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Abstract. The Lenstra-Lenstra-Lovász lattice basis reduction algorithm
(LLL or L3) is a very popular tool in public-key cryptanalysis and in
many other fields. Given an integer d-dimensional lattice basis with vec-
tors of norm less than B in an n-dimensional space, L3 outputs a so-
called L3-reduced basis in polynomial time O(d5n log3 B), using arith-
metic operations on integers of bit-length O(d log B). This worst-case
complexity is problematic for lattices arising in cryptanalysis where d
or/and log B are often large. As a result, the original L3 is almost never
used in practice. Instead, one applies floating-point variants of L3, where
the long-integer arithmetic required by Gram-Schmidt orthogonalisation
(central in L3) is replaced by floating-point arithmetic. Unfortunately,
this is known to be unstable in the worst-case: the usual floating-point
L3 is not even guaranteed to terminate, and the output basis may not
be L3-reduced at all. In this article, we introduce the L2 algorithm, a
new and natural floating-point variant of L3 which provably outputs L3-
reduced bases in polynomial time O(d4n(d + log B) log B). This is the
first L3 algorithm whose running time (without fast integer arithmetic)
provably grows only quadratically with respect to log B, like the well-
known Euclidean and Gaussian algorithms, which it generalizes.
Keywords: LLL, L3, Lattice Reduction, Public-Key Cryptanalysis.

1 Introduction

Let b1, . . . , bd be linearly independent vectors in R
n with n ≥ d: often n = d

or n = O(d). We denote by L[b1, . . . , bd] =
{

∑d
i=1 xibi | xi ∈ Z

}

the set of all

integer linear combinations of the bi’s. This set is called a lattice and [b1, . . . , bd]
a basis of that lattice. A lattice basis is usually not unique, but all the bases
have the same number d of elements, called the dimension of the lattice. If
d ≥ 2, there are infinitely many bases, but some are more interesting than others:
they are called reduced. Roughly speaking, a reduced basis is a basis made of
reasonably short vectors which are almost orthogonal. Finding good reduced
bases has proved invaluable in many fields of computer science and mathematics
(see [12, 8]), particularly in cryptology (see [30, 24]). This problem is known as
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lattice reduction and can intuitively be viewed as a vectorial generalisation of
gcd computations.

The first breakthrough in lattice reduction dates back to 1981 with Lenstra’s
celebrated work on integer programming [20, 21], which was, among others, based
on a novel lattice reduction technique (which can be found in the preliminary
version [20] of [21]). Lenstra’s reduction technique was only polynomial-time for
fixed dimension, which was however sufficient in [20]. This inspired Lovász to
develop a polynomial-time variant of the algorithm, which reached a final form
in the seminal paper [19] where Lenstra, Lenstra and Lovász applied it to factor
rational polynomials in polynomial time (back then, a famous problem), from
which the name LLL or L3 comes. Further refinements of the L3 algorithm were
later proposed, notably by Schnorr [33, 34]. Reduction algorithms (in particular
L3) have arguably become the most popular tool in public-key cryptanalysis
(see the survey [30]). In the past twenty-five years, they have been used to break
many public-key cryptosystems, including knapsack cryptosystems [31], RSA in
particular settings [9, 7, 6], DSA and similar signatures in particular settings [14,
26], etc.

Given as input an integer d-dimensional lattice basis whose n-dimensional
vectors have norm less than B, L3 outputs a so-called L3-reduced basis in
time O(d5n log3 B) without fast integer arithmetic, using arithmetic operations
on integers of bit-length O(d log B). This worst-case complexity turns out to be
problematic in practice, especially for lattices arising in cryptanalysis where d
or/and log B are often large. For instance, in a typical RSA application of Cop-
persmith’s lattice-based theorem [9], we may need to reduce a 64-dimensional
lattice with vectors having RSA-type coefficients (1024-bit), in which case the
complexity becomes “d5n log3 B = 266 ”. As a result, the original L3 algorithm is
seldom used in practice. Instead, one applies floating-point (fp) variants, where
the long-integer arithmetic required by Gram-Schmidt orthogonalisation (which
plays a central role in L3) is replaced by floating-point arithmetic (fpa) on much
smaller numbers. The use of fpa in L3 goes back to the early eighties when
L3 was used to solve low-density knapsacks [17]. Unfortunately, fpa may lead to
stability problems, both in theory and practice, especially when the dimension
increases: the running time of fp variants of L3 such as Schnorr-Euchner’s [36] is
not guaranteed to be polynomial nor even finite, and the output basis may not
be L3-reduced at all. This phenomenon is well-known to L3 practitioners, and is
usually solved by sufficiently increasing the precision. For instance, experimental
problems arose during the cryptanalyses [29, 25] of lattice-based cryptosystems,
which led to improvements in Shoup’s NTL library [41].

