
Short Bases of Lattices over Number Fields

Claus Fieker1 and Damien Stehlé1,2

1 Magma Computer Algebra Group, School of Mathematics and Statistics,
University of Sydney, NSW 2006, Australia.

2 CNRS and Macquarie University.
claus.fieker@sydney.edu.au, damien.stehle@gmail.com

Abstract. 3 Lattices over number �elds arise from a variety of sources
in algorithmic algebra and more recently cryptography. Similar to the
classical case of Z-lattices, the choice of a nice, �short� (pseudo)-basis is
important in many applications. In this article, we provide the �rst algo-
rithm that computes such a �short� (pseudo)-basis. We utilize the LLL
algorithm for Z-lattices together with the Bosma-Pohst-Cohen Hermite
Normal Form and some size reduction technique to �nd a pseudo-basis
where each basis vector belongs to the lattice and the product of the
norms of the basis vectors is bounded by the lattice determinant, up to
a multiplicative factor that is a �eld invariant. As it runs in polynomial
time, this provides an e�ective variant of Minkowski's second theorem
for lattices over number �elds.

1 Introduction

Let K be a number �eld and OK be its maximal order. An OK-module M is a
�nitely generated set of elements which is closed under addition and multiplica-
tion by elements in OK . Frequently, we haveM ⊆ Km for some m. In the case of
K being Q, we have OK = Z, thus OK-modules are just the classical Z-lattices.
Since Z is a principal ideal domain, every (torsion free) module is free, thus there
exists a basis b1, . . . , bn ∈M for some n ≤ m such that M = ⊕i≤nZbi. Any two
bases (bi)i and (ci)i have the same cardinality and are linked by some unimod-
ular matrix T ∈ GL(n,Z). The choice of a good basis is crucial for almost all
computational problems attached toM . Generally one tries to �nd a basis whose
vectors have short Euclidean norms, using, for example, the LLL algorithm [15].

Replacing Z by the maximal order OK makes the classi�cation more compli-
cated since OK may no longer be a principal ideal domain. However, since OK

is still a Dedekind domain, the modules M ⊆ Km have a well known struc-
ture ([7, Cor. 1.2.25], [23, Th. 81:3]): there exist linearly independent elements
b1, . . . ,bn ∈ Km and (non-zero fractional) ideals b1, . . . , bn such that M =
⊕i≤nbibi, i.e., every b ∈M has a unique representation as b =

∑
i≤n xibi with

xi ∈ bi for all i ≤ n. Such a representation is commonly called a pseudo-basis.

3 This is a revised version dated 16 Oct. 2023. The authors thank Kalle Jyrkinen for
pointing out an error in the algorithm of Figure 1 and the proof of Theorem 3. These
have been modi�ed accordingly.



It should be noted that bi may not belong to M , and in fact bi ∈ M if and
only if 1 ∈ bi. Similarly to the case of Z-lattices, di�erent pseudo-bases share the
same cardinality, and it is known how to move from a pseudo-basis to another.

As for Z-lattices, the choice of the pseudo-basis is of utmost importance.
However, a key di�erence is that no analogue of LLL is known, as repeatedly
noted in [7]. There have been attempts [10, 22, 11] but the algorithms are either
limited to certain �elds or give no guaranteed bounds on the output size. While
every OK-module is also a Z-lattice and can thus be analyzed with all the tools
available over Z, for many applications the additional structure as anOK-module
is important. This structure is typically lost when applying techniques over Z.

Originally, OK-modules mainly came from the study of �nite extensions
of K but now they occur in a wider range of problems from group theory
(matrix groups and representations [9]) to applications in geometry (automor-
phism algebras of Abelian varieties). OK-modules also occur in lattice-based
cryptography [17, 19, 24�26], and in that context the module rank n is usually
poly-logarithmic in the degree of the number �eld. Cryptography based on OK-
modules is increasingly popular, as on one side they lead to compact represen-
tations and to fast operations, and on the other side they enjoy a worst-case to
average-case reduction for variants of the shortest vector problem, which allows
the cryptographic security to be based on worst-case hardness assumptions.

As diverse as the applications are the requirements: only one (or more) short
module element(s) may be needed, or a short (pseudo)-basis may be required,
some applications rely on canonical representations, while any representation
may su�ce for others. We note that canonical representations tend to have com-
ponents that are much larger than short representations as obtained by lattice
reduction or our techniques. To �nd one short element it su�ces to consider the
underlying Z-module (of dimension nd with d = [K : Q]). For Z-lattices con-
tained in Qm, a canonical representation is the Hermite Normal Form (HNF).
It has been generalized (BPC-HNF) to OK-modules contained in Km by Bosma
and Pohst [4] and Cohen [7, Chap. 1.4] (see also [12]).

Our results. In the present work, we describe an algorithm that computes a
pseudo-basis made of short vectors. Given an arbitrary pseudo-basis [(ai)i, (ai)i]
of a module M ⊆ Km, it returns a pseudo-basis [(bi)i, (bi)i] such that:

∀i ≤ n : bi ∈M, N (bi) ∈ [2−O(d2), 1] and ∥bi∥ ≤ 2O(dn)λi(M),

where the O(·)'s depend only on the �eld K and the choice of a given LLL-
reduced integral basis, the euclidean norm ∥ · ∥ is a module extension of the
T2-norm over K, and the λi(M)'s correspond to the module minima. We refer
to Corollary 1 for a precise statement. Overall, this provides a module equivalent
to LLL-reduced bases of Z-lattices in the sense that the vectors cannot be arbi-
trarily longer than the minima. Since it runs in polynomial time, it can also be
interpreted as an e�ective approximate variant of the adaptation to OK-modules
of Minkowski's second theorem (given in Theorem 2). We also study the repre-
sentation of one-dimensional OK-modules, i.e., modules that are isomorphic to



ideals of OK . We show how to modify Belabas' 2-element representation algo-
rithm [2, Alg. 6.15] so that the output is provably small. Combining the latter
and our module pseudo-reduction algorithm leads to compact representations
of OK-modules.

