
A COMPLETE WORST-CASE ANALYSIS OF KANNAN’S

SHORTEST LATTICE VECTOR ALGORITHM

GUILLAUME HANROT∗ AND DAMIEN STEHLÉ†

Abstract. Computing a shortest nonzero vector of a given euclidean lattice and computing a
closest lattice vector to a given target are pervasive problems in computer science, computational
mathematics and communication theory. The classical algorithms for these tasks were invented by
Ravi Kannan in 1983 and, though remarkably simple to establish, their complexity bounds have
not been improved for almost thirty years. In the present paper, we provide a complete worst-
case analysis of Kannan’s algorithm for the shortest vector problem. We obtain a new worst-case
complexity upper bound, as well as the first worst-case complexity lower bound, both of the order

of 2O(d)
· d

d
2e (up to polynomial factors) bit operations, where d is the rank of the lattice. The

lower bound is obtained by the construction of a probabilistic algorithm that returns lattice bases on
which Kannan’s algorithm requires at least that many operations. We also provide a new complexity

upper bound for Kannan’s closest vector algorithm, of the order of 2O(d)
· d

d
2 . To obtain these

complexity results, we prove new bounds on the geometry of lattice bases reduced in the sense of
Hermite-Korkine-Zolotarev, which may be of independent interest.

Key words. lattice reduction, shortest vector problem, closest vector problem, complexity
analysis

AMS subject classifications. 11Y16, 68Q25, 68W40, 11P21

1. Introduction. A lattice L is a discrete subgroup of some Rn. Such an object
can always be represented as the set of integer linear combinations of no more than n
vectors b1, . . . ,bd. If these vectors are linearly independent, we say that they are a
basis of L, and the integer d is called the rank. The discreteness of L implies the
existence of a shortest non-zero lattice vector. Its norm is referred to as the lattice
minimum and is denoted by λ(L). Similarly, for any given target vector t in Rn,
there exists a lattice vector closest to t. Making the latter effective leads to the most
famous computational problems associated with lattices:

SVP— The Shortest Vector Problem is as follows: given a basis of a lattice L, find
a shortest non-zero vector of L.
CVP— The Closest Vector Problem is as follows: given a basis of a lattice L and a

target vector, find an element of L closest to the target vector.
The decisional variant of CVP (which consists in deciding whether there is a lattice
vector within a prescribed distance from the target vector) was proved NP hard by
van Emde Boas [23] in 1981. Ajtai later established the NP hardness of SVP under
randomized reductions [3]. Later works showed that many relaxations and variants
of CVP and SVP also remain NP hard [22, 47, 48, 20, 21, 24, 39, 63, 33].

Fields of application. SVP and CVP are of prime importance in cryptography.
They have been the cornerstone of the downfall of knapsack cryptosystems [46, 57, 55],
which were an early days alternative to RSA [64]. Their cryptographic relevance was
revived by Ajtai and Dwork [6] who proposed a public-key encryption scheme which
is provably as hard to break on average as to solve the worst-case instances of a
variant of SVP. Other more practical lattice-based cryptosystems were proposed at
the same time, but with weaker security guarantees [29, 36]. They paved the way

∗École Normale Supérieure de Lyon
†CNRS/University of Sydney/Macquarie University, partly supported by the ARC Discovery

Grant DP0880724 “Integral lattices and their theta series”

1

2 G. HANROT AND D. STEHLÉ

to the proposals of many different lattice-based cryptographic schemes. We refer the
interested reader to the recent survey [50]. For many of them, the best attack known
consists in solving instances of close variants of SVP and CVP. It is therefore highly
important to precisely assess which complexity is achievable.

Communication theory is another very active field of research where SVP and
CVP play a central role. In the linear Multi-Input Multi-Output (MIMO) channel
model, a data vector x ∈ Zn is transformed into a vector y = B · x + e ∈ Rn, where
the channel matrix B is known, and the perturbation e is unknown. The receiver has
to retrieve the data x from the vector y, which is a general instanciation of CVP.
Applying strong pre-processing to B, which essentially consists in solving several
SVP instances related to the channel matrix, can help speeding-up the decoding
process. We refer to [54, 69, 2, 43] for more details. SVP and CVP also arise in GPS
communications [32].

There are many other application domains of SVP and CVP, including discrete
optimization, e.g., integer linear programming [42, 38, 1], algorithmic number theory,
e.g., to compute the invariants of a number field [17], and combinatorics, e.g., to find
t-designs [70].

Known algorithms. Three main categories of algorithms are known for solving
SVP and CVP. The first one, which contains deterministic algorithms, relies on the
exhaustive enumeration of lattice points within small convex sets. The latter is known
as the Fincke-Pohst enumeration algorithm [25] in the algorithmic number theory
community, whereas in computer science, it is attributed to Kannan [37] (the CVP
variant is also known as sphere decoding in communications). There are two main
differences between them: first, in Kannan’s algorithm, a long pre-computation is
performed on the basis before starting the enumeration process; second, Kannan
enumerates points in a hyper-parallelepiped whereas Fincke and Pohst consider a
hyper-ellipsoid contained in Kannan’s hyper-parallelepiped — though it may be that
Kannan chose the hyper-parallelepiped in order to simplify his complexity analysis.
At first sight, Kannan’s algorithm seems slower than the one of Fincke and Pohst,
but it is actually the opposite: the lengthy pre-computation decreases the cost of the
hugely expensive enumeration. Kannan obtained a dd+o(d) complexity bound,1 for
both SVP and CVP. Note that the space requirement is polynomial, contratily to
the algorithms from the two other categories. In 1985, Helfrich [34] refined Kannan’s
algorithm (one of the algorithmic improvements is actually attributed to Schnorr) and

his analysis, to finally obtain a d
d
2 +o(d) complexity bound for SVP (the complexity of

the CVP algorithm remaining dd+o(d)). More recently, Blömer [11] proposed another
enumeration-based CVP solver whose complexity is a factor 2O(d) less than Helfrich’s.

A second type of algorithms was discovered by Ajtai, Kumar and Sivakumar [7]:
they introduced in 2001 a probabilistic (Monte Carlo) algorithm for SVP, of complex-
ity 2O(d). The best known exponent constant was progressively decreased [62, 56, 52]
and is now slightly less than 2.5 (see [61]). The Ajtai-Kumar-Sivakumar algorithm
was adapted to CVP in [8], but the CVP adaptation only finds a lattice vector whose
distance to the input target is within a factor 1+ ǫ from optimal (for any fixed ǫ > 0).
The exponent constant in the 2O(d) complexity grows to infinity as ǫ tends to 0.
The latter algorithm was recently adapted for other lattice problems by Blömer and
Naewe [12]. Apart from the possibility of incorrect or non-optimal outputs, these

1In all the complexity bounds mentioned in the introduction, we omit an implicit multiplicative
factor that is polynomial in the bit-size of the input.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 3

algorithms also have the drawback that they require an exponential amount of space.
Micciancio and Voulgaris [51] very recently introduced yet another family of algo-

rithms for CVP and SVP. The time and space complexities are 2O(d) like the Ajtai et
al algorithms, but they are deterministic and allow CVP to be solved exactly. Asymp-
totically, this family seems to supersede the one above, but due to the different space
requirements it remains incomparable with the Kannan algorithm.

In practice, the proved and heuristic variants of Kannan’s algorithms (see [67, 2,
28]) respectively outperform proved and heuristic variants of the Ajtai et al algorithm
(the article [52] contains a description of the currently fastest implementation of a
heuristic variant of [7]).

Our contributions. Our main results are to lower the best worst-case complex-
ity upper bound for Kannan’s SVP algorithm, from d

d
2 +o(d) ≈ d0.5·d to 2O(d) ·

d
d
2e <∼ d0.184·d and to show the existence of inputs for which this bound is essen-

tially reached. This means that the worst-case complexity of Kannan’s algorithm is
exactly 2O(d) · d

d
2e . We prove the lower bound by exhibiting bases reduced in the

Hermite-Korkine-Zolotarev sense (HKZ-reduced for short), which are least reduced
possible. This makes them good corner cases for strong lattice reductions. We show
the strengthened upper bound by studying the Gram-Schmidt orthogonalisation of
HKZ-reduced bases. Finally, we also decrease the best worst-case complexity upper
bound for Kannan’s CVP algorithm, from dd+o(d) to 2O(d) · d d

2 .
It must be noted that if one follows our analysis step by step, the derived O(d)

in the complexity upper bounds may be large when evaluated for some practical d:
the constants hidden in the “O(d)” may be improved (for some of them it may be
easy, for others it is probably much harder). No effort was made in that direction,
and we believe that it would have complicated the proof with irrelevant details. In
fact, most of our analysis consists in estimating the number of integer points within
hyper-ellipsoids, and showing that the approximation by the volume is valid. By
replacing this discretization by heuristic volume estimates, one obtains very small
heuristic hidden constants.

In his analysis, Kannan [37] bounds the number of integer points in a hyper-
ellipsoid by considering the circumbscribed parallelepiped. Our improvement stems
from the well-known fact that the latter is much larger than the former: when the
dimension increases, the ratio of the two volumes shrinks to 0 very quickly. This
had already been experimentally observed by Fincke and Pohst [25], but a theoretical
analysis was yet to be obtained. We first relate the number of integer points within
ellipsoids to their volumes, and then bound the latter volumes for the situation where
the input basis is HKZ-reduced. Some parts of our proof could be of independent
interest. For example, we show that for any HKZ-reduced lattice basis (b1, . . . ,bd),
and any subset I of {1, . . . , d} of cardinality |I|, we have:

‖b1‖|I|∏
i∈I ‖b∗

i ‖
≤

√
d
|I|(1+log d

|I|),

where (b∗
i)i≤d is the Gram-Schmidt orthogonalisation of the basis (b1, . . . ,bd). This

inequality generalises the results of [65] on the quality of HKZ-reduced bases.
Studying the tightness of the analysis described above leads to considering HKZ-

reduced lattice bases of poorest quality. We prove the existence of such bases (up
to lower order factors) by building upon and simplifying a technique introduced by
Ajtai in [4, 5] to prove lower bounds on quantities related to Schnorr’s hierarchies of

4 G. HANROT AND D. STEHLÉ

reductions and reduction algorithms [65]. To do so, Ajtai also builds HKZ-reduced

bases of bad quality. It could be expected that the function log
‖b∗

i ‖
‖b1‖ may be linear

with respect to i, for such worst-case bases — see [66, 4, 5]. The quality of our bases

is even worse, and cannot be reached with a linear function log
‖b∗

i ‖
‖b1‖ : the worst-case

HKZ-reduced bases satisfy log
‖b∗

i ‖
‖b1‖ ≈ 1

4 log2(d − i) (see Corollary 5.5), which is a

concave function of i. The concavity originates from the greediness of the HKZ-
reduction: the ith vector is a shortest non-zero vector in a (d − i + 1)-dimensional
lattice, which is a much stronger requirement for small i than for large i. We prove
that given such bases as input, Kannan’s SVP algorithm performs at least 2O(d) · d d

2e

operations.

Practical Implications. Our work was initially motivated by practical appli-
cations in cryptanalysis. First of all, our lowered complexity upper bound may ex-
plain why Kannan’s algorithm remains tractable even in moderate dimensions (higher
than 60). Moreover, as mentioned above, our analysis can be interpreted as a for-
malisation of a heuristic cost estimate based on volume computations. In [30], we
precisely describe these estimates and give practical evidence that the practical run-
ning times match. They have been implemented in the MAGMA system [14] where
they allow the user to estimate the cost of an enumeration before actually running it.
These estimates can also be used to efficiently parallelize the enumeration [59] and to
provide cost gain and failure probability guesses for the pruned enumeration heuristic
of [67] (see [28] for more explanations and further developments in that direction).

When the dimension becomes too large for Kannan’s SVP algorithm to terminate
in a reasonable amount of time, one uses Schnorr’s block-based algorithms [65, 67]
(see [26, 27] for state-of-the-art block-based algorithms). These algorithms use either
Kannan’s algorithm, or the underlying lattice point enumeration procedure. This
dominates their running-times. Our complexity improvement on Kannan’s SVP al-
gorithm automatically ensures better worst-case efficiency/quality trade-offs for these
block-based algorithms.

Our lower-bound analysis can readily be adapted to provide bases that are corner
cases for Schnorr’s block-based algorithms [65, 67] (we refer to [31] for more details),
which could be used to devise experimental corner cases.

Related works. The present article contains the full details of the parts of [30]
and [31] that are relevant to Kannan’s algorithms. The practical aspects of these
earlier works have not been included in the present article, to focus on the theoretical
improvements on SVP and CVP. In [60], Pujol and Stehlé investigate the use of
floating-point arithmetic within the SVP enumeration algorithms. Their result allows
the arithmetic cost of the enumeration (the number of arithmetic steps is unchanged)
to be decreased. In [59], Pujol shows how to efficiently parallelize the enumeration
algorithms, using the heuristic volume estimates mentioned above. In [28], these
volume estimates are used to (heuristically) analyze a modification of the pruning
strategy of [67]. These works already led to several implementations, in the Magma
computer algebra system [14], and in the stand-alone library fplll [16].

Road-Map. In §2, we give some reminders on lattices and on Kannan’s algorithms.
We then study the underlying enumeration procedure in §3. §4 consists in proving
geometrical properties satisfied by HKZ-reduced bases, which is the key for the com-
plexity upper bound to Kannan’s SVP algorithm. In §5, we describe the probabilistic
sampling of lattice bases satisfying some geometrical properties: this leads to the
lower bound on the worst-case complexity of Kannan’s SVP algorithm. Finally, in §6,

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 5

we draw a list of related open problems.

Notation. All logarithms are natural logarithms, i.e., log(e) = 1. Let ‖ · ‖ and 〈·, ·〉
be the Euclidean norm and inner product of Rn. Bold variables correspond to
vectors. For complexity statements, we use the bit complexity model. The nota-
tion P(n1, . . . , ni) means O(n1 · . . . · ni)

c for some constant c > 0. If x is real, we
denote by ⌊x⌉ a closest integer to it (with any convention for making it unique) and
we define the centred fractional part {x} as x − ⌊x⌉. We use the notation frac(x) to
denote the classical fractional part of x, i.e., the quantity x−⌊x⌋. If x ∈ R, then (x)+
denotes max(0, x). Finally, for any integers a and b, we define Ja, bK as [a, b] ∩ Z.

2. Reminders. We assume the reader is familiar with the algorithmic aspects
of the geometry of numbers, and refer to [49] and [62] for introductory exposures.

