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Abstract. Lattices over number �elds arise from a variety of sources
in algorithmic algebra and more recently cryptography. Similar to the
classical case of Z-lattices, the choice of a nice, �short� (pseudo)-basis is
important in many applications. In this article, we provide the �rst algo-
rithm that computes such a �short� (pseudo)-basis. We utilize the LLL
algorithm for Z-lattices together with the Bosma-Pohst-Cohen Hermite
Normal Form and some size reduction technique to �nd a pseudo-basis
where each basis vector belongs to the lattice and the product of the
norms of the basis vectors is bounded by the lattice determinant, up to
a multiplicative factor that is a �eld invariant. As it runs in polynomial
time, this provides an e�ective variant of Minkowski's second theorem
for lattices over number �elds.

1 Introduction

Let K be a number �eld and OK be its maximal order. An OK-module is a
�nitely generated set of elements which is closed under addition and multipli-
cation by elements in OK . Frequently, we have M ⊆ Km. In the case of K
being Q, we have OK = Z, thus OK-modules are just the classical Z-lattices.
Since Z is a principal ideal domain, every (torsion free) module is free, thus there
exists a basis b1, . . . , bn ∈M for some n ≤ m such that M = ⊕i≤nZbi. Any two
bases (bi)i and (ci)i have the same cardinality and are linked by some unimod-
ular matrix T ∈ GL(n,Z). The choice of a good basis is crucial for almost all
computational problems attached toM . Generally one tries to �nd a basis whose
vectors have short Euclidean norms, using, for example, the LLL algorithm [15].

Replacing Z by the maximal order OK makes the classi�cation more compli-
cated since OK may no longer be a principal ideal domain. However, since OK
is still a Dedekind domain, the modules M ⊆ Km have a well known struc-
ture ([7, Cor. 1.2.25], [23, Th. 81:3]): there exist linearly independent elements
b1, . . . ,bn ∈ Km and (non-zero fractional) ideals b1, . . . , bn such that M =
⊕i≤nbibi, i.e., every b ∈M has a unique representation as b =

∑
i≤n xibi with

xi ∈ bi for all i ≤ n. Such a representation is commonly called a pseudo-basis.
It should be noted that bi may not belong to M , and in fact bi ∈ M if and
only if 1 ∈ bi. Similarly to the case of Z-lattices, di�erent pseudo-bases share the
same cardinality, and it is known how to move from a pseudo-basis to another.

As for Z-lattices, the choice of the pseudo-basis is of utmost importance.
However, a key di�erence is that no analogue of LLL is known, as repeatedly



noted in [7]. There have been attempts [10, 22, 11] but the algorithms are either
limited to certain �elds or give no guaranteed bounds on the output size. While
every OK-module is also a Z-lattice and can thus be analyzed with all the tools
available over Z, for many applications the additional structure as anOK-module
is important. This structure is typically lost when applying techniques over Z.

Originally, OK-modules mainly came from the study of �nite extensions of K
but now they occur in a wider range of problems from group theory (matrix
groups and representations [9]) and geometry (automorphism algebras of Abelian
varieties). OK-modules also occur in lattice-based cryptography, when arbitrary
lattices are replaced by so-called ideal lattices. The latter correspond to ideals in
polynomial rings or maximal orders [19, 17, 24�26]. Cryptography based on ideal
lattices is currently scrutinuously studied as it o�ers asymptotically optimal
performance and its security relies on precise and well understood assumptions.

As diverse as the applications are the requirements: only one (or more) short
module element(s) may be needed, or a short (pseudo)-basis may be required,
while a canonical representation may su�ce. Solutions to the �rst and last prob-
lems have been known for some time. To �nd one short element it su�ces to
consider the underlying Z-module (of dimension nd with d = [K : Q]). For Z-
lattices contained in Qm, a canonical representation is the Hermite Normal Form
(HNF). It has been generalized (BPC-HNF) to OK-modules contained in Km

by Bosma and Pohst [4] and Cohen [7, Chap. 1.4] (see also [12]).

In the present work, we describe an algorithm that computes a pseudo-basis
made of short vectors. Given an arbitrary pseudo-basis [(ai)i, (ai)i] of a mod-
ule M ⊆ Km, it returns a pseudo-basis [(bi)i, (bi)i] such that:

∀i ≤ n : bi ∈M, N (bi) ∈ [2−O(d2), 1] and ‖bi‖ ≤ 2O(dn)λi(M),

where the O(·)'s depend only on the �eld K and the choice of a given LLL-
reduced integral basis, the euclidean norm ‖ · ‖ is a module extension of the
T2-norm over K, and the λi(M)'s correspond to the module minima. We refer
to Cor. 1 for a precise statement. Overall, this provides a module equivalent to
LLL-reduced bases of Z-lattices in the sense that the vectors cannot be arbi-
trarily longer than the minima. Since it runs in polynomial-time, it can also be
interpreted as an e�ective approximate variant of the adaptation to OK-modules
of Minkowski's second theorem (given in Th. 2). For completeness, we also study
the representation of one-dimensional OK-modules, i.e., ideals of OK . We show
how to modify Belabas' 2-element representation algorithm [2, Alg. 6.15] so that
the output is provably small. Combining the latter and our module pseudo-
reduction algorithm leads to compact representations of OK-modules.