The most natural approach to obtain reduced pseudo-bases consists in trying
to generalize LLL, but as mentioned earlier all previous attempts have only
partially succeeded. In contrast, we start by viewing the OK-module as a high-
dimensional Z-lattice. We �nd short module elements by applying LLL to a basis
of the latter lattice and interpreting the output as module elements. At this point,
we have a pseudo-basis (the input) and a full-rank set of short module vectors
(produced by LLL). If we had a Z-lattice instead of an OK-module, we would
then use a technique common in the lattice-based cryptography community (see,
e.g., [20, Le. 7.1]), consisting in using the HNF to convert a full rank set of short
lattice vectors to a short basis. We adapt this technique to number �elds, using
the BPC-HNF and introducing a size-reduction algorithm for pseudo-bases.

Let us compare (pseudo-)LLL-reduced and BPC-HNF pseudo-bases. A the-
oretical advantage of the LLL approach is that it is not restricted to Km but
also works in a continuous extension (similarly to LLL-reduction being well-
de�ned for real lattices). It should also be signi�cantly more e�cient to work
with pseudo-bases made of short vectors because smaller integers and polyno-
mials of smaller degrees are involved. On the other side, (pseudo-)LLL-reduced
pseudo-bases are far from being unique, and seem more expensive to obtain.

Road-map. In Section 2, we give some reminders and elementary results on
lattices, number �elds and modules. In Section 3, we modify Belabas' 2-element
representation algorithm for ideals of OK , as described above. We then give our
module reduction algorithm in Section 4. Finally, in Section 5 we describe our
implementation and give some examples.

Implementation. The algorithms have been implemented in the Magma com-
puter algebra system [3, 18] and are available on request. They will be part of
upcoming releases.

2 Preliminaries

We assume the reader is familiar with the geometry of numbers and algebraic
number theory. We refer to [16, 20], [5, 21] and [7, Chap. 1] for introductions to
the computational aspects of lattices, elementary algebraic number theory and
to modules over Dedekind domains, respectively.

2.1 Lattices

In this work, we will call any �nitely generated free Z-module L a lattice. A
usual lattice corresponds to the case where L is a discrete additive subgroup
of Rn for some n. Any lattice can be written L = ⊕i≤dZbi. If the bi's are Z-free,
they are called a basis of L. A given lattice may have in�nitely many bases but
their cardinality d is constant and called rank. Any two bases are related by a



unimodular transformation, i.e., one is obtained from the other by multiplying
by a matrix in Zd×d of determinant ±1.

If L ⊆ Qn is of rank d, then there exists a basis B = (bi)i ∈ Qn×d of L such
that µj = min{i : Bi,j ̸= 0} (strictly) increases with j, and for all j > k we
have Bµj ,j > Bµj ,k ≥ 0. If d = n, this means that B is a row-wise diagonally
strictly dominant lower triangular matrix and that its entries are non-negative.
This basis is unique and called the Hermite Normal Form (HNF) of L. It can be
computed in polynomial time from any basis [13].

In order to quantify the smallness of an element of a lattice L, we associate
to L a positive de�nite bilinear form q : LR × LR 7→ R. We use it to map a
basis (bi)i to its Gram matrix Gq(b1, . . . , bd) := (q(bi, bj))i,j . We denote

√
q(b, b)

by ∥b∥q, and may omit the subscript if it is clear from the context. The de-
terminant of L, de�ned as detq(L) = det(Gq(b1, . . . , bd))

1/2, does not depend
on the particular choice of the basis of L. Note that if L ⊆ Rn and q is the
euclidean inner product, then det(L) is the d-dimensional volume of the paral-
lelepiped {

∑
i yibi : yi ∈ [0, 1]}. We de�ne the lattice minima as follows:

∀i ≤ d, λi,q(L) = min{r : ∃c1, . . . , ci ∈ L free, maxk≤i ∥ck∥q ≤ r}.

Minkowski's second theorem states that
∏
i≤d λi,q(L) ≤

√
d
d
detq(L). Fre-

quently one tries to represent a lattice L by a basis that approximates the min-
ima. In this article, we assume that we have an algorithm LatRed that takes as in-
put an arbitrary basis of L and returns a reduced basis satisfying ∥bi∥ ≤ γλi(L),
for all i ≤ d. For example, if we use the LLL algorithm [15], then we can
take γ = 2d/2. We proceed as follows: compute the Gram matrix G of the
input basis; use the Gram matrix LLL algorithm (see, e.g., [5, p. 88]), to �nd U
unimodular such that U tGU is reduced; apply U to the input lattice basis. If
the arithmetic over L is e�cient, and if q can be e�ciently computed or approx-
imated with high accuracy, then this provides an e�cient algorithm. Apart from
being well-de�ned for more general lattices (not only for lattices on a rational
vector space), a signi�cant advantage of the LLL-reduction over the HNF is that
it provides small lattice elements. However, it seems more expensive to obtain
and the uniqueness of the representation is lost. Taking the HKZ-reduction in-
stead of the LLL-reduction allows one to take γ = 1/2

√
d+ 3 (see [14]), but the

complexity of the best algorithm for computing it [1] is exponential in d.

Let (bi)i≤d be a lattice basis. For any i > j, we de�ne µi,j = q(bi, b
∗
j )/q(b

∗
j , b

∗
j ),

where b∗i = argmin∥bi+
∑
j<iRbj∥ thus ∥b∗i ∥ = min{∥bi+x∥ : x ∈

∑
j<iRbj}. We

call the µi,j 's and the b
∗
i 's the Gram-Schmidt orthogonalisation (GSO) of the bi's.

If the bi's are LLL-reduced, then ∥b∗i ∥ ≥ 2−d/2∥bi∥ for all i. In the following, we
will assume that LatRed-reduced bases also satisfy this property. Size-reduction
of a vector b ∈

∑
i≤d Rbi with respect to (bi)i≤j consists in subtracting from b

integer multiples of these bi's so that the magnitudes of the �rst j coordinates of
the output vector c when written as a linear combination of all the b∗i 's belong
to [−1/2, 1/2). The latter uniquely de�nes c, and if j = d we have ∥c∥2 ≤∑
i≤d ∥b∗i ∥2 ≤ dmaxi≤d ∥bi∥2. We call size-reduction of the basis (bi)i the process



of size-reducing each bi with respect to the previous bj 's for increasing i. The
output remains a basis of the lattice spanned by the bi's.