2.1. Euclidean Lattices. Let b1, . . . ,bd be (possibly linearly dependent) vec-
tors of Rn. Their Gram-Schmidt orthogonalisation (GSO) b∗

1, . . . ,b
∗
d is the orthogonal

family defined as follows: for any i, the vector b∗
i is the projection of the vector bi

orthogonally to the linear span of the vectors b1, . . . ,bi−1. If the bi’s are linearly

independent, then we have b∗
i = bi −

∑i−1
j=1 µi,jb

∗
j where µi,j =

〈bi,b
∗
j 〉

‖b∗
j‖2 , for any j ≤ i.

In the case of linearly dependent vectors, the same formula holds if we let µi,j be 0
for any i > j such that b∗

j = 0. Notice that the GSO family depends on the order of
the vectors bi. If the bi’s are rational, then the b∗

i ’s and the µi,j ’s are rational, and
their bit-size is bounded by a polynomial function of the dimensions and the bit-size
of the bi’s.

Any lattice L with d ≥ 2 has infinitely many bases, related to one another by
unimodular transforms (i.e., elements of GLd(Z)). Some quantities related to L do not
depend on the particular choice of basis of L: these are called lattice invariants. For
example, the rank d and the minimum λ(L) are lattice invariants. The determinant

of L is another one. It is defined as detL =
∏d

i=1 ‖b∗
i ‖, where (b1, . . . ,bd) is any basis

of L and can be interpreted as the geometric volume of the parallelepiped spanned by
the basis vectors.

The volume and the minimum of a lattice cannot vary completely independently.

Hermite [35] was the first to bound the ratio λ(L)
(det L)1/d as a function of the rank

only, but his bound was later greatly improved by Minkowski [53]. The Hermite

constant γd is defined as the supremum of the ratio λ(L)2

(det L)2/d over lattices L of rank d.

In particular, we have the bound γd ≤ d+4
4 (see [44, Remark 2.7.5]), which we will

refer to as Minkowski’s theorem.

2.2. Lattice Reduction. Unfortunately, there is no known constructive proof
of Minkowski’s theorem. None provides any insight on how to find a shortest non-zero
vector from a given basis. In practice, one often starts with a lattice basis, and tries
to improve its quality. This process is called lattice reduction. The most famous
ones are probably the LLL [41] and HKZ [35, 40] reductions. Before defining them,
we need the concept of size-reduction: a basis (b1, . . . ,bd) is size-reduced if its GSO
family satisfies |µi,j | ≤ 1/2 for all j < i.

Definition 2.1 (HKZ-reduction). A basis (b1, . . . ,bd) of a lattice L is said to
be Hermite-Korkine-Zolotarev-reduced if it is size-reduced, the vector b1 reaches the
lattice minimum (i.e., we have ‖b1‖ = λ(L)) and the projections of the bi’s for i ≥ 2
orthogonally to the vector b1 (i.e., the vectors bi − µi,1b1, for i ≥ 2) form an HKZ-
reduced basis of the lattice they span.

6 G. HANROT AND D. STEHLÉ

The following immediately follows from the above definition and Minkowski’s
theorem. It is the sole property on HKZ-reduced bases that we will use:

Lemma 2.2. If (b1, . . . ,bd) is HKZ-reduced, then for any i ≤ d, we have:

‖b∗
i ‖ ≤

√
d − i + 5

4
·

∏

j≥i

‖b∗
j‖

1
d−i+1

.

HKZ-reduction is very strong, but expensive to compute. Contrarily, LLL-reduc-
tion can be achieved in polynomial time, but an LLL-reduced basis is of much lower
quality. A basis (b1, . . . ,bd) is LLL-reduced if it is size-reduced and if its GSO satisfies

the (d − 1) Lovász conditions: 3
4 ·

∥∥b∗
i−1

∥∥2 ≤
∥∥b∗

i + µi,i−1b
∗
i−1

∥∥2
. The definition of

LLL-reduction implies that the GSO norms ‖b∗
1‖, . . . , ‖b∗

d‖ do not drop too fast. As
a consequence, LLL-reduced bases enjoy useful properties, like providing exponential
approximations to SVP and CVP. In particular, their first vector is relatively short.

Theorem 2.3 ([41]). Let (b1, . . . ,bd) be an LLL-reduced basis of a lattice L.

Then we have ‖b1‖ ≤ 2
d−1
4 ·(det L)1/d. We also have ‖b∗

i ‖ ≥ 2
−i+1

2 ‖b1‖ for any i ≤ d.
Finally, there exists an algorithm, called LLL, that takes as input any set of rational
vectors and outputs in deterministic polynomial time an LLL-reduced basis of the
lattice they span.

We will also need the following properties on the LLL algorithm:

(i) If the input set of vectors is an LLL-reduced basis, then LLL returns exactly
that basis.

(ii) During the execution of LLL, none of the quantities maxj≤d ‖b∗
j‖ can in-

crease (see [41, p. 523]).
(iii) If the input set of vectors starts with a shortest non-zero lattice vector, then

the output basis starts with the same vector.

2.3. Kannan’s Algorithms. Kannan’s algorithms rely on multiple calls to a
lattice points enumeration procedure. The latter aims at computing all vectors of
a given lattice that belong to a given hyperball. Let (b1, . . . ,bd) be a basis of a
lattice L ⊆ Qn, let t ∈ Qn be in the linear span of the bi’s and let A ∈ Q. We aim at
finding all lattice vectors

∑d
i=1 xibi within squared distance A from the target t. In

the case of SVP, we take t = 0. In the case of CVP, the target t could be outside of
the span of the bi’s: in that case, we decompose t into two orthogonal components,
one that lies in the linear span of the bi’s and one that is orthogonal to it. Suppose
now that ‖∑i xibi − t‖2 ≤ A for some integers xi’s. By considering the change of
variable bi → b∗

i , we obtain:

∑

i≤d

xi − ti +

∑

j>i

µj,ixj

2

‖b∗
i ‖2 ≤ A, where t =

∑

i≤d

tib
∗
i .

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 7

The left hand side being a sum of non-negative terms, the following equations hold:

(xd − td)
2 · ‖b∗

d‖2 ≤ A,

(xd−1 − td−1 + µd,d−1xd)
2 · ‖b∗

d−1‖2 ≤ A − ℓd,

. . .

xi − ti +

d∑

j=i+1

µj,ixj

2

· ‖b∗
i ‖2 ≤ A −

d∑

j=i+1

ℓj ,

. . .

x1 − t1 +

d∑

j=2

µj,ixj

2

· ‖b1‖2 ≤ A −
d∑

j=2

ℓj ,

(2.1)

where ℓi = (xi − ti +
∑

j>i xjµj,i)
2 · ‖b∗

i ‖2. The enumeration algorithm considers
all the solutions xd ∈ Z to the first equation, then for each xd it considers all the
solutions xd−1 ∈ Z to the second equation, etc. It proceeds in a depth first tree search
manner. The ith layer of the tree contains nodes labelled (xi, . . . , xd) corresponding to
solutions of the (d−i+1)th equation above. Its sons are the solutions (x′

i−1, x
′
i, . . . , x

′
d)

to the (d − i + 2)th equation such that x′
j = xj for all j ≥ i. The enumeration

algorithm is given in Figure 2.1. For other variants, see [2]. The bit-cost of this
algorithm is bounded by the number of loop iterations, up to a multiplicative factor
that is polynomial in the bit-size of the input. Note that as described, the space
complexity of the enumeration procedure is at least the bit-size of the output set of
vectors, which may not be polynomially bounded with respect to the bit-size of the
input. We discuss later how to avoid this issue when the enumeration algorithm is
used within Kannan’s algorithms.

Inputs: Basis vectors b1, . . . ,bd ∈ Qn, a target t ∈ Qn in the span of the bi’s
and a bound A ∈ Q.
Output: All vectors b ∈ L(b1, . . . ,bd) such that ‖b − t‖2 ≤ A.
1. Compute (over Q) the b∗

i ’s, the ti’s and the µi,j ’s for all i ≥ j .
2. x:=0, l:=0, S:=∅.

3. i:=d and xd:=
l

td −
√

A
‖b∗

d
‖

m

. While i ≤ d, do

4. ℓi:=(xi − ti +
P

j>i
xjµj,i)

2‖b∗
i ‖

2.

5. If i = 1 and
Pd

j=1 ℓj ≤ A, then S:=S ∪ {x}, x1:=x1 + 1.

6. If i 6= 1 and
P

j≥i ℓj ≤ A, then

7. i:=i − 1, xi:=

‰

ti −
P

j>i(xjµj,i) −

r

A−P

j>i ℓj

‖b∗
i ‖2

ı

.

8. If
P

j≥i
ℓj > A, then i:=i + 1, xi:=xi + 1.

9. Return S.

Fig. 2.1. The Enumeration Algorithm.

To solve SVP, Kannan provides an algorithm that computes HKZ-reduced bases,
see Figure 2.2 (which actually describes Helfrich’s variant [34] of Kannan’s algorithm).
The cost of the enumeration procedure dominates the overall cost and mostly depends
on the quality (i.e., the slow decrease of the ‖b∗

i ‖’s) of the input basis. The main idea
behind Kannan’s algorithm consists in spending an important amount of time pre-

8 G. HANROT AND D. STEHLÉ

computing a basis of excellent quality before calling the enumeration procedure. More
precisely, it pre-computes a basis which is almost HKZ-reduced.

Definition 2.4 (Quasi-HKZ-Reduction). A basis (b1, . . . ,bd) is called quasi-
HKZ-reduced if it is size-reduced, if (b1,b2) is LLL-reduced and the projections of the
bi’s for i ≥ 2 orthogonally to the vector b1 are an HKZ-reduced basis.

Note that any quasi-HKZ-reduced basis is LLL-reduced.

Input: A rational basis (b1, . . . ,bd) of a lattice L.
Output: An HKZ-reduced basis of L.
1. If d ≤ 1, return (b1, . . . ,bd).
2. LLL-reduce the basis (b1, . . . ,bd).
3. Compute b′

i = bi − µi,1b1, the projection of bi orthogonally to b1, for all i ≥ 2.
4. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . ,b
′
d).

5. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |eµi,1| ≤ 1/2 for any i > 1, providing

a new basis (eb1, . . . , ebd).

6. If (eb1, . . . , ebd) is not quasi-HKZ-reduced, HKZ-reduce (eb1, eb2) and go to Step 3.

7. Call the algorithm of Figure 2.1 with t = 0 and A = ‖eb1‖
2. Let eb0 be a shortest

non-zero vector among the solutions.

8. (c1, . . . , cd):=LLL(eb0, . . . , ebd).
9. Compute c′

i = ci − µi,1c1, the projection of ci orthogonally to c1, for all i ≥ 2.
10. HKZ-reduce the (d − 1)-dimensional basis (c′

2, . . . , c
′
d).

11. Extend the obtained (c′
i)i≥2’s into vectors of L by adding to them rational

multiples of c1, in such a way that we have |eµi,1| ≤ 1/2 for any i > 1, providing
a new basis (ec1, . . . , ecd).
12. Return (ec1, . . . , ecd).

Fig. 2.2. Kannan’s HKZ-reduction Algorithm.

Several comments need to be made on the algorithm of Figure 2.2. First, the
algorithm aims at HKZ-reducing the input lattice. An SVP algorithm is easily ob-
tained by first running the algorithm of Figure 2.2, and then returning the first vector
of the output. Step 6 contains a recursive call in dimension 2: Theorem 2.3 may be
used to show correctness in dimension 2. Steps 4 and 10 are recursive calls in dimen-
sion d − 1. Steps 5 and 11 can be performed for example by expressing the reduced
basis vectors as integer linear combinations of the initial ones, using these coefficients
to recover vectors of L having appropriate values once projected orthogonally to b1,
and subtracting a correct multiple of the vector b1 to ensure that |µ̃i,1| ≤ 1/2 for
any i. The way it is written, Step 7 may require an amount of space that is not
polynomially bounded in the bit-size of the input. The algorithm of Figure 2.1 can
easily be modified to avoid this issue: instead of storing all vectors whose norms are
below the prescribed bound, it suffices to keep (and update) the shortest non-zero
vector found so far during the execution.

Kannan’s CVP algorithm is given in Figure 2.3. It consists in HKZ-reducing
the basis (b1, . . . ,bd) and then applying the enumeration algorithm possibly several
times.

At first sight, the algorithm of Figure 2.3 may require a huge amount of space.
This can be avoided by starting Step 5 each time a vector is found at Step 4, and
going back to Step 4 at the end of any such recursive call. Step 5 is a recursive call in
dimension i − 1 < d. Note that the vector t′ −

∑
j≥i xjb

′
j belongs to the linear span

of b1, . . . ,bi−1. The correctness of the algorithm follows from the following facts:

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 9

Inputs: A rational basis (b1, . . . ,bd) of a lattice L and a rational target t in
the span of the bi’s.
Output: A vector of L that is closest to t.
1. HKZ-reduce the basis (b1, . . . ,bd), by using the algorithm of Figure 2.2.
2. Let i ≤ d such that ‖b∗

i ‖ is maximal.
3. For each j ≥ i, decompose bj as bj = b′

j + b′′
j , with b′

j belonging to
the span of b1, . . . ,bi−1 and b′′

j orthogonal to it. Proceed similarly with t.
4. Call the algorithm of Figure 2.1 to find all vectors c′′ =

P

j≥i xjb
′′
j within

squared distance d
4
‖b∗

i ‖
2 of t′′.

5. For any c′′, find a vector c′ ∈ L[b1, . . . ,bi−1] closest to t′ −
P

j≥i
xjb

′
j .

6. Among the vectors c′ + c′′, output one which is closest to t.

Fig. 2.3. Kannan’s CVP Algorithm.

(i) If
∑d

j=1 xjbj is a closest vector to t, then we have ‖∑
j≥i xjb

′′
j − t′′‖2 ≤

‖∑d
j=1 xjbj − t‖2 ≤ 1

4

∑d
j=1 ‖b∗

j‖2 ≤ d
4‖b∗

i ‖2 (see for example [9]).
(ii) Under the same assumption, the vector

∑
j<i xjbj is closest to t−∑

j≥i xjbj

in the lattice L[b1, . . . ,bi−1].
(iii) The vector t′ − ∑

j≥i xjb
′
j is the orthogonal projection of the vector t −∑

j≥i xjbj onto the span of the vectors b1, . . . ,bi−1.

2.4. Worst-case Complexities of Kannan’s Algorithms. The main result
of the present paper is to exhibit the exact worst-case complexity of Kannan’s HKZ-
reduction algorithm (and thus SVP algorithm), by lowering Helfrich’s complexity
upper bound [34], and by providing the first worst-case complexity lower bound.

