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Low-Dimensional Lattice Basis Reduction Revisited

Lattices

• Lattice L = grid in a Euclidean space

= discrete subgroup of R
d

= {
∑m

i=1 xibi | x1, . . . , xm ∈ Z}.

• d is the space dim, m ≤ d the dim, [b1, . . . ,bm] a basis.

• L given by the integer matrix of one of its bases, along with its

Gram matrix:

G(b1, . . . ,bm) = (〈bi,bj〉)i,j .

• Complexity model: bit operations, without fast arithmetic.
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Basic Definitions (1/2)

• First minimum = λ1(L) = min(r | Bn(0, r) ∩ L 6= {0}).

• SVP: find v ∈ L of length λ1(L).

• i-th minimum = λi(L) = min(r | Bn(0, r) ∩ L has dim ≥ i).
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Basic Definitions (2/2)

• Voronöı cell = Vor(L)

= {x ∈ Span1..m(bi) | ∀b ∈ L, ||x − b|| ≥ ||x − 0||}.

• CVP: Given t ∈ R
d, find c ∈ L s.t. t ∈ c + Vor(L).
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Lattice Basis Reduction (1/2)

GOOD

BAD
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Lattice Basis Reduction (2/2)

• There are more or less interesting bases for a given lattice.

• Quality measures: lengths and orthogonality of the vectors.

• No natural “best” reduction.

• [b1, . . . ,bm] is Minkowski (M-)reduced iff for any i, bi is a

shortest lattice vector s.t. [b1, . . . ,bi] can be extended to a basis.

• If d ≤ 4, a M-reduced basis reaches the d first minima.
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Why Lattices in Low Dimensions?

• Gcd calculation in Od (Kaltofen and Rolletschek).

• Sum of 4 squares.

• Rational points on rational conics (Cremona and Rusin).

• High dim lattice reduction relies on alg. in low dim (LLL, BKZ).

• Good starting point to a better understanding of lattices.

• Very elegant problem.
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Some Bibliography

Fixed dimension, complexity with respect to the size of the matrix

coefficients.

• 19-th c.: Gauss’ algorithm in dim 2, quadratic complexity.

• 1982-83: LLL and Kannan, cubic complexity in any dim.

• 1986: “Affine” algorithm of Vallée in dim 3, cubic complexity.

• 1987: Schnorr’s BKZ algorithm.

• 2001: Semaev’s algorithm in dim 3, quadratic complexity.
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Our Results

• Description of a natural greedy algorithm generalizing Gauss’

and Semaev’s algorithms.

• Proof that it returns a M-reduced basis in any dimension d ≤ 4.

• Proof that it has a quadratic complexity in any dimension d ≤ 4.

• Unified geometric analysis for all dimensions up to 4.

2004/06/17 Damien STEHLÉ 8/23
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Gauss’ Algorithm (1/2)

1
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Gauss’ Algorithm (2/2)

• Correctness: if ||b1|| ≤ ||b2|| and ∀x ∈ Z, ||b2 + xb1|| ≥ ||b2||,

then [b1,b2] is M-reduced.

• Linearity of the number of loop iterations: at least once in

every 2 iterations, we subtract xb1 to b2 with |x| ≥ 2.

⇒ The length product decreases by a geometric factor.

• Quadratic complexity:

computing x: O(log ||b2|| · [1 + log ||b2|| − log ||b1||]).

⇒ O
(
∑τ

i=1 log ‖bi
2‖ · [1 + log ‖bi

2|| − log ‖bi
1‖]

)

= O
(

log ‖b0
2‖ ·

∑τ

i=1[1 + log ‖bi
2|| − log ‖bi+1

2 ‖]
)

= O (log ‖b2‖ · [τ + log ‖b2‖ − log λ1(L)]) .
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The Greedy Algorithm (1/2)
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The Greedy Algorithm (2/2)

Name: Greedy(a1, . . . ,ad).

Input: A basis [a1, . . . ,ad].

Output: A G-reduced basis of L[a1, . . . ,ad].

1. If d = 1, return [a1].

2. Repeat

3. Sort (a1, . . . ,ad) by increasing lengths,

4. [b1, . . . ,bd−1] := Greedy(a1, . . . ,ad−1),

5. Find a closest vector c to ad, in L[b1, . . . ,bd−1],

6. bd := ad − c,

7. Until ||bd|| ≥ ||bd−1||.

8. Return [b1, . . . ,bd].
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Termination and Correctness

• Termination: the length product decreases at each iteration.

• Correctness: equivalence up to dim 4 of G- and M-reductions.

