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Abstract. Despite their popularity, lattice reduction algorithms remain
mysterious in many ways. It has been widely reported that they behave
much more nicely than what was expected from the worst-case proved
bounds, both in terms of the running time and the output quality. In
this article, we investigate this puzzling statement by trying to model the
average case of lattice reduction algorithms, starting with the celebrated
Lenstra-Lenstra-Lovász algorithm (L3). We discuss what is meant by
lattice reduction on the average, and we present extensive experiments
on the average case behavior of L3, in order to give a clearer picture of the
differences/similarities between the average and worst cases. Our work
is intended to clarify the practical behavior of L3 and to raise theoretical
questions on its average behavior.

1 Introduction

Lattices are discrete subgroups of R
n. A basis of a lattice L is a set of d ≤ n lin-

early independent vectors b1, . . . ,bd in R
n such that L is the set L[b1, . . . ,bd] =

{

∑d
i=1 xibi, xi ∈ Z

}

of all integer linear combinations of the bi’s. The integer d

matches the dimension of the linear span of L: it is called the dimension of the
lattice L. A lattice has infinitely many bases (except in trivial dimension ≤ 1),
but some are more useful than others. The goal of lattice reduction is to find
interesting lattice bases, such as bases consisting of reasonably short and al-
most orthogonal vectors. Finding good reduced bases has proved invaluable in
many fields of computer science and mathematics (see [9, 14]), particularly in
cryptology (see [22, 24]).

The first lattice reduction algorithm in arbitrary dimension is due to Her-
mite [15]. It was introduced to show the existence of Hermite’s constant and of
lattice bases with bounded orthogonality defect. Very little is known on the com-
plexity of Hermite’s algorithm: the algorithm terminates, but its polynomial-time
complexity remains an open question. The subject had a revival with Lenstra’s
celebrated work on integer programming [19, 20], which used an approximate
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variant of Hermite’s algorithm. Lenstra’s variant was only polynomial-time for
fixed dimension, which was however sufficient in [19]. This inspired Lovász to
develop a polynomial-time variant of the algorithm, which reached a final form
in [18] where Lenstra, Lenstra and Lovász applied it to factor rational polyno-
mials in polynomial time, from whom the name L3 comes. Further refinements
of L3 were later proposed, notably by Schnorr [27, 28]. Currently, the most effi-
cient provable variant of L3 known in case of large entries, called L2, is due to
Nguyen and Stehlé [23], and is based on floating-point arithmetic. Like L3, it
can be viewed as a relaxed version of Hermite’s algorithm.

Our Contribution. One of the main reasons why lattice reduction has proved
invaluable in many fields is the widely reported experimental fact that lattice re-
duction algorithms, L3 in particular, behave much more nicely than what could
be expected from the worst-case proved bounds, both in terms of the running
time and the output quality. However, to our knowledge, this mysterious phe-
nomenon has never been described in much detail. In this article, we try to
give a clearer picture and to give heuristic arguments that explain the situation.
We start by discussing what is meant by the average case of lattice reduction,
which is related to notions of random lattices and random bases. We then focus
on L3. Regarding the output quality, it seems as if the only difference between
the average and worst cases of L3 in high dimension is a change of constants:
while the worst-case behavior of L3 is closely related to Hermite’s constant in
dimension two γ2 =

√

4/3, the average case involves a smaller constant whose
value is only known experimentally: ≈ 1.04. So while L3 behaves better than
expected, it does not behave that much better: the approximation factors seem
to remain exponential in d. Regarding the running time, there is no surprise for
the so-called integer version of L3, except when the input lattice has a special
shape such as knapsack-type lattices. However, there can be significant changes
with the floating-point variants of L3. We give a family of bases for which the
average running time should be asymptotically close to the worst-case bound,
and explain why for reasonable input sizes the executions are faster.

Applications. Guessing the quality of the bases output by L3 is very important
for several reasons. First, all lattice reduction algorithms known rely on L3 at
some stage and their behavior is therefore strongly related to that of L3. A
better understanding of their behavior should provide a better understanding of
stronger reduction algorithms such as Schnorr’s BKZ [27] and is thus useful to
estimate the hardness of lattice problems (which is used in several public-key
cryptosystems, such as NTRU [16] and GGH [11]). Besides, if after running L3,
one obtains a basis which is worse than expected, then one should randomize the
basis and run L3 again. Another application comes from the so-called floating-
point (fp for short) versions of L3. These are very popular in practice because
they are usually much faster. They can however prove tricky to use because they
require tuning: if the precision used in fp-arithmetic is not chosen carefully, the
algorithm may no longer terminate, and if it terminates, it may not give an
L3-reduced basis. On the other hand, the higher the precision, the slower the
execution. Choosing the right precision for fp-arithmetic is thus important in



3

practice and it turns out to be closely related to the average-case quality of the
bases output by the L3 algorithm.

The table below sums up our results, for d-dimensional lattices whose initial
basis vectors are of lengths smaller than B, with n = Θ(d) and d = O(log B).

‖b1‖

(det L)1/d Running time of L2 Required prec. for L2

Worst-case bound (4/3)d/4 O(d5 log2 B) ≈ 1.58d + o(d)

Average-case estim. (1.02)d O(d4 log2 B) → O(d5 log2 B) 0.25d + o(d)

Road map. In Section 2 we provide necessary background on L3. We discuss
random lattices and random bases in Section 3. Then we describe our experimen-
tal observations on the quality of the computed bases (Section 4), the running
time (Section 5) and the numerical behavior (Section 6).

Additional Material. All experiments were performed with fplll-1.2, avail-
able at http://www.loria.fr/∼stehle/practLLL.html.The data used to draw
the figures of the paper and some others are also available at this URL.

