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Abstract. Most of the interesting algorithmic problems in the geometry
of numbers are NP-hard as the lattice dimension increases. This article
deals with the low-dimensional case. We study a greedy lattice basis re-
duction algorithm for the Euclidean norm, which is arguably the most
natural lattice basis reduction algorithm, because it is a straightforward
generalization of the well-known two-dimensional Gaussian algorithm.
Our results are two-fold. From a mathematical point of view, we show
that up to dimension four, the output of the greedy algorithm is optimal:
the output basis reaches all the successive minima of the lattice. However,
as soon as the lattice dimension is strictly higher than four, the output
basis may not even reach the first minimum. More importantly, from a
computational point of view, we show that up to dimension four, the
bit-complexity of the greedy algorithm is quadratic without fast integer
arithmetic: this allows to compute various lattice problems (e.g. comput-
ing a Minkowski-reduced basis and a closest vector) in quadratic time,
without fast integer arithmetic, up to dimension four, while all other
algorithms known for such problems have a bit-complexity which is at
least cubic. This was already proved by Semaev up to dimension three
using rather technical means, but it was previously unknown whether or
not the algorithm was still polynomial in dimension four. Our analysis,
based on geometric properties of low-dimensional lattices and in partic-
ular Voronöı cells, arguably simplifies Semaev’s analysis in dimensions
two and three, unifies the cases of dimensions two, three and four, but
breaks down in dimension five.

1 Introduction

A lattice is a discrete subgroup of R
n. Any lattice L has a lattice basis, i.e. a set

{b1, . . . , bd} of linearly independent vectors such that the lattice is the set of all

integer linear combinations of the bi’s: L[b1, . . . , bd] =
{

∑d

i=1 xibi : xi ∈ Z

}

. A

lattice basis is usually not unique, but all the bases have the same number of
elements, called the dimension or rank of the lattice. In dimension higher than
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one, there are infinitely many bases, but some are more interesting than others:
they are called reduced. Roughly speaking, a reduced basis is a basis made of rea-
sonably short vectors which are almost orthogonal. Finding good reduced bases
has proved invaluable in many fields of computer science and mathematics, par-
ticularly in cryptology (see for instance the survey [18]); and the computational
complexity of lattice problems has attracted considerable attention in the past
few years (see for instance the book [16]), following Ajtai’s discovery [1] of a
connection between the worst-case and average-case hardness of certain lattice
problems.

There exist many different notions of reduction, such as those of Hermite [8],
Minkowski [17], Korkine-Zolotarev (KZ) [9, 11], Venkov [19], Lenstra-Lenstra-
Lovász [13], etc. Among these, the most intuitive one is perhaps Minkowski’s
reduction; and up to dimension four, it is arguably optimal compared to all other
known reductions, because it reaches all the so-called successive minima. How-
ever, finding a Minkowski-reduced basis or a KZ-reduced basis is NP-hard under
randomized reductions as the dimension increases, because such bases contain a
shortest lattice vector, and the shortest vector problem is NP-hard under ran-
domized reductions [2, 15]. In order to better understand lattice reduction, it is
tempting to study the low-dimensional case. Improvements in low-dimensional
lattice reduction may lead to significant running-time improvements in high-
dimensional lattice reduction, as the best lattice reduction algorithms known in
theory and in practice for high-dimensional lattices, namely Schnorr’s blockwise
KZ-reduction [20] and its heuristic variants [21, 22], are based on a repeated use
of low-dimensional KZ-reduction.

The classical Gaussian algorithm [5] computes in quadratic time (without
fast integer arithmetic [23]) a Minkowski-reduced basis of any two-dimensional
lattice. This algorithm was extended to dimension three by Vallée [27] in 1986
and Semaev [24] in 2001: Semaev’s algorithm is quadratic without fast integer
arithmetic, whereas Vallée’s algorithm has cubic complexity. More generally, Hel-
frich [7] showed in 1986 by means of the LLL algorithm [13] how to compute in
cubic time a Minkowski-reduced basis of any lattice of fixed (arbitrary) dimen-
sion, but the hidden complexity constant grows very fast with the dimension.

In this paper, we generalize the Gaussian algorithm to arbitrary dimension.
Although the obtained greedy algorithm is arguably the simplest lattice basis
reduction algorithm known, its analysis becomes remarkably more and more
complex as the dimension increases. Semaev [24] was the first to prove that the
algorithm was still polynomial-time in dimension three, but the polynomial-time
complexity remained open for higher dimension. We show that up to dimension
four, the greedy algorithm computes a Minkowski-reduced basis in quadratic
time without fast arithmetic. This implies that a shortest vector and a KZ-
reduced basis can be computed in quadratic time up to dimension four. Inde-
pendently of the running time improvement, we hope our analysis will help to
design new lattice reduction algorithms. The main novelty of our approach com-
pared to previous work is that we use geometrical properties of low-dimensional
lattices. In dimension two, the method is very close to the argument given by
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Semaev in [24], which is itself very different from previous analyses of the Gaus-
sian algorithm [12, 28, 10]. In dimension three, Semaev’s analysis [24] is based on
a rather exhaustive analysis of all the possible behaviors of the algorithm, which
involves quite a few computations and makes it difficult to extend to higher di-
mension. We replace the main technical arguments by geometrical considerations
on two-dimensional lattices. This makes it possible to extend the analysis to di-
mension four, by carefully studying geometrical properties of three-dimensional
lattices, although a few additional difficulties appear. However, it is still un-
known whether or not the greedy algorithm remains polynomial-time beyond
dimension four. Besides, we show that the output basis may not even reach the
shortest vector beyond dimension four.

The paper is organized as follows. In Section 2, we recall useful facts about
lattices. In Section 3, we recall Gauss’ algorithm and describe its natural greedy
generalization. In Section 4, we analyze Gauss’ algorithm and extend the anal-
ysis to dimensions three and four, using geometrical results. We explain why
our analysis breaks down in dimension five. In Section 5, we prove geometrical
results on low-dimensional lattices which are useful to prove the so-called gap
lemmata, an essential ingredient of the complexity analysis of Section 4.

Important remark: Due to lack of space, this extended abstract contains few
proofs, and we only show that the algorithm is polynomial-time. The proof of
the quadratic complexity will appear in the full version of the paper.
Notations: ‖.‖ and 〈., .〉 denote respectively the Euclidean norm and inner
product of R

n; variables in bold are vectors; whenever the notation [b1, . . . , bd] is
used, we have ||b1|| ≤ . . . ≤ ||bn|| and in that case we say that the bi’s are ordered.
Besides, the complexity model we use is the RAM model, and the computational
cost is measured in elementary operations on bits. In any complexity statement,
we assume that the underlying lattice L is integral (L ⊆ Z

n). If x ∈ R, then bxe
denotes a nearest integer to x.

