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Abstract. This article presents rigorous normwise perturbation bounds for the Cholesky, LU
and QR factorizations with normwise or componentwise perturbations in the given matrix. The
considered componentwise perturbations have the form of backward rounding errors for the standard
factorization algorithms. The used approach is a combination of the classic and refined matrix
equation approaches. Each of the new rigorous perturbation bounds is a small constant multiple of
the corresponding first-order perturbation bound obtained by the refined matrix equation approach
in the literature and can be estimated efficiently. These new bounds can be much tighter than the
existing rigorous bounds obtained by the classic matrix equation approach, while the conditions for
the former to hold are almost as moderate as the conditions for the latter to hold.
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1. Introduction. Let A be a given matrix and have a factorization

(1.1) A = BC.

Suppose that A is perturbed to A + ∆A, where a normwise or componentwise bound
on ∆A is known. Let the same factorization for A + ∆A be

(1.2) A + ∆A = (B + ∆B)(C + ∆C).

The aim of a perturbation analysis is to assess the effects of ∆A on ∆B and ∆C. In
the analysis, normwise or componentwise bounds on ∆B and ∆C are derived.

The perturbation theory of matrix factorizations has been extensively studied.
The following table summarizes the relevant works on perturbation bounds of Cholesky,
LU and QR factorizations which are known to the authors.

P B Cholesky LU QR
N FN [2], [8], [19], [20], [21] [2], [6], [12], [19], [20] [2], [9], [19], [21], [24]
N RN [8], [12], [13], [18], [21] [1], [12] [18], [21], [24]
C FN [4] [5] [7], [26]
C RN [3], [13] [7], [10]
C FC [3] [5] [7]
C RC [12], [22], [23] [12], [23] [23]

In the first column, “P” stands for the type of perturbation in the matrix to be fac-
torized, and “N” and “C” stand for normwise perturbation and componentwise per-
turbation, respectively; in the second column, “B” stands for perturbation bound of
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the factor, “FN”, “RN”,“FC” and “RC” stand for first-order normwise perturbation
bound, rigorous normwise perturbation bound, first-order componentwise perturba-
tion bound and rigorous componentwise perturbation bound, respectively. In the
present article, we call a bound rigorous if it does not neglect any higher-order terms
as the first-oder bound does: under appropriate assumptions, it always holds true.

Two types of approaches are often used to derive normwise perturbation bounds.
One is the matrix-vector equation approach, and the other is the matrix equation
approach, see [3]. Here we give a brief explanation about these two approaches in
the context of first-order analysis. From (1.1) and (1.2) we have by dropping the
second-order term that

(1.3) ∆A ≈ B∆C + ∆BC.

The basic idea of the matrix-vector equation approach is to write this approximate
matrix equation (1.3) as a matrix-vector equation by using the special structures
and properties of the involved matrices, then obtain the vector-type expressions for
∆B and ∆C, from which normwise bounds on ∆B and ∆C can be derived. The
approach can be extended to obtain rigorous bounds. This approach usually leads to
sharp bounds, but the bounds (first-order bounds or rigorous bounds) are expensive
to estimate and the conditions for the rigorous bounds to hold are often too restrictive
and complicated. The matrix equation approach comes in two flavours. The classic
matrix equation approach keeps (1.3) in the matrix-matrix form and drives bounds
on ∆B and ∆C. The approach can be extended to obtain rigorous bounds. The
bounds (first-order bounds or rigorous bounds) can be efficiently estimated and the
conditions for the rigorous bounds to hold are less restrictive and simpler. But the
bounds are usually not tight. The refined matrix equation approach additionally
uses row or column scaling techniques. It has been mainly used to derive first-order
bounds, which numerical experiments showed are often good approximations to the
sharp first-order bounds derived by the matrix-vector equation approach.

It is often unclear whether a first-order bound is a good approximate bound,
as the ignored higher-order terms may dominate the true perturbation (see, e.g.,
Remark 5.1). Furthermore, in some applications rigorous bounds are needed in order
to certify the accuracy of computations; see, e.g., [10, 16] for an application with the
QR-factorization, and [17] for an application with the Cholesky factorization.

The present article aims at providing tight rigorous perturbation bounds for the
Cholesky, LU and QR factorizations, which can be efficiently estimated in O(n2)
flops, where n is the number of columns of the matrix to be factorized. Addition-
ally, the conditions for the bounds to hold are simple and moderate. We consider
both normwise and componentwise perturbations in the matrix to be factorized. The
componentwise perturbations have the form of backward errors resulting from stan-
dard factorization algorithms. In [10] we have obtained such a rigorous bound for
the R-factor of the QR factorization under a componentwise perturbation which has
the form of backward rounding errors of standard QR factorization algorithms. The
approach used in the latter work is actually a combination of the classic and refined
matrix equation approaches. We will use a similar approach in this article.

The rest of this article is organized as follows. In section 2, we introduce notation
and give some basics that will be necessary for the following three sections. Sections 3,
4 and 5 are devoted to Cholesky, LU and QR factorizations respectively. Finally a
summary is given in section 6.
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2. Notation and basics. For a matrix X ∈ R
n×n, we use X(i, :) and X(:, j) to

denote its ith row and jth column, respectively, and use Xk to denote its k×k leading
principal submatrix. We define a lower triangular matrix and two upper triangular
matrices associated with X ∈ R

n×n as follows:

slt(X) = (sij), sij =

{
xij if i > j
0 otherwise

,(2.1)

ut(X) = X − slt(X),(2.2)

up(X) = (sij), sij =





xij if i < j
1
2xij if i = j
0 otherwise

.(2.3)

For any absolute matrix norm ‖ · ‖ (i.e., ‖A‖ = ‖ |A| ‖ for any A), we have

(2.4) ‖slt(X)‖ ≤ ‖X‖, ‖ut(X)‖ ≤ ‖X‖, ‖up(X)‖ ≤ ‖X‖.

Let Dn denote the set of all real n × n positive definite diagonal matrices. We
will use the following properties, which hold for any D ∈ Dn:

(2.5) slt(DX) = D slt(X), ut(XD) = ut(X)D, up(XD) = up(X)D.

It can be verified that if XT = X then

(2.6) ‖up(X)‖F ≤ 1√
2
‖X‖F .

It is proved in [9, Lemma 5.1] that for any D = diag(δ1, . . . , δn) ∈ Dn

(2.7) ‖up(X) + D−1up(XT )D‖F ≤ ρD‖X‖F , ρD =
[
1 + max

1≤i<j≤n
(δj/δi)

2
]1/2

.

For any matrix X ∈ R
m×n and any consistent matrix norm ‖ · ‖ν , we define

κν(X) = ‖X†‖ν‖X‖ν, condν(X) = ‖ |X†|·|X | ‖ν,

where X† is the Moore-Penrose pseudo-inverse of X .
The following well-known results are due to van der Sluis [25].
Lemma 2.1. Let S, T ∈ R

n×n with S nonsingular, and define

Drp = diag(‖S(i, :)‖p), Dcp = diag(‖S(:, j)‖p), p = 1, 2.

