previous section.
Asymptotically, for close to optimal parameters §, n and 0
(ie., 0 = 1, n = 1/2 and 6 ~ 0), a sufficient precision
isp~d.

Algorithm 4 The H-LLL algorithm.

Input: A matrix B € Z"*% of rank d and valid LLL pa-
rameters 6,1 and 0, with 6 < n —1/2.

Input: o(27°%) (for an arbitrary ¢ > 0) and a fp precision
p>po+1—1logy(l —3)—logy(n—60—1/2) with po :=
log, (d*p(d)a®/0) + 16 + cd /2.

Output: A (§,7n,0)-LLL-reduced basis of the lattice
spanned by the columns of B.

1: Let § be a fp number in (§ + 27PTP0 1 — 27PFPo),

2: Compute T1, V1,01 using Steps 3-9 of Algorithm 2.

3: k:=2. While k <d, do

4:  Call Algorithm 3 on B,T1,...,Tx—1,V1,...,Ve—1 and
O01y...,0k—-1-

5: 5= o]0 (ba)[|2); 5 1= 0(s = ey Ri)-

6: If o(g-o(ﬁi_l’,@_l)) <s, then kK :=r+ 1.

7:  Else swap bx_1 and b,; k := max(k — 1, 2).

8: Return B.

Before proceeding to the analysis of Algorithm 4, let us
explain how Step 5 is performed. We compute o(|| ¢ (by)||?)

sequentially; we compute the O(Ri «)’s; and finally we com-

pute s := o(]| o (b)) || = e Ein) sequentially. Corol-
lary 2.4 and Theorem 3.9 provide the soundness of such a
computation.

LEMMA 4.1. Assume that the first kK —1 columns of B are
LLL-reduced. Then at the end of Step 5, we have:

|5 = (Rl + Rio1)| <277 260 0(R) (R + Rt o)
Proof. First of all, thanks to [4, Eq. (3.5)], we
have | ¢ || ¢ (bx)||? — ||bxl?| < n27PF b, . Also:

|o(R; ) — R2,.| <27"*'R?, + 2[R, — R,|
< 27" RY, + 2AR; o (|Rix| + AR ).

Thanks to the LLL-reducedness of the first x — 1 columns
of B, Corollary 2.4 and Theorem 3.9, we have (using 6 <
a ")
|Ri| < 2(a" "Re—1,0—1+a "|bg|)
S 8H(an_iRn—1,n—1 + Rri,f@)
ARi,m S 2_p¢(i)(aﬁ_iRnfl,mfl + HbNH)
S 27p+2"i¢(i)(am7iRﬁfl,mfl + Rn,n)'
As a consequence, we obtain the bound:

lo(Rin) — R, < 277"8k20® (R2_y ., + R2..)

+2_p+7f€2¢(7;)(a'{_iRn—l,n—l + RH,K)2
< 2R (k) (Rt ot + B2 -

Finally, using [4, Eq. (3.5)], we get the bound:
s — (R + R 1 w-1)| < R277H(RE .+ Ry 1 1)
—2
+2[0[bel® = bel*[ +2 Y |o(Rix) — RiLl,
i<k—2
which leads to the result. O

LEMMA 4.2. Assume that the first kK —1 columns of B are
LLL-reduced. Then at the end of Step 5, we have:

| o (5 : Q(Ri—l,n—l)) - 5Ri—1,~—1| < 27p+3¢(/€)5Ri—1,n—1-

Lemmata 4.1 and 4.2 imply the soundness of the test of
Step 6.

THEOREM 4.3. Let § = 2P+ S@Bg(d) and 7 =
1/2 + 277 o(d). Assume that the first k — 1 columns
of B are (6,n,0)-LLL-reduced. If the test of Step 6
succeeds then the first k columns of B are (6,m,0)-
LLL-reduced. Otherwise ' RE_ . 1 > RZ .+ R2_, . with
8 =614+ 27 P30 (k) k).

Proof. Suppose that the test succeeds. Corollary 2.4 and
Lemmata 4.1 and 4.2 imply:
(1 — 27p+3¢(:‘§2))5Ri,17“,1
< (1+27776%0 (k) (Ry o + Ri-1n1)-

By choice of 8, this implies that §Rz_17,€_1 < Ri_l’,€ —|—Ri,,€.
Now, using Theorem 3.9, we know that:

‘Rnfl,n| S (ﬁ"’é)Rmfl,Kfl +§||bm”
S (ﬁ+ 5(1 -+ 350[”))Rn—1,n—1 + 355}%&,;&
S an—l,n—l + eRn,n-

As a consequence, we have R._1,.—1 < aR. .. By using
Theorem 3.9 again, we have:

|Riw| <R + 0(||be|l + Ri—1,0—-1)
<7Ri:+0(3k ij(Rj,j) + aRew k)
ISk
S ﬁRz,z + 45505an,1{7

which completes the proof of the first claim of the theorem.
Suppose now that the test fails. Corollary 2.4 and Lem-
mata 4.1 and 4.2 imply:

1+ 2_p+3¢(“))3Ri71,m71
>(1- 27’7“2,%30/’”(;3(/{))(Ri,,€ + Ri—l,r@—l)~
By definition of ¢, this implies that 8’ RZ ;. > R2_; . +
R2,.. O

We can now conclude our study of Algorithm 4.

THEOREM 4.4. Algorithm 4 returns a (6,7m,0)-LLL-
reduced basis (bS,...,bg) of the lattice spanned by the input
basis (b8,...,bY) € Z"*¢. Furthermore, the bit complexity
18

&L 1 b’
OKCH log ]| & a log [ ] HbH) nM(d)(d + log||B|)|,

where |B|| = max||b;|| and d? (resp. df) is the determi-
nant of the lattice spanned by the first i columns of the in-

put (resp. output) basis. The complezity bound above is
itself O(nd* M(d) log || B||(d + log || B|)))-



Proof. Using the classical analysis of the LLL algorithm [7]
and Theorem 4.3, we know that the algorithm terminates
b

within O (d +log T,y %) iterations. A simple induction
using Theorem 4.3 proves that the output is indeed (4, n, 6)-
LLL reduced. Furthermore, the classical analysis of LLL
yields that at any moment, the norms of the basis vectors
are below d||B|| (except within the calls to Algorithm 3).
Each call to Algorithm 3 that transforms b'”'? into b{"*"”
costs

b,gOld) d
O(d+log I L) nM( )(d—l—logHBH)

bit operations.
b ) d

As a consequence, the total cost of Algorithm 4 is (using
the fact that the product over the loop iterations of

b
b b
:o[(d +1log [T % + 4 log IT g4} )n/\/l(d)(d +log |\B|\)] .

LY ST 16211y,
the MR s is exactly [, IBe] ):
bl M(d
o > G+m” L) m M) (4 1og )

iterations

Since TT|Ib?|| < ||B||* and [Jd? < ||B||’, that bound
immediately gives a O(nd*M(d) log || B||(d+log || B||)) com-
plexity upper bound. O

5. CONCLUSION

The decision to use Householder’s transformations instead
of Cholesky’s factorization within LLL leads to modifica-
tions in the proof of correctness: the perturbations induced
on the approximate R-factor have a different structure than
in the L? algorithm of [9]. These modifications may probably
be used for other forms or applications of the floating-point
reduction of lattices. For example the new approach may
be carried over to the case of linearly dependent input vec-
tors, and to the case of stronger reductions (such as the fp
Hermite-Korkine-Zolotarev reduction algorithm of [11]). An
important direction that deserves to be investigated would
be to try to further decrease the precision of the approxi-
mate computations. We showed that a precision essentially
equal to the problem dimension is sufficient. Can we do bet-
ter? It seems unnatural that a higher precision is required
in H-LLL than in its (incomplete) underlying size-reduction
algorithm. Finally, a more precise understanding of the nu-
merical behavior is required for various aspects, such as the
efficient implementation of H-LLL, which we are currently
investigating.
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Abstract. We devise an algorithm, il, with the following specifications: It takes as input an ar-
bitrary basis B = (b;); € Z%*? of a Euclidean lattice L; It computes a basis of L which is reduced
for a mild modification of the Lenstra-Lenstra-Lovasz reduction; It terminates in time O(d°T¢8 +
d“t1*e31%¢) where 8 = log max ||b;|| (for any € > 0 and w is a valid exponent for matrix multiplica-
tion). This is the first LLL-reducing algorithm with a time complexity that is quasi-linear in 3 and
polynomial in d. _

The backbone structure of L is able to mimic the Knuth-Schénhage fast ged algorithm thanks to
a combination of cutting-edge ingredients. First the bit-size of our lattice bases can be decreased
via truncations whose validity are backed by recent numerical stability results on the QR matrix
factorization. Also we establish a new framework for analyzing unimodular transformation matrices
which reduce shifts of reduced bases, this includes bit-size control and new perturbation tools. We
illustrate the power of this framework by generating a family of reduction algorithms.

1 Introduction

We present the first lattice reduction algorithm which has complexity both quasi-linear in the
bit-length of the entries and polynomial time overall for an input basis B = (b;); € Z4*9. This is
the first progress on quasi-linear lattice reduction in nearly 10 years, improving Schonhage [28|,
Yap [32], and Eisenbrand and Rote [7] whose algorithm is exponential in d. Our result can be
seen as a generalization of the Knuth-Schénhage quasi-linear GCD [13,26] from integers to ma-
trices. For solving the matrix case difficulties which relate to multi-dimensionality we combine
several new main ingredients. We establish a theoretical framework for analyzing and designing
general lattice reduction algorithms. In particular we discover an underlying structure on any
transformation matrix which reduces shifts of reduced lattices; this new structure reveals some
of the inefficiencies of traditional lattice reduction algorithms. The multi-dimensional difficulty
also leads us to establish new perturbation analysis results for mastering the complexity bounds.
The Knuth-Schonhage scalar approach essentially relies on truncations of the Euclidean remain-
ders [13,26] , while the matrix case requires truncating both the “remainder” and “quotient”
matrices. We can use our theoretical framework to propose a family of new reduction algorithms,
which includes a Lehmer-type sub-quadratic algorithm in addition to L.

In 1982, Lenstra, Lenstra and Lovasz devised an algorithm, L3, that computes reduced bases
of integral Euclidean lattices (i.e., subgroups of a Z%) in polynomial time [16]. This typically
allows one to solve approximate variants of computationally hard problems such as the Shortest
Vector, Closest Vector, and the Shortest Independent Vectors problems (see [18]). L3 has since
proven useful in dozens of applications in a wide range including cryptanalysis, computer algebra,
communications theory, combinatorial optimization, algorithmic number theory, etc (see [22, 6]
for two recent surveys).

! Extended abstract appears in the Proc. 48rd ACM Symposium on Theory of Computing (STOC 2011), June

6-8, San Jose, California, 2011.
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In [16], Lenstra, Lenstra and Lovasz bounded the bit-complexity of L? by O(d°™¢3%*¢) when
the input basis B = (b;); € Z%*? satisfies max ||b;|| < 2°. For the sake of simplicity, we will only
consider full-rank lattices. The current best algorithm for integer multiplication is Fiirer’s, which
allows one to multiply two k-bit long integers in time M(k) = O(k(logk)2!°¢"*). The analysis
of L3 was quickly refined by Kaltofen [11], who showed a O(d®3%(d + 3)°) complexity bound.
Schnorr [24] later proposed an algorithm of bit-complexity O(d*3(d + 3)'*¢), using approximate
computations for internal Gram-Schmidt orthogonalizations. Some works have since focused on
improving the complexity bounds with respect to the dimension d, including [27, 30, 14, 25|, but
they have not lowered the cost with respect to § (for fixed d). More recently, Nguyen and Stehlé
devised L? [21], a variant of L with complexity O(d**¢3(d + 3)). The latter bound is quadratic
with respect to 3 (even with naive integer multiplication), which led to the name L2. The same
complexity bound was also obtained in |20] for a different algorithm, H-LLL, but with a simpler
complexity analysis.

As a broad approximation, L3, L2 and H-LLL are generalizations of Euclid’s greatest common
divisor algorithm. The successive bases computed during the execution play the role of Euclid’s
remainders, and the elementary matrix operations performed on the bases play the role of Eu-
clid’s quotients. L? may be interpreted in such a framework. It is slow because it computes its
“quotients” using all the bits from the ‘“remainders” rather than the most significant bits: The
cost of computing one Euclidean division in an L3 way is O(3'7¢), leading to an overall O(3%*¢)
bound for Euclid’s algorithm. Lehmer [15] proposed an acceleration of Euclid’s algorithm by the
means of truncations. Since the ¢ most significant bits of the remainders provide the first £2(¢)
bits of the sequence of quotients, one may: Truncate the remainders to precision ¢; Compute the
sequence of quotients for the truncated remainders; Store the first £2(¢) bits of the quotients into
an §2(¢)-bit matrix; Apply the latter to the input remainders, which are shortened by §2(¢) bits;
And iterate. The cost gain stems from the decrease of the bit-lengths of the computed remain-
ders. Choosing £ ~ /B leads to a complexity bound of O(3%/%2¢). In the early 70’s, Knuth [13]
and Schonhage [26] independently observed that using Lehmer’s idea recursively leads to a ged
algorithm with complexity bound O(3'*¢). The above approach for the computation of geds has
been successfully adapted to two-dimensional lattices [32,28, 5|, and the resulting algorithm was
then used in [7] to reduce lattices in arbitrary dimensions in quasi-linear time. Unfortunately, the
best known cost bound for the latter is O(3'+¢(log )4~ 1) for fixed d.

OUR RESULT. We adapt the Lehmer-Knuth-Schonhage ged framework to the case of LLL-reduction.
L! takes as input a non-singular B € Z9*%; terminates within O(d>*¢8 + d“T1+<3+¢) bit oper-

ations, where 5 = log max ||b;||; and returns a basis of the lattice L(B) spanned by B which is

LLL-reduced in the sense of Definition 1 given hereafter. (L3 reduces bases for = = (3/4,1/2,0).)

The time bound is obtained via an algorithm that can multiply two d x d matrices in O(d*)

scalar operations. (We can set w & 2.376 [4].) Our complexity improvement is particularly rele-

vant for applications of LLL reduction where ( is large. These include the recognition of algebraic

numbers [12| and Coppersmith’s method for finding the small roots of polynomials [3].

Definition 1 ([2, Def. 5.3]). Let & = (6,1,0) with n € (1/2,1), § > 0 and § € (n*1).
Let B € R¥™9 be non-singular with QR factorization B = Q - R (i.e., the unique decomposition
of B as a product of an orthogonal matriz and an upper triangular matriz with positive diagonal
entries). The matriz B is =-LLL-reduced if:

o for all i < j, we have |r; ;| < nri; +0r;; (B is size-reduced);
o for all i, we have 9 - 7“12@ < rﬁiH + Ti2+1ﬂ-+1 (B is said to satisfy Lovdsz’ conditions).
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Let Z; = (i,mi,0;) be valid LLL-parameters for i € {1,2}. We say that = is stronger than =
and write =1 > Zo if §1 > d2, n1 < 12 and 01 < 0s.

This modified LLL-reduction is as powerful as the classical one (note that by choosing (d, 7, 6)
close to the ideal parameters (1,1/2,0), the derived « tends to 2/+/3):

Theorem 1 ([2, Th. 5.4]). Let B € R¥? be (6,7, 0)-LLL-reduced with R-factor R. Let o =
n9++/(1+62)5—n2
6—n?

that ||by| < a%]det B|Y and o'~ ; < N < alrig, where \; is the ith minimum of the
lattice L(B).

. Then, for all i, ri; < a-riy1i41 and ri; < |[bif| < at - rii. This implies

L! and its analysis rely on two recent lattice reduction techniques (described below), whose
contributions can be easily explained in the ged framework. The efficiency of the fast ged algo-
rithms [13, 26| stems from two sources: Performing operations on truncated remainders is mean-
ingful (which allows one to consider remainders with smaller bit-sizes), and the obtained trans-
formations corresponding to the quotients sequence have small bit-sizes (which allows one to
transmit at low cost the information obtained on the truncated remainders back to the genuine
remainders). We achieve an analogue of the latter by gradually feeding the input to the reduction
algorithm, and the former is ensured thanks to the modified notion of LLL-reduction which is
resilient to truncations.

The main difficulty in adapting the fast gcd framework lies in the multi-dimensionality of
lattice reduction. In particular, the basis vectors may have significantly differing magnitudes.
This means that basis truncations must be performed vector-wise. (Column-wise using the matrix
setting.) Also, the resulting unimodular transformation matrices (integral with determinant +1
so that the spanned lattice is preserved) may have large magnitudes, hence need to be truncated
for being be stored on few bits.

To solve these dilemmas we focus on reducing bases which are a mere scalar shift from being
reduced. We call this process lift-reducing, and it can be used to provide a family of new reduction
algorithms. We illustrate in Section 2 that the general lattice reduction problem can be reduced to
the problem of lift-reduction. Indeed, the LLL-reduction of B can be implemented as a sequence
of lift-reductions by performing a Hermite Normal Form (HNF) computation on B beforehand.
Note that there could be other means of seeding the lift-reduction process. Our lift-reductions
are a generalization of recent gradual feeding algorithms.

GRADUAL FEEDING OF THE INPUT. Gradual feeding was introduced by Belabas [1|, Novocin,
and van Hoeij [23, 10], in the context of specific lattice bases that are encountered while factoring
rational polynomials (e.g., with the algorithm from [9]). Gradual feeding was restricted to reducing
specific sub-lattices which avoid the above dimensionality difficulties. We generalize these results
to the following. Suppose that we wish to reduce a matrix B with the property that By := O'ZkB
is reduced for some k and oy is the diagonal matrix diag(2¢,1,...,1). If one runs L? on B
directly then the structure of By is not being exploited. Instead, the matrix B can be slowly
reduced allowing us to control and understand the intermediate transformations: Compute the
unimodular transform U; (with any reduction algorithm) such that o,BgU; is reduced and repeat
until we have UfBoUl Uy = B(Uy -+ Uy). Each entry of U; and each entry of U - - - U; can be
bounded sensitive to the shape of the lattice. Further we will illustrate that the bit-size of any
entry of U; can be made O(¢ + d) (see Theorems 2 and 4).

In addition, control over U gives us the ability to analyze the impact of efficient truncations
on lift-reductions.
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TRUNCATIONS OF BASIS MATRICES. In order to work on as few bits of basis matrices as possible
during our lift-reductions, we apply column-wise truncations. A truncation of precision p replaces

a matrix B by a truncated matrix B + AB such that max ”ﬁ:"ﬁ” < 27P holds for all 7, and only

the most significant p + O(logd) bits of every column of B + AB are allowed to be non-zero.
Each entry of B + AB is an integer multiplied by some power of 2. (In the notation AB, A
does not represent anything, i.e., the matrix AB is not a product of A and B.) A truncation
is an efficiency-motivated column-wise perturbation. The following lemmata explain why we are
interested in such perturbations.

Lemma 1 ([2, Se. 2], refined from [8]). Let p > 0, B € R™? non-singular with R-factor R,

and let AB with max ”ﬁ:ﬁ” < 277, If cond(R) = |||R||R7Y||2 (using the induced norm) satis-

fies co-cond(R) -27P < 1 with co = 8d°/?, then B+ AB is non-singular and its R-factor R+ AR

satisfies max H”AfﬁH < ¢ -cond(R)-27P.

+1 d
P

>

Lemma 2 ([2, Le. 5.5]). If B € R¥*? with R-factor R is (3,7, 0)-reduced then cond(R) <
with p = (14+n+ 0)a, with o as in Theorem 1.

—

R}

These results imply that a column-wise truncation of a reduced basis with precision £2(d)
remains reduced. This explains why the parameter 6 was introduced in Definition 1, as such a
property does not hold if LLL-reduction is restricted to 8 = 0 (see [29, Se. 3.1]).

Lemma 3 ([2, Co. 5.1]). Let =1 > =5 be valid reduction parameters. There exists a constant ¢y

such that for any Z1-reduced B € R¥? and any AB with max HHAbt_)ﬁH < 2=v4 the matric B+ AB
18 non-singular and Zo-reduced.

As we will see in Section 3 (see Lemma 7) the latter lemmata will allow us to develop the
gradual reduction strategy with truncation, which is to approximate the matrix to be reduced,
reduce that approximation, and apply the unimodular transform to the original matrix, and
repeat the process.

LirT-L!. Our quasi-linear general lattice reduction algorithm, il, is composed of a sequence of
calls to a specialized lift-reduction algorithm, Lift-L'. Sections 2 and 4.4 show the relationship
between general reduction and lift-reduction via HNF.

Inputs: By reduced, and target lift £.
Output: Uspan such that oy, BoUgsman is reduced.

. Get Uy sman from pseudo-Lift-L'(truncate(By),//2).

. B1 1= 0¢/2BoU1 sman-

. Get U from refineReduction(C).

. Get Uz sman from pseudo-Lift-L'(truncate(B,U),/2).
. Usman 3:Clean(U1,small U - U2,sma11) .

. Return Ugman.

S U W N

Fig. 1. pseudo—Lift—il.

When we combine lift-reduction (gradual feeding) and truncation we see another difficulty
which must be addressed. That is, lift-reducing a truncation of By will not give the same trans-
formation as lift-reducing By directly; likewise any truncation of U weakens our reduction even
further. Thus after working with truncations we must apply any transformations to a higher
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precision lattice and refine the result. In other words, we will need to have a method for strength-
ening the quality of a weakly reduced basis. Such an algorithm exists in [19] and we adapt it to
performing lift-reductions in section 3.2. Small lift-reductions with this algorithm also become
the leaves of our recursive tree. The Lift-L! algorithm in Figure 4 is a rigorous implementation
of the pseudo algorithm in Figure 1: Lift-L! must refine current matrices more often than this
pseudo algorithm to properly handle a specified reduction.

It could be noted that clean is stronger than mere truncation. It can utilize our new under-
standing of the structure of any lift-reducing U to provide an appropriate transformation which
is well structured and efficiently stored.

COMMENTS ON THE COST OF L. The term O(d®¢ ) stems from a series of 3 calls to H-LLL [20]
or L2 [21] on integral matrices whose entries have bit-lengths O(d). These calls are at the leaves of
the tree of the recursive algorithm. An amortized analysis allows us to show that the total number
of LLL switches performed summed over all calls is O(d?3) (see Lemma 11). We recall that
known LLL reduction algorithms perform two types of vector operations: Either translations or
switches. The number of switches performed is a key factor of the complexity bounds. The H-LLL
component of the cost of L! could be lowered by using faster LLL-reducing algorithms than H-LLL
(with respect to d), but for our amortization to hold, they have to satisfy a standard property (see
Section 3.2). The term O(d“+1+¢31+¢) derives from both the HNF computation mentioned above
and a series of product trees of balanced matrix multiplications whose overall product has bit-
length O(df3). Furthermore, the precise cost dependence of L'in Bis Poly(d)- M(5) log 3. We also
remark that the cost can be proven to be O(d**¢ log | det B|+d>*¢+d*(log | det B|)'*)+H(d, ),
where H(d, 3) denotes the cost of computing the Hermite normal form. Finally, we may note that
if the size-reduction parameter 6 is not considered as a constant, then a factor Poly(log(1/0)) is
involved in the cost of the leaf calls.

ROAD-MAP. We construct L! in several generalization steps which, in the ged framework, respec-
tively correspond to Euclid’s algorithm (Section 2), Lehmer’s inclusion of truncations in Euclid’s
algorithm (Section 3) and the Knuth-Schonhage recursive generalization of Lehmer’s algorithm
(Section 4).

2 Lift-Reduction

In order to enable the adaptation of the ged framework to lattice reduction, we introduce a
new type of reduction which behaves more predictively and regularly. In this new framework,
called lift-reduction, we are given a reduced matrix B and a lifting target ¢ > 0, and we aim
at computing a unimodular U such that o,BU is reduced (with o, = diag(2%,1,...,1)). Lift-
reduction can naturally be performed using any general purpose reduction algorithm, however we
will design fast algorithms specific to lift-reduction in Sections 3 and 4. Lifting a lattice basis has
a predictable impact on the 7;;’s and the successive minima.

Lemma 4. Let B be non-singular and £ > 0. If R (resp. R') is the R-factor of B (resp. B’ =
o¢B), then ri; > ri; for all i and [[r]; = 2/ [17i4. Furthermore, if (\;); (resp. (A\.);) are the
successive minima of L = L(B) (resp. L' = L(B')), then X\; < X, < 2¢\; for all 4.

Proof. The first statement is proven in [10, Le. 4]. For the second one, notice that [[r}, =
|det B| = 2¢| det B| = 2¢]] r;;. We now prove the third statement. Let (v;); and (v/); be linearly
independent vectors in L and L' respectively with [|v;|| = A; and ||v}|] = A, for all 4. For any 1,
we define S; = {oyv;,j <i} and S; = {Ue_lv;-,j < i}. These are linearly independent sets in L'
and L respectively. Then for any 7 we have \; < max”.H(Si) <N < max”.H(S’;) < 20N, O
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We can now bound the entries of any matrix which performs lift-reduction.

Lemma 5. Let =7, Z5 be valid parameters and ay and ag as in Theorem 1. Let £ > 0, B € Réxd
be Z1-reduced and U such that C = 0,BU is Za-reduced. Letting (1 = (1+n1 +01)aiae, we have:

)

/
. -
VZ,] : |U,Z7]’ < 4d3€1d YA < 2£+2d3C12d . 7,‘777‘7
1,0 Tij
where R (resp. R') is the R-factor of B (resp. C). In addition, if V = U~ and (3 = (1 +n2 +
02)@20&1: - )
Vi gt |l < 20F2d3¢d . T < oft2g3cd . T
7 "j.d Tj.j

Proof. Let B= QR, C = Q'R be the QR-factorizations of B and C. Then

U= Rletae—lQ/R/
= diaug(r;il)R_1 (Qtale’) R’diag(r}ﬂ,

with R = R - diag(1/r;;) and R’ = R’ - diag(1/7} ;). From the proof of [2, Le. 5.5], we know
that |R71| < 2((1 +m + 61)a1)?T, where ¢, ; = 1 if i < j and ¢; ; = 0 otherwise. By Theorem 1,
we have |R'| < (n2a ' 4+-02)T < 204T (using 6 < ag and 72 < 1). Finally, we have |Q|, |Q'| < M,
where m; ; = 1 for all 7, j. Using the triangular inequality, we obtain:

U| < 4¢?diag(r;,; )T M?T diag(r’; ;)
< 4d3Cddiag(’ri_7il)Mdiag(T},j)-

Now, by Theorem 1 and Lemma 4, we have r;’j < ag_j /\;» < 2@@3—;‘ Aj < 2£a{ag_j 754, which
completes the proof of the first statement.
For the second statement note that

V = diag(r';, )R (Q"0,Q) Rdiag(r;;)

is similar to the expression for U in the proof of the first statement, except that o, can increase
the innermost product by a factor 2¢. a

LLL-REDUCTION AS A SEQUENCE OF LIFT-REDUCTIONS. In the remainder of this section we
illustrate that LLL-reduction can be achieved with an efficient sequence of lift-reductions.

Lift-reduction is specialized to reducing a scalar-shift/lift of an already reduced basis. In
Figure 2 we create reduced bases (of distinct lattices from the input lattice) which we use to
progressively create a reduced basis for the input lattice. Here we use an HNF triangularization
and scalar shifts to find suitable reduced lattice bases. We analyze the cost and accuracy of
Figure 2 using a generic lift-reduction algorithm. The remainder of the paper can then focus on
specialized lift-reduction algorithms which each use Figure 2 to achieve generic reduction. We
note that other wrappers of lift-reduction are possible.

Recall that the HNF of a (full-rank) lattice L C 7% is the unique upper triangular basis H
of L such that —h;;/2 < h;j < h;;/2 for any i < j and h;; > 0 for any . Using [17,31], it can
be computed in time O(d“T17531+¢) where the input matrix B € Z4*9 satisfies max ||b;|| < 2°.

Let H be the HNF of L(B). At the end of Step 1, the matrix B = H is upper triangu-
lar, [ bi; = | det H| < 29° and the 1 x 1 bottom rightmost sub-matrix of H is trivially Z-reduced.
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In each iteration we =-reduce a lower-right sub-matrix of B via lift-reduction (increasing the di-
mension with each iteration). This is done by augmenting the previous =-reduced sub-matrix by
a scaling down of the next row (such that the new values are tiny). This creates a C' which is
reduced and such that a lift-reduction of C will be a complete =Z-reduction of the next largest
sub-matrix of B. The column operations of the lift-reduction are then applied to rest of B with
the triangular structure allowing us to reduce each remaining row modulo b; ;. From a cost point
of view, it is worth noting that the sum of the lifts ¢ is O(log|det H|) = O(df).

Inputs: LLL parameters =; a non-singular B € Z¢*4,
Output: A =-reduced basis of L(B).

1. B := HNF(B).

2. For k from d — 1 down to 1 do

3. Let C be the bottom-right (d — k + 1)-dimensional submatrix of B.

4 (k = ]—logg(bk,kﬂ, C:= a,_,‘le.

5.  Lift-reduction: Find U’ unimodular such that o,, CU’ is Z-reduced.

6. Let U be the block-diagonal matrix diag(l,U’).

7.  Compute B := B - U, reducing row ¢ symmetrically modulo b; ; for i < k.
8. Return B.

Fig. 2. Reducing LLL-reduction to lift-reduction.

Lemma 6. The algorithm of Figure 2 Z-reduces B such that max ||b;| < 2° using

1
0(dw+1+6(51+6—|—d))—|— Z Ck:
k=d—1

bit operations, where Cy is the cost of Step 5 for the specific value of k.

Proof. We first prove the correctness of the algorithm. We let Uy be the unimodular transfor-
mation such that H = BUpy. For k < d, we let U], be the (d — k+ 1) x (d — k + 1) unimodular
transformation that reduces oy, C' at Step 5 and U} be the unimodular transformation that re-
duces rows 1 < i < k at Step 7. With input B the algorithm returns B - Uy - diag(I,U},_,) -
Uy ... diag(I,Us) - Uy - Uj. Since B is multiplied by a product of unimodular matrices, the
output matrix is a basis of the lattice spanned by the columns of B.

We show by induction on k from d down to 1 that at the end of the (d — k)-th loop iteration,
the bottom-right (d — k+ 1)-dimensional submatrix of the current B is =-reduced. The statement
is valid for & = d, as a non-zero matrix in dimension 1 is always reduced, and instanciating the
statement with & = 1 ensures that the matrix resturned by the algorithm is =-reduced. The
non-trivial ingredient of the proof of the statement is to show that for £ < d, the input of the
lift-reduction of Step 5 is valid, i.e., that at the beginning of Step 5 the matrix C is Z-reduced.
Let R be the R-factor of C. Let C’ be the bottom-right (d — k) x (d — k) submatrix of C. By
induction, we know that C’ is Z-reduced. It thus remains to show that the first row of R satisfies
the size-reducedness condition, and that Lovasz’ condition between the first two rows is satisfied.
We have ry; = hk7k+j_1/2£k, for j < d — k + 1, thus ensuring the size-reducedness condition.
Furthermore, by the shape of the unimodular transformations applied so far, we know that C’
is a basis of the lattice L' generated by the columns of the bottom-right (d — k)-dimensional
submatrix of H, which has first minimum A;(L’) > min;>y h;; > 1. As ro 2 is the norm of the
first vector of C’, we have ro9 > A;(L') > 1. Independently, by choice of ¢}, we have r; < 1.
This ensures that Lovasz’ condition is satisfied, and completes the proof of correctness.
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We now bound the cost of the algorithm of Figure 2. We bound the overall cost of the d — 1
calls to lift-reduction by >, _,Ck. It remains to bound the contribution of Step 7 to the cost.
The cost dominating component of Step 7 is the computation of the product of the last d — k+1
columns of (the current value of) B by U’. We consider separately the costs of computing the
products by U’ of the k x (d — k + 1) top-right submatrix B of B, and of the (d—k) x (d—k+1)
bottom-right submatrix B of B

For i < k, the magnitudes of the entries of the i-th row of B are uniformly bounded by h; ;. By
Lemma 5, if e, j < d—k+1, then |u, ;| < 20k +2g3¢d. :Z—i (recall that R is the R-factor of C' at the
beginning of Step 5). As we saw above, we have rp 9 > i, and, by reducedness, we have re . > a™°
for any e > 2 (using Theorem 1). Also, by choice of ¢, we have r1; > 1/2. Overall, this gives
that the jth column of U’ is uniformly bounded as log ||u}|| = O(¢x, + d + logr; ;). The bounds
on the bit-lengths of the rows of B and the bounds on the bit-lengths of the columns of U’ may
be very unbalanced. We do not perform matrix multiplication naively, as this unbalancedness
may lead to too large a cost (the maxima of row and column bounds may be much larger than
the averages). To circumvent this difficulty we use Recipe 1, given in Appendix 1 p.17, with
“S = logdet H + d? + df},". Since det H = |det B| the multiplication of B with U’ can be
performed within O(d“ M ((log|det B|)/d + d + {})) bit operations.

We now consider the product P := BU'. By reducedness of B, we have |b,|| < adr; ;
(from Theorem 1). Recall that we have [u ;| < 2t F2g3¢d :Z—]e As a consequence, we can
uniformly bound log|[u}|| and log [p;|| by O(f + d + logrj,j)’ for any j. We can thus use
Recipe 3, given in Appendix 1 p.17, to compute P, with “S = O(logdet H + d? + df},)” us-
ing O(d“* M((log | det B|)/d + d + {x)) bit operations.

The proof can be completed by noting that the above matrix products are performed d — 1
times during the execution of the algorithm and by also considering the cost O(dvt1+31+¢) of
converting B to Hermite normal form. O

We use the term Cj. in order to amortize over the loop iterations the costs of the calls to the
lift-reducing algorithm. In the algorithm of Figure 2 and in Lemma 6, the lift-reducing algorithm is
not specified. It may be a general-purpose LLL-reducing algorithm [16, 11,21, 20] or a specifically
designed lift-reducing algorithm such as Lift-L', described in Section 4.