A standard technique in the lattice-based cryptography community (see, e.g.,
[20, Le. 7.1]) allows one to derive a short lattice basis from an arbitrary basis (ai)i
and a full-rank free set of short lattice vectors (si)i. As we will adapt this tech-
nique to modules, we describe it brie�y. Since the si's belong to the lattice,
there exists T ∈ Zd×d such that (si)i = (ai)i ·T . We compute the HNF T ′t of T t:
T ′t = T t(U−1)t with U unimodular. We thus have (si)i = (bi)i ·T ′ where (bi)i :=
(ai)i · U is a lattice basis and T ′ is upper triangular with diagonal entries ≥ 1.
The shape of T ′ implies that for any i we have ∥b∗i ∥ ≤ ∥s∗i ∥. Size-reducing the ba-
sis (bi)i leads to a basis (b′i)i such that max ∥b′i∥ ≤

√
dmax ∥s∗i ∥ ≤

√
dmax ∥si∥.

It can be checked that if L ⊆ Qn, then all the computations may be performed
in polynomial time.

2.2 Number �elds

Let K be a number �eld of degree d, with real and complex embeddings (θi)i≤s1 ,
(θi)s1<i≤s1+2s2 . Its maximal order OK is a lattice: there exists a free set (ri)i ∈
Od
K such that OK = ⊕iZri. The ri's form an integral basis of K, and we

haveK = OK⊗Q. We de�neKR = K⊗R, which is isomorphic (as rings) to Rs1×
Cs2 , and extend the θi's to KR. Many quadratic forms may be associated to KR,
but the most natural one derives from q(x, x′) = T2(x, x

′) :=
∑
θi(x)θ̄i(x

′). The
discriminant of K is de�ned as ∆K = det2T2

(OK). Note that for any x, x′ ∈ KR,

we have ∥xx′∥ ≤ ∥x∥ · ∥x′∥ where ∥x∥ := T2(x)
1/2 is the induced norm. The

(�eld) norm of an element x ∈ KR is de�ned as N (x) =
∏
i |θi(x)|. Note that

with our de�nition, the norm cannot be negative.
A (fractional) ideal I is any �nitely generated OK-module contained in K.

An integral ideal I is a fractional ideal contained in OK . For any fractional ideal
I there exists r ∈ Z such that rI is an integral ideal. If r ∈ K, we let (r)
denote the (principal) ideal rOK . The product IJ = ⟨ij : i ∈ I, j ∈ J⟩ and
the sum I + J = {i + j : i ∈ I, j ∈ J} of two ideals are also ideals. A non-
zero integral ideal is said to be prime if it is divisible only by OK and itself.
As OK is a Dedekind domain, any non-zero fractional ideal can be uniquely
decomposed as a product of (possibly negative) powers of prime ideals. If p is
a prime ideal, we de�ne νp(I) = max(k ∈ Z : pk|I). The norm of I is de�ned
as N (I) = det(I)/ det(OK). If I ̸= 0 is integral, then this is exactly the index
of I in OK , de�ned as [OK : I] = |OK/I|. We de�ne N (0) = 0, which allows us
to assert that N (IJ) = N (I)N (J) for any ideals I and J . Note that if I = (r)
is principal, then N (I) = N (r). The inverse I−1 = {r ∈ K : rI ⊆ OK} of a
non-zero fractional ideal I is also a fractional ideal, and we have II−1 = OK .
Note that the arithmetic over the ideals can be performed in polynomial time
(e.g., see [2]).

Any non-zero ideal, including the maximal order, is naturally a free Z-module
of rank d thus a lattice under the T2-norm. By �xing an integral basis for K,
we also �x a Z-lattice structure for OK that we can then reduce. We say that
a basis of a non-zero fractional ideal I is in HNF if the (rational) matrix of the



coe�cients with respect to a �xed integral basis of K is in HNF. This provides
a unique representation for any ideal. In the following, we assume that we know
an integral basis (ri)i of K that is LatRed-reduced with respect to T2. It can be
known for particular K's (e.g., cyclotomic number �elds, with max ∥ri∥2 = d),
or can be computed by reducing an arbitrary integral basis. As it is computed
once and for all, it may prove interesting to strongly reduce it. We have the
following result.

Lemma 1. If (ri)i is a LatRed-reduced integral basis of K, then max ∥ri∥ ≤√
dγd

√
∆K .

Proof. Using the reducedness and Minkowski's second theorem, we get
∏

∥ri∥2 ≤
γ2ddd∆K . The arithmetic-geometric inequality gives 1 ≤ N (ri)

2/d ≤ ∥ri∥2/d for
all i, which provides the result. □

The bounds of our main results involve the quantity max ∥ri∥. Lemma 1
allows one to express them with �eld invariants only. We choose to keep max ∥ri∥
in our bounds since it can be much smaller, as in the case of cyclotomic number
�elds.

With our a choice of integral basis, any element of OK with small T2-norm
can be represented with a small number of bits.

Lemma 2. Assume that (ri)i is a LatRed-reduced integral basis of K. If x =∑
xiri ∈ K, then max |xi| ≤ 23d/2∥x∥.

Proof. We show by induction of i that

∀i : |xi| ≤ 2d−i
∥x∥

minj ∥r∗j ∥
.

First, we have ∥x∥ ≥ |xd|∥r∗d∥. Suppose now that i < d and that the result holds
for any j > i. The GSO of the ri's shows that ∥x∥ ≥ |xi +

∑
j>i µj,ixj |∥r∗i ∥.