2 Background

Notation. All logarithms are in base 2. Let ‖ · ‖ and 〈·, ·〉 be the Euclidean
norm and inner product of R

n. The notation ⌈x⌋ denotes a closest integer to x.
Bold variables are vectors. All the lattices we consider are integer lattices, as
usual. All our complexity results are given for the bit complexity model, without
fast integer arithmetic. Our fpa-model is a smooth extension of the IEEE-754
standard, as provided by NTL [30] (RR class) and MPFR [26].

We recall basic notions from algorithmic geometry of numbers (see [22]).
First minimum. If L is a lattice, we denote by λ(L) its first minimum.
Gram matrix. Let b1, . . . ,bd be vectors. Their Gram matrix G(b1, . . . ,bd) is
the d × d symmetric matrix (〈bi,bj〉)1≤i,j≤d formed by all the inner products.
Gram-Schmidt orthogonalization. Let b1, . . . ,bd be linearly independent
vectors. The Gram-Schmidt orthogonalization (GSO) [b∗

1, . . . ,b
∗
d] is the orthog-

onal family defined as follows: b∗
i is the component of bi orthogonal to the

linear span of b1, . . . ,bi−1. We have b∗
i = bi − ∑i−1

j=1 µi,jb
∗
j where µi,j =

〈bi,b
∗
j 〉/‖b∗

j‖2. For i ≤ d, we let µi,i = 1. The lattice L spanned by the bi’s

satisfies detL =
∏d

i=1 ‖b∗
i ‖. The GSO family depends on the order of the vec-

tors. If the bi’s are integer vectors, the b∗
i ’s and the µi,j ’s are rational. In what

follows, the GSO family denotes the µi,j ’s, together with the quantities ri,j ’s
defined as: ri,i = ‖b∗

i ‖2 and ri,j = µi,jrj,j for j < i.
Size-reduction. A basis [b1, . . . ,bd] is size-reduced with factor η ≥ 1/2 if its
GSO family satisfies |µi,j | ≤ η for all j < i. The i-th vector bi is size-reduced
if |µi,j | ≤ η for all j < i. Size-reduction usually refers to η = 1/2, but it is
essential for fp variants of L3 to allow larger η.
L3-reduction. A basis [b1, . . . ,bd] is L3-reduced with factor (δ, η) with 1/4 <
δ ≤ 1 and 1/2 ≤ η <

√
δ if the basis is η-size-reduced and if its GSO sat-

isfies the (d − 1) Lovász conditions (δ − µ2
κ,κ−1)rκ−1,κ−1 ≤ rκ,κ (or equiva-

lently δ‖b∗
κ−1‖2 ≤ ‖b∗

κ + µκ,κ−1b
∗
κ−1‖2), which implies that the ‖b∗

κ‖’s never
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drop too much. Such bases have useful properties (see [18]), like providing ap-
proximations to the shortest and closest vector problems. In particular, the first
vector is relatively short: ‖b1‖ ≤ β(d−1)/4(detL)1/d, where β = 1/(δ − η2). And
the first basis vector is at most exponentially far away from the first minimum:
‖b1‖ ≤ β(d−1)/2λ(L). L3-reduction usually refers to the factor (3/4, 1/2) ini-
tially chosen in [18], in which case β = 2. But the closer (δ, η) is to (1, 1/2), the
shorter b1 should be. In practice, one usually selects δ ≈ 1 and η ≈ 1/2, so that
β ≈ 4/3 and therefore ‖b1‖ <∼ (4/3)(d−1)/4(det L)1/d. The L3 algorithm obtains
in polynomial time a (δ, 1/2)-L3-reduced basis where δ < 1 can be chosen arbi-
trarily close to 1. The L2 algorithm achieves a factor (δ, η), where δ < 1 can be
arbitrarily close to 1 and η > 1/2 arbitrarily close to 1/2.

Input: A basis [b1, . . . ,bd] and δ ∈ (1/4, 1).
Output: An L3-reduced basis with factor (δ, 1/2).
1. Compute the rational GSO, i.e., all the µi,j ’s and ri,i’s.
2. κ:=2. While κ ≤ d do
3. Size-reduce bκ using the algorithm of Figure 2, that updates the GSO.

4. κ′:=κ. While κ ≥ 2 and δrκ−1,κ−1 ≥ rκ′,κ′ +
Pκ′−1

i=κ−1 µ2
κ′,iri,i, do κ:=κ − 1.

5. For i = 1 to κ − 1, µκ,i:=µκ′,i. Insert bκ′ right before bκ.
6. κ:=κ + 1.
7. Output [b1, . . . ,bd].

Fig. 1. The L3 Algorithm.

Input: A basis [b1, . . . ,bd], its GSO and an index κ.
Output: The basis with bκ size-reduced and the updated GSO.
1. For i = κ − 1 down to 1 do
2. bκ:=bκ − ⌈µκ,i⌋bi.
3. For j = 1 to i do µκ,j :=µκ,j − ⌈µκ,i⌋µi,j .
4. Update the GSO accordingly.

Fig. 2. The size-reduction algorithm.

The L3 algorithm. The L3 algorithm [18] is described in Figure 1. It computes
an L3-reduced basis in an iterative fashion: the index κ is such that at any stage
of the algorithm, the truncated basis [b1, . . . ,bκ−1] is L3-reduced. At each loop
iteration, κ is either incremented or decremented: the loop stops when κ reaches
the value d + 1, in which case the entire basis [b1, . . . ,bd] is L3-reduced.