The most natural approach to obtain reduced pseudo-bases consists in trying
to generalize LLL, but as mentioned earlier all previous attempts have only
partially succeeded. In contrast, we start by viewing the OK-module as a high-
dimensional Z-lattice. We �nd short module elements by applying LLL to a basis
of the latter lattice and interpreting the output as module elements. At this point,
we have a pseudo-basis (the input) and a full-rank set of short module vectors
(produced by LLL). If we had a Z-lattice instead of an OK-module, we would



then use a technique common in the lattice-based cryptography community (see,
e.g., [20, Le. 7.1]), consisting in using the HNF to convert a full rank set of short
lattice vectors to a short basis. We adapt this technique to number �elds, using
the BPC-HNF and introducing a size-reduction algorithm for pseudo-bases.

Let us compare (pseudo-)LLL-reduced and BPC-HNF pseudo-bases. A the-
oretical advantage of the LLL approach is that it is not restricted Km but
also works in a continuous extension (similarly to LLL-reduction being well-
de�ned for real lattices). It should also be signi�cantly more e�cient to work
with pseudo-bases made of short vectors because smaller integers and polyno-
mials of smaller degrees are involved. On the other side, (pseudo-)LLL-reduced
pseudo-bases are far from being unique, and seem more expensive to obtain.

The algorithms have been implemented in the Magma computer algebra sys-
tem [3, 18] and are available on request. They will be part of upcoming releases.

2 Preliminaries

We assume the reader is familiar with the geometry of numbers and algebraic
number theory. We refer to [16, 20], [5, 21] and [7, Chap. 1] for introductions to
the computational aspects of lattices, elementary algebraic number theory and
to modules over Dedekind domains, respectively.

2.1 Lattices

In this work, we will call any �nitely generated free Z-module L a lattice. A
usual lattice corresponds to the case where L is a discrete additive subgroup
of Rn for some n. Any lattice can be written L = ⊕i≤dZbi. If the bi's are free,
they are called a basis of L. We say that a vector b =

∑
yibi ∈ L ⊗ R =: LR is

reduced modulo the basis (bi)i if yi ∈ [−1/2, 1/2) for all i. A given lattice may
have in�nitely many bases but their cardinality d is constant and called rank.
Any two bases are related by a unimodular transformation, i.e., one is obtained
from the other by multiplying by an element of Zd×d of determinant ±1.

If L ⊆ Qn is of rank d, then there exists a basis B = (bi)i ∈ Qn×d of L such
that µj = min{i : Bi,j 6= 0} (strictly) increases with j, and for all j > k we
have Bµj ,j > Bµj ,k ≥ 0. If d = n, this means that B is a row-wise diagonally
strictly dominant lower triangular matrix and that its entries are non-negative.
This basis is unique and called the Hermite Normal Form (HNF) of L. It can be
computed in polynomial-time from any basis [13].

In order to quantify the smallness of an element of a lattice L, we associate
to L a positive de�nite bilinear form q : LR × LR 7→ R. We use it to map a
basis (bi)i to its Gram matrix Gq(b1, . . . , bd) := (q(bi, bj))i,j . We denote

√
q(b, b)

by ‖b‖q, and may omit the subscript if it is clear from the context. The de-
terminant of L, de�ned as detq(L) = det(Gq(b1, . . . , bd))1/2, does not depend
on the particular choice of the basis of L. Note that if L ⊆ Rn and q is the
euclidean inner product, then det(L) is the d-dimensional volume of the paral-
lelepiped {

∑
i yibi : yi ∈ [0, 1]}. We de�ne the lattice minima as follows:



∀i ≤ d, λi,q(L) = min{r : ∃c1, . . . , ci ∈ L free, maxk≤i ‖ck‖q ≤ r}.

Minkowski's second theorem states that
∏
i≤d λi(L) ≤

√
d
d

det(L). Frequently
one tries to represent a lattice L by a basis that approximates the minima. In
this article, we assume that we have an algorithm LatRed that takes as input
an arbitrary basis of L and returns a reduced basis satisfying ‖bi‖ ≤ γλi(L),
for all i ≤ d. For example, if we use the LLL algorithm [15], then we can
take γ = 2d/2. We proceed as follows: compute the Gram matrix G of the
input basis; use the Gram matrix LLL algorithm (see, e.g., [5, p. 88]), to �nd U
unimodular such that U tGU is reduced; apply U to the input lattice basis. If
the arithmetic over L is e�cient, and if q can be e�ciently computed or approx-
imated with high accuracy, then this provides an e�cient algorithm. Apart from
being well-de�ned for more general lattices (not only for lattices on a rational
vector space), a signi�cant advantage of the LLL-reduction over the HNF is that
it provides small lattice elements. However, it seems more expensive to obtain
and the uniqueness of the representation is lost. Taking the HKZ-reduction in-
stead of the LLL-reduction allows one to take γ =

√
d+ 3/2 (see [14]), but the

complexity of the best algorithm for computing it [1] is exponential in d.
Let (bi)i be a lattice basis. For any i > j, we de�ne µi,j = q(bi, b

∗
j )/q(b

∗
j , b
∗
j ),

where b∗i = argmin‖bi +
∑
j<i Rbj‖. We call the µi,j 's and the b∗i 's the Gram-

Schmidt orthogonalisation of the bi's. Size-reduction of a bi with respect to the
previous bj 's consists in subtracting from bi integer multiples of the previous bj 's
so that the updated GSO satis�es |µi,j | ≤ 1/2 for all j < i. The resulting set of
vectors remains a basis, and we have ‖bi‖2 ≤

∑
j≤i ‖b∗j‖2.