Theorem 2.5. Given as inputs any quasi-HKZ-reduced basis (b1, . . . ,bd), t =
0 and A = ‖b1‖2, the number of loop iterations occurring during the execution of

the algorithm of Figure 2.1 is 2O(d) · d
d
2e . Furthermore, there exist HKZ-reduced

bases (b1, . . . ,bd) such that given (b1, . . . ,bd), t = 0 and A = ‖b1‖2 as inputs, the
number of loop iterations occurring during the execution of the algorithm of Figure 2.1
is 2O(d) · d d

2e .

As a consequence, given as input any d-dimensional basis of n-dimensional ra-
tional vectors with entries of bit-sizes ≤ β, the algorithm of Figure 2.2 returns an
HKZ-reduced basis of the input lattice, in deterministic time P(β, n, 2d) ·d d

2e . Finally,
there exist input bases for which the running-time of the algorithm of Figure 2.2
is ≥ 2O(d) · d d

2e .

We now prove the second part of Theorem 2.5. The rest of the paper will be
devoted to the cost analysis of the enumeration algorithm. What follows is classical
(e.g., see [34]), but we provide it for the sake of completeness.

Proof. We prove the second part, assuming that the first part holds.

We first consider the bit-sizes of the GSO of a rational basis. Wlog we con-
sider an integer basis (b1, . . . ,bd) (otherwise, one may scale by the product of the
denominators of the coefficients of the basis vectors). Let β be the maximum of
the bit-sizes of the entries of the bi’s. Let i ≤ d. The vector b∗

i may be written
as b∗

i = bi +
∑

j<i yjbj , with yj ∈ Q for j < i. We have 〈bj ,b
∗
i 〉 = 0 for j < i,

which implies the matrix identity CT C · y = −CT · bi, where C is the matrix whose
columns are b1, . . . ,bi−1 and the entries of y are the yj ’s. Cramer’s rule implies
that yj =

aj

det(CT C)
, for some integer aj . This proves that yj is a rational number.

Moreover, Hadamard’s inequality provides det(CT C) ≤ 2P(n,β). As a consequence,

10 G. HANROT AND D. STEHLÉ

the denominator of yj may be written on P(n, β) bits. The same argument holds for
its numerator. We thus obtain that the bit-size of the rational vector b∗

i is P(n, β).

Since µi,j =
〈bi,b

∗
j 〉

‖b∗
j ‖2 , this also holds for the µi,j ’s.

We now show that the bit-size of any vector occurring during the execution of
the algorithm of Figure 2.2 is P(n, β). If we unroll Steps 4 and 10, we see that the
only operations performed on the set of d or d + 1 vectors b1,b2, . . . generating the
lattice L are of the following type:

1. consider the lattice L = L[b
(i)
i , . . . ,b

(i)
d], where b

(i)
j = bj −

∑
k<i µj,kb

∗
k is

the projection of bj orthogonally to the vectors b1, . . . ,bi−1; find a shortest non-zero
vector b(i) in L, by using the algorithm of Figure 2.1.

2. LLL-reduce b(i),b
(i)
i , . . . ,b

(i)
d , where b(i) is a shortest non-zero vector in L.

We prove that the quantity maxj≤d ‖b∗
j‖ cannot increase under the action of either

type of step. We already know it for type (2) (see the discussion after Theorem 2.3).
We now consider type (1). Let c1, . . . , cd+1 be the vectors after the enumeration: the
vector ci is the new one, and we have cj = bj for j < i and cj = bj−1 for j > i.
For j < i, as b1, . . . ,bi−1 are not modified, the quantity ‖b∗

j‖ remains constant.
If j > i, the vector c∗j is the vector b∗

j−1 after projection orthogonally to the new
vector c∗i , and thus ‖c∗j‖ ≤ ‖b∗

j−1‖. Finally, for j = i, the correctness of the algorithm
of Figure 2.1 implies that ‖c∗i ‖ ≤ ‖b∗

i ‖.
From the discussion above, we conclude that for any j and at any moment during

the execution of the algorithm of Figure 2.2, we have ‖b∗
j‖ ≤ B, where B = 2P(n,β) is

the maximum of the norms of the input vectors. Since all considered bases are size-

reduced, for any considered vector b
(i)
j , we have ‖b(i)

j ‖ ≤
√

d maxk≤j ‖b∗
k‖ ≤

√
dB.

As a consequence, any vector occurring during the execution of the algorithm is of
bit-size P(n, β). It is also the case for any GSO coefficient that occurs.

We now show that the xi’s computed during the calls to the enumeration algo-
rithm of Figure 2.1 are of bit-sizes P(n, β). Any considered xi is such that |xi| ≤∑

j>i |xj ||µj,i| +
√

A
‖b∗

i ‖
+ 1 (see the list of equations (2.1)). Since the enumeration is

called on an LLL-reduced basis (c1, . . . , ck) with A = ‖c1‖2 and k ≤ d, Theorem 2.3
implies that |xi| ≤

∑
j>i |xj |+ 2d + 1. The |xi|’s are thus no greater than the yi’s de-

fined by yi =
∑

j>i yj +2d +1 and yk = 2d +1. We have yi = 2yi+1 when i < k, which

allows us to conclude that any occurring xi has magnitude ≤ 2P(d). This completes
the proof that all the rationals considered during the execution of the algorithm are
of bit-sizes P(n, β).

We now recall Helfrich’s proof [34] that the number of iterations of the loop made
of Steps 3–6 of the algorithm of Figure 2.2 is O(log d). If the test of Step 6 fails,
then the vector b1 is replaced by a vector b′

1 such that ‖b′
1‖ ≤

√
2
√

‖b1‖ · ‖b∗
2‖ (see

Theorem 2.3). Since the test fails, the vector b1 cannot be a shortest non-zero vector
of the lattice L = L[b1, . . . ,bd]. A shortest non-zero vector must therefore make use
of a non-zero integer multiple of the other bi’s. Since the projections of the other bi’s
orthogonally to b1 form an HKZ-reduced basis, we must have λ(L) ≥ ‖b∗

2‖. Overall,

we obtain ‖b′
1‖ ≤

√
2
√

‖b1‖λ(L), which can be rewritten as
‖b′

1‖
λ(L) ≤

√
2
√

‖b1‖
λ(L) .

Initially, the basis (b1, . . . ,bd) is LLL-reduced, which implies that ‖b1‖ ≤ 2dλ(L)
(see Theorem 2.3). We thus obtain that within O(log d) iterations, we have ‖b1‖ ≤
8λ(L). Each further iteration decreases ‖b1‖ by a factor ≥

√
3

2 (since ‖b′
1‖ ≤ ‖b2‖ ≤√

3
2 ‖b1‖), which yields the result.

Let C(d, n, β) be the worst-case cost of the algorithm of Figure 2.2. So far,

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 11

we have that C(d, n, β) ≤ P(n, β) · C′
d, where the sequence (C′

d) satisfies the equa-

tion C′
d ≤ (K1 log d) · C′

d−1 + d
d
2e · 2K2d, for some constants K1 and K2 Note that we

just used the first part of the theorem. This implies that for any d, we have C′
d ≤∑

i≤d(K1 log d)d−ii
i
2e 2K2d · C′

1 = 2O(d) · d d
2e .

We now prove the last statement of the theorem. Suppose that an HKZ-reduced
basis satisfying the second claim is given as input to Algorithm 2.2. As an HKZ-
reduced basis is LLL-reduced, Step 2 does not modify the input basis. Definition 2.1
implies that Steps 3–5 do not modify it either. Also, an HKZ-reduced is always quasi-
HKZ-reduced, and therefore the condition of Step 6 is not satisfied, and the execution
proceeds with Step 7. Finally, the second claim of the theorem provides us that Step 7
costs 2O(d) · d d

2e bit operations.
We also obtain the following results on Kannan’s CVP algorithm.
Theorem 2.6. Given as inputs a basis (b1, . . . ,bd) of a lattice L with ‖b1‖ =

maxi≤d ‖b∗
i ‖, a target vector t in the linear span of the bi’s and A ≥ d

4‖b1‖2, the
number of loop iterations occurring during the execution of the algorithm of Figure 2.1

is ≤ 2O(d) ·
√

A/d
d

det L . As a consequence, given as inputs a d-dimensional basis made
of n-dimensional rational vectors with entries of bit-sizes ≤ β and a target rational
vector t with entries of bit-sizes ≤ β, the algorithm of Figure 2.3 returns a closest
vector to t in the lattice spanned by the bi’s, in deterministic time P(β, n, 2d) · d d

2 .
Proof. We will show the first part of the result at the end of §3. The costs of the

rational arithmetic operations involved in the execution of the algorithm of Figure 2.3
and its calls to the algorithm of Figure 2.1 can be bounded in a fashion similar to
what we did in the proof of Theorem 2.5. Also, Theorem 2.5 implies that Step 1 of
the algorithm of Figure 2.3 is performed within the prescribed amount of time.

As a consequence of the first statement of the theorem, of Minkowski’s bound and
of the HKZ-reducedness of the basis after Step 1, if C(d, n, β) denotes the worst-case
cost of the algorithm of Figure 2.3, then we have C(d, n, β) ≤ P(n, β)C′(d) with C′(d) ≤
2K(d−i+1)d

d−i+1
2 · C′(i), for some constant K and with i as in Step 2 of the algorithm

of Figure 2.3. This provides the result.

3. Complexity of the Enumeration Procedure. The present section is de-
voted to providing complexity (upper and lower) bounds for the enumeration algo-
rithm (described in Figure 2.1). The latter dominates the costs of both CVP and HKZ
algorithms. The bounds involve geometric data related to the input basis b1, . . . ,bd,
namely the GSO norms ‖b∗

i ‖. We shall obtain an upper and a lower bound of very sim-
ilar shapes: the main term of those bounds actually match in the case where the GSO
norms form a non-increasing sequence. In this section, the input basis (b1, . . . ,bd),
the input target t and the input bound A are arbitrary.

The complexity of the enumeration procedure of Figure 2.1 is its number of loop
iterations, up to some polynomial in n and the maximum of the bit-sizes of the entries
of the input vectors.

Lemma 3.1. Let (b1, . . . ,bd), t and A be valid inputs to the algorithm of Fig-
ure 2.1. We define

Ei =

y ∈ Rd−i+1 :

∥∥∥∥∥∥

d∑

j=i

yjb
(i)
j − t(i)

∥∥∥∥∥∥

2

≤ A

,

and b
(i)
j = bj −

∑
k<i µj,kb

∗
k is the vector bj once projected orthogonally to the linear

12 G. HANROT AND D. STEHLÉ

span of the vectors b1, . . . ,bi−1, and t(i) is defined similarly. The number of loop
iterations performed during the execution of the algorithm of Figure 2.1 is contained
in the interval [

∑
i≤d Ni, 3

∑
i≤d Ni], where Ni = |Ei ∩ Zd−i+1|.

Proof. The lower bound derives from the fact that the enumeration algorithm finds
all integer solutions to (2.1). To prove the upper bound, we define a valid truncated

coordinate as an integer tuple (xi, . . . , xd) satisfying ‖∑d
j=i xjb

(i)
j −t(i)‖2 ≤ A. Every

loop iteration corresponds to a different truncated coordinate. The upper bound holds
because any loop iteration corresponding to a valid truncated coordinate (xi, . . . , xd)
is followed by at most two loop iterations corresponding to truncated coordinates that
are not valid: these can only be (xi + 1, . . . , xd) and (xi−1, xi . . . , xd) for at most one
integer xi−1 (defined at Step 7).

The set Ei is a skewed hyper-ellipsoid. In the following lemma, we show that we
can instead count integer points contained in hyper-ellipsoids with orthogonal axes.

Lemma 3.2. We keep the notations of Lemma 3.1. For i ≤ d and B ≥ 0, we
define Fi(B) = {y ∈ Rd−i+1 :

∑
j≥i y2

j ‖b∗
j‖2 ≤ B}. We have:

∣∣∣∣Fi

(
4A

9

)
∩ (Z \ 0)d−i+1

∣∣∣∣ ≤ Ni ≤
∣∣Fi(4A) ∩ Zd−i+1

∣∣ .

Proof. We let t =
∑

j≤d tjb
∗
j be the expression of t with respect to the GSO

of the bi’s. Let φ : Rd−i+1 → Rd−i+1 be defined by φ(y) = z with zj = yj +⌊
tj −

∑
k>j µk,jzk

⌉
for any j ≥ i. The function φ is a bijection. Furthermore,

∑

j≥i

zjb
(i)
j − t(i) =

∑

j≥i

zj − tj +

∑

k>j

µk,jzk

b∗

j =
∑

j≥i

(yj + δj)b
∗
j ,

for some δj ∈ [−1/2, 1/2] (for all j ≥ i).
For any non-zero integer y and any δ ∈ [−1/2, 1/2], we have (y + δ)2 ≤ 9

4y2.

Hence, for y ∈ Fi(
4A
9) ∩ (Z \ 0)d−i+1, the zj ’s are integers and

‖
∑

j≥i

zjb
(i)
j − t(i)‖2 =

∑

j≥i

(yj + δj)
2‖b∗

j‖2 ≤ 9

4

∑

j≥i

y2
j ‖b∗

j‖2 ≤ A.

This implies that φ(Fi(
4A
9)∩ (Z \ 0)d−i+1) ⊆ Ei ∩Zd−i+1, which means that the lower

bound holds.
For any integer y and any δ ∈ [−1/2, 1/2], we have (y + δ)2 ≥ y2/4. This implies

that φ−1(Ei ∩ Zd−i+1) ⊆ Fi(4A) ∩ Zd−i+1, which provides the upper bound.
We now consider the quantity

∣∣Fi(B) ∩ Zd−i+1
∣∣, for B ≥ 0. The proof of the first

inequality below is inspired from [45, Lemma 1].
Lemma 3.3. We keep the same notations as above. We have the following, for

all i:

∣∣Fi(B) ∩ Zd−i+1
∣∣ ≤ ((1 +

√
π)e)d ·

∏

j≥i

max

(
1,

√
B√

d‖b∗
j‖

)
.

Furthermore, if i is such that ‖b∗
j‖ ≤

√
B
d for all j ≥ i, then:

∣∣Fi(B) ∩ (Z \ 0)d−i+1
∣∣ ≥

∏

j≥i

√
B√

d‖b∗
j‖

.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 13

Proof. We start with the first inequality. Let 1Fi(B) denote the indicator function
of the set Fi(B). We have the following sequence of relations:

∑

x∈Zd−i+1

1Fi(B)(x) ≤
∑

x∈Zd−i+1

exp

d

1 −

∑

j≥i

x2
j

‖b∗
j‖2

B

= ed ·
∑

x∈Zd−i+1

∏

j≥i

exp

(
−x2

j

d‖b∗
j‖2

B

)

= ed ·
∏

j≥i

∑

x∈Z

exp

(
−x2

d‖b∗
j‖2

B

)

= ed ·
∏

j≥i

Θ

(
d‖b∗

j‖2

B

)
,

where Θ(t) =
∑

x∈Z
exp(−tx2) is defined for t > 0. Notice that

Θ(t) = 1 + 2
∑

x≥1

exp(−tx2) ≤ 1 + 2

∫ ∞

0

exp(−tx2)dx = 1 +

√
π

t
.

