
Algorithms for the Shortest and Closest Lattice

Vector Problems

Corrected version – 02/01/2013

Guillaume Hanrot and Xavier Pujol and Damien Stehlé

Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL),
46 Allée d’Italie, 69364 Lyon Cedex 07, France.

{guillaume.hanrot,xavier.pujol,damien.stehle}@ens-lyon.fr

Abstract. We present the state of the art solvers of the Shortest and
Closest Lattice Vector Problems in the Euclidean norm. We recall the
three main families of algorithms for these problems, namely the algo-
rithm by Micciancio and Voulgaris based on the Voronoi cell [STOC’10],
the Monte-Carlo algorithms derived from the Ajtai, Kumar and Sivaku-
mar algorithm [STOC’01] and the enumeration algorithms originally
elaborated by Kannan [STOC’83] and Fincke and Pohst [EUROCAL’83].
We concentrate on the theoretical worst-case complexity bounds, but also
consider some practical facets of these algorithms.

1 Introduction

The Shortest Lattice Vector Problem (SVP) consists in finding x ∈ Zn \0
minimizing ‖B·x‖, where B ∈ Qm×n is given as input. The Closest Lattice
Vector Problem (CVP) consists in finding x ∈ Zn minimizing ‖B ·x− t‖,
where B ∈ Qm×n and t ∈ Qm are given as inputs.1 In this survey, we

will restrict ourselves to the Euclidean norm ‖y‖ =
√

∑

i≤m y2i . These

optimization problems admit simple geometric interpretations: SVP con-
sists in finding a shortest non-zero vector in the Euclidean lattice L[B] :=
∑

i≤n xibi spanned by the columns (bi)i of B, whereas CVP consists in
finding a vector of L[B] closest to the given target t.

SVP and CVP have been investigated in mathematics for more than
a century, with, among others, the works of Hermite [38], Korkine and
Zolotarev [46], Minkowski [59] and Voronoi [81]. However, the algorithmic
study of lattices took off rather lately, at the beginning of the 1980’s. At

1 Wlog we will assume that t belongs to the span of the columns of B, as otherwise
it suffices to solve CVP for the orthogonal projection of t onto it.

that time, lattices happened to be a bottleneck in combinatorial optimiza-
tion and in algorithmic number theory, and ground-breaking results were
then obtained: A. Lenstra, H. Lenstra Jr. and L. Lovász proposed the first
polynomial-time approximation algorithm for SVP [47], whereas P. van
Emde Boas showed that the decisional variant of CVP, is NP-hard [19]
(as well as the decisional variant of SVP for the infinity norm). Shortly
afterwards, Fincke and Pohst [20, 21] and Kannan [42, 43] described the
first SVP and CVP solvers. Following the genesis of lattice-based cryptog-
raphy in the mid-1990’s [4, 39, 27], whose security provably/heuristically
relies on the hardness of variants of SVP and CVP, much effort was spent
devising faster solvers. This resulted in the construction of a new type of
SVP and CVP algorithms by Ajtai, Kumar and Sivakumar [5, 6]. More
recently, yet another completely different algorithm was introduced by
Micciancio and Voulgaris [57, 56].

SVP and CVP are common in many fields of computational math-
ematics and computer science. We have already mentioned combinato-
rial optimization and algorithmic number theory. We refer the interested
reader to the surveys [17] and [48]. They are also very frequent in commu-
nications theory [60, 1, 34, 61]. The cryptographic role of SVP and CVP is
twofold. In the last few years, a number of cryptographic primitives have
been devised along with proofs of security under the assumption that there
is no (probabilistic and sometimes quantum) polynomial-time algorithm
for solving arbitrary instances of variants of SVP and CVP. Attempting to
solve SVP and CVP allows to assess the validity of these assumptions. We
refer to [55, 72] for recent accounts on lattice-based cryptography. On the
other hand, the best known algorithm for breaking these cryptographic
schemes as well as a number of other cryptographic functions such as
some based on the knapsack problem [66] attempt to find short or close
vectors from a relevant lattice, by reducing it. Lattice reduction consists
in starting from a basis B and trying to improve its quality, traditionally
measured by the orthogonality of its vectors. The most famous lattice re-
duction algorithm is probably LLL (see the book [64]). It runs in polyno-
mial time but it only provides vectors that are no more than exponentially
longer (in n) than the shortest ones. This worst-case behavior seems to also
hold in practice [63] (up to a constant factor in the exponent). LLL may
also be used to find lattice vectors relatively close to target vectors [7], but
these vectors may be exponentially further from the target than the opti-
mal solution(s). Schnorr’s hierarchy [74] of reduction algorithms allows to
achieve a continuum between LLL and exact SVP and CVP solvers. The
best known theoretical variant (in terms of achieved basis quality for any

fixed computational cost) is due to Gama and Nguyen [23]. However, in
practice, the heuristic and somewhat mysterious BKZ algorithm from [75]
is used instead (see [24] for a detailed account on the practical behavior of
BKZ). All known realizations of Schnorr’s hierarchy (see the surveys [62,
73]) rely on an algorithm that solves SVP for smaller-dimensional lattices.

From a computational hardness perspective, the decisional variant of
CVP is known to be NP hard [19], whereas the decisional variant of SVP
is only known to be NP hard under randomized reductions [2] (see also the
book [54]). This remains the case for the relaxed variants GapSVPγ and
GapCVPγ for any constant γ ≥ 1, where the optimal value of ‖B ·x‖ (resp.
‖B · x − t‖) is known to be either ≤ 1 or ≥ γ (see [44, 35]). When γ =
Ω(
√
n), GapSVPγ and GapCVPγ belong to NP ∩ coNP, and are thus

unlikely to be NP hard [70]. Schnorr’s hierarchy coupled with the SVP
solver from [57, 56] allows one to solve GapSVPγ and GapCVPγ for γ =

kO(n/k) in time 2O(k). In particular, the relaxation factor γ = 2c
n log logn

logn can
be achieved in polynomial time [74] for any constant c > 0. It is also worth
noting that there is a dimension-preserving deterministic polynomial-time
reduction from GapSVPγ to GapCVPγ for any γ (see [28]).

Three families of SVP and CVP solvers. There exist three main
families of SVP and CVP solvers, which we compare in Table 1. Describing
them is the purpose of the present survey.

The algorithm by Micciancio and Voulgaris [57, 56] aims at computing
the Voronoi cell of the lattice, whose knowledge facilitates the tasks of
solving SVP and CVP. This algorithm allows one to solve SVP and CVP
deterministically, in time ≤ 22n+o(n) and space ≤ 2n+o(n). We will describe
this algorithm in Section 3.

Table 1. Comparing the three families of SVP and CVP solvers.

Time complexity
upper bound

Space complexity
upper bound

Remarks

Sec. 3 22n+o(n) 2n+o(n) Deterministic
Sec. 4, SVP 22.465n+o(n) 21.325n+o(n) Monte-Carlo

Sec. 4, CVP (2 + 1/ε)O(n) (2 + 1/ε)O(n) Monte-Carlo
solves (1 + ε)-CVP only

Sec. 5, SVP nn/(2e)+o(n) Poly(n) Deterministic
Sec. 5, CVP nn/2+o(n) Poly(n) Deterministic

Singly exponential time complexity had already been achieved about
10 years before by Ajtai, Kumar and Sivakumar [5, 6], with an algorithm
that consists in saturating the space with a cloud of (perturbed) lattice

points. But the saturation algorithms have at least three drawbacks: they
are Monte Carlo (their success probability can be made exponentially close
to 1, though), the CVP variants of these algorithms may only find vectors
that are no more than 1 + ε times further away from the target than
the optimal solution, for an arbitrary ε > 0 (the complexity grows when ε
tends to 0), and their best known complexity upper bounds are higher than
that of the Voronoi-based Micciancio-Voulgaris algorithm. The saturation-
based Ajtai et al. SVP solver has been successively improved in [69, 65, 58,
68], and the currently best time complexity upper bound is 22.465n+o(n),
with a space requirement bounded by 21.325n+o(n). Improvements on the
Ajtai et al. CVP solver have been proposed by Blömer and Naewe [9]. We
will describe the saturation-based SVP and CVP solvers in Section 4.

Before the algorithms of Ajtai et al., the fastest SVP and CVP solvers
relied on a deterministic procedure that enumerates all lattice vectors
below a prescribed norm, or within a prescribed distance to a given tar-
get vector. This procedure uses the Gram-Schmidt orthogonalization of
the input basis to recursively bound the integer coordinates of the can-
didate solutions. Enumeration-based SVP and CVP solvers were first de-
scribed by Fincke and Pohst [20, 21] and Kannan [42, 43]. Kannan used
it to propose solvers with bit-complexities nO(n). These were later refined
by Helfrich [36], and their analyzes were improved in [32] who proved
that the SVP (resp. CVP) solver has complexity ≤ nn/(2e)+o(n) (resp.
≤ nn/2+o(n)). By refining a construction due to Ajtai [3], Hanrot and
Stehlé [33] showed the existence of input bases for which Kannan’s SVP
algorithm performs ≥ nn/(2e)+o(n) bit operations. We will describe these
algorithms in Section 5.

Solving SVP and CVP in practice. The practicality of SVP solvers
has attracted much more attention than their CVP counterparts, due
to their importance in Schnorr’s hierarchy [74] and their cryptanalytic
applications. For currently handleable dimensions, the enumeration-based
SVP solvers seem to outperform those of the other families. This statement
requires clarification, as rigorous codes providing correctness guarantees
can be accelerated significantly by allowing heuristics, which makes the
comparison task more complex.

All the available implementations providing strong correctness guar-
antees (e.g., fplll [12] or the SVP solvers of Magma [10]) rely on the enu-
meration process. Several heuristics are known for the solvers of the satu-
ration and enumeration families (at the moment, the Micciancio-Voulgaris
Voronoi-based algorithm seems uncompetitive, and would require fur-

ther practical investigation). However, the heuristic implementations of
the enumeration families, relying on tree pruning strategies [75, 76, 80, 25]
seem to outperform the heuristic implementations of the saturation fami-
lies [65, 58]. This observation has led to hardware implementations of the
enumeration [37, 16].

It is hard to compare the soundness of the different heuristics used,
but one way to compare the resulting codes is to see how they perform
on actual inputs. However, checking the result is non-trivial, as there
is no known way of rigorously doing so (apart from solving SVP once
more). To circumvent this problem, the authors of the online SVP chal-
lenges [26] sampled SVP instances from some specific distribution [29] for
which the expectancy of the minimum is known (via the Gaussian heuris-
tic, see Section 5). If the vector found is no longer than slightly more than
this expectancy, the challenge is considered solved. Another possibility,
suggested in [24], consists in generating instances where the shortest vec-
tor is most likely the unique non-zero lattice vector whose norm is some
known threshold (such as lattices corresponding to knapsacks [66]). Yet
another strategy consists in looking at the reduction qualities achieved by
using the SVP solvers within an implementation of Schnorr’s hierarchy
(typically BKZ). Comparisons are thus possible via lattice reduction chal-
lenges [49]. A drawback of this approach is that although the SVP solver
is asymptotically the cost-dominating ingredient in reduction algorithms,
there are other important factors, such as the number of times the SVP
solver is called.

Related topics. Many problems on lattices are closely related to SVP
and CVP. Sometimes but not always, the best algorithms for solving them
are essentially the same as for solving SVP and CVP.