Then

∥∥|T ||S|
∥∥
∞ = ‖TDr1‖∞‖D−1

r1 S‖∞ = min
D∈Dn

‖TD‖∞‖D−1S‖∞,(2.8)

‖|S||T |‖1 = ‖SD−1
c1 ‖1‖Dc1T ‖1 = min

D∈Dn

‖SD−1‖1‖DT ‖1,(2.9)

‖TDr2‖2‖D−1
r2 S‖2 ≤

√
n inf

D∈Dn

‖TD‖2‖D−1S‖2,(2.10)

‖SD−1
c2 ‖2‖Dc2T ‖2 ≤

√
n inf

D∈Dn

‖SD−1‖2‖DT ‖2.(2.11)

This lemma indicates that if one wants to estimate the rightmost sides of (2.8)–
(2.11), one can select appropriate scaling matrices and estimate the norms of scaled
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matrices T and S. If both S and T are available, or if only S is available but S is
triangular and T = D̄S−1 in (2.8) and (2.10) or T = S−1D̄ in (2.9) and (2.11) for a
known D̄ ∈ Dn, then the above estimations can be done by norm estimators in O(n2)
flops; see, e.g., [15, Chap. 15]. These results can be used to estimate the perturbation
bounds to be presented.

Finally, we give the following basic result, which will be used in later sections
many times.

Lemma 2.2. Let a, b > 0. Let c(·) be a continuous function of a parameter t ∈
[0, 1] such that b2−4ac(t) > 0 holds for all t. Suppose that a continuous function x(t)
satisfies the quadratic inequality ax(t)2 − bx(t) + c(t) ≥ 0. If c(0) = x(0) = 0, then
x(1) ≤ 1

2a

(
b −

√
b2 − 4ac(1)

)
.

Proof. The two roots of ax(t)2 − bx(t) + c(t) = 0 are

x1(t) =
1

2a

(
b −

√
b2 − 4ac(t)

)
, x2(t) =

1

2a

(
b +

√
b2 − 4ac(t)

)
.

Notice that x1(t) < x2(t) and both are continuous. Since ax(t)2 − bx(t)+ c(t) ≥ 0, we
have either x(t) ≤ x1(t) or x(t) ≥ x2(t). But x(t) is continuous and x(0) = c(0) = 0,
so that x(0) = x1(0) < x2(0), and therefore we must have x(t) ≤ x1(t) for all t.

3. Cholesky factorization. We first present rigorous perturbation bounds for
the Cholesky factor when the given symmetric positive definite matrix has a general
normwise perturbation.

Theorem 3.1. Let A ∈ R
n×n be symmetric positive definite with the Cholesky

factorization A = RT R, where R ∈ R
n×n is upper triangular with positive diagonal

entries and let ∆A ∈ R
n×n be symmetric. If

(3.1) κ2(A)
‖∆A‖F

‖A‖2
< 1/2,

then A + ∆A has the unique Cholesky factorization

(3.2) A + ∆A = (R + ∆R)T (R + ∆R),

where

‖∆R‖F

‖R‖2
≤

√
2κ2(R)

[
infD∈Dn

κ2(D
−1R)

] ‖∆A‖F

‖A‖2

√
2 − 1 +

√
1 − 2κ2(A)‖∆A‖F

‖A‖2

(3.3)

≤ (2 +
√

2)κ2(R)
[

inf
D∈Dn

κ2(D
−1R)

]‖∆A‖F

‖A‖2
.(3.4)

Proof. From the condition (3.1),

‖A−1∆A‖2 ≤ κ2(A)‖∆A‖2/‖A‖2 < 1.

Thus, the matrix A + t∆A for t ∈ [0, 1] is symmetric positive definite and has the
unique Cholesky factorization

(3.5) A + t∆A = (R + ∆R(t))T (R + ∆R(t)),

which, with ∆R(1) = ∆R, leads to (3.2). Notice that ∆R(t) is a continuous function
of t.
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From (3.5) we obtain

(3.6) R−T ∆R(t)T + ∆R(t)R−1 = tR−T ∆AR−1 − R−T ∆R(t)T ∆R(t)R−1.

As ∆R(t)R−1 is upper triangular, it follows from (2.3) that

(3.7) ∆R(t)R−1 = up(tR−T ∆AR−1 − R−T ∆R(t)T ∆R(t)R−1).

Taking the Frobenius norm on both sides of (3.7) and using the inequality (2.6)
and the fact that ‖A−1‖2 = ‖R−1‖2

2 , we obtain

‖∆R(t)R−1‖F ≤ 1√
2
‖tR−T ∆AR−1 − R−T ∆R(t)T ∆R(t)R−1‖F(3.8)

≤ 1√
2

(
t‖A−1‖2‖∆A‖F + ‖∆R(t)R−1‖2

F

)
.(3.9)

Therefore, as the assumption (3.1) guarantees that the condition of Lemma 2.2 holds,
we have by Lemma 2.2 that

(3.10) ‖∆RR−1‖F ≤ 1√
2

(
1 −

√
1 − 2‖A−1‖2‖∆A‖F

)
.

Taking t = 1 in (3.7), multiplying both sides by a diagonal D ∈ Dn from the
right, and using the fact that up(X)D = up(XD) (see (2.5)), we have

(3.11) ∆RR−1D = up(R−T ∆AR−1D − R−T ∆RT ∆RR−1D).

Taking the Frobenius norm on both sides of (3.11) and using ‖up(X)‖F ≤ ‖X‖F

(see (2.4)), we obtain

‖∆RR−1D‖F ≤ ‖R−1‖2‖R−1D‖2‖∆A‖F + ‖∆RR−1‖F‖∆RR−1D‖F .

Then, it follows by using (3.10) that

‖∆RR−1D‖F ≤
√

2‖R−1‖2‖R−1D‖2‖∆A‖F√
2 − 1 +

√
1 − 2‖A−1‖2‖∆A‖F

.

Therefore,

‖∆R‖F ≤ ‖∆RR−1D‖F ‖D−1R‖2 ≤
√

2‖R−1‖2‖R−1D‖2‖D−1R‖2‖∆A‖F√
2 − 1 +

√
1 − 2‖A−1‖2‖∆A‖F

.

Since D ∈ Dn is arbitrary and ‖A‖2 = ‖R‖2
2, we have (3.3) and then (3.4).

Now we make some remarks to show the relations between the new results and
existing results in the literature.

Remark 3.1. In [8], the following first-order perturbation bound, which can be
estimated in O(n2) flops was derived:

(3.12)
‖∆R‖F

‖R‖2
≤ κ2(R)

[
inf

D∈Dn

κ2(D
−1R)

]‖∆A‖F

‖A‖2
+ O

(‖∆A‖2
F

‖A‖2
2

)
.

