Geometry of Numbers Foundations and Algorithmic Aspects

University of Sydney, Department of Mathematics and Statistics Damien Stehlé

Second assignment, due 10/10/2008

This assignment will represent 20% of the overall mark.

1 Small questions on LLL

- 1. Consider the LLL-reduction with parameter $\delta = 0.99$. Give an LLL-reduced basis which is not Minkowski-reduced. Same question with $\delta = 1$.
- 2. Let $\alpha \in (0, 3/4)$. Let $(\mathbf{b}_1, \ldots, \mathbf{b}_d)$ be a basis of a lattice L. We say it is α -Siegel reduced if for any i we have $\alpha \|\mathbf{b}_i^*\|^2 \leq \|\mathbf{b}_{i+1}^*\|^2$. Give some properties of LLL-reduced bases that are still satisfied by Siegel-reduced bases and some that are not anymore. Hint: Siegel-reduced bases are not necessarily size-reduced.
- 3. Let $(\mathbf{b}_1, \ldots, \mathbf{b}_d)$ be a lattice basis and $(\hat{\mathbf{b}}_1, \ldots, \hat{\mathbf{b}}_d)$ be its dual basis. Show that if $(\mathbf{b}_1, \ldots, \mathbf{b}_d)$ is Siegel-reduced, then $(\hat{\mathbf{b}}_d, \ldots, \hat{\mathbf{b}}_1)$ is also Siegel-reduced (with that ordering of the vectors). Does it also hold if we replace the Siegel-reduction by the LLL-reduction?

2 Hermite normal form

Let $B \in \mathbb{Z}^{n \times n}$. Then there exists a unimodular matrix U such that the matrix H defined by $H = B \cdot U$ satisfies the three following properties:

- (a) The matrix H is upper triangular.
- (b) The diagonal coefficients of H are positive.
- (c) If j > i, then $H_{i,j} \in (-H_{i,i}/2, H_{i,i}/2]$.

The decomposition $A = H \cdot U^{-1}$ is unique and is called the Hermite normal form.

1. Explain how to make all three conditions satisfied when condition (a) already holds.

- 2. By using the LLL algorithm, show that one can find a matrix U such that $A \cdot U$ has exactly one non-zero entry in its last row. Hint: multiply the last row of A by a large constant, and use the fact that if $(\mathbf{b}_1, \ldots, \mathbf{b}_d)$ is an LLL-reduced basis of a d-dimensional lattice L, then $\prod_i ||\mathbf{b}_i|| \leq 2^{d^2/4} \cdot \det(L)$.
- 3. Using the two questions above, describe an algorithm that computes the Hermite normal form. Does this algorithm run in polynomial time?

3 RSA with a small decryption exponent

Let $N = p \cdot q$ be the product of two primes such that p > q > p/2. Let e and d be such that $ed = 1 \mod (p-1)(q-1)$. In the RSA cryptosystem, the public key is (N, e) and the private key is (p, q, d). The encryption of an integer $m \in [0, N-1]$ is the operation $m \mapsto m^e \mod N$ and the decryption of an encrypted message c is the operation $c \mapsto c^d \mod N$. Fermat's little theorem ensures that $(m^e)^d = m \mod N$, allowing the receiver to recover the message that was sent to him. The integer d is called the decryption exponent. The smaller d, the faster the decryption. The goal of this exercise is to show that when d is too small, then one can factor N in polynomial time, thus breaking the system.

In the following, we suppose that e belongs to [N/2, N] and that N and e are known, while p, q and d are unknown. We suppose that $d \leq e^{\delta}$ for some $\delta < 1$.

1. Let P(x, y) = x(N+1+y) - 1. Show that P has a root (x_0, y_0) modulo e with $y_0 = -(p+q)$, and

$$|x_0| \le c_1 \cdot e^{\delta}$$
 and $|x_1| \le c_2 \cdot e^{1/2}$,

for some constants c_1 and c_2 . Show that if we could find that root (x_0, y_0) in polynomial time, then we could factor N in polynomial time.

2. Let $\alpha \geq 1$ be an integer. Consider the polynomials:

$$g_{i,k} = x^i P^k(x, y) e^{\alpha - k} \quad \text{for} \quad k \in [0, \alpha] \text{ and } i \in [0, \alpha - k]$$
$$h_{j,k} = y^j P^k(x, y) e^{\alpha - k} \quad \text{for} \quad k \in [0, \alpha] \text{ and } j \in [1, t],$$

where t will be determined later on. Show that for any polynomial Q in that family, we have $Q(x_0, y_0) = 0 \mod e^{\alpha}$.

- 3. Let $\epsilon > 0$. By using the LLL algorithm on a lattice related to the above polynomials, and by optimizing t, show that if $\delta < 0.284 \epsilon$, then one can find a polynomial Q such that $Q(x_0, y_0) = 0$ holds over the integers.
- 4. A single bivariate polynomial is not sufficient to recover the desired y_0 in polynomial time. Suggest a way to work around that difficulty. Hint: use the fact that if $(\mathbf{b}_1, \ldots, \mathbf{b}_d)$ is an LLL-reduced basis of a *d*-dimensional integral lattice, then $\prod_i ||\mathbf{b}_i|| \leq 2^{d^2/4} \det(L)$ and $||\mathbf{b}_1|| \geq 1$.

4 A transference theorem

Let $(\mathbf{b}_1, \ldots, \mathbf{b}_d)$ be a Hermite-Korkine-Zolotarev-reduced basis of a lattice L. For any $i \leq d$, we define $L^{(i)}$ as the projection of L orthogonally to the vectors $\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}$. Let \hat{L} be the dual of L. The goal of this exercise is to obtain a bound on each quantity $\lambda_i(L)\lambda_{d-i+1}(\hat{L})$ that depends only on the dimension d.

- 1. Show that for any *i* and any $j \leq d i + 1$, we have $\lambda_j(\hat{L}) \leq \lambda_j(\widehat{L^{(i)}})$.
- 2. Show that for any *i*, we have $\|\mathbf{b}_i\|^2 \leq \sum_{j \leq i} \lambda_1(L^{(j)})^2$.
- 3. Show that for any *i*, we have $\lambda_i(L)^2 \lambda_1(\hat{L})^2 \leq d \widetilde{\gamma_d}^2$, where $\widetilde{\gamma_d} = \max_{i \leq d} \gamma_i$ and γ_i is the *i*-th dimensional Hermite constant.
- 4. Show that for any *i* we have $\lambda_i(L)\lambda_{d-i+1}(\hat{L}) \leq d\tilde{\gamma_d}$.