A variant of SVP consists in listing all shortest non-zero vectors, or
counting them (their number is the so-called kissing number). The Theta
series is a formal series whose coefficient of degree k is the number of
vectors of squared norm equal to k (for all k ≥ 0). The first coefficients
of the Theta series of a lattice are typically computed with enumeration-
based algorithms (see, e.g., [80]).

Given a lattice L, it may be desirable to compute the successive min-
ima λi(L) = min{r : dim(span(L ∩ B(r))) ≥ i}, for all i ≤ n, and lin-
early independent lattice vectors that reach them. Micciancio [53] showed
how this problem can be reduced to CVP. Blömer and Naewe [9] have
proposed a saturation-based algorithm that returns linearly independent
vectors whose norms are not much greater than the minima.

The covering radius of a lattice is the maximal distance to that lattice
of a vector of the spanned linear space. An algorithm relying on the Ajtai
et al. CVP solver [31] provides a tight approximation to it. Also connected
to CVP is the Bounded Distance Decoding problem (BDD): in BDD, the
target vector is guaranteed to be within a distance r ≤ λ1(L)/2 of the
lattice L. Several algorithms [45, 50] have been specifically designed for
such CVP instances. BDD is of particular significance for MIMO commu-
nications [61] and cryptography [71]. We also refer to [51] for reductions
of several lattice problems to and from BDD.

In this survey, we only consider the Euclidean norm. Recent works on
solving SVP/CVP for the other ℓp norms include [9, 15, 18].

2 Some Background on Euclidean Lattices

A lattice is a discrete additive subgroup of some Rm. Any such object
can be represented as {B · x,x ∈ Zn}, for some n and some full col-
umn rank matrix B ∈ Rm×n. For a given lattice L, some quantities, or
invariants, do not depend on the particular choice of the basis. These in-
clude, among others: the embedding dimension m, the lattice rank n, the
lattice determinant detL =

√

det(Bt ·B), the lattice minimum λ(L) =
minx∈Zn\0 ‖B·x‖ and the covering radius µ(L) = maxt∈span(L)(dist(t, L)).
We refer to [13, 30, 78, 52] for mathematical introductions to lattices. The
most fundamental result on lattice invariants is Minkowski’s theorem,
which states that for all n, there exists a constant γn ≤ n such that
for any rank n lattice L, we have λ(L) ≤ √γn(detL)1/n.

When L = {B · x,x ∈ Rn} with a full column rank matrix B, we say
that the columns (bi)i of B form a basis of the lattice L. Any given lattice
of rank ≥ 2 has infinitely many lattice bases: The columns of the full
column rank matrices B1, B2 ∈ Rm×n span the same lattice if and only if
there exists a matrix U ∈ Zn×n of determinant ±1 such that B2 = B1 ·U .
Such a matrix U is called unimodular.

For computational statements, we will always consider rational lat-
tices, given by rational bases (see [11] for the case of real-valued input
bases). In the case of CVP, the target vector will also be rational. The
complexities of the algorithms we will study are typically exponential with
respect to n but only polynomial with respect to m and the bit-sizes of
the entries of the input matrix. For the sake of simplicity, we will assume
that the bit-size of the input is Poly(n).

The process of improving the quality of a basis by applying well-chosen
unimodular matrices is generically called lattice reduction. The achieved

qualities, or reductions, are most often defined in terms of orthogonality.
For a given basis (bi)i≤n, we define its Gram-Schmidt orthogonalization
by b∗i = bi −

∑

j<i µi,jb
∗
j , where µi,j = 〈bi, b∗j 〉/‖b∗j‖2. As the b∗i ’s are

orthogonal, we have λ(L) ≥ mini≤n ‖b∗i ‖, where L is the lattice spanned

by the bi’s. We also have µ(L) ≤
√

∑

i≤n ‖b∗i ‖2/2 (see [7]).

A basis is said size-reduced if |µi,j | ≤ 1/2 for any i > j. A basis is said
LLL-reduced if it is size-reduced and if ‖b∗i ‖ ≥ ‖b∗i−1‖/2 for any i < n. A
LLL-reduced basis of any rational lattice can be computed in polynomial
time from any input basis [47]. However, its quality is only moderate:
the quantity ‖b1‖/λ(L) may be bounded by 2n. This upper bound seems
reached in practice, up to a constant factor in the exponent [63].

On the other hand, the Hermite-Korkine-Zolotarev (HKZ) reduction
is more expensive to compute (it is polynomial-time equivalent to solv-
ing SVP), but HKZ-reduced bases are much more orthogonal. A ba-
sis B = (bi)i≤n is said HKZ-reduced if it is size-reduced, if ‖b1‖ = λ(L(B))
and if once projected orthogonally to b1 the vectors b2, . . . , bn are them-
selves HKZ-reduced. By applying Minkowski’s theorem on the projected
lattices, it is possible to show that any HKZ-reduced basis (bi)i satis-
fies ‖b1‖/λ(L) ≤ exp((log2 n)/4) (see [33]).

Schnorr’s hierarchy of reductions and reduction algorithms [74] offers
a compromise between LLL’s efficiency and HKZ’s quality. The principle
is to consider small dimensional projected blocks: if (bi)i≤n is the cur-
rent lattice basis, the β-dimensional projected block starting at index k

is (b
(k)
i)k≤i<k+β, where b

(k)
i = bi −

∑

j<k µi,kb
∗
j is the projection of bi

orthogonally to the span of the first k − 1 basis vectors. Within blocks,
one performs HKZ-reductions (or calls to an SVP solver), and blocks are
handled in a LLL-manner. This vague description has been instantiated
in several precisely analyzed hierarchies of reduction algorithms [74, 22,
23] and is also the basis of the famous heuristic BKZ algorithm [75] im-
plemented in NTL [77]. The best complexity/quality trade-off currently

known [23] allows one to find a basis (bi)i such that ‖b1‖/λ(L) ≤ (2γβ)
n−β
β−1

using calls to an SVP solver in dimension β. Note that the practical qual-
ity of BKZ-reduced bases has been investigated in [24], and that worst-
case quality lower bounds for fixed block-sizes are known [3, 33]. Finally,
in order to maximize ‖b∗n‖ rather than minimize ‖b1‖, one may reduce
the dual basis B−t (we refer to [69] for an introduction on the dual lat-
tice), and apply the obtained unimodular transform to B. Thanks to Ba-
naszczyk’s transference theorem [8], the corresponding basis (ci)i≤n of L

satisfies µ(L)/‖c∗n‖ ≤ γn(2γβ)
n−β
β−1 .

3 An SVP/CVP Solver Relying on the Voronoi Cell

The Micciancio-Voulgaris deterministic algorithm based on the Voronoi
cell [57, 56] provides the SVP/CVP solver with the best known complex-
ity upper bound: It terminates within 22n+o(n) operations while its space
requirement is ≤ 2n+o(n). From a practical perspective, this algorithm
seems bound to remain slower than the guaranteed implementations of
the enumeration-based solvers: On the one hand, its cost cannot be lower
than 2n, as this is the size of the representation of a generic Voronoi cell;
On the other hand, although their time complexity bounds are asymp-
totically much higher than 2n, the enumeration-based solvers still termi-
nate relatively efficiently in dimensions n higher than 60. The asymptotic
bounds suggest Voronoi-based solvers will eventually beat enumeration-
based solvers, but the cut-off dimension seems to be out of reach with
nowadays computational power. Also, for the moment, there is no known
heuristic version of the Micciancio-Voulgaris algorithm which would allow
to break the 2n barrier.

The Voronoi cell V(L) of a lattice L is the set of vectors strictly closer
to the origin than to any other lattice point:

V(L) = {x : ∀b ∈ L \ 0, ‖b− x‖ > ‖x‖} . (1)

We let V(L) denote the topological closure of V(L), i.e., the set of points
closer or at equal distance to the origin than to any other lattice point.

The definition (1) involves an infinite number of inequalities. In fact,
there exists a minimal set (vj)j≤m of vectors of L that suffices to de-
fine V(L): V(L) = {x : ∀j ≤ m, ‖vj − x‖ > ‖x‖}. Stated differently, the
Voronoi cell is the interior of a polytope. We call these vectors the relevant
vectors of L. Voronoi [81] displayed a strong link between the relevant vec-
tors and the cosets of L/2L. A coset of L/2L is of the shape {∑i(2xi +
ei)bi, xi ∈ Z}, where (bi)i is a basis of L and the ei’s are fixed elements
of {0, 1}. The vector e may be interpreted as the parity of the coset (note
that it depends on the choice of the lattice basis (bi)i).

Lemma 3.1 ([14, Th. 10, p. 477]). A vector v ∈ L \ 2L is a relevant
vector of the lattice L if ±v are the unique minima (for the norm) of the
coset v + 2L. Consequently, there are ≤ 2(2n − 1) relevant vectors.

3.1 The Voronoi cell suffices for solving SVP and CVP

Assume we know the relevant vectors (vi)i≤m of a lattice L. We now
explain how to solve SVP and CVP by using this data.

To solve SVP in time Poly(n) · 2n from the vi’s, it suffices to observe
that the shortest relevant vectors reach the lattice minimum.

Lemma 3.2. If s ∈ L satisfies ‖s‖ = λ(L), then s is a relevant vector.

Proof. The vector s cannot belong to 2L as otherwise s/2 would be a
shorter non-zero lattice vector. It remains to show that ±s are the unique
minima of the coset s+2L. Assume that ‖s+2b‖ = ‖s‖ for some b ∈ L\0.
We have ‖s‖2 + 4‖b‖2 + 4〈s, b〉 = ‖s‖2, which leads to ‖b‖2 = −〈s, b〉.
The Cauchy-Schwarz inequality provides ‖b‖ = ‖s‖ if b and s are linearly
dependent, and ‖b‖ < ‖s‖ otherwise. In the first situation, the only way
of ensuring that ‖s+2b‖ = ‖s‖ is to take b = −s. In the other situation,
we must have b = 0, since s is a shortest non-zero vector of L. ⊓⊔

Input : The relevant vectors (vi)i≤N and t ∈ 2V(L).
Output : A vector t′ ∈ (t+ L) ∩ V(L).
While t 6∈ V(L) do

Find i ≤ N maximizing 〈t,vi〉/‖vi‖
2, t← t− vi.

Return v.
Algorithm 1: The CVP2V→V algorithm.

We now explain how to solve CVP, i.e., subtract from a given target
vector a lattice vector so that the result belongs to the closed Voronoi cell.
The engine of the algorithm is a sub-routine CVP2V→V that solves CVP
assuming that the target vector t belongs to 2 · V(L). If such a routine
is available, then CVP can be solved using a polynomial number of calls
to it. First, note that any target vector t in the linear span of L belongs
to 2k ·V(L), with k = log2(2‖t‖/λ(L)) (because B(λ(L)/2) ⊆ V(L)). Now,
the routine CVP2V→V may be used to subtract vectors of L to any given
target vector t ∈ 2ℓ ·V(L) so that the result belongs to (t+L)∩2ℓ−1 ·V(L):
It suffices to use CVP2V→V with the lattice 2ℓ−1L, whose closed Voronoi
cell is 2ℓ−1 · V(L).

