Low-Dimensional Lattice Basis Reduction Revisited

Damien STEHLÉ

Burlington, June 17th, 2004 Joint work with Phong NGUYEN

http://www.loria.fr/~stehle/
 damien.stehle@loria.fr

- Lattice L = grid in a Euclidean space = discrete subgroup of \mathbb{R}^d = $\{\sum_{i=1}^m x_i \mathbf{b}_i \mid x_1, \dots, x_m \in \mathbb{Z}\}.$
- d is the space dim, $m \leq d$ the dim, $[\mathbf{b}_1, \ldots, \mathbf{b}_m]$ a basis.
- L given by the integer matrix of one of its bases, along with its Gram matrix:

$$G(\mathbf{b}_1,\ldots,\mathbf{b}_m) = (\langle \mathbf{b}_i,\mathbf{b}_j \rangle)_{i,j}.$$

• Complexity model: bit operations, without fast arithmetic.

Basic Definitions (1/2)

- First minimum = $\lambda_1(L) = \min(r \mid B_n(\mathbf{0}, r) \cap L \neq \{\mathbf{0}\}).$
- SVP: find $\mathbf{v} \in L$ of length $\lambda_1(L)$.
- *i*-th minimum = $\lambda_i(L) = \min(r \mid B_n(\mathbf{0}, r) \cap L \text{ has dim} \ge i).$

Lattice Basis Reduction (2/2)

- There are more or less interesting bases for a given lattice.
- Quality measures: lengths and orthogonality of the vectors.
- No natural "best" reduction.
- [b₁,..., b_m] is Minkowski (M-)reduced iff for any i, b_i is a shortest lattice vector s.t. [b₁,..., b_i] can be extended to a basis.
- If $d \leq 4$, a M-reduced basis reaches the d first minima.

Why Lattices in Low Dimensions?

- Gcd calculation in \mathcal{O}_d (Kaltofen and Rolletschek).
- Sum of 4 squares.
- Rational points on rational conics (Cremona and Rusin).
- High dim lattice reduction relies on alg. in low dim (LLL, BKZ).
- Good starting point to a better understanding of lattices.
- Very elegant problem.

Some Bibliography

Fixed dimension, complexity with respect to the size of the matrix coefficients.

- 19-th c.: Gauss' algorithm in dim 2, quadratic complexity.
- 1982-83: LLL and Kannan, cubic complexity in any dim.
- 1986: "Affine" algorithm of Vallée in dim 3, cubic complexity.
- 1987: Schnorr's BKZ algorithm.
- 2001: Semaev's algorithm in dim 3, quadratic complexity.

Our Results

- Description of a natural greedy algorithm generalizing Gauss' and Semaev's algorithms.
- Proof that it returns a M-reduced basis in any dimension $d \leq 4$.
- Proof that it has a quadratic complexity in any dimension $d \leq 4$.
- Unified geometric analysis for all dimensions up to 4.

Gauss' Algorithm (2/2)

- Correctness: if $||\mathbf{b}_1|| \leq ||\mathbf{b}_2||$ and $\forall x \in \mathbb{Z}, ||\mathbf{b}_2 + x\mathbf{b}_1|| \geq ||\mathbf{b}_2||$, then $[\mathbf{b}_1, \mathbf{b}_2]$ is M-reduced.
- Linearity of the number of loop iterations: at least once in every 2 iterations, we subtract xb₁ to b₂ with |x| ≥ 2.
 ⇒ The length product decreases by a geometric factor.
- Quadratic complexity: computing x: $O(\log ||\mathbf{b}_2|| \cdot [1 + \log ||\mathbf{b}_2|| - \log ||\mathbf{b}_1||]).$ $\Rightarrow O\left(\sum_{i=1}^{\tau} \log ||\mathbf{b}_2^i|| \cdot [1 + \log ||\mathbf{b}_2^i|| - \log ||\mathbf{b}_1^i||]\right)$ $= O\left(\log ||\mathbf{b}_2^0|| \cdot \sum_{i=1}^{\tau} [1 + \log ||\mathbf{b}_2^i|| - \log ||\mathbf{b}_2^{i+1}||]\right)$ $= O\left(\log ||\mathbf{b}_2|| \cdot [\tau + \log ||\mathbf{b}_2|| - \log \lambda_1(L)]\right).$