There is however one provable fp-variant of L3, due to Schnorr [34], which
significantly improves the worst-case complexity. Schnorr’s variant outputs an
approximate L3-reduced basis in time O(d3n log B(d + log B)2), using O(d +
log B) precision fp numbers. However, this algorithm is mostly of theoretical
interest and is not implemented in any of the main computational libraries [41,
22, 4, 1]. This can be explained by at least three reasons: it is not clear which fpa-
model is used, the algorithm is difficult to describe, and the hidden complexity
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constants are rather large. More precisely, the required precision of fp numbers
in [34] seems to be higher than 12d + 7 log2 B.

Our Results. We present the L2 algorithm, a new and simple fp-variant of L3 in
a standard fpa-model, which provably outputs approximate L3-reduced bases in
polynomial time. More precisely, its complexity is O(d4n(d + logB) log B) using
only a (d log2 3)-bit precision, which is independent of log B. This is the first
L3 whose running time grows only quadratically with respect to log B (hence
the name L2), whereas the growth is cubic – without fast integer arithmetic –
for all other provable L3 algorithms known. This improvement is significant for
lattices where log B is larger than d, for example those arising from minimal
polynomials [8] and Coppersmith’s technique [9]. Interestingly, L3 can be viewed
as a generalisation of the famous Euclidean and Gaussian algorithms whose
complexities are quadratic, not cubic like the original L3. This arguably makes
L2 closer to the Euclid algorithm.

L3[19] Schnorr[34] L2

Required precision O(d log B) > 12d + 7 log2 B d log2 3 ≈ 1.58d

Complexity O(d5n log3 B) O(d3n(d + log B)2 log B) O(d4n(d + log B) log B)

Fig. 1. Comparison of different L3 algorithms.

The L2 algorithm is based on several improvements, both in the L3 algorithm
itself and more importantly in its analysis. From an algorithmic point of view,
we improve the accuracy of the usual Gram-Schmidt computations by a system-
atic use of the Gram matrix, and we adapt Babai’s nearest plane algorithm [3]
to fpa in order to stabilize the so-called size-reduction process extensively used
in L3. We give tight bounds on the accuracy of Gram-Schmidt computations
to prove the correctness of L2. The analysis led to the discovery of surprisingly
bad lattices: for instance, we found a 55-dimensional lattice [28] with 100-bit
vectors which makes NTL’s LLL FP [41] (an improved version of [36]) loop for-
ever, which contradicts [16] where it is claimed that double precision is sufficient
in [36] to L3-reduce lattices up to dimension 250 with classical Gram-Schmidt.
However, for random looking lattice bases, stability problems seem to arise only
in dimension much higher than 55, due perhaps to the well-known experimental
fact that for such input bases, L3 outputs better bases than for the worst-case.
Finally, to establish a quadratic running time, we generalize a well-known cas-
cade phenomenon in the complexity analysis of the Gaussian and Euclidean al-
gorithms. This was inspired by the so-called greedy lattice reduction algorithm
of [27], which is quadratic in low dimension thanks to another cascade. The
cascade analysis is made possible by the efficiency of our fp-variant of Babai’s
algorithm, and cannot be adapted to the standard L3 algorithm. Besides, our
tight bound on Babai’s algorithm may be of independent interest. For instance,
in Micciancio’s variant [23] of the GGH cryptosystem [10], Babai’s algorithm is
used to decrypt.

Related Work. Much work [38, 34, 42, 15, 16, 35] has been devoted to im-
prove L3, specifically the exponent of d in the complexity, but none has improved
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the log3 B factor (except [44, 39] for dimension two). Some of these improvements
might be adaptable to L2.

Floating-point stability has long been a mysterious issue in L3. When it
was realized during experiments that classical Gram-Schmidt orthogonalisation
could be very unstable, it was suggested in the late nineties to use well-known
alternative techniques (see [18, 11]) like Givens rotations (implemented in NTL)
or Householder reflections, which are more expensive but seem to be more stable
in practice. However, from a theoretical point of view, the best results known on
the worst-case accuracy of such techniques are not significantly better than the
so-called Modified Gram-Schmidt algorithm. Besides, most numerical analysis
results refer to backward stability and not accuracy: such a mistake is made
in [16], where a theorem from [18] is incorrectly applied. At the moment, it
is therefore not clear how to exploit known results on Givens rotations and
Householder reflections to improve L3 theoretically. This is why L2 only uses a
process close to classical Gram-Schmidt.

Road map. In Section 2 we provide necessary background on lattices and L3.
We describe the L2 algorithm in Section 3. Section 4 proves the correctness
of L2, while Section 5 analyzes its complexity. Additional information (such as
complete proofs of technical lemmata and experimental results) will be given in
the journal version of the present work.