The sub-routine CVP2V→V , is an improvement of the Iterative Slicer
from [79]. Given a target t ∈ 2 · V , it first determines if t belongs to V(L),
in which case it stops. Otherwise, it finds x ∈ (1, 2] such that t is on the
boundary of x · V, as well as a facet of x · V containing t. Geometrically,
it means that for every facet of V we construct a cone of apex 0 and
base that facet. These cones cover the whole space (and their interiors
are disjoint), and we determine a cone containing t. In practice, this is
obtained by finding a relevant vector vi that maximizes 〈t,vi〉/‖vi‖2 (in
which case x = 2〈t,vi〉/‖vi‖2). Once vi is found, the target t is updated to
a new target vector t← t−vi. This process is repeated until t eventually

v1v2

v3

v4
v5

v6

t1

t2 t30

Fig. 1. Applying CVP2V→V to t1 with relevant vectors (vi)i.

happens to belong to V(L). Figure 1 provides an example of an execution
of CVP2V→V in dimension 2. The following lemma states some important
properties satisfied by the sequence of target vectors (tk)k≥1 with t1 = t,
corresponding to the successive loop iterations.

Lemma 3.3. Let t1 ∈ 2 · V(L) and (tk)k≥1 be the sequence obtained by
applying the algorithm CVP2V→V to t1. Then:

• For any k, we have tk ∈ 2 · V(L) and ‖tk‖ > ‖tk+1‖,
• The execution terminates within N ≤ 2n iterations and tN ∈ V(L).

Furthermore, if t1 ∈ 2 · V(L), then tk ∈ 2 · V(L) for all k.

Proof. The first claim derives from the observation that both tk and tk−
xvi(k) belong to x · V(L) ⊆ 2 · V(L) (because 1

xtk belongs to both V(L)
and vi(k) + V(L)). By convexity, so does tk − vi(k). For the second claim,
note that by construction we have ‖tk − xvi(k)‖ = ‖tk‖. This implies
that ‖tk − vi(k)‖2 = ‖tk‖2 − (x − 1)‖vi(k)‖2 < ‖tk‖2. At this stage, we

have proved that we have a sequence of vectors of (t1 + L) ∩ 2 · V(L)
of strictly decreasing norms. Each such vector belongs to one of the 2n

cosets of t1 + L modulo 2L. We show by contradiction that such a coset
cannot be visited twice. Let k < ℓ such that tk = tℓ mod 2L. Since both tk
and tℓ belong to V(2L), they must be shortest elements of their respective
cosets tk +2L and tℓ +2L. Since we assumed that these cosets are equal,
the vectors tk and tℓ must have equal norms. This is in contradiction
with ‖tk‖ > ‖tℓ‖. ⊓⊔

This result allows us to bound the cost of sub-routine CVP2V→V

by Poly(n) · 22n. Overall, once the relevant vectors of L are known, it
is possible to solve CVP within Poly(n) · 22n bit operations.

3.2 Computing the relevant vectors

In the SVP and CVP solvers of the previous subsection, the list of the
relevant vectors of the lattice L under scope was assumed known. We now
explain how to obtain such a list.

Let (bi)i≤n be a basis of L that such that ‖b∗n‖ ≥ 2µ(L)/φn, for some
known φn = 2o(n). This can be achieved by applying Schnorr’s hierarchy
with block-size ω(1) (see Section 2), on the dual basis of (bi)i≤n. The
purpose of this pre-processing of the lattice basis will become clearer soon.

We assume we know the relevant vectors of L− := L[b1, . . . , bn−1]
(thanks to a recursive call in dimension n − 1). A relevant vector of L is
a strict length minimum for a coset of L/2L: it cannot be made smaller
by subtracting from it an element of 2L. In particular, it cannot be made
smaller by subtracting from it a relevant vector of 2L−, i.e., twice a rel-
evant vector of L−. This implies that all the relevant vectors of L are
contained in the interior of the cylinder of basis 2 · V(L−) that is orthog-
onal to the span of L−.

We now show that the relevant vectors of L cannot be arbitrarily far
away from the span of L−, thus allowing us to bound the search region.
Let t =

∑

i eibi with ei ∈ {0, 1} for all i. We search for the relevant
vector

∑

(ei + 2xi)bi ∈ L corresponding to the coset t + 2L. This is a
CVP instance for the target t and the lattice 2L. We cannot use the CVP
algorithm of the previous subsection directly, as it requires the knowledge
of the relevant vectors of L, which we are currently trying to compute.
Instead, we note that:

CVP(t, 2L) = min
‖·‖

{

CVP(t+ 2xnbn, 2L
−) : xn ∈ Z

}

.

In fact, since t is within distance 2µ(L) from 2L and ‖t + 2xnbn +
2
∑

i<n xibi‖ ≥ |en + 2xn|‖b∗n‖, we obtain that it suffices to consider
the xn’s such that |en + 2xn| ≤ 2µ(L)/‖b∗n‖. Thanks to the reducedness
of the bi’s, it suffices to consider a bounded number of xn’s. This dimen-
sion reduction trick for CVP is inspired from the enumeration-based CVP
solver (see Section 5). Overall, we have proved the following result.

Lemma 3.4. Let (bi)i be a basis of a lattice L with ‖b∗n‖ ≥ 2µ(L)/φn.
Then the relevant vectors of L are contained in the set

⋃

|xn|≤φn

[

xnb
∗
n +

(

xn(bn − b∗n) + L− ∩ 2 · V(L−)
)]

,

where L− = L[b1, . . . , bn−1].

This justifies Algorithm 2. Its cost is no more than 2φn + 1 = 2o(n)

times the cost of enumerating (t + L−) ∩ 2 · V(L−), for an arbitrary t in
the span of the lattice L−, whose relevant vectors are known.

Input : A basis of a lattice L.
Output : The relevant vectors of L.
Find a basis (bi)i≤n of L such that ‖b∗n‖ ≥ 2µ(L)/φn.
If n = 1, then Return ±b1.
Compute the relevant vectors (vi)i≤N of L−.
Cand← ∅. For xn = −φn to φn do

(ti)i ← Enum2V(xn(bn − b∗n), L
−),

Cand← Cand ∪ {xnb
∗
n + ti}i.

Vor← ∅. For any non-zero coset C of L/2L do
If there are strict minima ±v in C ∩ Cand, then add them to Vor.

Return Vor.
Algorithm 2: Computing the relevant vectors.

We now explain how to draw the list of all the elements belonging to
(t + L−) ∩ 2 · V(L−). Algorithm Enum2V first computes a shortest repre-
sentative s of t+L−: If t = 0, then we have s = 0, and otherwise we may
use the CVP algorithm from the last subsection (recall that we know the
relevant vectors of L−). We prove the correctness of Enum2V only for the
situation where s is the only shortest element in t+L−. Correctness also
holds without this assumption and can be proved using results from [40]
on the relevant vectors of a Voronoi cell [82]. A proof will appear in the
final version of [57, 56].

The next step of Enum2V consists in backtracking all the possible exe-
cutions of CVP2V→V that start from an element of (t+ L−) ∩ 2 · V(L−):
If s is the unique shortest element in t+L−, then any of these executions
has to terminate with s. Algorithm Enum2V starts from a list of accessible
vectors Acc consisting of s and an empty list of visited vectors Vis. At
any iteration, it takes the shortest accessible vector u, tags it as visited,
and adds to the accessible list the u + vi’s for all relevant vectors vi.
Before proceeding to the next iteration, Enum2V cleans the accessible list
by deleting all vectors belonging to a coset of t+L− mod 2L− reached by
the visited list, and keeping a shortest accessible vector for each remain-
ing coset of t + L− mod 2L−. The process stops when the accessible list
is empty. The number of iterations is bounded by the number of cosets
of t+L− mod 2L−, i.e., termination occurs within 2n−1 iterations, allow-
ing us to bound the cost by Poly(n) · 22n.

Input : The relevant vectors (vi)i≤N of a lattice L−, and t.
Output : A superset of (t+ L−) ∩ 2 · V(L−).
Find a shortest element s of t+ L−.
Acc← {s}, Vis← ∅. While Acc 6= ∅ do

Let u be a shortest element of Acc,
Vis← Vis ∪ {u}, Acc← Acc ∪ {u+ vi}i,
For any coset C of t+ L− mod 2L− do

If C ∩ Vis 6= ∅, then Acc← Acc \ C,
Else Acc← (Acc \ C) ∪min‖·‖(Acc ∩ C).

Return Vis.
Algorithm 3: The Enum2V algorithm.

Lemma 3.5. Let L− be a lattice and t ∈ span(L−). Suppose that there
exists a unique shortest element s in t + L. Then, at the end of the ex-
ecution of Enum2V for target t and lattice L−, the set of visited vectors
contains all elements of t+ L− ∩ 2 · V(L−).

Proof. Suppose by contradiction that u1 ∈ t + L− ∩ 2 · V(L−) does
not belong to the final visited list. By Lemma 3.3, there exists a se-
quence u1,u2, . . . ,uN of vectors of t + L− ∩ 2 · V(L−) with uN = s

and, for all k, ‖uk‖ > ‖uk+1‖ and any uk+1 − uk is a relevant vector
of L−. Since s belongs to the final visited list, there must exist a k < N
such that uk+1 is in the visited list, but not uk. When uk+1 was in-
cluded in the visited list, the vector uk was added in the accessible list,
because uk+1 − uk is a relevant vector. Since uk is the sole vector of its
coset of t + L− mod 2L− that belongs to V(2L−), it cannot have been
discarded later. This contradicts the definition of k. ⊓⊔

To conclude, the cost of computing the relevant vectors for the n-
dimensional lattice L is that of sufficiently reducing the input basis of L,
computing the relevant vectors of L− of dimension n − 1 and then run-
ning Enum2V no more than 2φn + 1 = 2o(n) times. This leads to the
claimed 22n+o(n) complexity upper bound.

4 Saturating the Space

In this section, we describe the category of sieve algorithms for SVP and
(approximate) CVP, which are Monte-Carlo probabilistic algorithms run-
ning in exponential time and space. Heuristic versions of these algorithms
have been used to solve SVP up to dimension 63 [65, 58].

The mathematical property which all the sieve algorithms try to ex-
ploit is that there are boundably many points within a compact body

which are distant from one another. Thus, by saturating the space with
(possibly perturbed) lattice points, one eventually finds close-by or iden-
tical vectors. In Euclidean norm, the proof of the saturation property
leading the best known complexity bounds relies on the following result
on sphere packings.

Theorem 4.1 ([41]). Let E ⊆ Rn\{0}. If there exists φ0 > 0 such that
for any u,v ∈ E, the angle between u and v is ≥ φ0, then |E| ≤ 2cn+o(n)

with c = −1
2 log2 [1− cos(min(φ0, 62.99

◦))]− 0.099.

4.1 The AKS Algorithm

The AKS algorithm was introduced by Ajtai, Kumar and Sivakumar in [5]
as the first single-exponential time algorithm for SVP. However, no explicit
time bound was given. In [69], Regev described a simpler version of this
algorithm running in time 216n+o(n). The constant in the exponent was
decreased from 16 to 5.9 by Nguyen and Vidick [65], 3.4 by Micciancio
and Voulgaris [58] and 2.7 by Pujol and Stehlé [68].

AKS can be described as follows: Let γ < 1 be a constant. Let S be a set
of N lattice vectors sampled in the ball of radius R = 2O(n) ·λ(L). If N is
large enough, there exists a pair (u,v) of vectors such that ‖u−v‖ ≤ γR,
so u − v is a shorter vector of L. The main step of the algorithm, called
sieve, consists in choosing C ⊆ S such that |C| is not too large and for any
u ∈ S \ C, there exists v ∈ C such that ‖u−v‖ ≤ γR (see Figure 2). This
is used to generate a set S ′ ⊆ L ∩ B(γR) with |S ′| = |S| − |C|. The sieve
can be applied a polynomial number of times to obtain lattice vectors
whose norms are ≤ r0λ(L) for some constant r0.