A standard technique in the lattice-based cryptography community (see, e.g.,
[20, Le. 7.1]) allows one to derive a short lattice basis from an arbitrary ba-
sis (bi)i and a full-rank free set of short lattice vectors (si)i. As we will adapt
this technique to modules, we describe it brie�y. Since the si's belong to the
lattice, there exists T ∈ Zd×d such that (si)i = (bi)i · T . We compute the
HNF of T t: T t = T ′tU t with U unimodular. We thus have (si)i = (ci)i · T ′
where (ci)i = (bi)i ·U is a lattice basis and T ′ is upper triangular with diagonal
entries ≥ 1. The shape of T ′ implies that for any i we have ‖c∗i ‖ ≤ ‖s∗i ‖. Perform-
ing a size-reduction on the ci's for increasing values of i leads to a basis (c′i)i such
that max ‖c′i‖ ≤

√
dmax ‖s∗i ‖ ≤

√
dmax ‖si‖. It can be checked that if L ⊆ Qn,

then all the computations may be performed in polynomial time.

2.2 Number �elds

Let K be a number �eld of degree d, with real and complex embeddings (θi)i≤s1 ,
(θi)s1<i≤s1+2s2 . Its maximal order OK is a lattice: there exists a free set (ri)i ∈
OdK such that OK = ⊕iZri. The ri's form an integral basis of K, and we
have K = OK ⊗ Q. We de�ne KR = K ⊗ R, which is isomorphic (as rings)
to Rs1 × Cs2 , and extend the θi's to KR. Many quadratic forms may be as-
sociated to KR, but the most natural one derives from q(x, x′) = T2(x, x′) :=∑
θi(x)θ̄i(x′). The discriminant of K is de�ned as ∆K = det2T2

(OK). Note that
for any x, x′ ∈ KR, we have ‖xx′‖ ≤ ‖x‖ · ‖x′‖. The (�eld) norm of an ele-
ment x ∈ KR is de�ned as N (x) =

∏
i |θi(x)|.



A (fractional) ideal I is any OK-module contained in K. An integral ideal I is
a fractional ideal contained in OK . For any fractional ideal I there exists r ∈ Z
such that rI is an integral ideal. If r ∈ K, we let (r) denote the (principal)
ideal rOK . The product IJ = 〈ij : i ∈ I, j ∈ J〉 and the sum I + J = {i+ j : i ∈
I, j ∈ J} of two ideals are also ideals. An non-zero integral ideal is said to be
prime if it is divisible only by OK and itself. As OK is a Dedekind domain, any
non-zero fractional ideal can be uniquely decomposed as a product of (possibly
negative) powers of prime ideals. If p is a prime ideal, we de�ne νp(I) = max(k ∈
Z : pk|I). The norm of I is de�ned as N (I) = det(I)/det(OK). If I 6= 0 is
integral, then this is exactly the index of I in OK , de�ned as [OK : I] = |OK/I|.
We de�ne N (0) = 0, which allows us to assert that N (IJ) = N (I)N (J) for
any ideals I and J . Note that if I = (r) is principal, then N (I) = N (r). The
inverse I−1 = {r ∈ K : rI ⊆ OK} of a non-zero fractional ideal I is also a
fractional ideal, and we have II−1 = OK . Note that the arithmetic over the
ideals can be performed in polynomial time (e.g., see [2]).

We say that a basis of a non-zero fractional ideal I is in HNF if the (rational)
matrix of the coe�cients with respect to a �xed integral basis of K is in HNF.
This provides a unique representation for any ideal.

In the following, we assume that we know an integral basis (ri)i of K that
is short with respect to T2. It can be known for particular K's (e.g., cyclotomic
number �elds, with max ‖ri‖2 = d), or can be computed by reducing an arbitrary
integral basis. As it is computed once and for all, it may prove interesting to
strongly reduce it. We have the following result.

Lemma 1. If (ri)i is a LatRed-reduced integral basis of K, then max ‖ri‖2 ≤
dγd∆K .

Proof. Using the reducedness and Minkowski's second theorem, we get
∏
‖ri‖2 ≤

γddd∆K . The arithmetic-geometric inequality gives that 1 ≤ N (ri)2/d ≤ ‖ri‖2/d
holds for all i, which provides the result. �

2.3 OK-modules

Let b1, . . . ,bn ∈ Km
R with n = rankK(bi)i, and b1, . . . , bn be fractional ideals

ofOK . TheOK-module spanned by the pseudo-basis [(bi)i, (bi)i] isM [(bi)i, (bi)i] :=∑
bibi. The bi's are called the coe�cient ideals. As each bi is a Z-lattice, so

is M . More precisely, if bi =
∑
j≤d Zb

(j)
i , then M =

∑
i,j Zb

(j)
i bi. Two pseudo-

bases [(bi)i, (bi)i] and [(ci)i, (ci)i] represent the same OK-module M if and only
if there exists a non-singular U ∈ Kn×n with ([23, �81 C]):

1. (c1, . . . , cn) = (b1, . . . ,bn)U ;
2. For all i, j, we have Ui,j ∈ bic

−1
j ;

3. For all i, j, we have U ′i,j ∈ cib
−1
j , where U ′ = U−1.

Cohen [6] generalized the HNF to modules in Km. The algorithm of [4] may
also be interpreted as such a generalization. We refer to [12, Chap. 4] for a
detailed exposure and comparison.



Theorem 1. Let M ⊆ Km be an OK-module of rank n. There exists a pseudo-
basis [(bi)i, (bi)i] of M such that µj = min{i : Bi,j 6= 0} (strictly) increases
with j, for all j we have Bµj ,j = 1 and for all j > k the entry Bµj ,k ∈ KR is

reduced modulo the HNF of bjb
−1
k . This pseudo-basis is unique and is called the

HNF of M . It can be computed in polynomial-time from any pseudo-basis of M .