If L3 terminates, it is clear that the output basis is L3-reduced. What is less
clear a priori is why L3 has a polynomial-time complexity. A standard argu-
ment shows that each swap decreases the quantity ∆ =

∏d
i=1 ‖b∗

i ‖2(d−i+1) by
at least a factor δ < 1, while ∆ ≥ 1 because the bi’s are integer vectors and ∆
can be viewed as a product of squared volumes of lattices spanned by some of
the bi’s. This proves that there are O(d2 log B) swaps, and therefore loop iter-
ations, where B is an upper bound on the norms of the input basis vectors. It
remains to estimate the cost of each loop iteration. This cost turns out to be
dominated by O(dn) arithmetic operations on the basis matrix and GSO coef-
ficients µi,j and ri,i which are rational numbers of bit-length O(d log B). Thus,
the overall complexity of L3 is O((d2 log B) · dn · (d log B)2)) = O(d5n log3 B).
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L3 with fpa. The cost of L3 is dominated by the operations on the GSO coeffi-
cients which are rationals with huge numerators and denominators. It is therefore
tempting to replace the exact GSO coefficients by fp approximations. But doing
so in a straightforward manner leads to numerical anomalies. The algorithm is
no longer guaranteed to be polynomial-time: it may not even terminate. And
if ever it terminates, the output basis may not be L3-reduced. The main num-
ber theory computer packages [7, 21, 30] contain heuristic fp-variants of L3 à la
Schnorr-Euchner [29] suffering from stability problems. On the theoretic side,
the fastest provable fp variant of L3 is Nguyen-Stehlé’s L2 [23], whose running
time is O(d4n(d + log B) log B). The main algorithmic differences with Schnorr-
Euchner’s fp L3 are that the integer Gram matrix is updated during the execution
(thus avoiding cancellations while computing scalar products with fpa), and that
the size-reduction algorithm is replaced by a lazy variant (this idea was already
in Victor Shoup’s NTL code). In L2, the worst-case required precision for fpa
is ≤ 1.59d + o(d). The proved variant of fplll-1.2 implements L2.

3 Random Lattices

In this section, we give the main methods known to generate random lattices
and random bases, and describe the random bases we use in our experiments.

3.1 Random Lattices

When experimenting with L3, it seems natural to work with random lattices, but
what is a random lattice? From a practical point of view, one could just select
randomly generated lattices of interest, such as lattices used in cryptography
or in algorithmic number theory. This would already be useful but one might
argue that it would be insufficient to draw conclusions, because such lattices
may not be considered random in a mathematical sense. For instance, in many
cryptanalyses, one applies reduction algorithms to lattices whose first minimum
is much shorter than all the other minima.

From a mathematical point of view, there is a natural notion of random
lattice, which follows from a measure on n-dimensional lattices with determi-
nant 1 introduced by Siegel [31] back in 1945, to provide an alternative proof
of the Minkowski-Hlwaka theorem. Let Xn = SLn(R)/SLn(Z) be the space
of (full-rank) lattices in R

n modulo scale. The group G = SLn(R) possesses
a unique (up to scale) bi-invariant Haar measure, which can be thought of as

the measure it inherits as a hypersurface in R
n2

. When mapping G to the quo-
tient Xn = G/SLn(Z), the Haar measure projects to a finite measure µ on
the space Xn which we can normalize to have total volume 1. This measure µ
is G-invariant: if A ⊆ Xn is measurable and g ∈ G, then µ(A) = µ(gA). In
fact, µ can be characterized as the unique G invariant Borel probability mea-
sure on Xn. This gives rise to a natural notion of random lattices. The recent
articles [2, 4, 12] propose efficient ways to generate lattices which are random in
this sense. For instance, Goldstein and Mayer [12] show that for large N , the
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(finite) set Ln,N of n-dimensional integer lattices of determinant N is uniformly
distributed in Xn in the following sense: given any measurable subset A ⊆ Xn

whose boundary has zero measure with respect to µ, the fraction of lattices
in Ln,N/N1/n that lie in A tends to µ(A) as N tends to infinity.

Thus, to generate lattices that are random in a natural sense, it suffices to
generate uniformly at random a lattice in Ln,N for large N . This is particularly
easy when N is prime. Indeed, when p is a large prime, the vast majority of
lattices in Ln,p are lattices spanned by row matrices of the following form:

Rn
p =

0

B

B

B

B

B

B

@

p 0 0 . . . 0
x1 1 0 . . . 0

x2 0 1
. . .

...
...

...
. . .

. . . 0
xn−1 0 . . . 0 1

1

C

C

C

C

C

C

A

,

where the xi’s are chosen independently and uniformly in {0, . . . , p − 1}.

3.2 Random Bases

Once a lattice has been selected, it would be useful to select a random basis,
among the infinitely many bases. This time however, there is no clear definition
of what is a random basis, since there is no finite measure on SLn(Z). Since
we mostly deal with integer lattices, one could consider the Hermite normal
form (HNF) of the lattice, and argue that this is the basis which gives the
least information on the lattice, because it can be computed in polynomial time
from any basis. However, it could also be argued that the HNF may have special
properties, depending on the lattice. For instance, the HNF of NTRU lattices [16]
is already reduced in some sense, and does not look like a random basis at all.
A random basis should consist of long vectors: the orthogonality defect should
not be bounded, since the number of bases with bounded orthogonality defect
is bounded. In other words, a random basis should not be reduced at all.

A heuristic approach was used for the GGH cryptosystem [11]. Namely, a
secret basis was transformed into a large public basis of the same lattice by
multiplying generators of SLn(Z) in a random manner. However, it is difficult
to control the size of the entries, and it looks hard to obtain theoretical results.