It can be noted from the proof of Lemma 6 that the non-reduction costs can be refined
as O(d“*t*M(log|det B|) + d“t'* M(d)) + H(d, 3). We note that the HNF is only used as a
triangularization, thus any triangularization of the input B will suffice, however then it may be
needed to perform d? reductions of entries b;,; modulo b; ;. Thus we could replace H(d,3) by
O(d?B*¢) for upper triangular inputs. Using the cost of H-LLL for lift-reduction, we can bound
the complexity of Figure 2 by Poly(d) - 32. This is comparable to L? and H-LLL.

3 Truncating matrix entries

We will now focus on improving the lift-reduction step introduced in the previous section. In this
section we show how to truncate the “remainder” matrix and we give an efficient factorization
for the “quotient” matrices encountered in the process. This way the unimodular transformations
can be found and stored at low cost. In the first part of this section, we show that given any B
reduced and ¢ > 0, finding U such that o,BU is reduced can be done by looking at only the most
significant bits of each column of B. In the context of gcd algorithms, this is equivalent to saying
that the quotients can be computed by looking at the most significant bits of the remainders only.
In the ged case, using only the most significant bits of the remainders allows one to efficiently



version 27 Apr 20t

ens 005348990,

Quasi-Linear LLL ~ A. Novocin, D. Stehlé, G. Villard 9

compute the quotients. Unfortunately, this is where the gcd analogy stops as a lift-reduction
transformation U may still have entries that are much larger than the number of bits kept of B.
In particular, if the diagonal coefficients of the R-factor of B are very unbalanced, then Lemma 5
does not prevent some entries of U from being as large as the magnitudes of the entries of B (as
opposed to just the precision kept). The second part of this section is devoted to showing how to
make the bit-size of U and the cost of computing it essentially independent of these magnitudes.
In this framework we can then describe and analyze a Lehmer-like lift-reduction algorithm.

3.1 The most significant bits of B suffice for reducing o¢B

It is a natural strategy to reduce a truncation of B rather than B, but in general it is unclear if
some U which reduces a truncation of B would also reduce B even in a weaker sense. However,
with lift-reduction we can control the size of U which allows us to overcome this problem. In this
section we aim at computing a unimodular U such that o,BU is reduced, when B is reduced, by
working on a truncation of B. We use the bounds of Lemma 5 on the magnitude of U to show
that a column-wise truncation precision of £ + O(d) bits suffices for that purpose.

Lemma 7. Let =1, =9, =5 be valid reduction parameters with =3 > Zo. There exists a constant c3

such that the following holds for any ¢ > 0. Let B € R¥? be =Zy-reduced and AB be such
that max “A'?i” < 27t=esd_ [f 5,(B+ AB)U is Es-reduced for some U, then o¢BU is Zs-reduced.
[

The proof is given in Appendix 2 p.19. The above result implies that to find a U such
that oyBU is reduced, it suffices to find U such that oy(B’ - E)U is reduced (for a stronger =),
for well chosen matrices B’ and E, outlined as follows.

Definition 2. For B € Z%*? with 3 = logmax ||b;|| and precision p, we chose to store the p most
significant bits of B, MSBy(B), as a matriz product B'E or just the pair (B', E). This pair should
satisfy B' € Z4%*4 with p = logmax ||b/;||, E = diag(2%~P) with e; € Z such that 2 lbll < 9d

o o
(o =/ 2

—-P
and max , I < 27P,
lIb]]

3.2 Finding a unimodular U reducing oyB at low cost

The algorithm TrLiftLLL (a truncated lift-LLL) we propose is an adaptation of the StrengthenLLL
from [19], which aims at strengthening the LLL-reducedness of an already reduced basis, i.e., Zs-
reducing a =j-reduced basis with =7 < Z%. One can recover a variant of StrengthenLLL by
setting £ = 0 below. We refer the reader to Appendix 3 p.19 for a complete description of
TrLiftLLL.

Theorem 2. For any valid parameters =1 < Za and constant cy, there exists a constant ¢y and
an algorithm TrLiftLLL with the following specifications. It takes as inputs £ > 0, B € 73*4
and E = diag(2%) with max ||b|| < 294U+ ¢, € Z and BE is 5)-reduced; It runs in time
O(d?*e(d+£)(d+ £+ 7) + d*logmax(1 + |e;|)), where T = O(d?(£+ d)) is the number of switches
performed during the single call it makes to H-LLL; And it returns two matrices U and D such
that:

1. D = diag(2%) with d; € Z satisfying max |e; — d;| < ¢, (¢ + d),
2. U is unimodular and max |u; ;| < 214,
8. D7YUD is unimodular and o,(BE)(D~1UD) is Zy-reduced.
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When setting ¢ = O(d), we obtain the base case of lift—il, the quasi-linear time recursive
algorithm to be introduced in the next section. The most expensive step of TrLiftLLL is a call
to an LLL-type algorithm, which must satisfy a standard property that we identify hereafter.

When called on a basis matrix B with R-factor R, the L2, L? and H-LLL algorithms per-
form two types of basis operations: They either subtract to a vector by an integer combination
of by, ..., bg_1 (translation), or they exchange by_; and by, (switches). Translations leave the r; ;’s
unchanged. Switches are never perfomed when the optimal Lovéasz condition Tz i < 7“3 i1 +72 11
is satisfied, and thus cannot increase any of the quantities max;<; r;; (for varying 7), nor decrease
any of the quantities min;>; r; ;. This implies that if we have max;j r;; < min;>j r;; for some k
at the beginning of the execution, then the computed matrix U will be such that w;; = 0 for
any (i,7) such that ¢ > k and j < k. We say that a LLL-reducing algorithm satisfies Property (P)
if for any k such that max;<; 7;; < min;>; 7;; holds at the beginning of the execution, then it
also holds at the end of the execution.

Property (P) is for instance satisfied by L? ([16, p. 523]), L? ([21, Th. 6]) and H-LLL (|20,
Th. 4.3]). We choose H-LLL as this currently provides the best complexity bound, although L!
would remain quasi-linear with L3 or L2.

TrLiftLLL will also be used with £ = 0 in the recursive algorithm for strengthening the
reduction parameters. Such refinement is needed after the truncation of bases and transformation
matrices which we will need to ensure that the recursive calls get valid inputs.

3.3 A Lehmer-like lift-LLL algorithm

By combining Lemma 7 and Theorem 2, we obtain a Lehmer-like Lift-LLL algorithm, given in
Figure 3. In the input, we assume the base-case lifting target ¢ divides £. If it is not the case, we
may replace ¢ by t|¢/t|, and add some more lifting at the end.

Inputs: LLL parameters =; a =-reduced matrix B € Z4*%; a lifting target ¢; a divisor ¢ of £.
Output: A =-reduced basis of o,B.

1. Let =p, =1 be valid parameters with =y < = < =71,
C3 as in Le. 7 for “(51, 52, 53) = (E 51)”,
c¢1 as in Le. 3 with “(&1, 52) := (2,
and ¢} as in Th. 2 with “(Z1, 55, c4) :
2. For k from 1 to ¢/t do
3 (B',E) := MSB (¢ 4cqq) (B).
4. (D,U):=TrLiftLLL(B', E,t).
5
6.

[n

)
?

(E'()7 Z1,c3 + 2)”.

n .

~

0

B:=0¢:BD7UD.
Return B.

Fig. 3. The Lehmer-LiftLLL algorithm.

Theorem 3. Lehmer-LiftLLL is correct. Furthermore, if the input matriz B satisfies max ||b;|| <
2P then its bit-compleity is O(d3¢(d' st + 710 + B))).

Proof. The correctness is provided by Lemmata 3 and 7 and by Theorem 2. At any moment
throughout the execution, the matrix B is a Z-reduced basis of the lattice spanned by an ¢'-lift
of the input, for some ¢/ < £. Therefore, by Theorem 1 and Lemma 4, the inequality max ||b;|| <
a®max rii < 2¢:(t+8) holds throughout the execution, for some constant c¢. The cost of Step 3

is O[d?(t+1og(¢£+ ))]. The cost of Step 4 is O[d*+5t? 4 d? log(¢ + 3)]. Step 5 is performed by first
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computing oy BD~!, whose entries have bit-sizes O(£+ 3), and then multiplying by U and finally
by D. This costs O(d®(¢ 4 (5)t°) bit operations. The claimed complexity bound can by obtained
by summing over the ¢/t loop iterations. a

Note that if ¢ is sufficiently large with respect to d, then we may choose t = ¢* for a € (0,1),
to get a complexity bound that is subquadratic with respect to . By using Lehmer-LiftLLL
at Step 5 of the algorithm of Figure 2 (with t = £-°), it is possible to obtain an LLL-reducing
algorithm of complexity Poly(d) - B1-5+¢.

4 Quasi-linear algorithm

We now aim at constructing a recursive variant of the Lehmer-LiftLLL algorithm of the previous
section. Because the lift-reducing unimodular transformations will be produced by recursive calls,
we have little control over their structure (as opposed to those produced by TrLiftLLL). Before
describing Lift-L', we thus study lift-reducing unimodular transformations, without considering
how they were computed. In particular, we are interested in how to work on them at low cost.
This study is robust and fully general, and afterwards is used to analyze lift-L'.

4.1 Sanitizing unimodular transforms

In the previous section we have seen that working on the most significant bits of the input matrix B
suffices to find a matrix U such that o,BU is reduced. Furthermore, as shown in Theorem 2, the
unimodular U can be found and stored on few bits. Since the complexity of Theorem 2 is quadratic
in ¢ we will use it only for small lift-reductions (the leaves of our recursive tree) and repairing
reduction quality (when ¢ = 0). For large lifts we will use recursive lift-reduction. However, that
means we no longer have a direct application of a well-understood LLL-reducing algorithm which
was what allowed such efficient unimodular transforms to be found. Thus, in this section we show
how any U which reduces o,B can be transformed into a factored unimodular U’ which also
reduces oy B and for which each entry can be stored with only O(¢+ d) bits. We also explain how
to quickly compute the products of such factored matrices. This analysis can be used as a general
framework for studying lift-reductions.

The following lemmata work because lift-reducing transforms have a special structure which
we gave in Lemma 5. Here we show a class of additive perturbations which, when viewed as
a transformations, are in fact unimodular transformations themselves. Note that these entry-
wise perturbations are stronger than mere truncations since Au;; could be larger than wu; ;.
Lemma 8 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix remains
unimodular.

Lemma 8. Let =1, 55 be valid LLL parameters. There exists a contant ¢y such that the following
holds for any £ > 0. Let B € R (with R-factor R) be Z1-reduced, and U be unimodular such
that oy BU (with R-factor R') is Sa-reduced. If AU € Z9*? satisfies | Au; j| < 2~ (Ferd). Z—Z for
all 1,7, then U + AU is unimodular. ’

Proof. Since U is unimodular, the matrix V = U~ exists and has integer entries. We can thus
write U + AU = U(I + U~'AU), and prove the result by showing that U~ AU is strictly upper
triangular, i.e., that (U71AU); ; = 0 for i > j. We have (U YAU); j = >, <y Vik - Aug j. We now
show that if Auy ; # 0 and 4 > j, then we must have v; , = 0 (for a large enough c7).

The inequality Auy ; # 0 and the hypothesis on AU imply that :’f—k < 2~ (+erd) Qinee ¢ > j

and oy,BU is reduced, Theorem 1 implies that :’f—’“ < g tt(e=end  for some constant ¢ > 0.



version 27 Apr 20t

ens 005348990,

12 Quasi-Linear LLL.  A. Novocin, D. Stehlé, G. Villard

By using the second part of Lemma 5, we obtain that there exists ¢/ > 0 such that |v; ;| <
ottc’d . :ff—k < glete’=en)d  Ag V is integral, setting ¢7 > ¢ + ¢ allows us to ensure that vik =0,
as desired. O

Lemma 9 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix
remains lift-reducing.

Lemma 9. Let =1, =55, =3 be valid LLL parameters such that =5 > Z5. There exists a contant cg
such that the following holds for any £ > 0. Let B € R¥™? (with R-factor R) be Z-reduced,
and U be unimodular such that oc,BU (with R-factor R') is So-reduced. If AU € 7% satisfies

| Au; 5| < 27 (tFesd) :]TZ for alli,j, then oyB(U + AU) is E3-reduced.

Proof. We proceed by showing that |oyBAU]| is column-wise small compared to |oyBU| and by
applying Lemma 3. We have |AU| < 2_(€+08'd)diag(r;il)C’diag(r;j) by assumption, where ¢; ; = 1
for all ¢, j. Since B is Z1-reduced, we also have |R| < diag(r;;)T +6,Tdiag(r; ), where T" is upper
triangular with ¢; ; = 1 for all ¢ < j. Then using |RAU| < |R||AU| we get

[RAU| < 27+ diag(r,) Tdiag(r; }) + 01T ) Cdiag(1, ).

Since B is Zj-reduced, by Theorem 1, we have r;; < oz‘llrjyj for all ¢+ < j, hence it follows that
|RAU| < 27D (af 4 9,)TCdiag(r) ).
As a consequence, there exists a constant ¢ > 0 such that for any j:
I(oeBAU); || < 2°(BAU);|| = 2° (RAU); || < 20~ ;.

We complete the proof by noting that 7% ; < ||(0,BU);|| and by applying Lemma 3 (which requires
that cg is set sufficiently large). a

Lemmata 8 and 9 allow us to design an algorithmically efficient representation for lift-reducing
unimodular transforms.

Theorem 4. Let =1, =5, =3 be valid LLL parameters with =5 > Z3. There exist contants cg, c1g >
0 such that the following holds for any £ > 0. Let B € R¥™9 be 5y -reduced, and U be unimodular
such that oyBU is Sy-reduced. Let d; := |log||bs||| for all i. Let D := diag(2%), = := £+ cg - d,
U :=2°DUD™" and U’ := 2-*D~L|U|D. We write Clean(U, (d;);,¢) := (U’, D, z). Then U’ is

'~

unimodular and o,BU" is Z3-reduced. Furthermore, the matriz U satisfies max |u; ;| < 92t+ciod,

Proof. We first show that U’ is integral. If |@;;| = u;;, then u;j = u;; € Z. Otherwise, we
have 4; ; € 7, and thus x + d; — d; < 0. This gives that |4, ;| € Z C 2*+%~47. We conclude
that uj ; € Z.

Now, consider AU = U’ — U. Since AU = 2-*D~Y(|U| — U)D, we have |Au ;| < 24i—dize,
for all 4, . Thus by Theorem 1 and Lemma 4, we have | Au; ;| < 27%F¢d. :i—i for some constant c.

Applying Lemmata 8 and 9 shows that U’ is unimodular and o, BU’ is Eg—r’educed (if ¢g is chosen
sufficiently large).
By Lemma 5, we have for all i, j:

y [log [[b4l]
|a4 | _ |u .|2x+di_dj < 2x+€+c’d' 75,3 2
" vl = gllogloll] sy

for some constant ¢’. Theorem 1 then provides the result. O
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The above representation of lift-reducing transforms is computationally powerful. Firstly, it
can be efficiently combined with Theorem 2: Applying the process described in Theorem 4 to the
unimodular matrix produced by TrLiftLLL may be performed in O(d?(d+£)+dlog max(1+|e;|))
bit operations, which is negligible comparable to the cost bound of TrLiftLLL. We call TrLiftLLL’
the algorithm resulting from the combination of Theorems 2 and 4. TrLiftLLL’ is to be used as
base case of the recursion process of Lift-L'. Secondly, the following result shows how to combine
lift-LLL-reducing unimodular transforms. This is an engine of the recursion process of Lift-L!.

Lemma 10. Let U = 27*D7'U'D € 7% with U' € Z*? and D = diag(2%). Let V =
2VETW'E € 2% with V' € 79 and E = diag(2%). Let £ € 7 and f; € 7 for i < d.
Then it is possible to compute the output (W', F,z) of Clean(U - V,(f:)i,£) (see Theorem /)
from x,y, £, U V', (d;)i, (€i)i, (fi)i, in time O(d“ M(t +logd)), where

maxx max(|uj i, v 1) < 2°
and
mzaxmax(|di —eil,|fi —eil, [0 —(z+y)|) <t

For short, we will write W :=U @V, with W = 2 *F~'W'F and F = diag(2/).
Proof. We first compute m = max |d; — e;|. We have
UV =202—y—m) p-lp. |

where

T = (FD YU diag(2% 4+ V! (EF~1).

Then we compute 7. We multiply U’ by diag(2%~%™), which is a mere multiplication by a
non-negative power of 2 of each column of U’. This gives an integral matrix with coefficients of
bit-sizes < 3t. We then multiply the latter by V', which costs O(d* M(t+logd)). We multiply the
result from the left by (FD~!) and from the right by EF~!. From T, the matrix W of Theorem 4
may be computed and rounded within O(d?t) bit operations. O

It is crucial in the complexity analysis of Lift-L! that the cost of the merging process above
is independent of the magnitude scalings (d;, e; and f;).

4.2 Lift-L! algorithm

The Lift-L! algorithm given in Figure 4 relies on two recursive calls, on MSB, truncations, and
on calls to TrLiftLLL’. The latter is used as base case of the recursion, and also to strengthen the
reducedness parameters (to ensure that the recursive calls get valid inputs). When strengthening,
the lifting target is always 0, and we do not specify it explicitly in Figure 4.

Theorem 5. Lift-L! is correct.

Proof. When ¢ < d the output is correct by Theorems 2 and 4. In Step 2, Theorems 2 and 4
give that BU; is Zs-reduced and that U; has the desired format. In Step 3, the constant c3 > ¢;
is chosen so that Lemma 3 applies now and Lemma 7 will apply later in the proof. Thus B;
is Zj-reduced and has the correct structure by definition of MSB. Step 4 works (by induction)
because Bj satisfies the input requirements of Lift-L!. Thus 0¢/2B1UR, is Z1-reduced. Because
of the selection of c3 in Step 3 we know also that oy, BU1Ug, is reduced (weaker than =) using
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Lemma 7. Thus by Theorem 4, the matrix By is reduced (weakly) and has an appropriate for-
mat for TrLiftLLL’. By Theorem 2, the matrix o,/ BUig, Uz is Z3-reduced and by Theorem 4
we have that O'g/QBUl R,2 18 Za-reduced. By choice of ¢3 and Lemma 3, we know that the ma-

trix B3 is Zj-reduced and satisfies the input requirements of Lift-L!. Thus, by recursion, we
know that 0¢/2B3UR, is Z1-reduced. By choice of c3 and Lemma 7, the matrix oyBU;g,2UR, is
weakly reduced. By Theorem 4, the matrix By is reduced and satisfies the input requirements of
TrLiftLLL’. Therefore, the matrix o,BU;R, 2R, is =4-reduced. Theorem 4 can be used to ensure
U has the correct format and oyBU is =7-reduced. O

Inputs: Valid LLL-parameters 53 > 5 > 54 > Z7; a lifting target £;
(B', (e:):) such that B = B'diag(2%) is Z1-reduced and max |b; ;| < 2¢7¢,

Output: (U’, (d;)i, x) such that o,BU is =1-reduced,
with U = 27 "diag(2™%)U’diag(2%) and max |uj ;| < 22¢+2¢4,

1. If ¢ < d, then use TrLiftLLL’> with lifting target ¢.
Otherwise:

2. Call TrLiftLLL’ on (B, Z2); Let U1 be the output. /% Prepare 1st recursive call */

3. B1 = MSB([/Q.‘_CSACI)(B . Ul)

4. Call Lift-L1 on B, with lifting target £/2; /% Ist recursive call %/
Let Ug, be the output.

5. Uir, :=U1 ®Ur,. /% Prepare 2nd recursive call x/

6. BQ = O'g/gBU1R1.

7. Call TrLiftLLL’ on (B2, Z3). Let Uz be the output.

8. Uiry2 :=Uir, ©Us.

9. Bg = MSB(4/2+CS.d)(O'g/zBUlRﬂ)-

10. Call Lift-L1 on Bs, with lifting target £/2; /% 2nd recursive call x/

Let Ugr, be the output.
11. Uigr,2ry := Uiry2 © Ur,. /* Prepare output x/
12. Bj:= O’[BUlngRZ.
13. Call TrLiftLLL’ on (B4, Z4); Let Us be the output.
14. U :=Uir,2r, © U3; Return U.

Fig. 4. The Lift-L! algorithm.

4.3 Complexity analysis

Theorem 6. Lift-L! has bit-complexity
O (d*T(d+ £+ 7) + d* M (L) log £ + Llog(B + 1)) ,

where T is the total number of LLL-switches performed by the calls to H-LLL (through TrLiftLLL),
and max |b; ;| < 2°.

Proof. We first bound the total cost of the calls to TrLiftLLL’. There are O(1 + ¢/d) such
calls, and for any of these the lifting target is O(d). Their contribution to the cost of Lift-L!
is therefore O(d**¢(d + ¢ + 7)). Also, the cost of handling the exponents in the diverse diagonal
matrices is O(d(1 + £/d) log(B + ¢)).

Now, let C(d, ) be the cost of the remaining operations performed by Lift-L!, in dimension d
and with lifting target ¢. If ¢ < d, then C(d,¢) = O(1) (as the cost of TrLiftLLL’> has been put
aside). Assume now that ¢ > d. The operations to be taken into account include two recursive
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calls (each of them costing C(d, ¢/2)), and O(1) multiplications of d-dimensional integer matrices
whose coefficients have bit-length O(d + ¢). This leads to the inequality C(d, ¢) < 2C(d,¢/2) + K -
d* M(d+¢), for some absolute constant K. This leads to C(d, ¢) = O(d*M(d+£)log(d+¢)). O

4.4 L! algorithm

The algorithm of Figure 4 is the Knuth-Schonhage-like generalization of the Lehmer-like algorithm

of Figure 3. Now we are ready to analyze a general lattice reduction algorithm by creating a
wrapper for Lift-L'.

ALGORITHM L!: We define L' as the algorithm from Figure 2, where Figure 5 is used to
implement lift-reduction.

As we will see Figure 5 uses the truncation process MSB described in Definition 2 and
TrLiftLLL to ensure that L! provides valid inputs to Lift-L!. Its function is to process the
input C from Step 5 of Figure 2 (the lift-reduction step) which is a full-precision basis with no
special format into a valid input of Lift-L! which requires a truncated basis B’ - E. Just as in
Lift-L! we use a stronger reduction parameter to compensate for needing a truncation.

Inputs: Valid LLL parameters =1 > Z; C' =S-reduced with 8 = log max ||C]|;
a lifting target {y;
Output: U unimodular, such that o,CU is =Z-reduced

1. C'F := MSBek+c3d(C)

2. Call TrLiftLLL on (C'F, Z1). Let D™'UyD be the output.
3. B :=C'FD 'Uy; E:=D

4. Call Lift-1' on (B',E,Z4). Let Uy, be the output.

5. Return U := D_IUODng.

Fig. 5. From Figure 2 to Lift-L!

This processing before Lift-L! is similar to what goes on inside of Lift-Ll. The accuracy
follows from Lemma 3, Theorem 2, Theorem 5, and Lemma 7. While the complexity of this pro-
cessing is necessarily less than the bit-complexity of Lift-L!, O(d3+¢(d+£y+71) +d” M (41,) log £+
L log(Bk + £)) from Theorem 6, which we can use as C from Lemma 6.

We now amortize the costs of all calls to Step 5 using Figure 5. More precisely, we bound ), ¢,
and ), 7, more tightly than using a generic bound for the ¢’s (resp. 73’s). For the f}’s, we
have ), ¢, < logdet H < df. To handle the 73’s, we adjust the standard LLL energy/potential
analysis to allow for the small perturbations of r;;’s due to the various truncations.

Lemma 11. Consider the execution of Steps 2-8 of L! (Figure 2). Let H € 7% be the initial
Hermite Normal Form. Let =y = (d0,m0, 6p) be the strongest set of LLL-parameters used within the
ezecution. Let B be a basis occuring at any moment of Step 5 during the execution. Let R be the R-
factor of B and nyisp be the number of times MSB has been called so far. We define the energy of
B as E(B,nuvsB) = m (31— 1) -logrii] + d*nviss) (using the natural logarithm). Then
the number of LLL-switches performed so far satisfies 7 < E(B,nus) = O(d - logdet H).

Proof. The basis operations modifying the energy function are the LLL switches, the truncations
(and returns from truncations), the adjunctions of a vector at Steps 3—4 of the algorithm from
Figure 2 and the lifts. We show that any of these operations cannot decrease the energy function.
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As =) is the strongest set of LLL parameters ever considered during the execution of the
algorithm, each LLL switch increases the weighted sum of the r;;’s (see [16, (1.23)|) and hence £
by at least 1.

We now consider truncations. Each increase of nygp possibly decreases each r;; (and again
when we return from the truncation). We see from Lemma 1 and our choices of precisions p that
for any two LLL parameters =/ < = there exists an ¢ < 1 such that each r;; decreases by a
factor no smaller than (1 + ). Overall, the possible decrease of the weighted sum of the r;;’s is
counterbalanced by the term “d?nysp” from the energy function, and hence £ cannot decrease.

Now, the act of adjoining a new row in Figure 2 does not change the previous 7;;’s but
increases their weights. Since at the moment of an adjoining all log r; ;’s except possibly the first
one are non-negative and since the weight of the first one is zero, Steps 3—4 cannot decrease £.

Finally, each product by o, (including those within the calls to TrLiftLLL’) cannot decrease
any 7; i, by Lemma 4.

To conclude, the energy never decreases and any switch increases it by at least 1. This implies
that the number of switches is bounded by the growth £(B,nmsg) — £((h4q),0). The initial
value £((hq,q),0) of the energy is > 0. Also, at the end of the execution, the term ) [(i —1) log r; ;]
is O(logdet H). As there are 5 calls to MSB in the algorithm from Figure 4 (including those
contained in the calls to TrLiftLLL?), we can bound d*nygsp by 5d% Y, (¢x/d) = 5logdet H. O

We obtain our main result by combining Theorems 5 and 6, and Lemma 11 to amortize the
LLL-costs in Lemma 6 (we bound logdet H by df3).

Theorem 7. Given as inputs = and a matriz B € Z9*¢ with max ||b;|| < 27, the L' algorithm
returns a =-reduced basis of L(B) within O(d>t¢ + d* 1314 bit operations.
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Appendix 1 - Recipes used in the proof of Lemma 6

Let us first recall useful recipes for partially linearizing integer matrices and reducing the bit-cost
of their products using asymptotically fast matrix multiplication algorithms. If one is interested
in w = 3, then applying the naive matrix multiplication algorithm directly (without the lineariza-
tion) already provides the given complexity upper bounds.
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Recipe 1 Let B and U be two d x d integer matrices such that Z?leog maxi<;j<dq |bi ;| and
Z?Zl log max;<i<q |u; j| are both bounded by some S. We show how to compute the product B -U
within O(d“ M(S/d + logd)) bit operations.

We reduce the product B-U to a product with balanced row and column bit-sizes by splitting
into several rows the rows of B for which log maxi<j<q|b;j| > 3, with g := [S/d]. We also
split into several columns the columns of U for which log maxj<;<4 |u; j| > (. More precisely, for
1<i<d,lets; = [(logmaxi<j<qlbij;|)/F], and, for 1 < j < d, let t; = [(logmax;<i<q|uij|)/B].
If x and y respectively denote row ¢ of B and column j of U, then they are respectively replaced
by

Ty .. z,
:cgsl_l) ...... x&si_l)
and - L
0 ti—
oy
SR
_yéo)...yc(l] )_
where x;, = ng)l x,(j)Qw, with log|x,§l)| < 3, and y, = ;i?)l y,il)2l5, with log|y,il)| < g.

The inner product x -y is then obtained by summing the entries of DjPDs, where P is the
product of the two matrices above (which are sub-matrices of the expansions of B and U),
Dy = diagl<si(2lﬁ), and Dy = diagl<tj(2w). Summing along antidiagonals and then summing
the partial sums costs O(s;t;(3 + logd)). The number of rows of the expansion of B is less than
Yousi < d+ %Zl log max;<;<q |b; j| < 2d. Similarly, the number of columns of the expansion
of U is less than Ej tp <d+ % Z]- log maxi<;<q |u; ;| < 2d. To complete the proof, note that all
the entries of these expanded matrices have bit-lengths O(53). O

Recipe 2 Let k <logd. Let U be a d x (d/2F) integer matriz whose entries have bit-size < 2F~,
and B a d x d integer matriz such that Z?:l log ||b|| < dv, for some~y. Let C = BU and assume

that the entries of C' have bit-size < 2F~. We show how to compute C within O(d“+¢M(v)) bit
operations, where € is o(1)

For | > 0 we see that B has at most d/2! columns b; such that log|/b;|| > 2. For [ > 0,
let J; denote the set of the indices of the columns of B such that 2!y < log|/b;|| < 2/*!v. Note
that J; = 0 for [ > logd. We denote by Jy the set of indices of the columns with log [|b;|| < 2v.
For simplifying the cost bound discussion hereafter we assume that J; has exactly d/2' elements
(rather than < d/2!). Let also B(!) be the submatrix of B formed by the columns whose indices are
in J;. Accordingly, let U(®) be the submatrix of U formed by the rows whose indices are in J;. Then
we may compute C' = BU in log d products since (taking a symmetric modulo representation)

¢ =" BOUD mod 2. (1)
l

For k < [, the matrix BY) has dimension d x (d/2!), its entries may be taken modulo 22y
using O((d?/2") M (2'7)) hence O(d*+* M (7)) bit operations. The resulting matrix is seen as the
concatenation of 2! square row blocks of dimension d/2!. The matrix U®) has d/2' rows and
d/2% > d/2' columns. We may decompose U into 2/~* square column blocks with d/2! columns.



version 27 Apr 20t

ens 005348990,

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 19

The product BOU® in (1) can be done by blocks within O(2¢ x 27 x (d/2")* x M(2F+)) hence
O(d* ¢ M()) bit operations.

For k > [ we proceed as for Recipe 1 with § := 2!y for expanding U® into a matrix with
(d/2F)-(2%1) columns. Hence B! is dxd/2!, and the expansion of U(") is square of dimension d/2'.
Both have entries of bit size O(2!y). By decomposing BY) into 2! square row blocks with d/2! rows,
we can compute the product BOUW in time O(2!(d/2)) M (2'y+1og d)) and hence O(d“ 5 M (7))
bit operations. Overall, the cost for computing C using (1) is O(d*T* M(7)). O

Recipe 3 Let B, U and C = BU be d x d integer matrices. Assume that there exists si,...,Sq
such that log |[c;|, and log [Ju;|| are < s;, and 3_;log||bj||, and 3_; s; are < S, for some S. We
show how to compute the product C within O(d“+t¢M(S/d)) bit operations, where & is o(1).

We apply to C' the column decomposition seen in Recipe 2 for B. For 0 < k < logd, we
let Ij, denote the set of the indices of the columns of C' such that 2¥S/d < log ||c;|| < 2¥15/d.
We denote by Iy the set of indices of the columns with log ||c;|| < 2S/d. Let also U*) be the
submatrix of U formed by the columns whose indices are in I. As prior, the cardinality of I} is
at most d/2*.

To compute C, it suffices to compute the B - U¥)’s, for 0 < k < logd. This can be done
within O(d“M(S/d)) bit operations by using Recipe 2. Bounding the number of k’s by O(log d)
allows us to complete the proof. a

Appendix 2 - Proof of Lemma 7

Lemma 12. Let =1, 55, 53 be valid reduction parameters with =5 > Z5. There exists a con-
stant co such that the following holds for lclmy HE > 0. Let B € R pe Z)-reduced, U such
Ab;

that oy BU is Z3-reduced and AB with max ol < 27t=ead Thep o¢(B+ AB)U is Za-reduced.

Proof. By Lemma 5, there exists a constant ¢ such that for all i, j we have |u;;| < 2”1%,

753
where R (resp. R’) is the R-factor of B (resp. C = 0,BU). Let C + AC = 04(B + AB)U. The
norm of Ac; = 3 uji00Abj is < 37 2_p+é+c'd%\|bj\\ < daf27PHttedy] by Theorem 1 and

with p such that max ”ﬁ:_’ﬁ” < 27P. Furthermore, we have ||c;|| > €} ,. This gives max llHAc?T\|| <

dad2pHtHed By Lemma 3 (applied to C and C + AC), there exists ¢’ such that if p > £+ ¢’ - d,
then C' + AC is Z5-reduced. O

By combining Lemmata 12 and 3, we have that a reducing U can be found by working on a
truncation of B.

Lemma 7. Let =1, =9, =3 be valid reduction parameters with =5 > Z5. There exists a constant c3

such that the following holds for any ¢ > 0. Let B € R¥? be Zy-reduced and AB be such
that max % < 27t=wd [fo)(B+ AB)U is S3-reduced for some U, then oyBU is Sa-reduced.

Proof. Let =y < =7 be a valid set of reduction parameters. By Lemma 3, there exists a constant ¢
such that if max ”HAbt-)ﬁ” < 27¢4 then B + AB is non-singular and Zp-reduced. We conclude by

using Lemma 12. O

Appendix 3 - Proof of Theorem 2 and description of Algorithm TrLiftLLL

Theorem 2. For any valid parameters 51 < Zy and constant cy, there exists a constant ¢
and an algorithm TrLiftLLL with the following specifications. It takes as inputs £ > 0, B €
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294 and E = diag(2%) with max ||b;|| < 2449 ¢, € 7 and BE is 51-reduced; It runs in
time O(d**¢(d + £)(d + £ + 7) + d*logmax(1 + |e;|)), where 7 = O(d*(¢ + d)) is the number
of switches performed during the single call it makes to H-LLL; And it returns two matrices U
and D such that:

1. D = diag(2%) with d; € 7 satisfying max |e; — d;| < ¢y (£ + d),
2. U is unimodular and max |u; ;| < 204,
3. D7YUD is unimodular and o¢(BE)(D~'UD) is Sy-reduced.

The possible unbalancedness of the columns of BE (due to E), prevents us from applying
H-LLL directly on C' = gy BE. Indeed, even if we were dividing the full matrix by a large common
power of 2, the resulting basis may have a bit-size that is arbitrarily large compared to d and £. Our
goal is to call H-LLL on a integral matrix whose entries have bit-sizes O(d+¢). To circumvent the
possible unbalanced-ness of the columns of C', we find blocks of consecutive vectors whose rgg)’s

have similar magnitudes, where R(©) is the R-factor of C, and we apply a column-scaling to
re-balance C' before calling H-LLL.