Therefore, we have |xi| ≤ ∥x∥/∥r∗i ∥ +
∑
j>i |xj |, which gives the bound. To

complete the proof, note that the reducedness of the ri's gives minj ∥r∗j ∥ ≥
2−d/2 minj ∥rj∥, and that ∥rj∥ ≥

√
d for all j. □

2.3 OK-modules

Let b1, . . . ,bn ∈ Km
R with n = rankK(bi)i, and b1, . . . , bn be fractional ideals

of OK . The OK-module M [(bi)i, (bi)i] spanned by the pseudo-basis [(bi)i, (bi)i]
is

∑
bibi. The bi's are called the coe�cient ideals. As each bi is a Z-lattice, so

is M . More precisely, if bi =
∑
j≤d Zβ

(j)
i , then M =

∑
i,j Zβ

(j)
i bi. Two pseudo-

bases [(bi)i, (bi)i] and [(ci)i, (ci)i] represent the same OK-module M if and only
if there exists a non-singular U ∈ Kn×n with ([23, �81 C]):

1. (c1, . . . , cn) = (b1, . . . ,bn)U ;
2. For all i, j, we have Ui,j ∈ bic

−1
j ;



3. For all i, j, we have U ′
i,j ∈ cib

−1
j , where U ′ = U−1.

Cohen [6] generalized the HNF to modules in Km. The algorithm of [4] may
also be interpreted as such a generalization. We refer to [12, Chap. 4] for a
detailed exposure and comparison.

Theorem 1. Let M ⊆ Km be an OK-module of rank n. There exists a pseudo-
basis [(bi)i, (bi)i] of M such that µj = min{i : Bi,j ̸= 0} (strictly) increases
with j, for all j we have Bµj ,j = 1 and for all j > k the entry Bµj ,k ∈ K is

size-reduced modulo the HNF of bjb
−1
k . This unique pseudo-basis is called the

HNF of M . It can be computed in polynomial time from any pseudo-basis of M .

Similarly to the HNF for lattices, the above HNF can only handle OK-
modules M ⊆ Km (as opposed to Km

R ) and does not necessarily contain small
elements of M . We now de�ne the concept of small-ness for elements of Km

R .
For any two vectors b = (b1, . . . , bm)t,b′ = (b′1, . . . , b

′
m)t ∈ Km

R , we de�ne

T⊗m
2 (b,b′) =

∑
i≤m T2(bi, b

′
i), and we denote

√
T⊗m
2 (b,b) by ∥b∥. Notice that

for any (r,b) ∈ KR × Km
R , we have ∥rb∥ ≤ ∥r∥ · ∥b∥. With this de�nition at

hand, we can de�ne the minima of M :

∀i ≤ n, λi(M) = min{r : ∃c1, . . . , ci ∈M, rankK(ck)k = i and max ∥ck∥ ≤ r}.

Let [(bi)i, (bi)i] be a pseudo-basis of an OK-module M ⊆ Km
R . Assume

that bi =
∑
j≤d Zβ

(j)
i . We de�ne det(M) as the square root of the determinant

of the nd × nd symmetric positive de�nite matrix T⊗m
2 (β

(j)
i bi, β

(j′)
i′ bi′)i,j;i′,j′ .

This is a module invariant. When M is a non-zero fractional ideal of OK , this
matches detT2

(M). It should be noted that det(M) is not immediately related to
the (Steinitz) class of M nor to the maximal exterior power of M . The following
is a direct consequence of Minkowski's second theorem over Z-lattices.

Theorem 2. Let M ⊆ Km
R be an OK-module of rank n. Then

∏
i≤n λi(M) ≤√

dn
n
det(M)1/d.

Proof. The moduleM can be seen as a lattice L of dimension nd, with det(M) =

det(L). Minkowski's second theorem asserts that
∏
i≤nd λi(L) ≤

√
dn

dn
det(L).

Let c1, . . . , cnd ∈ M be free over the integers such that ∥ci∥ = λi(L) holds for
all i. For all i ≤ n, let ϕ(i) = min(j : rankK(c1, . . . , cj) = i). As OK has rank d
as a Z-module, we have ϕ(i) ≤ (i − 1)d + 1. We conclude with the following
sequence of inequalities:∏
i≤n

λi(M) ≤
∏
i≤n

∥cϕ(i)∥ ≤
∏
i≤n

λ(i−1)d+1(L) ≤
∏
i≤dn

λi(L)
1
d ≤

√
dn

n
det(M)

1
d . □

We now extend the concept of GSO. Let [(bi)i, (bi)i] be a pseudo-basis of
an OK-module M . We de�ne b∗

i = argmin∥bi +
∑
j<iKRbj∥ for all i ≤ n, and

let µi,1, . . . , µi,i−1 ∈ KR be such that bi = b∗
i +

∑
j<i µi,jb

∗
j .



3 Small 2-element representation of an ideal

We start our study of OK-modules by the one-dimensional case, i.e., fractional
ideals of K. There are several ways of representing an ideal I ̸= 0. A nat-
ural approach is to provide a basis (bi)i≤d ∈ Kd, or the coordinates matrix
of a basis with respect to an integral basis (ri)i of K. This coordinates ma-
trix belongs to Qd×d, and it may prove interesting to �nd the basis of kI such
that the coordinates matrix is in HNF, for the smallest non-zero integer k such
that kI is integral. This representation requires a space of O(d logN (kI)+log k+
d2) = O(d logN (I)+d2+d2 log k) bits. Alternatively, one may use the so-called
two-element representation: any ideal I may be written I = (x1) + (x2) for
some x1, x2 ∈ I. A classical way to obtain such a representation consists in
taking an arbitrary x1 ∈ I and then choosing x2 uniformly in I modulo (x1)
(the latter being a full-rank sublattice of the former). This succeeds with prob-
ability ≥

∏
(1 − 1/N (p)), where the product is taken over the prime ideals p

that divide (x1)/I (see [2, Le. 6.14]). If N (x1)/N (I) is small and if there do not
exist too many prime ideals of small norm, then the success probability is large.
Belabas [2, Alg. 6.15] proposed a probabilistic polynomial time variant, which
always succeeds with high probability. However, the obtained representation of I
may still be of bit-size Ω(d logN (I) + d+ d2 log k).