One can devise a less heuristic method as follows. Consider a full-rank integer
lattice L ⊆ Z

n. If B is much bigger than (detL)1/n, it is possible to sample
efficiently and uniformly points in L ∩ [−B, B]n (see [1]). For instance, if B =
(detL)/2, one can simply take an integer linear combination x1b1+· · ·+xnbn of a
basis, with large coefficients xi, and reduce the coordinates modulo detL = [Zn :
L]. That is easy for lattices in the previous set Ln,p where p is prime. Once we
have such a sampling procedure, we note that n vectors randomly chosen in such
a way will with overwhelming probability be linearly independent. Though they
are unlikely to form a lattice basis (rather, they will span a sublattice), one can
easily lift such a full-rank set of linearly independent vectors of norm ≤ B to a
basis made of vectors of norm ≤ B

√
n/2 using Babai’s nearest plane algorithm [5]

(see [1] or [22, Lemma 7.1]). In particular, if one considers the lattices of the
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class Ln,p, it is easy to generate plenty of bases in a random manner in such a
way that all the coefficients of the basis vectors are ≤ p

√
n/2.

3.3 Random L3-Reduced Bases

There are two natural notions of random L3 bases. One is derived from the
mathematical definition. An L3-reduced basis is necessarily Siegel-reduced (fol-
lowing the definition of [8]), that is, its µi,j ’s and ‖b∗i ‖/‖b∗i+1‖’s are bounded.
This implies [8] that the number of L3-reduced bases of a given lattice is finite
(for any reduction parameters), and can be bounded independently of the lat-
tice. Thus, one could define a random L3 basis as follows: select a random lattice,
and among all the finitely many L3-reduced bases of that lattice, select one uni-
formly at random. Unfortunately, the latter process is impractical, but it might
be interesting to prove probabilistic statements on such bases. Instead, one could
try the following in practice: select a random lattice, then select a random basis,
and eventually apply the L3 algorithm. The output basis will not necessarily
be random in the first sense, since the L3 algorithm may bias the distribution.
However, intuitively, it could also be viewed as some kind of random L3 basis.
In the previous process, it is crucial to select a random-looking basis (unlike the
HNF of NTRU lattices). For instance, if we run the L3 algorithm on already
reduced (or almost reduced) bases, the output basis will differ from a typical
L3-reduced basis.

3.4 Random Bases in Our Experiments

In our experiments, besides the Goldstein-Mayer [12] bases of random lattices, we
considered two other types of random bases. The Ajtai-type bases of dimension d
and factor α are given by the rows of a lower triangular random matrix B with:

Bi,i = ⌊2(2d−i+1)α⌋ and Bj,i = rand(−Bi,i/2, Bi,i/2) for all j > i.

Similar bases have been used by Ajtai in [3] to show the tightness of worst-case
bounds of [27]. The bases used in Coppersmith’s root-finding method [10] bear
some similarities with what we call Ajtai-type bases.

We define the knapsack-type bases as the rows of the d × (d + 1) matrices:
0

B

B

B

@

A1 1 0 . . . 0
A2 0 1 . . . 0
...

...
...

. . .
...

Ad 0 0 . . . 1

1

C

C

C

A

,

where the Ai’s are sampled independently and uniformly in [−B, B], for some
given bound B. Such bases often occur in practice, e.g., in cryptanalyses of
knapsack-based cryptosystems, reconstructions of minimal polynomials and de-
tections of integer relations between real numbers. The behavior of L3 on this
type of bases and on the above Rd+1

p ’s look alike.

Interestingly, we did not notice any significant change in the output quality
or in the geometry of reduced bases between all three types of random bases.
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4 The Output Quality of L3

For fixed parameters δ and η, the L3 and L2 algorithms output bases b1, . . . ,bd

such that ‖b∗
i+1‖2/‖b∗

i ‖2 ≥ β = 1/(δ − η2) for all i < d, which implies that:

‖b1‖ ≤ β(d−1)/4(detL)1/d and ‖b1‖ ≤ β(d−1)/2λ(L).

It is easy to prove that these bounds are tight in the worst case: both are reached
for some reduced bases of some particular lattices. However, there is a common
belief that they are not tight in practice. For instance, Odlyzko wrote in [25]:

This algorithm [. . . ] usually finds a reduced basis in which the first vector is much
shorter than guaranteed [theoretically]. (In low dimensions, it has been observed
empirically that it usually finds the shortest non-zero vector in a lattice.)

We argue that the quantity ‖b1‖/(detL)1/d remains exponential on the average,
but is indeed far smaller than the worst-case bound: for δ close to 1 and η close
to 1/2, one should replace β1/4 ≈ (4/3)1/4 by ≈ 1.02, so that the approximation
factor β(d−1)/4 becomes ≈ 1.02d. As opposed to the worst-case bounds, the
ratio ‖b1‖/λ(L) should also be ≈ 1.02d on the average, rather than being the
square of ‖b1‖/(detL)1/d. Indeed, if the Gaussian heuristic holds for a lattice

L, then λ(L) ≈
√

d
2πe (detL)1/d. The Gaussian heuristic is only a heuristic in

general, but it can be proved for random lattices (see [2, 4]), and it is unlikely to
be wrong by an exponential factor, unless the lattice is very special.

Heuristic 1 Let δ be close to 1 and η be close to 1/2. Given as input a random
basis of almost any lattice L of sufficiently high dimension (e.g., larger than 40),
L3 and L2 with parameters δ and η output a basis whose first vector b1 satis-
fies ‖b1‖/(detL)1/d ≈ (1.02)d.
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Fig. 3. Variation of 1
d

log ‖b1‖

(det L)1/d as a function of d.