2 Preliminaries

We assume the reader is familiar with geometry of numbers (see [4, 6, 14, 25]).
Gram-Schmidt orthogonalization. Let b1, . . . , bd be vectors. The Gram
matrix G(b1, . . . , bd) of b1, . . . , bd is the d × d matrix (〈bi, bj〉)1≤i,j≤d formed
by all the inner products. b1, . . . , bd are linearly independent if and only if the
determinant of G(b1, . . . , bd) is not zero. The volume vol(L) of a lattice L is
the square root of the determinant of the Gram matrix of any basis of L. The
orthogonality-defect of a basis (b1, . . . , bd) of L is defined as (

∏d

i=1 ‖bi‖)/vol(L):
it is always greater than 1, with equality if and only if the basis is orthogonal.
Let (b1, . . . , bd) be linearly independent vectors. The Gram-Schmidt orthogonal-
ization (b∗

1, . . . , b
∗
d) is defined as follows: b∗

i is the component of bi orthogonal to
the subspace spanned by b1, . . . , bi−1.
Successive minima and Minkowski reduction. Let L be a d-dimensional
lattice in R

n. For 1 ≤ i ≤ d, the i-th minimum λi(L) is the radius of the smallest
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closed ball centered at the origin containing at least i linearly independent lattice
vectors. The most famous lattice problem is the shortest vector problem (SVP):
given a basis of a lattice L, find a lattice vector of norm λ1(L). There always
exist linearly independent lattice vectors vi’s such that ‖vi‖ = λi(L) for all i.
Surprisingly, as soon as d ≥ 4, such vectors do not necessarily form a lattice
basis, and when d ≥ 5, there may not even exist a lattice basis reaching all
the minima. A basis [b1, . . . , bd] of L is Minkowski-reduced if for all 1 ≤ i ≤ d,
bi has minimal norm among all lattice vectors bi such that [b1, . . . , bi] can be
extended to a basis of L. Surprisingly, up to dimension six, one can easily decide
if a given basis is Minkowski-reduced or not, by checking a small number of
explicit norm inequalities, known as Minkowski’s conditions. A basis reaching
all the minima must be Minkowski-reduced, but a Minkowski-reduced basis may
not reach all the minima, except the first four ones (see [29]): if [b1, . . . , bd] is a
Minkowski-reduced basis of L, then for all 1 ≤ i ≤ min(d, 4), ‖bi‖ = λi(L). Thus,
a Minkowski-reduced basis is optimal in a natural sense up to dimension four.
A classical result (see [29]) states that the orthogonality-defect of a Minkowski-
reduced basis can be upper-bounded by a constant which only depends on the
lattice dimension.
Voronöı cell and Voronöı vectors. The Voronöı cell [30] of L = L[b1, . . . , bd],
denoted by Vor(b1, . . . , bd), is the set of vectors x in the linear span of L which
are closer to 0 than to any other lattice vector: for all v ∈ L, ‖x−v‖ ≥ ‖x‖, that
is ‖v‖2 ≥ 2|〈v, x〉|. The Voronöı cell is a finite polytope which tiles the linear span
of L by translations by lattice vectors. We extend the notation Vor(b1, . . . , bd) to
the case where the first vectors may be zero (the remaining vectors being linearly
independent): Vor(b1, . . . , bd) denotes the Voronöı cell of the lattice spanned by
the non-zero bi’s. A lattice vector v ∈ L is called a Voronöı vector if v/2 belongs
to the Voronöı cell (in which case v/2 will be on the boundary of the Voronöı
cell). v ∈ L is a strict Voronöı vector if v/2 is contained in the interior of a (d−1)-
dimensional face of the Voronöı cell. A classical result states that Voronöı vectors
correspond to the minima of the cosets of L/2L. We say that (x1, . . . , xd) ∈ Z

d

is a possible Voronöı coord if there exists a Minkowski-reduced basis [b1, . . . , bd]
such that x1b1 + . . . + xdbd is a Voronöı vector. In some parts of the article, we
will deal with Voronöı coordinates with respect to other types of reduced bases:
the kind of reduction considered will be clear from the context. The covering
radius ρ(L) of a lattice L is half of the diameter of the Voronöı cell. The closest
vector problem (CVP) is a non-homogeneous version of SVP: given a basis of a
lattice and an arbitrary vector x of R

n, find a lattice vector v minimizing the
distance ‖v − x‖; in other words, if y denotes the orthogonal projection of x

over the linear span of L, find v ∈ L such that v−y belongs to the Voronöı cell
of L.

3 A Greedy Generalization of Gauss’ Algorithm

In dimension two, there is a simple and efficient lattice basis reduction algo-
rithm due to Gauss. We view Gauss’ algorithm as a greedy algorithm based on
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the one-dimensional CVP, which suggests a natural generalization to arbitrary
dimension that we call the greedy reduction algorithm. We study properties of
the bases output by the greedy algorithm by defining a new type of reduction
and comparing it to Minkowski reduction.

3.1 Gauss’ Algorithm

Gauss’ algorithm – described in Figure 1 – can be seen as a two-dimensional

Input: A basis [u, v] with its Gram matrix.
Output: A reduced basis of L[u, v], together with its Gram matrix.
1. Repeat

2. r := v − xu where x :=
j

〈u,v〉

‖u‖2

m

,

3. v := u,
4. u := r,
5. Update the Gram matrix of (u, v),
6. Until ‖u‖ ≥ ‖v‖.
7. Return [v, u] and its Gram matrix.

Fig. 1. Gauss’ algorithm.

generalization of the centered Euclidean algorithm [28]. At Step 2 of each loop
iteration, u is shorter than v, and one would like to shorten v rather than
u, while preserving the fact that [u, v] is a basis of L. This can be achieved by
subtracting to v a multiple xu of u, because such a transformation is unimodular.
The optimal choice is when xu is the closest vector to v, in the one-dimensional

lattice spanned by u, which gives rise to x :=
⌊

〈u,v〉
‖u‖2

⌉

. The values 〈u, v〉 and ‖u‖2

are extracted from G(u, v), which is updated at Step 5 of each loop iteration.
The complexity of Gauss’ algorithm is given by the following classical result:

Theorem 1. Given as input a basis [u, v] of a lattice L, Gauss’ algorithm out-
puts a Minkowski-reduced basis of L in time O(log ‖v‖ · [1+log‖v‖− logλ1(L)]).

Note that this result is not trivial to prove. It is not even clear a priori why
Gauss’ algorithm outputs a Minkowski-reduced basis.

3.2 The Greedy Reduction Algorithm

Gauss’ algorithm suggests the general greedy algorithm described in Figure 2,
which uses reduction and closest vectors in dimension d − 1, to reduce bases
in dimension d. We make a few remarks on the description of the algorithm.
If the Gram matrix is not given, we may compute it in time O(log2 ||bd||) for
fixed d. The algorithm updates the Gram matrix each time the basis changes.
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Name: Greedy(b1, . . . , bd).
Input: A basis [b1, . . . , bd] together with its Gram matrix.
Output: An ordered greedy-reduced basis of L[b1, . . . , bd] with its Gram matrix.
1. If d = 1, return b1.
2. Repeat
3. Order (b1, . . . , bd) by increasing lengths and update the Gram matrix,
4. [b1, . . . , bd−1] := Greedy(b1, . . . , bd−1),
5. Compute a vector c closest to bd, in L[b1, . . . , bd−1],
6. bd := bd − c and update the Gram matrix,
7. Until ||bd|| ≥ ||bd−1||.
8. Return [b1, . . . , bd] and its Gram matrix.