We modify Belabas' algorithm to provide a 2-element representation made of
small elements: I = (x1)+(x2) with both ∥x1∥ and ∥x2∥ small. For instance, the
�rst element x1 is chosen to be the �rst element of a LatRed-reduced basis of I.
This may be seen as a rigorous variant of [7, Alg. 1.3.15], in which smallness was
provided but the success probability could be small. Although our analysis is
close to Belabas', we give a full proof, as there are quite a few small di�erences.

Theorem 3. Let (ri)i be an integral basis of a number �eld K. There exists
a probabilistic polynomial time algorithm that takes as inputs a Z-basis of a
non-zero fractional ideal I of OK and a success parameter t (in unary), and
returns x1, x2 ∈ I such that I = (x1) + (x2) holds with probability 1− 2−t, and:

∥x1∥, ∥x2∥ ≤ 4γ8∆
4
d

K max ∥ri∥4 · N (I)
4
d , (1)

where ∥ · ∥ corresponds to the T2 norm and γ is the LatRed approximation
constant. As a consequence, the ideal I may be represented on 5 log2 N (I) +
O(log∆K + d(d + log k + logmax ∥ri∥)) bits, where k is the smallest non-zero
integer such that kI is integral and the ri's are assumed LatRed-reduced.

Let us comment on (1). The quantity 4γ8∆
4
d

K is an invariant of the �eld,
and max ∥ri∥4 is independent from I (and can be bounded using Lemma 1).

The only term that is not an invariant is N (I)
4
d . If x1 and x2 were basis vectors

of a reduced basis of I, we would expect N (I)
1
d instead of N (I)

4
d (see (2) below).

We do not know how to reach this bound for x2.
Let us now prove Theorem 3. Since the smallest integer k such that kI is

integral can be computed e�ciently, we assume that I is integral. As the ideal I



Inputs: A LatRed-reduced basis of a non-zero integral ideal I of OK ;
a success parameter t.

Output: x1, x2 ∈ I such that I = (x1) + (x2), or Fail.
1. Let x1 be the �rst basis element; a := (x1). If I = a, return x1 and x2 := 0.
2. Find y such that y log y = logN (a); S := {p prime : N (p) ≤ y ∧ p|I}.
3. a0 :=

∏
p∈S pνp(a); I0 :=

∏
p∈S pνp(I); a1 := aa−1

0 ; I1 := II−1
0 .

4. For i := 1 to 2t do
5. Sample π1 uniformly in I1/a1. If I1 = a1 + (π1), then go to Step 7.
6. Return Fail.
7. Let b be the �rst element of a LatRed-reduced basis of a1.
8. Size-reduce π1 with respect to the b · ri's.
9. Using [2, Alg. 6.8], �nd π0 ∈ OK such that νp(π0) = νp(I0) for all p ∈ S.

10. Let b be the �rst element of a LatRed-reduced basis of
∏

p∈S pνp(I0)+1.

11. Size-reduce π0 with respect to the b · ri's.
12. Using [2, Alg. 5.4], �nd α0 ∈ a0 and α1 ∈ a1 such that α0 + α1 = 1.
13. Let b be the �rst element of a LatRed-reduced basis of a.
14. Size-reduce α0 and α1 with respect to the b · ri's.
15. Return x1 and x2 := (π0α1 + α0)(π1α0 + α1).

Fig. 1. Computing a small 2-element representation of an integral ideal.

is given by a Z-basis, we can �nd a basis of it that is LatRed-reduced (for T2).
The algorithm of Figure 1 is an adaptation of [2, Alg. 6.15]. We follow the
algorithm step by step. The reducedness of the input directly gives that ∥x1∥ ≤
γ∆

1/2d
K N (I)1/d. By using the arithmetic-geometric inequality, we obtain:

N (a)
1
d = N (x1)

1
d ≤ 1√

d
∥x1∥ ≤

γ∆
1
2d

K√
d

N (I)
1
d . (2)

As a consequence, the variable y of Step 2, can be bounded by a polynomial
in d, logN (I) and log∆K . This ensures that the computation of S can be
done in polynomial time. At Step 3, the computations of a0, I0, a1 and I1 can
be performed in polynomial time: this follows from the above study of S. We
have a = a0a1 and I = I0I1. We also have Ii|ai and Ii+a1−i = OK for i ∈ {0, 1}.

As a1 is a full-rank sublattice of I1, sampling π1 uniformly in I1/a1 can
be done in polynomial time. The equality I1 = a1 + (π1) can also be tested
in polynomial time (see, e.g., [20, Prop. 8.2]). By adapting the analysis of [2,
Le. 6.1], we obtain:

Pr [I1 = a1 + (π1)] ≥
∏

p prime, p|a1

(
1− 1

N (p)

)
≥

(
1− 1

y

)logy N (a)

≥ 1

e
.

As a consequence, the algorithm returns Fail at Step 6 with probability ≤ 2−t.
At Step 8, the b · ri's are a basis of a sublattice of a1. Therefore, after Step 8,

we still have I1 = a1 + (π1). After the size-reduction of π1 with respect to



the b · ri's, we have:

∥π1∥ ≤
√
dmax

i
∥bri∥ ≤

√
d∥b∥max

i
∥ri∥ ≤

√
dγ∆

1
2d

K N (a1)
1
d max

i
∥ri∥.

It is shown in [2] that Step 9 can be performed in polynomial time. The bounds
on S imply that Step 10 can be done in polynomial time. Step 11 ensures that

∥π0∥ ≤
√
dγ∆

1
2d

K N

∏
p∈S

pνp(I0)+1

 1
d

max
i

∥ri∥ ≤
√
dγ∆

1
2d

K N (I0)
2
d max

i
∥ri∥.

The second inequality follows from the fact that any p in S divides I0. After
Step 11, we still have that νp(π0) = νp(I0), for all p ∈ S, and thus I0 = a0+(π0).
It is shown in [2] that Step 12 can be performed in polynomial time. Step 14

ensures that ∥α0∥, ∥α1∥ ≤
√
dγ∆

1
2d

K N (a)
1
d maxi ∥ri∥. Since a = a0a1, we still

have αi ∈ ai after Step 14, for i ∈ {0, 1}. At Step 15, we have:

∥x2∥ ≤ (∥π0∥∥α1∥+ ∥α0∥) (∥π1∥∥α0∥+ ∥α1∥)

≤ d2γ4∆
2
d

K max
i

∥ri∥4N (a)
2
d

(
N (I0)

2
d + 1

)(
N (a1)

1
d + 1

)
≤ 4d2γ4∆

2
d

K max
i

∥ri∥4N (a)
4
d ,

where we used the fact that N (a1) = N (a)/N (a0) ≤ N (a)/N (I0). Combining
the latter with (2) provides the upper bound on ∥x2∥ from Theorem 3.