Hence Θ(t) ≤ 1+
√

π√
t

for t ≤ 1 and Θ(t) ≤ 1 +
√

π for t ≥ 1. This provides the first

assertion of the lemma.
We now prove the second inequality. The set Fi(B) ∩ (R \ 0)d−i+1 contains the

subset

d∏

j=i

([
−

√
B√

d‖b∗
j‖

,

√
B√

d‖b∗
j‖

]
\ 0

)
.

This implies that

∣∣Fi(B) ∩ (Z \ 0)d−i+1
∣∣ ≥

d∏

j=i

(
2

⌊ √
B√

d‖b∗
j‖

⌋)
≥

d∏

j=i

√
B√

d‖b∗
j‖

.

The definition of i provides the result.
We now prove the first statement of Theorem 2.6. Thanks to the assumptions A ≥

d
4‖b1‖2 and ‖b1‖ = maxi≤d ‖b∗

i ‖, we have B := 4A ≥ d‖b∗
i ‖2 for all i ≤ d. The

upper bounds of Lemmas 3.1, 3.2 and 3.3 then give that the number of loop iterations
performed during the execution of the enumeration algorithm is upper bounded by

2O(d)
∑

i≤d

√
A/d

d−i+1

∏
j≥i ‖b∗

j‖
≤ 2O(d)

√
A/d

d

det(L[b1, . . . ,bd])
.

The lemmas above also provide the following upper bound for the number of loop
iterations of the enumeration routine, which holds in a more general context.

Theorem 3.4. Let (b1, . . . ,bd), t and A be valid inputs to the algorithm of
Figure 2.1. The number of loop iterations performed during the execution of the latter
is upper bounded by

2O(d) · max
I⊆J1,dK

(
(
√

A)|I|

(
√

d)|I|
∏

i∈I ‖b∗
i ‖

)
.

14 G. HANROT AND D. STEHLÉ

In §4, we will bound the quantity above for quasi-HKZ-reduced bases, and thus
derive the first statement of Theorem 2.5. Finally, note that the lower bounds of
Lemmas 3.1, 3.2 and 3.3 imply that to prove the second statement of Theorem 2.5,

it suffices to construct an HKZ-reduced basis (b1, . . . ,bd) such that (‖b1‖/
√

d)d−i+1
Q

j≥i ‖b∗
j ‖

is

large, for an i such that for any j ≥ i we have ‖b∗
j‖ ≤ 2

3
‖b1‖√

d
. We will fulfill this task

in §5.

4. On the Geometry of HKZ-Reduced Bases. In this section, we assume
that (b1, . . . ,bd) is quasi-HKZ-reduced, that d ≥ 2 and that A = ‖b1‖2. We aim

at bounding the quantity maxI⊆J1,dK

(
(
√

A)|I|

(
√

d)|I|
Q

i∈I ‖b∗
i ‖

)
from Theorem 3.4. Our first

step consists in strengthening the quasi-HKZ-reducedness hypothesis into an HKZ-
reducedness hypothesis. Let I ⊆ J1, dK. If 1 /∈ I, then, because of the quasi-HKZ-
reducedness assumption:

‖b1‖|I|
(
√

d)|I|
∏

i∈I ‖b∗
i ‖

≤ 2d/2 ‖b∗
2‖|I|

(
√

d)|I|
∏

i∈I ‖b∗
i ‖

.

If 1 ∈ I, then we have, by removing the term ‖b∗
1‖ from the product:

‖b1‖|I|
(
√

d)|I|
∏

i∈I ‖b∗
i ‖

≤ 2d/2 ‖b∗
2‖|I|−1

(
√

d)|I|−1
∏

i∈I\{1} ‖b∗
i ‖

.

As a consequence of Theorem 3.4, the following provides the first assertion of The-
orem 2.5. Note that the second inequality simply derives from the inequality log x

x ≤ 1
e

for x ≥ 1.

Theorem 4.1. Let b1, . . . ,bd be an HKZ-reduced basis. Let I ⊆ J1, dK. Then

‖b1‖|I|∏
i∈I ‖b∗

i ‖
≤ (

√
d)|I|(1+log d

|I|) ≤ (
√

d)
d
e +|I|.

The technicality of the proof of Theorem 4.1 increases with the non-connexity of
the set I. In a first step, we will consider the case where I is an interval. Note that
if the sequence of the ‖b∗

i ‖’s were non-increasing, then all the sets I that derive from
the upper bound of Lemma 3.3 would be intervals, and thus the study of intervals
would suffice to prove the first statement of Theorem 2.5. The difficulties arise when
the shape of the set I under study becomes more complicated. The strategy can
be summed up in a few words. We split our HKZ-reduced basis into blocks defined
by the expression of I as a union of intervals. A block is a group of consecutive
vectors bi,bi+1, . . . ,bj−1 such that i, . . . , k − 1 6∈ I and k, . . . , j − 1 ∈ I, for some k.
Over each block, Lemma 4.2 relates the average norm of the last vectors to the average
norm of the block. We consider the blocks by decreasing indices (in Lemma 4.6), and
use an amortised analysis to combine the local behaviours on blocks and eventually
obtain a global bound. This recombination is very tight, and in order to get the
desired bound we use “parts of vectors”, or, to be more specific, non-integral powers
of their norms. This is why we need to introduce the π̃’s (in Definition 4.4). A final
convexity argument provided by Lemma 4.7 gives the result.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 15

4.1. Handling Intervals. For any I ⊆ J1, dK, we define the average norm over I

as πI =
(∏

i∈I ‖b∗
i ‖

) 1
|I| . The following lemma allows us to handle sets I that are

intervals. It generalizes Minkowski’s theorem (consider k = 1) and can be interpreted
as an “averaged” version of [65, Lemma 4].

Lemma 4.2. For all 1 ≤ k < d, we have the two following relations

πJ1,kK ≤ (Γd(k))
d
k · πJk+1,dK,

πJk+1,dK ≥ (Γd(k))
−1 · (det L)

1
d ,

where Γd(k) =
∏d−1

i=d−k(γi+1)
1
2i . For later use, we define Γd(0) = 1.

Proof. We start with the first identity. We prove it by induction on k. For k = 1,
this directly comes from the definition of γd. Assume that the identity holds for a
given k ≥ 1. We are to prove that it also holds for k+1. We can rewrite the induction
hypothesis as

π
k+1

k

J1,k+1K · ‖b
∗
k+1‖−

1
k ≤ (Γd(k))

d
k · π

d−k−1
d−k

Jk+2,dK · ‖b
∗
k+1‖

1
d−k ,

which is itself equivalent to

π
k+1

k

J1,k+1K ≤ (Γd(k))
d
k · π

d−k−1
d−k

Jk+2,dK · ‖b
∗
k+1‖

d
k(d−k) .

As the basis (b1, . . . ,bd) is HKZ-reduced, the vector b∗
k is a shortest non-zero vector

of the projection of the lattice orthogonally to the linear span of b1, . . . ,bk−1. The

definition of Hermite’s constant gives us ‖b∗
k+1‖ ≤ √

γd−k

d−k
d−k−1 · πJk+2,dK. Combined

with the equation above, this gives:

π
k+1

k

J1,k+1K ≤ (Γd(k))
d
k · √γd−k

d
k(d−k−1) · π

k+1
k

Jk+2,dK = (Γd(k + 1))
d
k · π

k+1
k

Jk+2,dK.

Raising the last identity to the power k
k+1 yields the result.

To obtain the second inequality, it suffices to raise the first one to the power k
d ,

multiply both sides by π
d−k

d

Jk+1,dK and use the identity detL = πk
J1,kK · πd−k

Jk+1,dK.

The following result provides a bound on the quantity Γd(k) from Lemma 4.2.
The proof is a rigorous version of the sequence of identities:

log Γd(k) ≈
∫ d

x=d−k

1

2x
log xdx ≈ log2(d) − log2(d − k)

4
<∼

log d

2
log

d

d − k
.

Lemma 4.3. For all 1 ≤ k < d, we have Γd(k) ≤
√

d
log d+1

d+1−k .
Proof. For d ≤ 3, the result follows by explicit computations, using γ2

2 = 4/3,
γ3
3 = 3. In what follows, we thus assume that d ≥ 4.

We now prove the result by induction on k. For k = 1, the bound follows
from Minkowski’s theorem (i.e., from the identity γd ≤ d+4

4): it suffices to show

that d+4
4 ≤ d−(d−1) log(1− 1

d+1); to get the latter, note that log(1 − 1
d+1) ≤ − 1

d+1 , so

that d−(d−1) log(1− 1
d+1) ≥ d

d−1
d+1 . We now prove that d

d−1
d+1 ≥ d+4

4 , which we will re-use

later on. Since d−
2

d+1 ≥ 1/2 for d ≥ 4, we have d · d− 2
d+1 ≥ d

2 ≥ d+4
4 .

Suppose now that the result holds for some k ≥ 1. We are to prove that it also
holds for k+1. We can now suppose that d ≥ 3. Define Gd(k) = 1

2 log d log d+1
d+1−k . To

16 G. HANROT AND D. STEHLÉ

obtain the result, it suffices to prove that log Γd(k+1)−log Γd(k) ≤ Gd(k+1)−Gd(k).
We have

Gd(k + 1) − Gd(k) = −1

2
log d log

d − k

d + 1 − k
≥ 1

2

log d

d + 1 − k
.

From the upper bound γd ≤ d+4
4 , we obtain:

log Γd(k + 1) − log Γd(k) =
1

2

log γd−k

d − k − 1
≤ 1

2

log d−k+4
4

d − k − 1
.

Now, since the sequence
(

(n+1) log n+4
4

n−1

)

n≥3
is increasing, we have:

(d + 1 − k) log d−k+4
4

d − k − 1
≤ max

(
3 log

3

2
,

d

d + 2
log

d + 3

4

)
≤ log d,

where the last inequality follows from the case k = 1.
We now extend the study of the πJ1,kK’s to non-integer intervals. This is needed

to study the πI ’s for general sets I, because we will use “extended intervals” for which
the extension is a “fractional part” of the vector at the left of the boundary of the
interval.

Definition 4.4. If 1 ≤ x1 ≤ x2 ≤ d, with x1 ∈ R and x2 ∈ Z, we define:

π̃[x1,x2] =

‖b∗

⌊x1⌋‖
1−x1+⌊x1⌋ ·

x2∏

i=⌊x1⌋+1

‖b∗
i ‖

1
x2−x1+1

=
(
πJ⌊x1⌋,x2K

) (x2−⌊x1⌋+1)(1−x1+⌊x1⌋)
x2−x1+1 ·

(
πJ⌊x1⌋+1,x2K

) (x2−⌊x1⌋)(x1−⌊x1⌋)
x2−x1+1 .

Note that Definition 4.4 is a sound extension of the definition of the πI ’s where I
is an integral interval, since π̃[x1,x2] = πJx1,x2K when x1 ∈ Z. The following lemma
extends Lemma 4.2 to the case where k is not necessarily an integer.

Lemma 4.5. If 1 ≤ x1 ≤ x2 < d are real, then π̃[x2,d] ≥
√

d
log

d+1−x2
d+1−x1 · π̃[x1,d].

Proof. First note that, as a consequence of the second inequality of Lemma 4.2
(applied the sublattice spanned by the projections of the last vectors orthogonally
to b1, . . . ,bi−1), we have, for i, j ∈ Z with 1 ≤ i ≤ j ≤ d,

πJj,dK ≥ Γd−i+1(j − i)−1 · πJi,dK. (4.1)

We define λi = (d−⌊xi⌋+1)(1−xi+⌊xi⌋)
d−xi+1 ∈ [0, 1], for i ∈ {1, 2}. Then we have:

π̃[x1,d] =
(
πJ⌊x1⌋,dK

)λ1 ·
(
πJ⌊x1⌋+1,dK

)1−λ1
,

π̃[x2,d] =
(
πJ⌊x2⌋,dK

)λ2 ·
(
πJ⌊x2⌋+1,dK

)1−λ2
.

Note that since x1 ≤ x2, either ⌊x1⌋ < ⌊x2⌋ or ⌊x1⌋ = ⌊x2⌋. The lemma easily
holds when x1 = x2, so we now assume that x1 < x2. In the second case, since the
function x 7→ u−x

v−x is decreasing when u < v and for x < v, we must have λ2 < λ1.
We split the proof in several cases, depending on the respective values of λ1 and λ2.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 17

First case: λ1 ≤ λ2. Then we must have ⌊x1⌋ < ⌊x2⌋. We define G as

Γd−⌊x1⌋+1(⌊x2⌋ − ⌊x1⌋)λ1 · Γd−⌊x1⌋(⌊x2⌋ − ⌊x1⌋ − 1)λ2−λ1 · Γd−⌊x1⌋(⌊x2⌋ − ⌊x1⌋)1−λ2 .

By using Equation (4.1) three times, we get:

π̃[x2,d] =
(
πJ⌊x2⌋,dK

)λ1 ·
(
πJ⌊x2⌋,dK

)λ2−λ1 ·
(
πJ⌊x2⌋+1,dK

)1−λ2

≥ G−1 ·
(
πJ⌊x1⌋,dK

)λ1 ·
(
πJ⌊x1⌋+1,dK

)1−λ1
= G−1 · π̃[x1,d].

Now, Lemma 4.3 gives that

log G

log
√

d
≤ λ1 log

d − ⌊x1⌋ + 2

d − ⌊x2⌋ + 2
+ (λ2 −λ1) log

d − ⌊x1⌋ + 1

d − ⌊x2⌋ + 2
+ (1−λ2) log

d − ⌊x1⌋ + 1

d − ⌊x2⌋ + 1
,

which, by concavity of the function x 7→ log x, is at most the logarithm of

H := λ1
d − ⌊x1⌋ + 2

d − ⌊x2⌋ + 2
+ (λ2 − λ1)

d − ⌊x1⌋ + 1

d − ⌊x2⌋ + 2
+ (1 − λ2)

d − ⌊x1⌋ + 1

d − ⌊x2⌋ + 1
.