There is no known way of ensuring that the vectors in the final set
are uniformly distributed, but a technical trick allows to ensure that any
shortest non-zero vector of L can be written as the difference between two
vectors in the final set. A perturbation randomly chosen in B(ξλ(L)) is
added to each sampled lattice vector to obtain a perturbed vector (if λ(L)
is unknown, one may try polynomially many guesses). At any time, the
algorithm keeps track of both lattice vectors and perturbed vectors, apply-
ing the same operations on them. Provided that ξ > 1

2 , a given perturbed
vector might sometimes correspond to two different lattice vectors whose
distance is λ(L). The sieve function makes tests only on perturbed vectors
so is unaware of the genuine lattice vectors. This can be used to prove that
the probability of success is at most 2O(n) times smaller than the proba-
bility of having the same lattice vector twice in the final set. The latter
occurs when it contains ≥ |L ∩ B(r0λ(L))| elements.

The algorithm is given below in the version of [65]. Perturbations are
generated before lattice vectors and are used to compute them. In partic-
ular, if x and y are two perturbations such that x−y ∈ L, they will lead
to the same lattice vector. Although this is might look as the most natural
solution, this idea introduced by Regev [69] makes the proof simpler. In
algorithm NewPair, the vector (−x) mod P(B) is the vector whose coor-
dinates with respect to B are the fractional parts of the coordinates of
−x with respect to B.

b

b

b

b

b
b

b b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b
b

Fig. 2. The set S before and after one step of the sieve.

Input : A basis B and a perturbation x.
Output : A lattice vector u and a perturbed vector u′.
u′ ← (−x) mod P(B), u ← u′ + x.
Return (u,u′).

Algorithm 4: The NewPair function.

Input : A basis B, R > 0, a set T ⊆ L× B(R), γ > 0.
Output : A list of pairs T ′.
C ← ∅, T ′ ← ∅.
For each pair (t, t′) ∈ T do

If ∃(c, c′) ∈ C, ‖t′ − c′‖ ≤ γR, then add (t − c, t′ − c) to T ′,
Else add (t, t′) to C.

Return T ′

Algorithm 5: The Sieve algorithm.

Input : A basis B, ξ > 1
2
, γ > 0, N , λ ≈ λ(L).

Output : A shortest non-zero vector of L.
R← n ·maxi ‖bi‖+ ξ, T ← ∅.
For i = 1 to N do

x ← random point uniformly chosen in B(ξλ),
Add NewPair(B,x) to T .

For i = 1 to
⌈

logγ

(

ξλ
nR(1−γ)

)⌉

do

T ← Sieve(B,R, T), R← γR+ ξλ.
Remove pairs of T corresponding to the same lattice point.
Return the difference between two closest distinct lattice points
in T (fail if they do not exist).

Algorithm 6: The AKS algorithm.

Theorem 4.2. Let (bi)i≤n be a basis of a lattice L such that maxi ‖bi‖ ≤
23nλ(L). Let ξ = 0.676, γ = 0.496, N = 21.984n and λ ∈ [λ(L), (1 +
1/n)λ(L)). With probability exponentially close to 1, AKS returns a shortest
vector of L \ 0. Moreover, it terminates in time ≤ Poly(n)23.397n and
space ≤ Poly(n)21.984n.

It is possible to ensure the first assumption is fulfilled by LLL-reducing
the basis B and removing vectors bi such that ‖bi‖ > 22n‖b1‖. This
does not change the shortest vectors (see [65, Le. 3.3]). Although λ(L)
is unknown, running the algorithm with λ = ‖b1‖(1 + 1/n)−i for i =
0, . . . , n

2 log2(1+ 1
n)

= O(n2) ensures that one value of λ will satisfy the

condition on λ, by LLL-reducedness.
We describe the four main steps of the proof. More details are given

in the appendix. For the whole proof, an arbitrary shortest vector s is
fixed. Only the following subset of the sampled pairs is ever considered:
the good pairs (t, t′) are those such that the perturbation x = t′ − t

belongs to B(0, ξλ) ∩ B(−s, ξλ). The first step consists in proving that a

sampled pair is good with probability ≥ 2
n
2
log2

(

1− 1
4ξ2

)

+o(n)
. This is done

via elementary geometry arguments. The second step consists in bounding
the number of vectors that are used as centers (and lost): There are ≤
2(− log2 γ+0.401)n+o(n) centers. The third step consists in proving that, with
high probability and at the end of the execution, the set T contains the
same lattice vector twice. This is done by bounding the number of elements
in L ∩ B(r0λ(L)) which contains T by 2(log2 r0+0.401)n+o(n)), where r0 ≈
ξ(1 + 1

1−γ). The last two steps are based on the saturation phenomenon
(Theorem 4.1). Finally, it can be shown that the probability of success is
at least as large as the probability of collision (up to a constant factor).
This implies that AKS succeeds with probability exponentially close to 1.
Optimization on r0 and ξ leads to the constants of Theorem 4.2.

Improving the complexity by using the birthday paradox. In the
analysis of AKS, we use the fact that before removing identical lattice vec-
tors in T , the set contains two good pairs with the same lattice vector
with high probability: This is because T contains > NB(n) lattice vec-
tors corresponding to good pairs, and T is itself contained in a set of
cardinality ≤ NB(n). If the vectors were iid, no more than O(

√

NB(n))
vectors would suffice. Although this may not hold for the version of AKS
given above, the algorithm can be modified so that the iid-ness condition
is fulfilled.

The change is as follows: At the start of the execution, we fix the set
of vectors that will be used as centers at every step. Other vectors cannot
be used as centers, so if at any sieving step, no close enough center is
found, the vector under scope is lost. The probability of loss of each vector
during the whole process can be made exponentially low by choosing the
initial number of pairs carefully. These modifications can be implemented
without incurring a significant cost increase (see the appendix for details).
On the other hand, the number of vectors needed for the last step of the
algorithm is decreased by an exponential factor. This leads to an algorithm
that consumes time ≤ 22.648n and space ≤ 21.325n.

Heuristic version of AKS. A heuristic version of AKS has been stud-
ied by Nguyen and Vidick [65]. The main modification consists in not
using perturbations. To generate lattice vectors, random vectors are sam-
pled using the randomized version of Babai’s nearest plane algorithm [7]
described in [45]. Under an assumption of uniform distribution of sieved
points, they show that the space complexity of their algorithm is ≤ 20.208n.
In practice, the heuristic version solves SVP up to dimension 50. A refine-
ment of this heuristic has been proposed by Wang et al. [83].

4.2 The ListSieve Algorithm

ListSieve was introduced by Micciancio and Voulgaris [58]. It can be
described as a variant of AKS in which the order of the loop in the Sieve

function and the second loop of AKS is reversed: in ListSieve, the outer
loop is on vectors and the inner loop is on norm reduction steps. This
makes the following improvement possible: for a given point, instead of
using separate sets of centers for each step, all centers are put together in
the same list. At a given step, any item in the list may be used provided
that it decreases the norm of the vector by a factor ≥ 1/γ. The loss of ξ
between each step R ← γR + ξ of AKS does not occur in ListSieve,

making it possible to set γ polynomially close to 1 (e.g., γ = 1− 1/n) to
keep the list size as small as possible.

b
0

b
t6

b

t5

b
t4

b
t3

b
t2

b
t1

b

b

bb

b

t’

Fig. 3. Reduction of t′ with the list {t1, . . . , t6}.

Input : A pair (u,u′) and a list T ⊆ L.
Output : A reduced pair (u,u′).
While ∃w ∈ T , ‖u′ −w‖ < γ‖u′‖ do

(u,u′)← (u −w,u′ −w).
Return (u,u′).

Algorithm 7: The Reduction algorithm.

Input : A basis B, λ ≈ λ(L), ξ > 1
2
, N .

Output : A shortest non-zero vector of L.
Choose (x1, . . . ,xN) independently and uniformly in B(ξλ). T ← {0}.
For i = 1 to N do

(ti, t
′
i)← Reduction(NewPair(B,xi), T),

Add ti to T unless it already belongs to it.
Find closest vectors (s1, s2) in T (fail if |T | = 1).
Return s1 − s2.

Algorithm 8: The ListSieve algorithm.

Input : A basis B, λ ≈ λ(L), ξ > 1
2
, r0 > 2ξ, N1, N2.

Output : A shortest non-zero vector of L.
Choose (x1, . . . ,xN1

,y1, . . . ,yN2
) iid uniform in B(ξλ). T ← ∅, U ← ∅.

For i = 1 to N1 do
(ti, t

′
i)← Reduction(NewPair(B,xi), T).

If ‖ti‖ ≥ r0λ then Add ti to T unless it already belongs to it.
For i = 1 to N2 do

(ui,u
′
i)← Reduction(NewPair(B,yi), T),

Add ti to U unless it already belongs to it.
Find closest vectors (s1, s2) in U (fail if |U| = 1).
Return s1 − s2.

Algorithm 9: The ListSieveBirthday algorithm.

Theorem 4.3. Let (bi)i≤n be a basis of a lattice L. If λ ∈ [λ(L), (1 +
1/n)λ(L)), N = 21.874n, ξ = 0.685 and n is sufficiently large, then ListSieve

returns a shortest non-zero vector of L with probability ≥ 1
3 , in time

≤ Poly(n)23.199n and space ≤ Poly(n)21.325n.

The proof of ListSieve is similar to that of AKS. The size of the list
is bounded with Theorem 4.1, using two properties: any vector is reduced
with respect to the previous vectors of the list and all vectors in the list
belong to the lattice. Because of this, collisions occur when enough pairs
are sampled. As in the proof of AKS, it can be proved that the probability
of success is nearly as high as the probability that a collision occurs with
a good vector. A detailed proof is given in appendix.

Improving the complexity by using the birthday paradox. In
the original version of ListSieve, the vectors of the list may not be sta-
tistically independent. Dividing the algorithm into two phases makes it
possible to sample iid vectors in a small ball B(r0λ) (see Algorithm 9).
In this version, the birthday paradox can be used to analyze the second
phase, which leads to smaller time and space complexity bounds than for
all versions of AKS.

Theorem 4.4. Let (bi)i≤n be a basis of a lattice L. If λ ∈ [λ(L), (1 +
1/n)λ(L)), ξ = 0.9476, r0 = 3.0169, N1 chosen uniformly in [0, ⌊21.3501n⌋],
N2 = 21.2325n and n is sufficiently large, then ListSieveBirthday returns
a shortest non-zero vector of L with probability exponentially close to 1,
in time ≤ Poly(n)22.465n and space ≤ Poly(n)21.233n.

During the first phase of the algorithm, very short vectors are thrown
away. This allows to improves the bound on |T | from ListSieve. Indeed,
because of perturbations, the lower bound for the angle between two vec-
tors is worse for vectors of small norm. During the second phase, lattice
vectors are reduced with respect to the list of vectors obtained during the
first phase. As long as |T | is large enough, this should produce short lat-
tice vectors (e.g., vectors in B(r0λ)). Unfortunately, it is unclear whether
the probability for a vector to be short decreases when |T | increases. This
is why |T | is randomized. The proof that the difference between two vec-
tors in U is a shortest non-zero lattice vector is the same as for AKS. More
details are given in appendix.