Also, we have that π′
i := πiα1−i + αi is congruent to πi modulo ai and to 1

modulo a1−i, for i ∈ {0, 1}. Therefore, we have Ii = ai + (π′
i) and Ii + (π′

i−1) =
OK . Finally, we obtain I = I0I1 = a0a1+(π′

0π
′
1) = (x1)+ (x2), thus proving the

correctness of the algorithm.
We now consider the amount of space needed to represent the coordinates

of x1 and x2 with respect to the integral basis (ri)i. We write xj =
∑
y
(j)
i ri

with y
(j)
i ∈ Z and j ∈ {1, 2}. Using Lemma 2, we have that each y

(j)
i may be

stored on log2 ∥xj∥+O(d) bits. Combining the latter with (2) and (1) provides
the result. □

4 Computing short pseudo-bases

In this section, we (constructively) show that any OK-module M ⊆ Km
R always

has a pseudo-basis [(bi)i, (bi)i] such that the bi's belong toM and are not much
longer than the module minima.

4.1 From a short basis of a submodule to a short pseudo-basis

We are going to generalize to OK-modules the technique we mentioned at the
end of Section 2.1, that takes as inputs a basis of a lattice L and a short basis of



a full-rank sub-lattice of L, and returns a short basis of L. We split the algorithm
into several smaller ones that may be of independent interest.

The algorithm of Figure 2 takes as inputs a pseudo-basis [(ai)i, (ai)i] of
an OK-module M ⊆ Km

R and a full-rank set of short module vectors (si)i, and
returns a pseudo-basis [(bi)i, (bi)i] of M such that bi ∈ spanj≤i sj . This can be
interpreted as a constructive variant of [23, Th. 81.3]. The HNF over lattices is
replaced by the BPC-HNF (Theorem 1), with special care being taken for the
coe�cient ideals.

Inputs: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R ,

a full-rank set (si)i of vectors in M .
Output: A pseudo-basis of M .
1. Compute T ∈ Kn×n such that (s1, . . . , sn) = (a1, . . . ,an)T .
2. Let t1, . . . , tn be the columns of T t.
3. Compute the BPC-HNF [(t′i)i, (b

−1
i )i] of the pseudo-basis [(ti)i, (a

−1
i )i].

4. Let T ′ be the matrix whose rows are the (t′i)
t's, and U = T (T ′)−1 ∈ Kn×n.

5. Let (b1, . . . ,bn) = (a1, . . . ,an)U .
6. Return [(bi)i, (bi)i].

Fig. 2. Constructing a pseudo-basis with small GSO.

Theorem 4. If given as inputs a pseudo-basis [(ai)i, (ai)i] of a module M ⊆
Km

R and a full-rank set (si)i of vectors in M , then the algorithm of Figure 2
returns a pseudo-basis [(bi)i, (bi)i] of M , which satis�es, for all i ≤ n: bi ∈M ;
bi ∈ spanj≤i sj; b

∗
i = s∗i . If M ⊆ Km, then it terminates in polynomial time.

Proof. We �rst prove that [(bi)i, (bi)i] is a pseudo-basis of M . We have (bi)i =
(ai)i · U , with U ∈ Kn×n non-singular. It therefore su�ces to prove that for
any i, j, we have Ui,j ∈ aib

−1
j and U ′

i,j ∈ bia
−1
j , where U ′ = U−1. This is

ensured by Theorem 1: as the pseudo-bases [(t′i)i, (b
−1
i )i] and [(ti)i, (a

−1
i )i] span

the same module, we have U ′
j,i ∈ a−1

i bj and Uj,i ∈ b−1
i aj , for any i, j.

Because of the de�nitions of T, T ′, U and (bi)i, we have (si)i = (bi)i · T ′.
Furthermore, by Theorem 1, the matrix T ′ is upper triangular with diagonal
coe�cients equal to 1. We thus have bi ∈ spanj≤i sj , for all i. In fact, we even
have bi+

∑
j<iKRbj = si+

∑
j<iKRsj , which gives b∗

i = s∗i . Finally, the shape
of T ′ gives that si = bi+

∑
j<i T

′
j,ibj . As the si's belong to M , so must the bi's

(the decomposition of si as an element of
∑
j Kbj is unique). □

The algorithm of Figure 3 generalizes size-reduction to OK-modules.

Theorem 5. If given as input a pseudo-basis [(ai)i, (ai)i] of a moduleM ⊆ Km
R ,

then the algorithm of Figure 3 returns a pseudo-basis [(bi)i, (bi)i] of M , such



Input: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R .

Output: A pseudo-basis of M .
1. [(bi)i, (bi)i] := [(ai)i, (ai)i].
2. For j ≤ i, let xi,j be the �rst element of a LatRed basis of b−1

i bj .
3. For i from 2 to n, do
4. For j from i− 1 to 1, do
5. Compute the GSO decomposition bi = b∗

i +
∑

j<i µi,jb
∗
j ,

6. Let y be the size-reduction of µi,j with respect to the xi,jrk's,
7. bi := bi − (µi,j − y)bj .
8. Return [(bi)i, (bi)i].

Fig. 3. Size-reducing a pseudo-basis of an OK-module.

that for all i we have b∗
i = a∗i , bi = ai and

∥bi∥ ≤
√
dnγ∆

1
2d

K max
k

∥rk∥
(
maxj≤iN (bj)

N (bi)

) 1
d

max
j≤i

∥a∗j∥.

If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time.