Remarks. Like L3, the L2 algorithm works in fact with the underlying quadratic
form and can therefore be used to reduce positive definite integer quadratic
forms. It can be checked (see the full version) that L2 can be extended to lin-
early dependent vectors, leading to what is to our knowledge the fastest algo-
rithm known to construct a lattice basis from a generating set. Schnorr pointed
out that the required precision in L2 can be slightly decreased by using a better
summation algorithm than ours (e.g. a tree-like algorithm), which may be inter-
esting if one is restricted to a fixed precision. For the sake of simplicity, we keep
a basic summation algorithm.

2 Background

Notation. All logarithms are in base 2. Let ‖.‖ and 〈., .〉 be the Euclidean norm
and inner product of R

n. The notation dxc denotes a closest integer to x. Bold
variables are vectors. All the lattices we consider are integer lattices, as usual.
The complexity model we use is the RAM model, and the computational cost is
measured in elementary operations on bits, without fast integer arithmetic [40].
Our fpa-model is a smooth extension of the IEEE-754 standard [2], as provided
by NTL [41] and MPFR [32]. With an `-bit working precision, a fp-number
is of the form x = ±mx · 2ex where the mantissa mx ∈ [1/2, 1) is `-bit long
and the exponent ex is an integer. We expect all four basic fp-operations to be
correctly rounded: the returned value �(a op b) for op ∈ {+,−, /, ∗} is a closest
fp-number to (a op b). In our complexity analysis, we do not consider the cost
of the arithmetic on the exponents: it can be checked that the exponents are
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integers of length O(log(d + log B)), so that the cost is indeed negligible.
We recall basic notions from algorithmic geometry of numbers (see [24]).

Gram matrix. Let b1, . . . , bd be vectors. Their Gram matrix G(b1, . . . , bd) is
the d × d symmetric matrix (〈bi, bj〉)1≤i,j≤d formed by all the inner products.

Lattice volume. A lattice L has infinitely many lattice bases when dim(L) ≥ 2.
Any two bases are related to each other by a unimodular matrix (integral matrix
of determinant ±1), and therefore the determinant of the Gram matrix of a basis
only depends on the lattice. The square root of this determinant is the volume
vol(L) (or determinant) of the lattice.

Gram-Schmidt orthogonalisation. Let [b1, . . . , bd] be linearly independent
vectors. The Gram-Schmidt orthogonalisation (GSO) [b∗

1, . . . , b
∗
d] is the orthog-

onal family defined recursively as follows: b
∗
i is the component of bi orthogo-

nal to the linear span of b1, . . . , bi−1. We have b
∗
i = bi −

∑i−1
j=1 µi,jb

∗
j where

µi,j = 〈bi, b
∗
j 〉/‖b∗j‖2. For i ≤ d we let µi,i = 1. The lattice L spanned by the

bi’s satisfies vol(L) =
∏d

i=1 ‖b∗i ‖. The GSO family depends on the order of the
vectors. If the bi’s are integer vectors, the b

∗
i ’s and the µi,j ’s are rational.

QR factorisation. The GSO corresponds to the “R” part of the Q ·R factori-
sation of the matrix representing the basis [b1, . . . , bd], where Q is an orthogonal
matrix (Q · Qt = Qt · Q = Id) and R is lower triangular. If R = (ri,j), for any i
we have ri,i = ‖b∗i ‖2 and for any i ≥ j we have ri,j = µi,j‖b∗j‖2. In what follows,
the GSO family denotes the ri,j ’s and µi,j ’s. Some information is redundant in
rational arithmetic, but in the context of our fp calculations, it is useful to have
all these variables to minimize the number of arithmetic operations and thus the
precision loss.

Size-reduction. A basis [b1, . . . , bd] is size-reduced with factor η ≥ 1/2 if its
GSO family satisfies |µi,j | ≤ η for all 1 ≤ j < i ≤ d. The i-th vector bi is
size-reduced if |µi,j | ≤ η for all j < i. Size-reduction usually refers to η = 1/2,
but it is essential for L2 to allow larger η.

L3-reduction. A basis [b1, . . . , bd] is L3-reduced with factor (δ, η) where 1/4 <
δ ≤ 1 and 1/2 ≤ η <

√
δ if the basis is size-reduced with factor η and if its GSO

satisfies the (d−1) Lovász conditions (δ−µ2
κ,κ−1)rκ−1,κ−1 ≤ rκ,κ (or equivalently