Fig. 2. The greedy lattice basis reduction algorithm in dimension d.

Step 3 is easy: if this is the first iteration of the loop, the basis is already or-
dered; otherwise, [b1, . . . , bd−1] is already ordered, and only bd has to be inserted
among b1, . . . , bd−1. At Step 4, the greedy algorithm calls itself recursively in
dimension d − 1: G(b1, . . . , bd−1) does not need to be computed before calling
the algorithm, since G(b1, . . . , bd) is already known. At this point, we do not ex-
plain how Step 5 (the computation of closest vectors) is performed: this issue is
postponed to subsection 3.4. Note that for d = 2, the greedy algorithm is exactly
Gauss’ algorithm. From a geometrical point of view, the goal of Steps 5 and 6
is to make sure that the orthogonal projection of bd over the lattice spanned by
[b1, . . . , bd−1] lies in the Voronöı cell of that lattice.

An easy proof by induction on d shows that the algorithm terminates. Indeed,
the new vector bd of Step 6 is strictly shorter than bd−1 if the loop does not
end at Step 7. Thus the product of the norms of the bi’s decreases strictly at
each iteration of the loop which is not the last one. But for all B, the number
of lattice vectors of norm less than B is finite, which completes the proof.

Although the description of the greedy algorithm is fairly simple, analyzing
its bit complexity seems very difficult. Even the two-dimensional case of the
Gaussian algorithm is not trivial.

3.3 Greedy Reduction

In this subsection, we study properties of the bases output by the greedy algo-
rithm. As previously mentioned, it is not clear why Gauss’ algorithm outputs a
Minkowski-reduced basis. But it is obvious that the output basis [u, v] satisfies:
‖u‖ ≤ ‖v‖ ≤ ‖v − xu‖ for all x ∈ Z. This suggests the following definition:

Definition 2. An ordered basis [b1, . . . , bd] is greedy-reduced if for all 2 ≤ i ≤ d
and for all x1, . . . , xi−1 ∈ Z: ‖bi‖ ≤ ‖bi + x1b1 + . . . + xi−1bi−1‖.

In other words, we have the following recursive definition: a one-dimensional ba-
sis is always greedy-reduced, and an ordered basis [b1, . . . , bd] is greedy-reduced if
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and only if [b1, . . . , bd−1] is greedy-reduced and the projection of bd over the lin-
ear span of b1, . . . , bd−1 lies in the Voronöı cell Vor(b1, . . . , bd−1). The greedy al-
gorithm outputs a greedy-reduced basis, and if the input basis is greedy-reduced,
the output basis will be equal to the input basis.

The fact that Gauss’ algorithm outputs Minkowski-reduced bases is a particu-
lar case of the following result, which compares greedy-reduction with Minkowski
reduction:

Lemma 3. The following statements hold:
1. Any Minkowski-reduced basis is greedy-reduced.
2. A basis of d ≤ 4 vectors is Minkowski-reduced if and only if it is greedy-
reduced.
3. If d ≥ 5, there exists a basis of d vectors which is greedy-reduced, but not
Minkowski-reduced.

As a consequence, the greedy algorithm outputs a Minkowski-reduced basis up
to dimension four, thus reaching all the successive minima of the lattice; but
beyond dimension four, the greedy algorithm outputs a greedy-reduced basis
which may not be Minkowski-reduced. The following lemma shows that greedy-
reduced bases may considerably differ from Minkowski-reduced bases beyond
dimension four:

Lemma 4. Let d ≥ 5. For all ε > 0, there exists a lattice L and a greedy-reduced
basis [b1, . . . , bd] of L such that: λ1(L)/‖b1‖ ≤ ε and vol(L)/

∏d

i=1 ‖bi‖ ≤ ε.

Such properties do not hold for Minkowski-reduced bases. The first phenomenon
shows that greedy-reduced bases may be arbitrarily far from the first minimum,
while the second one shows that a greedy-reduced basis may be far from being
orthogonal.

3.4 Computing Closest Vectors From Minkowski-Reduced Bases

We now explain how Step 5 of the greedy algorithm can be implemented effi-
ciently up to d = 5. Step 5 is trivial only when d ≤ 2. Otherwise, note that
after Step 4, the (d − 1)-dimensional basis [b1, . . . , bd−1] is greedy-reduced, and
therefore Minkowski-reduced as long as d ≤ 5. And we know the Gram matrix
of [b1, . . . , bd−1, bd].

Theorem 5. Let d ≥ 1 be an integer. There exists an algorithm which, given
as input a Minkowski-reduced basis [b1, . . . , bd−1], a target vector t longer than
all the bi’s, and the Gram matrix of [b1, . . . , bd−1, t], outputs a closest lattice
vector c to t (in the lattice spanned by the [b1, . . . , bd−1]), and the Gram matrix of
(b1, . . . , bd−1, t−c), in time O(log ||t|| · [1+log ||t||− log ||bα||]), where 1 ≤ α ≤ d
is any integer such that [b1, . . . , bα−1, t] is Minkowski-reduced.

Intuitively, the algorithm works as follows: an approximation of the coor-
dinates (with respect to the bi’s) of the closest vector is computed using linear
algebra, and the approximation is then corrected by a suitable exhaustive search.
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Let h be the orthogonal projection of t over the linear span of b1, . . . , bd−1.

There exist y1, . . . , yd−1 ∈ R such that h =
∑d−1

i=1 yibi. If c =
∑d−1

i=1 xibi is a
closest vector to t, then h − c belongs to Vor(b1, . . . , bd−1). However, for any
C > 0, the coordinates (with respect to any basis of orthogonality-defect ≤ C)
of any point inside the Voronöı cell can be bounded independently from the
lattice (see [26]). It follows that if we know an approximation of the yi’s with
sufficient precision, then c can be derived from a O(1) exhaustive search, since
the coordinates yi − xi of h− c are bounded, and so is the orthogonality-defect
of a Minkowski-reduced basis.

To approximate the yi’s, we use linear algebra. Let G = G(b1, . . . , bd−1) and

H =
(

〈bi,bj〉
||bi||2

)

1≤i,j≤d−1
. We have:

G ·







y1

...
yn






= −







〈b1, t〉
...

〈bn, t〉






therefore







y1

...
yn






= −H−1 ·









〈b1,t〉
||b1||2

...
〈bn,t〉
||bn||2









.