Proof. The operations performed on the pseudo-basis can be checked to preserve
the generated module and the b∗

i 's. Steps 2, 6 and 7 ensure that the µi,j 's of the

output pseudo-basis satisfy ∥µi,j∥ ≤
√
dγ∆

1
2d

K N (b−1
i bj)

1
d maxk ∥rk∥. Pythago-

ras' theorem then provides the result. □

The adaptation to OK-modules of [20, Le. 7.1] is given in Figure 4. The aim

of Steps 2�4 is to allow us to bound the term
maxj≤i N (bj)

N (bi)
from Theorem 5.

Inputs: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R ,

a free full-rank set (si)i of vectors in M .
Output: A pseudo-basis of M .
1. Use the algorithm of Figure 2 to obtain a pseudo-basis [(bi)i, (bi)i] of M .
2. For any i ≤ n,
3. Let x ∈ bi be the �rst vector of a LatRed basis of bi,
4. bi := (x)−1bi; bi := xbi.
5. Return the output of the algorithm of Figure 3, given [(bi)i, (bi)i] as input.

Fig. 4. From small vectors to a small pseudo-basis

Theorem 6. If given as inputs a pseudo-basis [(ai)i, (ai)i] of an OK-module
M ⊆ Km

R and a full-rank set (si)i of vectors in M , then the algorithm of Fig-
ure 4 returns a pseudo-basis [(bi)i, (bi)i] of M , such that for all i: bi ∈ M ,



spanj≤i bj = spanj≤i sj, ∥b
∗
i ∥ ≤ γ∆

1
2d

K ∥s∗i ∥, N (bi) ∈
[(√

d
γ

)d
1√
∆K

, 1

]
and

∥bi∥ ≤
√
nγ3∆

3
2d

K max
k

∥rk∥ ·max
j≤i

∥sj∥.

If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time.

Proof. The fact that the algorithm returns a pseudo-basis ofM is easy to check.
Also, at the end of Step 1, we have that bi ∈M , for all i. Since the x of Step 3
belongs to bi, the latter fact is preserved throughout the rest of the execution.
The equality spanj≤i bj = spanj≤i sj directly derives from Theorems 4 and 5.

At any time after Step 1, we have OK ⊆ bi and thus N (bi) ≤ 1. At Step 3,

we have ∥x∥ ≤ γ∆
1
2d

K N (bi)
1
d . This gives that after Step 4 we have ∥b∗

i ∥ ≤
γ∆

1
2d

K ∥s∗i ∥, which is preserved throughout Step 5. Also, the arithmetic-geometric

inequality implies that N (x) ≤ (γ/
√
d)d

√
∆KN (bi). Therefore, after Step 4 the

quantity N (bi) has been divided by N (x) and we have N (bi) ≥
(√

d
γ

)d
1√
∆K

.

Using Theorem 5, this allows us to derive that at the end of the execution we
have:

∥bi∥ ≤
√
dnγ∆

1
2d

K max
k

∥rk∥
( √

∆K

(
√
d/γ)d

) 1
d

·
(
γ∆

1
2d

K max
j≤i

∥s∗j∥
)
.

The inequalities ∥s∗j∥ ≤ ∥sj∥ lead to the result. □

4.2 Computing a short pseudo-basis

Suppose we have a pseudo-basis of an OK-module M of rank n. We can expand
it to obtain a basis ofM as a Z-module. By LLL-reducing the latter with respect
to T2, we obtain dn module vectors whose integer linear combinations span M .
By using linear algebra overK, it is possible to select n module vectors s1, . . . , sn
among these dn vectors, such that rankK(si) = n. Furthermore, thanks to the
initial reduction, these vectors are also small, and we can apply Theorem 6.

Corollary 1. There exists an algorithm that takes as input a pseudo-basis of
an OK-module M ⊆ Km

R and returns a pseudo-basis [(bi)i, (bi)i] of M , such

that for all i: bi ∈M , N (bi) ∈
[(√

d
γ

)d
1√
∆K

, 1

]
and

∥bi∥ ≤ 2
dn
2
√
nγ3∆

3
2d

K max
k

∥rk∥2 · λi(M).

Therefore: ∏
i

∥bi∥ ≤ 2
dn2

2 (
√
dn)nγ3n∆

3n
2d

K max
k

∥rk∥2n · (det(M))
1
d .



If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time, and the
output may be stored on a number of bits bounded by

m log2 det(M) +O

(
md2n2 + nm log∆K +mdn logmax

k
∥rk∥

)
.

Proof. Let L denote M when considered as a lattice. Let (si)i≤dn be a LLL-
reduced basis of L. We have ∥si∥ ≤ 2dn/2λi(L), for all i. Let ψ(i) = min(j :
rankK(sk)k≤j = i). Since K has degree d, we have ψ(i) ≤ d(i− 1) + 1, for all i.
We use the sψ(i)'s as input to the algorithm of Figure 4. The �rst statement
on the ∥bi∥'s derives from Theorem 6 and the fact that λψ(i)(L) ≤ maxk ∥rk∥ ·
λ⌈ψ(i)/d⌉(M) ≤ maxk ∥rk∥ · λi(M). By combining Theorem 2 and the latter, we
obtain the second statement on the ∥bi∥'s.

We now consider the bit-size of the representation when M ⊆ Km. Using
Lemma 2 for the �rst component of the pseudo-basis, we obtain that the bit-size
of the latter is ≤ md(log2

∏
∥bi∥ + O(nd)). To represent the ideal coe�cients,

we use Theorem 3 with the inverses of the ideals. The latter are integral, and
have norms ≤ 2d

2

∆K . Therefore, each of these can be represented on O(d2 +
log∆K + d logmaxk ∥rk∥) bits. This completes the proof of the theorem. □

Note that the norm bound on the ideals depends only on the �eld and the
choice for LatRed and is, in particular, independent of M .

By applying Corollary 1 with m = n = 1, we obtain yet another compact
representation of ideals ofK. If I is an ideal and k is the smallest non-zero integer
such that kI is integral, then we see that I can be represented on log2 N (I) +
O(log∆K+d(d+log k+logmaxi ∥ri∥)) bits. If N (I) is large, this representation
is smaller than the one from Theorem 3, but for a small N (I), this is the opposite
as the O(·) constant is larger. Considering ((x1)+(x2)) instead of its inverse leads
to a representation whose bit-size grows faster with respect to d.