Note that the difference between this first-order bound and the rigorous bound (3.4) is a
factor of 2+

√
2. Numerical experiments indicated that (3.12) is a good approximation

to the optimal first-order bound derived by the matrix-vector equation approach in [8]:

‖∆R‖F

‖R‖2
≤ κC(A)

‖∆A‖F

‖A‖2
+ O

(‖∆A‖2
F

‖A‖2
2

)
,
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where

(3.13)
1

2
κ2(R) ≤ κC(A) ≤ κ2(R)

[
inf

D∈Dn

κ2(D
−1R)

]
.

The expression of κC(A) involves an n(n+1)
2 × n(n+1)

2 lower triangular matrix defined
by the entries of R. The best known method to estimate it requires O(n3) flops; see
[8, Remark 6].

If the standard symmetric pivoting strategy is used in computing the Cholesky
factorization, the quantity infD∈Dn

κ2(D
−1R) is bounded by a function of n; see [8,

sections 4 and 5].
Remark 3.2. One of the rigorous bounds derived by the classic matrix equation

approach presented in [21] is as follows:

(3.14)
‖∆R‖F

‖R‖2
≤

√
2κ2(A)‖∆A‖F

‖A‖2

1 +
√

1 − 2κ2(A)‖∆A‖F

‖A‖2

under the same condition as (3.1). If we take D = I in (3.3), we obtain

(3.15)
‖∆R‖F

‖R‖2
≤

√
2κ2(A)‖∆A‖F

‖A‖2

√
2 − 1 +

√
1 − 2κ2(A)‖∆A‖F

‖A‖2

.

Comparing (3.15) with (3.14), we observe that the new rigorous bound (3.3) is at most√
2 + 1 times as large as (3.14). But κ2(R) infD∈Dn

κ2(D
−1R) can be much smaller

than κ2(A) when R has bad row scaling. For example, for R = diag(1, γ) with large
γ > 0, κ2(R)κ2(D

−1R) = Θ(γ) with D = diag(1, γ), and κ2(A) = Θ(γ2). Thus the
bound (3.3) can be much tighter than (3.14).

Remark 3.3. In [8, Theorem 9], the following rigorous perturbation bound was
derived by the matrix-vector equation approach:

(3.16)
‖∆R‖F

‖R‖2
≤ 2κC(A)

‖∆A‖F

‖A‖2
.

By (3.13), the new bound (3.4) is not as tight as this bound, but no numerical ex-
periment has indicated that the former can be significantly larger than the latter, see
Remark 3.1. As we mentioned in Remark 3.1, it is more expensive to estimate the lat-
ter than the former. A more serious problem with (3.16) is that the condition for it to
hold given in [8, Theorem 9] can be as bad as κ2

C
(A)‖∆A‖F /‖A‖2 < 1/4. This is much

more constraining than the condition (3.1) if infD∈Dn
κ2(D

−1R) is not bounded by a
constant; see (3.13). For example, for R =

[
1 γ
0 1

]
with large γ > 0, κ2

C
(A) = Θ(γ4)

and κ2(A) = Θ(γ2).
Remark 3.4. In [3, Theorem 2.2.8], the following rigorous bound was derived by

the refined matrix equation approach:

(3.17)
‖∆R‖F

‖R‖2
≤ 2κ2(R)κ2(D

−1R)
‖∆A‖F

‖A‖2

under the condition

(3.18) κ2(R)‖R‖2‖R−1D‖2‖D−1‖2
‖∆A‖F

‖A‖2
< 1/4
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for any D ∈ Dn. Notice that κ2(R)‖R‖2‖R−1D‖2‖D−1‖2 ≥ κ2
2(R) = κ2(A). Thus

the condition (3.18) is not only more complicated but also more constraining than the
condition (3.1). If we want to make the bound (3.17) similar to the new bound (3.4),
then we may minimize κ2(D

−1R) over the set Dn. But the optimal choice of D
may make the condition (3.18) much more constraining than the condition (3.1).

Here is an example. Let R =

[
1 γ γ2

0 γ γ2

0 0 γ

]
with large γ > 0. By (2.10), Dr2 =

diag(
√

1 + γ2 + γ4,
√

γ2 + γ4, γ) is an approximate optimal D. It is easy to verify
that κ2(R)‖R‖2‖R−1Dr2‖2‖D−1

r2 ‖2 = Θ(γ5) and κ2(A) = Θ(γ4). Thus the former
can be arbitrarily larger than the latter.

In the following we present rigorous perturbation bounds for the Cholesky factor
when the perturbation ∆A has the form we could expect from the backward error
in A resulting from a standard Cholesky factorization algorithm (see [11] and [15,
Sec. 10.1]).

Theorem 3.2. Let A ∈ R
n×n be symmetric positive definite with the Cholesky

factorization A = RT R and let A = DcHDc with Dc = diag(a
1/2
11 , . . . , a

1/2
nn ). Let

∆A ∈ R
n×n be symmetric such that |∆A| ≤ εddT for some constant ε and d =

[a
1/2
11 , . . . , a

1/2
nn ]T . If

(3.19) n‖H−1‖2 ε < 1/2,

then A + ∆A has the unique Cholesky factorization

(3.20) A + ∆A = (R + ∆R)T (R + ∆R),

where

‖∆R‖F

‖R‖2
≤

√
2n‖DcR−1‖2(infD∈Dn ‖DcR−1D‖2‖D−1R‖2)

‖R‖2

ε
√

2 − 1 +
√

1 − 2n‖H−1‖2 ε
(3.21)

≤ (2 +
√

2)n‖DcR
−1‖2

(
infD∈Dn

‖DcR
−1D‖2‖D−1R‖2

)

‖R‖2
ε.(3.22)

Proof. In the proof, we will use the following fact:

‖D−1
c ∆AD−1

c ‖F ≤ ε‖D−1
c ddT D−1

c ‖F = ε‖eeT‖F = nε,

where e = [1, . . . , 1]T . Note that the spectral radius of A−1∆A satisfies

ρ(A−1∆A) = ρ(D−1
c H−1D−1

c ∆A) = ρ(H−1D−1
c ∆AD−1

c )

≤ ‖H−1‖2‖D−1
c ∆AD−1

c ‖2 ≤ n‖H−1‖2 ε < 1.

Thus, the matrix A + t∆A for t ∈ [0, 1] is symmetric positive definite and has the
unique Cholesky factorization (3.5), which, with ∆R(1) = ∆R, leads to (3.20).

From (3.7) we obtain

(3.23) ∆R(t)R−1 = up
(
tR−T DcD

−1
c ∆AD−1

c DcR
−1 − R−T ∆R(t)T ∆R(t)R−1

)
.

Then, using (2.6) and the fact that ‖H−1‖2 = ‖DcR
−1‖2

2, we obtain

‖∆R(t)R−1‖F ≤ 1√
2

(
tn‖H−1‖2 ε + ‖∆R(t)R−1‖2

F

)
.



8 XIAO-WEN CHANG AND DAMIEN STEHLÉ

Therefore, as the assumption (3.19) guarantees that the condition of Lemma 2.2 holds,
we have by Lemma 2.2 that

(3.24) ‖∆RR−1‖F ≤ 1√
2

(
1 −

√
1 − 2n‖H−1‖2 ε

)
.