4.1 A Few Experiments

In Figure 3, we consider the variations of the quantity 1
d log ‖b1‖

(detL)1/d as the

dimension d increases. On the left side of the figure, each point is a sample of the
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following experiment: generate a random knapsack-type basis with B = 2100·d

and reduce it with L2 (the fast variant of fplll-1.2with (δ, η) = (0.999, 0.501)).
The points on the right side correspond to the same experiments, but starting
with Ajtai-type bases, with α = 1.2. The two sides of Figure 3 are similar and the

quantity 1
d log ‖b1‖

(detL)1/d seems to converge slightly below 0.03 (the corresponding

worst-case constant is ≈ 0.10). This means that the first output vector b1 usually
satisfies ‖b1‖ ≈ (1.02)d(det L)1/d. The exponential quantity (1.02)d remains tiny
even in moderate dimensions: e.g., (1.02)50 ≈ 2.7 and (1.02)100 ≈ 7.2. These data
may explain why in the 80’s, cryptanalysts used to believe that L3 returns vectors
surprisingly small compared to the worst-case bound.

4.2 The Configuration of Local Bases

To understand the shape of the bases that are computed by L3, it is tempting to
consider the local bases of the output bases, i.e., the pairs (b∗

i , µi+1,ib
∗
i + b∗

i+1)
for i < d. These pairs are the components of bi and bi+1 which are orthogonal
to b1, . . . ,bi−1. We experimentally observe that after the reduction, local bases
seem to share a common configuration, independently of the index i. In Figure 4,
a point corresponds to a local basis (its coordinates are µi+1,i and ‖b∗

i+1‖/‖b∗
i ‖)

of a basis returned by the fast variant of fplll-1.2 with parameters δ = 0.999
and η = 0.501, starting from a knapsack-type basis with B = 2100·d. The 2100
points correspond to 30 reduced bases of 71-dimensional lattices. This distribu-
tion seems to stabilize between the dimensions 40 and 50.
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Fig. 4. Distribution of the local bases after L3 (left) and deep-L3 (right).

Figure 4 is puzzling. First of all, the µi+1,i’s are not uniformly distributed
in [−η, η], as one may have thought a priori. As an example, the uniform distri-
bution was used as an hypothesis Theorem 2 in [17]. Our observation therefore
invalidates this result. This non-uniformity is surprising because the other µi,j ’s
seem to be uniformly distributed in [−η, η], in particular when i − j becomes
larger, as it is illustrated by Figure 5. The mean value of the |µi+1,i|’s is close
to 0.38. Besides, the mean value of ‖b∗

i ‖/‖b∗
i+1‖ is close to 1.04, which matches

the 1.02 constant of the previous subsection. Indeed, if the local bases behave
independently, we have:

‖b1‖
d

detL =
∏d

i=1
‖b1‖
‖b∗

i ‖
=

∏d−1
i=1

(

‖b∗
i ‖

‖b∗
i+1‖

)d−i

≈ (1.04)d2/2 ≈ (1.02)d2

.
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Fig. 5. Distribution of µi,i−1 (top left), µi,i−2 (top right), µi,i−5 (bottom left)
and µi,i−10 (bottom right) for 71-dimensional lattices after L3.

A possible explanation of the shape of the pairs (b∗
i , µi+1,ib

∗
i + b∗

i+1) is
as follows. During the execution of L3, the ratios ‖b∗

i ‖/‖b∗
i+1‖ are decreasing

steadily. At some moment, the ratio ‖b∗
i ‖/‖b∗

i+1‖ becomes smaller than
√

4/3.
When it does happen, relatively to b∗

i , either µi+1,ib
∗
i + b∗

i+1 lies in one of the
corners of Figure 4 or is close to the vertical axis. In the first case, it does not
change since (b∗

i , µi+1,ib
∗
i + b∗

i+1) is reduced. Otherwise bi and bi+1 are to be
swapped since µi+1,ib

∗
i + b∗

i+1 is not in the fundamental domain.

4.3 Schnorr-Euchner’s Deep Insertion

The study of local bases helps to understand the behavior of the Schnorr-Euchner
deep insertion algorithm [29]. In deep-L3, instead of having the Lovász condi-
tions satisfied for the pairs (i, i + 1), one requires that they are satisfied for all
pairs (i, j) with i < j, i.e.:

‖b∗
j + µj,j−1b

∗
j−1 + . . . + µj,ib

∗
i ‖2 ≥ δ‖b∗

i ‖2 for j > i.

This is stronger than the L3-reduction, but no polynomial-time algorithm to
compute it is known. Yet in practice, if we deep-L3-reduce an already L3-reduced
basis and if the dimension is not too high, it terminates reasonably fast. On the
right side of Figure 4, we did the same experiment as on the left side, except
that instead of only L3-reducing the bases, we L3-reduced them and then deep-
L3-reduced the obtained bases. The average value of ‖b∗

i ‖/‖b∗
i+1‖’s is closer to 1

than in the case of L3: the 1.04 and 1.02 constants become respectively ≈ 1.025
and 1.012. These data match the observations of [6].
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We explain this phenomenon as follows. Assume that, relatively to b∗
i , the

vector µi+1,ib
∗
i +b∗

i+1 lies in a corner in the left side of Figure 4. Then the Lovász
condition between bi and bi+2 is less likely to be fulfilled, and the vector bi+2

is more likely to be changed. Indeed, the component of bi+2 onto b∗
i+1 will be

smaller than usual (because ‖b∗
i+1‖/‖b∗

i ‖ is small), and thus µi+2,i+1b
∗
i+1 will

be smaller. As a consequence, the vector µi+2,ib
∗
i + µi+2,i+1b

∗
i+1 + b∗

i+2 is more
likely to be shorter than b∗

i , and thus bi+2 is more likely to change. Since the
corner local bases arise with high frequency, deep-L3 often performs insertions
of depths higher than 2 that would not be performed by L3.

5 The Practical Running Time of L3

In this section, we argue that the worst case complexity bound O(d4(d + n)(d +
log B) log B) is asymptotically reached for some classes of random bases, and ex-
plain how and why the running time is better in practice. Here we consider bases
for which n = Θ(d) = O(log B), so that the bound above becomes O(d5 log2 B).
Notice that the heuristic codes do not have any asymptotic meaning since they do
not terminate when the dimension increases too much (in particular, the work-
ing precision must increase with the dimension). Therefore, all the experiments
described in this section were performed using the proved variant of fplll-1.2.