Similarly to the HNF for lattices, the above HNF cannot handle OK-modules
M ⊆ Km

R and does not necessarily contain small elements of M . We now de-
�ne the concept of small-ness for elements of Km

R . For b = (b1, . . . , bm)t,b′ =
(b′1, . . . , b

′
m)t ∈ Km

R , we de�ne T⊗m2 (b,b′) =
∑
i≤m T2(bi, b

′
i), and we denote√

T⊗m2 (b,b) by ‖b‖. Notice that for any (r,b) ∈ KR × Km
R , we have ‖rb‖ ≤

‖r‖ · ‖b‖. With this de�nition at hand, we can de�ne the minima of M :

∀i ≤ n, λi(M) = min{r : ∃c1, . . . , ci ∈M, rankK(ck)k = i and max ‖ck‖ ≤ r}.

Let [(bi)i, (bi)i] be a pseudo-basis of an OK-module M ⊆ Km
R . Assume

that bi =
∑
j≤d Zb

(j)
i . We de�ne det(M) as the square root of the determinant

of the nd × nd symmetric positive de�nite matrix T⊗m2 (b(j)
i bi, b

(j′)
i′ bi′)i,j;i′,j′ .

This is a module invariant. When M is a non-zero fractional ideal of OK , this
matches detT2(M). The following is a direct consequence of Minkowski's second
theorem over Z-lattices.

Theorem 2. Let M ⊆ Km
R be an OK-module of rank n. Then

∏
i≤n λi(M) ≤√

dn
n

det(M)1/d.

Proof. The moduleM can be seen as a lattice L of dimension nd, with det(M) =
det(L). FromMinkowski's second theorem, we have

∏
i≤nd λi(L) ≤

√
dn

dn
det(L).

Let c1, . . . , cnd ∈ M be free over the integers such that ‖ci‖ = λi(L) holds for
all i. For all i ≤ n, let φ(i) = min(j : rankKR(c1, . . . , cj) = i). As OK has rank d
as a Z-module, we have φ(i) ≤ (i − 1)d + 1. We conclude with the following
sequence of inequalities:∏
i≤n

λi(M) ≤
∏
i≤n

‖cφ(i)‖ ≤
∏
i≤n

λ(i−1)d+1(L) ≤
∏
i≤dn

λi(L)
1
d ≤
√
dn

n
det(M)

1
d . �

We now extend the concept of GSO. Let [(bi)i, (bi)i] be a pseudo-basis of
an OK-module M . We de�ne b∗i = argmin‖bi +

∑
j<iKRbj‖ for all i ≤ n, and

let µi,1, . . . , µi,i−1 ∈ KR be such that bi = b∗i +
∑
j<i µi,jb

∗
j .

3 Small 2-element representation of an ideal

We start our study of OK-modules by the one-dimensional case, i.e., fractional
ideals of K. There are several ways of representing an ideal I 6= 0. A natural ap-
proach is to provide a basis (bi)i≤d ∈ Kd, or the coordinate matrix of a basis with
respect to an integral basis (ri)i of K. This coordinate matrix belongs to Qd×d,



and it may prove interesting to �nd the basis of kI such that the coordinates ma-
trix is in HNF, for the smallest integer k such that kI is integral. This representa-
tion requires a space of O(d logN (kI)+log k+d2) = O(d logN (I)+d2(1+log k))
bits. Alternatively, one may use the so-called two-element representation: any
ideal I may be written I = (x1)+(x2) for some x1, x2 ∈ I. A classical way to ob-
tain such a representation consists in taking an arbitrary x1 ∈ I and then choos-
ing x2 uniformly in I modulo (x1) (the latter being a full-rank sublattice of the
former). This succeeds with probability ≥

∏
(1−1/N (P)), where the product is

taken over the prime ideals P that divide (x1)/I (see [2, Le. 6.14]). IfN (x1)/N (I)
is small and if there do not exist too many prime ideals of small norm, then the
success probability is large. Belabas [2, Alg. 6.15] proposed a probabilistic poly-
nomial time (ppt) variant, which always succeeds with high probability. However,
the obtained representation of I may be of bit size Ω(d logN (I)).

We modify Belabas' algorithm to provide a 2-element representation made of
small elements: I = (x1)+(x2) with both ‖x1‖ and ‖x2‖ small. For instance, the
�rst element x1 is chosen to be the �rst component of an LLL-reduced basis of I.
This may be seen as a rigorous variant of [7, Alg. 1.3.15], in which smallness was
provided but the success probability could be small. Although our analysis is
close to Belabas', we give a full proof, as there are quite a few small di�erences.

Theorem 3. Let (ri)i be an integral basis of a number �eld K. There exists a ppt
algorithm that takes as inputs a Z-basis of a non-zero fractional ideal I of OK and
a success parameter t (in unary), and returns x1, x2 ∈ I such that I = (x1)+(x2)
holds with probability 1− 2−t, and:

‖x1‖, ‖x2‖ ≤ 4d2γ8∆
4
d

K max ‖ri‖4 · N (I)
4
d , (1)

where ‖ · ‖ corresponds to the T2 norm and γ is the LatRed approximation con-
stant. As a consequence, the ideal I may be represented on O(logN (I)+log∆K+
d(d+ log k + log max ‖ri‖)) bits, where k is the smallest integer such that kI is
integral and the ri's are assumed LLL-reduced.