To complete the proof of this case, it suffices to prove that H ≤ d−x1+1
d−x2+1 . Let ni =

d − ⌊xi⌋ and yi = 1 − xi + ⌊xi⌋ for i ∈ {1, 2}. It suffices to prove that for any
integers n1 > n2 ≥ 0 and any reals y1, y2 ∈ [0, 1) (after regrouping the λ1’s):

(n1 + 1)y1

n1 + y1

1

n2 + 2
+

(n2 + 1)y2

n2 + y2

n1 + 1

n2 + 2
+

n2(1 − y2)

n2 + y2

n1 + 1

n2 + 1
− n1 + y1

n2 + y2
≤ 0.

By differentiating with respect to y1, we obtain n1+1
n2+2

n1

(n1+y1)2
− 1

n2+y2
, which is al-

ways ≤ 0. It is therefore sufficient to prove the above for y1 = 0, i.e., after multipli-
cation by n2 + y2:

(n2 + 1)y2
n1 + 1

n2 + 2
+ n2(1 − y2)

n1 + 1

n2 + 1
− n1 ≤ 0.

As the above increases with y2, it suffices to prove it for y2 = 1, which is easy.

Second case: λ1 > λ2. We define G′ by

Γd−⌊x1⌋+1(⌊x2⌋−⌊x1⌋)λ2 ·Γd−⌊x1⌋+1(⌊x2⌋−⌊x1⌋+1)λ1−λ2 ·Γd−⌊x1⌋(⌊x2⌋−⌊x1⌋)1−λ1 .

By using Equation (4.1) three times, we get:

π̃[x2,d] =
(
πJ⌊x2⌋,dK

)λ2 ·
(
πJ⌊x2⌋+1,dK

)λ1−λ2 ·
(
πJ⌊x2⌋+1,dK

)1−λ1 ·
≥ (G′)−1 ·

(
πJ⌊x1⌋,dK

)λ1 ·
(
πJ⌊x1⌋+1,dK

)1−λ1
= (G′)−1 · π̃[x1,d].

Now, Lemma 4.3 gives us that:

log G′

log
√

d
≤ λ2 log

d − ⌊x1⌋ + 2

d − ⌊x2⌋ + 2
+ (λ1 −λ2) log

d − ⌊x1⌋ + 2

d − ⌊x2⌋ + 1
+ (1−λ1) log

d − ⌊x1⌋ + 1

d − ⌊x2⌋ + 1
,

which, by concavity of the function x 7→ log x, is at most the logarithm of

H ′ := λ2
d − ⌊x1⌋ + 2

d − ⌊x2⌋ + 2
+ (λ1 − λ2)

d − ⌊x1⌋ + 2

d − ⌊x2⌋ + 1
+ (1 − λ1)

d − ⌊x1⌋ + 1

d − ⌊x2⌋ + 1
.

18 G. HANROT AND D. STEHLÉ

To conclude, it suffices to obtain H ′ ≤ d−x1+1
d−x2+1 .

With the same change of variables as above, it suffices to prove that for any
integers n1 ≥ n2 ≥ 0 and any reals y1, y2 ∈ [0, 1) (after regrouping the λ2’s):

− y2

n2 + y2

n1 + 2

n2 + 2
+

(n1 + 1)y1

n1 + y1

n1 + 2

n2 + 1
+

n1(1 − y1)

n1 + y1

n1 + 1

n2 + 1
− n1 + y1

n2 + y2
≤ 0. (4.2)

By differentiating the left hand side of Equation (4.2) with respect to y2, we
obtain −n1+2

n2+2
n2

(n2+y2)2
+ n1+y1

(n2+y2)2
, which is always ≥ 0. It is therefore sufficient to

prove the above for the largest possible value of y2. We consider two sub-cases.

First sub-case: λ1 > λ2 and ⌊x1⌋ < ⌊x2⌋. In that situation the largest possible value
for y2 is ≤ 1. It therefore suffices to prove that

− n1 + 2

(n2 + 1)(n2 + 2)
+

(n1 + 1)y1

n1 + y1

n1 + 2

n2 + 1
+

n1(1 − y1)

n1 + y1

n1 + 1

n2 + 1
− n1 + y1

n2 + 1
≤ 0,

which is equivalent to (after simplification and multiplication by n2+1
n1+2):

− 1

n2 + 2
+

n1 + 1

n1 + 2

n1 + 2y1

n1 + y1
− n1 + y1

n1 + 2
≤ 0.

The latter increases with respect to n2, so it suffices to prove it for n2 = n1 − 1. The
numerator is −(n1 + 1)(y1 − 1

2)2 + 1−3n1

4 − y1, which is indeed ≤ 0.

Second sub-case: λ1 > λ2 and ⌊x1⌋ = ⌊x2⌋. In that situation, we have y1 = 1 − x1 +
⌊x1⌋ ≥ 1 − x2 + ⌊x2⌋ = y2. As the left hand side of Equation (4.2) increases with y2,
it suffices to prove it for y2 = y1, which means x2 = x1. In that situation, the result
trivially holds. This completes the proof.

4.2. Handling General Subsets of J1, dK. We prove Theorem 4.1 by induc-
tion on the number of intervals occurring in the expression of the set I as a union
of intervals. The following lemma is the induction step. This is a recombination
step: we already have the result for some set I ⊆ Jv + 1, dK and add some vec-
tors bu+1, . . . ,bv to I. We make use of the local densities δi of the set I over small
intervals Jαi + 1, αi+1K. Note that in the lemma, the local densities δi are decreasing:
this is required for applying Minkowski’s theorem in the proof of Theorem 4.1.

Lemma 4.6. Let v ∈ J2, dK, I ⊆ Jv + 1, dK. Assume that there exist an integer t ≥
1 and some integers v = α1 < α2 < . . . < αt ≤ d such that:

π
|I|
I ≥

t−1∏

i=1

(
π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)
and 1 ≥ δ1 > . . . > δt−1 > 0,

where Ii = I ∩ Jαi + 1, αi+1K and δi = |Ii|
αi+1−αi

, for i < t.

Let u ∈ J1, v − 1K and I ′ = Ju + 1, vK ∪ I. Then there exist an integer t′ ≥ 1 and
some integers 0 = α′

1 < α′
2 < . . . < α′

t′ ≤ d such that:

π
|I′|
I′ ≥

t′−1∏

i=1

(
π
|I′

i|
Jα′

i+1,α′
i+1K ·

√
d
|I′

i| log δ′
i

)
and 1 ≥ δ′1 > . . . > δ′t′−1 > 0,

where I ′i = I ′ ∩
q
α′

i + 1, α′
i+1

y
and δ′i =

|I′
i|

α′
i+1−α′

i
, for i < t′.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 19

Proof. Assume first that v−u
v > δ1, Then Lemmas 4.2 and 4.3 give

π
|I′|
I′ = πv−u

Ju+1,vK · π
|I|
I ≥ πv−u

J1,vK ·
√

d
(v−u) log v−u+1

v+1 · π|I|
I ≥ πv−u

J1,vK ·
√

d
(v−u) log v−u

v · π|I|
I .

It suffices to take t′ = t + 1, α′
1 = 0, δ′1 = v−u

v , α′
k = αk−1 and δ′k = δk−1 for k ≥ 1.

Otherwise, we let λ1 ∈ (0, u] be such that v−u
v−λ1

= δ1 = v−u+|I1|
α2−λ1

, where the first
equality defines λ1 and the second one follows. Note that this implies:

π̃v−u
[λ1+1,v] · π

|I1|
Jv+1,α2K = π̃

v−u+|I1|
[λ1+1,α2]

.

Then we have, by using Lemma 4.5,

π
|I′|
I′ = πv−u

Ju+1,vK · π
|I|
I

≥
(

π̃v−u
[λ1+1,v] ·

√
d
(v−u) log v−u

v−λ1

)
·
∏

i<t

(
π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

≥
(

π̃v−u
[λ1+1,v] · π

|I1|
Jv+1,α2K ·

√
d
(v−u) log v−u

v−λ1
+|I1|·log δ1

)

·
t−1∏

i=2

(
π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

≥
(

π̃
v−u+|I1|
[λ1+1,α2]

·
√

d
(v−u+|I1|) log

v−u+|I1|
α2−λ1

)
·

t−1∏

i=2

(
π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)
.

If v−u+|I1|
α2

> |I2|
α3−α2

, we use Lemma 4.5 to lower bound the above by

(
π̃

v−u+|I1|
[1,α2]

·
√

d
(v−u+|I1|) log

v−u+|I1|
α2

)
·

t−1∏

i=2

(
π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

and we conclude as in the first step, putting t′ = t, α′
1 = 0, α′

k = αk for k ≥ 2,
δ′1 = (v − u + |I1|)/α2, δ′k = δk for k ≥ 2.

If this is not the case, we let λ2 be such that:

v − u + |I1|
α2 − λ2

= δ2 =
v − u + |I ∩ Jα1 + 1, α3K|

α3 − λ2
.

Notice that since δ1 = v−u+|I1|
α2−λ1

> δ2, we have λ2 < λ1. A similar sequence of
inequalities, using Lemma 4.5 to relate π̃[λ1+1,α2] to π̃[λ2+1,α2], leads to:

π
|I′|
I′ ≥

(
π̃

v−u+|I∩Jα1+1,α3K|
[λ2+1,α3]

·
√

d
(v−u+|I∩Jα1+1,α3K|) log

v−u+|I∩Jα1+1,α3K|
α3−λ2

)

·
t−1∏

i=3

(
π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)
.

We can proceed in the same way, constructing λ2 > λ3 > Suppose first that
the construction stops at some point. After application of Lemma 4.5 to π̃[λk+1,αk+1],

20 G. HANROT AND D. STEHLÉ

we have:

π
|I′|
I′ ≥

(
π
|I′∩J1,αk+1K|
J1,αk+1K ·

√
d
|I′∩J1,αk+1K| log |I′∩J1,αk+1K|

αk+1

)

·
t−1∏

i=k+1

(
π
|Ii|
Jαi+1,αi+1K

√
d
|Ii| log δi

)
.

We can then conclude, by putting t′ = t − k + 1, α′
1 = 0, α′

j = αj+k−1 for j > 1,
δ′1 = |I ′ ∩ J1, αk+1K |/αk+1, δ′j = δj+k−1 for j > 1.

Otherwise, we end up with:

π
|I′|
I′ ≥ π̃

|I′|
[λt−1+1,αt]

·
√

d
|I′| log |I′∩J1,αtK|

αt−λt−1 ,

to which we can apply Lemma 4.5 to obtain π
|I′|
I′ ≥ π

|I′|
J1,αtK

·
√

d
|I′| log |I′∩J1,αtK|

αt , which

is again in the desired form, with t′ = 2, α′
1 = 0, α′

2 = αt, δ′1 =
|I′∩J1,αtK|

αt
.

The following lemma derives from the convexity of the function x 7→ x log x.
Lemma 4.7. Let ∆ ≥ 1, and define F∆(k, d) = ∆−k log k

d . We have, for all
integer t, for all integers k1, . . . , kt and d1, . . . , dt such that 1 ≤ ki < di for all i ≤ t,

∏

i≤t

F∆(ki, di) ≤ F∆

∑

i≤t

ki,
∑

i≤t

di

 .

Proof. Since the function x 7→ x log x is convex on [0,+∞), for any t ≥ 1, for
any a1, . . . , at > 0, and for any λ1, . . . , λt ∈ [0, 1] such that

∑
i≤t λi = 1, we have:

∑

i≤t

λiai log ai ≥

∑

i≤t

λiai

 log

∑

i≤t

λiai

 .

In particular, for λi:=
di

P

i≤t di
and ai:=

ki

di
, we get (after multiplication by

∑
i≤t di):

− log
∏

i≤t

∆
−ki log

ki
di = (log ∆) ·

∑

i≤t

ki log
ki

di
≥ (log ∆) ·

∑

i≤t

ki

 log

(∑
i≤t ki∑
i≤t di

)
,

which is exactly − log ∆
−(

P

i≤t ki) log

P

i≤t ki
P

i≤t di .
Theorem 4.1 now follows from successive applications of Lemma 4.6, as follows:

Proof of Theorem 4.1. Lemma 4.6 gives us, by induction on the size of the con-
sidered set I, that for all I ⊆ J1, dK, we have:

π
|I|
I ≥

∏

i<t

(
π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)
,

where Ii = I ∩ Jαi + 1, αi+1K, and the integers t and αi’s, and the densities δi =
|Ii|

αi+1−αi
satisfy t ≥ 1, 0 = α1 < α2 < . . . < αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. By

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 21

using Lemma 4.7 with ∆:=
√

d, ki:= |Ii| and di:=αi+1 − αi, we obtain:

π
|I|
I ≥

(√
d
|I| log |I|

αt−α1

)
·
(

∏

i<t

π
|Ii|
Jαi+1,αi+1K

)
.

For convenience, we define δt = 0. Because of the definition of the δi’s, we have:

∏

i<t

π
|Ii|
Jαi+1,αi+1K =

∏

i<t

(
π

αi+1−αi

Jαi+1,αi+1K

)δi

=
∏

i<t

∏

i≤j<t

(
π

αi+1−αi

Jαi+1,αi+1K

)δj−δj+1

=
∏

j<t

∏

i≤j

π
αi+1−αi

Jαi+1,αi+1K

δj−δj+1

=
∏

j<t

(
π

αj+1

J1,αj+1K

)δj−δj+1

.

By using t − 1 times Minkowski’s theorem, we obtain that:

π
|I|
I ≥

√
d
|I| log |I|

d · (‖b1‖/
√

d)
P

j<t αj+1(δj−δj+1)

≥
√

d
|I| log |I|

d · (‖b1‖/
√

d)
P

j<t(αj+1−αj)δj

≥
√

d
|I|(log |I|

d −1) · ‖b1‖|I|.

The final inequality of the theorem is just the fact that x 7→ x log(d/x) is maximal
for x = d/e. 2

5. Worst-case HKZ-Reduced Bases. We now turn to the construction of
worst-case inputs for Kannan’s SVP algorithm, i.e., to the proof of the last asser-
tion of Theorem 2.5. In view of the results of §3, it suffices to build HKZ-reduced

bases (b1, . . . ,bd) such that (‖b1‖/
√

d)d−i+1
Q

j≥i ‖b∗
j‖

is large, for an i such that for any j ≥ i we

have ‖b∗
j‖ ≤ 2

3
‖b1‖√

d
. To achieve that goal, we will build HKZ-reduced bases for which

a certain number of Minkowski inequalities are simultaneously tight. More precisely,

we will essentially have ‖b∗
i ‖ ≈

√
d − i + 1

(∏d
j=i ‖b∗

j‖
) 1

d−i+1

for all i, where the ≈
symbol hides a constant. Our HKZ-reduced bases are arguably the least reduced
possible, as their ‖b∗

i ‖’s decrease as fast as allowed by the HKZ-reducedness assump-
tion. Note that one can easily build bases with pre-determined values for the GSO
quantities ‖b∗

i ‖ and µi,j for j < i ≤ d: consider the columns of the upper triangular
matrix B = (B)i,j with Bi,i = ‖b∗

i ‖ and Bi,j = µj,iBi,i. However, we also need the
corresponding basis to be HKZ-reduced.