δ‖b∗κ−1‖2 ≤ ‖b∗κ + µκ,κ−1b
∗
κ−1‖2), which implies that the GSO vectors never

drop too much. Such bases have useful properties (see [19, 8, 24]), like providing
approximations to the shortest vector problem and the closest vector problem. In
particular, their first vector is relatively short: ‖b1‖ ≤ (δ−η2)−(d−1)/4vol(L)1/d.
L3-reduction usually refers to the factor (3/4, 1/2) initially chosen in [19]. But the
closer δ and η are respectively to 1 and 1/2, the shorter b1 should be. In practice,
one usually selects δ ≈ 1 and η ≈ 1/2, so that ‖b1‖ ≤ (4/3)(d−1)/4vol(L)1/d

approximately. The L3 algorithm obtains in polynomial time a basis reduced
with factor (δ, 1/2) where δ < 1 can be chosen arbitrarily close to 1. The new
L2 algorithm achieves a factor (δ, η), where δ < 1 can be arbitrarily close to 1
and η > 1/2 arbitrarily close to 1/2. It is unknown whether or not δ = 1 can
be achieved in polynomial time, and whether or not η = 1/2 can be achieved in
quadratic time like L2. The case (δ, η) = (1, 1/2) is closely related to a notion of
reduction invented by Hermite [13] in the language of quadratic forms.
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The L3 algorithm. The L3 algorithm [19] is described in Fig. 2. It computes
an L3-reduced basis in an iterative fashion: the index κ is such that at any
stage of the algorithm, the truncated basis [b1, . . . , bκ−1] is L3-reduced. At each
loop iteration, κ is either incremented or decremented: the loop stops when κ
reaches the value d + 1, in which case the entire basis [b1, . . . , bd] is L3-reduced.
L3 performs two kinds of operations: swaps of consecutive vectors and Babai’s

Input: A basis [b1, . . . , bd] and δ ∈ (1/4, 1).
Output: An L3-reduced basis with factor (δ, 1/2).
1. Compute the rational GSO, i.e., all the µi,j ’s and ri,i’s.
2. κ:=2. While κ ≤ d do
3. Size-reduce bκ using Babai’s algorithm (Fig. 3), which updates the GSO.

4. κ′:=κ. While κ ≥ 2 and δrκ−1,κ−1 ≥ rκ′,κ′ +
Pκ′

−1
i=κ−1 µ2

κ′,iri,i, do κ:=κ − 1.

5. For i = 1 to κ − 1, µκ,i:=µκ′,i.
6. Insert bκ′ right before bκ.
7. κ:=κ + 1.
8. Output [b1, . . . , bd].

Fig. 2. The L3 Algorithm.

nearest plane algorithm [3] (see Fig. 3), which uses at most d translations of the
form bκ:=bκ−mbi, where m is some integer and i < κ. Swaps are used to achieve
Lovász’s conditions, while Babai’s algorithm is used to size-reduce vectors. We
explain Steps 4–7: if Lovász’s condition is satisfied, nothing happens in Steps 5
and 6, and κ is incremented like in classical descriptions of the L3 algorithm.
Otherwise, Step 4 finds the right index to insert bκ, thus collecting successive
failures of Lovász’s test.

Input: A basis [b1, . . . , bd], its GSO and an index κ.
Output: The basis with bκ size-reduced and the updated GSO.
1. For i = κ − 1 downto 1 do
2. bκ:=bκ − dµκ,icbi.
3. For j = 1 to i do
4. µκ,j :=µκ,j − dµκ,icµi,j .

Fig. 3. Babai’s algorithm to size-reduce bκ, so that |µκ,i| ≤ 1/2 for all i < κ.

If L3 terminates, it is clear that the output basis is L3-reduced. What is less
clear a priori is why L3 has a polynomial-time complexity. A standard argument
shows that each swap decreases the quantity ∆ =

∏d
i=1 ‖b∗i ‖2(d−i+1) by at least

a factor δ < 1, while ∆ ≥ 1 because the bi’s are integer vectors and ∆ can be
viewed as a product of squared volumes of lattices spanned by some of the bi’s.
This proves that there can be no more than O(d2 log B) swaps, and therefore
loop iterations, where B is an upper bound on the norms of the input basis
vectors. It remains to estimate the cost of each loop iteration. This cost turns
out to be dominated by O(dn) arithmetic operations on the basis matrix and
GSO coefficients µi,j and ri,i which are rational numbers of bit-length O(d log B).
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Thus, the overall complexity of the L3 algorithm described in Fig. 2 without fast
integer arithmetic is O((d2 log B) · dn · (d log B)2)) = O(d5n log3 B).
L3 with fpa. The cost of L3 is dominated by arithmetic operations on the
GSO coefficients which are rationals with huge numerators and denominators. It
is therefore tempting to replace the exact GSO coefficients by fp approximations.
But doing so in a straightforward manner leads to instability. The algorithm is no
longer guaranteed to be polynomial-time: it may not even terminate, because the
quantity ∆ used to bound the complexity of L3 no longer necessarily decreases
at each swap. And if ever the algorithm terminates, the output basis may not
be L3-reduced, due to potential inaccuracy in the GSO coefficients. Prior to
this work, the only provable fp-L3 was the one of Schnorr [34], which simulates
the behavior of L3 using fp-approximations of the coefficients of the inverse
matrix of the µi,j ’s: it computes a (0.95, 0.55)-L3-reduced basis. The number
of loop iterations and the number of arithmetic operations (in each iteration)
remain the same as L3: only the cost of each arithmetic operation related to
the GSO decreases. Instead of handling integers of length O(d log B), [34] uses
fp-numbers with O(d + log B)-bit long mantissæ (with large hidden constants,
as mentioned in the introduction), which decreases the worst-case complexity of
L3 to O(d4 log B(d+log B)2). This is still cubic in log B. Because this algorithm
is mostly of theoretical interest, the main number theory computer packages [41,
22, 4] only implement heuristic fp-variants of L3 à la Schnorr-Euchner [36] which
suffer from stability problems in high dimension.