We draw below a heuristic worst-case complexity analysis of L2 that will help
us to explain the difference between the worst case and the practical behavior:

- There are O(d2 log B) loop iterations.
- In a given loop iteration, there are usually two iterations within the lazy size-

reduction: the first one makes the |µκ,i|’s smaller than η and the second one
recomputes the µκ,i’s and rκ,i’s with better accuracy. This is incorrect in full
generality (in particular for knapsack-type bases as we will see below), but is
the case most often.

- In each iteration of the size-reduction, there are O(d2) arithmetic operations.
- Among these, the most expensive ones are those related to the coefficients

of the basis and Gram matrices: these are essentially multiplications between
integers of lengths O(log B) and the xi’s, of lengths O(d).

We argue that the analysis above is tight for Ajtai-type random bases.

Heuristic 2 Let α > 1. When d grows to infinity, the average cost of the L2

algorithm given as input a randomly and uniformly chosen d-dimensional Ajtai-
type basis with parameter α is Θ(d5+2α).

In this section, we also claim that the bounds of the heuristic worst-case
analysis are tight in practice for Ajtai-type random bases, except the O(d) bound
on size of the xi’s. Finally, we detail the case of knapsack-type random bases.

5.1 L2 on Ajtai-Type Random Bases

Firstly, the O(d2 log B) bound on the loop iterations seems to be tight in practice,
as suggested by Figure 6. The left side corresponds to Ajtai-type random bases
with α = 1.2: the points are the experimental data and the continuous line is



12

the gnuplot interpolation of the type f(d) = a · d3.2 (we have log B = O(d1.2)).
The right side has been obtained similarly, for α = 1.5, and g(d) = b · d3.5.
With Ajtai-type bases, size-reductions contain extremely rarely more than two
iterations. For example, for d ≤ 75 and α = 1.5, fewer than 0.01% of the size-
reductions involve more than two iterations. The third bound of the heuristic
worst case analysis is also reached.
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Fig. 6. Number of loop iterations of L2 as a function of d, for Ajtai-type random bases.

These similarities between the worst and average cases do not go on for the
size of the integers involved in the arithmetic operations. The xi’s computed dur-
ing the size-reductions are most often shorter than a machine word, which makes
it difficult to observe the O(d) factor in the complexity bound coming from them.
For an Ajtai-type basis with d ≤ 75 and α = 1.5, fewer than 0.2% of the non-
zero xi’s are longer than 64 bits. In the worst case [23], we have |xi| <∼ (3/2)κ−iM ,
where M is the maximum of the µκ,j ’s before the lazy size-reduction starts, and κ
is the current L3 index. In practice, M happens to be small most of the time.
We argue that the average situation is |xi| ≈ (1.04)κ−iM . This bound remains
exponential, but for a small M , xi becomes larger than a machine word only in
dimensions higher than several hundreds. We define:

µ
(final)
κ,i = µ

(initial)
κ,i −

∑κ−1
j=i+1 xjµj,i = µ

(initial)
κ,i −

∑κ−1
j=i+1

⌊

µ
(final)
κ,j

⌉

µj,i.

We model the

(

µ
(final)
κ,κ−i

)

i

’s by the random variables Ui defined as follows:

U0 = R0 and Ui = Ri +
∑i−1

j=1 UjR
′
i,j if i ≥ 1,

where the Ri’s and R′
i,j ’s are uniformly distributed respectively in [−a, a] for

some constant a and in [−η, η]. We assume that the Ri’s and R′
i,j ’s are pairwise

independent. These hypotheses on the µi,j ’s are strong. In particular we saw in
Section 4 that the µi,i−1’s are not uniformly distributed in [−η, η]. Nevertheless,
this simplification does not significantly change the asymptotic behavior of the
sequence (Ui) and simplifies the technicalities. Besides, to make the model closer
to the reality, we could have rounded the Uj ’s, but since these quantities are
growing to infinity, this should not change much the asymptotic behavior. The
independence of the Ri’s and R′

i,j ’s and their symmetry give:

E [Ui] = 0, E
[

U2
i

]

= E
[

R2
i

]

+
∑i−1

j=1 E
[

U2
j

]

·E
[

R′2
i,j

]

= 2a3

3 + 2η3

3

∑i−1
j=1 E

[

U2
j

]

.
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As a consequence, for i growing to infinity, we have E[U2
i ] ≈

(

2η3

3 + 1
)i

. If we

choose η ≈ 1/2, we get 2η3

3 + 1 ≈ 13
12 ≈ 1.08. We thus expect the |xi|’s to be of

length <∼ (log2 1.04) · d ≈ 0.057 · d. To sum up, the xi’s should have length O(d)
in practice, but the O(·)-constant is tiny. For example, the quantity (1.04)d

becomes larger than 264 for d ≥ 1100. Since we cannot reduce lattice bases which
simultaneously have this dimension and reach the other bounds of the heuristic
worst-case complexity analysis, it is at the moment impossible to observe the
asymptotic behavior. The practical running time is rather to O(d4 log2 B).

5.2 L2 on Knapsack-Type Bases

In the case of knapsack-type bases there are fewer loop iterations than in the
worst case: the quantity ∆ =

∏d
i=1 ‖b∗

i ‖2(d−i+1) of L3’s analysis satisfies ∆ =

BO(d) instead of ∆ = BO(d2). This ensures that there are O(d log B) loop itera-
tions, so that the overall cost of L2 for these lattice bases is O(d4 log2 B). Here
we argue that asymptotically one should expect a better complexity bound.