We use the latter formula to compute the yi’s with a one-bit accuracy, in the ex-

pected time. Let r = maxidlog 〈bi,t〉
||bi||2 e. Notice that r = O(1+log ||t||−log ||bα−1||)

by bounding 〈bi, t〉 depending on whether i ≥ α. Notice also that the entries of H
are all ≤ 1 in absolute value (because [b1, . . . , bd−1] is Minkowski-reduced), and
det(H) is lower bounded by some universal constant (because the orthogonality-
defect of [b1, . . . , bd−1] is bounded). It follows that one can compute the entries
of H−1 with a Ω(r)-bit accuracy, in O(r2) binary operations. One eventually
derives the yi’s with a one-bit accuracy,

4 Complexity Analysis of the Greedy Algorithm

4.1 A Geometric Analysis of Gauss’ Algorithm

We provide yet another proof of the classical result that Gauss’ algorithm has
quadratic complexity. Compared to other proofs, our method closely resembles
the recent one of Semaev [24], itself relatively different from [12, 28, 10, 3]. The
analysis is not optimal (as opposed to [28]), but its basic strategy can be extended
up to dimension four. Consider the value of x at Step 2:

– If x = 0, this must be the last iteration of the loop.
– If |x| = 1, there are two cases:

• If ‖v − xu‖ ≥ ‖u‖, then this is the last loop iteration.
• Otherwise, the inequality can be rewritten as ‖u − xv‖ < ‖u‖, which

means that u can be shortened with the help of v, which can only happen
if this is the first loop iteration, because of the greedy strategy.

– Otherwise, |x| ≥ 2, which implies that xu is not a Voronöı vector of the
lattice spanned by u. Intuitively, this means that xu is far away from Vor(u),
so that v − xu is considerably shorter than v. More precisely, one can show
that ‖v‖2 ≥ ‖v − xu‖2 + 2‖u‖2, which is therefore > 3‖v − xu‖2 if this is
not the last loop iteration.
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This shows that the product of the basis vectors norms decreases by a factor at
least

√
3 every loop iteration except possibly the first and last ones. Thus, the

number τ of loop iterations is bounded by: τ ≤ 2 + log√
3 ‖v‖ − log√3 λ1(L).

It remains to estimate the cost of each Step 2, which is the cost of comput-

ing x. Because |〈u,v〉|
‖u‖2 ≤ ||v||

‖u‖ , one can see that the bit complexity of Step 2 is

O(log ‖v‖ · [1+ log‖v||− log ‖u‖]). If we denote by ui and vi the values of u and
v at the i-th iteration, then vi+1 = ui and we obtain that the bit complexity of
Gauss’ algorithm is bounded by:

O (
∑τ

i=1 log ‖vi‖ · [1 + log ‖vi|| − log ‖ui‖])
= O (log ‖v‖ · ∑τ

i=1[1 + log ‖vi|| − log ‖vi+1‖])
= O (log ‖v‖ · [τ + log ‖v‖ − log λ1(L)]) .

This completes the proof of Theorem 1.

4.2 A Geometric Analysis Up To Dimension Four

The main result of the paper is the following:

Theorem 6. Let 1 ≤ d ≤ 4. Given as input an ordered basis [b1, . . . , bd],
the greedy algorithm of Figure 2 based on the algorithm of Theorem 5 out-
puts a Minkowski-reduced basis of L[b1, . . . , bd], using a number of bit operations
bounded by O(log ‖bd‖ · [1 + log ‖bd‖ − log λ1(L)]).

However, due to lack of space, we only prove the following weaker result in this
extended abstract:

Theorem 7. Let 1 ≤ d ≤ 4. Given as input an ordered basis [b1, . . . , bd],
the greedy algorithm of Figure 2 based on the algorithm of Theorem 5 out-
puts a Minkowski-reduced basis of L[b1, . . . , bd], using a number of bit operations
bounded by a polynomial in log ‖bd‖.

The result asserts the polynomial-time complexity of the greedy algorithm, which
is by far the hardest part of Theorem 6. Both theorems are proved iteratively: the
case d = 4 is based on the case d = 3, which is itself based on the case d = 2. The
analysis of Gauss’ algorithm (Section 4.1) was based on the fact that if |x| ≥ 2,
xu is far away from the Voronöı cell of the lattice spanned by u. The proof of
Theorem 7 relies on a similar phenomenon in dimensions two and three. However,
the situation is considerably more complex, as the following basic remarks hint:

– For d = 2, we considered the value of x, but if d ≥ 3, there will be several
coefficients instead of a single x, and it is not clear which coefficient will be
useful in the analysis.

– For d = 2, Step 4 cannot change the basis, as there are only two bases in
dimension one. If d ≥ 3, Step 4 may completely change the vectors, and it
could be hard to keep track of what is going on.

In order to prove Theorem 7, we introduce a few notations. Consider the
i-th loop iteration. Let [ai

1, . . . , a
i
d] denote the basis [b1, . . . , bd] at the beginning
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of the i-th loop iteration. The basis [ai
1, . . . , a

i
d] becomes [bi

1, . . . , b
i
d−1, a

i
d] with

||bi
1|| ≤ . . . ≤ ||bi

d−1|| after Step 4, and (bi
1, . . . , b

i
d) after Step 6, where bi

d = ai
d−

ci and ci is the closest vector c found at Step 5. Let pi be the number of integers
1 ≤ j ≤ d such that ‖bi

j‖ ≤ ‖bi
d‖. Let πi be the rank of bi

d once (bi
1, . . . , b

i
d) is

sorted by length: for example, πi = 1 if ‖bi
d‖ < ‖bi

1‖. Clearly, 1 ≤ πi ≤ pi ≤ d, if
pi = d then the loop terminates, and otherwise ||ai+1

πi
|| = ||ai+1

pi
||. Note that πi

may not be equal to pi because there may be several choices when sorting the
vectors by length in case of equalities.

Now consider the (i + 1)-th loop iteration for some i ≥ 1. Recall that by
definition of πi, we have ai+1

πi
= bi

d = ai
d − ci, while [ai+1

j ]j 6=πi
= [bi

j ]1≤j≤d−1.

The closest vector ci+1 belongs to L[bi+1
1 , . . . , bi+1

d−1] = L[ai+1
1 , . . . , ai+1

d−1]: there

exist integers xi+1
1 , . . . , xi+1

d−1 such that ci+1 =
∑d−1

j=1 xi+1
j ai+1

j .

Suppose we know that Theorem 7 is correct in dimension d−1 with 2 ≤ d ≤ 4;
we are to prove that it is still valid in dimension d. Because of this induction
hypothesis and of Theorem 5, the number of bit operations performed in the
i-th loop iteration is bounded by a polynomial in log ||ai

d||. Since ||ai
d|| ≤ ||a1

d||
for any i, it is sufficient to prove that the number of loop iterations is bounded
by a polynomial in log ||a1

d||. Indeed, we show that there exist a universal con-
stant Cd > 1 such that for any execution of the d-dimensional greedy algorithm,
in any d consecutive iterations of the loop, the product of the lengths of the
current vectors decreases by some factor higher than Cd:

||ai
1||...||ai

d||
||ai+d

1 ||...||ai+d

d
|| ≥ Cd. (1)

This automatically ensures that the number of loop iterations is at most pro-
portional to log ||a1

d||, and that the total number of bit operations is bounded
by a polynomial in log ||a1

d||.

We deal with the first difficulty mentioned: which coefficient will be useful?
The trick is to consider the value of xi+1

πi
, that is, the coefficient of ai+1

πi
= ai

d−ci

in ci+1, and to use the greedy properties of the algorithm.

Lemma 8. Among d consecutive iterations of the loop of the greedy algorithm
of Figure 2, there is at least one iteration of index i + 1 such that pi+1 ≤ pi.
Moreover, for such a loop iteration, we have |xi+1

πi
| ≥ 2.