3 The L2 Algorithm

We now describe the L2 algorithm, which is a natural fp-variant of L3. The main
principle is to keep sufficiently good fp-approximations of the GSO coefficients
during the execution of the algorithm. Accuracy is crucial for size-reduction and
for checking Lovász’s conditions. If one is not careful, swaps and translations
may decrease the accuracy to the point of having meaningless fp-values.

3.1 Gram-Schmidt Computations

It is important for L2 to have accurate formulas for the computation of the GSO
coefficients. In [36], the following recursive formulas are used:

µi,j =
〈bi, bj〉 −

∑j−1
k=1 µj,k · µi,k · ‖b∗k‖2

‖b∗j‖2
and ‖b∗i ‖2 = ‖bi‖2 −

i−1
∑

j=1

µ2
i,j · ‖b∗j‖2.

In these formulas, the inner products 〈bi, bj〉 are computed in fpa, which leads
to a potential inaccuracy of 2−`‖bi‖‖bj‖, with the following drawback: to ensure
that the basis returned by L2 is size-reduced, absolute error bounds on the µi,j ’s
are required; if the error is therefore larger than 2−`‖bi‖‖bj‖, the precision ` must
be Ω(log B) in the worst case. The analyses of [34, 35] do not tackle this issue.
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We use slightly different formulas by introducing the quantity ri,j = µi,j‖b∗j‖2 =
〈bi, b

∗
j 〉 for all i ≥ j:

ri,j = 〈bi, bj〉 −
j−1
∑

k=1

µj,k · ri,k and µi,j =
ri,j

rj,j
.

Accuracy is improved because the inner products are extracted from the exact
Gram matrix and because each term of the sum now only requires one multiplica-
tion instead of two. For i = j, the first formula is ri,i = ‖bi‖2 −

∑i−1
k=1 µi,k · ri,k ,

which suggests to define sj = ‖bi‖2 − ∑j−1
k=1 µi,k · ri,k for all 1 ≤ j ≤ i, so

that ‖b∗i ‖2 = ri,i = si. The quantities si will be useful to check consecutive
Lovász’s conditions. Indeed, Lovász’s condition (δ − µ2

κ,κ−1)‖b∗κ−1‖2 ≤ ‖b∗κ‖2

can be rewritten as δ‖b∗
κ−1‖2 ≤ ‖b∗κ‖2 + µ2

κ,κ−1‖b∗κ−1‖2,i.e.,

δrκ−1,κ−1 ≤ sκ−1.

Whenever the condition is not satisfied, L3 would swap bκ−1 and bκ, and check
the following Lovász’s condition:

δrκ−2,κ−2 ≤ sκ−2.

Thus, storing the sj ’s enables us to check consecutive Lovász’s conditions (when
consecutive swaps occur) without any additional cost since they appear in the
calculation of rκ,κ. The computation of ri,j , µi,j and sj is summarized in the so-
called Cholesky Factorisation Algorithm (CFA) of Fig. 4. Of course, because one

Input: The Gram matrix of [b1, . . . , bd].
Output: All the ri,j ’s, µi,j ’s and sj ’s.
1. For i = 1 to d do
2. For j = 1 to i do
3. ri,j :=〈bi, bj〉,
4. For k = 1 to j − 1 do ri,j :=ri,j − ri,kµj,k,
5. µi,j :=ri,j/rj,j .
6. s0:=‖bd‖

2. For j = 1 to d do sj :=sj−1 − µd,jrd,j .
7. rd,d:=sd.

Fig. 4. The Cholesky Factorisation Algorithm (CFA)

uses fpa, the exact values are unknown. Instead, one computes fp-approximations
r̄i,j , µ̄i,j and s̄i. Steps 4–6 are performed in the following way:

r̄i,j := � (r̄i,j −�(r̄i,k · µ̄j,k)), µ̄i,j := � (r̄i,j/r̄j,j) and s̄j := � (s̄j−1 −�(µ̄d,j · r̄d,j)).