Taking t = 1 in (3.23), multiplying both sides by a diagonal D ∈ Dn from the
right and then taking the Frobenius norm, we obtain

‖∆RR−1D‖F ≤ n‖DcR
−1‖2‖DcR

−1D‖2 ε + ‖∆RR−1‖F‖∆RR−1D‖F .

Then, using (3.24), we obtain

‖∆RR−1D‖F ≤
√

2n‖DcR
−1‖2‖DcR

−1D‖2 ε√
2 − 1 +

√
1 − 2n‖H−1‖2 ε

.

This, combined with the inequality ‖∆R‖F ≤ ‖∆RR−1D‖F ‖D−1R‖2, leads to (3.21)
and then (3.22).

In the following we make some remarks, which are analogous to Remarks 3.1-3.4.
Remark 3.5. In [4] the following first-order perturbation bound, which can be

estimated in O(n2) flops, was presented:

‖∆R‖F

‖R‖2
≤ n‖DcR

−1‖2

(
infD∈Dn

‖DcR
−1D‖2‖D−1R‖2

)

‖R‖2
ε + O(ε2).

Note that the difference between the above first-order bound and the rigorous bound
(3.22) is a factor of 2 +

√
2 (cf. Remark 3.2). Numerical experiments indicated that

the above first-order bound is often a reasonable approximation to the nearly optimal
first-order bound derived by the matrix-vector equation approach in [4]:

‖∆R‖F

‖R‖2
≤ χC(A)ε + O(ε2),

where (the first inequality below was proved in [3, Remark 2.3.5])

(3.25)
na

1/2
nn

2‖A‖1/2
2

‖H−1‖1/2
2 ≤ χC(A) ≤ n‖DcR

−1‖2

(
infD∈Dn

‖DcR
−1D‖2‖D−1R‖2

)

‖R‖2
.

The expression of χC(A) involves an n(n+1)
2 × n(n+1)

2 lower triangular matrix defined
by the entries of RD−1

c and the best known estimator of χC(A) requires O(n3) flops.
Here we would like to point out that an example given in [3, Remark 2.3.9] shows that
in the second inequality in (3.25) the right hand side can be arbitrarily larger than
the left hand side, although numerical tests have shown that usually the former is a
reasonable approximation to the latter.

If the standard symmetric pivoting strategy is used in computing the Cholesky fac-
torization, the quantity infD∈Dn

‖DcR
−1D‖2‖D−1R‖2/‖R‖2 is bounded by a function

of n; see [3, Theorem 2.3.8 and section 2.3.4].
Remark 3.6. In [13] rigorous bounds on ‖∆RR−1‖F,2 were derived. The bound

on ‖∆RR−1‖F , which was credited to Ji-guang Sun, is identical to (3.24) under the
identical condition (3.19). As mentioned in [13], the bound on ‖∆R‖F can be obtained
by using ‖∆R‖F ≤ ‖∆RR−1‖F‖R‖2, leading to

(3.26)
‖∆R‖F

‖R‖2
≤ 1√

2

(
1 −

√
1 − 2n‖H−1‖2 ε

)
=

√
2n‖H−1‖2 ε

1 +
√

1 − 2n‖H−1‖2 ε
.
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If we take D = I in the bound in (3.21), we obtain

‖∆R‖F

‖R‖2
≤

√
2n‖H−1‖2 ε√

2 − 1 +
√

1 − 2n‖H−1‖2 ε
.

Thus the bound in (3.21) is at most
√

2+1 times as large as the bound in (3.26). But
‖DcR

−1‖2

(
infD∈Dn

‖DcR
−1D‖2‖D−1R‖2

)
/‖R‖2 in (3.21) can be much smaller than

‖H−1‖2. For example, for R =
[

γ γ
0 1

]
with large γ > 0, ‖DcR−1‖2‖DcR−1D‖2‖D−1R‖2

‖R‖2

=

Θ(γ) with D = diag(γ, 1), and ‖H−1‖2 = Θ(γ2). Thus the bound (3.21) can be much
tighter than the bound (3.26).

Remark 3.7. In [3, Theorem 2.3.9], the following rigorous perturbation bound
was derived by the matrix-vector equation approach:

(3.27)
‖∆R‖F

‖R‖2
≤ 2χC(A)ε

under the condition (see [3, Theorem 2.3.9, Remark 2.3.4])

(3.28)
‖A‖2

n mini aii
χ2

C
(A)ε <

1

4
.

By the second inequality in (3.25), the new bound (3.22) is not as tight as (3.27).
But, as we mentioned in Remark 3.5, estimating the latter is more expensive than
estimating the former. A more serious problem is that the condition (3.28) can be
much more constraining than the condition (3.19). In fact, by the first inequality
in (3.25), we have

‖A‖2

n mini aii
χ2

C
(A) ≥ ‖A‖2

n mini aii
· n2ann

4‖A‖2
‖H−1‖2 ≥ 1

4
n‖H−1‖2.

Thus, if annis much larger than mini aii, then (3.28) is much more constraining
than (3.19).

Remark 3.8. In [3, Theorem 2.3.10], the following rigorous bound was derived
by the refined matrix equation approach:

(3.29)
‖∆R‖F

‖R‖2
≤ 2n‖DcR

−1‖2‖DcR
−1D‖2‖D−1R‖2

‖R‖2
ε

under the condition

(3.30) n‖DcR
−1‖2‖DcR

−1D‖2‖D−1‖2ε < 1/4

for any D ∈ Dn. Notice that ‖DcR
−1‖2‖DcR

−1D‖2‖D−1‖2 ≥ ‖DcR
−1‖2

2 = ‖H−1‖2.
Thus the condition (3.30) is not only more complicated but also more constraining
than the condition (3.19). If we want to make the bound (3.29) similar to the new
bound (3.22), then we may minimize ‖DcR

−1D‖2‖D−1R‖2 over the set Dn. But the
optimal choice of D may make the condition (3.30) much more constraining than
the condition (3.19). Here is an example. Let R =

[
1 1
0 γ

]
with a large γ > 0.

By (2.10), Dr2 = diag(
√

2, γ) is an approximate optimal D. It is easy to verify
that ‖DcR

−1‖2‖DcR
−1Dr2‖2‖D−1

r2 ‖2 = Θ(γ) and ‖H−1‖2 = Θ(1). Thus the former
can be arbitrarily larger than the latter.
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4. LU factorization. We first present rigorous perturbation bounds for the LU
factors when the given matrix has a general normwise perturbation.