Proof. The first statement is obvious. Consider one such loop iteration i + 1.
Suppose we have a small |xi+1

πi
|, that is |xi+1

πi
| = 0 or |xi+1

πi
| = 1.

– If xi+1
πi

= 0, ci+1 ∈ L[ai+1
j ]j 6=πi,j≤d−1 = L[bi

1, . . . , b
i
d−2]. We claim that the

(i + 1)-th iteration must be the last one. Because the i-th loop iteration
was not terminal, we have ai+1

d = bi
d−1. Moreover, [bi

1, . . . , b
i
d−1] is greedy-

reduced because of Step 4 of the i-th loop iteration. These two facts imply
that ci+1 must be zero, and the (i + 1)-th loop iteration is the last one.

– If |xi+1
πi

| = 1, we claim that pi+1 > pi. We have ci+1 =
∑d−1

j=1 xi+1
j ai+1

j

where ai+1
πi

= ai
d − ci and [ai+1

j ]j 6=πi
= [bi

j ]1≤j≤d−1. Thus, ci+1 can be
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written as ci+1 = ±(ai
d − ci) + e where e ∈ L[bi

1, . . . , b
i
d−2]. Therefore

ai+1
d −ci+1 = bi

d−1± (ai
d−ci)+e. In other words, ‖ai+1

d −ci+1‖ = ‖ai
d−f‖

for some f ∈ L[bi
1, . . . , b

i
d−1]. It follows that pi+1 ≥ 1 + pi, which achieves

the claim.

ut

We will see that in dimension three, any such loop iteration i + 1 implies that
at least one of the basis vectors significantly decreases in the (i + 1)-th loop
iteration, or had significantly decreased in the i-th loop iteration. This is only
“almost” true in dimension four: fortunately, we will be able to isolate the bad
cases, and to show that when a bad case occurs, the number of remaining loop
iterations can be bounded by some universal constant.

We now deal with the second difficulty. Recall that ci+1 =
∑d−1

j=1 xi+1
j ai+1

j

but the basis [ai+1
1 , . . . , ai+1

d−1] is not necessarily greedy-reduced. We distinguish
two cases:

– 1) The basis [ai+1
1 , . . . , ai+1

d−1] is somehow far from being greedy-reduced.

Then bi
d was significantly shorter than ai

d. Note that this length decrease
concerns the i-th loop iteration and not the (i + 1)-th.

– 2) Otherwise, the basis [ai+1
1 , . . . , ai+1

d−1] is almost greedy-reduced. The fact

that |xi+1
πi

| ≥ 2 roughly implies that ci+1 is somewhat far away from the

Voronöı cell Vor(ai+1
1 , . . . , ai+1

d−1): this phenomenon will be precisely captured

by the so-called Gap Lemma. When this is the case, the new vector bi+1
d will

be significantly shorter than ai+1
d .

To capture the property that a set of vectors is almost greedy-reduced, we in-
troduce the so-called ε-reduction where ε ≥ 0, which is defined as follows:

Definition 9. A single vector b1 is always ε-reduced; for d ≥ 2, a d-tuple
(b1, . . . , bd) is ε-reduced if (b1, . . . , bd−1) is ε-reduced, ‖bd−1‖ ≤ ‖bd‖, and the
orthogonal projection of bd over the linear span of (b1, . . . , bd−1) belongs to
(1 + ε)Vor(b1, . . . , bd−1).

With this definition, a greedy-reduced basis is ε-reduced for any ε ≥ 0. In the
definition of ε-reduction, we did not assume that the bi’s were nonzero nor
linearly independent. This is because the Gap Lemma is essentially based on
compactness properties: the set of ε-reduced d-tuples needs to be closed (from a
topological point of view), while a limit of bases may not be a basis.

We can now give the precise statements of the two cases described above.
Lemma 10 corresponds to case 1), and Lemma 11 to case 2).

Lemma 10. Let 2 ≤ d ≤ 4. There exists a constant ε1 > 0 such that for any
ε ≤ ε1 there exists Cε > 1 such that the following statement holds. Consider the
(i + 1)-th loop iteration of an execution of the d-dimensional greedy algorithm.
If [ai+1

1 , . . . , ai+1
d−1] is not ε-reduced, then ||ai

d|| ≥ Cε||bi
d||.
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Lemma 11. Let 2 ≤ d ≤ 4. There exist two constants ε2 > 0 and D > 0 such
that the following statement holds. Consider the (i + 1)-th loop iteration of an
execution of the d-dimensional greedy algorithm. Suppose that [ai+1

1 , . . . , ai+1
d−1]

is ε2-reduced, and that ||ai+1
k || ≥ (1 − ε2)||ai+1

d || for some 1 ≤ k ≤ d − 1. Then,
if |xk| ≥ 2 and if we are not in the 211-case, we have:

||bi+1
d ||2 + D||bi+1

k ||2 ≤ ||ai+1
d ||2,

where the 211-case is: d = 4, |xk| = 2 and the other |xj |’s are all equal to 1.

This last lemma is a direct consequence of Pythagore and the Gap Lemma (which
is crucial to our analysis, and to which the next section is devoted):

Theorem 12 (Gap Lemma). Let 2 ≤ d ≤ 4. There exist two constants ε2 > 0
and D > 0 such that the following statement holds. Let [a1, . . . , ad−1] be ε-
reduced vectors, u be a vector of Vor(a1, . . . , ad−1) and x1, . . . , xd−1 be integers.
If ||ak|| ≥ (1 − ε)||ad−1|| for some k ≤ d − 2, then:

||u||2 + D||bk||2 ≤ ||u +

d−1
∑

j=1

xjbj ||2,

where |xk | ≥ 2, and if d = 4 the two other |xj |’s are not all equal to 1.

This completes the overall description of the proof of Theorem 7. Indeed,
choose three constants ε, D > 0 and C > 1 such that we can apply Lemmata 10
and 11. We prove that Equation (1) holds for Cd = min(C,

√
1 + D, 1

1−ε
) > 1.

Consider a loop iteration i + 1 such that pi+1 ≤ pi. Recall that among any d
consecutive iterations of the loop, there is at least one such iteration. For such
an iteration, we have |xi+1

πi
| ≥ 2. We distinguish four cases:

– [ai+1
1 , . . . , ai+1

d−1] is not ε-reduced: then Lemma 10 gives the result through
the i-th loop iteration.

– ||ai+1
πi

|| < (1−ε)||ai+1
d ||: because pi+1 ≤ pi, we have the inequalities ||bi+1

d || <

||ai+1
pi

|| = ||ai+1
πi

|| < (1 − ε)||ai+1
d ||.

– We are in the 211-case, i.e. d = 4 with |xπi
| = 2 and the other |xj |’s are all

equal to 1, we refer to the detail analysis of subsection 4.3.

– Otherwise, we apply Lemma 11, which gives the expected result through the
(i + 1)-th loop iteration.