FINDING BLOCKS. The definition of block is motivated by Property (P) above. To determine mean-
ingful blocks, the first step is to find good approximations to the 7‘5’ Vs and T(BE) (where RBE)
is the R-factor of BE). Computing the R-factor of a non-singular matrix is most often done by

applying Householder’s algorithm (see [8, Ch. 19]). The following lemma is a rigorous and explicit
variant of standard backward stability results.

Lemma 13 ([2, Se. 6]). Let p > 0 and B € R be non-singular with R-factor R. Let R be
the R-factor computed by Householder’s algorithm with ﬂoatmg -point precision p. If cs27P < 1
with c5 = 80d?, then there exists an orthogonal Q such that QR B + AB with max ”HAbbﬁH <
052 P,

By Lemma 2, we have that cond(R(ZF)) < Z—H . Since RBF) = RB) . B, with RP) the
R-factor of B, we have cond(R(P)) < p +1 p? (because cond( ) is invariant under column scaling).

Now, by Lemmata 1 and 13, for any c there exists ¢’ such that Householder’s algorithm with
~ ~(B)_ (B) ~ ~
precision p = ¢/d allows us to find R®) with max % < 27 By defining RPE) by R(P).E

[ d
we have max W < 27, The latter can be made < 155

We now show that we can also compute approximations to the r( Vs, Let B = QB R®) and
ovB = Q7¢B) R(0¢B) he the QR factorizations of B and oyB respectlvely. We have:

cond(RO) = || R 7 |
= 1@y o, QB REN (R QU)o QL
)

< 1@ o Q) R (REN) Q) Q|
< d*2'cond(RP)) = d*2cond(RP) E).

Since RP)E is the R-factor of BE which is reduced, Lemma 2 gives that cond(R(¢B)) <
d2 p+ p?2¢. Now, Lemmata 1 and 13 imply that for any ¢ there exists ¢ such that House-
[

holder’s algorithm with precision p = 2¢ + ¢/d allows us to find R@B) with max men <
r;
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2-f=<d_ Since Hrz(»JZB)H < 2£||r§B)H < 2€adrl(]?) < 2€adr§‘?3) (using Theorem 1 and Lemma 4),

we obtain that Householder’s algorithm with precision 2¢ + O(d) provides some ?(i?B)’s such
e B) _ (oeB), FO)_(O))

that maquie}; < ﬁ- Since R(®) = R“B)E we have max T < L with R©) =

100>

27,

RBE. Furthermore, as the run-time of Householder’s algorithm in precision p is O(d3p'*¢),
the computation of these 7 /( )’s costs O(d3(¢ + d)'*).
We define the blocks of Vectors of C as follows: The first block starts with c¢;, = c¢; and stops

with c;,_1 where 72 is the smallest 4 such that mlnjzfﬁ]) >v- maX]Q’( ) (if i9 = d 4+ 1, then
the process ends); The kth block starts with c;, and stops with ¢;, 1 Where tx+1 1s the smallest
~(0)

index ¢ > 4, such that min;>; Ti > V- maxjg ?’ﬁ?) The purpose of the constant v > 4, to be

set later, is to handle the inaccuracy of R© and to ensure that the matrix CD~'UD eventually
obtained by TrLiftLLL will be size-reduced.

Let It = [ig,ik+1). Since v > 4, Property (P) implies that if we were to call H-LLL on C, the
unimodular U that we would obtain would satisfy u; ; = 0if i € I}, and j € I, with k1 < ko, i.e.,
U would be (Ij)-block upper triangular. Any diagonal block-submatrix of U would be unimodular.
Computing the I;’s from the 7; ;’s may be done in time O(d?(d + ¢ + log max(1 + |e;]))).

(@),

By construction of the blocks, the amplitude of r;;/"’s within a block is bounded.

Lemma 14. We use the same notations as above. We let ({; = T,E?)/T

BE .
z(i ). There exists a con-

) (@
stant cg (depending on =1 and v only) such that for any k, we have NS SENS < 2¢6x] ‘maxier, ;.

minie_[k T

(C)

Proof. Let 7,7 € I,. We are to compute an upper bound fo

C
1,1

() ()
implies that “ <t ”

, for & as in Theorem 1. The fact that ¢; > 1 (see Lemma 4) provides

the result. Assume now that Jjg > If ’I“Z(Z-) = max;>; rt(g), then the bound holds. Otherwise,
by definition of the blocks, there exists ¢ > i in I} such that TZ(,CB < 2v- ’I“Z(?) (the factor 2

takes the inaccuracy of R into account). By induction, it can be shown that rl(,? l).,, < (2V)|Ik|7’§f),

with i = ig4

()
(2u)|lk| G (21/a)|[k|€j, by using the first part of

7;71‘ 7' // //

the proof (since j < 4"). O

RE-BALANCING THE COLUMNS OF (. The blocks allow us to define the diagonal matrix D
minjer, o 7 47 7E)

of Theorem 2. We define the gap between two blocks I and Ix1q to be g = (o)
maxjelk IR
We define D = diag(2%) such that the block structure is preserved, but the gaps get shrunk:
For i € Iy, we set d; = e1 + > [logy g //V].

We prove several facts about this scaling.

(i) The matrix B’ = BED™! is Zj-reduced, because rj(?) > r](BE) for all j.

(i4) The matrix C" = CD~! with R-factor R(°") = R(®) D=1 admits the same block-structure a C:
For any k, we have minjey, ., 7 ](] ) >V - maxjer, T ](?) with v/ = /v/2 > 1.

(7i7) The d;’s satisfy Property 1 of Theorem 2: Thanks to the reducedness of BE, the size condition

on B, and Lemma 4, each e; is within O(¢ + d) of log 7“( ). Thanks to Lemmata 14 and 4 (in
particular the fact that the product of all /;’s is 24, the same holds for the d;’s.
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LLL-REDUCING. We now call H-LLL on input matrix C’, with LLL-parameters = > Z5, and
let C® be the output matrix. Thanks to (i41), the matrix C’ belongs to 9—c(t+d)7dxd for some
constant ¢, and each ¢ ; may be stored on O({ + d) bits. Le., the matrix C’ is balanced. As a
consequence, the call to H-LLL costs O(d?™(d + ¢+ 7)(d + £)) bit operations (see [20, Th. 4.4]),
where 7 be the number of switches performed.

Let U be the corresponding unimodular transform (which can be recovered from C” and C @) by
a matrix inversion, costing O(d3(d+¢)'*¢)). Lemma 5 and the fact that B’ is Z;-reduced (by (4))
ensure that Property 2 of Theorem 2 is satisfied. Also, since C’ follows the block-structure defined
by the I;’s (by (i7)), Property (P) may be used to assert that U is (Ij)g-block upper triangular
and that its diagonal blocks are unimodular. The coefficients of D are non-decreasing, and they
are constant within any Ij. This ensures that D~'UD is integral and that its diagonal blocks are
exactly those of U, and thus that D~'UD is unimodular.

Let C®) = ¢yBED'UD = C® D. It remains to show that C'®) is Zp-reduced. Let R (resp.
R®)) be the R-factor of C'?) (resp. C®)). Let = = (6,7,0) and Sy = (82,72, 62). If i and j belong

3 3 (3)
to the same Ij, then \r | < nr(g) +6r®) because this holds for R and " = & = r{2j> = 2% |

3537 2 (2)
Since < 12 and € < 09, the size-reduction condition for (i, 7) is satlsﬁe(i Slmllarly, the Lovéasz
conditions are satisfied inside the I;’s. They are also satisfied for any ¢ = i, — 1, since c§2) is
multiplied by 2% > 2%k-1_ It remains to check the size- reduction conditions for (7, j) with i € Iy,
j € Iy and k¥ > k. By reducedness of C?) we have \r | < nr( )+ Gr( ). Since it was the case

for R/, by Property( ), we have that r( ) <L ( ) (with v/ = \/v/2), and thus \r(2)| < (0+ 1) (2)
This gives ]r | < (0+ ) ) . In order to ensure size-reducedness, it thus suffices to choose v
such that 6 + Ui < 05. O
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Abstract. The security of lattice-based cryptosystems such as NTRU,
GGH and Ajtai-Dwork essentially relies upon the intractability of com-
puting a shortest non-zero lattice vector and a closest lattice vector to
a given target vector in high dimensions. The best algorithms for these
tasks are due to Kannan, and, though remarkably simple, their complex-
ity estimates have not been improved since over twenty years. Kannan’s
algorithm for solving the shortest vector problem (SVP) is in particu-
lar crucial in Schnorr’s celebrated block reduction algorithm, on which
rely the best known generic attacks against the lattice-based encryp-
tion schemes mentioned above. In this paper we improve the complexity
upper-bounds of Kannan’s algorithms. The analysis provides new insight
on the practical cost of solving SVP, and helps progressing towards pro-
viding meaningful key-sizes.

1 Introduction

A lattice L is a discrete subgroup of some R™. Such an object can always be rep-
resented as the set of integer linear combinations of at most n vectors by, ..., by.
These vectors can be chosen linearly independent, and in that case, we say that
they are a basis of the lattice L. The most famous algorithmic problem associated
with lattices is the so-called shortest vector problem (SVP). Its computational
variant is to find a non-zero lattice vector of smallest Euclidean length — this
length being the minimum A(L) of the lattice — given a basis of the lattice. Its
decisional variant is known to be NP-hard under randomised reductions [2], even
if one only asks for a vector whose length is no more than 2(°% '™ times the
length of a shortest vector [12] (for any € > 0).

SVP is of prime importance in cryptography since a now quite large family of
public-key cryptosystems relies more or less on it. The Ajtai-Dwork cryptosys-
tem [4] relies on d°-SVP for some ¢ > 0, where f(d)-SVP is the problem of finding

* Work partially supported by CNRS GDR. 2251 “Réseau de théorie des nombres”.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 170-186, 2007.
© International Association for Cryptologic Research 2007
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the shortest non-zero vector in the lattice L, under the promise that any vector
of length less than f(d) - A(L) is parallel to it. The GGH cryptosystem [11] re-
lies on special instances of the Closest Vector Problem (CVP), a non-homogeneous
version of SVP. Both the Ajtai-Dwork and GGH cryptosystems have been shown
impractical for real-life parameters [25,23] (the initial GGH containing a major the-
oretical flaw as well). Finally, one strongly suspects that in NTRU [15] the private
key can be read on the coordinates of a shortest vector of the Coppersmith-Shamir
lattice [8]. The best known generic attacks against these encryption schemes are
based on solving SVP. It is therefore highly important to know precisely what com-
plexity is achievable, both in theory and practice, in particular to select meaningful
key-sizes. Most often, for cryptanalysing lattice-based cryptosystems, one consid-
ers Schnorr’s block-based algorithms [28, 30], such as BKZ. These algorithms in-
ternally solve instances of SVP in much lower dimensions (related to the size of the
block). They help solving relaxed variants of SVP in high dimensions. Increasing
the dimensions up to which one can solve SVP helps decreasing the relaxation fac-
tors that are achievable in higher dimensions. Solving the instances of SVP is the
computationally expensive part of the block-based reduction algorithms.

Two main algorithms are known for solving SVP. The first one is based on
the deterministic exhaustive enumeration of lattice points within a small convex
body. It is known as Fincke-Pohst’s enumeration algorithm [9] in the algorithmic
number theory community. Cryptographers know it as Kannan’s algorithm [16].
There are two main differences between both: firstly, in Kannan’s algorithm, a
long pre-computation on the basis is performed before starting the enumeration
process; secondly, Kannan enumerates integer points in a hyper-parallelepiped
whereas Fincke and Pohst consider an hyper-ellipsoid which is strictly contained
in Kannan’s hyper-parallelepiped — though Kannan may have chosen the hyper-
parallelepiped in order to simplify the complexity analysis. Kannan obtained
a d4t°(@ complexity bound (in the complexity bounds mentioned in the intro-
duction, there is an implicit factor that is polynomial in the bit-size of the input).
In 1985, Helfrich [13] refined Kannan’s analysis, and obtained a d%/2+°(@) com-
plexity bound. On the other hand, Ajtai, Kumar and Sivakumar [5] designed a
probabilistic algorithm of complexity 29(%). The best exponent constant is likely
to be small, as suggested by some recent progress [26]. A major drawback of this
algorithm is that it requires an exponential space, whereas Kannan’s requires a
polynomial space.

Our main result is to lower Helfrich’s complexity bound on Kannan’s algo-
rithm, from d2+o(d) ~ @054 o ds.+o(d)  ¢0-184d+o(d) This may explain why
Kannan’s algorithm is tractable even in moderate dimensions. Our analysis can
also be adapted to Kannan’s algorithm for CVP: it decreases Helfrich’s com-
plexity bound from d?*t°(@) to d4/2+°(d) The complexity improvement for SVP
provides better worst-case efficiency /quality trade-offs for Schnorr’s block-based
algorithms [28, 30, 10].

It must be noted that if one follows our analysis step by step, the derived o(d)
may be large when evaluated for some practical d. The hidden constants can be
improved (for some of them it may be easy, for others it is probably much harder).
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No attempt was made to improve them and we believe that it would have com-
plicated the proof with irrelevant details. In fact, most of our analysis consists in
estimating the number of lattice points within convex bodies and showing that the
approximations by the volumes are almost valid. By replacing this discretisation
by heuristic volume estimates, one obtains very small hidden constants.

Our complexity improvement is based on a fairly simple idea. It is equivalent
to generate all lattice points within a ball and to generate all integer points
within an ellipsoid (consider the ellipsoid defined by the quadratic form natu-
rally associated with the given lattice basis). Fincke and Pohst noticed that it
was more efficient to work with the ellipsoid than to consider a parallelepiped
containing it: indeed, when the dimension increases, the ratio between the two
volumes tends to 0 very quickly. In his analysis, instead of considering the el-
lipsoid, Kannan bounds the volume of the parallelepiped. Using rather involved
technicalities, we bound the number of points within related ellipsoids. Some
parts of our proof could be of independent interest. For example, we show that
for any Hermite-Korkine-Zolotarev-reduced (HKZ-reduced for short) lattice ba-
sis (by,...,bq), and any subset I of {1,...,d}, we have:

||b1||u| < \/dlfl(l-&-log )
[Lic, 11671 —

where (b});<q is the Gram-Schmidt orthogonalisation of the b;’s. This generalises
the results of [28] on the quality of HKZ-reduced bases.

PracTiCAL IMPLICATIONS. We do not change Kannan’s algorithm, but only
improve its complexity upper-bound. As a consequence, the running-time of
Kannan’s algorithm remains the same. Nevertheless, our work may still have
some important practical impact. First of all, it revives the interest on Kannan’s
algorithm. Surprisingly, although it has the best complexity upper-bound, it is
not the one implemented in the usual number theory libraries (e.g., NTL [32]
and Magma [18] implement Schnorr-Euchner’s variant [30]): we show that by
using Kannan’s principle (i.e., pre-processing the basis before starting the enu-
meration), one can solve SVP in larger dimensions. This might point a prob-
lem in NTRU’s security estimates, since they are derived from experimentations
with NTL. Secondly, our analysis helps providing a heuristic measure of the
(practical) cost of solving SVP for a particular instance, which is both efficiently
computable and reliable: given a lattice basis, it provides very quickly a heuristic
upper bound on the cost of finding a shortest vector.

RoOAD-MAP OF THE PAPER. In Section 2, we recall some basic definitions and
properties on lattice reduction. Section 3 is devoted to the description of Kan-
nan’s algorithm and Section 4 to its complexity analysis. In Section 5, we give
without much detail our sibling result on CVP, as well as direct consequences
of our result for block-based algorithms. In Section 6, we discuss the practical
implications of our work.

NOTATION. Alllogarithms are natural logarithms, i.e., log(e) = 1. Let ||-|| and (-, -)
be the Euclidean norm and inner product of R™. Bold variables are vectors. We
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use the bit complexity model. The notation P(n4,...,n;) means (n; -...-n;) for
some constant ¢ > 0. If z: is real, we denote by |z] a closest integer to it (with any
convention for making it unique) and we define the centred fractional part {z}
as ¢ — |«]. Finally, for any integers a and b, we define [a, b] as [a, b] N Z.

2 Background on Lattice Reduction

We assume that the reader is familiar with the geometry of numbers and its
algorithmic aspects. Introductions may be found in [21] and [27].

Lattice Invariants. Let by, . . ., by be linearly independent vectors. Their Gram-
Schmidt orthogonalisation (GSO) bi,...,b}5 is the orthogonal family defined
recursively as follows: the vector b; is the component of b; which is orthog-
onal to the span of the vectors by,...,b;—1. We have b = b, — 23;11 wi, ;b5
jb;’*bjfj. For i < d we let u;; = 1. Notice that the GSO family
depends on the ojrder of the vectors. If the b;’s are integer vectors, the b}’s and
the p; ;’s are rational. The volume of a lattice L is defined as det(L) = H?Zl |62 1],
where the b;’s are any basis of L. It does not depend on the choice of the basis
of L and can be interpreted as the geometric volume of the parallelepiped nat-
urally spanned by the basis vectors. Another important lattice invariant is the
minimum. The minimum A\(L) is the length of a shortest non-zero lattice vector.
The most famous lattice problem is the shortest vector problem (SVP). Here is
its computational variant: given a basis of a lattice L, find a lattice vector whose
norm is exactly A(L). The closest vector problem (CVP) is a non-homogeneous
variant of SVP. We give here its computational variant: given a basis of a lattice L
and a target vector in the real span of L, find a vector of L which is closest to
the target vector.
The volume and the minimum of a lattice cannot behave independently. Her-
mite [14] was the first to bound the ratio (de/;(LL))l s as a function of the di-

where p;; =

mension only. His bound was later on greatly improved by Minkowski in his
Geometrie der Zahlen [22]. Hermite’s constant 4 is defined as the supremum

2
over d-dimensional lattices L of (dg‘gﬁg?/d. We have 74 < *F* (see [19]), which

we will refer to as Minkowski’s theorem.

Lattice Reduction. In order to solve lattice problems, a classical strategy
consists in considering a lattice basis and trying to improve its quality (e.g.,
the slow decrease of the ||bf|]’s). This is called lattice reduction. The most usual
notions of reduction are probably L? and HKZ. HKZ-reduction is very strong,
but expensive to compute. On the contrary, L3-reduction is fairly cheap, but an
L3-reduced basis is of much lower quality.

A basis (b1,...,bq) is size-reduced if its GSO family satisfies |u; ;| < 1/2 for
all1 < j < i <d. Abasis (by,...,by) is said to be Hermite-Korkine-Zolotarev-
reducedif it is size-reduced, the vector by reaches the lattice minimum, and the pro-
jections of the (b;)i>2’s orthogonally to the vector b; are themselves an
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HKZ-reduced basis. Lemma 1 immediately follows from this definition and
Minkowski’s theorem. It is the sole property on HKZ-reduced bases that we will
use.

Lemma 1. If (by,...,by) is HKZ-reduced, then for any i < d, we have:

1
d—it1

. d—i+5 .
TR b (1

j>i

A basis (b1, ...,ba) is L3-reduced [17] if it is size-reduced and if its GSO satisfies
the (d — 1) Lovész conditions: 3 - Hb:71H2 < ||bg —|—,u,€7,$_1b271H2. The L3-
reduction implies that the norms of the GSO vectors never drop too fast: in-
tuitively, the vectors are not far from being orthogonal. Such bases have useful
properties, like providing exponential approximations to SVP and CVP. In par-
ticular, their first vector is relatively short.

Theorem 1 ( [17]). Let (by,...,by) be an L?-reduced basis of a lattice L. Then

we have ||by]| < 2% (det L)'/9. Moreover, there exists an algorithm that takes
as input any set of integer vectors and outputs in deterministic polynomial time
an L?-reduced basis of the lattice they span.

In the following, we will also need the fact that if the set of vectors given as
input to the L? algorithm starts with a shortest non-zero lattice vector, then
this vector is not changed during the execution of the algorithm: the output
basis starts with the same vector.

3 Kannan’s SVP Algorithm

Kannan’s SVP algorithm [16] relies on multiple calls to the so-called short lattice
points enumeration procedure. The latter finds all vectors of a given lattice that
are in the sphere centred in 0 and of some prescribed radius. Variants of the
enumeration procedure are described in [1].

3.1 Short Lattice Points Enumeration

Let (by,...,bq) be a basis of a lattice L C Z™ and let A € Z. Our goal is to find
all lattice vectors 2?21 x;b; of squared Euclidean norm < A. The enumeration

works as follows. Suppose that |3, 2:b||* < A for some integers x;’s. Then, by
considering the components of the vector ) . z;b; on each of the b}’s, we obtain d
equations:

(za) - B3> < A,
(a-1 + paa—124)” - D51 11> < A= (zq)? - 672,

IN
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2

d d
vt > ey | 0P < A= Y0,

j=it+1 j=it+1

where I; = (z; + 3, zipji)? - ||bF]|*. The algorithm of Figure 1 mimics the
equations above. It can be shown that the bit-cost of this algorithm is bounded
by the number of loop iterations times a polynomial in the bit-size of the input.
We will prove that if the input basis (by,...,bs) is sufficiently reduced and
if A= by2, there are < dze o) oop iterations.

Input: An integer lattice basis (b1,...,bq), a bound A € Z.
Output: All vectors in L(by,...,bq) that are of squared norm < A.
1. Compute the rational p; ;’s and ||b}||*’s.
2. £:=0,1:=0, S:=0.
3. 4:=1. While i < d, do
li=(zi + X0, wip.0) 1712
If i =1 and ijl l; <A, then S:=SU {E;l:l x;b;}, wii=x1 + 1.
Ifi#1and 3,1l <A, then

4
5
6
o ATyl
7. =i — 1, x;:= "— 2 isi(mimga) — \/ Hb;ffg J-‘-
8 If3 ...l > A, theni=i+1, zo=z + 1.

9. Return S.

Fig. 1. The enumeration algorithm

3.2 Solving SVP

To solve SVP, Kannan provides an algorithm that computes HKZ-reduced bases,
see Figure 2. The cost of the enumeration procedure dominates the overall cost
and mostly depends on the quality of the input basis. The main idea of Kannan’s
algorithm is to spend a lot of time pre-computing a basis of excellent quality
before calling the enumeration procedure. More precisely, it pre-computes a so-
called quasi-HKZ-reduced basis.

Definition 1 (Quasi-HKZ-reduction). A basis (b1,...,byq) is quasi-HKZ-
reduced if it is size-reduced, if ||b5]| > ||b7]|/2 and if once projected orthogonally
to by, the other b;’s are HKZ-reduced.

A few comments need to be made on the algorithm of Figure 2. Steps 3 and 9 are
recursive calls. However, the b;’s may be rational vectors, whereas the input of
the algorithm must be integral. These vectors may be scaled by a common factor.
Steps 4 and 10 may be performed by expressing the reduced basis vectors as
integer linear combinations of the initial ones, using these coeflicients to recover
lattice vectors and subtracting a correct multiple of the vector b;. In Step 6, it
is possible to choose such a vector by, since this enumeration always provides
non-zero solutions (the vector by is one of them).
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Input: An integer lattice basis (b1, ..., bq).

Output: An HKZ-reduced basis of the same lattice.

1. L*-reduce the basis (b1,.. ., ba).

2. Compute the projections (b});>2 of the b;’s orthogonally to b.

3. HKZ-reduce the (d — 1)-dimensional basis (b5, ..., b}).

4. Extend the obtained (b});>2’s into vectors of L by adding to them rational
multiples of b1, in such a way that we have |u;,1| < 1/2 for any i > 1.

5. If (b1,...,ba) is not quasi-HKZ-reduced, swap by and bz and go to Step 2.
6. Call the enumeration procedure to find all lattice vectors of length < ||b1]|.
Let by be a shortest non-zero vector among them.

7. (bl, ey bd)Z:Lg(bo, ey bd)

8. Compute the projections (b});>2’s of the b;’s orthogonally to the vector b;.
9. HKZ-reduce the (d — 1)-dimensional basis (b, ..., b)).

10. Extend the obtained (b});>2’s into vectors of L by adding to them rational
multiples of b1, in such a way that we have ;1] < 1/2 for any ¢ > 1.

Fig. 2. Kannan’s SVP algorithm

3.3 Cost of Kannan’s SVP Solver

We recall briefly Helfrich’s analysis [13] of Kannan’s algorithm and explain our
complexity improvement. Let C(d, n, B) be the worst-case complexity of the al-
gorithm of Figure 2 when given as input a d-dimensional basis which is embedded
in Z™ and whose coefficients are smaller than B in absolute value. The following
properties hold:

— Kannan’s algorithm computes an HKZ-reduced basis of the lattice spanned
by the input vectors.

— All arithmetic operations performed during the execution are of cost P(d, n,
log B). This implies that C(d,n, B) can be bounded by C(d)-P(log B,n) for
some function C'(d).

— There are fewer than O(1) 4 log d iterations of the loop of Steps 2-5.

— The cost of the call to the enumeration procedure at Step 6 is bounded
by P(log B,n) - d*/?+o(d),

From these properties and those of the L? algorithm as recalled in the previous
section, it is easy to obtain the following equation:

C(d) < (0(1) +logd)(C(d — 1) + P(d)) + P(d) + d2 .

One can then derive the bound C(d, B,n) < P(log B, n) - d2*+°(@),
The main result of the present paper is to improve this complexity upper
bound to P(log B, n) - dz+°(@ In fact, we show the following:

Theorem 2. Given as inputs a quasi-HKZ-reduced basis (by,...,bq) and A =
|b1]2, there are 20(4) .d3e loop iterations during the execution of the enumeration
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algorithm as described in Figure 1. As a consequence, given a d-dimensional basis
of n-dimensional vectors whose entries are integers with absolute values < B,
one can compute an HKZ-reduced basis of the spanned lattice in deterministic
time P(log B, n) - dseTo(d).

4 Complexity of the Enumeration Procedure

This section is devoted to proving Theorem 2. The previous section has shown
that the cost of Kannan’s algorithm is dominated by the time for enumerating
the integer points in the hyper-ellipsoids (&;)1<i<q defined by & =

{ir - wa) € RS b)) < b, where b = b; = Y g b is
the vector b; once projected orthogonally to bj,...,b;_;. Classically, the num-
ber of integer points in a body of some R" is heuristically estimated by the n-
dimensional volume of the body. This yields the following heuristic complexity
upper-bound for Kannan’s algorithm:

o VilBle 1] O
isd szd—i+1 ||bj|| isd (\/2)1 ’ szd—i-s-l Hb}kH

where V; is the volume of the i-dimensional unit ball.

Here, such an estimate may be too optimistic since the hyper-ellipsoids might
be too flat for the approximation by the volume to be valid. The first step of
our analysis is to prove a slight modification of this heuristic estimate. This
is essentially an adaptation of a method due to Mazo and Odlyzko [20] to

bound the number of integer points in hyper-spheres. We prove the weaker upper
f[o2 ]!

| , for quasi-HKZ-reduced bases (Subsections 4.1
ITier 1651l

bound max;cp qp '

and 4.2).

In the second step of our analysis (Subsection 4.3), we bound the above quan-
tity. This involves a rather precise study of the geometry of HKZ-reduced bases.
The only available tool is Minkowski’s inequality, which is used numerous times.
For the intuition, the reader should consider the typical case where (b;)1<i<q is
an HKZ-reduced basis for which (]|b}]]); is a non-increasing sequence. In that
case, the first part of the analysis shows that one has to consider a set I of
much simpler shape: it is an interval [i, d] starting at some index i. Lemmata 2
and 3 (which should thus be considered as the core of the proof) and the fact
that zlogz > —1/e for x € [0, 1] are sufficient to deal with such sets.

Non-connex sets I are harder to handle. We split the HKZ-reduced basis into
blocks (defined by the expression of I as a union of intervals), i.e., groups of
consecutive vectors b;,...,b;j_q such that¢,....k—1¢ Tand k,...,j—1¢€ I
The former vectors will be the “large ones” and the latter the “small ones”. Over
each block, Lemma 3 relates the average size of the small vectors to the average
size of the whole block. We consider the blocks by decreasing indices and use an
amortised analysis to combine the local behaviours on blocks to obtain a global
bound (Lemma 4). A final convexity argument gives the result (Lemma 5).
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4.1 Integer Points in Hyper-Ellipsoids

In this subsection, we do not assume anything on the input basis vectors by, . .., by
and on the input bound A. Up to some polynomial in d and log B, the complex-
ity of the enumeration procedure of Figure 1 is the number of loop iterations.
This number of iterations is itself bounded by 3 Zle |€i]. Indeed, the truncated
coordinate (z;,...,xq4) is either a valid one, i.e., we have || Z zlcjb(Z)H2 <
A, or (z; —1,...,24) is a valid one, or (x;11,...,24) is a valid one. In fact,
if (24,...,24) is a valid truncated coordinate, at most two non-valid ones re-
lated to that one may be considered during the execution of the algorithm:
(x; +1,...,24) and (2;-1,2;...,24) for at most one integer ;1. We now fix
some ¢ < d. By applying the change of variable z; < z; — Lzbj uk7j:ck—‘7 we

obtain:

Eamina] < | (5)icjca € ZD (a5 + Y pwywk)? - B3] < A

Jjzi k>j

< |9 @)icj<a € Z7HNY (g + ) gk })? - B3I < A
Jj2i k>j

If z is an integer and € € [—1/2,1/2], then we have (z + €)? > 22/4 (it
suffices to use the inequality |e|] < 1/2 < |z|/2, which is valid for a non-
zero x). As a consequence, up to a polynomial factor, the complexity of the
enumeration is bounded by Y., Ni, where N; = [/ NZ4™| and € =
{(y,;, .oy Yd) € Rd_i"'l,ZjZi y3 | b3]1? < 4A}, for any ¢ < d.

We again fix some index i. The following sequence of relations is inspired
from [20, Lemma 1].

165112
N; = Z . le/(wiy. .. q) <exp | d 1_, x? 4JA
(Tiyeryzq) ELA—IHL =
d b* 2 d b* 2
dHZexp< || ||> dH@< ||)7
jixz€l iSi

where O(t) = Y, ., exp(—ta?) is defined for ¢ > 0. Notice that O(t) = 1 +
2) sy exp(—ta?) < 1+2 [ exp(—ta?)de = 14 /7. Hence O(t) < 1J:/‘t/77 for
t<1land O(t) <1+ /7 for t > 1. As a consequence, we have:
VA
N; < (de(1 + /)¢ max ( (2)
1;[1 V|||
iz
One thus concludes that the cost of the enumeration is bounded by:

||
P(n,log A, log B) . 2O(d) . max (\/A) .
rcnd \ (Va)I T, |16
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4.2 The Case of Quasi-HKZ-Reduced Bases

We now suppose that A = ||by||? and that the input basis (b1, ..., by) is quasi-
HKZ-reduced. We are to strengthen the quasi-HKZ-reducedness hypothesis into
an HKZ-reducedness hypothesis. Let I C [1,d]. If 1 ¢ I, then, because of the
quasi-HKZ-reducedness assumption:
61 < od 651! '
(V) ! Lo 1571~ (V) L, 6]

If 1 € I, we have, by removing [[b7|| from the product [];c;_¢q; [|b7]]:

N 1 [
(VO TLier 1651~ (Va1 T,y 0]

As a consequence, Theorem 2 follows from the following:

Theorem 3. Let (by,...,by) be HKZ-reduced and I C [1,d]. Then

H||b1|:||;|*|| - (\/d)\l\(l-i-log ) < (\/d)gHI'.
ier 1105

By applying Theorem 3 the HKZ-reduced basis (by,...,b;) and I = {i}, we
recover the result of [28]: ||} > (Vi)=& =1 . ||by||.

4.3 A Property on the Geometry of HKZ-Reduced Bases

In this section, we prove Theorem 3, which is the last missing part to obtain
the claimed result. The proofs of the following lemmata will be contained in the
full version of this paper. In the sequel, (b;)i<q is an HKZ-reduced basis of a
lattice L of dimension d > 2.

1
Definition 2. For any I C [1,d], we define 7 = ([1,c; ||bi]])'"'. Moreover,

if k€ [1,d— 1], we define Ta(k) = [12) 4 (vir1) >
We need upper bounds on I;(k) and a technical lemma allowing us to finely

recombine such bounds. Intuitively, the following lemma is a rigorous version of
the identity:

iet |

d 2 2
1 __ log™(d) —log™(d — k) _ logd d
log x dx ~ 4 5 logd_k.

~

log I'u(k) ~ /

w=d—k 2T

o d
Lemma 2. For all 1 <k < d, we have I'y(k) < \/d1 Eask

We now give an “averaged” version of [28, Lemma 4], deriving from Lemma 2.
This provides the result claimed in Theorem 3 for any set I of the shape [i, j],
for any i < j <d.
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Lemma 3. For all k € [0,d — 1], we have 7 1) < (Fd(k))d/k CTet1,d] ond
o d—k
Tpesra) > (Da(R) ™" (det L)V/4 > v/d® * (det L)1/4.

We prove Theorem 3 by induction on the number of intervals occurring in the
expression of the set I as a union of intervals. The following lemma is the in-
duction step. This is a recombination step, where we join one block (between
the indices 1 and v, the “small vectors” being those between v+ 1 and v) to one
or more already considered blocks on its right. An important point is to ensure
that the densities §; defined below actually decrease when their indices increase.
Its proof is based on Lemma 3.

Lemma 4. Let(by,...,bg) be an HKZ-reduced basis. Letv € [2,d], I C v+ 1,d]
andu € [1,v]. Assume that:

1] |13 il log 6
Tz H <7T[[Oéi+1,ai+1]] Vd ’
i<t
where I; = INa; +1, a;1] , 6, = alﬂa is the density of the set I in [o; + 1, ciy1],
and the integers t and «;’s, and the densities §;’s satisfyt > 1, v = a3 < ... <

ar <dandl >0 >...>d6_1>0. Then, we have

|7 I |7/] 1og &
> ] Tes+1,0044] Vd ’

i<t

I’

where I' = [u+ 1,0]UL I} = I'N o} + 1,0/ ,4] .0} = ,

i1
and o’s, and the densities 8} satisfy t' > 1,0 =0a] < ... < o}, <dand1 >
O >...>0,_;>0.

and the integers t’

—
i

The last ingredient to the proof of Theorem 3 is the following, which derives
from the convexity of the function z — xlogx.