We will not use CFA directly in L2. Instead, we will use parts of it during
the execution of the algorithm: because the orthogonalisation is performed vector
by vector, there is no need recomputing everything from scratch if the ri,j ’s and
µi,j ’s are already known for i and j below some threshold. Notice that the ri,j ’s
can be updated at the same location, except for rd,d because the different sj ’s
need being returned to check Lovász’s conditions. The CFA will prove useful to
estimate in Section 4 the precision required to guarantee the correctness of L2.
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3.2 An Iterative Floating-Point Version of Babai’s Algorithm

The core of L2 is an iterative fp-version of Babai’s nearest plane algorithm,
described in Fig. 5. Instead of size-reducing bκ at once like in Fig. 3, our fp-
version of Babai performs an iterative process using parts of the CFA algorithm
of Fig. 4. Here, the xi’s of Babai’s algorithm are computed progressively: the
most significant bits in the first loop iteration, then more bits in the second
iteration, and so on. This has two nice properties: first it terminates and gives
correct results, and, more importantly, it makes L2 efficient because very few

bits of the GSO are required. At Step 4, η̄ = η+1/2
2 ∈ (1/2, η) is used instead

Input: A factor η > 1/2, a fp-precision `, an integer κ, a basis [b1, . . . , bd],
G(b1, . . . , bd), and fp numbers r̄i,j and µ̄i,j ’s for j ≤ i < κ.

Output: fp numbers r̄κ,j , µ̄κ,j and s̄j for j ≤ κ, [b1, . . . , bκ−1, b
′

κ, bκ+1, . . . , bd] ,
and G(b1, . . . , bκ−1, b

′

κ, bκ+1, . . . , bd) where b
′

κ = bκ −
P

i<κ xibi

for some integers xi’s and: |〈b′

κ, b∗

i 〉| ≤ η‖b∗

i ‖
2 for any i < κ.

1. η̄:= η+1/2
2

. Repeat
2. Compute the r̄κ,j ’s, µ̄κ,j ’s, s̄j ’s with Steps 2–7 of the CFA with “i = κ”.
3. For i = κ − 1 downto 1 do
4. If |µ̄κ,i| ≥ η̄, then Xi:=bµ̄κ,ie, else Xi:=0,
5. For j = 1 to i − 1, µ̄κ,j := � (µ̄κ,j − �(Xi · µ̄i,j)).

6. Update [b1, . . . , bd] and G(b1, . . . , bd), according to bκ:=bκ −
Pκ−1

i=1 Xibi.
7. Until all Xi’s are zero.

Fig. 5. The Iterative Babai Nearest Plane Algorithm

of η to take into account the fact that µκ,i is known only approximately. At
Step 6, it suffices to update the scalar products 〈bi, bκ〉 for i ≤ d according to
the following relations:

‖b′κ‖2 = ‖bκ‖2 +
∑

j 6=κ

x2
j‖bj‖2 − 2

∑

j 6=κ

xj〈bj , bκ〉 + 2
∑

j 6=κ,i6=κ

xixj〈bi, bj〉

〈bi, b
′
κ〉 = 〈bi, bκ〉 −

∑

j 6=κ

xj〈bi, bj〉 for i 6= κ.

3.3 Main Results

A description of L2 is given in Fig. 6. There is no need keeping approximations of
all the GSO coefficients: because L2 is iterative, it suffices to have approximations
up to the threshold κ. Notice that the cost of the first step is bounded by
O(d2n log2 B) and is thus negligible compared to the rest of the reduction. At
Step 4, δ̄ = δ+1

2 ∈]δ, 1[ is used instead of δ to take into account the fact that
r̄κ−1,κ−1 and s̄κ−1 are known only approximately. The main result of this paper
is the following:

Theorem 1. Let (δ, η) such that 1/4 < δ < 1 and 1/2 < η <
√

δ. Let c >

log (1+η)2

δ−η2 be a constant. Given as input a d-dimensional lattice basis [b1, . . . , bd]
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Input: A valid pair (δ, η) like in Th. 1, a basis [b1, . . . , bd] and a fp-precision `.
Output: An L3-reduced basis with factor pair (δ, η).
Variables: A matrix G, two d × d fp-matrices (r̄i,j) and (µ̄i,j), a fp-vector s̄.
1. Compute exactly G = G(b1, . . . , bd).
2. δ̄:= δ+1

2
, r̄1,1:= � (〈b1, b1〉), κ:=2. While κ ≤ d, do

3. Size-reduce bκ using the algorithm of Fig. 5. It updates the fp-GSO.
4. κ′:=κ. While κ ≥ 2 and δ̄r̄κ−1,κ−1 ≥ s̄κ−1, do κ:=κ − 1.
5. For i = 1 to κ − 1 do µ̄κ,i:=µ̄κ′,i, r̄κ,i:=r̄κ′,i, r̄κ,κ:=s̄κ.
6. Insert bκ′ right before bκ and update G accordingly.
7. κ:=κ + 1.
8. Output [b1, . . . , bd].

Fig. 6. The L2 algorithm.

in Z
n with maxi‖bi‖ ≤ B, the L2 algorithm of Fig. 6 with precision ` = cd+o(d)

outputs a (δ, η)-L3-reduced basis in time O(d4n log B(d+log B)). More precisely,
if τ denotes the number of loop iterations, then the running time is O(dn(τ +
d log dB)(d + log B)).