We described our strategy to prove that the greedy algorithm is polynomial-
time up to dimension four. One can further prove that the bit complexity is in
fact quadratic, by carefully assessing the costs of each loop iteration and com-
bining them, but the proof is much more technical than in the two-dimensional
case.
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4.3 Concluding in Dimension Four

In the previous subsections, we showed that the greedy algorithm is polynomial-
time in dimensions two and three, but we noticed that a new difficulty arose
in dimension four: the Gap Lemma is useless in the so-called 211-case. This
is because there are three-dimensional Minkowski-reduced bases [b1, b2, b3] for
which 2bi + s1bj + s2bk – with {i, j, k} = {1, 2, 3} and |s1| = |s2| = 1 – is a
Voronöı vector. Indeed consider the lattice spanned by the columns b1, b2, b3 of
the following matrix:

M =





1 1 −1
1 −1 0
0 0 1



 .

This basis is Minkowski-reduced and ||b1 + b2 + 2b3|| = ||b1 + b2|| ≤ ||(2k1 +
1)b1 + (2k2 + 1)b1 + 2k3b3|| for any k1, k2, k3 ∈ Z. Therefore, a vector in the
Voronöı cell centered in b1 + b2 + 2b3 can avoid being significantly shortened
when translated inside the Voronöı cell centered in 0.

The Gap Lemma cannot tackle this problem. However, we note that (1, 1, 2)
is rarely a Voronöı coordinate (with respect to a Minkowski-reduced basis), and
when it is, it cannot be a strict Voronöı coord: we can prove that if (1, 1, 2) is a
Voronöı coord, then ||b1+b2|| = ||b1+b2+2b3||, which tells us that b1+b2+2b3

is not the only vector in its coset of L/2L reaching the minimum. It turns out
that the lattice spanned by the columns of M is essentially the only one for
which (1, 1, 2) – modulo any change of sign and permutation of coordinates –
can be a Voronöı coord. More precisely, if (1, 1, 2) – modulo any change of sign
and permutation of coordinates – is a Voronöı coord for a lattice basis, then
the basis matrix can be written as rUM where r is any non-zero real number
and U is any orthogonal matrix. Since a basis can be arbitrarily close to one
of these without being one of them, we need to consider a small compact set of
normalized bases around the annoying ones. More precisely, this subset is:

{[b1, b2, b3] ε-reduced / ∃σ ∈ S3, ||
1

||b3||2
|G(bσ(1), bσ(2), bσ(3))|−|M tM | ||∞ ≤ ε},

for some sufficiently small ε > 0, where ||M ||∞ is the maximum of the absolute
values of the matrix M and |M | is the matrix of the absolute values.

Now, consider we are in the 211-case at some loop iteration i + 1. We distin-
guish three cases:

– [ai+1
1 , ai+1

2 , ai+1
3 ] is outside the compact. In this case, a variant of the Gap

Lemma (Lemma 29) proved in Section 5 is valid, and can be used to show
that bi+1

4 is significantly shorter than ai+1
4 .

– [ai+1
1 , ai+1

2 , ai+1
3 ] is inside the compact, but ai+1

4 is far from the Voronöı cell
Vor(ai+1

1 , ai+1
2 , ai+1

3 ). In this case, bi+1
4 is significantly shorter than ai+1

4 .
– Otherwise the overall geometry of [ai+1

1 , ai+1
2 , ai+1

3 , ai+1
4 ] is very precisely

known, and we can show that there remain at most O(1) loop iterations.

More precisely, by using Lemma 29, we show that:
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Lemma 13. There exist three constants C, ε > 0, and c ∈ Z such that the fol-
lowing holds. Consider an execution of the four-dimensional greedy algorithm,
and a loop iteration i + 1 for which pi+1 ≤ pi, [ai+1

1 , ai+1
2 , ai+1

3 ] is ε-reduced,
||ai+1

pi
|| ≥ (1− ε)||ai+1

4 ||, and (|xσ(1)|, |xσ(2)|, |xσ(3)|) = (1, 1, 2) for some permu-

tation σ of {1, 2, 3}. Then either ||ai+1
4 || ≥ (1 + C)||bi+1

4 || or:

|| 1

||ai+1
4 ||2

|G(ai+1
σ(1), a

i+1
σ(2), a

i+1
σ(3), a

i+1
4 )| − A||∞ ≤ ε,with : A =









1 0 1
2 0

0 1 1
2 0

1
2

1
2 1 1

2
0 0 1

2 1









.

In order to prove this result, we restrict more and more the possible geometry
of [ai

1, a
i
2, a

i
3, a

i
4]. Note that this critical geometry corresponds to the root lat-

tice D4. We treat this last case by applying the following lemma, which roughly
says that if the Gram matrix of a basis is sufficiently close to some invertible ma-
trix, then the number of short vectors generated by the basis remains bounded.

Lemma 14. Let A be an invertible d × d matrix, and B > 0. Then there exists
ε, N > 0 such that for any basis (b1, . . . , bd), if ||G(b1, . . . , bd)−A||∞ ≤ ε, then:

|{(x1, . . . , xd) / ||x1b1 + . . . + xdbd|| ≤ B}| ≤ N.

4.4 Failure in Dimension Five

In this subsection, we explain why the analysis of the greedy algorithm breaks
down in dimension five. First of all, the basis returned by the algorithm is not
necessarily Minkowski reduced, since greedy and Minkowski reductions differ in
dimension five. Consider the lattice spanned by the columns of the following
matrix:













2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 ε













,

where 0 < ε < 1. This basis is clearly greedy reduced, but the vector (0, 0, 0, 0, ε)t

belongs to the lattice. Moreover, for a small ε, this shows that a greedy reduced
basis can be arbitrarily far from the first minimum, and can have an arbitrarily
large orthogonality defect: ||b∗

5|| is very small towards ||b5||. For ε close to 1,
this basis shows that the length decrease factor through one loop iteration of the
five-dimensional greedy algorithm can be arbitrarily close to 1.

Nevertheless, the greedy algorithm is well-defined in dimension five (the four-
dimensional greedy algorithm can be used for Step 4, and since it returns a
Minkowski reduced basis, the CVP algorithm of Theorem 5 can be used in
Step 5). Despite the fact that the algorithm does not return a Minkowski re-
duced basis, one may wonder if the analysis remains valid, and if the number
of loop iterations of the 5-dimensional greedy algorithm is linear in log ||b5||.



15

The analysis in dimensions two, three and four essentially relies on the fact that
if one of the xj ’s found at Step 5 has absolute value higher than 2, then ||bi

d||
is significantly shorter than ||ai

d||. This fact is derived from the so-called Gap
Lemma. In dimension four, this was only partly true, but the exception (the
211-case) happened in very few cases and could be dealt by considering the very
specific shape of the lattices for which it could go wrong. Things worsen in di-
mension five. Indeed, for Minkowski-reduced bases, (1, 1, 1, 2) and (1, 1, 2, 2) –
modulo any change of sign and permutation of coordinates – are possible Voronöı
coords. Here is an example of a lattice where (1, 1, 2, 2) is a Voronöı coord:









1 −1 0 0
1 1 −1 0
0 0 1 −1
0 0 0 1









.