Let us comment on (1). The quantity 4d2γ8∆
4
d

K is an invariant of the �eld,
and max ‖ri‖4 is independent from I (and can be bounded using Le. 1). The

only term that is not an invariant is N (I)
4
d . If x1 and x2 were basis vectors of

an LLL-reduced basis of I, we would expect N (I)
1
d instead of N (I)

4
d (see (2)

below). We do not know how to reach this bound for x2.

Let us now prove Th. 3. Since the smallest integer k such that kI is integral
can be computed e�ciently, we assume that I is integral. As the ideal I is given
by a Z-basis, we can �nd a basis of it that is LLL-reduced (for T2). The algorithm
of Fig. 1 is an adaptation of [2, Alg. 6.15]. We follow the algorithm step by step.

The LLL-reducedness of the input directly gives that ‖x1‖ ≤ γ∆
1/2d
K N (I)1/d.

By using the arithmetic-geometric inequality, we obtain:

N (a)1/d = N (x1)1/d ≤ 1√
d
‖x1‖ ≤

γ∆
1/2d
K√
d
N (I)1/d. (2)



Inputs: An LLL-reduced basis of a non-zero integral ideal I of OK ;
a success parameter t.

Output: x1, x2 ∈ I such that I = (x1) + (x2), or Fail.
1. Let x1 be the �rst basis element; a := (x1). If I = a, return x1 and x2 := 0.
2. Find y such that y log y = logN (a); S := {p prime : N (p) ≤ y}.
3. a0 :=

Q
p∈S pνp(a); I0 :=

Q
p∈S pνp(I); a1 := aa−1

0 ; I1 := II−1
0 .

4. For i := 1 to 2t do
5. Sample π1 uniformly in I1/a1. If I1 = a1 + (π1), then go to Step 7.
6. Return Fail.
7. Let b be the �rst element of an LLL-reduced basis of a1.
8. Reduce π1 modulo the b · ri's.
9. Using [2, Alg. 6.8], �nd π0 ∈ OK such that νp(π0) = νp(I0) for all p ∈ S.
10. Let b be the �rst element of an LLL-reduced basis of

Q
p∈S pνp(I0)+1.

11. Reduce π0 modulo the b · ri's.
12. Using [2, Alg. 5.4], �nd α0 ∈ a0 and α1 ∈ a1 such that α0 + α1 = 1.
13. Let b be the �rst element of an LLL-reduced basis of a.
14. Reduce α0 and α1 modulo the b · ri's.
15. Return x1 and x2 := (π0α1 + α0)(π1α0 + α1).

Fig. 1. Computing a small 2-element representation of an integral ideal.

As a consequence, the variable y of Step 2, can be bounded by a polynomial
in d, logN (I) and log∆K . This ensures that the computation of S can be
done in polynomial time. At Step 3, the computations of a0, I0, a1 and I1 can
be performed in polynomial time: this follows from the above study of S. We
have a = a0a1 and I = I0I1. We also have Ii|ai and Ii+a1−i = OK for i ∈ {0, 1}.

As a1 is a full-rank sublattice of I1, sampling π1 uniformly in I1/a1 can
be done in polynomial time. The equality I1 = a1 + (π1) can also be tested
in polynomial time (see, e.g., [20, Prop. 8.2]). By adapting the analysis of [2,
Le. 6.1], we obtain:

Pr [I1 = a1 + (π1)] ≥
∏

p prime, p|a1

(
1− 1
N (p)

)
≥
(

1− 1
y

)logy N (a)

≥ 1
e
.

As a consequence, the algorithm returns Fail at Step 6 with probability ≤ 2−t.
At Step 8, the b·ri's are a basis of a sublattice of a1. Therefore, after Step 8, we

still have I1 = a1 + (π1). By reducing π1 modulo the b · ri's, we mean performing
the following: If π1 was

∑
i yibri with the yi's in R, then it becomes

∑
i(yi −

byie)bri. After this reduction, we have:

‖π1‖ ≤ dmaxi ‖bri‖ ≤ d‖b‖maxi ‖ri‖ ≤ dγ∆1/2d
K N (a1)1/d maxi ‖ri‖.

It is shown in [2] that Step 9 can be performed in polynomial time. The bounds
on S imply that Step 10 can be done in polynomial time. Step 11 ensures that

‖π0‖ ≤ dγ∆1/2d
K N

∏
p∈S

pνp(I0)+1

1/d

max
i
‖ri‖ ≤ dγ∆1/2d

K N (I0)2/d max
i
‖ri‖.



After Step 11, we still have that νp(π0) = νp(I0), for all p ∈ S, and thus I0 =
a0 + (π0). It is shown in [2] that Step 12 can be performed in polynomial time.

Step 14 ensures that ‖α0‖, ‖α1‖ ≤ dγ∆
1/2d
K N (a)1/d maxi ‖ri‖. Since a = a0a1,

we still have αi ∈ ai after Step 14, for i ∈ {0, 1}. At Step 15, we have:

‖x2‖ ≤ (‖π0‖‖α1‖+ ‖α0‖) (‖π1‖‖α0‖+ ‖α1‖)

≤ d4γ4∆
2/d
K max

i
‖ri‖4N (a)2/d

(
N (I0)2/d + 1

)(
N (a1)1/d + 1

)
≤ 4d4γ4∆

2/d
K max

i
‖ri‖4N (a)4/d,

where we used the fact that N (a1) = N (a)/N (a0) ≤ N (a)/N (I0). Combining
the latter with (2) provides the upper bound on ‖x2‖ from Th. 3.