Theorem 4.1. Let A ∈ R
n×n have nonsingular leading principal submatrices

with the LU factorization A = LU , where L ∈ R
n×n is unit lower triangular and

U ∈ R
n×n is upper triangular, and let ∆A ∈ R

n×n be a small perturbation in A. If

(4.1) ‖L−1‖2‖U−1‖2‖∆A‖F < 1/4,

then A + ∆A has the unique LU factorization

(4.2) A + ∆A = (L + ∆L)(U + ∆U),

where

‖∆L‖F

‖L‖F
≤

2
(
infDL∈Dn

κ2(LD−1
L

)
) ‖U−1

n−1
‖2‖A‖F

‖L‖F

‖∆A‖F

‖A‖F

1 +
√

1 − 4‖L−1‖2‖U−1‖2‖A‖F
‖∆A‖F

‖A‖F

(4.3)

≤ 2

(
inf

DL∈Dn

κ2(LD−1
L

)

) ‖U−1
n−1‖2‖A‖F

‖L‖F

‖∆A‖F

‖A‖F
,(4.4)

‖∆U‖F

‖U‖F
≤

2
(
infDU∈Dn

κ2(D
−1
U

U)
) ‖L−1‖2‖A‖F

‖U‖F

‖∆A‖F

‖A‖F

1 +
√

1 − 4‖L−1‖2‖U−1‖2‖A‖F
‖∆A‖F

‖A‖F

(4.5)

≤ 2

(
inf

DU∈Dn

κ2(D
−1
U

U)

) ‖L−1‖2‖A‖F

‖U‖F

‖∆A‖F

‖A‖F
.(4.6)

Proof. With the condition (4.1), we have for 1 ≤ k ≤ n,

‖A−1
k ∆Ak‖2 ≤ ‖L−1

k ‖2‖U−1
k ‖2‖∆Ak‖F ≤ ‖L−1‖2‖U−1‖2‖∆A‖F < 1.

Thus Ak + t∆Ak for t ∈ [0, 1] is nonsingular. In other words, all the leading principal
submatrices of A+ t∆A are nonsingular. Thus, the matrix A+ t∆A has a unique LU
factorization

(4.7) A + t∆A = (L + ∆L(t))(U + ∆U(t)),

which, with ∆L(1) = ∆L and ∆U(1) = ∆U , leads to (4.2).
From (4.7), we obtain

(4.8) L−1∆L(t) + ∆U(t)U−1 = tL−1∆AU−1 − L−1∆L(t)∆U(t)U−1.

Notice that L−1∆L(t) is strictly lower triangular and ∆U(t)U−1 is upper triangular.
Taking the Frobenius norm on both sides of (4.8), we obtain
(4.9)
‖L−1∆L(t)+ ∆U(t)U−1‖F ≤ t‖L−1‖2‖U−1‖2‖∆A‖F + ‖L−1∆L(t)‖F ‖∆U(t)U−1‖F .

Let x(t) = max(‖L−1∆L(t)‖F , ‖∆U(t)U−1‖F ). Then we have

x(t) ≤ ‖L−1∆L(t) + ∆U(t)U−1‖F , ‖L−1∆L(t)‖F ‖∆U(t)U−1‖F ≤ x(t)2.

Thus, from (4.9) it follows that x(t)2 − x(t) + t‖L−1‖2‖U−1‖2‖∆A‖F ≥ 0. The
assumption (4.1) ensures that the condition of Lemma 2.2 is satisfied. Therefore, by
Lemma 2.2 we obtain

(4.10) max(‖L−1∆L‖F , ‖∆UU−1‖F ) ≤ 1

2
(1 −

√
1 − 4‖L−1‖2‖U−1‖2‖∆A‖F ).
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We now derive perturbation bounds for the L-factor. Let U =

[
Un−1 u

0 unn

]
.

From (4.8) with t = 1 it follows that

L−1∆L = slt

(
L−1∆A

[
U−1

n−1 −U−1
n−1u/unn

0 1/unn

])
− slt(L−1∆L∆UU−1)

= slt

(
L−1∆A

[
U−1

n−1 0
0 0

])
− slt(L−1∆L∆UU−1).(4.11)

Multiplying both sides of (4.11) from the left by a diagonal DL ∈ Dn and taking the
Frobenius norm, we obtain

‖DLL−1∆L‖F ≤ ‖DLL−1‖2‖U−1
n−1‖2‖∆A‖F + ‖DLL−1∆L‖F ‖∆UU−1‖F .

Using (4.10), we have

‖DLL−1∆L‖F ≤ 2‖DLL−1‖2‖U−1
n−1‖2‖∆A‖F

1 +
√

1 − 4‖L−1‖2‖U−1‖2‖∆A‖F

.

Combining the inequality ‖∆L‖F ≤ ‖LD−1
L

‖2‖DLL−1∆L‖F and the above inequality
leads to (4.3) and then (4.4).

Now we derive perturbation bounds for the U-factor. From (4.8) with t = 1,

(4.12) ∆UU−1 = ut(L−1∆AU−1) − ut(L−1∆L∆UU−1).

Multiplying both sides of (4.12) from the right by a diagonal DU ∈ Dn and taking
the Frobenius norm, we obtain

‖∆UU−1DU‖F ≤ ‖L−1‖2‖U−1DU‖2‖∆A‖F + ‖L−1∆L‖F‖∆UU−1DU‖F .

Using (4.10), we have

‖∆UU−1DU‖F ≤ 2‖L−1‖2‖U−1DU‖2‖∆A‖F

1 +
√

1 − 4‖L−1‖2‖U−1‖2‖∆A‖F

.

Therefore, with the inequality ‖∆U‖F ≤ ‖∆UU−1DU‖F ‖D−1
U

U‖2, we can obtain
(4.5) and (4.6).

Remark 4.1. In [6] the following first-order perturbation bounds, which can be
estimated in O(n2) flops, were presented:

‖∆L‖F

‖L‖F
≤

(
inf

DL∈Dn

κ2(LD−1
L

)

) ‖U−1
n−1‖2‖A‖F

‖L‖F

‖∆A‖F

‖A‖F
+ O

(‖∆A‖2
F

‖A‖2
F

)
,

‖∆U‖F

‖U‖F
≤

(
inf

DU∈Dn

κ2(D
−1
U

U)

) ‖L−1‖2‖A‖F

‖U‖F

‖∆A‖F

‖A‖F
+ O

(‖∆A‖2
F

‖A‖2
F

)
.

Note that the difference between the above first-order bound for the L-factor and the
rigorous bound (4.4) is a factor of 2. The same holds for the U-factor as well. Nu-
merical experiments have indicated that the above first-order bounds are good approx-
imations to the corresponding optimal first-order bounds derived by the matrix-vector
equation approach in [6]:

‖∆L‖F

‖L‖F
≤ κL(A)

‖∆A‖F

‖A‖F
+ O

(‖∆A‖2
F

‖A‖2
F

)
,

‖∆U‖F

‖U‖F
≤ κU(A)

‖∆A‖F

‖A‖F
+ O

(‖∆A‖2
F

‖A‖2
F

)
,
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where

‖U−1
n−1‖2‖A‖F

‖L‖F
≤ κL(A) ≤

(
inf

DL∈Dn

κ2(LD−1
L

)

) ‖U−1
n−1‖2‖A‖F

‖L‖F
,(4.13)

‖L−1‖2‖A‖F

‖U‖F
≤ κU(A) ≤

(
inf

DU∈Dn

κ2(D
−1
U

U)

) ‖L−1‖2‖A‖F

‖U‖F
.(4.14)

The expressions of κL(A) and κU(A) involve an n2 ×n2 matrix defined by the entries
of L and U and are expensive to estimate.