The lattice basis given by the columns is Minkowski-reduced, but:

||b1+b2+2b3+2b4|| = 2 = ||b1+b2|| ≤ ||(2k1+1)b1+(2k2+1)b2+2k3b3+2k4b4||,

for any k1, k2, k3, k4 ∈ Z. Note that (1, 1, 2, 2) cannot be a strict Voronöı coord:
if b1 + b2 + 2b3 + 2b4 reaches the length minimum of its coset of L/2L, then so
does b1+b2. Thus it might be possible to work around the difficulty coming from
(1, 1, 2, 2) like in the previous subsection. However, the case (1, 1, 1, 2) would still
remain, and this possible Voronöı coordinate can be strict.

5 The Geometry of Low-Dimensional Lattices

In this section, we give some results about Voronöı cells in dimensions two and
three, which are crucial to our complexity analysis of the greedy algorithm de-
scribed in Section 3. More precisely, the analysis is based on the Gap Lemma
(subsection 5.3), which is derived from the study of Voronöı cells in the case of
ε-reduced vectors (subsection 5.2), itself derived from the study of Voronöı cells
for Minkowski-reduced bases (subsection 5.1).

5.1 Voronöı Cells in the Case of Minkowski-Reduced Bases

We give simple bounds on the diameter of the Voronöı cell and on the Gram-
Schmidt orthogonalization of a Minkowski-reduced basis:

Lemma 15. Let d ≥ 1. Let [b1, . . . , bd] be a basis of a lattice L. Then ρ(L) ≤√
d

2 ||bd||. As a consequence, if d ≤ 4 and if [b1, . . . , bd] is a Minkowski-reduced

basis, then ||b∗
d|| ≥

√
5−d
2 ||bd||.

The following lemma provides the possible Voronöı vectors of a two-dimensional
lattice given by a Minkowski-reduced basis. Such a basis confines the coordinates
of Voronöı vectors:
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Lemma 16. In dimension two, the possible Voronöı coords are (1, 0) and (1, 1),
modulo any change of signs and permutation of coordinates, i.e. any nonzero
(ε1, ε2) where |ε1|, |ε2| ≤ 1.

The proof relies on a detailed study of the expression ||(2x1+ε1) ·b1+(2x2+ε2) ·
b2||2 − ||ε1b1 + ε2b2||2, where [b1, b2] is Minkowski-reduced, ε1, ε2 ∈ {0, 1} and
x1, x2 ∈ Z. Indeed, since Voronöı coords of a lattice L are given by the minima
of the non-zero cosets of L/2L, it suffices to show that if x1x2 6= 0, then this
expression is strictly positive. We do this by a rather technical study.

We generalize this analysis to the three-dimensional case. The underlying
ideas of the proof are the same, but because of the increasing number of variables,
the analysis becomes more tedious.

Lemma 17. In dimension three, the possible Voronöı coordinates are (1, 0, 0),
(1, 1, 0), (1, 1, 1) and (2, 1, 1), modulo any change of signs and permutation of
coordinates.

The possible Voronöı coord (2, 1, 1) creates difficulties when analyzing the
greedy algorithm in dimension four, because it contains a two, which cannot be
handled with the greedy argument used for the ones. We tackle this problem as
follows: we show that when (2, 1, 1) happens to be a Voronöı coord, the lattice has
a very specific shape, for which the behavior of the algorithm is well-understood.

Lemma 18. Suppose [b1, b2, b3] is a Minkowski-reduced basis.
1. If any of (s1, s2, 2) is a Voronöı coord with si = ±1 for i ∈ {1, 2}, then
||b1|| = ||b2|| = ||b3||, 〈b1, b2〉 = 0 and 〈bi, b3〉 = −si||b1||2/2 for i = 1, 2.
2. If any of (s1, 2, s3) is a Voronöı coord with si = ±1 for i ∈ {1, 3}, then
||b1|| = ||b2||. Moreover, if ||b1|| = ||b2|| = ||b3||, then 〈b1, b3〉 = 0 and 〈bi, b2〉 =
−si||b1||2/2 for i = 1, 3.
3. If any of (2, s2, s3) is a Voronöı coord with si = ±1 for i ∈ {2, 3} and ||b1|| =
||b2|| = ||b3||, then 〈b2, b3〉 = 0 and 〈bi, b1〉 = −si||b1||2/2 for i = 2, 3.

5.2 Voronöı Cells in the Case of ε-Reduced Vectors

We extend the results of the previous subsection to the case of ε-reduced vec-
tors. The idea is that if we compact the set of Minkowski-reduced bases and
slightly enlarge it, the possible Voronöı coords remain the same. Unfortunately,
by doing so, some of the vectors we consider may be zero, and this creates an
infinity of possible Voronöı coords: for example, if b1 = 0, any pair (x1, 0) is a
Voronöı coord of [b1, b2]. To tackle this problem, we restrict to bi with “similar”
lengths. More precisely, we use the so-called Topological Lemma: if we can guar-
antee that the possible Voronöı coords of the enlargement of the initial compact
set of bases are bounded, then for a sufficiently small enlargement, the possible
Voronöı coords remain the same. We first give rather simple results on ε-reduced
vectors and their Gram-Schmidt orthogonalization, then we introduce the Topo-
logical Lemma (Lemma 21), from which we finally derive the relaxed versions of
Lemmata 16, 17 and 18.
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Lemma 19. There exists a constant c > 0 such that for any sufficiently small
ε > 0, if [b1, b2, b3] are ε-reduced, then the following inequalities hold:

|〈bi, bj〉| ≤
1 + cε

2
||bi||2 for any i < j,

|〈b3, ε1b1 + ε2b2〉| ≤
1 + cε

2
||ε1b1 + ε2b2||2 for any ε1, ε2 ∈ {−1, 1}.

This result implies that if [b1, . . . , bd] are ε-reduced, the only case for which
the bi’s can be linearly dependent is when some of them are zero, but this case
cannot be avoided since we need compacting the set of Minkowski-reduced bases.
The following lemma generalizes Lemma 15. It shows that even with ε-reduced
vectors, if the dimension is below four, then the Gram-Schmidt orthogonalization
process cannot arbitrarily decrease the lengths of the initial vectors.

Lemma 20. There exists C > 0 such that for any 1 ≤ d ≤ 4 and any sufficiently
small ε > 0, if [b1, . . . , bd] are ε-reduced vectors, then we have ||b∗

d|| ≥ C‖bd‖.

The Topological Lemma is the key argument when extending the results
on possible Voronöı coords from Minkowski-reduced bases to ε-reduced vectors.
When applying it, X0 will correspond to the xi’s, K0 to the bi’s, X to the
possible Voronöı coordinates, and f to the continuous function of real variables
f : (yi)i, (bi)i −→ ||y1b1 + . . . + ydbd||.

Lemma 21 (Topological Lemma). Let n, m ≥ 1. Let X0 and K0 be compact
sets of R

n and R
m. Let f be a continuous function from K0 ×X0 to R. For any

a ∈ K0 we define Ma = {x ∈ X0 ∩ Z
n / f(a, x) = minx′∈X0∩Zn(f(a, x′))}. Let

K ⊂ K0 be a compact and X = ∪a∈KMa ⊂ X0∩Z
n. With these notations, there

exists ε > 0 such that if b ∈ K0 satisfies dist(b, K) ≤ ε, we have Mb ⊂ X.