Heuristic 3 When d and log B grow to infinity with log B = Ω(d2), the average
cost of the L2 algorithm given as input a randomly and uniformly chosen d-
dimensional knapsack-type basis with entries of length ≤ log B is Θ(d3 log2 B).

In practice for moderate dimensions, the phenomenon described in the pre-
vious subsection makes the cost even lower: close to O(d2 log2 B) when log B is
significantly larger than d.

First, there are Θ(d log B) main loop iterations. These iterations are equally
distributed among the different values of κmax: we define κmax as the maximum
of the indices κ since the beginning of the execution of the algorithm, i.e., the
number of basis vectors that have been considered so far. We have κmax = 2 at
the beginning, then κmax is gradually incremented up to d + 1, when the execu-
tion of L2 is over. The number of iterations for each κmax is roughly the same,
approximately Θ(log B). We divide the execution into d − 1 phases, according
to the value of κmax. We observe experimentally that at the end of the phase of
a given κmax, the current basis has the following shape:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

a1,1 a1,2 . . . a1,κmax+1 0 0 . . . 0
a2,1 a2,2 . . . a2,κmax+1 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

aκmax,1 aκmax,2 . . . aκmax,κmax+1 0 0 . . . 0
Aκmax+1 0 . . . 0 1 0 . . . 0
Aκmax+2 0 . . . 0 0 1 . . . 0

...
...

. . .
...

...
...

. . .
...

Ad 0 . . . 0 0 0 . . . 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where the top left ai,j ’s satisfy: |ai,j | = O
(

B
1

κmax

)

.

We subdivide each κmax-phase in two subphases: the first subphase is the first
loop iteration of L2 for which κ = κmax, and the second one is made of the other
iterations with the same κmax. The first subphase shortens the vector bκmax :
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its length decreases from ≈ B to ≤
√

κmax(maxi<κmax ‖bi‖2) + 1 <∼ B
1

κmax−1 .

This subphase costs O(d log2 B) bit operations (see [23]): there are O(log B/d)
loop iterations in the lazy size-reduction; each one involves O(d2) arithmetic
operations; among them, the most costly are the integer multiplications between
the xi’s (that are O(d)-bit long) and the coefficients of the basis and Gram
matrices (their lengths are O(log B/d), except the 〈bκ,bi〉’s which occur with
frequency 1/O(κ)). The global cost of the first subphases is O(d2 log2 B). This
is negligible in comparison to the overall cost of the second subphases.

Let b′
i be the vector obtained from bi after the first subphase of the phase

for which κmax = i, that is, right after its first size-reduction. Let C(d, B) be
the overall cost of the second subphases in dimension d and for input Ai’s sat-
isfying |Ai| ≤ B. We divide the execution of the algorithm as follows: it starts

by reducing a knapsack-type basis of dimension ⌊d/2⌋; let
(

b′′
1 , . . . ,b′′

⌊d/2⌋

)

be

the corresponding L3-reduced vectors; if we exclude the ⌈d/2⌉ remaining first

subphases, then L2 reduces the basis
(

b′′
1 , . . . ,b′′

⌊d/2⌋,b
′
⌊d/2+1⌋, . . . ,b

′
d

)

, where

all the lengths of the vectors are bounded by ≈ B2/d. As a consequence, we have:
C(d, B) = C(d/2, B) + O(d5(log B/d)2) = C(d/2, B) + O(d3 log2 B),

from which one easily gets C(d, B) = O(d3 log2 B), as long as d2 = O(log B).

5.3 Many Parameters Can Influence the Running Time

We list below a few tunings that should be performed if one wants to optimize L3

and L2 for particular instances:

- Firstly, use as less multiprecision arithmetic as possible. If you are in a medium
dimension (e.g., less than 170), you may avoid multiprecision fpa (see Sec-
tion 6). If your input basis is made of short vectors, like for NTRU lattices,
try using chip integers instead of multiprecision integers.

- Detect if there are scalar products cancellations: if these cancellations happen
very rarely, use a heuristic variant that does not require the Gram matrix.
Otherwise, if such cancellations happen frequently, a proved variant using the
Gram matrix may turn out to be cheaper than a heuristic one recomputing
exactly many scalar products.

- It is sometimes recommended to weaken δ and η. Indeed, if you increase η
and/or decrease δ, it will possibly decrease the number of iterations within
the lazy size-reduction and the number of global iterations. However, relaxed
L3-factors require a higher precision: for a given precision, the dimension above
which L2 might loop forever decreases (see Section 6).

6 “Numerical Stability” of L3

In this section, we discuss problems that may arise when one uses fpa within L3.
The motivation is to get a good understanding of the “standard” numerical be-
havior, in order to keep the double precision as long as possible with low chances
of failure. Essentially, two different phenomena may be encountered: a lazy size-
reduction or consecutive Lovász tests may be looping forever. The output may
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also be incorrect, but most often if something goes wrong, the execution loops
within a size-reduction. We suppose here that either the Gram matrix is main-
tained exactly during the execution or that the problems arising from scalar
product cancellations do not show up.

It is shown in [23] that for some given parameters δ and η, a precision

of
(

log (1+η)2

δ−η2 + ε
)

· d + o(d) is sufficient for L2 to work correctly, for any con-

stant ε > 0. For δ close to 1 and η close to 1/2, it gives that a precision
of 1.6 · d + o(d) suffices. A family of lattice bases for which this bound seems
to be tight is also given. Nevertheless, in practice the algorithm seems to work
correctly with a much lower precision: for example, the double precision (53 bit-
long mantissæ) seems sufficient most of the time up to dimension 180. We argue
here that the average required precision grows linearly with the dimension, but
with a significantly lower constant.