Let us make a few remarks. First, L2 decreases the complexity bound O(d3n logB(d+
log B)2) of [34] by a factor d+log B

d . We can choose δ arbitrarily close to 1 and η

arbitrarily close to 1/2, so that the coefficient c > log (1+η)2

δ−η2 becomes arbitrarily
close to log 3 < 1.585. The additional statement related to the number of loop
iterations is useful for certain lattices which arise in practice, like lattices aris-
ing in knapsacks and minimal polynomials, where τ = O(d log B) instead of the
usual O(d2 log B). Finally, the o(d) term in the condition ` = c · d + o(d) can
be made effective and may be used backwards: if we perform calculations with
a fixed number of bits, the correctness will be guaranteed up to a computable
dimension.

4 Correctness of the L2 Algorithm

To guarantee the correctness of L2, we need to estimate the accuracy of the
fp-approximations at various stages of the algorithm.

4.1 Accuracy of Gram-Schmidt Computations

In general, the classical Gram-Schmidt algorithm is known to have very poor
numerical stability [5, 11, 18, 43]. However, it must be stressed that in the context
of L3, bases are reduced in an iterative fashion, which implies that we can study
the accuracy of Gram-Schmidt computations under the hypothesis that the first
d−1 vectors of the input basis are L3-reduced. In this particular setting, because
an L3-reduced basis is roughly orthogonal, the following result shows that a
working precision of ≈ d log 3 bits is sufficient for the CFA if the reduction
factor (δ, η) is sufficiently close to the optimal pair (1, 1/2).

Theorem 2. Let (δ, η) be a valid factor pair like in Th. 1. Let ρ = (1+η)2

δ−η2 .

Let [b1, . . . , bd] in Z
n be a d-dimensional lattice basis whose Gram matrix is
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given as input to the CFA algorithm from Fig. 4. Suppose [b1, . . . , bd−1] is (δ, η)-
L3-reduced. In the case of fpa with a precision ` satisfying dρd2−`+2 ≤ 1, the
fp-numbers returned by the CFA of Fig. 4 satisfy the following equations: for all
j ≤ i < d,

|r̄i,j − ri,j | ≤ dρj−12−`+4 · rj,j and |µ̄i,j − µi,j | ≤ dρj−12−`+6.

Moreover, if M = maxj<d|µd,j |, then we have for any j < d:

|r̄d,j − rd,j | ≤ dρj−1M2−`+4 · rj,j and |µ̄d,j − µd,j | ≤ dρj−1M2−`+6.

Finally, if bd is η-size-reduced with respect to [b1, . . . , bd−1], then for any j ≤ d:

|s̄j − sj | ≤ dρj−12−`+7 · rj,j + d2−` · sj .

The second set of inequalities is useful for the analysis of Babai’s algorithm,
while the last set provides guarantees when checking Lovász’s conditions. We
now give a sketch of the proof of Theorem 2 for the case η ≈ 1/2 and δ ≈ 1.
Most of the accuracy loss comes from Step 4, which amplifies the error. We define

errj = maxi<d
|r̄i,j−ri,j |

rj,j
, i.e., the error on ri,j relative to rj,j , and we estimate

its growth as j increases. Obviously err1 ≤ 2−`maxi<d
|〈bi,b1〉|
‖b1‖2 ≤ 2−`, because

of size-reduction. We now choose j ∈ [2, d − 1]. The result for i = d can be
derived from the proof for i ≤ d − 1, intuitively by replacing “bd” by “ 1

M bd” in
it. Because of Step 5, for any i < d and any k < j:

|µ̄i,k − µi,k| ≤
∣

∣

∣

∣

rk,k

r̄k,k

∣

∣

∣

∣

errk + |ri,k|
∣

∣

∣

∣

1

r̄k,k
− 1

rk,k

∣

∣

∣

∣

≤
(

3

2
+ ε

)

errk ,

where we neglected low-order terms and used the fact that |ri,k | ≤
(

1
2 + ε

)

‖bk‖2,
which comes from size-reduction. This implies that:

| � (µ̄j,k · r̄i,k) − µj,kri,k | ≤ |µ̄j,k − µj,k| · |r̄i,k | + |µj,k| · |r̄i,k − ri,k |

≤
(

5

4
+ ε

)

errk · ‖b∗k‖2,

where we also neglected low-order terms and used size-reduction twice. Thus,

errj ≤
(

5

4
+ ε

)

∑

k<j

‖b∗k‖2

‖b∗j‖2
errk ≤

(

5

4
+ ε

)

∑

k<j

(

4

3
+ ε

)j−k

errk ,

by using Lovász’s conditions. This last inequality finally gives errj ≤ (3 + ε)j ·
err1 ≤ (3 + ε)j2−`, since we have

(

4
3 + ε

) (

5
4 + ε + 1

)