Lemma 5. Let A > 1, and define Fa(k,d) = A=Flog i. We have, for anyt € Z,
forany k1,..., ki € Z and dy,...,d; € Z such that 1 < k; < d; for all i <t,

HFA(k?i,di) < Fa Zkiazdi

i<t i<t i<t
Finally, Theorem 3 follows from Lemmata 4 and 5.

Proof of Theorem 3. Lemma 4 gives us, by induction on the size of the
considered set I, that for all I C [1,d]:

1| || /M illog 8
T > H (W[[OémLLaqurl]] \/d ’

i<t

where I; = I N Ja; +1,;41], and ¢, the «;’s, and the densities §; = al?_la

satisfy t > 1, 0=a1 < ... <o <dand 1> 6 > ... > 41 > 0. By using
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Lemma 5 with A:=v/d, k;:= |I;| and d;:=a; 1 — o, we obtain:

I1]
1| 11108 o, ~ay \ |1
I 2 (\/d H 7r[[ai+1,0ti+1]] :
i<t

We define §; = 0. Because of the definition of the «;’s, we have:

g H Qip1—a & H H - 8 =841
[ei+1,ci41] — [[oz7+1 a;t1] - [ei+1,0041]

i<t i<t i<t i<j<t
05 —=06j41
- [oi+1,0i44] - [[1 ajii] ’
J<t \i<j j<t

By using t — 1 times Minkowski’s theorem, we obtain that:

|I| N (||b1||)2j<t aj+1(8;—0j+1) (Hb ||>I
Jd mlog‘” ~\ Vd Vd '

The final inequality of the theorem comes from the fact that the function = —
xlog(d/x) is maximal for x = d/e. 0

5 CVP and Other Related Problems

Our improved analysis of Kannan’s algorithm can be adapted to the Closest
Vector Problem and other problems related to strong lattice reduction.

In CVP, we are given a basis (by,...,bs) and a target vector t, and we look
for a lattice vector that is closest to t. Kannan’s CVP algorithm starts by HKZ-
reducing the b;’s. Then it runs a slight modification of the enumeration algorithm
of Figure 1. For the sake of simplicity, we assume that ||b}| is the largest of
the ||bf||’s (we refer to Kannan’s proof [16] for the general case). By using Babai’s
nearest hyperplane strategy [6], we see that there is a lattice vector b at distance
less than v/d-||by || of the target vector t. As a consequence, if we take A = d-||by ||?
in the modified enumeration procedure, we will find all solutions. The analysis

then reduces (at the level of Equation (2)) to bound the ratio I H<bd ‘Hb*l\’ which
can be done with Minkowski’s theorem.
Theorem 4. Given a basis (by,...,byq) and a target vector t, all of them in Z™

and with coordinates whose absolute values are smaller than some B, one can
compute all vectors in the lattice spanned by the b;’s that are closest to t in
deterministic time P(log B,n) - d4/*+o(@),

The best deterministic complexity upper bound previously known for this prob-
lem was P(log B, n) - d¥t°(d) (see [13,7]).

Our result can also be adapted to the enumeration of all vectors of a given
lattice that are of length below a prescribed bound, which is in particular use-
ful in the context of computing lattice theta series. Another important conse-
quence of our analysis is a significant worst-case bound improvement of Schnorr’s
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block-based strategy [28] to compute relatively short vectors in high-dimensional
lattices. More precisely, if we take the bounds given in [10] for the quality of
Schnorr’s semi-2k reduction and for the transference reduction, we obtain the
table of Figure 3. Each entry of the table gives the upper bound of the quan-

tity ( dthbIj)Hl ,o which is reachable for a computational effort of 2¢, for ¢ growing

to infinity. To sum up, the exponent constant is divided by e = 2.7. The table

upper bounds may be adapted to the quantity /\Hlb(lL”) by squaring them.

Semi-2k reduction Transference reduction
. log 2 dlog? t dlog? t 1 dlog2t dlog? t
Using [13] $22 v 20T <2a o x2000

log 2 dlog?t

. dlog?t 1 dlog?t dlog?t
Using Theorem 2 < 2 2 ¢~ 2012877 < Qde b A 00927

Fig. 3. Worst-case bounds for block-based reduction algorithms

6 Practical Implications

As mentioned in the introduction, the main contribution of the present paper is
to improve the worst-case complexity analysis of an already known algorithm,
namely, Kannan’s HKZ-reduction algorithm. Our improvement has no direct
impact on the practical capabilities of lattice reduction algorithms. However,
our work may have two indirect consequences: popularising Kannan’s principle
and providing easily computable cost estimates for SVP instances.

6.1 Pre-processing Before Enumerating

In the main libraries containing lattice reduction routines, the shortest vector
problem is solved with the enumeration routine, but starting from only L3-
reduced bases. This is the case for the BKZ routines of Victor Shoup’s NTL [32],
which, depending on a parameter k£, compute strongly reduced bases in high
dimensions (the quality being quantified by k). This is also the case in Magma’s
ShortestVectors routine [18], which computes the shortest vectors of a given
lattice. Both rely on the enumeration of Schnorr and Euchner [30]. On the theo-
retical side, this strategy is worse than using Kannan’s algorithm, the worst-case
complexity being 294" instead of d°(9). To justify this choice, one might argue
that L3 computes much better bases in practice than guaranteed by the worst-
case bounds, in particular in low dimensions (see [24] for more details), and that
the asymptotically superior algorithm of Kannan may overtake the L3-based
enumeration only for large dimensions (in particular too large to be tractable).

It may be that the genuine Kannan algorithm is expensive. However, the
general principle of enumerating from a more than L3-reduced basis works, as
the following experiments tend to show. For a given dimension d, we consider
the lattice spanned by the columns of the following matrix:
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I, T ... 2xq

10...0
0 1. 07
00...1

where the x;’s are chosen uniformly and independently in [[O, 2100'd]]. The basis
is then L3-reduced with a close to optimal parameter (§ = 0.99). For the same
lattice, we compute more reduced bases, namely BKZg-reduced for different
parameters k, using NTL’s BKZ_FP routine without pruning and close to optimal
factor (0 = 0.99). We run the same enumeration routine starting from these
different bases and compare the timings. The results of the experiments are
given in Figure 4. The enumeration is a non-optimised C-code, which updates
the norm upper bound during the enumeration [30]. All timings are given in
seconds and include the BKZ-reduction (unless we start from the L3-reduced
basis). Each point corresponds to the average over at least 10 samples. The
experiments were performed on 2.4 GHz AMD Opterons. The enumeration from
an L3-reduced basis is clearly outperformed. BKZ-reducing the basis with larger
block-sizes becomes more interesting when the dimension increases: it seems that
in moderate dimension, a BKZj, reduced basis is close to being HKZ-reduced,
even when k£ is small with respect to the dimension.

pre-processingd =40 d =43d=46d =49 d=52 d=55 d =058
L3 1.8 15 110 990 5.0-10° — —
BKZ1o 036 16 6.7 36 160 - -

BKZ20o 040 1.3 47 21 96 800 2.5-10°

BKZso 057 1.7 52 19 68 660 1.6-10°

Fig. 4. Comparison between various pre-processings

6.2 Estimating the Cost of Solving SVP

The cost of solving SVP on a particular instance with the enumeration routine
is essentially dominated by the cost of the highest-dimensional enumeration. Up
to a polynomial factor, the cost of the enumeration as described in Figure 1 can
be estimated with Equation (1):

2o
™ 1
E(by,...,bg):=max _ . ol -
isd I'(i/2+ 1) [Ljsq s 107

This estimate is simply the application of the Gaussian heuristic, stating that the
number of integer points within a body is essentially the volume of the body. It
can be computed in polynomial time from the basis from which the enumeration
will be started. We computed E(b1, ..., b;) for random bases generated as above
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pre-processing d =40 d=45 d=50 d=55 d=60 d=65 d=70 d=75
L3 1.0-10% 4.4-10° 1.5-10** 9.6 - 10'° 3.0 - 10*® 6.1 - 10** 2.8 - 10%" 1.6 - 10*°
BKZ1o 4.6-10°1.2-107 1.1-10® 1.3-10*° 7.6 -10'* 1.7-10'* 4.3-10'6 1.9 10"°
BKZ20 2.4-10° 2.7-10°% 3.1-107 1.3-10° 4.1-10'° 3.7-10'2 6.4-10'3 2.1 - 10'¢
BKZ30 1.9-10° 1.6-10% 1.8-10" 3.0-10® 4.3-10° 1.1-10% 3.7-10'2 1.9-10™

Fig. 5. Value of E(b1,...,bs) for randomly generated (b1,...,bq)

and obtained the table of Figure 5. It confirms that a strong pre-processing should
help increasing the dimension up to which SVP may be solved completely.

If one is looking for vectors smaller than some prescribed B (for example if the
existence of an unusually short vector is promised), then |b1]| may be replaced
by B in the estimate. Overall, these estimates are rather crude since factors that
are polynomial in the dimension should be considered as well. Furthermore, it
does not take into account more elaborate techniques such as updating the norm
during the enumeration, pruning [30,31] and random sampling [29].

OPEN PROBLEM. One may wonder if the complexity upper bound for Kannan’s
SVP algorithm can be decreased further. Work under progress seems to show, by
using a technique due to Ajtai [3], that it is sharp, in the sense that for all € > 0,
we can build HKZ-reduced bases for which the number of steps of Kannan’s

algorithm would be at least d(s.—¢).
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Abstract. Strong lattice reduction is the key element for most attacks against lattice-based cryptosystems.
Between the strongest but impractical HKZ reduction and the weak but fast LLL reduction, there have been
several attempts to find efficient trade-offs. Among them, the BKZ algorithm introduced by Schnorr and Euchner
[FCT’91] seems to achieve the best time/quality compromise in practice. However, no reasonable complexity
upper bound is known for BKZ, and Gama and Nguyen [Eurocrypt’08] observed experimentally that its prac-
tical runtime seems to grow exponentially with the lattice dimension. In this work, we show that BKZ can
be terminated long before its completion, while still providing bases of excellent quality. More precisely, we
show that if given as inputs a basis (b;)i<n € Q"*™ of a lattice L and a block-size 3, and if terminated after

0 (E—g(logn + log log max; ||bz||)) calls to a S-dimensional HKZ-reduction (or SVP) subroutine, then BKZ re-
n-1_,3

turns a basis whose first vector has norm < 21/5(‘371) ? . (det L)%, where vz < 8 is the maximum of Hermite’s

constants in dimensions < 3. To obtain this result, we develop a completely new elementary technique based on

discrete-time affine dynamical systems, which could lead to the design of improved lattice reduction algorithms.

Keywords. Euclidean lattices, BKZ, lattice-based cryptanalysis.

1 Introduction

A (full-rank) n-dimensional lattice L C R™ is the set of integer linear combinations >, ; x;b; of some
linearly independent vectors (b;)i<,. Such vectors are called a basis and we write L = L[(b;);]. Since L is
discrete, it contains a shortest non-zero lattice vector, whose norm A;(L) is called the lattice minimum.
Computing such a vector given a basis is referred to as the (computational) Shortest Vector Problem (SVP),
and is NP-hard under randomized reductions [1,12]. The complexities of the best known SVP solvers are no
less than exponential [22,23,2,15] (the record is held by the algorithm from [22], with complexity 227+ .
Poly(log max; ||b;||)). Finding a vector reaching A;(L) is polynomial-time equivalent to computing a basis
of L that is reduced in the sense of Hermite-Korkine-Zolotarev (HKZ). The aforementioned SVP solvers can
all be used to compute HKZ-reduced bases, in exponential time. On the other hand, bases reduced in the
sense of Lenstra-Lenstra-Lovéasz (LLL) can be computed in polynomial time [16], but the first vector is only
guaranteed to satisfy the weaker inequality ||b1|| < (4/3 + E)HT_I -A1(L) (for an arbitrary € > 0). In 1987,
Schnorr introduced time/quality trade-offs between LLL and HKZ [33]. In the present work, we propose
the first analysis of the BKZ algorithm [36,37|, which is currently the most practical such trade-off [40,9].

Lattice reduction is a popular tool in cryptanalysis [27]. For many applications, such as Coppersmith’s
method for computing the small roots of polynomials [5|, LLL-reduction suffices. However, reductions of
much higher quality seem required to break lattice-based cryptosystems. Lattice-based cryptography origi-
nated with Ajtai’s seminal hash function [1], and the GGH and NTRU encryption schemes [10,14]. Thanks
to its excellent asymptotic performance, provable security guarantees, and flexibility, it is currently attract-
ing wide interest and developing at a steady pace. We refer to [21,31] for recent surveys. A major obstacle to
the real-life deployment of lattice-based cryptography is the lack of a precise understanding of the limits of
the best practical attacks, whose main component is the computation of strongly reduced lattice bases. This
prevents from having a precise correspondence between specific security levels and practical parameters.
Our work is a step towards a clearer understanding of BKZ, and thus of the best known attacks.

Strong lattice reduction has been studied for about 25 years (see among others [33,37,34,7,32,9,8]). From
a theoretical perspective, the best known time/quality trade-off is due to Gama and Nguyen [8|. By building
upon the proof of Mordell’s inequality on Hermite’s constant, they devised the notion of slide reduction, and



proposed an algorithm computing slide-reduced bases: Given an arbitrary basis B = (b;)i<y of a lattice L,
the slide-reduction algorithm finds a basis (¢;)i<, of L such that

ledll < ((1+2)75) 57 - (L), (1)

within 7g1ige (= O <g—48 - log max; ||bl|]) calls' to a B-dimensional HKZ-reduction algorithm and a j-
dimensional (computational-)SVP solver, where g ~ (3 is the f-dimensional Hermite constant. If L C Q",
the overall cost of the slide-reduction algorithm is < Poly(n,size(B)) - Cuxz(5), where Cuxz(5) = 20(6) is
the cost of HKZ-reducing in dimension 5. The higher 3, the lower the achieved SVP approximation factor,

but the higher the runtime. Slide reduction also provides a constructive variant of Minkowski’s inequality,
as (letting det L denote vol(R™/L)):

ler]| < ((1+€)ys) T D - (det L), @)

From a practical perspective, however, slide reduction seems to be (significantly) outperformed by the
BKZ algorithm [9]. BKZ also relies on a S-dimensional HKZ-reduction algorithm (resp. SVP-solver). The
worst-case quality of the bases it returns has been studied in [34] and is comparable to that of the slide

reduction algorithm. The first vector of the output basis (¢;)i<y, satisfies ||e1|| < ((1 + 5)7,3);7—1 - A1(L).
Note that this bound essentially coincides with (1), except for large values of 5. A bound similar to that
of (2) also holds.? In practice, the quality of the computed bases seems much higher with BKZ than with
the slide-reduction algorithm [9]. With respect to run-time, no reasonable bound is known on the number
of calls to the -dimensional HKZ reduction algorithm it needs to make before termination.® In practice,
this number of calls does not seem to be polynomially bounded [9] and actually becomes huge when g > 25.
Because of its large (and somewhat unpredictable) runtime, it is folklore practice to terminate BKZ before
the end of its execution, when the solution of the problem for which it is used for is already provided by
the current basis [38,24].

OUR RESULT. We show that if terminated within polynomially many calls to HKZ/SVP, a slightly modified
version of BKZ (see Section 3) returns bases whose first vectors satisfy a slightly weaker variant of (2).

Theorem 1. There exists* C > 0 such that the following holds for all n and (. Let B = (b;)i<n be a basis
of a lattice L, given as input to the modified BKZ algorithm of Section 8 with block-size B. If terminated

%) calls to an HKZ-reduction (or SVP solver) in dimension 3,

the output (c;)i<n is a basis of L that satisfies (with vg < B defined as the mazimum of Hermite’s constants
in dimensions < f3):

after Tgxz 1= C’g—z log n + log log max;

n—1

3
lell < 2(25)™ 02 . (det L)
If L CQ", then the overall cost is < Poly(n,size(B)) - Caz(5).

S|=

By using [18, p. 25|, this provides an algorithm with runtime bounded by Poly(n,size(B)) - Caxz(S)
n=1l.3
that returns a basis whose first vector satisfies |l¢1] < 4(Vﬁ)6 ' . X\ (L), which is only slightly worse

than (1). These results indicate that BKZ can be used to achieve essentially the same quality guarantees
as slide reduction, within a number of calls to HKZ in dimension § that is no larger than that of slide
reduction. Actually, note that 7pxz is significantly smaller than 7g1ide, in particular with a dependence with

! The component "—; of this upper bound is derived by adapting the results from [8] to our notations. A more thorough
analysis leads to a smaller term.

2 In [9], the bound ||e1]| < (73)2&7}1)+% - (det L)%L is claimed to hold, but without proof nor reference. We prove a (slightly)
weaker bound, but we are able to improve it if v, is replaced by any linear function. See appendix.

3 A bound (n8)" is mentioned in [9]. For completeness, we give a proof of a similar result in appendix.

4 The constant C is used to absorb lower-order terms in n, and could be taken small.



respect to max; ||b;|| that is exponentially smaller. It may be possible to obtain a similar bound for the
slide-reduction algorithm by adapting our analysis.

To achieve our result, we use a completely new approach for analyzing lattice reduction algorithms. The
classical approach to bound their runtimes was to introduce a quantity, sometimes called potential, involving
the current Gram-Schmidt norms ||b}||, which always strictly decreases every time some elementary step
is performed. This technique was introduced by Lenstra, Lenstra and Lovasz [16] for analyzing their LLL
algorithm, and is still used in all complexity analyzes of (variants of) LLL we are aware of. It was later
adapted to stronger lattice reduction algorithms [33,7,32,8]. We still measure progress with the ||b}]|’s, but
instead of considering a single scalar combining them all, we look at the full vector (||b}||),. More specifically,
we observe that each call to HKZ within BKZ has the effect of applying an affine transformation to the
vector (log||b}||);: instead of providing a lower bound to the progress made on a “potential”, we are then
led to analyze a discrete-time dynamical affine system. Its fixed-points encode information on the output
quality of BKZ, whereas its speed of convergence provides an upper bound on the number of times BKZ
calls HKZ.

Intuitively, the effect of a call to HKZ on the vector (log ||b}||)i<n is to essentially replace 5 consecutive
coefficients by their average. We formalize this intuition by making a specific assumption (see Section 4).
Under this assumption, the execution of BKZ exactly matches with a dynamical system that we explicit and
fully analyze. However, we cannot prove that this assumption is always correct (counter-examples can actu-
ally be constructed). To circumvent this difficulty, we instead consider the vector p = (1 23'21 log [|b7 [)i<n-
This amortization (also used in [11] for analyzing HKZ-reduced bases) allows us to rigorously bound the
evolution of p by the orbit of a vector under another dynamical system. Since this new dynamical system
happens to be a modification of the dynamical system used in the idealized model, the analysis performed

for the idealized model can be adapted to the rigorous set-up.
This approach is likely to prove useful for analyzing other lattice reduction algorithms. As an illustration

of its power, we provide two new results on LLL. First, we show that the SVP approximation factor \/4/3 -
can be reached in polynomial time using only Gauss reductions. This is closely related to the question
whether the “optimal LLL” (i.e., using LLL parameter § = 1) terminates in polynomial time [3,17]. Second,
we give a LLL-reduction algorithm of bit-complexity Poly(n) - 5(Size(B)). Such a complexity bound was
only very recently achieved, with a completely different approach [29]. Note that close-by results on LLL

have been concurrently and independently obtained by Schnorr [35].

PRACTICAL ASPECTS. Our result is a (possibly pessimistic) worst-case quality bound on BKZ with early
termination. In itself, this does not give a precise explanation of the practical behavior of BKZ. In particular,
it does not explain why it outperforms slide reduction, but only why it does not behave significantly worse.
However, this study illustrates the usefulness of early termination in BKZ: Much progress is done at the
beginning of the execution, and quickly the basis quality becomes excellent; the rest of the execution takes
much longer, for a significantly less dramatic quality improvement. This behavior is very clear in practice,
as illustrated by Figure 1 of Section 2. Since most of the work performed by BKZ is completed within the
first few calls to HKZ, it shows that the BKZ performance extrapolations used to estimate the hardness
of cryptographic instances should focus only on the cost of a single call to HKZ and on the achieved basis
quality after a few such calls. For instance, it indicates that the strategy (adopted, e.g., in [14,13]) consisting
in measuring the full run-time of BKZ might be reconsidered.

Additionally, parts of the analysis might prove useful to better understand BKZ and devise reduction
algorithms with improved practical time/quality trade-offs. In particular, the heuristic modelisation of BKZ
as a discrete-time affine dynamical system suggests that the block of vectors on which HKZ-reduction is
to be applied could be chosen adaptively, so that the system converges faster to its limit. It would not
improve the output quality for BKZ, but it is likely to accelerate its convergence. Also, the second phase
of BKZ, the one that takes longer but during which some little progress is still made, could be understood
by introducing some randomness in the model: most of the time, the norm of the first vector found by
the HKZ-reduction sub-routine is around its expected value (a constant factor smaller than its worst-case



bound), but it is significantly smaller every now and then. If such a model could predict the behavior of
BKZ during its second phase, then maybe it would explain why it outperforms slide reduction. It might give
indications on the optimal time for stopping BKZ with block-size 8 before switching to a larger block-size.

Notations. All vectors will be denoted in bold, and matrices in capital letters. If b € R™, the notation ||b|
will refer to its Euclidean norm. If B € R™ ", we define ||B|l2 = max| 4=, ||B - || and we denote the
spectral radius of B by p(B). If B is a rational matrix, we define size(B) as the sum of the bit-sizes of the
numerators and denominators of its entries. All complexity statements refer to elementary operations on
bits. We will use the Landau notations o(+), O(+), O(:) and 2(-). The notations log(-) and In(-) respectively
stand for the base 2 and natural logarithms.

2 Reminders

For an introduction to lattice reduction algorithms, we refer to [28].

Successive Minima. Let L be an n-dimensional lattice. Its i-th minimum \;(L) is defined as the minimal

radius 7 such that B(0,r) contains > ¢ linearly independent vectors of L.

Hermite’s constant. The n-dimensional Hermite constant ~,, is defined as the maximum taken over all
A1 (L)?

(det L1)2/ dim(L) *

increases with n. Very few values of v, are known, but we have v, <1+ % for all n (see [20, Re 2.7.5]).

lattices L of dimension n of the quantity Let v, = maxj<y Yk, an upper bound on 7, which

Gram-Schmidt orthogonalisation. Let (b;);<, be a lattice basis. Its Gram-Schmidt orthogonalization
(b )i<n is defined recursively by bf = b; — > ., ju;,;b] with p; j = (b} b*)/Hb;‘H2 for i > j. The b}’s are
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mutually orthogonal. For ¢ < j, we define bg-l) as the projection of b; orthogonally to Span(by)x<;. Note

that if L is an n-dimensional lattice, then det L = ], ||b}||, for any basis (b;);<, of L.

A few notions of reduction. Given a basis (b;)i<pn, we say that it is size-reduced if the Gram-Schmidt
coefficients p; ; satisfy |p; ;] < 1/2 for all j < i < n. We say that (b;)i<pn is 6-LLL-reduced for 6 < 1
if it is size-reduced and the Lovéasz conditions §||b[|> < [|bf 4 * + /,L12+17i||b;‘\|2 are satisfied for all ¢ < n.
For any § < 1, a §-LLL-reduced basis of a rational lattice L can be computed in polynomial time, given
an arbitrary basis of L as input [16]. We say that (b;)i<p is HKZ-reduced if it is size-reduced and for
all i < n, we have ||b}|| = Al(L[(bS-Z))igjgn]). An HKZ-reduced basis of a lattice L C Q" can be computed

in time 2270 . Poly(size(B)), given an arbitrary basis B of L as input [22]. The following is a direct
consequence of the definitions of the HKZ-reduction and Hermite constant.

Lemma 1. For any HKZ-reduced basis (b;)i<n, we have: Vi <n,||b]|| < \/vn=it1 - ([} Hb;‘»H)nfliH.

The BKZ algorithm. We recall the original BKZ algorithm from [37] in Algorithm 1. BKZ was originally
proposed as a mean of computing bases that are almost §-reduced. 5-Reduction was proposed by Schnorr
in [33], but without an algorithm for achieving it. The BKZ algorithm proceeds by iterating tours consisting
of n — 1 calls to a S-dimensional SVP solver called on the lattices L[(bgk)) k<i<k+p—1]. Its execution stops
when no change occurs during a tour.

Input : A (LLL-reduced) basis (b;)i<n, a blocksize S and a constant ¢ < 1.
Output : A basis of L[(b;)i<n].
repeat
for k< 1ton—1do
Find b such that [|b® || = A\ (L[(0) k<i<min(res s—1.m));
if 0 - ||bg| > ||b]| then
LLL—reduce(bl, ey bk_1, b, bk, ceey bmin(k+B,n))~
else
LLL-reduce(bi, . .., bmin(k+8,n))-
until no change occurs.

Algorithm 1: The Schnorr and Euchner BKZ algorithm.




3 Terminating BKZ

In this article, we will not analyze the original BKZ algorithm, but we will focus on a slightly modified variant
instead, which is given in Algorithm 2. It also performs BKZ tours, and during a tour it makes n—+1 calls
to a B-dimensional HKZ-reduction algorithm. It fits more closely to what would be the simplest BKZ-style
algorithm, aiming at producing a basis (b;);<y, such that the projected basis (b(k)

. Vk<i<k+p—1 is HKZ-reduced
forall k <n-—pg+1.

Differences between the two variants of BKZ. The differences between the two algorithms are the
following:

e In Algorithm 2, the execution can be terminated at the end of any BKZ tour.

e In the classical BKZ algorithm, the vector b found by the SVP solver is kept only if ||b*)|| is smaller
than ¢ - ||by||. Such a factor § < 1 does not appear in Algorithm 2. It is unnecessary for our analysis to
hold, complicates the algorithm, and leads to output bases of lesser quality.

e For each k within a tour, Algorithm 1 only requires an SVP solver while Algorithm 2 calls an HKZ-
reduction algorithm, which is more complex. We use HKZ-reductions for the ease of the analysis. Our
analysis would still hold if the loop was done for k from 1 to n — 1 and if the HKZ-reductions were
replaced by calls to any algorithm that returns bases whose first vector reaches the minimum (which
can be obtained by calling any SVP solver, putting the output vector in front of the input basis and
calling LLL to remove the linear dependency).

e Finally, to insert b in the current basis, Algorithm 1 performs an LLL-reduction. Indeed, applying

LLL inside the projected block (i.e., to bk, b,(gk), cees bl(fljzﬁ—l) would be sufficient to remove the linear

dependency while keeping b'¥) in first position, but instead it runs LLL from the beginning of the basis
until the end of the next block to be considered (i.e., up to index min(k + 3,n). This reduction is
performed even if the block is already reduced and no vector is inserted. Experimentally, this seems to
improve the speed of convergence of the algorithm by a small factor, but it does not seem easy to use
our techniques to analyze this effect.

Input : A basis (b;)i<» and a blocksize .
Output : A basis of L[(b;)i<n].
repeat
fork+<—1ton—(5+1do
Modify (bi)k§i§k+ﬁ—l so that (bgk)
Size-reduce(b1, ..., by).
until no change occurs or termination is requested.

Algorithm 2: BKZ’, the modified BKZ algorithm.

Ve<i<kt+s—1 is HKZ-reduced;

On the practical behavior of BKZ. In order to give an insight on the practical behavior of BKZ
and BKZ’, we give experimental results on the evolution of the quantity % (the so-called Hermite
factor) during their executions. The experiment corresponding to Figure 1 is as follows: We generated 64
knapsack-like bases [25] of dimension n = 108, with non-trivial entries of bit-length 100n; Each was LLL-
reduced using f£plll [4] (with parameters § = 0.99 and n = 0.51); Then for each we ran NTL’s BKZ [40]
and an implementation of BKZ’ in NTL, with blocksize 24. Figure 1 only shows the beginning of the
executions. For both algorithms, the executions of about half the samples consisted in ~ 600 tours, whereas
the longest execution stopped after ~ 1200 tours. The average value of b1l at the end of the executions

(det L)1/m
was ~ 1.012.

Cost of BKZ’. In order to bound the bit-complexities of BKZ and BKZ’, it is classical to consider several
cost components separately. In this article, we will focus on the number of tours. The number of calls to
an SVP solver (for BKZ) or an HKZ-reduction algorithm (in the case of BKZ’) is < n times larger. A
tour consists of efficient operations (LLL, size-reductions, etc) and of the more costly calls to SVP/BKZ.
The cost of the SVP solver or the HKZ-reduction algorithm is often bounded in terms of the number of
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Fig. 1. Evolution of the Hermite factor (de!bLl)Hl/n during the execution of BKZ and BKZ’.

arithmetic operations it performs: For all known algorithms, this quantity is (at least) exponential in the
block-size 5. Finally, one should also take into account the bit-costs of the arithmetic operations performed
to prepare the calls to SVP/HKZ, during these calls, and after these calls (when applying the computed
transforms to the basis, and calling LLL or a size-reduction). These arithmetic costs are classically bounded
by considering the bit-sizes of the quantities involved. They can easily be shown to be polynomial in the
input bit-size, by relying on rational arithmetic and using standard tools from the analyses of LLL and
HKZ [16,15]. It is likely that these costs can be lowered further by relying on floating-point approximations
to these rational numbers, using the techniques from [26,30]. To conclude, the overall cost is upper bounded
by Poly(n,log||B||) - 2 . 7, where 7 is the number of tours.

4 Analysis of BKZ’ in the Sandpile Model

In this section, we (rigorously) analyze a heuristic model of BKZ’. In the following section, we will show
how this analysis can be adapted to allow for a (rigorous) study of the genuine BKZ’ algorithm.

We first note that BKZ’ can be studied by looking at the way the vector  := (log ||b}||); changes during
the execution, rather than considering the whole basis (b;);. This simplification is folklore in the analyzes
of lattice reduction algorithms, and allows for an interpretation in terms of sandpiles [19]. The study in the
present section is heuristic in the sense that we assume the effect of a call to HKZg on x is determined by x
only, in a deterministic fashion.

4.1 The model and its dynamical system interpretation

Before describing the model, let us consider the shape of a -dimensional HKZ-reduced basis. Let (b;)i<g
be an HKZ-reduced basis, and define z; = log ||b}||. Then, by Lemma 1, we have:

B
. 1 1
Vi < B, x; < ilog Vg—i+1 + /B_z_’_l;{ﬂ] (3)

Our heuristic assumption consists in replacing these inequalities by equalities.
Heuristic Sandpile Model Assumption (SMA). We assume for any HKZ-reduced basis (b;)i<g, we
have z; = %log vg_iy1 + ﬁ Zjﬁ:z xj for all i < g, with = (log||b}||)i<s-

Under SMA, once ), z; (i.e., | det(b;);]) is fixed, an « of an HKZ-reduced basis is uniquely determined.

Lemma 2. Let (b;)i<g be HKZ-reduced, x = (log ||bj[|); and E[x] = >_,_5% . Then, under SMA, xg =
Elz] — I's(8 — 1) and:



Vi< B, m = Elz] — (8 — i+ 1) — 1) + (8 — i)T5(),

with T, (k) = Z?:_nl% logz# for all0 < k < n.

Proof. SMA is equivalent to the following triangular system of linear equations:
vi<g o Bitl) 1L
=T PV

Let y; = ZJ’B:Z xj, fori < 3. Then yg = x5 and y; = 'Bg:fl (yi+1 + %bg Vﬁ_i_t'_l) for all ¢ < . By induction:

B—i
. » log v 41
Vi< B, yi = (ﬁ—l+1)<y5+;2j).

Taking ¢ = 1 and noting that y; = 3 - E[x] gives yg = x5 = E[x] — [3(8 — 1). Now:

B=i
Vi < B, yi = ([3—1’+1)<E[az] —rﬂ(5—1)+21‘)g2’;?“> = (B—i+1)(Elx] — 56— 1)).

Jj=1

The result derives from the equality z; = y; — Yi+1- a

We now exploit SMA to interpret BKZ’ as a discrete-time linear dynamical system. Let (b;);<,, be a
lattice basis and & = (log ||b}]|);. Let 8 < n be a block-size and o« < n — 4+ 1. When we apply an HKZ

reduction algorithm to the projected sublattice (bga)) a<i<atf—1: We obtain a new basis (b;),;<,, such that
(with 2" = (log [|b;*[]);):

a+p-1 atB—1
Z T = Z z; and Vi & [, + B —1], o) = x;.
1= =

Under SMA, we also have:

8—1
1 1%

- !/ . /
Vi € [a,a+ 5 —1], xi—ilogua+g_z+7a+ﬂ_i g ;.
j=i

By applying Lemma 2, we obtain &’ = A . a + ¢(® with:

1 ) ) 0 if i <«
P (@) (B+a—i—1)Is(i—a+1)—(B+a—i) (i —a)
Ale) — R andg-a): ifi € [a,a+ 5 —2]
1 1 ’
5% (a+B-1) —I3(B—1) if i=a+pB—1
1 0 if i>a+p.

We recall that a BKZ’ tour is the successive (n— 3+ 1) applications of an HKZ-reduction algorithm with
a=1,...,n—F+1 (in this order). Under SMA, the effect of a BKZ’ tour on « is to replace it by Ax + g
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We sum up the study of the discrete-time dynamical system x < A - x + g in the following Theorem.
The solutions and speed of convergence respectively provide information on the output quality and runtime
of BKZ’ (under SMA). Overall, we have:

Theorem 2. Under SMA, there exists C' > 0 such that the following holds for all n and B. Let (b;)i<n be
given as input to BKZ’g and L the lattice spanned by the b;’s. If terminated after C’"2 (log n+log log max; 8”7*”)

tours, then the output (c;)i<n 5 a basis of L that satisfies ||x — x>||2 < 1, where x; = log @ ‘t‘ )i for all i
and £ is the unique solution of the equation > = A - x> + g with E[xz>°] = 0. This implies that:
'nfl

lerll < 20,) 7 (det 1)

1
n

4.2 Solutions of the dynamical system

Before studying the solutions of = A -  + g, we consider the associated homogeneous system.
Lemma 3. If A-x =z, then € span(1,...,1)T.

Proof. Let & € R™ such that A-x = x. Let ¢ the largest index such that x; = max; x;. We prove by
contradiction that i = n. Assume that i < n. We consider two cases, depending on whether i < 8 or i > 3.
Recall that applying A to a vector y consists in replacing ya, . . . s Yatp—1 by their mean, and in leaving
the others constant. As a result, the maximum of the y;’s cannot increase.