Heuristic 4 Let δ be close to 1 and η be close to 1/2. For almost every lattice,
with a precision of 0.25 · d + o(d) bits for the fp-calculations, the L2 algorithm
performs correctly when given almost any input basis.

This heuristic has direct consequences for a practical implementation of L2:
it helps guessing what precision should be sufficient in a given dimension, and
thus a significant constant factor can be saved for the running time.

We now give a justification for the heuristic above. For a fixed size of man-
tissa, we evaluate the dimension for which things should start going wrong. First,
we evaluate the error made on the Gram-Schmidt coefficients and then we will
use these results for the behavior of L3: to do this, we will say that L3 performs
plenty of Gram-Schmidt calculations (during the successive loop iterations), and
that things go wrong if at least one of these calculations is erroneous.

We consider the following random model, which is a simplified version of the
one described in Section 4 (the simplification should not change the asymptotic
results but helps for the analysis).

- The µi,j ’s for i > j are chosen randomly and independently in [−η, η]. They
share a distribution that is symmetric towards 0. This implies that E[µ] = 0.
We define µ2 = E[µ2] and µi,i = 1.

- The
ri,i

ri+1,i+1
’s are chosen randomly and independently in (0, β]. These choices

are independent of those of the µi,j ’s. We define α = E

[

ri,i

ri+1,i+1

]

.

- The random variables µi,j and
ri,i

ri+1,i+1
determine the Gram matrix of the

initial basis. Let r1,1 be an arbitrary constant. We define the following random

variables, for i ≥ j: 〈bi,bj〉 = r1,1

∑j
k=1 µj,kµi,k

∏k−1
l=1 (rl,l/rl+1,l+1)

−1.

- We define the random variables ri,j = r1,1µi,j

∏j−1
l=1 (rl,l/rl+1,l+1)

−1 (for i ≥ j).
- We assume that we do a relative error ε = 2−ℓ (with ℓ the working precision)

while translating the exact value ‖b1‖2 into a fp number: ∆‖b1‖2 = ε‖b1‖2.

We have selected a way to randomly choose the Gram matrix and to per-
form a rounding error on ‖b1‖2. To simplify the analysis, we suppose that there
is no rounding error performed on the other 〈bi,bj〉’s. Our goal is to estimate
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the amplification of the rounding error ∆‖b1‖2 during the calculations of ap-
proximations of the ri,j ’s and µi,j ’s. We neglect high-order error terms. More
precisely, we study the following random variables, defined recursively:

∆r1,1 = ∆‖b1‖2 = ε‖b1‖2,

∆ri,j = −
j−1
∑

k=1

(∆ri,kµj,k + ∆rj,kµi,k − ∆rk,kµi,kµj,k) when i ≥ j,

The µa,b’s and
rb,b

rb+1,b+1
’s that may not be independent with ∆ri,k are those

for which b < k. As a consequence, ∆ri,k, µj,k,
rj−1,j−1

rj,j
,

rj−2,j−2

rj−1,j−1
, . . . ,

rk,k

rk+1,k+1
are

pairwise independent, ∆rj,k, µi,k,
rj−1,j−1

rj,j
,

rj−2,j−2

rj−1,j−1
, . . . ,

rk,k

rk+1,k+1
are pairwise in-

dependent, and ∆rk,k, µi,k, µj,k,
rj−1,j−1

rj,j
,

rj−2,j−2

rj−1,j−1
, . . . ,

rk,k

rk+1,k+1
are pairwise inde-

pendent, for all (i, j, k) satisfying i > j > k. Therefore, for any i > j:

E

[

∆ri,j

rj,j

]

= −∑j−1
k=1

(

∏j−1
l=k E

[

rl,l

rl+1,l+1

])(

E

[

∆ri,k

rk,k

]

E[µj,k] + E

[

∆rj,k

rk,k

]

E[µi,k]

−E

[

∆rk,k

rk,k

]

E[µi,k]E[µj,k]
)

.

Because E[µj,k] = E[µi,k] = 0, we get E

[

∆ri,j

rj,j

]

= 0, for all i > j. Similarly, we

have, for i > 1:

E

[

∆ri,i

ri,i

]

= µ2

∑j−1
k=1

(

∏i−1
l=k E

[

rl,l

rl+1,l+1

])

E

[

∆rk,k

rk,k

]

= µ2

∑j−1
k=1 αi−k

E

[

∆rk,k

rk,k

]

.

We obtain that E

[

∆ri,i

ri,i

]

is close to (α(1 + µ2))
iε. For example, if the µi,j ’s

are uniformly chosen in [−1/2, 1/2], if α = 1.08 (as observed in Section 4), and

if ε ≈ 2−53, we get E

[

∆ri,i

ri,i

]

≈ 1.17i · 2−53. For i = 180, this is close to 2−12.

We have analyzed very roughly the influence of the rounding error made
on ‖b1‖2, within the Gram-Schmidt orthogonalization for L3-reduced bases. If
we want to adapt this analysis to L2, we must take into account the number
of ri,j ’s and µi,j ’s that are computed during the execution. To simplify we con-
sider only the rd,d’s, which are a priori the less accurate. We suppose that all
the computations of rd,d through the execution are independent. Let K be the
number of iterations for which κ = d. We consider that an error on rd,d is signif-

icant if
∆rd,d

rd,d
is at least 2−3. If such an error occurs, the corresponding Lovász

test is likely to be erroneous. Under such hypotheses, the probability of failure
is of the order of 1− (1−2−12+3)K ≈ K2−9. In case of several millions of Lovász
tests, it is very likely that there is one making L3 behave unexpectedly.

The above analysis is completely heuristic and relies on very strong hypothe-
ses, but it provides orders of magnitude that one seems to encounter in practice.
For random bases, we observe infinite loops in double precision arising around
dimensions 175 to 185, when there are a few millions Lovász tests.
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