Name: Greedy $(\mathbf{a}_1, \dots, \mathbf{a}_d)$. Input: A basis $[\mathbf{a}_1, \dots, \mathbf{a}_d]$. Output: A G-reduced basis of $L[\mathbf{a}_1, \dots, \mathbf{a}_d]$. 1. If d = 1, return $[\mathbf{a}_1]$. 2. Repeat 3. Sort $(\mathbf{a}_1, \dots, \mathbf{a}_d)$ by increasing lengths, 4. $[\mathbf{b}_1, \dots, \mathbf{b}_{d-1}] := \text{Greedy}(\mathbf{a}_1, \dots, \mathbf{a}_{d-1})$, 5. Find a closest vector \mathbf{c} to \mathbf{a}_d , in $L[\mathbf{b}_1, \dots, \mathbf{b}_{d-1}]$, 6. $\mathbf{b}_d := \mathbf{a}_d - \mathbf{c}$, 7. Until $||\mathbf{b}_d|| \ge ||\mathbf{b}_{d-1}||$. 8. Return $[\mathbf{b}_1, \dots, \mathbf{b}_d]$.

Termination and Correctness

- Termination: the length product decreases at each iteration.
- Correctness: equivalence up to dim 4 of G- and M-reductions.
- $[\mathbf{b}_1, \dots, \mathbf{b}_d]$ is G-reduced $\Leftrightarrow \forall i, \forall x_1, \dots, x_{i-1} \in \mathbb{Z}, ||\mathbf{b}_i + x_1\mathbf{b}_1 + \dots + x_{i-1}\mathbf{b}_{i-1}|| \ge ||\mathbf{b}_i||$ $\Leftrightarrow \forall i, \operatorname{Proj}_{i-1}\mathbf{b}_i \in \operatorname{Vor}[\mathbf{b}_1, \dots, \mathbf{b}_{i-1}].$
- $[\mathbf{b}_1, \dots, \mathbf{b}_d]$ is M-reduced iff $||x_1\mathbf{b}_1 + \dots + x_d\mathbf{b}_d|| \ge ||\mathbf{b}_i||$ for all *i* and for all $x_1, \dots, x_d \in \mathbb{Z}$ with $gcd(x_i, \dots, x_d) = 1$.

Minkowski Conditions

Let $d \leq 5$. A basis $[\mathbf{b}_1, \ldots, \mathbf{b}_d]$ is M-reduced iff $\forall i, \forall x_1, \ldots, x_d$ with $gcd(x_i, \ldots, x_d) = 1$ and $|x_1|, \ldots, |x_d|$ is in the table below (up to any indices permutation), then $||x_1\mathbf{b}_1 + \ldots + x_d\mathbf{b}_d|| \geq ||\mathbf{b}_i||$.

- Beginning of the loop iteration: $[\mathbf{a}_1, \ldots, \mathbf{a}_d]$.
- After the recursive call: $[\mathbf{b}_1, \ldots, \mathbf{b}_{d-1}, \mathbf{a}_d]$.
- $\mathbf{c} = x_1 \mathbf{a}_1 + \ldots + x_{d-1} \mathbf{a}_{d-1}$ a closest vector to \mathbf{a}_d .

•
$$\mathbf{b}_d = \mathbf{a}_d - \mathbf{c}$$
.