Assume first that ¢ < 8. Let ' = AM) . x. By definition of 4, we must have ;41 < z;, and there-
fore max;<g xé < maxj<g xj. By choice of i, we also have max;<y, :cg < max;<p xj. But & = Aln=B+1) ..
A@) g , which leads to the inequality max;<, ; < max;<j, x; We obtained a contradiction.

Now, assume that i > 8. Let ' = AC-8+D .. AW . 2 and 2" = AC-F+2) . /. We have max;<, al <

. pp— . / _ N . . . ! .. .
max;<, T; = x;. Moreover, we have Ti gy == < zx; and for all j > i, 2/, = r; <z, This implies

J
that max;_gia<j<n @) < ;. Since = A=A+ . AG=BE3) 27 we obtain that max; gyo<j<n ) < ;.
In particular, we obtain the contradiction z; < x;.

So far, we have proven that x, = max;<, x;. Symmetrically, we could prove that z, = min;<, z;, which

provides the result. O

It thus suffices to find one solution to * = A -  + g to obtain all the solutions. We define T as follows:

Li = (n—p+1)

i+8—1 —
= 26— 1)10gV/3+5 [ @y it i<n—p
9 if i>n—-2g

® If we replace vg by a linear function that bounds it (e.g., vg < B), then the constant 2 may be replaced by =22 1“2 + €
(with e > 0 arbitrarily close to 0 and j sufficiently large).



Lemma 4. We have®=A-T+g.

Proof. Note first that for any « and any @, we have Y 1 (A - 2); = 37  2; and > ng = 0. This
implies that:

n

> (AW g4 glo Z ;. (4)

=1

Let 20 =% and @ = A@) . gD 4 g(®) for o € [1,n — B + 1]. We prove by induction that:

a+pB—1 a+pB—1
S =3 7 ad 2V =7 if iglatla+rf-1. (%)
i=a+1 i=a+1

This holds for o = 0 since Z© = Z. Let o > 1. By the induction hypothesis and equality of the columns
a,...,a+ -1 of A we have A .z~ = A . % and hence T = A . Z 4 ¢g(®). This directly
implies that @(’a) =7, when i € [o, + f — 1]. Combining this with (4) gives:

a+5-—1 a+pB—-1
Z ) = Z ;. (5)

Since 7 = 1 5 logvg + 3 ZOHFB ! (.a) we obtain (using (5) and the definition of Z):

a+ﬂ 1
T = log vg + Z

H

Combining this equality and (5) allows to complete the proof of (x).
It remains to prove that Egn_ﬁﬂ) =7, fori>n—pB+2 Fori>n—[+1, we have:

n
—(n—p+1) _ 1 (n—B+1)
T; IOgVn z+1+ﬁzx
=1
By Lemma 2 and the definition of g("~#+1) this implies that x( —AHD =3 Z] 417 5 —A+1) +g§n7’8+1).
As a consequence (using (5) and the definition of Z):
n
_(n—p+1 1 _ 1) 1) —B+1 —B+1)
A Y mad g Y Ty
j=n—pF+1 j=n—p+1
Overall, we have proven that A% + g = 2 A+ = . 0

Fact. Given M;, € R¥** a,b € R* and ¢ € R, we define M,, € R™" for n > k, as follows:

C"‘C"‘a/T

Then, for any n > k, we have x(M,)(t) = (n — k)t"*= 1. x(Myy1) — (n — k — D)t F - x(My,).



Proof of the fact. We prove the result by induction. It clearly holds for n = k£ and n = k + 1. Assume
now that n > k + 1. We have:

(t—c) —c - —c|--- —aT .- 2 —t 0
= —c
7517172 - Mn72 0 tIn—Q - Mn—2
-b
=2t - X(Mp_1) — % - X(My_2).
The result follows by elementary calculations. O

We now provide explicit lower and upper bounds for the coordinates of the solution z.

Lemma 5. For alli <n— g+ 1, we have (g:{ — %) logrg < T — Tp_py1 < % log vg.

Proof. We prove these bounds by induction on i for i =n — ,...,1. Recall that

3 i+6-1
Vi<n—B, Ti=-———logug+—— Y 7
25— 1) F-1 .22,
We first consider the upper bound on Z; — Zj,_g+1. Since we defined Hermite’s constant so that (1;); is
increasing, we have T,_g41 > --- > Tj,. Therefore:
Vi>n—B, 7T —Tppt1 <0< ”:i log v3.
Using the induction hypothesis, we obtain:
B iy n—j n—i
T; < 23— 1) ogrg + ﬂ_lj;rl (ﬁ—l ogrg + Tn 5+1> -1 0g Vg + Tn—p+1

We now consider the lower bound on Z; — @,,_g4+1. It clearly holds for i = n — 8 + 1. We now prove it
for i € [n — 2(8 — 1),n — B]. For that specific situation, we use the identity:

i+5—1
Vie[n—-2(-1),n—0], mi—z(ﬂﬁl)logug—k(z%%— Z ) (6)
j=i+1 j=n—p+1
As (z;); decreases, we have W Z] . lﬁH* ﬁzyzn_ﬂﬂ Tj = Tn_p41 — 5 logvg. This implies:
1 A e log v HA 1 n—j 3 .
—Z+2,8—n—lj HZ%HQJJ i xn_6+l+—i+25—n—1 -_,LZ:BH(B_I_Q)' (7)

Using the induction hypothesis, we also have:
1 - log v f n—j5 3
_ _ B -
S > T S8 ~ 2. 8
n—ﬁ—i.z Tio= B+1+n—ﬁ—i‘; <5—1 2) ®)

Now, plugging (7) and (8) into (6) gives:
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S I} ) . +logyﬁi§1 n—j 3\ (n—i 3 ) + 3
$1_2(B_1) 0g Vg + Tn—p+1 31 5-1 2) \B=17 2 0g Vg + Tn—p41-

j=i+1
When i < n —2(8 — 1), the proof for the lower bound is similar to that of the upper bound. O
As the set of solutions to € = A-x + g is £+ Span(1,...,1)”, the value of & is only interesting up to a

constant vector, which is why we bound ; — Z,,_g41 rather than ;. In other words, since > of Theorem 1
is © — (E[Z]);, the Lemma also applies to . It is also worth noting that the difference between the upper

and lower bounds %log vg is much smaller than the upper bound % log vg (for most values of 7). If we

replace vg by 3, then, via a tedious function analysis, we can improve both bounds so that their difference
is lowered to %log B. In the special case 8 = 2, the expression of T is T; = T, + (n — i) log vs.

4.3 Speed of convergence of the dynamical system

The classical approach to study the speed of convergence (with respect to k) of a discrete-time dynamical
system xp4q = A, - @k + gn (where A, and g, are the n-dimensional values of A and g respectively)
consists in providing an upper bound to the largest eigenvalue of AL A, . It is relatively easy to prove that it
is 1 (note that A,, is doubly stochastic). We are to show that the second largest singular value is < 1 — 2671—22,
and that this bound is sharp, up to changing the constant 1/2 and as long as n — 8 = 2(n).

The asymptotic speed of convergence of the sequence (A~ - x) i 1s in fact determined by the eigenvalue(s)
of A, of largest moduleS (this is the principle of the power iteration algorithm). However, this classical fact
provides no indication on the dependency with respect to @, which is crucial in the present situation. As
we use the bound ||AF - x| < ||A,||5 - |||, we are led to studying the largest singular values of AL A,,.

We first explicit the characteristic polynomial x,, of AT A, . The following lemma shows that it satisfies
a second order recurrence formula.

Lemma 6. We have x4(t) = A=t — 1), Xgp1(t) = t3=1(t — 1)(t — &) and, for any n > B:

-2
28(B—1)+ 1)t —1 B—1\2
) = PN - (251) 2.
B B
Proof. We have A};Aﬁ = Aj and dimker(Ap) = B — 1, thus t5_1|xﬁ(t). Since Tr(Ag) = 1 we have x4(t) =
tP(t — 1). The computation of A£+1Aﬁ+1 gives:

B+(B-1)* |p-1
62

T 3
Apr1dpr = ’

I

B2 B

If y14- -4y = 0 and yg1 = 0, then AgHABH-y = 0, hence dimker(AnglAﬁH) > f3—1and t5_1|xﬁ+1(t).
It can be checked that A%:HABH (1,---,1)T = (1,---,1)T. Finally, since Tr(A%:HABH) =1+ é we
have x4, (t) = 771 (t = 1)(t — 52).

For n > 1, let C,, be the n x n bottom-right corner of AT A Note that for n,,j > 1, we have

n+8—1“"n+4—1"
Cnij = Cn—1,i—1,j—1, which means that we can write C), as:
Cnll ‘Cn12 *o Cpln
Cn21
Cn = .
Cnfl
Cnnl

5 which can also be proved to be <1 — CﬂQ/’IIZ for some constant c.
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2
Moreover, we have ¢,11 = (%) Cnoo + é7 Cnil = %cmg and c¢,1; = %Cngi for all 4 > 1. Subtracting

% times the second column of tI,, — C,, from the first column and subtracting % times the second row

from the first row gives:

282 -28+1 1 -1
1,
B
X(Cn)(t) = 0
: tIn—l - Cn—l
0

By expansion on the first column and then on the first row we obtain:

2 . . 2
s N CIURY (o WP ENSIT)

Since the § first columns (resp. rows) of AZ n 5_1An g1 are identical, we obtain, by the previous Fact, that
Xnp—1(t) = BtP71x(Cn)(t) — (B — 1)tP - x(Cn—1)(t). This implies that the x,,’s satisfy the same second

)

order relation as the x(Cp,)’s. 0

We finally study the roots of x,,(t). The proof of the following result relies on several changes of variables
to link the polynomials y,(¢) to the Chebyshev polynomials of the second kind.

Lemma 7. For any n > 8 > 2, the largest root of the polynomial th_(if) belongs to [1 — %, 1-— %} .

Proof. Let X,,(t) be the polynomial t"x,(1/t). Then, by Lemma 6, we have X5(t) = 1 —t, Xg;1(t) =
(1—1) (1 - i), and, for n > 3:

ﬂQ
Ruwal) = p DDt () e (1) L (1)
_ (28(8 —;g%- 1) —t Kpar () — <ﬁ¢8_1>2 X (1),

n—p3 _ /
Let 7(t') = 28(8—1)(t —1) and 4, (t') = ( = 1) XD We have v (t) = 1, g () = 2¢/— 252
and, for n > G:

N ogl L nt+l=p . Yn—s—l (1 - T(t/)) _ /8 np . yn (1 B T(t/))
wmoatt) =2 (525 (75 @)

B—1
=2t () — lt).
As a consequence, the 1,’s are polynomials (in ¢'). Now, let (U,)n>0 be the sequence of Chebyshev poly-

nomials of the second kind, i.e., Uy = 0, Uy = 1 and U, 42(t') = 2t - Up11(t') — U, (t') for n > 0. These
polynomials satisfy the following property:

sin(nx)

Vn >0, Yo € R\ {2km;k € Z}, U,(cosz) =

sinz
It can be proven by induction that v, = U,_g41 — % n—p for all n > 3. By the Fact given below, this
implies that there exists ¢, € [COS 75, oS W} such that 1, (¢}) = 0 and 9, (') > 0 for all ¢’ € (¢, 1).

n—B8
We have X,,(1 — 7(t;)) = <%) T(th)n(th) = 0, hence to = (1 —7(th)) " is a root of x,(t). Since
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the image of (t,1) by ¢ — (1 — 7(¢))~! is (to,1), we obtain that ¢y is the largest root of X, (t) smaller
than 1. We now compute bounds for 9. We have 2(n — 8 + 1) < 2n so cos ;75 < ty < cosg-. It can
be checked that for u < 7, we have cosu < 1 — 187u2 so 1 — ﬁ <ty <1-— 17—2 This leads to
L+ ol > 1 r(tg) 2 1+ 288 - D e G St <o

To conclude, let ¢, (t) be the polynomial Xt"f(l) By using Lemma 6, it can be checked that ¢, (1) =

and thus 1

-8
(%)n %, which implies that ¢,(1) # 0. This proves that 1 is never a multiple root of x,, which

completes the proof. O

sinx B sin x

Fact. Let n > 2 and f(z) = sin((ntl)e) _ -1 sin(mz) rpp o gmallest positive root of f belongs to [ﬁ, ﬂ

Proof of the fact. Since sin is an increasing function on [0, %], we have sin(nz) < sin((n+ 1)z) for all
0<z< ﬁ This implies that f(z) > 0 on this interval. We also have f (Z) = —1 < 0. The result

follows from the intermediate value theorem. O

Proof of Theorem 2. The unicity and existence of £*° come from Lemmata 3 and 4.

(k) *
Let (bgk))ign be the basis after k tours of the algorithm BKZ’s and :I:Z(.k) = log b,

(det L)1/m "
of £ and a simple induction imply that z®*) — x> = Ak(:n(o) — x*°). Both 2 and x> live in the
subspace & := Span(1,...,1)*, which is stabilized by A. Let us denote by Ag¢ the restriction of A to this

ﬁQ
2n2

The definition

subspace. Then the largest eigenvalue of A?Ag is bounded in Lemma 7 by (1 — ) Taking the norm in

the previous equation gives:

1z —&ls < [|Ae]s - 2@ — 22 = p(AF Ae)*? - 2@ — 2

2\ k/2
<(1-25) e -2l

The term ||2(?) —2>°||5 is bounded by <log %M) n+nPW). Thus, there exists C such that ||2®*) —z> ||, <
b*
1 when k > C’g (logn + loglog max; %)
We now prove the last inequality of the theorem. By Lemma 5 and the fact that Z?:nfﬁ IR e
1 .
Bry g+ pi ( %g_yf (n—1i)— 3log V5>, we have:
log vg log vg ) 3
< (n-1 - = —1)— =1
< - 1) n;<5_1< )~ 2 1ogw;
n—1 n 3 1
=——+ =) logvs.
2(—1) " 2) 8"
Using the inequality acgk) < z7° + 1 and taking the exponential (in base 2) leads to the result. O

5 Analysis of BKZ’

We now show how the heuristic analysis of the previous section can be made rigorous. The main difficulty
stems from the lack of control on the ||bf|’s of an HKZ-reduced basis (b;);<g. More precisely, once the
determinant and [|bj|| are fixed, the [|b]|’s are all below a specific curve (explicitly given in Lemma 2).
However, if only the determinant is fixed, the pattern of the ||b}||’s can vary significantly: as an example,
taking orthogonal vectors of increasing norms shows that |[bj[| (resp. [|bj||) can be arbitrarily small (resp.
large). Unfortunately, when applying HKZ within BKZ’, it seems we only control the determinant of the
HKZ-reduced basis of the considered block, although we would prefer to have an upper bound for each
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Gram-Schmidt norm individually. We circumvent this difficulty by amortizing the analysis over the ||bf||’s:

as observed in [11]|, we have a sharp control on each average of the first |b||’s. For an arbitrary basis B :=

(bi)i<n, we define ,u,(cB) = %Zlgigk log ||bf]], for k < n.

Lemma 8 ([11, Le. 3]). If B = (b;)i<g is HKZ-reduced, then ,u,(CB) < % log I's(k) + ,ugB) for all k < .

5.1 A dynamical system for (genuine) BKZ’ tours

We now reformulate the results of the previous section with the ugB) s instead of the log ||b}]|’s. This amounts

to a base change in the discrete-time dynamical system of Subsection 4.1. We define:
P = (%1i2j)l§i,j§n7 /T: PAP~1 and § =P-g.
Note that pu(B) = P . 2B) where %) = (log ||b}]); and pP) = (MEB))i.

Lemma 9. Let B’ be the basis obtained after a BKZ’ tour given an n-dimensional basis B as input. Then
u(B/) <A- M(B) + g, where the inequality holds componentwise.

Proof. Let a <n — 8+ 1. We define Al@) = pA@ p=1 and ﬁ(o‘) = P-g®. Let B® be the basis after the
first «v calls to S-HKZ (starting with indices 1,...,«). We first prove that we have:

pB) < @), (B | sl ()

This vectorial inequality can be checked by making A@) and §(a) explicit:

1 ifi=jwithi<aori>a+pg-1
@) _ ot 1—%)ifie[a,a+ﬁ—2]andj:a—1
Y latPelJmatl) - if i€ ja,a+B—2 and j=a+ 8 — 1
0 otherwise,
o) _ [T log (i —a+ 1) if i € [a, 0+ B — 2]
Ji 0 otherwise.

We provide more details on the proof of (9) in appendix.
Now, let () = ,u(B(O)) = p and v(@) = Al@) . ylo—1) +§(a). We prove by induction that p,(B(a)) < pla),
For a > 1, we have (successively using (9), the induction hypothesis and the fact that A(® > 0):

M(B(oc)) g Av(a) . I,I,(B(OL71>) + a(a) S Av(a) . V(Oé—].) + a(a) — V(Ol)

The result follows, by taking o« =d — g + 1. O

5.2 Analysis of the updated dynamical system

Similarly to the analysis of the previous section, it may be possible to obtain information on the speed
of convergence of BKZ’ by estimating the eigenvalues of AT . A, However, the latter eigenvalues seem
significantly less amenable to study than those of AT A. The following lemma shows that we can short-
circuit the study of the modified dynamical system. For a basis B € R™*" given as input to BKZ’g, we
define BI% = B and Bl as the current basis after the i-th BKZ’ tour. We also define pu™ = P - x>,

Lemma 10. Let B € R™" a basis given as input to BKZ’g. Wlog we assume that ,u;B) = po® (since

M%B) = %log | det B|, this can be achieved by multiplying B by a scalar). We have:

(]

k/2
k> 0¥ <n ") < (1 logm) 2 (1= £5)7 2P - @y,
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Proof. First, by using Lemma 9 and noting that A- pu° = pu™> + g, it can be shown by induction that
(k] Y (0]
ptB) — poe < AR (BT — ), (10)

Now, we have || A% - (uP™) — 29y = [ PARP~! - (ulP) — p) [y < [Pz - [| 4% - (@) — 2))..
Thanks to the assumption on /LnB), we know that £(B"”) — = ¢ Span(1,..., 1)L, which is stable under A.
As in theorem 2, we introduce the restriction Ag of A to this subspace. By the results of Subsection 4.3,
we know that the largest eigenvalue of AL - Ao is < (1 — %) Therefore:

~ [0] . [0] . [0] .
JAR - (u B — )|y < ||Pll2 - | A% - (@B —2)[la < P2 - [ Aellh - l2B™) — 2|5

T py1/2 g2\ (BIo]
R e R

where p denotes the spectral radius. Now, the sum of the coordinates of any row of PTP is < Dy % <
1+1Inn <1 +logn. This gives p(PTP) < 1+ logn. The result follows. O

Lemma 11. There exists C > 0 such that the following holds for all integers n > (3, and ¢ € (0,1].

Let (b;)i<n be a basis of a lattice L, given as input to the modified BKZ’ algorithm of Section 2 with block-
size B. If terminated after C’"—g(log Z +loglog max; %) calls to an HKZ-reduction (resp. SVP solver)

in dimension 3, the output (c;)i<n ts a basis of L that satisfies:

n—1

43
ledl < (142w 7% (det )"

3=

Proof. Wlog we assume that u, (B [O]) = py°. The proof is similar to that of theorem 2. We know that:

1 n—1 3

1 oo
We have log ((Hlogn)ligz(fg])_w ”2) = O(log % + log log max; || b;||) so there exists C' > 0 (independent

of B) such that for any k > Cg—z(logg + log log max ||b;||), we have:

k
(1 -+ logm)t (1 £5)° (B - 2]l < log(1 +<).

This gives u1(BF) < pu$° 4 log(1 +¢) < (lun(B[O]) + 2(787_—11) + %) log vz + 1. Taking the exponential (in

base 2) leads to the result. 0

Theorem 1 corresponds to taking ¢ = 1 in Lemma 11. Also, when 8 = 2, using the explicit expression
n—1

of > leads to the improved bound |le;|| < (1+¢) - (r2) * - (det L)%

6 Applications to LLL-Reduction

In this section, we investigate the relationship between BKZ’; reduction and the notion of LLL-reduction [16].
Note that analogues of some of the results of this section have been concurrently and independently obtained
by Schnorr [35].

Reminders on the LLL algorithm. The LLL algorithm with parameter § proceeds by successive loop
iterations. Each iteration has a corresponding index k, defined as the smallest such that (b;);<j is not -LLL-
reduced. The iteration consists in size-reducing (b;);<) and then checking Lovész’s condition &b} _,[|* <
511> + u%k_le’,;_lHQ. If it is satisfied, then we proceed to the next loop iteration, and otherwise, we
swap the vectors by, and by_;. Any such swap decreases the quantity IT((b;);) = [[r_, |6+ by
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a factor > 1/8 whereas it remains unchanged during size-reductions. Since IT((b;);) < 20(*size(B))) and
since for any integer basis IT((b;);) is an integer, this allows to prove termination within O(n? size(B)) loop
iterations when § < 1. When § = 1, we obtain the so-called optimal LLL algorithm. Termination can still

be proven by using different arguments, but with a much larger bound 2P°%(™) . Poly(size(B)) (see [3,17]).
An iterated version of BKZ’;. We consider the algorithm Iterated-BKZ’s (described in Algorithm 3)
which given as input a basis (b;);<, successively applies BKZ’s to the projected bases (b;)i<n, (bZ@))ggign,
ey (bgn_l))n_lgign. By using a quasi-linear time Gauss reduction algorithm (see [39,42]) as the HKZy
algorithm within BKZ’y, Algorithm Iterated-BKZ’y can be shown to run in quasi-linear time.

Input : A basis (b;)i<n of a lattice L.
Output : A basis of L.
for k:=1ton—1do
Apply BKZ’; to the basis (bﬁ"’))kggn;
Let T be the corresponding transformation matrix;
Update (b;)i<n by applying T to (bi)k<i<n.
Return (b;)i<n.
Algorithm 3: Iterated-BKZ’> Algorithm

Lemma 12. Let B be a basis of an n-dimensional lattice, and € > 0 be arbitrary. Then, using Algo-
rithm Iterated-BKZ', one can compute, in time Poly(n) - O(size(B)), a basis (b;),<,, such that

n—i n 1
" 4\ 2 " n—it1
vi<n <o () " (TIen) ™ (12)
Jj=t

Proof. We first prove that (12) holds for the output of Iterated-BKZ’s. The remark at the end of Section 5
shows that (12) holds for i = 1 after the first step of the algorithm. The following steps do not modify the
first vector of the basis, nor do they modify the right hand side of (12), hence the inequality holds. Now,

Iterated-BKZ’y starting from Step 2 is equivalent to applying Iterated-BKZ’s to the basis (bEQ))QSiSn. It
follows from the case ¢ = 1 and a direct induction that (12) holds for all i.

We turn to analyzing the complexity. First, note that HKZ in dimension 2, i.e., Gauss’ reduction, can be
performed in time O(size(C)) given basis C' € Q%*2 as input (see [39,42]). Standard techniques allow one to
bound the bit-sizes of all the vectors occurring during an execution of BKZ/ (and hence Iterated-BKZ’s),
by a linear function of the bit-size of the input. This completes the proof. O

A close analogue of the optimal LLL. Let B = (b;)i<y an integral basis output by Iterated-BKZ’;.
. . . . ) —i —i S |12(n—it1)
For i < n, we let p;, ¢; be coprime rational integers such that % = (%)(n )=o) %. By (12), we
7 Jj=1i J
know that p;/q; < (14¢)"~"*!. Note that p;/g; is a rational number with denominator < 20(n*+size (B) We
can thus find a constant ¢ such that, for all 7, the quantity |p;/¢; — 1| is either 0 or > 9—c(n?+size (B)) Hence,
if we choose ¢ < %.2_6("2“‘%(3')), all the inequalities from (12) must hold with € = 0. Overall, we obtain,
in polynomial time and using only swaps and size-reductions, a basis for which (12) holds with & = 0.

A quasi-linear time LLL-reduction algorithm. BKZ’; can be used to obtain a variant of LLL which
given as input an integer basis (b;)i<n and § < 1 returns a §-LLL-reduced basis of L[(b;);<y] in time Poly(n)-

O(size(B)). First, we apply the modification from [18, p. 25| to a terminated BKZ’s so that the modified
algorithm, when given as input an integer basis (b;)i<y and € > 0, returns in time Poly(n) - O(size(B)) a
basis (b])i<n of L[(b;)i<n] such that [|b]] < (1 +¢)?(4/3)""*A1(L). The complexity bound holds because

the transformation from [18, p. 25| applies BKZ’2 n times on bases whose bit-sizes are Poly(n) - O(size(B)).

We iterate this algorithm n times on the projected lattices (bgk))kggn so that the output basis (¢;)i<n
of L[(b;)i<n| satisfies:

Vi <, Jle| < (14 e)2(4/3)" A (L6 )iz znl)- (13)
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It follows from inequalities and the size-reducedness of (¢;)1<i<y that size(C) = Poly(n) - size(B).
We call 6-LLL’ the successive application of the above algorithm based on BKZ’s and LLL with param-
eter §. We are to prove that the number of loop iterations performed by §-LLL is Poly(n).

Theorem 3. Given as inputs a basis B € Z™*™ of a lattice L and 6 < 1, algorithm 6-LLL’ algorithm

outputs a 0-LLL-reduced basis of L within Poly(n) - O(size(B)) bit operations.

Proof. With the same notations as above, it suffices to prove that given as input (¢;)i<n, algorithm §-LLL

terminates within Poly(n) - O(size(C)) bit operations. Let (c});<pn be the output basis. As size-reductions

can be performed in time Poly(n) - O(size(C))), it suffices to show that the number of loop iterations
of 0-LLL given (¢;)i<p as input is Poly(n). To do this, it suffices to bound % by 2Pely(n),
First of all, we have Al(L[(cg.i))iSjgn]) < Xi(L), for all i < n. Indeed, let vi,...,v; € L be linearly

independent such that max;<; ||v;]| < Ai(L); at least one of them, say v1, remains non-zero when projected
orthogonally to Span(c;);<;. We thus have )\1(L[<C§-Z))Z‘§j§n]) < |lv1]] € Ai(L). Now, using (13), we obtain:

- *12(n—1t n3 ‘ n—i
H((Ci)z‘gn) = H ”Cz HQ( +1) < 20( ) H )\Z(L)Q( +1)-
=1 i=1

On the other hand, we have (see [16, (1.7)]) A\i(L) < max;<;[|c]] < (————)"L||c't|), for all i < n. As

\/6-1/4

a consequence, we have IT((c})i<n) > 9-0(?) . [T, Mi(L)2™=*Y) This completes the proof. 0
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A  Bounding the number of tours in the original BKZ algorithm

A bound (nB)" is claimed in [9]. The authors kindly explained to us how to prove a similar upper bound.
We give the proof, for the sake of completeness.

First, note that during the execution of BKZ (Algorithm 1), the basis (bgk))kgigmin(mﬁ—l,n) given as

input to the SVP solver is always LLL-reduced. Now, we modify the call to LLL following the call to the

18



SVP, as follows. If the SVP solver did not find a sufficiently short vector (i.e., §-[|by| < ||b|| in Algorithm 1),

then we proceed as in Algorithm 1. Otherwise, we first call LLL on b, b(*), bgg), cee bEI]fi)n(kJrﬁil n) to remove
the linear dependency, we apply the appropriate transformation matrix to by, ..., b,, and then we call LLL
again on the vectors by, ..., byinkys.n)-

Suppose the call to the SVP solver is successful. The modification above ensures that the projected
basis b,(ck), cee bEr]fi)n(k A1) is reduced both before the call to the SVP solver and before the second call to

LLL. Furthermore, by a standard property of LLL, the vector found by the SVP solver is the first vector
of the basis before the second call to LLL. Overall, the effect on the ||b}||’s of a call to the SVP solver and
the first call to LLL is as follows:

o ||by|| decreases by a factor <4,
e ||b}| remains constant if j & [k, min(k + 8 — 1,n)],
e [|b7]| does not increase by a factor > 27 if j € [k+1,min(k+B—1,n)] (because the former and new 1671’

approximate the successive minima of L[(bgk))kgz‘gmin(k+6—1,n)] (see, e.g., 6, Th. 18.12.1]).

To conclude, consider the quantity [[,-,, ||bf]|[%]n_z+l. From the above, it always decreases by a
factor < % during a successful call to the SVP solver followed by the first call to LLL. It also always
decreases during a LLL swap (see [16]). Finally, it never increases during the execution of BKZ. As the
input and output bases of BKZ are LLL-reduced, it always belongs to the interval

H(AiQ*n)[%]n%‘H’H(}\ﬂn)[%]nﬂ'ﬂ |

i<n i<n

where the \;’s are the successive minima of the lattice under scope. This implies that the number of calls
to the SVP oracle is O(3)™. 0

B Improving the constant g in Theorems 1 and 2

Theorem 1 asserts the following bound on the output of the modified BKZ algorithm:

n—1 3

74_7
le1]] < Q(VB)Q(B_I) > (det L)™.

3=

We show that that there exists a universal (and efficiently computable) constant K such that for sufficiently
large 5 and n > 3, we have:

n—1 +1—ln2 1
el < K -B*FY 7 2 . (detL)".
The base  of the power could be replaced by af (o < 1) provided that vg < «f holds for sufficiently
large (3.

Proof. In the present work, we only used the facts that v, is an upper bound on the Hermite constant and
that v, < v41. Since v, < n, the proofs also hold with v, replaced by n.
Let y1 =0 and y;11 = %22:1 yj + % log(i 4+ 1) for i > 2. We have:

1] i+l i—1
yi+1—yz‘:ij§_1y]~+ 5 log(z—l—l)—Tyz’
12 i1 i1 1 &5 i
:75 4 T og(i+1) — 75 4 logi
Z,jZIyJ—i- 57 og(i+1) ; i—ljzly]+2(i—1) og i

41 1
:1‘2: log(i +1) - ; logi

1 , N .
= i(log(z +1) —logi) + % log(i + 1).
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Let (b1,...,b,) be an BKZ-reduced basis and z; = log||b}||. Wlog, we may assume that ||b}| =
Under the SMA, we have T; = y,—;41 for all i € [n — 5+ 1,n]. We proceed as for Lemma 5: we compute
upper and lower bounds for any fixed point (Z;); of the dynamical system x <— A-x + g. It then suffices to
combine them, as in the proof of Theorem 2.

A lower bound on T;. We prove by induction on i =n — 8+ 1,...,1 that we have:
o

This trivially holds for ¢ = n — 8+ 1. As in the proof of Lemma 5, we now consider ¢ € [n—2(8—1),n— /],
for which we have (Eq. (6)):

o 3 1 n—_ _ i+8-1 B
xi—mlogﬁ—i-ﬁ Z Tj+ Z zj ). (14)

The following sequences are concave:
e (yr)1<k<p: It suffices to show that yg1 — yx = 2(log(k + 1) — logk) + o= log(k + 1) is non-increasing;
For k > 3, both (log(k+1) —log k) and 57 log(k + 1) are non-increasing; It can be checked by hand that
Ys— Y3 < Ys — Y2 < Y2 — Y1
® (Ys—k+1)1<k<p: By symmetry.

15k : .
. (k > =1 yﬂ_]H)lgkgﬁ' See [41, Le. 5] for example.

® (2k)ren,g) defined by zj, = %Z? 5 +§ 41 Zj: This is a simple translation of indices.

Since (zx ) is concave, we obtain

koo
k-1 _ logg k-1 _ logﬁ
zp 2 21+ (23 — Zl)ﬁ = Tn—f+1 T Ty 5-1 = Tn—p+1 — z:: T (15)
Using the previous equation with k =i+ 28 —n — 1 gives:
1 i—&fl log i-‘,fl o
X9 _n_1 Tj 2 Tpnpr1+t 57 7 ( 1> (16)
Z+257n71]n5+1 +257n71*n B+1 p-1

Using the induction hypothesis (on each Z; for j € [n — f+1,i+ 3 — 1]), we also have:

1 s bgﬁ n—j
n—pB—i Z Tj 2 Tn-pert Z < ) (17)

Jj=i+1 j =i+1

Then, we plug (16) and (17) into (14). The end of the proof is similar to that of Lemma 5 (where the
constant % is replaced by 1).

An Upper bound on 7;. Starting from the equation ;11 — y; = %(log(i +1) —logi) + % log(i + 1), we
obtain:

1 Lol
§logi—|—/ Ogmdw%—Cﬁ
2 r=1 2z

In2 1
< nTlog%—i—ilogi—i-Cz,
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for some universal constants C; and Cs.
Let f(z) = h}TZ log? :c+% log xz. Let I = [exp(1), B]. As f is concave on I, we have f(z) < f(g)+f’(§)(:c—

2
g) for all x € I (for sufficiently large 3). We have f(g) < f(B) —B2log 8+ C5 and \f’(g) — lgéf| < % for
some universal constants C3, Cy. Since z +— log? 2 is continuous and bounded on [1, exp(1)], we obtain, for

any z € [1, 5]:

1 1
fla) < 03) - o log6 + 20— )+ G

log 8 1—1In2
2w+
for some universal constants C5, Cs. The same holds for the y;’s (for i < f3), as y; < f(i) + Ca:

log 8 ,. 1—1n2
=B+

= f(B) + log 5 + Cs,

vi <yg+ log 3 + C7,

for some universal constant C'.
A change of variable gives the following inequality on the Z;’s for i > n — 5+ 1:

_ n—t 1+4+In2
Tj — Tn—pr1 < (5_1— 5 >logﬁ+0(1).

It can be proved by induction that it also holds for all @ < n (as in the first part of the proof of
Lemma 5). 0
C Additional details for the proof of (9)

Using the following explicit value for P~!
1
-1 2
p-1 = -2 3 ’
-n+1 n
it can be checked that:
1 ifi=jwithi<aori>a+pg-1
T _ )T L{ﬁgﬁﬁiemﬂ+ﬁ—mam¢:a—1
“ W#H) ificla,a+p—-2]and j=a+p-1
0 otherwise,
(o) _ [ log T(i —a + 1) ifi € [o,a + 5 — 2
i )o0 otherwise.