Heuristic version of ListSieve. In [58], Micciancio and Voulgaris give
experimental results on a heuristic version of ListSieve that they call

GaussSieve. In GaussSieve, vectors are more reduced with respect to
each other. As in the heuristic version of AKS, there are no perturbations: It
is an open problem whether there is a way to guarantee that the algorithm
succeeds. Thus, the stopping condition is chosen heuristically. However,
a space complexity upper bound of 20.401n is proved (this corresponds to
the best known upper bound on the so-called kissing number). According
to the experiments from [58], GaussSieve can be used up to dimension 63
and outperforms the (guaranteed) deterministic enumeration algorithm
from Section 5 without tree pruning.

4.3 Solving CVP

In 2002, Ajtai et al. [6] showed how to modify their SVP solver to solve
CVP within any fixed factor 1 + ε for ε > 0, in time and space 2O(n).
In [9], Blömer and Naewe showed that the sieve algorithms can be used to
solve (1+ε)-CVP by reducing the latter to the “Generalized SVP” (1+ε)-
GSVP, which, given a basis of a lattice L and a linear subspace M of Rm,
consists in finding a vector in L \M of norm ≤ (1 + ε)min‖·‖(L \M).
They proved that (1 + ε)-GSVP can be solved by AKS just by changing
the parameters and the last step, in which a condition is added: The
difference between the two vectors must not be in M . As the shortest
vector outside M can be much larger than λ(L), it may not be possible
to “fill” the ball B(r0λ) corresponding to the end of the execution of AKS.
The analysis of AKS does not carry over, but it is proved instead that AKS
returns a vector outside of M of norm at most r0λ. The approximation
factor 1 + ε is obtained by choosing γ and ξ so that r0 ≤ 1 + ε. This is
possible for any ε > 0, but at the expense of increasing the complexity
bound (the exponent is polynomial in 1

ε). The reduction from (1+ε)-CVP
to (1+ε)-GSVP is based on Kannan’s embedding technique [43, Se. 6]: For
a lattice L ⊆ Rm and a target t ∈ Rm, we define L′ as the lattice spanned
by (L× {0}) ∪ (t, γ); provided that γ is large enough, if (u, x) ∈ Rm ×R

is a shortest vector of L′\(Rn × {0}), then x = ±γ and the solution to
CVP(L, t) is ±u. More recently, Eisenbrand et al. [18] built upon [9] to
decrease the cost dependence in ε.

5 Enumeration-Based Solvers

The oldest SVP/CVP solvers rely on an enumeration process, that, given
a basis (bi)i≤n of lattice L, a center t and a radius A, looks for all points
of L ∩ B(t, A). It does so by enumerating all points of projections of L

orthogonally to basis vectors, that belong to hyperballs of smaller dimen-
sions. In practice, a heuristic version of the enumeration based on pruning
has been used to solve SVP for a generic-looking lattice of dimension 110,
within a few days of computation [25, 26].

The main ingredient for the complexity analyzes of enumeration-based
solvers consists in bounding and/or estimating the number of lattice points
within a ball. Estimates are provided by the so-called Gaussian heuristic:
if K is a measurable subset of the span of the n-dimensional lattice L,
then |K ∩ L| ≈ vol(K)/ det(L) (where vol denotes the n-dimensional
volume). For some choices of K compact and sufficiently large, or K or L
sampled randomly, then rigorous versions of the Gaussian heuristic can
be obtained. We will use the Gaussian heuristic mainly for balls, in which

case we have volBn(t, A) = Anπn/2

Γ (n/2+1) ≈
2O(n)An

nn/2 , for any t and A.

5.1 The Enum algorithm

Enum (Algorithm 10) enumerates L ∩ B(t, A) by using the triangular re-
lationship between the basis (bi)i≤n of L and its Gram-Schmidt orthogo-
nalization (b∗i)i≤n. More specifically, it relies on the two following obser-
vations:

• If x =
∑

i xibi belongs to L ∩ B(t, A), then, for any i ≤ n, we
have x(i) ∈ L(i)∩B(t(i), A), where x(i), L(i) and t(i) are the projections
of x, L and t orthogonally to the linear span of b1, . . . , bi−1.

• Enumerating L(n) ∩ B(t(n), A) is easy and once L(i+1) ∩ B(t(i+1), A)
is known, it is easy to enumerate L(i) ∩ B(t(i), A). Indeed: Assume
that x(i) ∈ L(i) ∩ B(t(i), A); Write x(i) = x(i+1) + (xi + ci)b

∗
i for

some xi ∈ Z and ci ∈ R. Once x(i+1) ∈ L(i+1) ∩ B(t(i+1), A) is fixed,
we must have

xi ∈ Z ∩
[

−ci −
√

A2 − ‖x(i+1)‖2
‖b∗i ‖

,−ci +
√

A2 − ‖x(i+1)‖2
‖b∗i ‖

]

(2)

During its execution, Enum considers all points in L(i) ∩ B(t(i), A),
for i = n, n− 1, . . . , 1. An inherent drawback is that the complexity may
be (significantly) more than |L∩B(t, A)|. This is because it often happens
that at some stage, an element of L(i+1) ∩ B(t(i+1), A) has no descendant
in L(i) ∩ B(t(i), A) (i.e., the interval in (2) contains no integer) : This
corresponds to a “dead-end” in the enumeration tree.

Input : A basis (bi)i≤n of a lattice L, t ∈ span(L), A > 0.
Output : All vectors in L ∩ B(t, A).
Compute the µi,j ’s and ‖b∗i ‖

2’s.
Compute the ti’s such that t =

∑

i tib
∗
i .

S ← ∅, ℓ← 0,x← 0, xn ← ⌈tn −A/‖b∗
n‖⌉, i← n.

While i ≤ n do
ℓi ← (xi − ti +

∑

j>i xjµj,i)
2‖b∗

i ‖
2,

If i = 1 and
∑

1≤j≤n ℓj ≤ A2 then
S ← S ∪ {x}, x1 ← x1 + 1.

If i 6= 1 and
∑

j≥i ℓj ≤ A2 then

i← i− 1, xi ←

⌈

ti −
∑

j>i(xjµj,i)−

√

A2−
∑

j>i ℓj

‖b∗

i
‖2

⌉

.

If
∑

j≥i ℓj > A, then i← i+ 1, xi ← xi + 1.
Return S.

Algorithm 10: The Enum algorithm.

The cost of Enum can be bounded by
∑

i |L(i) ∩ B(t(i), A)|, up to a
small polynomial factor. The Gaussian heuristic leads to the approxima-
tion (for i ≤ n):

|L(i) ∩ B(t(i), A)| ≈ 2O(n)An−i+1

(n− i+ 1)
n−i+1

2 ·∏n
j=i ‖b∗j‖

.

Unfortunately, some of the involved balls are very small compared to their
corresponding lattice L(i), and it seems hard to prove that the heuristic
always holds. Though of mostly theoretical nature (because of the fuzzy
2O(n) factor), the following result provides theoretical evidence towards
the validity of the Gaussian heuristic in the present situation.

Theorem 5.1 ([32]). The bit-complexity of Enum can be bounded from
above by:

2O(n)
∏

1≤i≤n

max

(

1,
A√
n‖b∗i ‖

)

≤ 2O(n) max
I⊆[1,n]

A|I|

√
n
|I| ·∏i∈I ‖b∗i ‖

.

Enum may be used directly to solve SVP and CVP, once the bound A
has been set. In the case of SVP, it may be derived from Minkowski’s
theorem, or from the current basis (bi)i≤n: For example, one may choose
A = min(mini ‖bi‖,

√
n(detL)1/n). In the case of CVP, it may be derived

from any bound on µ(L), such as
√
∑

i ‖b∗i ‖2/2. The bound may also
be set heuristically using the Gaussian heuristic: The guess for A is then
derived from volB(t, A) ≈ detL, and is increased if no solution is found.
The bound A can also be decreased during the execution of Enum, every
time a better solution is found, as the complexity increases sharply with A.

As written, the space required by Enum may be more than Poly(n). It
can be made Poly(n) for the SVP and CVP applications, as only a single
shortest/closest vector is required: the update of S in Enum should then
be replaced by an update of the best solution found so far.

5.2 Reducing before enumerating

The cost estimates and upper bounds of Enum strongly depend on A and
on the decrease of the ‖b∗i ‖’s. This observation suggests that the more
reduced the basis (bi)i, the lower the cost. Fincke and Pohst [20] initially
used a LLL-reduced basis (bi)i. For such a basis, we have ‖b∗i+1‖ ≥ ‖b∗i ‖/2,
which leads to a 2O(n2) complexity upper bound. Kannan [42] observed
that the cost of Enum is so high that a much more aggressive pre-processing
significantly lowers the total cost while negligibly contributing to it. In
practice, one may use BKZ: This still leads to a 2O(n2) complexity bound
for Enum when the block-size is fixed, but the O(·) constant decreases as
the inverse of the block-size (up to factors of lower order). Kannan’s theo-
retical algorithms are even more aggressive than that. His SVP algorithm
is in fact an HKZ-reduction algorithm that calls itself recursively in lower
dimensions to optimize the reduction before the calls to Enum.

The HKZ-reduction algorithm proceeds as follows (we refer to [36]
for more details). Before calling Enum to find a shortest non-zero lattice
vector, it quasi-HKZ-reduces the bi’s: at the moment Enum is called, the
basis is such that once projected orthogonally to b1 it is HKZ-reduced,
and ‖b∗2‖ ≥ ‖b1‖/2. To find such a basis, it suffices to:

• HKZ-reduce (in dimension n− 1) the projections of the bi’s orthogo-
nally to b1;
• extend them to a basis (bi)i of L, while maintaining that property and

keeping the previous b1;
• HKZ-reduce (b1, b2) (and update the basis of L accordingly);
• and iterate the previous steps until quasi-HKZ-reduction is reached.

Then a shortest vector b of L\0 can be found with Enum, and extended
into a basis of L (keeping b in first position). The HKZ-reduction algo-
rithm is then called recursively on the projection of the basis orthogonally
to b, to get a reduced basis of L.

A detailed analysis of quasi-HKZ-reduced bases (bi)i≤n gives that
(see [32]):

max
I⊆[1,n]

‖b1‖|I|
√
n
|I| ·∏i∈I ‖b∗i ‖

≤ 2O(n)nn/(2e).

The call to Enum dominates the overall cost of the HKZ-reduction algo-
rithm, so that Kannan’s SVP solver terminates within nn/(2e)+o(n) bit
operations.

Kannan’s CVP algorithm is Enum, starting with an HKZ-reduced ba-
sis (bi)i≤n. Wlog, one may assume that ‖b1‖ = maxi ‖bi‖ (see [42]), and
take A =

√
n‖b1‖. In that situation, we have:

max
I⊆[1,n]

(
√
n‖b1‖)|I|

√
n
|I|∏

i∈I ‖b∗i ‖
=
‖b1‖n
detL

≤ nn/2,

by Minkowski’s theorem. This leads to an overall nn/2+o(n) complexity
upper bound for Kannan’s CVP solver.

5.3 Practical improvements

As Enum is the most practical SVP/CVP solver, much effort has been spent
on optimizing it. Schnorr and Euchner [75] introduced a zig-zag strategy
for enumerating the interval of Equation (2): starting from the middle of
the interval increases the likeliness of finding short/close vectors faster,
and to decrease A quickly.

Recently, Gama et al. [25, App. D] described a way of computing
the term

∑

j>i xjµj,i from Enum more efficiently by storing partial sums
that can be re-used later in the execution, and thus removing redundant
operations. This can save a significant amount of computation, at the
expense of a small increase in space requirement.