Also, we have that π′i := πiα1−i + αi is congruent to πi modulo ai and to 1
modulo a1−i, for i ∈ {0, 1}. Therefore, we have Ii = ai + (π′i) and Ii + (π′i−1) =
OK . Finally, we obtain I = I0I1 = a0a1 + (π′0π

′
1) = (x1) + (x2), thus proving the

correctness of the algorithm.
We now consider the amount of space needed to represent the coordinates

of x1 and x2 with respect to the integral basis (ri)i. Wlog we only consider x1.
We write x1 =

∑
yiri with yi ∈ Z. Using the reducedness of the ri's, we get

∀i : |yi| ≤
‖x1‖2d/2+i

minj ‖rj‖
. (3)

We show the above by decreasing induction on i. First, we have ‖x1‖ ≥ |yd|‖r∗d‖ ≥
2d/2|yd|‖rd‖. Suppose now that i < d and that the result holds for any j > i.
The GSO of the ri's shows that ‖x1‖ ≥ |yi +

∑
j>i µj,iyj |‖r∗i ‖. Therefore, we

have |yi| ≤ 2d/2‖x1‖/‖ri‖+
∑
j>i |yj |, which provides the result.

Since ‖rj‖ ≥
√
d for all j, (3) implies that each yi can be stored on O(d +

log ‖x1‖) bits. Combining the latter with (1) completes the proof of Th. 3.

4 Computing short pseudo-bases

In this section, we (constructively) show that any OK-module M ⊆ Km
R always

has a pseudo-basis [(bi)i, (bi)i] such that the bi's belong toM and are not much
longer than the module minima.

4.1 From a short basis of a submodule to a short pseudo-basis

We are going to generalize to OK-modules the technique we mentioned at the
end of Section 2.1, that takes as inputs a basis of a lattice L and a short basis of
a full-rank sub-lattice of L, and returns a short basis of L. We split the algorithm
into several smaller ones that may be of independent interest.

The algorithm of Fig. 2 takes as inputs a pseudo-basis [(ai)i, (ai)i] of an OK-
moduleM ⊆ Km

R and a full-rank set of short module vectors (si)i, and returns a
pseudo-basis [(bi)i, (bi)i] ofM such that bi ∈ spanj≤i aj . This can be interpreted
as a constructive variant of [23, Th. 81.3]. The HNF over lattices is replaced by
the BPC-HNF (Th. 1), with special care being taken for the coe�cient ideals.



Inputs: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R ,

a full-rank set (si)i of vectors in M .
Output: A pseudo-basis of M .
1. Compute T ∈ Kn×n such that (s1, . . . , sn) = (a1, . . . ,an)T .
2. Let t1, . . . , tn be the columns of T t.
3. Compute the BPC-HNF [(t′i)i, (b

−1
i )i] of the pseudo-basis [(ti)i, (a

−1
i )i].

4. Let T ′ be the matrix whose rows are the (t′i)
t's, and U = T (T ′)−1 ∈ Kn×n.

5. Let (b1, . . . ,bn) = (a1, . . . ,an)U .
6. Return [(bi)i, (bi)i].

Fig. 2. Constructing a pseudo-basis with small GSO.

Theorem 4. If given as inputs a pseudo-basis [(ai)i, (ai)i] of a moduleM ⊆ Km
R

and a full-rank set (si)i of vectors in M , then the algorithm of Fig. 2 returns
a pseudo-basis [(bi)i, (bi)i] of M , which satis�es, for all i ≤ n: bi ∈ M ; bi ∈
spanj≤i sj; b

∗
i = s∗i . If M ⊆ Km, then it terminates in polynomial time.

Proof. We �rst prove that [(bi)i, (bi)i] is a pseudo-basis of M . We have (bi)i =
(ai)i · U , with U ∈ Kn×n non-singular. It therefore su�ces to prove that for
any i, j, we have Ui,j ∈ aib

−1
j and U ′i,j ∈ bia

−1
j , where U ′ = U−1. This is

ensured by Th. 1: as the pseudo-bases [(t′i)i, (b
−1
i )i] and [(ti)i, (a

−1
i )i] span the

same module, we have U ′j,i ∈ a−1
i bj and Uj,i ∈ b−1

i aj , for any i, j.
Because of the de�nitions of T, T ′, U and (bi)i, we have (si)i = (bi)i · T ′.

Furthermore, by Th. 1, the matrix T ′ is upper triangular with diagonal coef-
�cients equal to 1. We thus have bi ∈ spanj≤i sj , for all i. In fact, we even
have bi +

∑
j<iKRbj = si +

∑
j<iKRsj , which gives ‖b∗i ‖ = ‖s∗i ‖. Finally, the

shape of T ′ gives that si = bi +
∑
j<i T

′
j,ibj . As the si's belong to M , so must

the bi's (the decomposition of si as an element of
∑
j Kbj is unique). �

The algorithm of Fig. 3 generalizes size-reduction to OK-modules.

Input: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R .

Output: A pseudo-basis of M .
1. [(bi)i, (bi)i] := [(ai)i, (ai)i].
2. For j ≤ i, let xi,j be the �rst element of a LatRed basis of b−1

i bj .
3. For i from 2 to n, do
4. For j from i− 1 to 1, do
5. Compute the GSO decomposition bi = b∗i +

P
j<i µi,jb

∗
j ,

6. Let y be the reduction of µi,j modulo the xi,jrk's,
7. bi := bi − (µi,j − y)bj .
8. Return [(bi)i, (bi)i].

Fig. 3. Size-reducing a pseudo-basis of an OK-module.