Ifi<a—1lori>a+h—1, then P = (4@ . yB™) L 5@y, = B o <i<arp—2

7

we have (noting ,u(IB) = ﬁ > icrlog ||bf|| for any I C [1,n]):

. (B Bl . (@)
it = (= )uZ + (= a+ gy
(a-1) (a-1)
<=1+ (B-ita-1)loglali—a+1)+(i—a+ Dl )
i—a+1 Bla-1) ) . a+B8—-1)i—a+1 (a=1)
:(1_T)(a—1)ug_1 )+(B—Z+a—1)logfg(z—a+1)+( ;( )ugﬁ[ﬁl).
This completes the proof of (9). O
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Abstract. We describe public key encryption schemes with security
provably based on the worst case hardness of the approximate Shortest
Vector Problem in some structured lattices, called ideal lattices. Under
the assumption that the latter is exponentially hard to solve even with a
quantum computer, we achieve CPA-security against subexponential at-
tacks, with (quasi-)optimal asymptotic performance: if n is the security
parameter, both keys are of bit-length O(n) and the amortized costs of
both encryption and decryption are 5(1) per message bit. Our construc-
tion adapts the trapdoor one-way function of Gentry et al. (STOC’08),
based on the Learning With Errors problem, to structured lattices. Our
main technical tools are an adaptation of Ajtai’s trapdoor key genera-
tion algorithm (ICALP’99) and a re-interpretation of Regev’s quantum
reduction between the Bounded Distance Decoding problem and sam-
pling short lattice vectors.

1 Introduction

Lattice-based cryptography has been rapidly developing in the last few years, in-
spired by the breakthrough result of Ajtai in 1996 [1], who constructed a one-way
function with average-case security provably related to the worst-case complexity
of hard lattice problems. The attractiveness of lattice-based cryptography stems
from its provable security guarantees, well studied theoretical underpinnings,
simplicity and potential efficiency (Ajtai’s one-way function is a matrix-vector
multiplication over a small finite field), and also the apparent security against
quantum attacks. The main complexity assumption is the hardness of approxi-
mate versions of the Shortest Vector Problem (SVP). The GapSVP.,(,,) problem
consists in, given a lattice of dimension n and a scalar d, replying YES if there
exists a non-zero lattice vector of norm < d and NO if all non-zero lattice vectors
have norm > 7(n)d. The complexity of GapSVP,(,,) increases with n, but de-
creases with v(n). Although the latter is believed to be exponential in n for any
polynomial v(n), minimizing the degree of v(n) is very important in practice, to
allow the use of a practical dimension n for a given security level.



LATTICE-BASED PUBLIC KEY ENCRYPTION. The first provably secure lattice-
based cryptosystem was proposed by Ajtai and Dwork [3], and relied on a variant
of GapSVP in arbitrary lattices (it is now known to also rely on GapSVP [19]).
Subsequent works proposed more efficient alternatives [33, 30,9, 28]. The cur-
rent state of the art [9,28] is a scheme with public/private key length O(n?)
and encryption/decryption throughput of 5(n) bit operations per message bit.
Its security relies on the quantum worst-case hardness of GapSVPa(nl_s) in ar-
bitrary lattices. The security can be de-quantumized at the expense of both in-
creasing y(n) and decreasing the efficiency, or relying on a new and less studied
problem [28]. In parallel to the provably secure schemes, there have also been
heuristic proposals [11,12]. In particular, unlike the above schemes which use
unstructured random lattices, the NTRU encryption scheme [12] exploits the
properties of structured lattices to achieve high efficiency with respect to key
length (O(n) bits) and encryption/decryption cost (O(1) bit operation per mes-
sage bit). Unfortunately, its security remains heuristic and it was an important
open challenge to provide a provably secure scheme with comparable efficiency.
PROVABLY SECURE SCHEMES FROM IDEAL LATTICES. Micciancio [20] intro-
duced the class of structured cyclic lattices, which correspond to ideals in poly-
nomial rings Z[z]/(z™ — 1), and presented the first provably secure one-way
function based on the worst-case hardness of the restriction of Poly(n)-SVP to
cyclic lattices. (The problem 7-SVP consists in computing a non-zero vector of
a given lattice, whose norm is no more than « times larger than the norm of
a shortest non-zero lattice vector.) At the same time, thanks to its algebraic
structure, this one-way function enjoys high efficiency comparable to the NTRU
scheme (O(n) evaluation time and storage cost). Subsequently, Lyubashevsky
and Micciancio [17] and independently Peikert and Rosen [29] showed how to
modify Micciancio’s function to construct an efficient and provably secure colli-
sion resistant hash function. For this, they introduced the more general class of
ideal lattices, which correspond to ideals in polynomial rings Z[x]/ f(z). The col-
lision resistance relies on the hardness of the restriction of Poly(n)-SVP to ideal
lattices (called Poly(n)-Ideal-SVP). The average-case collision-finding problem
is a natural computational problem called Ideal-SIS, which has been shown to be
as hard as the worst-case instances of Ideal-SVP. Provably secure efficient sig-
nature schemes from ideal lattices have also been proposed [18,15,16,14], but
constructing efficient provably secure public key encryption from ideal lattices
was an interesting open problem.

OUR RESULTS. We describe the first provably CPA-secure public key encryp-
tion scheme whose security relies on the hardness of the worst-case instances of
O(n?)-1deal-SVP against subexponential quantum attacks. It achieves asymp-
totically optimal efficiency: the public/private key length is 5(71) bits and the
amortized encryption/decryption cost is 5(1) bit operations per message bit
(encrypting 2(n) bits at once, at a O(n) cost). Our security assumption is
that 6(n2)—1deal-SVP cannot be solved by any subexponential time quantum
algorithm, which is reasonable given the state-of-the art lattice algorithms [36].
Note that this is stronger than standard public key cryptography security as-



sumptions. On the other hand, contrary to most of public key cryptography,
lattice-based cryptography allows security against subexponential quantum at-
tacks. Our main technical tool is a re-interpretation of Regev’s quantum reduc-
tion [33] between the Bounded Distance Decoding problem (BDD) and sampling
short lattice vectors. Also, by adapting Ajtai’s trapdoor generation algorithm [2]
(or more precisely its recent improvement by Alwen and Peikert [5]) to structured
ideal lattices, we are able to construct efficient provably secure trapdoor sig-
natures, ID-based identification schemes, CCA-secure encryption and ID-based
encryption. We think these techniques are very likely to find further applications.

Most of the cryptosystems based on general lattices [33, 30, 31,9, 28] rely on
the average-case hardness of the Learning With Errors (LWE) problem intro-
duced in [33]. Our scheme is based on a structured variant of LWE, that we
call Ideal-LWE. We introduce novel techniques to circumvent two main difficul-
ties that arise from the restriction to ideal lattices. Firstly, the previous cryp-
tosystems based on unstructured lattices all make use of Regev’s worst-case to
average-case classical reduction [33] from BDD to LWE (this is the classical step
in the quantum reduction of [33] from SVP to LWE). This reduction exploits
the unstructured-ness of the considered lattices, and does not seem to carry over
to the structured lattices involved in Ideal-LWE. In particular, the probabilistic
independence of the rows of the LWE matrices allows to consider a single row
in [33, Cor. 3.10]. Secondly, the other ingredient used in previous cryptosystems,
namely Regev’s reduction [33] from the computational variant of LWE to its
decisional variant, also seems to fail for Ideal-LWE: it relies on the probabilistic
independence of the columns of the LWE matrices.

Our solution to the above difficulties avoids the classical step of the reduc-
tion from [33] altogether. Instead, we use the guantum step to construct a new
quantum average-case reduction from SIS (the unstructured variant of Ideal-SIS)
to LWE. It also works from Ideal-SIS to Ideal-LWE. Combined with the known
reduction from worst-case Ideal-SVP to average-case Ideal-SIS [17], we obtain a
quantum reduction from Ideal-SVP to Ideal-LWE. This shows the hardness of
the computational variant of Ideal-LWE. Because we do not obtain the hardness
of the decisional variant, we use a generic hardcore function to derive pseudoran-
dom bits for encryption. This is why we need to assume the exponential hardness
of SVP. The encryption scheme follows as an adaptation of [9, Sec. 7.1].

The main idea of our new quantum reduction from Ideal-SIS to Ideal-LWE is
a re-interpretation of Regev’s quantum step in [33]. The latter was presented as
a worst-case quantum reduction from sampling short lattice vectors in a lattice L
to solving BDD in the dual lattice L. We observe that this reduction is actually
stronger: it is an average-case reduction which works given an oracle for BDD in L
with a normally distributed error vector. Also, as pointed out in [9], LWE can be
seen as a BDD with a normally distributed error in a certain lattice whose dual
is essentially the SIS lattice. This leads to our SIS to LWE reduction. Finally
we show how to apply it to reduce Ideal-SIS to Ideal-LWE — this involves a
probabilistic lower bound for the minimum of the Ideal-LWE lattice. We believe
our new SIS to LWE reduction is of independent interest. Along with [22], it



provides an alternative to Regev’s quantum reduction from GapSVP to LWE.
Ours is weaker because the derived GapSVP factor increases with the number
of LWE samples, but it has the advantage of carrying over to the ideal case. Also,
when choosing practical parameters for lattice-based encryption (see, e.g., [23]),
it is impractical to rely on the worst-case hardness of SVP. Instead, the practical
average-case hardness of LWE is evaluated based on the best known attack which
consists in solving SIS. Our reduction justifies this heuristic by showing that it
is indeed necessary to (quantumly) break SIS in order to solve LWE.
RoaD-MaAP. We provide some background in Section 2. Section 3 shows how to
hide a trapdoor in the adaptation of SIS to ideal lattices. Section 4 contains the
new reduction between SIS and LWE. Finally, in Section 5, we present our CPA-
secure encryption scheme and briefly describe other cryptographic constructions.
NoTATION. Vectors will be denoted in bold. We denote by (-,-) and || - || the
inner product and the Euclidean norm. We denote by ps(x) (resp. vs) the stan-
dard n-dimensional Gaussian function (resp. distribution) with center 0 and
variance s, i.e., ps(x) = exp(—n||z|/?/s?) (resp. vs(z) = ps(x)/s™). We use
the notations O(-) and 2(-) to hide poly-logarithmic factors. If Dy and D, are
two probability distributions over a discrete domain F, their statistical distance
is A(D1,D3) = 33 ,cp |Di(x) — Da(x)|. If a function f over a countable do-
main F takes non-negative real values, its sum over an arbitrary F' C E will be
denoted by f(F). If ¢ is a prime number, we denote by Z, the field of integers
modulo q. We denote by ¥, the reduction modulo ¢ of v,.

2 Reminders and Background Results on Lattices

We refer to [21] for a detailed introduction to the computational aspects of lat-
tices. In the present section, we remind the reader very quickly some fundamental
properties of lattices that we will need. We then introduce the so-called ideal
lattices, and finally formally define some computational problems.

Euclidean lattices. An n-dimensional lattice L is the set of all integer lin-
ear combinations of some linearly independent vectors bq,...,b, € R", i.e.,
L = > 7Zb;. The b;’s are called a basis of L. The ith minimum X;(L) is the
smallest r such that L contains ¢ linearly independent vectors of norms < r.
We let A\$°(L) denote the first minimum of L with respect to the infinity norm.
If B = (by,...,by,) is a basis, we define its norm by || B| = max||b;|| and its
fundamental parallelepiped by P(B) = {>_, ¢;b; | ¢ € [0,1)"}. Given a basis B
for lattice L and a vector ¢ € R", we define ¢ mod L as the unique vector
in P(B) such that ¢ — (cmod L) € L (the basis being implicit). For any lat-
tice L and any s > 0, the sum p;(L) is finite. We define the lattice Gaussian

distribution by Dy, 4(b) = ;:SS((Z))’ for any b € L. If L is a lattice, its dual L is the

lattice {b € R" | Vb € L, (b, b) € Z}. We will use the following results.

Lemma 1 (|29, Lemma 2.11] and [27, Lemma 3.5]). For any x in an n-
dimensional lattice L and s > 2./In(10n)/7/\°(L), we have Dy, s(x) < 27"FL



Lemma 2 (|22, Lemma 2.10]). Given an n-dimensional lattice L, we have
Prop,.[|z| > sy/n] <27

Ideal lattices. Ideal lattices are a subset of lattices with the computationally
interesting property of being related to polynomials via structured matrices. The
n-dimensional vector-matrix product costs O(n) arithmetic operations instead
of O(n?). Let f € Z[z] a monic degree n polynomial. For any g € Q[z], there is a
unique pair (g,7) with deg(r) < n and g = ¢f +r. We denote r by g mod f and
identify r with the vector 7 € Q" of its coefficients. We define rot;(r) € Q"*" as
the matrix whose rows are the z'r(x) mod f(z)’s, for 0 < i < n. We extend that
notation to the matrices A over Q[z]/f, by applying rot; component-wise. Note
that rot(g1)rot;(g2) = rots(g1g2) for any g1, g2 € Q[z]/f. The strengths of our
cryptographic constructions depend on the choice of f. Its quality is quantified
by its expansion factor (we adapt the definition of [17] to the Euclidean norm):

lg mod f||
gl

where we identified the polynomial g mod f (resp. ¢g) with the coefficients vector.

Note that if deg(g) < n, then [roty(g)|| < EF(f,2) - ||g]|- We will concentrate
2

BF(f, k) = max{ g€ Zla]\ {0} and deg(g) < k (deg(f) — 1>},

on the polynomials x "4 1, although most of our results are more general. We
recall some basic properties of 22° + 1 (see [7] for the last one).

Lemma 3. Let k > 0 and n = 2*. Then f(x) = 2™ + 1 is irreducible in Q[z].
Its expansion factor is < /2. Also, for any g = Dicn girt € Q[x]/f, we
have rots(g)" = rots(g) where § = go — Y 1<;<,, Gn—ix'. Furthermore, if q is
a prime such that 2n|(q — 1), then f has n linear factors in Z,[x]. Finally,
if k > 2 and q is a prime with ¢ = 3 mod 8, then f = f1f> mod q where each f;
is irreducible in Z,[x] and can be written f; = x™/? + t;z™/* — 1 with t; € Z,.

Let I be an ideal of Z[z]/ f, i.e., a subset of Z[z]/f closed under addition and
multiplication by any element of Z[z]/f. It corresponds to a sublattice of Z".
An f-ideal lattice is a sublattice of Z™ that corresponds to an ideal I C Zx]/f.

Hard lattice problems. The most famous lattice problem is SVP. Given a
basis of a lattice L, it aims at finding a shortest vector in L \ {0}. It can be re-
laxed by asking for a non-zero vector that is no longer than ~(n) times a solution
to SVP, for a prescribed function (-). The best polynomial time algorithm [4,
35] solves v-SVP only for a slightly subexponential . When - is polynomial in n,
then the most efficient algorithm [4] has an exponential worst-case complexity
both in time and space. If we restrict the set of input lattices to ideal lattices,
we obtain the problem Ideal-SVP (resp. v-Ideal-SVP), which is implicitly pa-
rameterized by a sequence of polynomials f of growing degrees. No algorithm
is known to perform non-negligibly better for Ideal-SVP than for SVP. It is
believed that no subexponential quantum algorithm solves the computational
variants of SVP or Ideal-SVP in the worst case. These worst-case problems can
be reduced to the following average-case problems, introduced in [1] and [9].



Definition 1. The Small Integer Solution problem with parameters q(-), m(-),
B(:) (SISqm.p) is as follows: Given n and a matrizx G sampled uniformly in

ZZ(L%L)X”, find e € Z™(™ \ {0} such that e"G = 0 mod q(n) (the modulus be-
ing taken component-wise) and |le|| < B(n). The Ideal Small Integer Solution
problem with parameters q,m,3 and f (Ideal—SISimﬁ) is as follows: Given n
and m polynomials g1,...,gm chosen uniformly and independently in Z,[z]/f,
find e, ... en € Z[x] not all zero such that ) ., eigi =0 in Zq[x]/f and |le|| <
B, where e is the vector obtained by concatenating the coefficients of the e;’s.

The above problems can be interpreted as lattice problems. If G € Z;"*",
then the set Gt = {b € Z™ | bTG = 0mod ¢} is an m-dimensional lat-
tice and solving SIS corresponds to finding a short non-zero vector in it. Sim-
ilarly, Ideal-SIS consists in finding a small non-zero element in the Z[z]/f-
module M+ (g) = {b € (Z[z]/f)™ | (b,g) =0 mod ¢}, where g = (g1,...,9m)- It
can be seen as a lattice problem by applying the rot; operator. Note that the m
of SIS is n times larger than the m of Ideal-SIS. Lyubashevsky and Miccian-
cio [17] reduced Ideal-SVP to Ideal-SIS. The approximation factors in [17] are
given in terms of the infinity norm. For our purposes, it is more natural to use
the Euclidean norm. To avoid losing a +/n factor by simply applying the norm
equivalence formula, we modify the proof of [17]. We also adapt it to handle the
case where the Ideal-SIS solver has a subexponentially small success probability,
at the cost of an additional factor of O(y/n) in the SVP approximation factor.

Theorem 1. Suppose that f is irreducible over Q. Let m = Poly(n) and ¢ =
fZ(EF(f, 3)Bm?3n) be integers. A polynomial-time (resp. subezponential-time) al-
gorithm solving Ideal—SISﬁ)m’B with probability 1/Poly(n) (resp. 2-°)) can be
used to solve v-Ideal-SVP in polynomial-time (resp. subexponential-time) with
v = O(EF?(f,2)8mn'/?) (resp. v = O(EF*(f,2)8mn)).

The problem LWE is dual to SIS in the sense that if G € Z7"*" is the SIS-

matrix, then LWE involves the dual of the lattice G. We have G- = SL(@)
where L(G) = {b€Z™ | 3s € Z;;,Gs = bmod q}.

Definition 2. The Learning With Errors problem with parameters q,m and a
distribution x onR/[0,q) (LWEq . ) is as follows: Given n, a matriz G € Z;**"
sampled uniformly at random and Gs +e € (R/[0,q))", where s € Zj is chosen
uniformly at random and the coordinates of e € (R/[0,q))™ are independently
sampled from x, find s. The Ideal Learning With Errors problem with parame-
ters g, m, a distribution x on R/[0,q) and f (Ideal—LWEilwq;X) s the same as
above, except that G =rots(g) with g chosen uniformly in (Z,[z]/f)™.

We will use the following results on the LWE and Ideal-LWE lattices.

Lemma 4. Let n,m and q be integers with q prime, m > 5nlogq and n > 10.
Then for all but a fraction < q~" of the G’s in Z;**", we have \Y°(L(G)) > q/4
and M\ (L(G)) > 0.07/mgq.



Lemma 5. Let n,m and q be integers with ¢ = 3 mod 4 prime and m > 41logq
and n = 28 > 32. Then for all but a fraction < q=" of the g’s in (Z,[x]/f)™,
we have \3°(L(rots(g))) > q/4 and Xi(L(rots(g))) > 0.017/mng.

3 Hiding a Trapdoor in Ideal-SIS

In this section we show how to hide a trapdoor in the problem Ideal-SIS. Aj-
tai [2] showed how to simultaneously generate a (SIS) matrix A € Zi**" and
a (trapdoor) basis S = (s1,...,8,) € Z™*™ of the lattice A- = {b € Z™ :
bT A = 0 mod ¢}, with the following properties:

1. The distribution of A is close to the uniform distribution over Z;”X".
2. The basis vectors sq,..., S,, are short.

Recently, Alwen and Peikert [5] improved Ajtai’s construction in the sense that
the created basis has shorter vectors: ||S|| = O(nlogq) with m = 2(nlogq)
and overwhelming probability and ||S| = O(v/nlogq) with m = 2(nlog?q).
We modify both constructions to obtain a trapdoor generation algorithm for the
problem Ideal-SIS, with a resulting basis whose norm is as small as the one of [5].
Before describing the construction, we notice that the construction of [5]
relies on the Hermite Normal Form (HNF), but that here there is no Hermite
Normal Form for the rings under scope. We circumvent this issue by showing
that except in negligibly rare cases we may use a matrix which is HNF-like.

Theorem 2. There exists a probabilistic polynomial time algorithm with the fol-
lowing properties. It takes as inputs n,o,r, an odd prime q, and integers my, mo.
It also takes as input a degree n polynomial f € Z[x] and random polynomials
a1 € (Zglx]/f)™. We let f = [],, fi be the factorization of f over Z,. We

eg f; 1/2
let k = [1+1logq], A= (Higt (1 + (%)d gf‘) — 1) and m = my +ma. The
algorithm succeeds with probability > 1 — p over a1, where p = (1 — [[,.,(1 -

q— 48 /1))7. When it does, it returns a = (Zl) € (Zy[z]/f)™ and a basis S of
2
the lattice rotf(a)t, such that:

1. The distance to uniformity of a is at most p + mo A.
2. The quality of S is as follows:

— If my > max{o, k,7} and my > k, then ||S| < EF(f,2) - v2rr!/?n3/2,
Additionally, ||S|| < EF(f,2)v/3axr-n with probability 1—2~a+0Oognmar)
for a super-logarithmic function a = a(n) = w(logn).

— If my > max{o, k,7} and mg > kmq, then ||S|| < EF(f,2)(4v/nr + 3).

3. In particular, for f = 22" + 1 with k > 2 and a prime q with ¢ = 3 mod 8,
the following holds:

— We can set 0 = 1 and r = [1+logsq|. Then, the error probability is
p=q %™ and the parameter A is 2~

— If mi,mae > K, then ||S|| < V6akr - n = O(v/anlogq) with probability
1 —2-atOlognmar) for o super-logarithmic function a = a(n) = w(logn).



— If my > K and ma > wmy, then ||S|| < v2(4y/nr + 3) = O(v/nlogq).

In the rest of this section, we only describe the analog of the second con-
struction of Alwen and Peikert, i.e., the case mo > xkm1, due to lack of space.

3.1 A trapdoor for Ideal-SIS

We now construct the trapdoor for Ideal-SIS. More precisely, we want to simul-
taneously construct a uniform @ € R™ with R = Z,[z]/f, and a small basis S
of the lattice A* where A = roty(a). For this, it suffices to find a basis of the
module M+ (a) = {y € RY | (y,a) = 0 mod ¢}, with Ry = Z[z]/f.

The principle of the design. In the following, for two matrices X and Y,
[X|Y] denotes the concatenation of the columns of X followed by YV and [X;Y]
denotes the concatenation of the rows of X and the rows of Y.

We mainly follow the Alwen-Peikert construction. Let m; > o,r. Let us
assume that we generate random polynomials A; = [aq,... ,aml]T e Rmxl,
We will construct a random matrix A, € R™2>*! with a structured matrix S €
Ry™™ such that SA = 0 and S is a basis of the module M~ (a), where A =
[A1; Ag]. We first construct an HNF-like basis F' of the module M+ (a) with A.
Next, we construct a unimodular matrix @ such that S = QF is a short basis of
the module. More precisely, S has the following form:

_[VP]_[~LmP] [H O
“|pB|T| 0 B| |UIL,l|
—_——— ——

Q F

Note that, by setting B lower triangular with diagonal coefficients equal to 1,
the matrix @ is unimodular.
In this design principle, we want F'A = 0. Hence, we should set

HA1 =0 and A2 = —UAl.

Notice that, in order to prove that F is a basis of A+, it suffices to show that
H is a basis of Aj. The first equation is satisfied by setting H be an HNF-
like matrix (see below). By setting U = G + R, with G to be defined later on
and R a random matrix, we have that A, is almost uniformly random in R by
Micciancio’s regularity lemma, (Lemma 6). More precisely, the i-th row of R is
chosen from ({—1,0,1}™)" x ({0}™)™~".

Lemma 6 (Adapted from [20, Th. 4.2]). Let F be a finite field and f €
Flx] be monic and of degree n > 0. Let R be the ring F[z]/f. Let D C F
and r > 0. For ay,...,a, € R, we denote by H(aq,...,a,) the random vari-
able >, bia; € R where the b;’s are degree < n polynomials with coeffi-
cients chosen independently and uniformly in D. If Uy,...,U, are indepen-
dent uniform random variables in R, then the statistical distance to uniformity



of (Uh,...,U., H{Uy,...,U,)) is below:

1 |F| deg f;
— 1 -1
2 H( +(|D|r) |

where f = [1,., fi is the factorization of f over F.

We show below how to choose P and G such that PG = H — I,,,,. With this
relation, the design principle form of S therefore implies that V = —H + P(G +
R)= PR —1I,,,, and D = B(G 4+ R). Our constructions for P, G, B also ensure
that P, B and BG have ‘small’ entries so that S has ‘small’ entries.

A construction of H without HNF. We start with how to construct H for
Ay = [a1,...,am,|T € R™XL Since m; > max{o,r,r}, we have a;» € R*
for some index ¢* with probability at least 1 — p, where R* denotes the set of
invertible elements of R. For now, we set i* = 1 for simplicity. Using this a;-,
we can construct an HNF-like matrix H: the first row is ge; and the i-th row is
hie1 +e; for i =2,...,my, where e; is a row vector in Ry" such that the i-the
element is 1 and others are 0, and h; = —a, - a; " mod ¢ such that h; € [0,q)".
Let h; denote the i-th row of H. By the definition of H, H- A; = 0 mod ¢. Thus,
each row vector h; is in M1 (a;), where a; = A;. It is obvious that hi, ..., R,
are linearly independent over Rq. Hence, we need to only show that H is indeed
the basis of M+ (a;), but this is a routine work.

Next, we consider the case where i* # 1. In this case, we swap rows 1 and *
of A; so that a1 € R*, and call it A). Applying the method above, we get a
basis H' of A+(A}). By swapping columns 1 and i* and rows 1 and i* of H’,
we get a basis H of A+(A;). In the following, we denote by i* the index i such
that a; € R* and h;; = q. Note that our strategy fails if there is no index 4 such
that a; € R*: this is not an issue, as this occurs only with small probability.

Preliminaries of the construction. Hereafter, we set W = BG. We often use
the matrix T, = (t;;) € Rg™", where t;; = 1, t;31,; = —2, and all other ¢ ;’s
are 0. Notice that the i-th row of 771 is (207,202 ...,1,0,...,0) € R5.

3.2 An analogue to the second Alwen-Peikert construction

The idea of the second construction in [5] is to have G contain the rows of H—1,,,, .
This helps decrease the norms of the rows of P and V. To do so, we define
B = diag(Ts, - .., T, Imy—m,s)- Note that B=1 = diag(T=L, ..., T=%, Iy —mye)-

Let h’ denote the j-th row of H — I,,. Let W = [Wi;Wa;...;Wy,,;0],
where Wj = [wjﬁ; e ij] S Rgxml
> 271w and the components of all w; ;’s are polynomials with coefficients
in {0,1}. By this construction, T,;' - W contains h/; in the last row. Then,
G = B! -W contains rows h’; for j = 1,...,m;. The matrix P = [p1;...;Pm, ]
picks all rows hj,..., h;, in G by setting p; = e.; € Ry™.

m

. We compute the wj ;’s such that h; =



The norm of S is max{||S1|[,||S2|}, where S; = [V|P] and Sy = [D|B]. For
simplicity, we only consider the case where f = 2™ + 1. In the general case, the
bound on ||.S]|| involves an extra EF(f,2) factor.

We have that || BG||> = |[W|* < n, since the entries of h/ are all 0 except
one which is either h;- ; or ¢ — 1. Hence, we obtain that

15201 < | DII* + 1B]|* < (3v/nr + v/n)® +5 < (4V/nr + 3)2.
It is obvious that || P|| < 1. Additionally, we have that | PR||> < nr. Therefore:
[S1I* < IVI*+ PP < (Var +1)° +1 < (Vir +2)%,

which completes the proof of Theorem 2. a

4 From LWE to SIS

We show that any efficient algorithm solving LWE with some non-negligible
probability may be used by a quantum machine to efficiently solve SIS with
non-negligible probability. A crucial property of the reduction is that the matrix
underlying the SIS and LWE instances is preserved. This allows the reduction
to remain valid while working on Ideal-SIS and Ideal-LWE.

Theorem 3. Let g,m,n be integers, and o € (0,1) with n > 32, Poly(n) >
m > b5nlogq and a < mm(lo\/m, 0.006 ). Suppose that there exists an algo

rithm that solves LWE,, 4.y, in time T and with probability ¢ > 4mexp (— 1%z ).

Then there exists a quantum algorithm that solves SIS | g in time Poly(T,n)
IS

and with probability g—z — O(e%) — 279, The result still holds when replac-
ing LWE by Ideal-LWE/ and SIS by Ideal-SIS’, for f = z"+1 with n = 2% > 32,
m > 41logq and ¢ = 3 mod 8.

When a = O(1/4/n), the reduction applies even to a subexponential al-
gorithm for LWE (with success probability ¢ = 27°("), transforming it into a
subexponential quantum algorithm for SIS (with success probability ¢ = 27°(™).
The reduction works also for larger & = O(1/+/log n), but in this case only applies
to polynomial algorithms for LWE (with success probability e = 2(1/Poly(n))).

The reduction is made of two components. First, we argue that an algorithm
solving LWE provides an algorithm that solves a certain bounded distance de-
coding problem, where the error vector is normally distributed. In a second step,
we show that Regev’s quantum algorithm [32, Lemma 3.14] can use such an al-
gorithm to construct small solutions to SIS.

4.1 From LWE to BDD

An algorithm solving LWE allows us to solve, for certain lattices, a variation of
the Bounded Distance Decoding problem. In that variation of BDD, the error
vector is sampled according to a specified distribution.



Definition 3. The problem BDD,, with parameter distribution x(-) is as follows:
Given an n-dimensional lattice L and a vector t = b+ e where b € L and e is
distributed according to x(n), the goal is to find b. We say that a randomized
algorithm A solves BDD,, for a lattice L with success probability > ¢ if, for
every b € L, on input t = b+ e, algorithm A returns b with probability > ¢ over
the choice of e and the randomness of A.

For technical reasons, our reduction will require a randomized BDD,, algo-
rithm whose behaviour is independent of the solution vector b, even when the
error vector is fixed. This is made precise below.

Definition 4. A randomized algorithm A solving BDD,, for lattice L is said
to be strongly solution-independent (SSI) if, for every fixed error vector e, the
probability (over the randomness of A) that, given input t = b+ e withb € L,
algorithm A returns b is independent of b.

We show that if we have an algorithm that solves LWE,, ;.7 , then we
can construct an algorithm solving BDD,,, for some lattices. Moreover, the
constructed BDD algorithm is SSI.

Lemma 7. Let q,m,n be integers and o € (0,1), with m,logq = Poly(n).
Suppose that there exists an algorithm A that solves LWE,, 4.p,, in time T and
with probability € > 4m exp (—ﬁ). Then there exists S C Zg**" of proportion >
€/2 and an SSI algorithm A’ such that if G € S, algorithm A’ solves BDD
for L(G) in time T + Poly(n) and with probability > /4.

Vag

Proof. If G € Z;"*" and s € Z are sampled uniformly and if the coordinates
of e are sampled according to W,q, then A finds s with probability > € over the
choices of G, s and e and a string w of internal random bits. This implies that
there exists a subset S of the G’s of proportion > £/2 such that for any G € S,
algorithm A succeeds with probability > /2 over the choices of s, e and w. For
any G € S, we have Prg . ,|A(Gs +e,w) = s] > ¢/2.

On input t = b + e, algorithm A" works as follows: it samples s uniformly
in Z7; it computes t' = t + As, which is of the form t' = Gs’ + ¢k + e,
where k € Z™; it calls A on ¢’ mod ¢ and finds s’ (with probability > £/2);
it then computes € = t' — Gs’ mod g and returns ¢ — e’. Suppose that A suc-
ceeds, i.e., we have s = s’. Then €’ = e mod ¢. Using the standard tail bound
on the continuous Gaussian and the lower bound on ¢ we obtain that e has a
component of magnitude > ¢/2 with probability < mexp(—m/(2a)?) < ¢/4. The
algorithm thus succeeds with probability > ¢/2 — ¢/4 = /4. O

We now show that an algorithm solving BDD,,, can be used to solve a
quantized version of it. This quantization is required for the quantum part of
our reduction. The intuition behind the proof is that the discretization grid is
so fine (the parameter R can be chosen extremely large) that at the level of the
grid the distribution vs looks constant.



Lemma 8. Let s > 0 and L be an n-dimensional. Suppose that there exists an
SSI algorithm A that solves BDD,,_ for L in time T and with probability €. Then
there exists an R, whose bit-length is polynomial in T, n,|logs| and the bit-size
of the given basis of L, and an SSI algorithm A’ that solves BDDp, . within

a time polynomial in log R and with probability > ¢ — 2~ ("),

At this point, we have an R of bit-length polynomial in 7', n, | log «| and an SSI
algorithm B with run-time polynomial in log R that solves BDDp, ., .., for
any GG in asubset S C Zg**" of proportion > £/2, with probability > £/4—27%M)
over the random choices of e and the internal randomness w. In the following we
assume that on input t = b+ e, algorithm B outputs e when it succeeds, rather
than b. We implement B quantumly as follows: the quantum algorithm By maps
the state |e) |b+ e) |w) to the state |e — B(b+ e, w)) |b+ e) |w).

4.2 A new interpretation of Regev’s quantum reduction

We first recall Regev’s quantum reduction [32, Lemma 3.14]. It uses a random-
ized BDD oracle B*° that finds the closest vector in a given lattice L to a given
target vector, as long as the target is within a prescribed distance d < # of L
(as above, we assume that 5*¢ returns the error vector). It returns a sample from

the distribution D+ .= . We implement oracle B¢ as a quantum oracle B¢ as
7 fd
above. We assume B¢ accepts random inputs of length ¢.

1. Set R to be a large constant and build a quantum state which
is within ¢ distance 2792 of the normalized state corresponding
to Zwe{o,m Zme%,|\m\|<d P4 (z) |z) [x mod L) |w).

2. Apply the BDD oracle B{¢ to the above state to remove the entanglement

and obtain a state which is within ¢5 distance 2% of the normalized state
corresponding t0 3 ¢ L g <a P () |0) |& mod L) |w).
3. Apply the quantum Fourier transform over Z% to the second register to

obtain a state that is within ¢5 distance 2=?(™ of the normalized state
corresponding to > 7 <2 pa(x) |z mod (R - L)>
’ d d

4. Measure the latter to obtain a vector b mod R-L. Using Babai’s algorithm [6],
recover b and output it. Its distribution is within statistical distance 2~(")

of DL o

' V2d

We now replace the perfect oracle B¢ by an imperfect one.