• [b1, . . . ,bd] is G-reduced

⇔ ∀i, ∀x1, . . . , xi−1 ∈ Z, ||bi + x1b1 + . . . + xi−1bi−1|| ≥ ||bi||

⇔ ∀i, Proji−1bi ∈ Vor[b1, . . . ,bi−1].

• [b1, . . . ,bd] is M-reduced iff ||x1b1 + . . . + xdbd|| ≥ ||bi||

for all i and for all x1, . . . , xd ∈ Z with gcd(xi, . . . , xd) = 1.
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Minkowski Conditions

Let d ≤ 5. A basis [b1, . . . ,bd] is M-reduced iff ∀i, ∀x1, . . . , xd with

gcd(xi, . . . , xd) = 1 and |x1|, . . . , |xd| is in the table below (up to any

indices permutation), then ||x1b1 + . . . + xdbd|| ≥ ||bi||.

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 2

For example, with d = 3:

||b3|| ≥ ||b2|| ≥ ||b1||,

||b2 ± b1|| ≥ ||b2||,

||b3 ± b1|| ≥ ||b3||,

||b3 ± b2|| ≥ ||b3||,

||b3 ± b1 ± b2|| ≥ ||b3||.
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The Algorithm Fails in Dimension 5





















2 0 0 0 1

0 2 0 0 1

0 0 2 0 1

0 0 0 2 1

0 0 0 0 ε





















G-reduced but not M-reduced for ε ∈ ]0, 1[.
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Some Notations

• Beginning of the loop iteration: [a1, . . . ,ad].

• After the recursive call: [b1, . . . ,bd−1,ad].

• c = x1a1 + . . . + xd−1ad−1 a closest vector to ad.

• bd = ad − c.

• π = rank of bd once (b1, . . . ,bd) is re-ordered (at the following

loop iteration).
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General Overview of the Complexity Analysis

• Linear number of loop iterations ⇐ geometric decrease of the

length product in any O(1) consecutive iterations:

– At least once every d loop iterations, |xπi−1
| ≥ 2.

– [a1, . . . ,ad−1] not quasi-reduced: geometric decrease at the

previous loop iteration.

– Obvious if aπ, . . . ,ad have not ≈ the same lengths.

– Otherwise, we use the Gap Lemma: Projd−1ad is far from

Vor[a1, . . . ,ad−1], thus bd is far shorter than ad.

• Analysing precisely the cost of the CVP routine.

• Bounding cleverly the costs of the successive loop iterations.
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What are the Difficult Points?

• Dealing with the non-determinism of the re-ordering.

• Defining what “quasi-reduced” means.

• Proving the Gap Lemma.

• Working around the fact that the Gap Lemma is partly wrong in

dim 4.

• Bounding very tightly the cost of the CVP routine.
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Sometimes we get a 2

• Suppose that d = 3 and πi−1 = 2.

• b3 = a3 − c = a3 + x1a1 + x2a2.

• Three cases:

– x2 = 0: [a1,a3] is the “[b1,b2]” of the previous loop iteration,

which is reduced. b3 = a3, last iteration.

– |x2| = 1: b3 = a3 + x1a1 ± a2 = ±a2 + a3 + x1a1. Because of

the previous loop, a2 cannot be shortened by using a3 and a1.

||b3|| ≥ ||a2|| ≥ ||b2||, and πi ≥ πi−1 + 1.

– Otherwise, we get a 2.
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Quasi-Reduced Bases

• [b1, . . . ,bd] is G-reduced ⇔ ∀i, Proji−1bi ∈ Vor[b1, . . . ,bi−1].

• Let ε > 0. [b1, . . . ,bd] is ε-reduced

⇔ ∀i, Proji−1bi ∈ (1 + ε)Vor[b1, . . . ,bi−1].

• If [a1, . . . ,ad−1] is not ε-reduced, then we had

a geom. decrease at the previous loop iteration.

• Q: How properties on reduced bases can be

extended to quasi-reduced bases?

b1
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The Gap Lemma (1/2)

0
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Low-Dimensional Lattice Basis Reduction Revisited

The Gap Lemma (2/2)

• Let 2 ≤ d ≤ 4. ∃ε, D > 0 s.t. the following holds.

• Let [b1, . . . ,bd−1] an ε-reduced basis, u ∈ Vor[b1, . . . ,bd−1] and

x1, . . . , xd−1 be integers.

• If ||bk|| ≥ (1 − ε)||bd−1|| for some k ≤ d − 1, then:

||u||2 + D||bk||
2 ≤ ||u +

d−1
∑

j=1

xjbj ||
2,

where |xk| ≥ 2, and if d = 4 the two other |xj |’s are not both 1.
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Open Problems

• Fast (quasi-linear time) version of the algorithm.

• What happens in dimension 5? and beyond?

• Can we use some of the tools of the proof anywhere else?
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