Theorem 5. If given as input a pseudo-basis [(ai)i, (ai)i] of an OK-moduleM ⊆
Km

R , then the algorithm of Fig. 3 returns a pseudo-basis [(bi)i, (bi)i] of M , such



that for all i we have b∗i = a∗i , bi = ai and

‖bi‖ ≤ d
√
nγ∆

1
2d

K max
k
‖rk‖

(
maxj≤iN (bj)
minj≤iN (bj)

) 1
d

max
j≤i
‖a∗j‖.

If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time.

Proof. The operations performed on the pseudo-basis can be checked to preserve
the generated module and the b∗i 's. Steps 2, 6 and 7 ensure that the µi,j 's of the

output pseudo-basis satisfy ‖µi,j‖ ≤ dγ∆
1
2d

K N (b−1
i bj)

1
d max ‖rk‖. Pythagoras'

theorem then provides the result. �

The adaptation to OK-modules of [20, Le. 7.1] is given in Fig. 4. The aim of

Steps 2�4 is to allow us to bound the term
maxj≤iN (bj)

minj≤iN (bj)
from Th. 5.

Inputs: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R ,

a free full-rank set (si)i of vectors in M .
Output: A pseudo-basis of M .
1. Use the algorithm of Fig. 2 to obtain a pseudo-basis [(bi)i, (bi)i] of M .
2. For any i ≤ n,
3. Let x ∈ bi be the �rst vector of a LatRed basis of bi,
4. bi := (x)−1bi; bi := xbi.
5. Return the output of the algorithm of Fig. 3, given [(bi)i, (bi)i] as input.

Fig. 4. From small vectors to a small pseudo-basis

Theorem 6. If given as inputs a pseudo-basis [(ai)i, (ai)i] of an OK-module
M ⊆ Km

R and a full-rank set (si)i of vectors in M , then the algorithm of
Fig. 4 returns a pseudo-basis [(bi)i, (bi)i] of M , such that for all i: bi ∈ M ,

spanj≤i bj = spanj≤i sj, ‖b
∗
i ‖ ≤ γ∆

1
2d

K maxj≤i ‖s∗j‖, N (bi) ∈
[(√

d
γ

)d
1√
∆K

, 1
]

and

‖bi‖ ≤
√
dnγ3∆

3
2d

K max
k
‖rk‖ ·max

j≤i
‖sj‖.

If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time.

Proof. The fact that the algorithm returns a pseudo-basis ofM is easy to check.
Also, at the end of Step 1, we have that bi ∈M , for all i. Since the x of Step 3
belongs to bi, the latter fact is preserved throughout the rest of the execution.
Also, the equality spanj≤i bj = spanj≤i sj directly derives from Th. 4 and 5.

At any time after Step 1, we have OK ⊆ bi and thus N (bi) ≤ 1. At Step 3,

we have ‖x‖ ≤ γ∆
1
2d

K N (bi)
1
d . This gives that after Step 4 we have ‖b∗i ‖ ≤

γ∆
1
2d

K maxj≤i ‖s∗j‖, which is preserved throughout Step 5. Also, the arithmetic-

geometric inequality implies that N (x) ≤ (γ/
√
d)d
√
∆KN (bi). Therefore, after



Step 4, we have N (bi) ≥
(√

d
γ

)d
1√
∆K

. Using Th. 5, this allows us to �nally

derive that at the end of the execution we have:

‖bi‖ ≤ d
√
nγ∆

1
2d

K max
k
‖rk‖

( √
∆K

(
√
d/γ)d

) 1
d

·
(
γ∆

1
2d

K max
j≤i
‖s∗j‖

)
. �

4.2 Computing a short pseudo-basis

Suppose we have a pseudo-basis of an OK-module M of rank n. We can expand
it to obtain a basis ofM as a Z-module. By LLL-reducing the latter with respect
to T2, we obtain dn module vectors whose integer linear combinations span M .
By using linear algebra overK, it is possible to select n module vectors s1, . . . , sn
among these dn vectors, such that rankKR(si) = n. Furthermore, thanks to the
initial LLL-reduction, these vectors are also small, and we can apply Th. 6.

Corollary 1. There exists an algorithm that takes as input a pseudo-basis of
an OK-module M ⊆ Km

R and returns a pseudo-basis [(bi)i, (bi)i] of M , such

that for all i: bi ∈M , N (bi) ∈
[(√

d
γ

)d
1√
∆K

, 1
]
and

‖bi‖ ≤ 2
dn
2
√
dnγ3∆

3
2d

K max
k
‖rk‖2 · λi(M).

Therefore: ∏
i

‖bi‖ ≤ 2
d2n
2 (dn)nγ3n∆

3n
2d

K max
k
‖rk‖2n · (det(M))

1
d .

Also, if M ⊆ Km, then it terminates in polynomial time.