In Enum, the quantities (µi,j , ‖b∗i ‖2, ti, A) are rational numbers, so that
all computations can be performed exactly. However, the bitsizes of these
numbers can be as large as O(n logB) (where B is the largest bitsize of
an entry in the input basis matrix), which leads to a large arithmetic cost.
In practice, approximate arithmetics such as floating-point or fixed-point
are used instead. Analyzing the effect of these approximate computations
requires to undertake a detailed analysis of the accumulation and am-
plification of the errors which occur at every step, as they could lead to
incorrect results. These issues have been studied in detail in [67, 16]. It
is possible to derive a sufficient precision such that when starting with
an arbitrary LLL-reduced basis, the output is guaranteed to be a close
to optimal solution. However, a dynamic analysis of the error should be
preferred, because the bounds on diverse quantities used in the worst-case
analysis are very pessimistic.

The parallelization of Enum has been investigated in [37] and [16]. In
the latter, the authors use the Gaussian heuristic to balance the sizes of
the sub-tasks sent to the slave machines.

The main heuristic used for accelerating Enum consists in pruning the
corresponding enumeration tree, by cutting off branches with low ratio
between the estimated branch size and the likeliness of containing the
desired solution [75, 76, 80, 25]. Pruning consists in replacing the sets L(i)∩
B(t(i), A) by subsets L(i)∩B(t(i), pi ·A), for some pruning coefficients 0 <
pn ≤ . . . ≤ p1 ≤ 1. The approximate branch size and success likeliness
can be derived from the Gaussian heuristic, by estimating the volumes of
the following truncated hyperballs (for all i ≤ n):

{

(yj)i≤j≤n ∈ Rn−i+1 : ∀k ≥ j,
∥

∥

∥
(yj)k≤j≤n − t

(k)
∥

∥

∥
≤ pk ·A

}

.

Gama et al. recently proposed in [25] a further refinement, called extreme
pruning. It consists in calling an enumeration with aggressive pruning
coefficients several times on randomized inputs: this allows the success
probability of a single call to be lowered, and to decrease the overall cost
even more.

6 Open Problems

Many important techniques and results on solving SVP and CVP have
been discovered in the last few years. The recent increase of interest in
this topic stems at least in large part from the rise of lattice-based cryp-
tography. We draw here a list of open problems that we find of particular
importance.

The description and analysis of the Voronoi-based solver from Sec-
tion 3 is extremely recent [57]. So far, no practical implementation nor
heuristic improvement that could lead to a competitive implementation
is known. Is the worst-case complexity bound sharp, and if so, is it likely
to be reached for “average” inputs? Are there reasonable heuristics that
could be exploited to speed up this algorithm?

The solvers relying on saturation and enumeration have undergone
significantly more scrutiny, but some important questions remain open.
For example, it is unclear whether the perturbations of the lattice vectors
in saturation-based solvers are inherently necessary or just an artifact of
the proof. As these perturbations lead to increased complexity bounds,
proving them unnecessary could make these solvers competitive with [57].
Also, is it a valid heuristic to remove them in practice?

The theoretical and practical efficiency of enumeration-based solvers
greatly depends on the pre-processing of the input basis. It is suggested
in [62] that enumeration-based SVP solvers cost at least nn/8+o(n) in the

worst case: Is it possible to reach this lower bound? In practice, what is
the best trade-off between pre-processing and enumerating? With respect
to enumeration-based CVP solvers, an intriguing question is whether the
best known complexity upper bound nn/2+o(n) can be reached in the worst
case: contrarily to SVP [33], there is a gap between the best known worst-
case complexity upper and lower bounds.

Overall, we have three very different families of solvers for SVP/CVP,
which seem largely unrelated (except the dimension reduction step in the
algorithm based on the Voronoi cell, which is inspired from Enum). Further-
more, their complexity upper bounds are incomparable: the solvers relying
on the Voronoi cell and on saturation have time and space complexity up-
per bounds that are simply exponential, whereas Kannan’s SVP solver has
a worse time complexity bound but requires polynomially bounded space.
Are there hidden links between these algorithms? Can they be combined
to achieve interesting time/space trade-offs? Enumeration-based heuristic
solvers are currently more practical for handleable dimensions, but the
other solvers enjoy lower asymptotic complexity bounds: is it possible to
estimate the cut-off dimension after which they become the most efficient?

It is also conceivable that faster solvers exist, that remain to be discov-
ered. For example, is it possible to achieve exponential time complexity
with a polynomially bounded space requirement? Are there ways to ex-
ploit quantum computations to obtain better complexity bounds? Finally,
lattice-based cryptography does not rely on the hardness of SVP but of
relaxed variants of it. In particular, if there were a polynomial-time al-
gorithm that could find non-zero lattice vectors that are no more than
polynomially longer (in the dimension) than the lattice minimum, then
lattice-based cryptography would become insecure. Does such an SVP
solver exist, or is it possible to argue that it does not exist?

Acknowledgments We thank Panagiotis Voulgaris for very helpful dis-
cussions on the Voronoi-based SVP/CVP solver. We are also very grateful
to Thijs Laarhoven who pointed out several errors concerning the AKS
algorithm and its birthday paradox variant (Section 4.1 and Appendix A).
We also thank the anonymous reviewer for her/his comments. The third
author was partly supported by the Australian Research Council under
ARC Discovery Grant DP110100628.

References

1. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices.
IEEE Transactions on Information Theory, 48(8):2201–2214, 2002.

2. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proc. of STOC, pages 99–108. ACM, 1996.

3. M. Ajtai. The worst-case behavior of Schnorr’s algorithm approximating the short-
est nonzero vector in a lattice. In Proc. of STOC, pages 396–406. ACM, 2003.

4. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Proc. of STOC, pages 284–293. ACM, 1997.

5. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proc. of STOC, pages 601–610. ACM, 2001.

6. M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and the
closest lattice vector problem. In Proc. of CCC, pages 53–57, 2002.

7. L. Babai. On Lovász lattice reduction and the nearest lattice point problem.
Combinatorica, 6:1–13, 1986.

8. W. Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Math. Ann, 296:625–635, 1993.

9. J. Blömer and S. Naewe. Sampling methods for shortest vectors, closest vectors
and successive minima. Theor. Comput. Science, 410(18):1648–1665, 2009.

10. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. Journal of Symbolic Computation, 24(3–4):235–265, 1997. http:

//magma.maths.usyd.edu.au/magma/.
11. J. Buchmann. Reducing Lattice Bases by Means of Approximations. In Proc. of

ANTS, volume 877 of LNCS, pages 160–168. Springer, 1994.
12. D. Cadé, X. Pujol, and D. Stehlé. fplll-3.1, a floating-point LLL implementation.

http://perso.ens-lyon.fr/damien.stehle.
13. J. W. S. Cassels. An Introduction to the Geometry of Numbers, 2nd edition.

Springer, 1971.
14. J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Springer,

1998. Third edition.
15. D. Dadush, C. Peikert, and S. Vempala. Enumerative algorithms for the shortest

and closest lattice vector problems in any norm via M-ellipsoid coverings, 2011.
submitted.

16. J. Detrey, G. Hanrot, X. Pujol, and D. Stehlé. Accelerating lattice reduction
with FPGAs. In Proc. of LATINCRYPT, volume 6212 of LNCS, pages 124–143.
Springer, 2010.

17. F. Eisenbrand. 50 Years of Integer Programming 1958-2008, From the Early Years
to the State-of-the-Art, chapter Integer Programming and Algorithmic Geometry
of Numbers. Springer, 2009.

18. F. Eisenbrand, N. Hähnle, and M. Niemeier. Covering cubes and the closest vector
problem, 2011. To appear in the proceedings of SoCG.

19. P. van Emde Boas. Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Technical report 81-04, Mathematisch
Instituut, Universiteit van Amsterdam, 1981.

20. U. Fincke and M. Pohst. A procedure for determining algebraic integers of given
norm. In Proc. of EUROCAL, volume 162 of LNCS, pages 194–202, 1983.

21. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length
in a lattice, including a complexity analysis. Math. Comp., 44(170):463–471, 1985.

22. N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant
and blockwise lattice reduction. In Proc. of CRYPTO, number 4117 in LNCS,
pages 112–130. Springer, 2006.

23. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s in-
equality. In Proc. of STOC, pages 207–216. ACM, 2008.

24. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proceedings of Euro-
crypt 2008, volume 4965 of LNCS, pages 31–51. Springer, 2008.

25. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In Proc. of Eurocrypt, volume 6110 of LNCS, pages 257–278. Springer, 2010.

26. N. Gama and M. Schneider. The SVP challenge homepage. http://www.

latticechallenge.org/svp-challenge/.
27. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice

reduction problems. In Proc. of CRYPTO, volume 1294 of LNCS, pages 112–131.
Springer, 1997.

28. O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest
lattice vectors is not harder than approximating closest lattice vectors. Inf. Process.
Lett., 71(2):55–61, 1999.

29. D. Goldstein and A. Mayer. On the equidistribution of Hecke points. Forum
Mathematicum, 15:165–189, 2003.

30. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, 1987.
31. V. Guruswami, D. Micciancio, and O. Regev. The complexity of the covering

radius problem. Computational Complexity, 14(2):90–121, 2005.
32. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector

algorithm (extended abstract). In Proc. of CRYPTO, volume 4622 of LNCS, pages
170–186. Springer, 2007.

33. G. Hanrot and D. Stehlé. Worst-case Hermite-Korkine-Zolotarev reduced lattice
bases. CoRR, abs/0801.3331, 2008.

34. A. Hassibi and S. Boyd. Integer parameter estimation in linear models with ap-
plications to GPS. IEEE Transactions on signal process., 46(11):2938–2952, 1998.

35. I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. In Proc. of STOC, pages 469–477. ACM, 2007.

36. B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced
lattice bases. Theor. Comput. Science, 41:125–139, 1985.

37. J. Hermans, M. Schneider, J. Buchmann, F. Vercauteren, and B. Preneel. Parallel
shortest lattice vector enumeration on graphics cards. In Proc. of Africacrypt,
volume 6055 of LNCS, pages 52–68. Springer, 2010.

38. C. Hermite. Œuvres. Gauthiers-Villars, 1905.
39. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based public key

cryptosystem. In Proc. of ANTS, volume 1423 of LNCS, pages 267–288. Springer,
1998.

40. Á. G. Horváth. On the Dirichlet-Voronoi cells of the unimodular lattices. Geomet-
ricæ Dedicata, 63:183–191, 1996.

41. G. A. Kabatyansky and V. I. Levenshtein. Bounds for packings on a sphere and
in space. Probl. Peredachi Inf., 14(1):3–25, 1978.

42. R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proc. of STOC, pages 99–108. ACM, 1983.

43. R. Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987.

44. S. Khot. Inapproximability results for computational problems on lattices. Chapter
of [64].

45. P. N. Klein. Finding the closest lattice vector when it’s unusually close. In Proc.
of SODA, pages 937–941. ACM, 2000.

46. A. Korkine and G. Zolotarev. Sur les formes quadratiques. Math. Ann, 6:336–389,
1873.

47. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann, 261:515–534, 1982.

48. H. Lenstra Jr. Algorithmic number theory, J. P. Buhler, P. Stevenhagen (eds),
chapter Lattices, pages 127–181. MSRI Publications, Cambridge University Press,
2008.

49. R. Lindner and M. Rückert. The lattice challenge homepage. http://www.

latticechallenge.org/.
50. Y.-K. Liu, V. Lyubashevsky, and D. Micciancio. On bounded distance decoding

for general lattices. In Proc. of RANDOM, volume 4110 of LNCS, pages 450–461.
Springer, 2006.