To see how partial pivoting and complete pivoting affect the bounds in (4.13) and
(4.14), we refer to [6, sections 4 and 5].

Remark 4.2. In [1] the following rigorous bounds were presented:

(4.15) ‖∆L‖F ≤ ‖L‖2‖L−1∆AU−1‖F

1 − ‖L−1∆AU−1‖2
, ‖∆U‖F ≤ ‖U‖2‖L−1∆AU−1‖F

1 − ‖L−1∆AU−1‖2
,

under the condition that ‖L−1∆AU−1‖2 < 1. If we know only ‖∆A‖F or ‖∆A‖2

rather than ‖L−1∆AU−1‖2 (this is often the case), then the tightest bounds we can
derive from (4.15) are as follows:

‖∆L‖F

‖L‖F
≤

κ2(L)‖U−1‖2‖A‖F

‖L‖F

‖∆A‖F

‖A‖F

1 − ‖L−1‖2‖U−1‖2‖∆A‖2
,

‖∆U‖F

‖U‖F
≤

κ2(U)‖L−1‖2‖A‖F

‖U‖F

‖∆A‖F

‖A‖F

1 − ‖L−1‖2‖U−1‖2‖∆A‖2
,

where we assume ‖L−1‖2‖U−1‖2‖∆A‖2 < 1, which is a little less restrictive than
(4.1). A comparison between these two bounds with (4.3) and (4.5) shows that the
formers can be much larger than the latters when L has bad column scaling or ‖U−1‖2

is much larger than ‖U−1
n−1‖2 (for the L-factor), and when U has bad row scaling (for

the U-factor).

If the Gaussian elimination is used for computing the LU factorization of A and
runs to completion, then the computed LU factors L̃ and Ũ satisfy

(4.16) A + ∆A = L̃Ũ , |∆A| ≤ ε|L̃||Ũ |,

where ε = nu/(1 − nu) with u being the unit roundoff; see for example [15, Theo-
rem 9.3]. In the following theorem we will consider the perturbation ∆A which has
the same form as in (4.16). The perturbation bounds will involve the LU factors
of A + ∆A, unlike other perturbation bounds given in this paper, which involve the
factors of A. The reason is that the bound on |∆A| in (4.16) involves the LU factors
of A+∆A. The perturbation bounds will use a consistent absolute matrix norm (e.g.,
the 1-norm, ∞-norm, and F -norm), unlike other bounds given in this paper, which
use the F-norm or 2-norm.

Theorem 4.2. Suppose that ∆A ∈ R
n×n is a perturbation in A ∈ R

n×n and A+
∆A has nonsingular leading principal submatrices with the LU factorization satisfying
(4.16). Let ‖ · ‖ denote a consistent absolute matrix norm. If

(4.17) cond(L̃)cond(Ũ−1)ε < 1/4,

then A has the unique LU factorization A = LU . Let ∆L = L̃−L and ∆U = Ũ −U .
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Then

‖∆L‖
‖L̃‖

≤
2

infDL∈Dn ‖eLD−1

L
‖·‖DL|eL−1||eL| ‖

‖eL‖ cond(Ũ−1
n−1)ε

1 +

√
1 − 4cond(L̃)cond(Ũ−1)ε

(4.18)

≤ 2
infDL∈Dn

‖L̃D−1
L

‖·‖DL|L̃−1||L̃| ‖
‖L̃‖

cond(Ũ−1
n−1)ε,(4.19)

‖∆U‖
‖Ũ‖

≤
2

infDU ∈Dn ‖ |eU||eU−1|DU‖·‖D−1

U
eU‖

‖eU‖ cond(L̃)ε

1 +

√
1 − 4cond(L̃)cond(Ũ−1)ε

(4.20)

≤ 2
infDU∈Dn

‖ |Ũ ||Ũ−1|DU‖·‖D−1
U

Ũ‖
‖Ũ‖

cond(L̃)ε.(4.21)

Proof. The proof is similar to the proof of Theorem 4.1 and we mainly reverse
the roles of A and A + ∆A. Using the bound on |∆A| in (4.16) and (4.17), we have
for 1 ≤ k ≤ n,

(4.22) ‖L̃−1
k ∆AkŨ−1

k ‖ = ‖ |L̃−1
k |·|L̃k|·|Ũk|·|Ũ−1

k |ε ‖ ≤ cond(L̃)cond(Ũ−1)ε < 1.

For t ∈ [0, 1],

(Ak + ∆Ak) − t∆Ak = L̃kŨk − t∆Ak = L̃k[I − tL̃−1
k ∆AkŨ−1

k ]Ũk.

Thus, by (4.22), the matrix (Ak +∆Ak)− t∆Ak is nonsingular. Therefore (A+∆A)−
t∆A has the unique LU factorization

(4.23) (A + ∆A) − t∆A =
(
L̃ − ∆L(t)

)(
Ũ − ∆U(t)

)
,

which, with ∆L(1) = ∆L and ∆U(1) = ∆U , gives the LU factorization A = LU .
From (4.23), we obtain

(4.24) L̃−1∆L(t) + ∆U(t)Ũ−1 = tL̃−1∆AŨ−1 + L̃−1∆L(t)∆U(t)Ũ−1,

where L̃−1∆L(t) is strictly lower triangular and ∆U(t)Ũ−1 is upper triangular. Taking
the consistent absolute matrix norm ‖ · ‖ on both sides of (4.24) and using the bound
on |∆A| in (4.16), we obtain

(4.25) ‖L̃−1∆L(t)+∆U(t)Ũ−1‖ ≤ t cond(L̃)cond(Ũ−1)ε+‖L̃−1∆L(t)‖‖∆U(t)Ũ−1‖.

Let x(t) = max(‖L̃−1∆L(t)‖, ‖∆U(t)Ũ−1‖). Then we have

x(t) ≤ ‖L̃−1∆L(t) + ∆U(t)Ũ−1‖, ‖L̃−1∆L(t)‖‖∆U(t)Ũ−1‖ ≤ x(t)2.

Thus, from (4.25) it follows that x(t)2 − x(t) + t cond(L̃)cond(Ũ−1)ε ≥ 0. The as-
sumption (4.17) ensures that the condition of Lemma 2.2 is satisfied. Therefore, by
Lemma 2.2,

(4.26) max(‖L̃−1∆L‖, ‖∆UŨ−1‖) ≤ 1

2

(
1 −

√
1 − 4cond(L̃)cond(Ũ−1)ε

)
.
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We now derive perturbation bounds for the L-factor. Let Ũ =

[
Ũn−1 ũ

0 ũnn

]
.