In order to apply the Topological Lemma, we need to map the relaxed bases
into a compact set. For any ε ≥ 0 and any α ∈ [0, 1], we define:

K2(ε, α) = {(b1, b2)/b1, b2 ε-reduced, α ≤ ||b1|| ≤ ||b2|| = 1}
K3(ε, α) = {(b1, b2, b3)/b1, b2, b3 ε-reduced, α ≤ ||b1|| ≤ ||b2|| ≤ ||b3|| = 1}.

Lemma 22. If ε ≥ 0 and α ∈ [0, 1], K2(ε, α) and K3(ε, α) are compact sets.

The following lemma is the relaxed version of Lemma 16. It can also be
viewed as a reciprocal to Lemma 19.

Lemma 23. For any α ∈ ]0, 1] and any sufficiently small ε > 0, the possible
Voronöı coords of [b1, b2] ∈ K2(ε, α) are the same as for Minkowski-reduced
bases, i.e. (1, 0) and (1, 1), modulo any change of signs and permutation of co-
ordinates.

We now relax Lemma 17 in the same manner.
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Lemma 24. For any α ∈ ]0, 1] and any sufficiently small ε > 0, the possible
Voronöı coords of [b1, b2, b3] ∈ K3(ε, α) are the same as for Minkowski-reduced
bases.

The following result generalizes Lemma 18 about the possible Voronöı coord
(1, 1, 2). As opposed to the two previous results, there is no need to use the
Topological Lemma in this case, because only a finite number of (x1, x2, x3)’s is
considered.

Lemma 25. There exists a constant c′ > 0 such that for any sufficiently small
ε > 0, if [b1, b2, b3] are ε-reduced and ||b3|| = 1, then:
1. If any of (s1, s2, 2) is a Voronöı coord with si = ±1 for i ∈ {1, 2}, then:

||b1|| ≥ 1 − c′ε, |〈b1, b2〉| ≤ c′ε and |〈bi, b3〉 + si
||b1||2

2 | ≤ c′ε for i = 1, 2.
2. If any of (s1, 2, s3) is a Voronöı coord with si = ±1 for i ∈ {1, 3}, then
(1 − c′ε)||b2|| ≤ ||b1|| ≤ ||b2||. Moreover, if ||b1|| ≥ 1 − ε, then: |〈b1, b3〉| ≤ c′ε

and |〈bi, b2〉 + si
||b1||2

2 | ≤ c′ε for i = 1, 3.
3. If any of (2, s2, s3) is a Voronöı coord with si = ±1 for i ∈ {2, 3} and if

||b1|| ≥ 1 − ε, then: |〈b2, b3〉| ≤ c′ε and |〈bi, b1〉 + si
||b1||2

2 | ≤ c′ε for i = 2, 3.

5.3 The Gap Lemma

The goal of this subsection is to prove that even with relaxed bases, if one adds
a lattice vector with not too small coordinates to a vector of the Voronöı cell,
this vector becomes significantly longer. This result will be used the other way
round: if the xi’s found at Step 5 of the greedy algorithm are not too small, then
bd is significantly shorter than ad. We first need to generalize the compact sets
K2 and K3. For any ε ≥ 0 and any α ∈ [0, 1], we define:

K ′
2(ε, α) = {(b1, b2, u)/(b1, b2) ∈ K2(ε, α), u ∈ Vor(b1, b2)}

K ′
3(ε, α) = {(b1, b2, b3, u)/(b1, b2, b3) ∈ K3(ε, α), u ∈ Vor(b1, b2)}.

Lemma 26. If ε > 0 and α ∈ [0, 1], K ′
2(ε, α) and K ′

3(ε, α) are compact sets.

The next result is the two-dimensional version of the Gap Lemma.

Lemma 27. There exist two constants ε, C > 0 such that for any ε-reduced
vectors [b1, b2] and any u ∈ Vor(b1, b2), if at least one of the following conditions
holds, then: ‖u + x1b1 + x2b2‖2 ≥ ‖u‖2 + C‖b2‖2.

– (1) |x2| ≥ 2,
– (2) |x1| ≥ 2 and ‖b1‖2 ≥ ||b2||2/2.

We now give the three-dimensional Gap Lemma, on which relies the analysis of
the four-dimensional greedy algorithm.

Lemma 28. There exist two constants ε, C > 0 such that for any ε-reduced
vectors [b1, b2, b3] and any u ∈ Vor(b1, b2, b3), if at least one of the following
conditions holds, then:

‖u + x1b1 + x2b2 + x3b3‖2 ≥ ‖u‖2 + C‖b3‖2.
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– (1) |x3| ≥ 3, or |x3| = 2 and (|x1|, |x2|) 6= (1, 1);
– (2) ||b2|| ≥ ||b3||/2 and: |x2| ≥ 3, or |x2| = 2 with (|x1|, |x3|) 6= (1, 1);
– (3) ||b1|| ≥ ||b3||/2 and: |x1| ≥ 3, or |x1| = 2 with (|x2|, |x3|) 6= (1, 1);

Like in the previous subsections, we now consider the case of the possible
Voronöı coords (±1,±1,±2) modulo any permutation of coordinates.

Lemma 29. There exist two constants ε, C > 0 such that for any ε-reduced
vectors [b1, b2, b3] and any u ∈ Vor(b1, b2, b3), if at least one of the following
conditions holds, then:

||u + x1b1 + x2b2 + x3b3||2 ≥ ||u||2 + C||b3||2.

– 1- (x1, x2, x3) = (s1, s2, 2), |si| = 1 for i ∈ {1, 2} and at least one of the
following conditions holds:
||b1|| ≤ (1 − ε)||b3||, or ||b2|| ≤ (1 − ε)||b3||, or |〈b1, b2〉| ≥ ε||b3||2, or

|〈b1, b3〉 + s1
||b1||2

2 | ≥ ε||b3||2, or |〈b2, b3〉 + s2
||b1||2

2 | ≥ ε||b3||2.
– 2a- (x1, x2, x3) = (s1, 2, s3), |si| = 1 for i ∈ {1, 3} and ||b1|| ≤ (1 − ε)||b3||.
– 2b- (x1, x2, x3) = (s1, 2, s3), |si| = 1 for i ∈ {1, 3}, ||b1|| ≥ (1 − ε)||b3||

and at least one of the following conditions holds: |〈b1, b3〉| ≥ ε||b3||2, or

|〈b1, b2〉 + s1
||b1||2

2 | ≥ ε||b3||2, or |〈b3, b2〉 + s3
||b1||2

2 | ≥ ε||b3||2.
– 3-(x1, x2, x3) = (2, s2, s3), |si| = 1 for i ∈ {2, 3}, ||b1|| ≥ (1 − ε)||b3|| and at

least one of the following conditions holds: |〈b2, b3〉| ≥ ε||b3||2, or |〈b2, b1〉+
s2

||b1||2
2 | ≥ ε||b3||2, or |〈b3, b1〉 + s3

||b1||2
2 | ≥ ε||b3||2.
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