Lemma 9. Suppose we are given an n-dimensional lattice L, parameters R >

22"\ (L) and s < 21(;, and an SSI algorithm B that solves BDDDL s for L with

run-time T' and success probability €. Then there exists a quantum ‘algorithm R
which outputs a vector b € L whose distribution is within distance 1 — ¢%/2 +
O(e*) + 279 of DA . It finishes in time polynomial in T + log R.



Proof. The quantum algorithm R is Regev’s algorithm above with parame-

ter d = V2ns < ’\léL), where Bg© is replaced by the quantum implementa-

tion B of B. We just saw that if the BDDp, , s oracle was succeeding with

probability 1—27(")_ then the output vector b would follow a distribution whose
statistical distance to D3 L would be 272(") To work around the requirement
that the oracle succeeds with overwhelming probability, we use the notion of
trace distance between two quantum states, which is an adaptation of the statis-
tical distance (see [25, Ch. 9]). The trace distance between two (pure) quantum
states |t1) and |t2) is 6(|t1) , |t2)) = /1 — | (t1|t2) |?. Its most important property
is that for any generalized measurement (POVM), if Dy (resp. D>) is the result-
ing probability distribution when starting from |¢1) (resp. |t2)) then A(Dy, Dy) <
0(|]t1) , |t2)). Let |t1) denote the state at the end of Step 2 of Regev’s algorithm
when we use B¢, and let |t2) denote the state that we obtain at the end of
Step 2 when we use B. We upper bound 6(|t1), |t2)) as follows.

Since B*¢(x mod L,w) = « for ||| < d, we have that |t;) is within /5
distance (and hence trace distance) 2~ (") of the normalized state

ity =273 > \/D} ) (@)]0) & mod L) jw),

we{0,1} ze L

where DdL /R.s denotes the normalized distribution obtained by truncating Dy /g,
to vectors of norm < d. On the other hand, for the imperfect oracle B, we have
that |t2) is within trace distance 27“(™) of the normalized state

) =27 37 3 \/DY ) (@) e — Blw wod L,w)) [z mod L) fw)
we{0,1}¢ ze L

Let Sz = {(z,w) € £ x {0,1}* | |o| < dand B(x mod L,w) = =x}.
Notice that, if (z,w) € Sp, the states | — B(z mod L,w)) |z mod L) |w)
and |0) |’ mod L) |w’) are orthogonal for all (z’,w’). Furthermore, if (z,w) €
Sg, the states |0)|x mod L)|w) and |0) |2’ mod L) |w’) are orthogonal for
all (z/,w') # (x,w) with ||&’| < d, because the mapping x — x mod
L is 1-1 over & of norm < d < A (L)/2. Tt follows that |(t][th)]| =
> (zw)eSs Q*ED%/Rvs(:c). Hence, |(tj|t5)| is equal to the probability p
that B(x mod L,w) = z, over the choices of  from the distribution D% IR

and w uniformly random in {0,1}¢. By Lemma 2, using the fact that d > \/ns,
we have p > p— 27" where p is the corresponding probability when  is sam-
pled from Dy g . Finally, we have p= > Dp /g  (x) Pr,[B(z mod L, w) = x.
By the strong solution-independence of B, we have Pr,,[B(x mod L,w) = z] =
Pr,[B(b+ x,w) = x| for any fixed b € L. Therefore, p is the success probabil-
ity of B in solving BDDp, . , so p > ¢ by assumption. Overall, we conclude

that 5(|t1), [t2)) < V1 —e2 4+ 2-2(") and hence the output of R is within sta-
tistical distance 1 —£2/2 + O(e*) + 277 of D; . , as claimed. O
’2s

To prove Theorem 3, we apply Lemma 9 to the lattices L(G) for G € S, with
A (L(G))

algorithm 5. For that, we need to ensure that the hypothesis ag < N



satisfied. From Lemma 4 (resp. Lemma, 5 in the case of Ideal-LWE), we know that
with probability 1—2~(") over the choice of G in Zy ", we have A\°(L(G)) > ©

and A\ (L(G)) > 0.074/mgq. For such ‘good’ G’s, the hypothesis ag < A;(Li\/é%)) is
satisfied, since o < 0.006. The set S’ of the G’s in S for which that condition is

satisfied represents a proportion > £/2 -2~ (") of Zg**™. Suppose now that G €

—

S’. Lemma 9 shows that we can find a vector s € G+ = ¢L(G) that follows a
distribution whose distance to Dg. 1 is A=1— g—; +O(e*) + 27 Thanks
to Lemmas 1 and 2 (since G € S and o < 1/(104/In(10m)), the hypothesis
of Lemma 1 is satisfied), we have that with probability > 1 — 22" — A =

g—; — O(e*) — 279" the returned s is a non-zero vector of G whose norm
is < % Multiplying by the probability > £/2 — 27?(") that G € S’ gives the
claimed success probability and completes the proof of Theorem 4. O

5 Cryptographic Applications

We now use the results of Sections 3 and 4 to construct efficient cryptographic
primitives based on ideal lattices. This includes the first provably secure lattice-
based public-key encryption scheme with asymptotically optimal encryption and
decryption computation costs of O(1) bit operations per message bit.

5.1 Efficient public-key encryption scheme

Our scheme is constructed in two steps. Firstly, we use the LWE mapping
(s,e) = G- s+ emod g as an injective trapdoor one-way function, with the
trapdoor being the full-dimensional set of vectors in G- from Section 3, and the
one-wayness being as hard as Ideal-SIS (and hence Ideal-SVP) by Theorem 3.
This is an efficient ideal lattice analogue of some trapdoor functions presented
in [9, 28] for arbitrary lattices. Secondly, we apply the Goldreich-Levin hardcore
function based on Toeplitz matrices [10, Sec. 2.5] to our trapdoor function, and
XOR the message with the hardcore bits to obtain a semantically secure encryp-
tion. To obtain the O(1) amortized bit complexity per message bit, we use §2(n)
hardcore bits, which induces a subexponential loss in the security reduction.

Our trapdoor function family Id-Trap is defined in Figure 1. For security
parameter n = 2* we fix f(z) = 2" + 1 and ¢ = Poly(n) a prime satisfying q =
3 mod 8. From Lemma 3, it follows that f splits modulo ¢ into two irreducible
factors of degree n/2. Weset o = 1,7 = 1+logg ¢ = O(1) and m = ([log ¢]+1)o+
r = O(1). We define R = Zg[x]/f. The following lemma ensures the correctness
of the scheme (this is essentially identical to [28, Sec. 4.1]) and asserts that the
evaluation and inversion functions can be implemented efficiently.

Lemma 10. Let ¢ > 2/mnL and o = o(1/(L+\/logn)). Then for any s € R
and for e sampled from W ., the inversion algorithm recovers (s, e) with proba-
bility 1 —n=“W) over the choice of e. Furthermore, the evaluation and inversion
algorithms for hg can be implemented with run-time O(n).



— Generating a function with trapdoor. Run the algorithm from Theorem 2, us-
ing f = 2" 4+ 1,n,q,r,0,m as inputs. Suppose it succeeds. It returns g € (Zq[z]/f)™
(function index) and a trapdoor full-rank set S of linearly independent vectors
in rot(g)t C ZI"™" with ||S|| < v2(4y/nr 4 3) =: L (we have L = O(y/n)).

— Function evaluation. Given function index g, we define the trapdoor function
hg : Zg X Zg"™ — Zg'" as follows. On input s uniformly random in Z; and e € Zg*"
sampled from ¥, (defined as the rounding of W,, to the closest integer vector), we
compute and return: ¢ = hy(s,e) :=rots(g) s+ e mod q.

— Function inversion. Given ¢ = hy (s, ) and trapdoor S, compute d = S” - ¢ mod ¢
and e’ = S™7 -d (in Q). Compute u = c—e’ mod g and s’ = (rot(g1)) " -u1 mod g,
where u1 consists of the first n coordinates of w. Return (s’,e’).

Fig. 1. The trapdoor function family Id-Trap.

The one-wayness of Id-Trap is equivalent to the hardness of LWE, 7 .
Furthermore, an instance of LWE,,, 4.z, can be efficiently converted by rounding
to an instance of LWE,, & . This proves Lemma 11.

Lemma 11. Any attacker against the one-wayness of |d-Trap (with parame-
ters m, «, q) with run-time T and success probability € provides an algorithm

for LWE,,, 4.0, with run-time T' and success probability c.

By combining our trapdoor function with the GL hardcore function [10,
Sec. 2.5] we get the encryption scheme of Figure 2.

— Key generation. For security parameter n, run the generation algorithm of Id-Trap
to get an hg and a trapdoor S. We can view the first component of the domain of hg
as a subset of Z.! for £; = O(nlogq) = O(n). Generate 7 € Z5 "M uniformly and
define the Toeplitz matrix Mgy € Z5™ ™% (allowing fast multiplication [26]) whose
ith row is [ry,...,7¢;+i—1]- The public key is (g, r) and the secret key is S.

— Encryption. Given {j/-bit message M with ¢y = n/logn = f)(n) and public
key (g,r), sample (s,e) with s € Z7 uniform and e sampled from ¥, and evaluate
C1 = hg(s,e). Compute Co = M & (Mcr - s), where the product Mgy - s is computed
over Zs, and s is viewed as a string over Z'. Return the ciphertext (Cy,C5).

— Decryption. Given ciphertext (C1,C2) and secret key (S, r), invert C1 to compute
(s, e) such that hg(s,e) = Ci, and return M = C> & (Mcy - 8).

Fig. 2. The semantically secure encryption scheme Id-Enc.

Theorem 4. Any IND-CPA attacker against |d-Enc with run-time T and suc-
cess probability 1/2 + € provides an algorithm for Ideal-LWE/ with run-

m,q;%aq
time O(23vn3c=3 . T) and success probability 2(2~n=1 . ¢).

Proof. The attacker can be converted to a GL hardcore function distinguisher
that, given C1 = hg(s,e), Mgy, and £y bit string z, for s sampled uniformly
in Zy, e sampled from Voq, and Mgy, constructed as in the key generation
procedure, distinguishes whether z is uniformly random (independent of s and e)
or z = Mgy, -s. It has run-time 7" and advantage ¢. The result follows by applying
Lemma 2.5.8, Proposition 2.5.7 and Proposition 2.5.3 in [10]. Note that we do
not need to give the vector e additionally to s as input to the GL function, as e

is uniquely determined once s is given (with overwhelming probability). O



By using Lemma 10 and Theorems 1, 3 and 4, we get our main result.

Corollary 1. Any IND-CPA attacker against encryption scheme ld-Enc with
run-time 2°") and success probability 1/ 2+427°(") provides a quantum algorithm
for O(n?)-1deal-SVP with f(z) = 2" + 1 and n = 2¥, with run-time 2° and
overwhelming success probability. Furthermore, the scheme Id-Enc_encrypts and
decrypts 2(n) bits within O(n) bit operations, and its keys have O(n) bits.

5.2 Further applications

Our results have several other applications, adapting various known construc-
tions for unstructured lattices to ideal lattices, as summarised below.
CCAZ2-secure encryption. Peikert [28] derived a CCA2-secure encryption
scheme from the non-structured variant of the trapdoor function family Id-Trap
from Figure 1, using the framework of [31, 34] for building a CCA2-secure scheme
from a collection of injective trapdoor functions that is secure under correlated
product (i.e., one-wayness is preserved if several functions are evaluated on the
same input). The approach of [28] can be applied to Id-Trap, using the equality
between Ideal-LWEj,,, and the product of k instances of Ideal-LWE,,,, multiple
hardcore bits as in Id-Enc, and instantiating the required strongly unforgeable
signature with the Ideal-SVP-based scheme of [18]. By choosing & = O(n) (the
bit-length of the verification key in [18]) and a = O(n~3/2), we obtain a CCA2-
secure scheme that encrypts £2(n) bits within O(n?) bit operations and whose
security relies on the exponential quantum hardness of O(n*)-Ideal-SVP.
Trapdoor signatures. Gentry et al. [9] give a construction of a trapdoor
signature (in the random oracle model) from any family of collision-resistant
preimage sampleable functions (PSFs). They show how to sample preimages
of fg(x) = TG, where G € Zy*", using a full-dimensional set of short vec-
tors in G+. By applying this to G = rot¢(g) and using the trapdoor genera-
tion algorithm from Section 3, we obtain a PSF whose collision resistance relies
on Ideal-SIS, and hence Ideal-SVP, and thus a structured variant of the trapdoor
signature scheme of [9], with O(n) verification time and signature length.
ID-based identification. From lattice-based signatures, we derive ID-based
identification (IBI) and ID-based signature (IBS). Applying the standard strat-
egy, we construct lattice-based IBI schemes as follows: The master generates a
key pair of a lattice-based signature scheme, say (G, S); Each user obtains from
the master a short vector e such that e” G = H (id), where H is a random oracle;
The prover proves to the verifier that he/she has a short vector e through the
Micciancio-Vadhan protocol [24]. This combination yields concurrently secure
IBI schemes based on O(n2)-SVP and O(n?)-Ideal-SVP in the random oracle
model. As the MV protocol is witness indistinguishable, we can use the Fiat-
Shamir heuristic [8] and derive lattice-based IBS schemes.

ID-based encryption (IBE). It is shown in [9] that the unstructured variant
of the above trapdoor signature can be used as the identity key extraction for
an IBE scheme. This requires a ‘dual’ version of Id-Enc, in which the public key



is of the form (g,u), where w = H(id) is the hashed identity, and the secret
key is the signature of id, i.e., a short preimage of u under fy(z) = zTrots(g)-
We construct the ‘dual’ encryption as (C1,C2) where C1 = hg(s,e) and Cy =
Ty(rot¢(u)-s)+M, where M € Zfi contains the message and T (rot ¢ (u)-s) denotes
the first ¢ coordinates of rots(u) - s mod ¢. By adapting the results of [13], we
show that T;(rot;(u)-s) is an exponentially-secure generic hardcore function for
uniform v € Z7, when ¢ = o(n). This allows us to prove the IND-CPA security
of the resulting IBE scheme based on the hardness of Ideal-SVP.
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Abstract. NTRUEncrypt, proposed in 1996 by Hoffstein, Pipher and Sil-
verman, is the fastest known lattice-based encryption scheme. Its mod-
erate key-sizes, excellent asymptotic performance and conjectured resis-
tance to quantum computers could make it a desirable alternative to fac-
torisation and discrete-log based encryption schemes. However, since its
introduction, doubts have regularly arisen on its security. In the present
work, we show how to modify NTRUEncrypt to make it provably secure in
the standard model, under the assumed quantum hardness of standard
worst-case lattice problems, restricted to a family of lattices related to
some cyclotomic fields. Our main contribution is to show that if the se-
cret key polynomials are selected by rejection from discrete Gaussians,
then the public key, which is their ratio, is statistically indistinguishable
from uniform over its domain. The security then follows from the already
proven hardness of the R-LWE problem.

Keywords. Lattice-based cryptography, NTRU, provable security.

1 Introduction

NTRUEncrypt, devised by Hoffstein, Pipher and Silverman, was first presented
at the Crypto’96 rump session [14]. Although its description relies on arithmetic
over the polynomial ring Z,[z]/(z" — 1) for n prime and ¢ a small integer, it
was quickly observed that breaking it could be expressed as a problem over
Euclidean lattices [6]. At the ANTS’98 conference, the NTRU authors gave an
improved presentation including a thorough assessment of its practical security
against lattice attacks [15]. We refer to [13] for an up-to-date account on the
past 15 years of security and performance analyses. Nowadays, NTRUEncrypt
is generally considered as a reasonable alternative to the encryption schemes
based on integer factorisation and discrete logarithm over finite fields and elliptic
curves, as testified by its inclusion in the IEEE P1363 standard [18]. It is also
often considered as the most viable post-quantum public-key encryption (see,

e.g., [31]).



In parallel to a rising number of attacks and practical improvements on
NTRUEncrypt the (mainly) theoretical field of provably secure lattice-based cryp-
tography has steadily been developed. It originated in 1996 with Ajtai’s ac-
claimed worst-case to average-case reduction [2], leading to a collision-resistant
hash function that is as hard to break as solving several worst-case problems de-
fined over lattices. Ajtai’s average-case problem is now referred to as the Small
Integer Solution problem (SIS). Another major breakthrough in this field was the
introduction in 2005 of the Learning with Errors problem (LWE) by Regev [32]:
LWE is both hard on the average (worst-case lattice problems quantumly reduce
to it), and sufficiently flexible to allow for the design of cryptographic functions.
In the last few years, many cryptographic schemes have been introduced that are
provably as secure as LWE and SIS are hard (and thus provably secure, assuming
the worst-case hardness of lattice problems). These include CPA and CCA se-
cure encryption schemes, identity-based encryption schemes, digital signatures,
etc (see [32,29,11,5, 1] among others, and the surveys [25, 33]).

The main drawback of cryptography based on LWE and SIS is its limited ef-
ficiency. A key typically contains a random matrix defined over Z, for a small g,
whose dimension is linear in the security parameter; consequently, the space and
time requirements seem bound to be at least quadratic with respect to the secu-
rity parameter. In 2002, Micciancio [23] succeeded in restricting SIS to structured
matrices while preserving a worst-case to average-case reduction. The worst-case
problem is a restriction of a standard lattice problem to the specific family of
cyclic lattices. The structure of Micciancio’s matrices allows for an interpretation
in terms of arithmetic in the ring Z,[z]/(z"™ — 1), where n is the dimension of the
worst-case lattices and ¢ is a small prime. Micciancio’s construction leads to a
family of pre-image resistant hash functions, with complexity quasi-linear in n.
Peikert, Rosen, Lyubashevsky and Micciancio [30,19] later suggested to change
the ring to Z,[z]/® with a @ that is irreducible over the rationals, sparse, and
with small coefficients (e.g., ® = 2™ + 1 for n a power of 2). The resulting hash
function was proven collision-resistant under the assumed hardness of the modi-
fied average-case problem, called Ideal-SIS. The latter was itself proven at least as
hard as the restrictions of standard worst-case lattice problems to a specific class
of lattices (called ideal lattices). In 2009, Stehlé et al. [35] introduced a struc-
tured variant of LWE, which they proved as hard as Ideal-SIS (under a quantum
reduction), and allowed for the design of an asymptotically efficient CPA-secure
encryption scheme. In an independent concurrent work, Lyubashevsky et al. [21]
proposed a ring variant of LWE, called R-LWE, whose great flexibility allows for
more natural (and efficient) cryptographic constructions.

OUR RESULTS. The high efficiency and industrial standardization of NTRUEncrypt
strongly motivate a theoretically founded study of its security. Indeed, in the ab-
sence of such a study so far, its security has remained in doubt over the last 15
years since its publication. In this paper, we address this problem. We prove that
a mild modification of NTRUEncrypt is CPA-secure, assuming the quantum hard-
ness of standard worst-case problems over ideal lattices (for ® = 2" +1 with n a
power of 2). The NTRUEncrypt modifications are summarized below. We stress



that our main goal in this paper is to provide a firm theoretical grounding for
the security of NTRUEncrypt in the asymptotic sense. We leave to future work
the consideration of practical issues, in particular the selection of concrete pa-
rameters for given security levels. As for other lattice-based schemes, the latter
requires evaluation of security against practical lattice reduction attacks, which
is out of the scope of the current work.

Our main contribution is the modification and analysis of the key generation
algorithm. The secret key consists of two sparse polynomials of degrees < n and
coefficients of magnitude at most ¢, for a small constant ¢ (typically, ¢ € {2,3}).
The public key is their quotient in Zg[z]/(z™ — 1) (the denominator is resampled
if it is not invertible). A simple information-theoretic argument shows that the
public key cannot be uniformly distributed in the whole ring. It may be possible
to extend the results of [4] to show that it is “well-spread” in the ring, but it
still would not suffice for showing its cryptographic pseudorandomness, which
seems necessary for exploiting the established hardness of R-LWE. To achieve a
public key distribution statistically close to uniform, we sample the secret key
polynomials according to a discrete Gaussian with standard deviation ~ ¢*/2. An
essential ingredient, which could be of independent interest, is a new regularity
result for the ring Ry := Zg[z]/(z™ + 1) when the polynomial ™ + 1 (with n
a power of 2) has n factors modulo prime g¢: given ay,...,a, uniform in R,
we would like ZKm s;a; to be within exponentially small statistical distance to
uniformity, with small random s;’s and small m. Note that a similar regularity
bound can be obtained with an FFT-based technique recently developed by
Lyubashevsky, Peikert and Regev [22]. An additional difficulty in the public-key
‘uniformity’ proof, which we handle via an inclusion-exclusion argument, is that
we need the s;’s to be invertible in R, (the denominator of the public key is one
such s;): we thus sample according to a discrete Gaussian, and reject the sample
if it is not invertible.

Brief comparison of NTRUEncrypt and its provably secure variant

Let Ryrru be the ring Z[z]/(2™ —1) with n prime. Let ¢ be a medium-size integer
(typically, either a prime or a power of 2 of the same order of magnitude as n).
Finally, let p € Rypry with small coefficients, co-prime with ¢ and such that the
plaintext space Ryrru/p is large (typically, one may take p € {2,3} or p = x+2).

The NTRUEncrypt secret key is a pair of polynomials (f,g) € R2,,, that
are sampled randomly with large prescribed proportions of zeros, and with their
other coefficients having small magnitude. For improved decryption efficiency,
one may choose f such that f = 1 mod p (a typical choice [17] is to choose g and
F with coefficients in {0,1} and set f = 1+ p- F'). With high probability, the
polynomial f is invertible modulo ¢ and modulo p, and if that is the case, the
public-key is h = pg/ f mod g (otherwise, the key generation process is restarted).
To encrypt a message M € Ryinu/p, one samples a random element s € Ryrro
of small Euclidean norm and computes the ciphertext C = hs + M mod ¢. The
following procedure allows the owner of the secret key to decrypt:



e Compute fC mod q. If C was properly generated, this gives pgs + fM mod
q. Since p, g, s, f, M have small coefficients, it can be expected that after
reduction modulo ¢ the obtained representative is pgs + fM (in Ryrru)-

e Reduce the latter modulo p. This should provide fM mod p.

e Multiply the result of the previous step by the inverse of f modulo p (this
step becomes vacuous if f =1 mod p).

Note that the encryption process is probabilistic, and that decryption errors
can occur for some sets of parameters. However, it is possible to arbitrarily
decrease the decryption error probability, and even to eliminate it completely.

In order to achieve CPA-security we make a few modifications to the original
NTRUEncrypt (which preserve its quasi-linear time and space complexity):

1. We replace Ryrru by R = Z[z]/(2™ 4+ 1) with n a power of 2. We will exploit
the irreducibility of 2™ + 1 and the fact that R is the ring of integers of a
cyclotomic number field.

2. We choose a prime g < Poly(n) such that f = 2™ + 1 mod ¢ has n distinct
linear factors (i.e., ¢ = 1 mod 2n). This allows us to use the search to decision
reduction for R-LWE with ring R, := R/q (see [21]), and also to take p = 2.

3. We sample f and g from discrete Gaussians over R, rejecting the samples
that are not invertible in R,. We show that f/g mod g is essentially uniformly
distributed over the set of invertible elements of R,. We may also choose f =
pf’ + 1 with f’ sampled from a discrete Gaussian, to simplify decryption.

4. We add a small error term e in the encryption: C' = hs + pe + M mod g,
with s and e sampled from the R-LWE error distribution. This allows us
to derive CPA security from the hardness of a variant of R-LWE (which is
similar to the variant of LWE from [3, Se. 3.1]).

Work in progress and open problems

Our study is restricted to the sequence of rings Z[z]/®,, with &,, = ™ +1 with n
a power of 2. An obvious drawback is that this does not allow for much flexibility
on the choice of n (in the case of NTRU, the degree was assumed prime, which
provides more freedom). The R-LWE problem is known to be hard when &,, is
cyclotomic [21]. We chose to restrict ourselves to cyclotomic polynomials of order
a power of 2 because it makes the error generation of R-LWE more efficient, and
the description of the schemes simpler to follow. Our results are likely to hold
for more general rings than those we considered. An interesting choice could be
the cyclotomic rings of prime order (i.e., @, = (2" — 1)/(xz — 1) with n prime)
as these are large subrings of the NTRU rings (and one might then be able to
show that the hardness carries over to the NTRU rings).

An interesting open problem is to obtain a CCA secure variant of our scheme
in the standard model, while maintaining its efficiency (within constant factors).
The selection of concrete parameters based on practical security estimates for the
worst-case SVP in ideal lattices or the average-case hardness of R-LWE /Ideal-SIS
is also left as a future work.



The authors of NTRUEncrypt also proposed a signature scheme based on
a similar design. The history of NTRUSign started with NSS in 2001 [16]. Its
development has been significantly more hectic and controversial, with a series
of cryptanalyses and repairs (see the survey [13]). In a work in progress, we
construct a variant of NTRUSign with unforgeability related to the worst-case
hardness of standard problems over ideal lattices, in the random oracle model.
Our construction modifies the NTRUSign key generation and adapts the GPV
signature scheme [11] to this setting.

Like NTRUEncrypt, Gentry’s somewhat homomorphic scheme [9] also has ci-
phertexts consisting of a single ring element. It also admits a security proof under
the assumed quantum hardness of standard worst-case problems over ideal lat-
tices [10]. Our security analysis for the modified NTRUEncrypt scheme allows
encrypting and decrypting §2(n) plaintext bits for 5(71) bit operations, while
achieving security against 29(")-time attacks, for any g(n) that is £2(logn) and
o(n), assuming the worst-case hardness of Poly(n)-Ideal-SVP against 20(9(m)-
time quantum algorithms. The latter assumption is believed to be valid for any
g(n) = o(n). Gentry’s analysis from [10, 8] can be generalized to handle 29(")-
time attacks while encrypting and decrypting O(g(n)) plaintext bits for O(n) bit
operations, under the assumed hardness of 292()_Ideal-SVP against 20(g(n))_
time quantum algorithms. The latter assumption is known to be invalid when
g(n) = 2(y/n) (using [34]), thus limiting the attacker’s strength the analysis
can handle. On the other hand, Gentry’s scheme allows homomorphic additions
and multiplications, whereas ours seems restricted to additions. Our scheme and
Gentry’s seem to be closely related, and we leave to future work the further
investigation of this relation.

NoTaTiON. We denote by p,(x) (resp. v,) the standard n-dimensional Gaus-
sian function (resp. distribution) with center 0 and variance o, i.e., ps(x) =
exp(—n||z||?/0?) (resp. vy (x) = po(x)/0™). We denote by Exp(u) the exponen-
tial distribution on R with mean p and by U(FE) the uniform distribution over
a finite set F . If Dy and Dy are two distributions on discrete domain F, their
statistical distance is A(Dy; D) = 33, p |D1(z) — Do(z)|. We write z «= D
when the random variable z is sampled from the distribution D.

2 A Few Background Results

A (full-rank) lattice is a set of the form L = >,  Zb;, where the b;’s are
linearly independent vectors in R™. The integer n is called the lattice dimension,
and the b;’s are called a basis of L. The minimum A (L) (resp. A3°(L)) is the
Euclidean (resp. infinity) norm of any shortest vector of L\ 0. If B = (b;);
is a basis matrix of L, the fundamental parallelepiped of B is the set P(B) =
{3 i<ncibi : ¢; € [0,1)}. The volume |det B| of P(B) is an invariant of the
lattice L which we denote by det L. Minkowski’s theorem states that A;(L) <
V/n(det L)*/™. More generally, the k-th minimum A\ (L) for k < n is defined as
the smallest r such that L contains > k linearly independent vectors of norm < r.
The dual of L is the lattice L = {c € R" : Vi, (¢, b;) € Z}.



For a lattice L C R™, 0 > 0 and ¢ € R", we define the lattice Gaussian

distribution of support L, deviation ¢ and center ¢ by Dy, ,.(b) = S:’:((Z)),
any b € L. We will omit the subscript ¢ when it is 0. We extend the definition
of Dp s to any M C L (not necessarily a sublattice), by setting Dy o,.(b) =
po.c(b)

PU,C(M) : N
such that py,,(L \ 0) < 6. It quantifies how large o needs to be for D . to

behave like a continuous Gaussian. We will typically consider § = 27".

for

For § > 0, we define the smoothing parameter ns(L) as the smallest o > 0

Lemma 1 (|24, Le. 3.3]). For any full-rank lattice L CR™ and 6 € (0,1), we
have n5(L) < /In(2n(1 + 1/8))/m - A\ (L).

Lemma 2 ([28, Le. 3.5]). For any full-rank lattice L CR"™ and 6 € (0,1), we
have ns(L) < +/In(2n(1 +1/8))/m/A3°(L).

Lemma 3 (|24, Le. 4.4]). For any full-rank lattice L CR", c € R™, § € (0,1)
and o > ns(L), we have Pry—p, , [||bl| > oy/n] < %2_".

Lemma 4 ([11, Cor. 2.8]). Let L' C L C R"™ be full-rank lattices. For any ¢ €
R™ ¢ €(0,1/2) and o > ns(L’), we have A(Dy, . mod L';U(L/L")) < 26.

Lemma 5 ([11, Th. 4.1]). There exists a polynomial-time algorithm that takes
as input any basis (b;); of any lattice L C Z™ and o = w(y/logn) max ||b;|| (resp.
o = 2(y/n)max | b;||), and returns samples from a distribution whose statistical
distance to Dy, » is negligible (resp. exponentially small) with respect to n.

The most famous lattice problem is SVP. Given a basis of a lattice L, it aims
at finding a shortest vector in L \ 0. It can be relaxed to v-SVP by asking
for a non-zero vector that is no longer than (n) times a solution to SVP,
for a prescribed function ~y(-). It is believed that no subexponential quantum
algorithm solves the computational variants of v-SVP in the worst case, for
any v < Poly(n). The smallest v which is known to be achievable in polynomial
time is exponential, up to poly-logarithmic factors in the exponent (|34, 26]).

Ideal lattices and algebraic number theory

IDEAL LATTICES. Let n a power of 2 and & = 2" 4+ 1 (which is irreducible
over Q). Let R be the ring Z[z]/®. An (integral) ideal I of R is a subset of R
closed under addition and multiplication by arbitrary elements of R. By mapping
polynomials to the vectors of their coefficients, we see that an ideal I # 0
corresponds to a full-rank sublattice of Z™: we can thus view I as both a lattice
and an ideal. An ideal lattice for @ is a sublattice of Z™ that corresponds to
a non-zero ideal I C R. The algebraic norm N (I) is the cardinality of the
additive group R/I. It is equal to det I, where I is regarded as a lattice. Any
non-zero ideal I of R satisfies A\, (I) = A1({). In the following, an ideal lattice
will implicitly refer to a @-ideal lattice.

By restricting SVP (resp. 7-SVP) to instances that are ideal lattices, we
obtain Ideal-SVP (resp. v-Ideal-SVP). The latter is implicitly parameterized by



the sequence of polynomials @, = x™ + 1, where n is restricted to powers of 2.
No algorithm is known to perform non-negligibly better for (v-)Ideal-SVP than
for (v-)SVP.

PROPERTIES OF THE RING R. For v € R we denote by ||v|| its Euclidean norm
(as a vector). We define the multiplicative expansion factor v« (R) by v« (R) =
maxy, ye R % For our choice of @, we have v« (R) = v/n (see [9, p. 174]).

Since @ is the 2n-th cyclotomic polynomial, the ring R is exactly the maxi-
mal order (i.e., the ring of integers) of the cyclotomic field Q[(] = Q[z]/® =: K,
where ¢ € C is a primitive 2n-th root of unity. We denote by (o;)i<n the
canonical complex embeddings: We can choose o; : P — P(¢%*1) for i < n.
For any «a in Q[(¢], we define its Th-norm by Thr(a)? = >, |oi(a)]* and its
algebraic norm by N(a) = [[.., |oi(«)|. The arithmetic-geometric inequality
gives N (a)?/™ < 17, (a)?. Also, for the particular cyclotomic fields we are con-
sidering, the polynomial norm (the norm of the coefficient vector of « when
expressed as an element of K) satisfies ||« = ﬁTg(O&). We also use the fact
that for any o € R, we have |N(a)| = det (), where () is the ideal of R
generated by «. For simplicity, we will try to use the polynomial terminology
wherever possible.

Let ¢ be a prime number such that @ has n distinct linear factors modulo ¢
(i.e., ¢ = 1mod 2n): & =[], P = [l;,<,,(x — ¢;) mod ¢q. Let Ry = R/qR =
Z4[7]/®. Dirichlet’s theorem on arithmetic progressions implies that infinitely
such primes exist. Furthermore, Linnik’s theorem asserts that the smallest such ¢
is Poly(n), and much effort has been spent to decrease this bound (the current
record seems to be O(n®2), see [36]). Furthermore, we can write ¢; as r, where r
is a primitive (2n)-th root of unity modulo ¢. This implies that the Chinese
Remainder Theorem in R, provides a natural fast Discrete Fourier Transform,
and thus multiplication of elements of R, can be performed within O(nlogn)
additions and multiplications modulo ¢ (see [7, Ch. 8], [20, Se. 2.1]).

The R-LWE problem

For s € R, and % a distribution in Ry, we define A, ., as the distribution obtained
by sampling the pair (a, as+e) with (a, e) <= U(R,)x1. The Ring Learning With
Errors problem (R-LWE) was introduced by Lyubashevsky et al. [21] and shown
hard for specific error distributions . These are slightly technical to define (see
below), but for the present work, the important facts to be remembered are that
the samples are small (see Lemma 6), and can be obtained in quasi-linear time.