Similarly to (4.11), from (4.24) with t = 1 we have

(4.27) L̃−1∆L = slt

(
L̃−1∆A

[
Ũ−1

n−1 0
0 0

])
+ slt(L̃−1∆L∆UŨ−1).

Then, with the bound on |∆A| in (4.16), from (4.27) we obtain that for any DL ∈ Dn,

‖DLL̃−1∆L‖ ≤ ‖DL|L̃−1||L̃| ‖ cond(Ũ−1
n−1)ε + ‖DLL̃−1∆L‖·‖∆UŨ−1‖.

Therefore, using (4.26), we have

‖DLL̃−1∆L‖ ≤ 2‖DL|L̃−1||L̃| ‖ cond(Ũ−1
n−1)ε

1 +

√
1 − 4cond(L̃)cond(Ũ−1)ε

.

Combining the inequality ‖∆L‖ ≤ ‖L̃D−1
L

‖·‖DLL̃−1∆L‖ and the above inequality
leads to (4.18) and then (4.19).

Now we derive perturbation bounds for the U-factor. From (4.24) with t = 1, it
follows that

∆UŨ−1 = ut(L̃−1∆AŨ−1) + ut(L̃−1∆L∆UŨ−1).

Then, for any DU ∈ Dn, with (4.16) we obtain

‖∆UŨ−1DU‖ ≤ cond(L̃)‖ |Ũ ||Ũ−1|DU‖ε + ‖L̃−1∆L‖·‖∆UŨ−1DU‖.
Therefore, using (4.26), we have

‖∆UŨ−1DU‖ ≤ 2‖ |Ũ ||Ũ−1|DU‖cond(L̃)ε

1 +

√
1 − 4cond(L̃)cond(Ũ−1)ε

.

Combining the inequality ‖∆U‖ ≤ ‖∆UŨ−1DU‖·‖D−1
U

Ũ‖ and the above inequality,
we obtain (4.20) and then (4.21).

Remark 4.3. For some choices of norms, we can remove the scaling matrices in
Theorem 4.2. From Lemma 2.1 we observe that if we take the 1-norm or ∞-norm,
the bounds (4.18), (4.19), (4.20) and (4.21) can be written as (p = 1,∞)

‖∆L‖p

‖L̃‖p

≤
2
‖|eL||eL−1||eL|‖p

‖eL‖p

condp(Ũ
−1
n−1)ε

1 +

√
1 − 4condp(L̃)condp(Ũ−1)ε

≤ 2
‖|L̃||L̃−1||L̃|‖p

‖L̃‖p

condp(Ũ
−1
n−1)ε,

‖∆U‖p

‖Ũ‖p

≤
2
‖|eU||eU−1||eU|‖p

‖eU‖p

condp(L̃)ε

1+

√
1 − 4condp(L̃)condp(Ũ−1)ε

≤2
‖|Ũ ||Ũ−1||Ũ |‖p

‖Ũ‖p

condp(L̃)ε,

under the condition condp(L̃)condp(Ũ
−1)ε < 1/4. In [5] the following first-order

bounds were derived (with ‖ · ‖ being a consistent absolute matrix norm):

‖∆L‖
‖L̃‖

≤ ‖ |L̃||L̃−1||L̃| ‖
‖L̃‖

cond(Ũ−1
n−1)ε + O(ε2),(4.28)

‖∆U‖
‖Ũ‖

≤ ‖ |Ũ ||Ũ−1||Ũ | ‖
‖Ũ‖

cond(L̃)ε + O(ε2).(4.29)
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We can see the obvious relation between these first-order bounds and the rigorous
bounds derived above when the 1-norm and ∞-norm are used. For estimation of the
perturbation bounds, we refer to [5]. We would like to point out that to our knowledge
there are no optimal or nearly optimal first-order bounds or rigorous bounds derived
by the matrix-vector equation approach in the literature.

To see how partial pivoting, rook pivoting and complete pivoting affect the first-
order bounds in (4.28) and (4.29), we refee to [5, sections 4.2]

5. QR factorization. In this section we consider the perturbation of the R-
factor of the QR factorization of A. As we do not have any new result concerning the
Q-factor, we will not consider it. First we present rigorous perturbation bounds when
the given matrix A has a general normwise perturbation.

Theorem 5.1. Let A ∈ R
m×n be of full column rank with QR factorization A =

QR, where Q ∈ R
m×n has orthonormal columns and R ∈ R

n×n is upper triangular
with positive diagonal entries. If the perturbation matrix ∆A ∈ R

m×n satisfies

(5.1) κ2(A)
‖∆A‖F

‖A‖2
<

√
3/2 − 1,

then A + ∆A has a unique QR factorization

(5.2) A + ∆A = (Q + ∆Q)(R + ∆R),

where, with ρD defined in (2.7),

‖∆R‖F

‖R‖2
≤

√
2

(
infD∈Dn

ρDκ2(D
−1R)

) (
‖QT ∆A‖F

‖A‖2

+ κ2(A)
‖∆A‖2

F

‖A‖2

2

)

√
2 − 1 +

√
1 − 4κ2(A)‖∆A‖F

‖A‖2

− 2κ2
2(A)

‖∆A‖2

F

‖A‖2

2

(5.3)

≤
√

3
(
infD∈Dn

ρDκ2(D
−1R)

) ‖∆A‖F

‖A‖2

√
2 − 1 +

√
1 − 4κ2(A)‖∆A‖F

‖A‖2

− 2κ2
2(A)

‖∆A‖2

F

‖A‖2

2

(5.4)

≤ (
√

6 +
√

3)

(
inf

D∈Dn

ρDκ2(D
−1R)

) ‖∆A‖F

‖A‖2
.(5.5)

Proof. Notice that for any t ∈ [0, 1], QT (A + t∆A) = R(I + tR−1QT ∆A) =
R(I + tA†∆A) and ‖A†∆A‖2 < 1 by (5.1). Thus QT (A + t∆A) is nonsingular, and
then A + t∆A has full column rank and has the unique QR factorization

(5.6) A + t∆A = (Q + ∆Q(t))(R + ∆R(t)),

which, with ∆Q(1) = ∆Q and ∆R(1) = ∆R, gives (5.2).

From (5.6), we obtain

RT ∆R(t) + ∆R(t)T R = tRT QT ∆A + t∆AT QR + t2∆AT ∆A − ∆R(t)T ∆R(t).

Multiplying the above by R−T from left and R−1 from right, we obtain

R−T ∆R(t)T + ∆R(t)R−1

= tQT ∆AR−1 + tR−T ∆AT Q + R−T
(
t2∆AT ∆A − ∆R(t)T ∆R(t)

)
R−1.
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Since ∆RR−1 is upper triangular, it follows that

∆R(t)R−1 = up
[
tQT ∆AR−1 + tR−T ∆AT Q

+ R−T
(
t2∆AT ∆A − ∆R(t)T ∆R(t)

)
R−1

]
.