Proof. Let L denote M when considered as a lattice. Let (si)i≤dn be an LLL-
reduced basis of L. We have ‖si‖ ≤ 2dn/2λi(L), for all i. Let ψ(i) = min(j :
rankKR(sk)k≤j = i). Since K has degree d, we have ψ(i) ≤ d(i − 1) + 1, for
all i. We use the sψ(i)'s as input to the algorithm of Fig. 4. The �rst state-
ment on the ‖bi‖'s derives from Th. 6 and the fact that λψ(i)(L) ≤ max ‖rk‖ ·
λdψ(i)/de(M) ≤ max ‖rk‖ · λi(M). By combining Th. 2 and the latter, we obtain
the second statement on the ‖bi‖'s. �

By applying Th. 6 with n = 1, we obtain yet another compact representation
of ideals of K. Indeed, by using Th. 3 for the coe�cient ideal, we see that any
ideal I 6= 0 can be represented as I = k((x1) + (x2))b, with k, x1, x2 in sets that

can be de�ned independently of I, and with ‖b‖ ≤ 22dd∆
3
2d

K maxi ‖ri‖2N (I)
1
d .

If N (I) is large, this representation requires less space than the one from Th. 3,
but for a small N (I), this may be the opposite.



4.3 Short almost free pseudo-bases

A common strengthening of the properties of a pseudo-basis is to pass to an
almost free (or Steinitz) representation: For any M , there exist pseudo-bases
[(bi)i, (bi)i] with bi = OK for i < n. We �rstly use Cor. 1 to �nd a �short�
almost free basis. The key tool is contained in the next lemma as it allows us
to pass from a module with coe�cient ideals (a, b) to a representation of this
module with ideals (1, ab), thus allowing to collect all the ideals into the last
coe�cient ideal. By bounding the size of this elementary transformation we will
be able to bound the almost free representation obtained this way.

Lemma 2. Let a and b be non-zero integral ideals. There exists an algorithm
to �nd a ∈ a, b ∈ b, x ∈ a−1, y ∈ b−1 such that ax − by = 1. Furthermore, we
have ‖x‖ = O(N (a)), ‖y‖ = O(N (b)), and ‖a‖, ‖b‖ = O(N (ab)).

Proof. We choose x ∈ a−1 as the �rst element of an LLL-reduced basis of a−1.
The Chinese Remainder Theorem ensures that there exists y ∈ b−1 such that xa+
yb = OK . The latter remains valid while reducing y modulo OK (since it
contains (x)a). Now, by using standard linear algebra we can �nd a ∈ a and
b ∈ b such that xa − yb = 1. We may translate a by any element in a(OK ∩
yb) ⊆ a ∩ yx−1b and �nd a corresponding b such that xa − yb = 1 still holds.
Since N (y) ≤ ‖y‖d and N (a(OK ∩ yb)) ≤ N (y)N (ab), we can �nd a such

that ‖a‖ ≤ γdmax ‖ri‖2N (ab)
1
d . The bound on ‖b‖ follows from xa− 1 = yb. �

For non-zero fractional ideals a/d and b/e, we apply Le. 2 to a and b, and
use a/d, dx, b/e and ey. In Fig. 5, we use this lemma to progressively change the
short pseudo-basis obtained in Cor. 1 into an almost free pseudo-basis. It can
be checked that the output is a pseudo-basis of the input module. By combining
the size bounds from Le. 2 with the bounds of Cor. 1, bounds on the norms of
the vectors of the returned almost free pseudo-basis are obtained. It should be
noted that the basis generated this way satis�es bi ∈ spanj≤i+1 aj for i < n,
and thus can be compared to the results from [8].

Input: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R .

Output: An almost free pseudo-basis of M .
1. For i = 1 to n− 1 do
2. Use Le. 2 with a := ai, b := ai+1 to �nd a, b, x, y as indicated,
3. Replace ai by aai + bai+1 and ai+1 by yai + xai+1,
4. Set ai+1 := aiai+1 and ai := OK .

Fig. 5. From a pseudo-basis to an almost free pseudo-basis.

5 Examples

We start by some example coming from group theory, focusing only on the use of
lattice reduction. Representations of �nite groups give easy access to non-trivial



and interesting lattices. Let G be the quaternion group Q8 with 8 elements. As
a subgroup of GL(2,Q(i)), it can be generated by

1
5

(
i+ 2 2i− 6
2i+ 4 −i− 2

)
and

1
2

(
−i− 1 3i+ 1
i− 1 i+ 1

)
.

Computing the module generated by g

(
1
0

)
for all g ∈ G, we useM := OK

(
1
0

)
+(

1+3i
10

)(3
1

)
. As a Hermitean form, we compute

∑
g∈G gg

∗ where g∗ denotes the

transposed complex conjugate. We then normalize the matrix to have 1 as the
top left entry and obtain

G :=
1
5

(
5 i+ 2

−i+ 2 3

)
.

We reduce the corresponding Z-lattice and use the following short Q(i)-independent
basis elements: (

2i+ 1
3/5i+ 1

)
and

(
i

3/10i+ 1

)
.

The two elements can be seen to freely generate the module.

Let G := SZ8 the 8th Suzuki group with 29 120 elements. This group has 11
characters, and we consider the second among them. The latter de�nes a repre-
sentation of degree 14 over some �eld containing i. For theoretical reasons, the
representation can be de�ned over Q(i), but it is initially computed over Q(ζ52),
of degree 24. A complicated procedure will now �nd a representation over Q(i),
i.e., we have three matrices (one for each generator) over Q(i) generating G.
The coe�cients of the original matrix entries over Q(ζ52) have about 100 digits
each, and over Q(i) this increases to about 200 digits. In this representation the
group G �xes a Hermitean form M which has again entries with about 200 dig-
its each. Since the representation is absolutely irreducible, the quadratic form is
unique up to multiplication by scalars. We normalized the form to have 1 as the
entry in position (1, 1). After application of our reduction technique, the form as
well as the representation now have only 1 digit entries. The module used here
is generated by Ge1 ⊂ Q(i)2.
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