• $\pi = \text{rank of } \mathbf{b}_d \text{ once } (\mathbf{b}_1, \dots, \mathbf{b}_d) \text{ is re-ordered (at the following loop iteration).}$

- Linear number of loop iterations \Leftarrow geometric decrease of the length product in any O(1) consecutive iterations:
 - At least once every d loop iterations, $|x_{\pi_{i-1}}| \ge 2$.
 - $[\mathbf{a}_1, \ldots, \mathbf{a}_{d-1}]$ not quasi-reduced: geometric decrease at the previous loop iteration.
 - Obvious if $\mathbf{a}_{\pi}, \ldots, \mathbf{a}_{d}$ have not \approx the same lengths.
 - Otherwise, we use the Gap Lemma: $\operatorname{Proj}_{d-1}\mathbf{a}_d$ is far from $\operatorname{Vor}[\mathbf{a}_1, \ldots, \mathbf{a}_{d-1}]$, thus \mathbf{b}_d is far shorter than \mathbf{a}_d .
- Analysing precisely the cost of the CVP routine.
- Bounding cleverly the costs of the successive loop iterations.

What are the Difficult Points?

- Dealing with the non-determinism of the re-ordering.
- Defining what "quasi-reduced" means.
- Proving the Gap Lemma.
- Working around the fact that the Gap Lemma is partly wrong in dim 4.
- Bounding very tightly the cost of the CVP routine.

Sometimes we get a 2

- Suppose that d = 3 and $\pi_{i-1} = 2$.
- $\mathbf{b}_3 = \mathbf{a}_3 \mathbf{c} = \mathbf{a}_3 + x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2$.
- Three cases:
 - $x_2 = 0$: $[\mathbf{a}_1, \mathbf{a}_3]$ is the " $[\mathbf{b}_1, \mathbf{b}_2]$ " of the previous loop iteration, which is reduced. $\mathbf{b}_3 = \mathbf{a}_3$, last iteration.
 - $-|x_2| = 1: \mathbf{b}_3 = \mathbf{a}_3 + x_1\mathbf{a}_1 \pm \mathbf{a}_2 = \pm \mathbf{a}_2 + \mathbf{a}_3 + x_1\mathbf{a}_1.$ Because of the previous loop, \mathbf{a}_2 cannot be shortened by using \mathbf{a}_3 and \mathbf{a}_1 . $||\mathbf{b}_3|| \ge ||\mathbf{a}_2|| \ge ||\mathbf{b}_2||$, and $\pi_i \ge \pi_{i-1} + 1.$

- Otherwise, we get a 2.

Quasi-Reduced Bases

- $[\mathbf{b}_1, \ldots, \mathbf{b}_d]$ is G-reduced $\Leftrightarrow \forall i, \operatorname{Proj}_{i-1}\mathbf{b}_i \in \operatorname{Vor}[\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}].$
- Let $\varepsilon > 0$. $[\mathbf{b}_1, \dots, \mathbf{b}_d]$ is ε -reduced $\Leftrightarrow \forall i, \operatorname{Proj}_{i-1} \mathbf{b}_i \in (1+\varepsilon) \operatorname{Vor}[\mathbf{b}_1, \dots, \mathbf{b}_{i-1}].$
- If $[\mathbf{a}_1, \ldots, \mathbf{a}_{d-1}]$ is not ε -reduced, then we had a geom. decrease at the previous loop iteration.
- Q: How properties on reduced bases can be extended to quasi-reduced bases?

Damien STEHLÉ

- Let $2 \le d \le 4$. $\exists \varepsilon, D > 0$ s.t. the following holds.
- Let $[\mathbf{b}_1, \ldots, \mathbf{b}_{d-1}]$ an ε -reduced basis, $\mathbf{u} \in \text{Vor}[\mathbf{b}_1, \ldots, \mathbf{b}_{d-1}]$ and x_1, \ldots, x_{d-1} be integers.
- If $||\mathbf{b}_k|| \ge (1 \varepsilon)||\mathbf{b}_{d-1}||$ for some $k \le d 1$, then:

$$||\mathbf{u}||^2 + D||\mathbf{b}_k||^2 \le ||\mathbf{u} + \sum_{j=1}^{d-1} x_j \mathbf{b}_j||^2,$$

where $|x_k| \ge 2$, and if d = 4 the two other $|x_j|$'s are not both 1.

Open Problems

- Fast (quasi-linear time) version of the algorithm.
- What happens in dimension 5? and beyond?
- Can we use some of the tools of the proof anywhere else?