Geometry of Numbers Foundations and Algorithmic Aspects

University of Sydney, Department of Mathematics and Statistics Damien Stehlé

First assignment, due 02/09/2008

This assignment will represent 20% of the overall mark.

1 Minima and Gram-Schmidt orthogonalisation

Let $\vec{b}_1, \ldots, \vec{b}_d$ be a basis of a lattice *L*. Let $\vec{b}_1^*, \ldots, \vec{b}_d^*$ be the Gram-Schmidt orthogonalisation of the \vec{b}_i 's and $\lambda_1, \ldots, \lambda_d$ be the successive minima of *L*.

- 1. Show that it is not true in general that $\lambda_d \geq \max_i \|\vec{b}_i^*\|$.
- 2. Show that for any $j \leq d$, we have $\lambda_j \geq \min_{i \geq j} \|\vec{b}_i^*\|$.

2 Recovering a basis

Let *L* be a *d*-dimensional lattice and $\vec{b}_1, \ldots, \vec{b}_d$ be linearly independent vectors of *L*. Show that there exists a basis $\vec{c}_1, \ldots, \vec{c}_d$ of *L* such that

$$\max_{i} \|\vec{c}_{i}\| \le \sqrt{d} \cdot \max_{i} \|\vec{b}_{i}\|.$$

We suggest the following steps.

- 1. Show that there exists a basis $\vec{B}_1, \ldots, \vec{B}_d$ of L such that for any i, we have $\operatorname{Span}_{j < i}(\vec{b}_j) = \operatorname{Span}_{j < i}(\vec{B}_j)$.
- 2. Let $\vec{b}_1^*, \ldots, \vec{b}_d^*$ (resp. $\vec{B}_1^*, \ldots, \vec{B}_d^*$) be the Gram-Schmidt orthogonalisation of the \vec{b}_i 's (resp. the \vec{B}_i 's). Show that for any *i*, we have $\|\vec{B}_i^*\| \leq \|\vec{b}_i^*\|$.
- 3. Derive the $\vec{c_i}$'s from the $\vec{B_i}$'s.

3 Thue's theorem

Let p and m be two non-zero integers. Using a two-dimensional lattice, show that there exists a non-zero pair of integers x_1, x_2 such that

 $x_2 = mx_1 \mod p$ and $|x_1|, |x_2| \le \sqrt{p}$.

4 HKZ-reduction

Let d grow to infinity. Show that for any Hermite-Korkine-Zolotarev-reduced basis $\vec{b}_1, \ldots, \vec{b}_d$, we have $\|\vec{b}_d^*\| \ge \exp\left(-\frac{1+o(1)}{4}\ln^2 d\right)\|\vec{b}_1\|$, where $\vec{b}_1^*, \ldots, \vec{b}_d^*$ is the Gram-Schmidt orthogonalisation of the \vec{b}_i 's. Hint: use Minkowski's theorem.