In this section, we first provide a sufficient condition on the sequence (f(i))i≤d for
an HKZ-reduced basis with ‖b∗

i ‖ = f(i) to exist. This is a refinement of a probabilistic
technique due to Ajtai [4, 5]. We then explicit a function f that satisfies that condition
and which leads to HKZ-reduced bases of worst possible quality. For these bases, we

will have (‖b1‖/
√

d)d−i+1
Q

j≥i ‖b∗
j ‖

≥ 2O(d) · d d
2e , for a valid i.

5.1. Ajtai’s Sampling Revisited. Below is a general condition for an HKZ-
reduced basis with prescribed ‖b∗

i ‖’s to exist.
Theorem 5.1. Let d > 0 and f : J1, dK → (0,+∞). Assume that

∀j ≤ d,

j−1∑

i=1

(
j − i

2πe

)− j−i
2

(
1 −

(
f(j)

f(i)

)2
) j−i

2

+

(
j∏

k=i

f(i)

f(k)

)
< 1,

22 G. HANROT AND D. STEHLÉ

where (x)+ denotes max(0, x). Then there exists an HKZ-reduced basis (b1, . . . ,bd)
with ‖b∗

i ‖ = f(i).
The condition above might seem intricate at first glance, though it is in fact

fairly natural. The term (j − i)−
j−i
2

∏j
k=i

f(i)
f(k) resembles Minkowski’s inequality. It is

natural that it should occur for all (i, j), since for an HKZ-reduced basis Minkowski’s

inequality is satisfied for all bases (b
(i)
i , . . . ,b

(i)
j), where b

(k)
l denotes the projection

of the vector bl orthogonally to the linear span of the vectors b1, . . . ,bk−1. Said
differently, the following is a necessary condition for a basis to be HKZ-reduced:

∀j ≤ d,

j−1∑

i=1

(4γj−i+1)
− j−i

2

(
1 −

(
f(j)

f(i)

)2
) j−i

2

+

(
j∏

k=i

f(i)

f(k)

)
< 1.

This is merely a restatement of the fact that, since Minkowski’s inequality is verified
for any pair (i, j), the i-th term is at most 2−(j−i), so that the sum is < 1. Since
asymptotically we have γd ≤ d(1.744

2πe +o(1)) (see [18, Ch. 1]), we see that the condition
of Theorem 5.1 is not far from optimal.

Lemma 5.2 is the core of the proof of Theorem 5.1. It bounds the probability that
when a random basis (b1, . . . ,bd) is built appropriately, any lattice vector

∑
i xibi

with xd 6= 0 will be longer than b1.
Lemma 5.2. Let (b1, . . . ,bd−1) be a lattice basis and let bd be a random vector.

We suppose that:
(i) For any i ≤ d, we have ‖b∗

i ‖ = f(i).
(ii) The µd,i’s for i < d are independently and uniformly distributed in [− 1

2 , 1
2].

The probability that there exists x ∈ Zd with xd 6= 0 and ‖∑i xibi‖ ≤ ‖b1‖ is upper
bounded by

(
d − 1

2πe

)− d−1
2

(
1 −

(
f(d)

f(1)

)2
) d−1

2

+

∏

i≤d

f(1)

f(i)

 .

Proof. We write
∑

i≤d xibi as
∑

i≤d

(
xi +

∑d
j=i+1 µj,ixj

)
b∗

i and define ui =

xi +
⌊∑d

j=i+1 µj,ixj

⌉
and δi =

{∑d
j=i+1 µj,ixj

}
, for i ≤ d. If i < d, then δi =

{
µd,ixd +

∑d−1
j=i+1 µj,ixj

}
contains a random term (µd,ixd) and a constant term

(
∑d−1

j=i+1 µj,ixj). Since xd 6= 0 and since the µd,i’s are distributed independently
and uniformly in [−1/2, 1/2], the same holds for the δi’s (for each fixed choice of x).

The event under scope can be rewritten as

∃ud ∈ Z \ 0, ∃(u1, . . . , ud−1) ∈ Zd−1,
∑

i<d

(ui + δi)
2f(i)2 ≤ f(1)2 − u2

df(d)2.

Let p be its probability. If f(1)2 − u2
df(d)2 < 0, then p = 0. We thus have:

p ≤
∑

ud∈Z∩[1,
f(1)
f(d)]

∑

(u1,...,ud−1)∈Zd−1

Pr

(
∑

i<d

(ui + δi)
2f(i)2 ≤ f(1)2 − u2

df(d)2

)
.

Let c > 0 be an arbitrary constant. We can bound the summand by
∫

δ∈[− 1
2 , 1

2]
d−1

exp

(
c − c

∑
i<d(ui + δi)

2f(i)2

f(1)2 − u2
df(d)2

)
dδ.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 23

By summing over the ui’s for i < d, we obtain

∑

u∈Zd−1

∫

δ∈[− 1
2 , 1

2]
d−1

exp

(
c − c

∑
i<d(ui + δi)

2f(i)2

f(1)2 − u2
df(d)2

)
dδ

=

∫

Rd−1

exp

(
c − c

∑
i<d δ2

i f(i)2

f(1)2 − u2
df(d)2

)
dδ

= ec
∏

i<d

∫

R

exp

(
−c

δ2
i f(i)2

f(1)2 − u2
df(d)2

)
dδi

= ec
(π

c

) d−1
2

(
1 −

(
udf(d)

f(1)

)2
) d−1

2 ∏

i<d

f(1)

f(i)
.

By taking c = d−1
2 and considering all possible ud’s, we obtain:

p ≤ f(1)

f(d)
·
(

2πe

d − 1

) d−1
2

(
1 −

(
f(d)

f(1)

)2
) d−1

2

+

∏

i<d

f(1)

f(i)
.

We now prove Theorem 5.1. We build the basis iteratively, starting with b1,
chosen arbitrarily with ‖b1‖ = f(1). Assume now that b1, . . . ,bj−1 have already been
chosen with ‖b∗

i ‖ = f(i) for i < j and that they are HKZ-reduced. We choose bj as
b∗

j +
∑

k<j µj,kb
∗
k such that ‖b∗

j‖ = f(j) and the random variables (µj,k)k<j are chosen

uniformly and independently in [− 1
2 , 1

2]. Let pi,j be the probability that the vector b∗
i

is not a shortest non-zero vector in L(b
(i)
i , . . . ,b

(i)
j), for i < j. This means that there

exists an integral vector x such that ‖
∑j

k=i xkb
(i)
k ‖ < ‖b∗

i ‖. Since (b1, . . . ,bj−1)

is HKZ-reduced, so is the basis (b
(i)
i , . . . ,b

(i)
j−1), and thus we must have xj 6= 0.

Lemma 5.2 gives us

pi,j ≤
(

j − i

2πe

)− j−i
2

(
1 −

(
f(j)

f(i)

)2
) j−i

2

+

(
j∏

k=i

f(i)

f(k)

)
.

We conclude the proof by observing that the probability of non-HKZ-reducedness
of (b1, . . . ,bj) is at most

∑
i<j pi,j . By hypothesis, this quantity is < 1. Overall, this

means that there exist µi,j ’s such that (b1, . . . ,bj) is HKZ-reduced. 2

5.2. The GSO of Worst-Case HKZ-reduced Bases. This section is devoted
to the construction of a function f satisfying the conditions of Theorem 5.1 as tightly
as possible. In order to make explicit the fact that f depends on the dimension d, we
shall write fd instead of f . Note that although f(i) will depend on d, this will not
be the case for f(d− i). Suppose that the basis (bi)i is HKZ-reduced. Then fd must
satisfy the Minkowski inequalities:

∀i < j, fd(i) ≤
√

γj−i+1 ·
(

j∏

k=i

fd(k)

) 1
j−i+1

.

We choose fd according to the strongest of those conditions, i.e., with j = d.
It is known (see [58] for example) that this set of conditions does not suffice for an

24 G. HANROT AND D. STEHLÉ

HKZ-reduced basis to exist. We thus expect to have to relax these constraints. We
will also replace the Hermite constant by a more explicit term. For these reasons, we
introduce

fψ,d(i) =
√

ψ(d − i + 1) ·
(

d∏

k=i

fψ,d(k)

) 1
d−i+1

,

where ψ is to be chosen in the sequel. This equation uniquely defines fψ,d(i) for all i
once we set fψ,d(d) = 1, as implied by the following result.

Lemma 5.3. The following holds for any i ≤ j ≤ d:

fψ,d(i)

fψ,d(j)
=

√
ψ(d − i + 1)

ψ(d − j + 1)
·

j−1∏

k=i

ψ(d − k + 1)
1

2(d−k) .

Proof. By taking the quotient between fψ,d(i)
d−i+1 and fψ,d(i + 1)d−i, we get

fψ,d(i)

fψ,d(i + 1)
=

√
ψ(d − i + 1)

ψ(d − i)
· ψ(d − i + 1)

1
2(d−i) .

The lemma follows.
In the next subsection, we will prove the following theorem.
Theorem 5.4. Let ψ(x) = Cx with C = exp(−6). Then, for all i < j, we have

(j − i + 1)−
j−i
2

(
1 −

(
fψ,d(j)

fψ,d(i)

)2
) j−i

2

+

(
j∏

k=i

fψ,d(i)

fψ,d(k)

)
≤

(
2πe(

√
e + 1)2

)− j−i
2 .

Thanks to Theorem 5.1, we obtain the following.
Corollary 5.5. Let ψ be as in Theorem 5.4. There exist HKZ-reduced bases

(b1, . . . ,bd) with

‖b∗
i ‖ = fψ,d(i) =

√
d − i + 1 ·

d−1∏

k=i

(C(d − k + 1))
1

2(d−k) .

Moreover, when d − i grows to infinity, we have

‖b∗
i ‖ = exp

(
log2(d − i + 1)

4
+

1 + log C

2
log(d − i + 1) + O(1)

)
.

Proof. Let j ≤ d. Thanks to Theorem 5.4, we have

j−1∑

i=1

(
j − i

2πe

)− j−i
2

(
1 −

(
f(j)

f(i)

)2
) j−i

2

+

(
j∏

k=i

f(i)

f(k)

)

≤
j−1∑

i=1

(
j − i + 1

j − i

) j−i
2 (√

e + 1
)−(j−i)

<
√

e ·
∑

i≥1

(
√

e + 1)−i = 1.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 25

The first part of the result follows from Theorem 5.1 and Lemma 5.3. For the second
part, note that our choice of ψ gives

2 log fψ,d(i) = log(d − i + 1) +
d−1∑

k=i

log C + log(d − k + 1)

d − k
.

Suppose that d − i → +∞. The quantity
∣∣∣
∑d−1

k=i
log(d−k+1)

d−k −
∫ d

i
log(d−x+1)

d−x+1 dx
∣∣∣ is

≤
∣∣∣∣∣

d−1∑

k=i

log(d − k + 1)

d − k + 1
−

∫ d

i

log(d − x + 1)

d − x + 1
dx

∣∣∣∣∣ +

d−1∑

k=i

log(d − k + 1)

(d − k)2

≤ O(1) +

d−1∑

k=i

∫ k+1

k

∣∣∣∣
log(d − k + 1)

d − k + 1
− log(d − x + 1)

d − x + 1

∣∣∣∣ dx

≤ O(1) +
d−1∑

k=i

max
x∈[k,k+1]

|1 − log(d − x + 1)|
(d − x + 1)2

= O(1).

Classically, we also have
∣∣∣
∑d−1

k=i
1

d−k − log(d − i)
∣∣∣ = O(1). The result follows from

the fact that
∫ d

i
log(d−x+1)

d−x+1 dx = log2(d−i+1)
2 .

We can now prove the remaining assertion of Theorem 2.5. To do that, we consider
an HKZ-reduced basis as in Corollary 5.5, and try to apply Lemmas 3.1, 3.2 and 3.3.

For Lemma 3.3, we let B = 4
9‖b1‖2 and i =

⌊
d

(
1 − 1

e

)
+ α d

log d

⌉
, for some constant α

to be fixed later.

Lemma 5.6. There exists an α such that when d is large enough, we have ‖b∗
j‖ ≤

2
3
‖b1‖√

d
, for all j ≥ i. Furthermore, we have

∏
j≥i

2
3

‖b1‖√
d‖b∗

j ‖
≥ 2O(d) · d d

2e .

Proof. Since d − i → +∞, Corollary 5.5 implies that:

2 log
‖b∗

i ‖
‖b1‖

=
log2(d − i + 1) − log2 d

2
+ (1 + log C) (log(d − i + 1) − log d) + O(1)

≤ log

(
d − i + 1

d

)
(log d + 1 + log C) + O(1)

≤ log

(
1

e
− α

log d
+ O

(
1

d

))
(log d + 1 + log C) + O(1)

≤ − log d − αe

(
1 +

1 + log C

log d

)
+ O(1),

where the O(1) constant does not depend on α. We choose α so that the result holds
for j = i.

Furthermore, Lemma 5.3 provides
‖b∗

j−1‖
‖b∗

j ‖
=

√
1 + 1

d−j+1 (C(d − j + 2))
1

2(d−j+1) .

This implies that for any j ≤ d+2− 1
C , we have ‖b∗

j‖ ≤ ‖b∗
j−1‖ ≤ . . . ≤ ‖b∗

i ‖ ≤ 2
3
‖b1‖√

d
.

Assume now that j ∈ [d + 2 − 1
C , d]. Then the explicit formula for ‖b∗

j‖ given in

Corollary 5.5 implies that ‖b∗
j‖ = O(1). As ‖b1‖ = exp

(
log2 d

4 (1 + o(1))
)
, when d is

large enough we have ‖b∗
j‖ ≤ 2

3
‖b1‖√

d
for all j ≥ i.

26 G. HANROT AND D. STEHLÉ

We now prove the second assertion of the result. By definition of fψ,d, we

have
∏

j≥i
2
3

‖b1‖√
d‖b∗

j ‖
= 2O(d)

(√
d−i+1

d
‖b1‖
‖b∗

i ‖

)d−i+1

. Finally, for our value of i, we

have
(√

d−i+1√
d

)d−i+1

= 2O(d) and
(

‖b1‖
‖b∗

i ‖

)d−i+1

≥ 2O(d) · d d
2e .

5.3. Sketch of the Proof of Theorem 5.4. As exp(5) > 2πe(
√

e + 1)2, it
suffices to prove that for all i < j, we have:

(j − i + 1)−
j−i
2 · T1 · T2 ≤ exp

(
−5

2
(j − i)

)
,

where T1 =

(
1 −

(
fψ,d(j)
fψ,d(i)

)2
) j−i

2

+

and T2 =
∏j

k=i
fψ,d(i)
fψ,d(k) .