4.3 Short almost free pseudo-bases

A common strengthening of the properties of a pseudo-basis is to pass to an
almost free (or Steinitz) representation: For any M , there exists a pseudo-basis
[(bi)i, (bi)i] of M with bi = OK for i < n. We explain here how to obtain an al-
most free pseudo-basis consisting of short vectors. We �rst use Corollary 1 to �nd
a �short� pseudo-basis. We then use the following lemma, from [7, Prop. 1.3.12,
Alg. 1.3.16], which allows us to pass from a module with coe�cient ideals (a, b)
to a representation of this module with ideals (1, ab).

Lemma 3. Let a and b be non-zero fractional ideals. There exists a polynomial-
time algorithm that �nds a ∈ a, b ∈ b, x ∈ a−1, y ∈ b−1 such that ax− by = 1.

One can use Lemma 3 to progressively change the short pseudo-basis obtained
in Corollary 1 into a short almost free pseudo-basis, collecting all the coe�cient
ideals into the last one. The corresponding algorithm is given in Figure 5. It can
be checked that the output is an almost free pseudo-basis of the input module.



Input: A pseudo-basis [(ai)i, (ai)i] of an OK-module M ⊆ Km
R .

Output: An almost free pseudo-basis of M .
1. For i = 1 to n− 1 do
2. Use Lemma 3 with a := ai, b := ai+1 to �nd a, b, x, y as indicated,
3. Replace ai by aai + bai+1 and ai+1 by yai + xai+1,
4. Replace ai+1 by aiai+1 and ai by OK .

Fig. 5. From a pseudo-basis to an almost free pseudo-basis.

Furthermore, if the input of the algorithm is a module pseudo-basis such as
in Corollary 1, then during the execution, Lemma 3 is applied to ideals whose
norms can be bounded independently of the module M . As a consequence, the
obtained transformation coe�cients a, b, x, y have T2-norms that can be bounded
independently of M . At the end of the execution, we still have ai ∈M for all i,
and the quantity

∏
i ∥ai∥ (resp. each ∥ai∥) remains bounded by det(M)

1
d (resp.

by the corresponding λi(M)) up to a multiplicative factor that is independent
ofM . Similarly, the norm of the non-trivial coe�cient ideal can also be bounded
independently of M .

Finally, it should be noted that the basis generated by the algorithm of
Figure 5 satis�es bi ∈ spanj≤i+1 aj for i < n, and thus can be compared to the
results from [8].

5 Examples

We start by some example coming from group theory, focusing only on the
use of lattice reduction. Representations of �nite groups give easy access to
non-trivial and interesting lattices. In general starting with a �nite subgroup
G < GL(m,K) and any OK-module N we obtain a G-invariant OK-module M
via M :=

∑
g∈GNg. Next we change G to act on M , G ∈ GL(M) and, �xing a

complex conjugation on K, obtain a G-invariant Hermitean form on Km from
H :=

∑
g∈G g

∗g. The main application is to �nd a reduced (short) pseudo-basis

S = MT for M and then replace G by GT = {T−1gT : g ∈ G} to �nd an
isomorphic version of G where the elements are (hopefully) �smaller�.

LetG be the quaternion groupQ8 with 8 elements. As a subgroup ofGL(2,K)
for K := Q(i), it can be generated by

1

5

(
i+ 2 2i− 6
2i+ 4 −i− 2

)
and

1

2

(
−i− 1 3i+ 1
i− 1 i+ 1

)
.

Computing the OK-module generated by g

(
1
0

)
for all g ∈ G, we use M :=

OK

(
1
0

)
+
(
1+3i
10 OK

)(3
1

)
. As a Hermitean form, we compute

∑
g∈G gg

∗ where



g∗ denotes the transposed complex conjugate. We then normalize the matrix to
have 1 as the top left entry and obtain

H :=
1

5

(
5 i+ 2

−i+ 2 3

)
.

We reduce the corresponding Z-lattice and use the following short Q(i)-indepen-
dent basis elements:

1

10

(
−3i− 1
−i+ 3

)
and − 1

5

(
2i− 1
−i+ 3

)
.

The two elements can be seen to freely generate the module. Using the transfor-
mation to change G, we now get(

i 0
0 −i

)
and

(
0 1
1 0

)
.

which is a �nicer� version of G.

Let G := SZ8 the 8th Suzuki group with 29 120 elements. This group has 11
characters, and we consider the second among them. The latter de�nes a repre-
sentation of degree 14 over some �eld containing i. For theoretical reasons, the
representation can be de�ned over Q(i), but it is initially computed over Q(ζ52),
of degree 24. A complicated procedure will now �nd a representation over Q(i),
i.e., we have three matrices (one for each generator) over Q(i) generating G.
The coe�cients of the original matrix entries over Q(ζ52) have about 100 digits
each, and over Q(i) this increases to about 200 digits. In this representation the
group G �xes a Hermitean form M which has again entries with about 200 dig-
its each. Since the representation is absolutely irreducible, the quadratic form is
unique up to multiplication by scalars. We normalized the form to have 1 as the
entry in position (1, 1). After application of our reduction technique, the form as
well as the representation now have only 1 digit entries. The module used here
is generated by Ge1 ⊆ Q(i)2.

We used the following Magma code to generate the second example:

> G := Sz(8);

> T := CharacterTable(G);

> M := GModule(T[2]:SparseCyclo := false);

> N := AbsoluteModuleOverMinimalField(M);

> IsAlmostIntegral(N); //computes the module

true

> _ := InvariantForm(N); // compute the form

> SetVerbose("RLLL", 1);

> O := Nice(N);

> #Sprint(ActionGenerators(M));

1359862

> #Sprint(ActionGenerators(N));



327378

> #Sprint(ActionGenerators(O));

4577

The function Nice implements the procedure outlined above. Note that the
actual result can vary substantially as several parts use randomized algorithms.
The Sprint statements are only used as a very crude indication of the output
size, they simply give the number of characters neccessary to write the generating
matrices for G.
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