(5.7)

Thus, by (2.6), the quantity ‖∆R(t)R−1‖F verifies

‖∆R(t)R−1‖F ≤ 1√
2

(
2t‖R−1‖2‖QT ∆A‖F + t2‖R−1‖2

2‖∆A‖2
F + ‖∆R(t)R−1‖2

F

)
.

It can easily be verified that 1 − 4t‖R−1‖2‖QT ∆A‖F − 2t2‖R−1‖2
2‖∆A‖2

F > 0 when

‖R−1‖2‖∆A‖F <
√

3/2−1, which is equivalent to the condition (5.1). The condition
of Lemma 2.2 is thus satisfied and we can apply it, with x(t) = ‖∆R(t)R−1‖F , to get

(5.8) ‖∆RR−1‖F ≤ 1√
2

(
1 −

√
1 − 4‖R−1‖2‖QT ∆A‖F − 2‖R−1‖2

2‖∆A‖2
F

)
.

For any D ∈ Dn, we have from (5.7) with t = 1 that

∆RR−1D = up
[
(QT ∆AR−1D) + D−1(DR−T ∆AT Q)D

]

+ up
[
R−T

(
∆AT ∆A − ∆RT ∆R

)
R−1D

]
.

(5.9)

Then, by (2.7), it follows that

‖∆RR−1D‖F ≤ ρD‖QT ∆A‖F ‖R−1D‖2 + ‖R−1‖2‖∆A‖2
F ‖R−1D‖2

+ ‖∆RR−1‖F ‖∆RR−1D‖F .

Therefore, using (5.8) and the fact that ρD ≥ 1 (see (2.7)), we obtain

(5.10) ‖∆RR−1D‖F ≤
√

2ρD‖R−1D‖2(‖QT ∆A‖F + ‖R−1‖2‖∆A‖2
F )√

2 − 1 +
√

1 − 4‖R−1‖2‖∆A‖F − 2‖R−1‖2
2‖∆A‖2

F

.

Combining the inequality ‖∆R‖F ≤ ‖∆RR−1D‖F ‖D−1R‖2 and the above inequality
we obtain (5.3). Since ‖QT ∆A‖F ≤ ‖∆A‖F and (5.1) holds, (5.4) follows from (5.3).
Then (5.5) is obtained.

Remark 5.1. In [9] the following first-order bound was derived by the refined
matrix equation approach:

(5.11)
‖∆R‖F

‖R‖2
≤

(
inf

D∈Dn

ρDκ2(D
−1R)

) ‖QT ∆A‖F

‖A‖2
+ O

(‖∆A‖2
F

‖A‖2
2

)
.

Some practice choices of D were given in [9] to estimate the above bound. This
first-order bound (5.11) has some similarity to (5.3). But if QT ∆A = 0 (i.e., ∆A
lies in the orthogonal complement of the range of A), then this first-order bound
becomes useless, but the rigorous bound (5.3) clearly shows how R is sensitive to the
perturbation ∆A. Numerical experiments have indicated that this first-order bound
is a good approximation to the optimal first-order bound derived by the matrix-vector
equation approach in [9]:

‖∆R‖F

‖R‖2
≤ κR(A)

‖QT ∆A‖F

‖A‖2
+ O

(‖∆A‖2
F

‖A‖2
2

)
.
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where

1 ≤ κR(A) ≤ inf
D∈Dn

ρDκ2(D
−1R).

The expression of κR(A) involves an n(n+1)
2 × n(n+1)

2 lower triangular matrix and an
n(n+1)

2 × n2 matrix defined by the entries of R and is expensive to estimate.
If the standard column pivoting strategy is used in computing the QR factorization,

the quantity infD∈Dn
ρDκ2(D

−1R) can be bounded by a function of n, see [9, sections
5 and 6].

Remark 5.2. The following rigorous bound was derived in [21] by the classic
matrix equation approach:

(5.12)
‖∆R‖F

‖R‖2
≤

√
2κ2(A)‖∆A‖F

‖A‖2

1 − κ2(A)‖∆A‖2

‖A‖2

under the condition κ2(A)‖∆A‖2/‖A‖2 < 1, which is a little less restrictive than (5.1).
Note that if D = I, then ρDκ2(D

−1R) =
√

2κ2(A). If R has bad row scaling and
the 2-norm of its rows decreases from the top to bottom, then infD∈Dn

ρDκ2(D
−1R)

can be much smaller than κ2(A). For example, for R = diag(γ, 1) with large γ,
ρDκ2(D

−1R) = Θ(1) with D = diag(γ, 1), κ2(A) = κ2(R) = Θ(γ). Thus the new
rigorous bounds can be much tighter than (5.12). Here we would like to point out that
to our knowledge there are no rigorous bounds derived by the matrix-vector equation
approach in the literature.

For the componentwise perturbation ∆A which has the form of backward error
we could expect from a standard QR factorization algorithm, the analysis has been
done in [10]. For completeness, we give the result here, without a proof.

Theorem 5.2. Let A ∈ R
m×n be of full column rank with QR factorization A =

QR, where Q ∈ R
m×n has orthonormal columns and R ∈ R

n×n is upper triangular
with positive diagonal entries. Let ∆A ∈ R

m×n be a perturbation matrix in A such
that

(5.13) |∆A| ≤ εC|A|, C ∈ R
m×m, 0 ≤ cij ≤ 1, ε a small constant.

If

(5.14) cond2(R)ε <

√
3/2− 1

m
√

n
,

then A + ∆A has a unique QR factorization

(5.15) A + ∆A = (Q + ∆Q)(R + ∆R),

where, with ρD defined in (2.7),

‖∆R‖F

‖R‖2
≤

√
6mn1/2 infD∈Dn

ρD‖ |R||R−1|D‖2‖D−1R‖2

‖R‖2
ε.(5.16)

The assumption (5.13) on the perturbation ∆A can (essentially) handle two spe-
cial cases. First, there is a small relative componentwise perturbation in A, i.e.,
|∆A| ≤ ε|A|; Second, there is a small relative columnwise perturbation in A, i.e.,
‖∆A(:, j)‖2 ≤ ε‖A(:, j)‖2 for 1 ≤ j ≤ n; see, e.g., [7, Sec. 2]. The second case may
arise when ∆A is the backward error of the QR factorization by a standard algorithm;
see [15, Chap. 19]. For practical choices of D to estimate the bound (5.16), we refer
to [7, 10].
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6. Summary. We have presented new rigorous normwise perturbation bounds
for the Cholesky, LU and QR factorizations with normwise and componentwise per-
turbations in the given matrix by using a hybrid approach of the classic and refined
matrix equation approaches. Each of the new rigorous perturbation bounds is a small
constant multiple of the corresponding first-order perturbation bound obtained by the
refined matrix equation approach in the literature and can be estimated efficiently.
These new bounds can be much tighter than the existing rigorous bounds obtained
by the classic matrix equation approach, while the conditions for the former to hold
are almost as moderate as the conditions for the latter to hold.

Acknowledgments. The authors thank Gilles Villard for early discussions on
this work. They are grateful to referees’ very helpful suggestions, which improved the
presentation of the paper.
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