The proof follows from elementary (though technical) analytical considerations.
Let us write a = d − i + 1 and b = d − j + 1. This change of variables makes the
problem independent of d. The domain of valid pairs (a, b) is 1 ≤ b < a ≤ d. Note
that if b = 1, then we can bound T1 by 1 and use the definition of fψ,d to obtain the
sufficient condition:

√
a · exp(−3a) ≤ exp

(
−5

2
(a − 1)

)
,

which is valid for all a. We now assume that a > b > 1. Our proof is made of three
main steps. In the first step, we try to obtain the result without the first term, i.e.,
while bounding T1 by 1. We reach this goal for a ≥ 158000 and b ≤ a− 1.65

log3 a
. In the

second step, we use T1 to obtain the result for a ≥ 158000 and b ≥ a− 1.65
log3 a

. Finally,

we prove the result for 1 < b < a ≤ 158000 by exhaustively checking the inequality.
We start by simplifying T1 and T2. Lemma 5.3 implies that

T1 =

(
1 − ψ(b)

ψ(a)

a−1∏

k=b

ψ(k + 1)−
1
k

) a−b
2

+

.

The following lemma allows us to simplify the expression of the term T2.

Lemma 5.7. We have T2 =

(∏a−1
k=b

ψ(a)ψ(k+1)

ψ(k)ψ(k+1)
b−1

k

) 1
2

.

Proof. We have

T2 =

j∏

k=i

fψ,d(i)

fψ,d(k)
=

(
d∏

k=i

fψ,d(i)

fψ,d(k)

)
·

d∏

k=j

fψ,d(j)

fψ,d(k)

−1

·
(

fψ,d(i)

fψ,d(j)

)d−j

.

The first two terms can be simplified by using the definition of fψ,d, and the last one
has been studied in Lemma 5.3. We get:

T2 =
ψ(d − i + 1)

d−i+1
2

ψ(d − j + 1)
d−j+1

2

·
(

ψ(d − i + 1)

ψ(d − j + 1)

) j−d
2

·
(

j−1∏

k=i

ψ(d − k + 1)
j−d

2(d−k)

)

=

(
j−1∏

k=i

ψ(d − i + 1)ψ(d − k + 1)

ψ(d − k)ψ(d − k + 1)
d−j

(d−k)

) 1
2

,

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 27

as claimed.
Now that both T1 and T2 have been expressed with the new variables a and b,

the proof of Theorem 5.4 reduces to a study of a function of two variables. It is given
in appendix.

6. Concluding Remarks. We have presented a complete worst-case analysis
of Kannan’s algorithm for the shortest vector problem. This analysis however leaves
a few questions unanswered and raises several other significant questions.

On the complexity upper bound. Our analysis gives a complexity upper bound
of 2O(d)·d d

2 for CVP, whereas we are unable to get a lower bound better than 2O(d)·d d
2e .

This is related to the fact that we have only a poor estimate on the covering radius
of the lattice (the value of A which we have to use to guarantee that we shall find a
vector during the enumeration), hence the upper bound. Obtaining matching upper
and lower bounds seems to require a deep understanding of the relationship between
the geometry of the HKZ-reduced bases of the lattice and the covering radius: one
would have to prove that the larger the covering radius, the better the basis. Besides,
it should be noted that Banaszczyk’s transference bound [10] µ(L)λ1(L

∗) ≤ d implies
that as soon as λ1(L

∗) ≈
√

d(detL)−1/d (i.e., Minkowski’s bound is essentially sharp

for L∗), we have µ(L) ≈ λ1(L) and CVP can be solved in time 2O(d) · d
d
2e , up to

polynomial factors. Here µ(L) denotes the covering radius of L and L∗ denotes the
dual of L, i.e., the set of points in the span of L that have integral inner product with
all vectors of L. Overal, this suggests that for almost all lattices as d → ∞ (with the

measure defined in [68]), Kannan’s algorithm solves CVP in time at most 2O(d) · d d
2e .

However, this leaves open the question of its worst-case complexity.

On the complexity lower bound. Though proved for real lattices, the complexity
lower bound can most likely be extended to rational lattices (sublattices of Qn), by
replacing integrals with discrete sums in our derivation of Lemma 5.2, thus leading a
very similar criterion.

Average-case analysis. Our analysis leaves open the question of the average
geometry of an HKZ-reduced basis, i.e., of the geometry of the almost always well-
defined HKZ-reduced bases of random lattices. It is our belief that this geometry
matches the worst case, i.e., that the norms of the Gram-Schmidt vectors still behave
like ‖b∗

i ‖ ≈ exp
(
−

(
1
4 + o(1)

)
log(d + 1 − i)2

)
‖b1‖. Such a result would allow one to

prove that the average complexity of Kannan’s algorithm is 2O(d) · d d
2e . Some authors

favor the hypothesis that the average behaviour of an HKZ-reduced basis is rather a
geometric decrease of the ‖b∗

i ‖’s, i.e., roughly ‖b∗
i ‖ ≈ d−

i
d ‖b1‖. With such a basis,

solving SVP by Kannan’s algorithm would have a 2O(d) · d d
8 complexity.

Preprocessing the basis. Even if it turns out that HKZ bases do not behave
that nicely, the question of whether such a basis exists for all lattices is of equal
interest: this is related to the question of the optimal preprocessing for enumeration
algorithm. Kannan chose HKZ, the main feature being that this is a strong reduction
which can be embedded within an SVP computation at negligible cost, but it is
not clear whether HKZ-reduction is the best choice with respect to enumeration.
Geometrically decreasing bases indeed appear better. A plausible way to build them
would be to consider bases that minimize the d/2-dimensional volume of the sublattice
(b1, . . . ,bd/2) (and so on recursively). However, computing such a basis seems to
require a huge amount of time, which makes its use limited for enumeration algorithms.
Note finally that lower bounds on generalized Hermite’s constants [13] strongly suggest

that d
d
8 +o(d) is the limit for enumeration techniques, at least for a subset of lattices

28 G. HANROT AND D. STEHLÉ

of asymptotic probability 1 (as d → ∞). In short, it seems that the enumeration
techniques are bound to remain of superexponential complexity.

Acknowledgments. This work was initiated during the July 2007 seminar “Ex-
plicit methods in Number Theory” at Mathematisches Forschungsinstitut Oberwol-
fach. The authors are grateful to the MFO for the great working conditions provided
on this occasion. The authors would also like to thank Jacques Martinet for the
interest he showed for a preliminary version of those results and for pointing [58],
Claus-Peter Schnorr for having pointed out several errors in earlier versions of this
paper, and Cong Ling, Phong Nguyen, Xavier Pujol and Antonio Vera for several
discussions.

Part of this work was undergone while the first author was employed by the INRIA
and was working in the LORIA laboratory, and while the second author was working
at the LIP laboratory of the École Normale Supérieure of Lyon.

REFERENCES

[1] K. Aardal and F. Eisenbrand, The LLL algorithm and integer programming. In The LLL
algorithm, P. Q. Nguyen and B. Vallée (eds), 2009.

[2] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, Closest point search in lattices, IEEE
Transactions on Information Theory, 48 (2002), pp. 2201–2214.

[3] M. Ajtai, The shortest vector problem in l2 is NP-hard for randomized reductions (extended
abstract), in Proceedings of the 30th Symposium on the Theory of Computing (STOC
1998), ACM Press, 1998, pp. 284–293.

[4] , The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero
vector in a lattice, in Proceedings of the 35th Symposium on the Theory of Computing
(STOC 2003), ACM Press, 2003, pp. 396–406.

[5] , Optimal lower bounds for the Korkine-Zolotareff parameters of a lattice and for
Schnorr’s algorithm for the shortest vector problem, Theory of Computing, 4 (2008),
pp. 21–51.

[6] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence,
in Proceedings of the 29th Symposium on the Theory of Computing (STOC 1997), ACM
Press, 1997, pp. 284–293.

[7] M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the shortest lattice vector
problem, in Proceedings of the 33rd Symposium on the Theory of Computing (STOC
2001), ACM Press, 2001, pp. 601–610.

[8] , Sampling short lattice vectors and the closest lattice vector problem, in Proceedings of
the 17th Annual IEEE Conference on Computational Complexity (CCC 17), 2002, pp. 53–
57.

[9] L. Babai, On Lovász lattice reduction and the nearest lattice point problem, Combinatorica, 6
(1986), pp. 1–13.

[10] W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers,
Mathematische Annalen, 296 (1993), pp. 625–635.

[11] J. Blömer, Closest vectors, successive minima and dual-HKZ bases of lattices, in Proceedings
of the 2000 International Colloquium on Automata, Languages and Programming (ICALP
2000), vol. 1853 of Lecture Notes in Computer Science, Springer-Verlag, 2000, pp. 248–259.

[12] J. Blömer and S. Naewe, Sampling methods for shortest vectors, closest vectors and succes-
sive minima, Theoretical Computer Science, 410 (2009), pp. 1648–1665.

[13] M. I. Boguslavsky, Radon transforms and packings, Discrete Applied Mathematics, 111
(2001), pp. 3–22.

[14] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language.,
Journal of Symbolic Computation, 24 (1997), pp. 235–265.

[15] H. Brönnimann, G. Melquiond, and S. Pion, The design of the Boost interval arithmetic
library, Theoretical Computer Science, 351 (2006), pp. 111–118.

[16] D. Cadé, X. Pujol, and D. Stehlé, fplll-3.0, a floating-point LLL implementation. Available
at http://perso.ens-lyon.fr/damien.stehle#software.

[17] H. Cohen, A Course in Computational Algebraic Number Theory, 2nd edition, Springer-Verlag,
1995.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 29

[18] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag,
1988.

[19] CRLibm, a library of correctly rounded elementary functions in double-precision. http://

lipforge.ens-lyon.fr/www/crlibm/.
[20] I. Dinur, Approximating SVP∞ to within almost-polynomial factors is NP-hard, Theoretical

Computer Science, 285 (2002), pp. 55–71.
[21] I. Dinur, G. Kindler, R. Raz, and S. Safra, Approximating CVP to within almost-

polynomial factors is NP-hard, Combinatorica, 23 (2003), pp. 205–243.
[22] I. Dinur, G. Kindler, and S. Safra, Approximating CVP to within almost polynomial factors

is NP-hard, in Proceedings of the 1998 Symposium on Foundations of Computer Science
(FOCS 1998), IEEE Computer Society Press, 1998, pp. 99–109.

[23] P. van Emde Boas, Another NP-complete partition problem and the complexity of computing
short vectors in a lattice. Technical report 81-04, Mathematisch Instituut, Universiteit van
Amsterdam, 1981.

[24] U. Feige and D. Micciancio, The inapproximability of lattice and coding problems with pre-
processing, Journal of Computer and System Sciences, 69 (2004), pp. 45–67.

[25] U. Fincke and M. Pohst, A procedure for determining algebraic integers of given norm, in
Proceedings of EUROCAL, vol. 162 of Lecture Notes in Computer Science, Springer-Verlag,
1983, pp. 194–202.

[26] N. Gama, N. Howgrave-Graham, H. Koy, and P. Nguyen, Rankin’s constant and blockwise
lattice reduction, in Proceedings of Crypto 2006, no. 4117 in Lecture Notes in Computer
Science, Springer-Verlag, 2006, pp. 112–130.

[27] N. Gama and P. Q. Nguyen, Finding short lattice vectors within Mordell’s inequality, in
Proceedings of the 40th Symposium on the Theory of Computing (STOC 2008), ACM
Press, 2008.

[28] N. Gama, P. Q. Nguyen, and O. Regev, Lattice enumeration using extreme pruning, 2010.
To appear in the proceedings of Eurocrypt 2010.

[29] O. Goldreich, S. Goldwasser, and S. Halevi, Public-key cryptosystems from lattice reduc-
tion problems, in Proceedings of Crypto 1997, vol. 1294 of Lecture Notes in Computer
Science, Springer-Verlag, 1997, pp. 112–131.

[30] G. Hanrot and D. Stehlé, Improved analysis of Kannan’s shortest lattice vector algorithm
(extended abstract), in Proceedings of Crypto 2007, vol. 4622 of Lecture Notes in Computer
Science, Springer-Verlag, 2007, pp. 170–186.

[31] , Worst-Case Hermite-Korkine-Zolotarev Reduced Lattice Bases, Research Report RR-
6422, INRIA, 2008.

[32] A. Hassibi and S. Boyd, Integer parameter estimation in linear models with applications to
GPS, IEEE Transactions on Signal Processing, 46 (1998), pp. 2938–2952.

[33] I. Haviv and O. Regev, Tensor-based hardness of the shortest vector problem to within almost
polynomial factors, in Proceedings of the 39th Symposium on the Theory of Computing
(STOC 2007), ACM Press, 2007, pp. 469–477.

[34] B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced lattice bases,
Theoretical Computer Science, 41 (1985), pp. 125–139.

[35] C. Hermite, Lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres,
deuxième lettre, Journal für die reine und angewandte Mathematik, 40 (1850), pp. 279–290.

Also available in Œuvres de Charles Hermite, by É. Picard, Gauthiers-Villars, Paris, 1905.
[36] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: a ring based public key cryptosystem,

in Proceedings of the 3rd Algorithmic Number Theory Symposium (ANTS III), vol. 1423
of Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 267–288.

[37] R. Kannan, Improved algorithms for integer programming and related lattice problems, in
Proceedings of the 15th Symposium on the Theory of Computing (STOC 1983), ACM
Press, 1983, pp. 99–108.

[38] , Algorithmic geometry of numbers, Annual Review of Computer Science, 2 (1987),
pp. 231–267.

[39] S. Khot, Hardness of approximating the shortest vector problem in lattices, in Proceedings of
the 2004 Symposium on Foundations of Computer Science (FOCS 2004), IEEE Computer
Society Press, 2004, pp. 126–135.

[40] A. Korkine and G. Zolotarev, Sur les formes quadratiques, Mathematische Annalen, 6
(1873), pp. 336–389.

[41] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational
coefficients, Mathematische Annalen, 261 (1982), pp. 513–534.

[42] H. W. Lenstra, Jr., Integer programming with a fixed number of variables, Mathematics of
Operations Research, 8 (1983), pp. 538–548.

30 G. HANROT AND D. STEHLÉ

[43] C. Ling, On the proximity factors of lattice reduction-aided decoding. Submitted, available at
http://www.commsp.ee.ic.ac.uk/~cling, 2008.