51. V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique short-
est vectors, and the minimum distance problem. In Proc. of CRYPTO, volume 5677
of LNCS, pages 577–594. Springer, 2009.

52. J. Martinet. Perfect Lattices in Euclidean Spaces. Springer, 2002.
53. D. Micciancio. Efficient reductions among lattice problems. In Proc. of SODA,

pages 84–93. SIAM, 2008.
54. D. Micciancio and S. Goldwasser. Complexity of lattice problems: a cryptographic

perspective. Kluwer Academic Press, 2002.
55. D. Micciancio and O. Regev. Lattice-based cryptography. In Post-Quantum

Cryptography, D. J. Bernstein, J. Buchmann, E. Dahmen (Eds), pages 147–191.
Springer, 2009.

56. D. Micciancio and P. Voulgaris. A deterministic single exponential time algo-
rithm for most lattice problems based on Voronoi cell computations. http:

//cseweb.ucsd.edu/~pvoulgar/pub.html – Draft of the full version of [57], dated
December 8, 2010.

57. D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations. In Proc. of STOC,
pages 351–358. ACM, 2010.

58. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest
vector problem. In Proc. of SODA. ACM, 2010.

59. H. Minkowski. Geometrie der Zahlen. Teubner-Verlag, 1896.
60. W. H. Mow. Maximum likelihood sequence estimation from the lattice viewpoint.

IEEE Transactions on Information Theory, 40:1591–1600, 1994.
61. W. H. Mow. Universal lattice decoding: Principle and recent advances. Wireless

Communications and Mobile Computing, Special Issue on Coding and Its Applica-
tions in Wireless CDMA Systems, 3(5):553–569, 2003.

62. P. Q. Nguyen. Hermite’s constant and lattice algorithms. Chapter of [64].
63. P. Q. Nguyen and D. Stehlé. LLL on the average. In Proc. of ANTS, LNCS, pages

238–256. Springer, 2006.
64. P. Q. Nguyen and B. Vallée (editors). The LLL Algorithm: Survey and Applica-

tions. Information Security and Cryptography. Springer, 2009.
65. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are

practical. Journal of Mathematical Cryptology, 2(2), 2008.
66. A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In Cryptology and

Computational Number Theory, volume 42 of Proc. of Symposia in Applied Math-
ematics, pages 75–88. A.M.S., 1990.

67. X. Pujol and D. Stehlé. Rigorous and efficient short lattice vectors enumeration.
In Proc. of ASIACRYPT, volume 5350 of LNCS, pages 390–405. Springer, 2008.

68. X. Pujol and D. Stehlé. Solving the shortest lattice vector problem in time 22.465n.
Cryptology ePrint Archive, 2009. http://eprint.iacr.org/2009/605.

69. O. Regev. Lecture notes of lattices in computer science, taught at the Computer
Science Tel Aviv University. http://www.cs.tau.il/~odedr.

70. O. Regev. On the complexity of lattice problems with polynomial approximation
factors. Chapter of [64].

71. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proc. of STOC, pages 84–93. ACM, 2005.

72. O. Regev. The learning with errors problem, 2010. Invited survey in CCC 2010,
available at http://www.cs.tau.ac.il/~odedr/.

73. C. P. Schnorr. Progress on LLL and lattice reduction. Chapter of [64].
74. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theor.

Comput. Science, 53:201–224, 1987.
75. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-

rithms and solving subset sum problems. Mathematics of Programming, 66:181–
199, 1994.

76. C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by
improved lattice reduction. In Proc. of Eurocrypt, volume 921 of LNCS, pages
1–12. Springer, 1995.

77. V. Shoup. NTL, Number Theory C++ Library. http://www.shoup.net/ntl/.
78. C. L. Siegel. Lectures on the Geometry of Numbers. Springer, 1989.
79. N. Sommer, M. Feder, and O. Shalvi. Finding the closest lattice point by iterative

slicing. SIAM J. Discrete Math., 23(2):715–731, 2009.
80. D. Stehlé and M. Watkins. On the extremality of an 80-dimensional lattice. In

Proc. of ANTS, volume 6197 of LNCS, pages 340–356. Springer, 2010.
81. G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Journal für die reine und angewandte Mathematik, 134:198–287,
1908.

82. P. Voulgaris. Personal communication.
83. X. Wang, M. Liu, C. Tian, and J. Bi. Improved Nguyen-Vidick heuristic sieve

algorithm for shortest vector problem. Cryptology ePrint Archive, 2010. http:

//eprint.iacr.org/2010/647.

Appendix

The proofs for the given version of AKS and the improved version based on
the birthday paradox have not been published in detail yet. For reference,
we give a compact proof for all theorems of Section 4, largely based on [65,
58, 68].

A Analysis of the AKS algorithm

Lemma A.1 (Adapted from [58, Th. 4.1]) Let ct = − log2 γ+0.401.
If T is a set of points in Bn(R) such that the distance between two points
is at least γR, then |T | is at most NT (n) = 2ctn+o(n). In particular, for
any application of the Sieve function, the number of centers is at most
2ctn+o(n).

Proof. Let α = 1 + 1
n . The ball Bn(γR/3) contains at most one point.

We cover Bn(R) \Bn(γR/3) with coronas Tr = Bn(αr) \Bn(r) for r =
γR
3 , γR3 α, . . . , γR3 αk, with k = ⌈n log2

3
γ ⌉ = O(n). It suffices to prove that

any corona Tr contains at most 2ctn+o(n) points.
Let u and v be two distinct points in Tr ∩Bn(R). We have 〈u−v,u−

v〉 ≥ (γR)2, so 〈u,v〉 ≤ 1
2

(

‖u‖2 + ‖v‖2 − (γR)2
)

. We let φu,v denote the
angle between u and v. The above implies that:

cosφu,v =
〈u,v〉
‖u‖ · ‖v‖ ≤

1

2

(‖u‖
‖v‖ +

‖v‖
‖u‖ −

(γR)2

‖u‖ · ‖v‖

)

≤ 1 +
1

n
− (γR)2

2R2
= 1 +

1

n
− γ2

2
−→
n→∞

1− γ2

2
.

For any ε ∈ (0, γ
2

2) and sufficiently large n we can apply Theorem 4.1 with

φ0 = cos−1
(

1− γ2

2 + ε
)

≤ 60◦. This provides the result. ⊓⊔

Lemma A.2 Let cb = log2 r0+0.401. For any lattice L, we have |Bn(r0λ)∩
L| ≤ NB(n) = 2cbn+o(n).

Proof. The distance between two lattice points is at least λ(L). Let ε > 0

and γ = 1
r0(1+ε) . Provided that n > 1

ε , we have λ(L)
r0λ

≥ γ. Applying

Lemma A.1 with R = r0λ and γ for any ε > 0 provides the result. ⊓⊔

Lemma A.3 ([65, Th. 3.4]) Let cg = −1
2 log2(1− 1

4ξ2
) and s be a short-

est non-zero vector of L. Let Is = Bn(0, ξλ) ∩ Bn(−s, ξλ). If x is chosen
uniformly in Bn(0, ξλ), then Pr (x ∈ Is) ≥ 1

NG(n) with NG(n) = 2cgn+o(n).

Lemma A.4 If AKS is run with N ≥ 1.01NG(n)(n
3NT (n) +NB(n) + 1),

then it returns a shortest non-zero vector with probability ≥ 1
2 − o

n→∞
(1).

Proof. From Lemma A.3, the initial set T contains at least n3NT (n) +
NB(n) + 1 vectors such that u′ − u ∈ Is = Bn(0, ξλ) ∩ Bn(−s, ξλ)
with probability exponentially close to 1 as n → ∞. Since no more than
⌈

logγ

(

ξ
nR(1−γ)

)⌉

NT (n) = O(n2NT (n)) = o(n3NT (n)) vectors are used as

centers and lost, this implies that the final set contains at least NB(n)+1
vectors such that x = u′ − u ∈ Is.

For x ∈ Bn(0, ξλ), let τ(x) = x + s if x ∈ Is, τ(x) = x − s if
x − s ∈ Is and τ(x) = x otherwise. Consider AKS2, a modified version of
AKS where τ is applied to each xi with probability 1

2 immediately after it is
chosen. If x is sampled uniformly in Bn(0, ξλ), then so is τ(x) (assuming

that ξ < 1). As a consequence, the outputs of AKS and AKS2 follow the
same distribution.

Since τ(x) − x ∈ L, the lattice vector generated with the perturba-
tion τ(x) is the same as the lattice vector generated with the perturba-
tion x. When the same random perturbations are chosen at the beginning,
this implies that the behaviors of AKS and AKS2 (test results and control
flow) are exactly the same until the very last line of the algorithm. At
the last line of AKS, at least one vector for which the perturbation is in Is
appears twice in T with probability exponentially close to 1. In AKS2,
with probability close to 1

2 , the function τ is applied to exactly one of the
two perturbations which have generated the lattice vector. If this occurs,
the difference between the two lattice vectors corresponding to the same
perturbation in AKS2 is exactly s. This implies that AKS2 returns a cor-
rect result with probability arbitrarily close to 1

2 . Because of the property
given above on the output distribution, this result also holds for AKS. ⊓⊔

Proof of Theorem 4.2. When the number of points is chosen according
to Lemma A.4, the space complexity is ≤ 2cspacen+o(n) with cspace =
cg +max(ct, cb). The time complexity for the sieve is ≤ 2(cspace+ct)n+o(n).
The removal of pairs corresponding to the same lattice points may be
performed in time ≤ 2(cspace+cb)n+o(n). Finally, the time complexity for
the computation of pairwise differences is ≤ 22cbn+o(n). So the global time
complexity is ≤ 2ctimen+o(n) with ctime = max(cspace + ct, cspace + cb, 2cb),
i.e., ctime = cg + 2max(ct, cb).

The optimal choice for constants ξ and γ to minimize the time com-
plexity is γ ≈ 0.496, ξ ≈ 0.676 which leads to cspace ≤ 1.984 and ctime ≤
3.397. Note that we have only proved that the algorithm succeeds with
non-negligible probability, but running it n times ensures that it succeeds
with probability exponentially close to 1 without significantly increasing
the complexity. ⊓⊔

Improvement based on the birthday paradox. The number of sampled pairs
if fixed to NG(n)(n

5NT (n) + n
√

NB(n)). Let K = O(n2) be the number

of sieving steps. For each step,
⌊

n5

K NG(n)NT (n)
⌋

= Ω
(

n3

K NG(n)NT (n)
)

pairs are set aside to be used as centers.

At the beginning of the algorithm, among the pairs set aside to be
used as centers for the first step, there are Ω(n3NT (n)) good pairs with
high probability. As these pairs are processed during a sieving step, the
probability that the distance between the next perturbed vector and the
closest center is more than γR decreases. The sum of these probabilities

is bounded from above by the expectancy of the number of centers, which
is ≤ NT (n). As a consequence, once all centers have been processed, the
probability for any of the subsequent pairs to be lost is O

(

1
n3

)

. By in-
duction, it can be proved the same proportion of pairs are lost at each
step of the sieve with high probability. As a consequence, no more than
1− (1− 1

n3)
O(n2) = O

(

1
n

)

pairs are lost during the whole algorithm. This

means that, in the final ball Bn(0, γR), there are Ω(n
√

NB(n)) (proba-
bilistically) independent lattice points corresponding to good pairs with
high probability. The birthday paradox implies that a collision occurs with
probability close to 1. As in the proof of Lemma A.4, this implies that the
algorithm returns a shortest vector with probability ≥ 1

2 − o(1).
The analysis above leads to the following further modifications of Algo-

rithm 6. At the end of the sieving steps, we keep only NG(n)
√

NB(n)2
o(n)

distinct lattice vectors, before listing all the differences between these vec-
tors to disclose a shortest non-zero lattice vector.