The error distributions ¢ that we use are an adaptation of those introduced
in [21]. They are sampled from a family of distributions 7, that we now define.
For o € R™ with positive coordinates, we define the ellipsoidal Gaussian p
as the row vector of independent Gaussians (ps,,...,0s,), Where 0; = 0;1/2
for 1 < i < n/2. As we want to define R-LWE in the polynomial expression
of R rather than with the so-called “space H” of [21], we apply a matrix trans-
formation to the latter Gaussians. We define a sample from p/ as a sample
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from p,, multiplied first (from the right) by % < i i > ®Id,, /2 € C*", and sec-

ond by V = % ({_(2j+1)k)0§j7k<n. Note that vector multiplication by matrix V'
corresponds to a complex discrete Fourier transform, and can be performed
in O(nlogn) complex-valued arithmetic operations with the Cooley-Tukey FFT.
Moreover, it is numerically extremely stable: if all operations are performed with
a precision of p = 2(logn) bits, then the computed output vector fi(y) satis-
fies || fI(y)—y|| < C-(logn)-27P-||ly||, where C' is some absolute constant and y is
the vector that would be obtained with exact computations. We refer to [12, Se.
24.1] for details. We now define a sample from p’,. as follows: compute a sample
from pl, with absolute error < 1/n?; if it is within distance 1/n? of the middle
of two consecutive integers, then restart; otherwise, round it to a closest integer
and then reduce it modulo g. Finally, a distribution sampled from T, for o > 0
is defined as p',, where o; = \/a2¢? + x; with the z;’s sampled independently
from the distribution Exp(na2q?).

Sampling from p.. can be performed in time 6(n) Sampling from T, can
also be performed in expected time O(n), and the running-time is bounded by a
quantity that follows a geometric law of parameter < 1. Furthermore, in all our
cryptographic applications, one could pre-compute such samples off-line (i.e.,
before the message M to be processed is known).

Lemma 6. Assume that aq > \/n. For any r € R, we have Pr, 5 [[|yr|le >
aqw(logn) - [|r]]] < n=v®,

Proof. We define 7, exactly as T, but without the rejection step from p,, to p’,.
Because of the bound on the rejection probability, it suffices to prove the result
with 7, instead of Ty. Let 3y < 7. The involved o satisfies 0, = v/02¢2 + x4,
with the xj’s sampled independently from the distribution Exp(na2q?). We
have max oy, < agy/nw(v/logn) with probability 1 —n=<(). We write y = ¢/ 41,
where the field element ¢y’ € K is sampled from p,., and actually derived from
a sample z from p,, and n € K is the error in rounding 3’ € K to y € R,
with [|9]lee < 1/2. Then ||yr|loo < |¥'7|loo + |77]|oc- Using the Schwartz inequal-

first term. The embedding vector of 3’ has the following shape:

1 . . . .
ﬁ(21 F02p 2415y Znj2 F0%0, 21 = 12n 2415 - - -5 Znj2 — 12n)-

ity, the second term can be bounded as ||77]|s < @HTH We now bound the

Let (r(®)); be the embedding vector of . Then the embedding vector of y'r
is (y/®)r(*));. The coefficient in 27 of y'r is

1 3 = @ik, () — 2 S (@D,
0<k<n " 0<k<n/2

V2 ey .
== 3 m((C (2J+1)kr(k))(zk+1+Z2n/2+k+1)).

0<k<n/2



The kth summand of the last sum follows a normal law of mean 0 and standard
deviation |r*)|g). Therefore, the coefficient in 27 of yr follows a normal law
of standard deviation < LT5(r)max oy, which is < —=aqw(y/logn) - To(r) =

NG
aqw(logn) - ||7|| with probability 1 —n=<®). Using aq > /n, we get ||yr|loo +
77]|s0 < agw(logn) - ||r|| with probability 1 —n=“() | as claimed. O

We now define our adaptation of R-LWE.

Definition 1. The Ring Learning With Errors Problem with parameters q, o
and ¢ (R—LWE“;Q) is as follows. Let ¢ <« T, and s < U(R,). Given access to
an oracle O that produces samples in Ry X Ry, distinguish whether O outputs
samples from As . or from U(Ry x Ry). The distinguishing advantage should be
1/Poly(n) (resp. 27°0") ) over the randomness of the input, the randomness of
the samples and the internal randomness of the algorithm.

The following theorem indicates that R-LWE is hard, assuming that the
worst-case y-Ideal-SVP cannot be efficiently solved using quantum computers,
for small . It was recently improved by Lyubashevsky et al. [22]: if the number
of samples that can be asked to the oracle O is bounded by a constant (which is
the case in our application), then the result also holds with simpler errors than
e < 1p « T, and with an even smaller Ideal-SVP approximation factor . This
should allow to both simplify the modified NTRUEncrypt and to strengthen its
security guarantee.

Theorem 1 (Adapted from [21]). Assume that ag = w(n/logn) (resp.
2(n'%)) with a € (0,1) and ¢ = Poly(n). There exists a randomized polynomial-
time (resp. subexponential) quantum reduction from y-Ideal-SVP to R-LWE o,
with v = w(n*®logn)/a (resp. 2(n?%)/a).

The differences with [21] in the above formulation are the use of the polyno-
mial representation (handled by applying the complex FFT to the error term),
the use of R, rather than R) := RY/q where R is the codifferent (here we
have R = %Rq), and the truncation of the error to closest integer if it is far
from the middle of two consecutive integers. The new variant remains hard be-
cause a sample passes the rejection step with non-negligible probability, and the
rounding can be performed on the oracle samples obliviously to the actual error.

VARIANTS OF R-LWE. For s € R, and ¢ a distribution in Ry, we define A7
as the distribution obtained by sampling the pair (a,as + e) with (a,e) <«
U(R}) x ¢, where R is the set of invertible elements of R,. When ¢ = 2(n),
the probability for a uniform element of R, of being invertible is non-negligible,
and thus R-LWE remains hard even when A,y and U(Ry x Ry) are respectively
replaced by A, and U(R; x R,). We call R-LWE™ the latter variant.
Furthermore, similarly to [3, Le. 2] and as explained in [22], the nonce s
can also be chosen from the error distribution without incurring any security
loss. We call R-LWE}j\ the corresponding modification of R-LWE. We recall
the argument, for completeness. Assume an algorithm A can solve R-LWE{j\p-
We use A to solve R-LWEX. The principle is to transform samples ((a;,b;));



into samples ((a] 'a;,b; — a7 'bya;));, where inversion is performed in Ry . This

transformation maps As,w to Afel,d}, and U(R; x R,) to itself.

3 New Results on Module g-ary Lattices

In this section, we present strong regularity bounds for the ring R,. For this
purpose, we first study two families of R-modules.

3.1 Duality results for some module lattices

Let a € RJ'. We define the following families of R-modules, for I an arbitrary
ideal of R:

at(I):={(t1,... ,tm) € R™: Vi, (t; mod q) € I and Ztiai = 0 mod ¢},

L(a,I) :={(t1,...,tm) € R™ :3s € Ry, Vi, (t;, mod q) = a; - s mod I}.

We also define a* and L(a) as a*(R,) and L(a, (0)) respectively. The ideals
of Ry are of the form I := [],cq(x — ¢i) - Ry = {a € Ry : Vi € S,a(¢;) = 0},
where S is any subset of {1,...,n} (the ¢;’s are the roots of & modulo ¢). We
define I = [[;cs(z — ¢; ') - Ry.

Lemma 7. Let S C {1,...,n} and a € R]". Let S = {1,...,n}\ S and a* €
Ry be defined by a; = a;(z7Y). Then (considering both sets as mn-dimensional
lattices by identifying R and 7™ ):

—

1
at(Is) = gL(aX,Ig).

Proof. We first prove that ;L(a* I3) C aT(I\S). Let (t1,...,tm) € J-(Ig)
and (ty,...,t,) € L(a*,Ig). Write t; = >, t; ;27 and t; = >, t”x for
any ¢ < m. Our goal is to show that >, .., t; ;#; ; = 0 mod ¢. This is equiva-
lent to showing that the constant coefficient of the polynomial 3, ¢;(z)t; (x71)
is 0 modulo g¢. Tt thus suffices to show that 37, t;(2)t;(z') mod ¢ = 0 (in R,).
By definition of the t.’s, there exists s € R, such that (¢, mod q¢) = a - s + ¥/

for some b € Ig. We have the following, modulo q:

Zt(m ) =s(z7t) Zt +Zt (z)bi(z~1).

i<m i<m i<m

Both sums in the right hand side evaluate to 0 in 14, which provides the desired
inclusion.

To complete the proof, it suffices to show that L(a*, I5) C éaﬁ- (Is). Tt can
be seen by considering the elements of L(a*, I5) corresponding to s = 1. O



3.2 On the absence of unusually short vectors in L(a, Is)

We show that for a < U((R;)™), the lattice L(a,Is) is extremely unlikely
to contain unusually short vectors for the infinity norm, i.e., much shorter
than guaranteed by the Minkowski upper bound det(L(a, Ig))mn = q(l_%)lnﬂ
(we have det(L(a,Is)) = ¢/ YIS because there are ¢"+(m=D"=ISD points of
L(a,Is) in the cube [0, — 1]™"). Note that our lower bound approaches the
Minkowski bound as Li‘ approaches 1, but becomes progressively looser as %

drops towards ~ 1 — % Fortunately, for our applications, we will be using this

bound with % = 1 —¢ for some small £, where the bound is close to being tight.

Lemma 8. Let n > 8 be a power of 2 such that ® = x™ + 1 splits into n linear
factors modulo prime q > 5. Then, for any S C {1,...,n}, m > 2 and € > 0,

we have \°(L(a,Is)) > ﬁqﬁ, with:

X 1—\/1+4m(m—1) (1-121) + ame

fi=1——+
m 2m
zl—i—s—(m—1)<1—@>,
m n

except with probability < 2™(q — 1)™=" over the uniformly random choice of a
in (R;)™.

Proof. Recall that & =TT,
Remainder Theorem, we know that R, (resp. RY) is isomomorphic to (Zq)"
(resp. (Z;)") via the isomorphism ¢ — (¢ mod @;)i<m. Let grg = [[;cq @it it is
a degree |S| generator of Ig.

Let p denote the probability (over the randomness of @) that L(a, I's) contains
a non-zero vector t of infinity norm < B, where B = ﬁqﬂ. We upper bound p

@; for distinct linear factors @;. By the Chinese

by the union bound, summing the probabilities p(t, s) = Prq[Vi,t; = a;s mod Ig]
over all possible values for ¢ of infinity norm < B and s € R,/Ig. Since the a;’s
are independent, we have p(t,s) = [],.,,pi(ti,s), where p;(t;,s) = Prq,[t; =
a;s mod Ig]. -

Wlog we can assume that ged(s, grg) = ged(ti, gr4) (up to multiplication by
an element of Z;): If this is not the case, there exists j < n such that either
t; mod @; = 0 and s mod @; # 0, or ¢; mod ¢; # 0 and s mod @; = 0; In both
cases, we have p;(t;, s) = 0 because a; € R;*. We now assume that ged(s, gr5) =
ged(ti, grs) = [lics @i for some S” C S of size 0 < d < |S]. For any j € S,
we have t; = a;5 = 0 mod &; regardless of the value of a; mod &;, while for
j €S\ S, wehave s # 0mod ¢; and there exists a unique value of a; mod ¢;
such that ¢; = a;s mod &@;. Moreover for any j ¢ S, the value of a; mod @; can
be arbitrary in Z;. So, overall, there are (¢ — 1)4+7=I51 differents a;’s in R} such
that ¢; = a;s mod Ig. This leads to p;(t;,s) = (¢ — 1)d_|S|.



So far, we have showed that the probability p can be upper bounded by:

< > Z 2 > I -

0<d<|S| h=1l;ce' ®i s € Ry/Is te (Ry)™ i<m
s'cs h\s Vi,0 < ||tilloo < B
1S’ =d Vi, ht;

For h = [];cq @i of degree d, let N(B,d) denote the number of t € R, such
that ||t]|cc < B and t = ht’ for some t' € Ry of degree < n — d. We consider two
bounds for N(B,d) depending on d.

Suppose that d > -n. Then we claim that N(B,d) = 0. Indeed, any ¢ = ht’
for some t' € R, belongs to the ideal (h,q) of R generated by h and ¢. For
any non-zero t € (h,q), we have N'(t) = N((t)) > N((h,q)) = q%, where the
inequality is because the ideal (t) is a full-rank sub-ideal of (h,q), and the last
equality is because deg h = d. It follows from the arithmetic-geometric inequality

that [|t|| = ﬁTg(t) > N(t)/™ > ¢%/". By equivalence of norms, we conclude

that ||t]|co > A ((h,q)) > ﬁqd/n. We see that d/n > (8 implies that ||t]|. > B,
so that N(B,d) = 0.

Suppose now that d < 3-n. Then we claim that N(B,d) < (2B)"~%. Indeed,
since the degree of h is d, the vector ¢ formed by the n — d low-order coefficients
of t is related to the vector ¢’ formed by the n — d low-order coefficients of ¢ by
a lower triangular (n — d) X (n — d) matrix whose diagonal coefficients are equal
to 1. Hence this matrix is non-singular modulo ¢ so the mapping from ¢’ to 7 is
one-to-one. This provides the claim.

Using the above bounds on N (B, d), the fact that the number of subsets of S
of cardinality d is < 27, and the fact that the number of s € R,/Is divisible
by h = HieS' @, is ¢!°1=%, the above bound on p implies

(QB)m(n—d)
< n
R PR CEEE

With our choice of B, we have 2B < (¢ — 1)? (this is implied by n > 8,¢ > 5
and § < 1). A straightforward computation then leads to the claimed upper
bound on p. 0

3.3 Improved regularity bounds

We now study the uniformity of distribution of (m+1)-tuples from (12 )™ x R, of
the form (a1, ...,am, > ;<,, tiai), where the a;’s are independent and uniformly
random in 12}, and the ¢;’s are chosen from some distribution on R, concentrated
on elements with small coefficients. Similarly to [23], we call the distance of the
latter distribution to the uniform distribution on (R;)™ x R, the regularity of the
generalized knapsack function (¢;)i<m — Y ;<,, ti@;. For our NTRU application
we are particularly interested in the case where m = 2.

The regularity result in [23, Se. 4.1] applies when the a;’s are uniformly ran-
dom in the whole ring R4, and the ¢;’s are uniformly random on the subset



of elements of R, with coefficients of magnitude < d for some d < ¢. In this
case, the regularity bound from [23] is 2(y/ng/d™). Unfortunately, this bound
is non-negligible for small m and ¢, e.g., for m = O(1) and ¢ = Poly(n). To
make it exponentially small in n, one needs to set mlogd = §2(n), which in-
evitably leads to inefficient cryptographic functions. When the a;’s are chosen
uniformly from the whole ring R, the actual regularity is not much better than
this undesirable regularity bound. This is because R, contains n proper ideals
of size ¢"~* = |R,|/q, and the probability ~ n/¢™ that all of the a;’s fall into
one such ideal (which causes Y t;a; to also be trapped in the proper ideal) is
non-negligible for small m. To circumvent this problem, we restrict the a;’s to be
uniform in qu, and we choose the t;’s from a discrete Gaussian distribution. We
show a regularity bound exponentially small in n even for m = O(1), by using
an argument similar to that used in [11, Se. 5.1] for unstructured generalized
knapsacks, based on the smoothing parameter of the underlying lattices. Note
that the new regularity result can be used within the Ideal-SIS trapdoor gener-
ation of [35, Se. 3|, thus extending the latter to a fully splitting ¢. It also shows
that the encryption scheme from [21] can be shown secure against subexponen-
tial (quantum) attackers, assuming the subexponential (quantum) hardness of
standard worst-case problems over ideal lattices.

Theorem 2. Letn > 8 be a power of 2 such that ® = 2™+ 1 splits into n linear
factors modulo prime ¢ > 5. Let m > 2, ¢ > 0, 6 € (0,1/2) and t < Dzmn 4,
with o > \/nn(2mn(1 + 1/8))/7-q= <. Then for all except a fraction < 2"(q—
1)=" of a € (R)™, we have ns(at) < y/nn(2mn(1+ 1/6))/x-qw*e, and the
distance to uniformity of > t;a; is < 26. As a consequence:

i<m

(al, ey s Z tz-ai); U((qu)m X Rq)

i<m

A <2642"(q—1)"".

When using this result, one is typically interested in taking a small con-
stant € > 0, because it allows to lower the standard deviation ¢ and thus
the required amount of randomness. Then a tiny ¢ should be chosen (e.g.,
0~ 2"(q — 1)7=™), as it drastically lowers the statistical distance upper bound,
without strengthening the standard deviation requirement much.

For each a € (R;)™, let D, denote the distribution of } ., t;a; where ¢
is sampled from Dzmn» ,. Note that the above statistical distance is exactly
IRq+I’" Zae(qu ym Aq, where A, is the distance to uniformity of Dg. To prove the

theorem, it therefore suffices to show a distance bound A, < 24, for all except
a fraction < 2"(¢ —1)7*" of @ € (R;)™.

Now, the mapping ¢ — ). t;a; induces an isomorphism from the quotient
group Z™"/at to its range (note that a’ is the kernel of t — 3. ¢;a;). The
latter is Ry, thanks to the invertibility of the a;’s. Therefore, the statistical
distance A is equal to the distance to uniformity of ¢ mod a*. By Lemma 4, we
have A, < 26 if o is greater than the smoothing parameter 1s(a') of a* C Z™".
To upper bound 75(at), we apply Lemma 2, which reduces the task to lower



bounding the minimum of the dual lattice a+ = % - L(a*), where a* € (R )™
is in one-to-one correspondence with a.

The following result is a direct consequence of Lemmata 2, 4, 7 and 8. The-
orem 2 follows by taking S = and ¢ = 0.

Lemma 9. Let n > 8 be a power of 2 such that ® = x™ + 1 splits into n linear
factors modulo prime ¢ > 5. Let S C {1,...,n}, m > 2,¢ >0, § € (0,1/2),
c € R™ and t <> Dzmn 5, with

IS]

o > /nln(2mn(1 + 1/6))/x - gm im0 +e,

Then for all except a fraction < 2"(q—1)"°" of a € (R})™, we have:

A[t mod a* (Is); U(R/aL(IS))} < 2.

4 A revised key generation algorithm

We now use the results of the previous section on modular g-ary lattices to
derive a key generation algorithm for NTRUEncrypt, where the generated public
key follows a distribution for which Ideal-SVP reduces to R-LWE.

4.1 NTRUEncrypt’s key generation algorithm

The new key generation algorithm for NTRUEncrypt is given in Fig. 1. The secret
key polynomials f and g are generated by using the Gentry et al. sampler of dis-
crete Gaussians (see Lemma 5), and by rejecting so that the output polynomials
are invertible modulo g. The Gentry et al. sampler may not exactly sample from
discrete Gaussians, but since the statistical distance can be made exponentially
small, the impact on our results is also exponentially small. Furthermore, it can
be checked that our conditions on standard deviations are much stronger than
the one in Lemma 5. From now on, we will assume we have a perfect discrete
Gaussian sampler.

By choosing a large enough standard deviation o, we can apply the results
of the previous section and obtain the (quasi-)uniformity of the public key. We
sample f of the form p- f’ + 1 so that it has inverse 1 modulo p, making the
decryption process of NTRUEncrypt more efficient (as in the original NTRUEncrypt
scheme). We remark that the rejection condition on f at Step 1 is equivalent to
the condition (f' mod q) € R —p~', where p~' is the inverse of p in R

The following result ensures that for some appropriate choice of parameters,
the key generation algorithm terminates in expected polynomial time.

Lemma 10. Let n > 8 be a power of 2 such that ® = x™ + 1 splits into n linear
factors modulo prime q > 5. Let o > \/nln(2n(1 + 1/8))/7 - ¢*/", for an arbi-
trary 6 € (0,1/2). Let a € R and p € R. Then Prpp,, [(p- f +amodq) ¢
Ry] <n(1/q+26).




Inputs: n,q€Z,p€ R}, 0 €R.
Output: A key pair (sk,pk) € R x R;.
1. Sample [’ from Dzno; let f=p- f' 4+ 1; if (f mod ¢) € R}, resample.

2. Sample g from Dzn o; if (¢ mod q) € R, resample.

q >

3. Return secret key sk = f and public key pk = h =pg/f € R;.

Fig. 1. Revised Key Generation Algorithm for NTRUEncrypt.

Proof. We are to bound the probability that p - f' + a belongs to I := (g, Py)
by 1/q+ 20, for any k < n. The result then follows from the Chinese Remainder
Theorem and the union bound. We have N'(I) = ¢, so that A\ (I) < /ng'/™,
by Minkowski’s theorem. Since I is an ideal of R, we have \,(I) = A\1(I), and
Lemma 1 gives that o > ns(I). Lemma 4 then shows that f mod I is within
distance < 20 to uniformity on R/I, so we have p- f' +a = Omod I (or,
equivalently, f' = —a/p mod I) with probability < 1/q + 24, as required. O

As a consequence of the above bound on the rejection probability, we have
the following result, which ensures that the generated secret key is small.

Lemma 11. Let n > 8 be a power of 2 such that @ = x™ + 1 splits into n linear
factors modulo prime q > 8n. Let ¢ > \/2n1n(6n)/7-q"/™. The secret key polyno-
mials f, g returned by the algorithm of Fig. 1 satisfy, with probability > 1—27""+3;

£l < 2nllplle and lg]| < v/no.
If degp < 1, then || f|| < 4v/nlpllo with probability > 1 —27"+3,

Proof. The probability under scope is lower than the probability of the same
event without rejection, divided by the rejection probability. The result follows
by combining Lemmata 3 and 10. a

4.2 Public key uniformity

In the algorithm of Fig. 1, the polynomials f’ and g are independently sampled
from the discrete Gaussian distribution Dz , with o > Poly(n) - ¢*/>*< for an
arbitrary € > 0, but restricted (by rejection) to R —p~! and Ry, respectively.
We denote by D, the discrete Gaussian Dzn , restricted to Ry + 2.

Here we apply the result of Section 3 to show that the statistical closeness
to uniformity of a quotient of two distributions (z +p- Dy ,) for 2 € R; and y =
—2zp~! mod q. This includes the case of the public key h = pg/f mod ¢ computed
by the algorithm of Fig. 1.

Theorem 3. Letn > 8 be a power of 2 such that ® = x™ + 1 splits into n linear
1

factors modulo prime q > 5. Let € > 0 and o > 2n+/In(8nq)-q2+2%¢. Let p € Ry,

yi € Ry and z; = —y;p~ ' mod q for i € {1,2}. Then

X

y1+p-Dg,,

. 3n_—
yrtp Di, motei VD] < 2



Proof. Fora € R, wedefine Pr, = Pry, 1,[(y1+pf1)/(y2+pf2) = a], where f; <
DY, for i€ {1,2}. We are to show that |Pr, — (q— 1)7"| < 22n+5¢=lenl . (¢ —
1)7" =: ¢ for all except a fraction < 2*"(¢—1)"°" of a € R This directly gives
the claimed bound. The fraction of a € R such that [Pr, — (¢ —1)7"| <€’ is
equal to the fraction of @ = (a1,a2) € (RYX)? such that |Prq — (¢ —1)7"| < ¢/,
where Prq = Pry, g,[a1f1 + asfo = a121 + agzz]. This is because a1 f1 + azfo =
a1z1 +azzy is equivalent to (y1 +pf1)/(y2+pfa) = —az/a;i (in RY), and —az/a;
is uniformly random in R when a — U((R))?).

We observe that (f1, fo) = (z1,22) =: z satisfies a1 f1 + asfo = a121 + as29,
and hence the set of solutions (fi, f2) € R to the latter equation is z + a1*,
where a'* = a* N (RS + ¢Z")?. Therefore:

Dygzn 5(z + atX)

Pro = :
* " Dgn (21 + Ry +qZ") - Dgn (22 + Ry + qZ")

We now use the fact that for any ¢t € a' we have ty = —tya1/as so, since
—ai/az € R, the ring elements ¢, and ¢, must belong to the same ideal I5 of R,
for some S C {1,...,n}. It follows that a-* = aL\USC{lwlwn}’S#@ at(Is). Sim-
ilarly, we have Ry +qZ" = Z™ \ USQ{l,.A.mLS;ﬁ@(IS +¢Z™). Using the inclusion-
exclusion principle, we obtain:

Dzznﬁ(z + alx) = Z (71)‘5‘ . DZsz(z + CLL(IS)), (1)
SC{1,...,n}
Vi€ {1,2} :Dgn o (2 + RY +qZ") = Y (=) Dy o (2: + Is + qZ").(2)

SC{1,...n}

In the rest of the proof, we show that, except for a fraction < 227°(q —1)~¢"
of a € (RY)*

— 1"
Dase oz + @) = (14 5) - 15"
q

where |6;] < 22"+2¢~L=") for i € {0,1,2}. The bound on |Pr, — (g—1)~" follows
by a routine computation.

HANDLING (1). We note that, since z € Z?", we have (for any S C {1,...,n}):

po(z+at(Is) _ polz+a*(Is))
o (227 po(z +27)

Dzzn,a(z-ﬁ—aL(Is)) = = DZ2n,o-,_z(al(IS)).
For the terms of (1) with |S| < en, we apply Lemma 9 with m = 2.
Since |S|/n + & < 2¢, the Lemma 9 assumption on ¢ holds, with § := ¢~"~="J,
We have |R/a'(Is)| = det(a*(Is)) = ¢"*I5I: Indeed, since a € (Ry)?, there
are ¢" 15! elements of a* (1) in [0, ¢—1]>". We conclude that |Dzzn 5 . (a*(Is))—



q 181 < 26, for all except a fraction < 2™(q — 1)~*" of a € (RY)? (possibly
corresponding to a distinct subset of (R))? for each possible 5).

For a term of (1) with |S| > en, we choose S’ C S with |S’| = |en]. Then
we have a'(Ig) C a*(Is/) and hence Dgzn , . (at(Ig)) < Dzzn ,_(at(Ig)).
By using with S’ the above result for small |S|, we obtain Dyzn , _,(a*(Is)) <
25 + qfnf[enj .

Overall, we have, except possibly for a fraction < 22?(¢g—1)"*" of @ € (Ry )2:

Dzzn7a(z + al><) _ Z(_l)k (Z) q—nfk < 2n+15 +2 Z (Z)qfnf len]

k=0 k=[en]
< 2n+1(5+ q—n—\_anJ).

q2n
(¢—1)

We conclude that |dp| <
required.

n2n+1(5+q—n—|_€nj) < 22n+1(5qn +q—L5nJ)’ as

HANDLING (2). For the bounds on §; and d2, we use a similar argument. Let i €
{1,2}. The z; term can be handled like like the z term of (1). We observe that
for any S C {1,...,n}, we have det(Is + ¢Z") = ¢!°! and hence, by Minkowski’s
theorem, Ay (Ig+qZ") < \/ﬁ'qw‘/”. Moreover, since g+ gZ" is an ideal lattice,
we have \,(Is 4+ qZ") = M\ (Is + qZ™) < /n - ¢!%1/". Lemma 1 gives that ¢ >
ns(Is + qZ™) for any S such that |S| < n/2, with § := ¢~ /2. Therefore, by
Lemma 4, for such an S, we have |Dzn 5 .. (Is + qZ") — ¢~ 15| < 26.

For a term of (2) with |S| > n/2, we choose S" C S with |S’| = n/2. By
using with S’ the above result for small |S|, we obtain Dgn , _,.(Is + ¢Z™) <
Dzn gz, (Is + qZ") < 26 + /2.

Overall, we have:

< 9ntlg 49 Z (Z)qfnh

k=n/2
<2 (54 ¢ /),

n n
Dyn o(zi+ RS +qZ") =Y (1) <k) "
k=0

which leads to the desired bound on §; (using ¢ < 1/2). This completes the proof
of the theorem. O

5 NTRUEncrypt Revisited

Using our new results above, we describe a modification of NTRUEncrypt for
which we can provide a security proof under a worst-case hardness assumption.
We use & = z" + 1 with n > 8 a power of 2, R = Z[z]/® and R, = R/qR
with ¢ > 5 prime such that @ = [[,_, & in R, with distinct &’s.

We define our modified NTRUEncrypt scheme with parameters n, q,p, a, o as
follows. The parameters n and g define the rings R and R,. The parameter p €
R defines the plaintext message space as P = R/pR. It must be a polynomial
with ‘small’ coefficients with respect to g, but at the same time we require N (p) =



|P| = 29" 5o that many bits can be encoded at once. Typical choices as used
in the original NTRUEncrypt scheme are p = 3 and p = = + 2, but in our case,
since ¢ is prime, we may also choose p = 2. By reducing modulo the pz?’s, we can
write any element of p as Y., e;x’p, with €; € (—1/2,1/2]. Using the fact
that R = Z[z]/(z™ + 1), we can thus assume that any element of P is an element
of R with infinity norm < (deg(p)+1)-||p||. The parameter « is the R-LWE noise
distribution parameter. Finally, the parameter o is the standard deviation of the
discrete Gaussian distribution used in the key generation process (see Section 4).

e Key generation. Use the algorithm of Fig. 1 and return sk = f € R with
f=1mod p, and pk = h=pg/f € R;.

e Encryption. Given message M € P, set s,e < T, and return ciphertext C' =
hs+pe+ M € R,.

e Decryption. Given ciphertext C' and secret key f, compute C' = f-C € R, and
return C’ mod p.

Fig. 2. The encryption scheme NTRUEncrypt(n, ¢, p, o, a).

The correctness conditions for the scheme are summarized below.

Lemma 12. If w(n?logn)adeg(p)|p|?c < 1 (resp. w(n®?logn)a|pl?c < 1
if degp < 1) and ag > n%>, then the decryption algorithm of NTRUEncrypt
recovers M with probability 1 — n=“W) over the choice of s,e, f,g.

Proof. In the decryption algorithm, we have C' = p-(gs+ef)+ fM mod q. Let
C"=p-(gs+ef)+ fM computed in R (not modulo q). If ||C"||sc < ¢/2 then
we have C' = C” in R and hence, since f = 1 mod p, C' mod p = C"” mod p =
M mod p, i.e., the decryption algorithm succeeds. It thus suffices to give an
upper bound on the probability that ||C” |l > ¢/2.

From Lemma 11, we know that with probability > 1 —27"%3 both f and ¢
have Euclidean norms < 2n||p|lo (resp. 4y/n||p|lo if degp < 1). This implies
that |[pfll, [lpgll < 2n'®||p|?o (resp. 8v/n|p||*0), with probability > 1 —27"+3.
From Lemma 6, both pfe and pgs have infinity norms < 2aqn'®w(logn) - ||p||%c
(resp. 8agy/nw(logn) - ||p||%c), with probability 1 — n~=“(}). Independently:

I Mlloo < IfMI| < VallFIIIM] < 2 (deg(p) + 1) - n®[|p|*0 (resp. 8nllp|*0).
Since aq > \/n, we conclude that [|[C” || < (6+2deg(p))-agn*-*w(logn)- ||p||*c
(resp. 24aqn®Sw(logn) - ||p||?¢), with probability 1 — n=<(1), O

The security of the scheme follows by an elementary reduction from the
decisional R-LWEyy, exploiting the uniformity of the public key in Ry (The-
orem 3), and the invertibility of p in Ry.

Lemma 13. Suppose n is a power of 2 such that & = x™ + 1 splits into n linear
falctors modulo prime ¢ = w(1). Let ¢,6 > 0, p € Ry and 0 > 2n./In(8ng) -
qzVe. If there exists an IND-CPA attack against NTRUEncrypt that runs in



time T' and has success probability 1/2+ 0, then there exists an algorithm solving
R-LWE{j\p with parameters q and o that runs in time T =T + O(n) and has
success probability &' = § — g™,

Proof. Let A denote the given IND-CPA attack algorithm. We construct an
algorithm B against R-LWE[{\p that runs as follows, given oracle O that samples
from either U(R; x R,) or A;w for some previously chosen s «— 1 and ¢ <«
T,. Algorithm B first calls O to get a sample (h/,C’) from RX x R,. Then,
algorithm B runs A with public key h = p-h’ € R;. When A outputs challenge
messages My, My € P, algorithm B picks b «<— U({0,1}), computes the challenge
ciphertext C' = p-C' + M, € R,, and returns C' to A. Eventually, when A
outputs its guess b’ for b, algorithm B outputs 1 if &' = b and 0 otherwise.

The A’ used by B is uniformly random in Ry, and therefore so is the public
key h given to A, thanks to the invertibility of p modulo g. Thus, by Theorem 3,
the public key given to A is within statistical distance ¢~(") of the public key
distribution in the genuine attack. Moreover, since C' = h - s + e with s, e < 1,
the ciphertext C given to A has the right distribution as in the IND-CPA attack.
Overall, if O outputs samples from Asx’w7 then A succeeds and B returns 1 with
probability > 1/2 + 6§ — ¢,

Now, if O outputs samples from U(R; x R;), then, since p € R, the value
of p-C" and hence C, is uniformly random in R, and independent of b. It follows
that B outputs 1 with probability 1/2. The claimed advantage of B follows. O

By combining Lemmata 12 and 13 with Theorem 1 we obtain our main result.

Theorem 4. Suppose n is a power of 2 such that ® = ™ +1 splits into n linear
factors modulo prime q = Poly(n) such that ¢z = = w(n35log® ndeg(p)|p|?)
(resp. q2 ¢ = w(n*log'® ndeg(p)|pl|2)), for arbitrary ¢ € (0,1/2) and p € Ry.
Let o = 2n/In(8nq) - ¢2 ¢ and a~* = w(n'®log ndeg(p)||p||2c). If there exists
an IND-CPA attack against NTRUEncrypt(n, q,p, o, «) which runs in time T =
Poly(n) and has success probability 1/2 + 1/Poly(n) (resp. time T = 2°") and
success probability 1/2 + 27°M)), then there exists a Poly(n)-time (resp. 200" -
time) quantum algorithm for v-Ideal-SVP with v = O(n*log®® n deg(p)|lp||2¢2+°)
(resp. v = O(n® log1'5ndeg(p)\|p||2q%+6)). Moreover, the decryption algorithm
succeeds with probability 1—n~=“() over the choice of the encryption randomness.

In the case where degp < 1, the conditions on ¢ for polynomial-time (resp.
subexponential) attacks in Theorem 4 may be relaxed to q%_g = w(n?? log2 n-
IpII2) (resp. ¢2—¢ = w(n®log"®n - ||p||?)) and the resulting Ideal-SVP approx-
imation factor may be improved to v = O(n®log*°n - ||p||2q2 <) (resp. v =
O(n*1og"® n - ||p||2g2+)). Overall, by choosing ¢ = o(1), the smallest ¢ for
which the analysis holds is 2(n?) (resp. f)(nﬁ)), and the smallest v that can be
obtained is O(n5-) (resp. O(n")).
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