[44] J. Martinet, Perfect Lattices in Euclidean Spaces, Springer-Verlag, 2002.
[45] J. Mazo and A. Odlyzko, Lattice points in high-dimensional spheres, Monatshefte für Math-

ematik, 110 (1990), pp. 47–61.
[46] R. Merkle and M. Hellman, Hiding information and signatures in trapdoor knapsacks, IEEE

Transactions on Information Theory, 24 (1978), pp. 525–530.
[47] D. Micciancio, The hardness of the closest vector problem with preprocessing, IEEE Transac-

tions on Information Theory, 47 (2001), pp. 1212–1215.
[48] , The shortest vector problem is NP-hard to approximate to within some constant, SIAM

Journal on Computing, 30 (2001), pp. 2008–2035.
[49] D. Micciancio and S. Goldwasser, Complexity of lattice problems: a cryptographic perspec-

tive, Kluwer Academic Press, 2002.
[50] D. Micciancio and O. Regev, Lattice-based cryptography, in Proceedings of Post-quantum

Cryptography (PQC’08), Springer-Verlag, ed., 2008.
[51] D. Micciancio and P. Voulgaris, A deterministic single exponential time algorithm for most

lattice p roblems based on Voronoi cell computations, 2010. To appear in the proceedings
of STOC 2010.

[52] , Faster exponential time algorithms for the shortest vector problem, in Proc. of SODA,
SIAM Publications, 2010, pp. 1468–1480.

[53] H. Minkowski, Geometrie der Zahlen, Teubner-Verlag, 1896.
[54] W. H. Mow, Maximum likelihood sequence estimation from the lattice viewpoint, IEEE Trans-

actions on Information Theory, 40 (1994), pp. 1591–1600.
[55] P. Q. Nguyen and J. Stern, Adapting density attacks to low-weight knapsacks, in Proceedings

of Asiacrypt 2005, vol. 3788 of Lecture Notes in Computer Science, Springer-Verlag, 2005,
pp. 41–58.

[56] P. Q. Nguyen and T. Vidick, Sieve algorithms for the shortest vector problem are practical,
Journal of Mathematical Cryptology, 2 (2008).

[57] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, in Proceedings of Cryptology
and Computational Number Theory, vol. 42 of Proceedings of Symposia in Applied Math-
ematics, American Mathematical Society, 1989, pp. 75–88.

[58] R. A. Pendavingh and S. H. M. van Zwam, New Korkin-Zolotarev inequalities, SIAM Journal
on Optimization, 18 (2007), pp. 364–378.

[59] X. Pujol, Recherche efficace de vecteur court dans un réseau euclidien. Master degree thesis,
ENS Lyon, 2008.

[60] X. Pujol and D. Stehlé, Rigorous and efficient short lattice vectors enumeration, in Proceed-
ings of Asiacrypt 2008, vol. 5350 of Lecture Notes in Computer Science, Springer-Verlag,
2008, pp. 390–405.

[61] X. Pujol and D. Stehlé, Solving the shortest lattice vector problem in time 22.465n. Cryp-
tology ePrint Archive, Report 2009/605, 2009. http://eprint.iacr.org/.

[62] O. Regev, Lecture notes of lattices in computer science, taught at the Computer Science Tel
Aviv University. Available at http://www.cs.tau.il/~odedr, 2004.

[63] O. Regev and R. Rosen, Lattice problems and norm embeddings, in Proceedings of the 38th
Annual ACM Symposium on Theory of Computing (STOC 2006), ACM, 2006, pp. 447–456.

[64] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Commun. ACM, 21 (1978), pp. 120–126.

[65] C. P. Schnorr, A hierarchy of polynomial lattice basis reduction algorithms, Theoretical Com-
puter Science, 53 (1987), pp. 201–224.

[66] , Lattice reduction by random sampling and birthday methods, in Proceedings of the
annual symposium on theoretical aspects of computer science (STACS 2003), vol. 2607 of
Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 145–156.

[67] C. P. Schnorr and M. Euchner, Lattice basis reduction: improved practical algorithms and
solving subset sum problems, Mathematics of Programming, 66 (1994), pp. 181–199.

[68] C. L. Siegel, A mean value theorem in geometry of numbers, The Annals of Mathematics, 46
(1945), pp. 340–347.

[69] E. Viterbi and J. Boutros, A universal lattice code decoder for fading channels, IEEE Trans-
actions on Information Theory, 45 (1999), pp. 1639–1642.

[70] A. Wassermann, Lattice point enumeration and applications, Bayreuther Mathematische
Schriften, 73 (2006).

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 31

Appendix A. End of proof of Theorem 5.4.

In order to prove Theorem 5.4, it suffices to show that for any 1 < b < a, we have:

(a − b + 1)−
a−b
2 · T1 · T2 ≤ exp

(
−5

2
(a − b)

)
, (A.1)

with T1 =

[
1 − ψ(b)

ψ(a)

a−1∏

k=b

ψ(k + 1)−
1
k

] a−b
2

+

, T2 =

[
a−1∏

k=b

ψ(a)ψ(k + 1)

ψ(k)ψ(k + 1)
b−1

k

] 1
2

and ψ(k) =

e−6k.

A.1. First attempt, without T1. We consider the logarithm of (a − b +

1)−
a−b
2 T2 and try to show that it is ≤ 5

2 (b − a). Thanks to Lemma 5.7, this is
equivalent to:

(b−a) log(a− b+1)+

a−1∑

k=b

[
log ψ(a) − log ψ(k) + log ψ(k + 1)

[
1 − b − 1

k

]]
≤ 5(b−a).

We first try to simplify the summand.
Lemma A.1. The function x 7→ − log x + log(x + 1)

(
1 − b−1

x

)
is increasing

for x ≥ b if b ≥ 3 and for x ≥ 4 if b = 2.

Proof. The derivative is log(x+1)(b−1)(x+1)−bx
x2(x+1) . The function under study is in-

creasing as soon as
(
1 + 1

x

)
log(x + 1) ≥ b

b−1 . The result follows.
Lemma A.2. The following holds for a ≥ 8:

a−1∑

k=b

[
log a − log k + log(k + 1)

[
1 − b − 1

k

]]

≤ (a − b) log(a − b + 1) + (a − b)

[
log

a2

(a − 1)(a − b + 1)
− b − 1

a − 1
log a

]
.

Proof. When b ≥ 3, the result follows from Lemma A.1, by using the fact that
for all k ∈ [b, a − 1] we have

− log k + log(k + 1)

[
1 − b − 1

k

]
≤ − log(a − 1) + log(a)

[
1 − b − 1

a − 1

]
.

Suppose that b = 2. The inequality can be checked numerically for a = 8. Suppose
now that a > 8. Then:

a−1∑

k=b

[
log a − log k + log(k + 1)

[
1 − 1

k

]]
≤ 6 log 7 + 6

[
log

64

49
− 1

7
log 8

]

+
a−1∑

k=8

[
log a − log(a − 1) + log(a)

a − b

a − 1

]

=

a−1∑

k=2

[
log a − log(a − 1) + log(a)

a − b

a − 1

]
,

which gives the result.

32 G. HANROT AND D. STEHLÉ

Lemma A.3. Let α(a, b) = log a
a−b − b−1

a−1 log a and β(a, b) = 1 − b
a−b log a

b .
For a ≥ 8, we have:

(b − a) log(a − b + 1) +

a−1∑

k=b

[
log ψ(a) − log ψ(k) + log ψ(k + 1)

[
1 − b − 1

k

]]

≤ (a − b) [α(a, b) + β(a, b) log C] .

Proof. Lemma A.2 and the fact that (a − 1)(a − b + 1) ≥ a(a − b) give:

(b − a) log(a − b + 1) +

a−1∑

k=b

[
log a − log k + log(k + 1)

[
1 − b − 1

k

]]
≤ (a − b)α(a, b).

We now consider the terms depending on C. Since
∑a−1

x=b
1
x ≤ log a−1

b−1 and log C < 0,
we have:

a−1∑

k=b

(
log(C)

(
1 − b − 1

k

))
≤ log(C)

(
a − b − (b − 1) log

a − 1

b − 1

)
.

The fact that (b − 1) log a−1
b−1 ≤ b log a

b completes the proof.
In the following, we study the function (a, b) 7→ α(a, b) + β(a, b) log C. We would

like to bound it by −5, but we will only be able to do this for a subset of all possible
values for the pair (a, b).

Lemma A.4. Let 0 < κ < 1 be a real constant and suppose that a ≥ 8. The
function a 7→ α(a, κa) + β(a, κa) log C decreases with respect to a.

Proof. We have

α(a, κa) + β(a, κa) log C = − log(1 − κ) + log C

(
1 +

κ log κ

1 − κ

)
− (κa − 1) log a

a − 1
.

Hence,

∂

∂a
(α(a, κa) + log Cβ(a, κa)) =

−κa2 + (κ − 1)a log a + (κ + 1)a − 1

a(a − 1)2
.

For the numerator to be negative, it suffices that a ≥ 1 + 1
κ (then the term in a2

is larger than the term in a) or that a ≥ exp
(

κ+1
1−κ

)
(then the term in a log a is larger

than the term in a). Since

max
κ∈[0,1]

min

(
1 +

1

κ
, exp

(
κ + 1

1 − κ

))
≤ 8,

the result follows.
In the results above, we did not need C = exp(−6). The only property we used

about C was log C < 0. In the sequel, we define τ(a, κ) = α(a, κa) − 6β(a, κa). We
are to prove that τ(a, κ) ≤ −5 as soon as κ is not very close to 1.

Lemma A.5. For any a ≥ 756, the function κ 7→ τ(a, κ) increases to a local

maximum in
[
0, 1

2

]
, then decreases to a local minimum in

[
1
2 , 1 − 1

2 log a

]
and then

increases.

WORST-CASE ANALYSIS OF KANNAN’S SVP ALGORITHM 33

Proof. We first study

∂3

∂κ3
τ(a, κ) =

20κ2 + 10κ3 + 6 − 36κ − 36κ2 log κ

(1 − κ)4κ2
.

Using the fact that log κ ≤ (κ − 1) − (κ − 1)2/2 + (κ − 1)3/3 for κ ∈ (0, 1], we
find that the numerator can be lower bounded by a polynomial which is non-negative
for κ ∈ (0, 1]. As a consequence, τ ′

κ(a, κ) = ∂
∂κτ(a, κ) is a convex function with respect

to κ ∈ (0, 1).
Notice now that τ ′

κ(a, κ) = −6 log κ+o(log κ) > 0 for κ close to 0, that τ ′
κ(a, 1/2) =

−10 + 24 log 2 − a log a
a−1 ≤ 0 for a ≥ 756, and finally that

τ ′
κ

(
a, 1 − 1

2 log a

)
= −10 log a − 24 log

(
1 − 1

2 log a

)
log2 a − a

a − 1
log a

≥ 2 log a − a

a − 1
log a,

which is clearly positive for a ≥ 2.
The following lemma provides the result claimed in Theorem 5.4 for a ≥ 158000

and b ≤ a − 1.65 a
log3 a

.

Lemma A.6. Suppose that a ≥ 158000. Then, for all κ ≤ 1 − 1.65 1
log3 a

, we

have α(a, κa) − 6β(a, κa) ≤ −5.
Proof. Let a0 = 158000. We have τ ′

κ(a0, 0.08962) > 0 > τ ′
κ(a0, 0.08963). Further-

more, for κ ∈ [0.08962, 0.08963], we have

|τ ′
κ(a0, κ)| ≤ max (|τ ′

κ(a0, 0.08962)|, |τ ′
κ(a0, 0.08963)|) ≤ 3 · 10−4.

Hence,

max
κ∈[0.08962,0.08963]

τ(a0, κ) ≤ τ(a0, 0.08962) + 3 · 10−9 ≤ −5.

Lemma A.5 implies that maxκ∈[0,1/2] τ(a0, κ) ≤ −5. Thanks to Lemma A.4, we
have, for a ≥ 158000:

max
κ∈[0,1/2]

(α(a, κa) − 6β(a, κa)) ≤ −5.

Furthermore, since 1
2 log a ≥ 1.65

log3 a
and thanks to Lemma A.5, we have, for any a ≥

158000:

max
κ∈

h

1
2 ,1− 1.65

log3 a

i

τ(a, κ) = max

(
τ

(
a,

1

2

)
, τ

(
a, 1 − 1.65

log3 a

))
.

Notice that

τ

(
a, 1 − 1.65

log3 a

)
≤ α

(
a, a − 1.65a

log3 a

)
= − log 1.65+3 log log a−log a+

a

a − 1

1.65

(log a)2
,

which is decreasing with respect to a ≥ 158000. Moreover, for a = 158000, its value
is below −5. As a consequence,

max
κ∈

h

1
2 ,1− 1.65

log3 a

i

τ(a, κ) ≤ max

(
τ

(
a,

1

2

)
,−5

)
≤ −5.

34 G. HANROT AND D. STEHLÉ

A.2. Using T1 when b > a− 1.65a
log3 a

. This section ends the proof of Theorem 5.4

for a ≥ 158000.
Lemma A.7. Assume that ψ(x) = e−6 · x. Then, for a > b ≥ a − 1.65 a

log3 a
, we

have

T
2

a−b

1 = 1 −
(

fψ,d(d − b + 1)

fψ,d(d − a + 1)

)2

≤ 1.65
log a − 5

log3 a − 1.65
.

Proof. According to Lemma 5.3, we have

−2 log
fψ,d(d − b + 1)

fψ,d(d − a + 1)
= log

(a

b

)
+

a−1∑

l=b

−6 + log(l + 1)

l

≤ a − b

b
(1 + (−6 + log a)) ,

≤ 1.65
log a − 5

log3 a − 1.65
.

By using Lemmas A.3 and A.5 and the fact that β(a, b) log(C) ≤ 0, we have,
for b ≥ a − 1.65 a

(log a)3 and a ≥ a1 ≥ 158000:

(b − 1) log(a − b + 1) + 2 log T1T2 ≤ (a − b)[α(a, b) + β(a, b) log(C)] + 2 log T1

≤ (a − b)

[
α(a, a − 1) +

2

a − b
log T1

]

≤ (a − b)

[
log a

a − 1
+ log

[
1.65

log a − 5

log3 a − 1.65

]]
.

The term log a
a−1 + log

(
1.65 log a−5

log3 a−1.65

)
decreases for a ≥ 1782 and becomes ≤ −5

for a ≤ 158000, thus completing the proof.

A.3. Small Values of a. It only remains to prove Theorem 5.4 for small values
of a. The following lemma was obtained numerically. In order to provide a reliable
proof, we used the Boost interval arithmetic library [15] and CRlibm [19] as underlying
floating-point libraries.

Lemma A.8. Equation (A.1) holds for any 1 < b < a ≤ 158000.