In this birthday paradox variant, the space complexity is≤ 2cspacen+o(n)

with cspace = cg +max(ct, cb/2), and the time complexity is ≤ 2ctimen+o(n)

with ctime = max(cspace+ct, cspace+cg+cb/2, 2cg+cb). The optimal choice
for constants ξ and γ to minimize the time complexity is γ ≈ 0.609, ξ = 1
which leads to cspace ≤ 1.325 and ctime ≤ 2.648.

B Analysis of the ListSieve algorithm

Lemma B.1 (Adapted from [58, Th. 4.1]) Let ξ > 1
2 , r0 > 2ξ and

ct = −1
2 log2(1 −

2ξ
r0
) +0.401. At any moment during the execution of

ListSieve, the list T contains at most NT (n) = 2ctn+o(n) vectors of norm
at least r0λ.

Proof. We first bound the norm of any vector of T . NewPair returns (t, t′)
such that t′ ∈ P(B) and ‖t′−t‖ ≤ ξλ. We have assumed that maxi ‖bi‖ =
2O(n)λ. Hence ‖t′‖ ≤ n ·maxi ‖bi‖ ≤ 2O(n)λ. After applying Reduction,
the norm of t′ does not increase and t′−t is unchanged, so, for any ti ∈ T ,
we have r0λ ≤ ‖ti‖ ≤ (2O(n) + ξ)λ. It now suffices to prove that any Tr =
{ti ∈ T | rλ ≤ ‖ti‖ ≤

(

1 + 1
n

)

rλ} for r ≥ r0 contains at most 2ctn+o(n)

points. Indeed, the list T is contained in a union of O(n2) sets Tr.
Let i < j such that ti, tj ∈ Tr. The idea of the proof is that for large n,

the angle between t′j and ti is not far from being above π
3 because ti was

already in T when tj was reduced. We use the inequality ‖tj − t′j‖ ≤ ξλ
to obtain a lower bound for the angle φti,tj

between ti and tj and then
apply Theorem 4.1.

Note that ‖t′j‖ ≤ ‖tj‖ + ξλ ≤ 3rλ. Since tj was added after ti, we
have:

‖t′j − ti‖2 >
(

1− 1

n

)2

‖t′j‖2 ≥
(

1− 2

n

)

‖t′j‖2

〈t′j , ti〉 <
1

2

[

‖ti‖2 +
2

n
‖t′j‖2

]

≤ 1

2
‖ti‖2 +

1

n
(3rλ)2.

Moreover, we have 〈tj − t′j , ti〉 ≤ ξλ‖ti‖. We can now bound cos(φti,tj
).

〈tj , ti〉 = 〈t′j , ti〉+ 〈tj − t′j , ti〉 ≤
1

2
‖ti‖2 +

1

n
(3rλ)2 + ξλ‖ti‖

cos(φti,tj
) =

〈tj , ti〉
‖ti‖ · ‖tj‖

≤ 1

2

‖ti‖
‖tj‖

+
1

n
· (3rλ)2

‖ti‖ · ‖tj‖
+

ξλ

‖tj‖

≤ 1

2

(

1 +
1

n

)

+
9

n
+

ξ

r

≤ 1

2
+

ξ

r0
+O

(

1

n

)

.

The bound on |Tr| follows directly from Theorem 4.1. ⊓⊔

Lemma B.2 Let ct = log2(ξ+
√

ξ2 + 1)+ 0.401. At any moment during
the execution of ListSieve, the list T contains at most NT (n) = 2ctn+o(n)

vectors.

Proof. Let r0 > 2ξ. Since the list T contains only lattice points, one
can combine Lemma B.1 with Lemma A.2 to obtain the upper bound
|T | ≤ 2max(ct,cb)n+o(n). This upper bound is minimized when ct = cb,
which occurs when r0 = ξ +

√

ξ2 + 1. ⊓⊔

Proof of Theorem 4.3 [Adapted from [58, Sec. 4.1]]. Let Is = Bn(0, ξλ) ∩
Bn(−s, ξλ), I−s = Is + s and J = Is ∪ I−s. A pair (u,u′) is good if
the perturbation x = u′ − u is in J . The number of points in T is
bounded by NT (n). All perturbations are sampled independently with
uniform distribution and the probability that a perturbation x is in J is
at least 2NG(n)

−1 (Lemma A.3). For x ∈ Bn(0, ξλ), we define τ(x) = x+s

if x ∈ Is, τ(x) = x − s if x ∈ I−s and τ(x) = x otherwise (τ is well
defined provided that ξ < 1). We define the following events:

• Ei: "the lattice point produced by the reduction of the i-th good pair
is added to the list" (assuming that we stop the algorithm when at
least i good pairs have been sampled);

• F : "ListSieve returns a shortest non-zero vector";
• G: "at least 2NT (n) good pairs are sampled".

When N = 1.01NT (n)NG(n), Pr (G) tends to 1 as n increases, so if

n is large enough Pr (G) ≥ 1
2 . The fact that

∑2NT (n)
i=1 Pr (Ei|G) ≤ NT (n)

implies that for some i ≤ 2NT (n), we have Pr (Ei|G) ≤ 1
2 .

If xi is sampled with uniform distribution in J , so is τ(xi). Consider
the i-th good pair. Assume that xi is such that after the reduction of the
pair (ui,u

′
i), the vector ui is already in the list. With the perturbation

τ(xi) = xi± s, the pair would be (ui± s,u′
i) so the reduction of the pair

would produce t± s. It might or might not already be in the list. In both
cases, the algorithm succeeds. This implies that Pr (F |G) ≥ Pr

(

Ē|G
)

≥ 1
2

so Pr (F) ≥ Pr (F |G) Pr (G) ≥ 1
4 . ⊓⊔

C Analysis of the ListSieveBirthday algorithm

What follows is a short version of [68]. The bound NT (n) from Lemma B.1
holds for ListSieveBirthday and is an upper bound on |T | The first part
of the proof of Theorem 4.4 consists in proving that |U| is large enough
with non-negligible probability. It relies on Lemmas A.2 and A.3, where
NB(n), NG(n) and Is are defined.

Lemma C.1 Let Nmax
1 = 4NG(n)NT (n). Consider ListSieveBirthday

with ξ > 1
2 , r0 > 2ξ and N1 = Nmax

1 . For i ≤ Nmax
1 , we define the event

Ei : ‖ti‖ < r0λ. We let pi = Pr (Ei | xi ∈ Is), where the probability is
taken over the randomness of x1, . . . ,xi, and J = {i ≤ Nmax

1 : pi ≤ 1
2}.

Then |J | ≤ Nmax
1 /2.

Proof. Assume (for contradiction) that |J | > Nmax
1 /2. Then Lemma A.3

implies that
∑

i∈J(1− pi)Pr (xi ∈ Is) ≥ |J |
2NG

> NT . This contradicts the
following (the last inequality comes from the bound |T | ≤ NT (n)):

∑

i∈J

(1− pi)Pr (xi ∈ Is) =
∑

i∈J

Pr (¬Ei ∩ (xi ∈ Is))

≤
∑

i≥1

Pr (¬Ei) ≤ NT . ⊓⊔

In the second loop of ListSieveBirthday, we do not add any point
to T . Therefore, the points that are added to U are iid. The procedure to
reduce points being the same in both loops, we have that for any i ≤ N2

such that yi ∈ Is, the probability that ‖ui‖ < r0λ is pN1+1. When N1 is

sampled uniformly in [0, Nmax
1 −1], we have pN1+1 ≥ 1

2 with probability ≥
1
2 , by Lemma C.1.

Lemma C.2 If n is sufficiently large, then with probability ≥ 1/4 (taken
over the randomness of N1, the xk’s and the yk’s), there exist two distinct
indices i, j ≤ N2 such that ui = uj and yi,yj ∈ Is.

Proof. In this proof, we assume that pN1+1 ≥ 1
2 . This occurs with proba-

bility ≥ 1
2 and implies that Pr (‖ui‖ ≤ r0λ | yi ∈ Is) ≥ 1

2 for all i ≤ N2.
Let X = |{i ≤ N2 : (‖ui‖ ≤ r0λ) ∩ (yi ∈ Is)}|. Lemma A.3 gives

Pr ((‖ui‖ ≤ r0λ) ∩ (yi ∈ Is)) = Pr (‖ui‖ ≤ r0λ | yi ∈ Is) Pr (yi ∈ Is)

≥ 1

2NG
.

Let N = 2⌈
√
NB⌉. The variable X has a binomial distribution of param-

eter p ≥ 1
2NG

. We have E(X) = pN2 ≥ 2N and Var(X) = p(1 − p)N2 ≤
E(X). Therefore, by using Chebyshev’s inequality, we have (since NB ≥ 25
holds for n large enough, we have N ≥ 10):

Pr (X ≤ N) ≤ Pr (|X − E(X)| ≥ E(X)−N)

≤ Var(X)

(E(X)−N)2
≤ E(X)

(E(X)−N)2
≤ 2

N
≤ 1

5
.

So with probability ≥ 4
5 , ListSieveBirthday samples at least N iid

points in S0 = Bn(r0λ) ∩ L. The probability that a collision occurs is
minimized when the distribution is uniform, i.e., the probability of each
point is 1/|S0|. Since we have chosen N ≥

√

|S0| (by Lemma A.2), the
birthday paradox implies that the probability that i and j exist will be
large. More precisely it is bounded from below by

4

5

(

1−
∏

i<N

(

1− i

|S0|

)

)

≥ 4

5

(

1− e
−

N(N−1)
2NB

)

≥ 4

5

(

1− 1

e

)

≥ 1

2
,

where we used the fact that |S0| ≤ NB(n) (by Lemma A.2). ⊓⊔

Proof of Theorem 4.4. Introducing a modification ListSieveBirthday2

of ListSieveBirthday that applies τ to every yi with probability 1
2 and

using the same reasoning as in the proof of Lemma A.4 leads to the fact
that the algorithm succeeds with probability ≥ 1

8 .

The space complexity is |T | + |U|. We have |T | ≤ 2ctn+o(n), and, by
definition of N2, we have |U| ≤ 2(cg+cb/2)n+o(n). Since ‖bi‖ = 2O(n)λ for

all i, the complexity of Reduction is |T |Poly(n, |B|). Omitting the poly-
nomial factor, the time complexity of the first loop is |T |N1 ≤ |T |Nmax

1 ≤
2(cg+2ct)n+o(n). The time required to find a closest pair of points in U with
the naive algorithm is |U|2. Finally, the time complexity of the second
loop is |T | · |U| ≤ 2(ct+cg+cb/2)n+o(n), which is negligibly smaller than the
cost of one of the other components.

The time complexity bound is minimized when 2ct = cg + cb. By

Lemmas A.2, B.1 and A.3, this is equivalent to r0 = 2ξ +20.401
√

1− 1
4ξ2

.

Optimizing with respect to ξ leads to ξ ≃ 0.9476, r0 ≃ 3.0169, ctime ≤
2.465 and cspace ≤ 1.233. Calling the algorithm n times allows to ensure
that it succeeds with probability exponentially close to 1. ⊓⊔