≈ 3 + ε. ut
The bound in Theorem 2 seems to be tight, at least in practice: the classical

Gram-Schmidt algorithm or the CFA become experimentally inaccurate with a
precision ≤ d log 3 bits for certain bases. Consider indeed the L3-reduced lattice
basis given by the rows of the following d × d matrix L:

Li,i = (
√

4/3)d−i

Li,j = (−1)i−j+1Li,i · random[0.49, 0.5] if j > i
Li,j = 0 if j < i.
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To obtain an integral lattice, one can multiply L by a large scaling factor and
round its entries. By definition, this matrix is already L3-reduced. With double
precision calculations, i.e., with 53-bit mantissæ, the error on the µi,j ’s becomes
significant (higher than 0.5) in dimension 35. These bases show the tightness of
our log 3·d bound. By inserting a suitable random vector to such a basis, we were
able to make the LLL FP routine of NTL loop forever in dimension 55 (see [28]).
This invalidates the claim of [36, 37, 15] which states that double precision suffices
for lattices of dimension up to ≈ 250 using classical Gram-Schmidt.

4.2 Accuracy of Babai’s Nearest Plane Algorithm

To estimate the accuracy of the iterative fp-version of Babai’s algorithm given
in Fig. 5 and used in L2, we first study a simpler fp-version described in Fig. 7.

Input: A fp-precision `, a basis [b1, . . . , bd], G(b1, . . . , bd)
and fp numbers r̄i,j ’s and µ̄i,j ’s for j ≤ i < d.

Output: x1, . . . , xd−1 ∈ Z and G(b1, . . . , bd−1, b
′

d), where b
′

d = bd −
P

i<d xibi.
1. Compute the µ̄d,j ’s for j < d with Steps 2–7 of the CFA with “i = d”.

2. η̄:= η+1/2
2

. For i = d − 1 downto 1 do

3. If |µ̄d,i| ≥ η̄, then xi:=bµ̄
(i+1)
d,i e, else xi:=0,

4. For j = 1 to i − 1 do µ̄d,j := � (µ̄d,j − �(xi · µ̄i,j)).
5. Compute G(b1, . . . , bd−1, b

′

d) from G(b1, . . . , bd−1, bd).

Fig. 7. Babai’s Nearest Plane Algorithm

We use Theorem 2 to show stability properties of Babai’s algorithm:

Theorem 3. Let (δ, η) be a valid reduction factor (like in Th. 1) and ρ = (1+η)2

δ−η2 .

Let [b1, . . . , bd] in Z
n be a d-dimensional lattice basis given as input to the al-

gorithm of Fig. 7, and B = maxi‖bi‖. Suppose that [b1, . . . , bd−1] is (δ, η)-L3-
reduced and that the given r̄i,j ’s and µ̄i,j ’s are those that would have been re-
turned by the CFA with working precision `. Let M = maxj |µd,j |. If ` satisfies
d2ρd2−`+2 ≤ 1, the algorithm of Fig. 7 finds integers x1, . . . , xd−1 such that for
any i < d:

|xi| ≤ 2(1 + η)d−1−i(M + 1) and
|〈b′d, b∗i 〉|
‖b∗i ‖2

≤ η̄ + dρd(M + 1)2−`+4.

Moreover it works in time O(dn`(d + log B)) as long as ` = O(d + log B).

Notice that by using the relation log M = O(d + log B) (coming from the
fact that the d − 1 first vectors are L3-reduced), this result implies that taking
` = O(d + log B) is sufficient to make the |µd,i|’s smaller than η. The drawback
of this approach is that one should have previously computed the ri,j ’s and µi,j ’s
with precision O(d+log B). This seems an overkill since O(d+log M) bits suffice
and M is usually far smaller than B. Indeed, in the case of the Euclid algorithm,
the analogy is that the quotients would be computed by using all the bits of the
remainders, instead of only the most significant ones.
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The iterative Babai algorithm from Fig. 5 is a way to work around the dif-
ficulty that M cannot be tightly bounded in advance. Using only a O(d)-bit
precision, it finds the xj ’s progressively by performing successive Babai steps,
each one making log M decrease by Ω(d), until we reach M ≤ η. This strategy
is somewhat similar to the Babai routine of the floating-point L3 algorithm of
NTL [41], which repeatedly applies Babai’s algorithm until nothing happens.

The iterative Babai algorithm will use a precision ` =
(

log (1+η)2

δ−η2 + C
)

d +

o(d) with an arbitrary C > 0. The CFA with working precision ` gives the in-
put r̄i,j ’s and µ̄i,j ’s, which by Theorem 2 have their ≈ Cd leading bits correct.
Therefore, the ri,j ’s and µi,j ’s may not be known sufficiently well to perform
Babai’s algorithm in one single step, but Theorem 3 gives that their approxima-

tions suffice to make M = maxi<κ
|〈bκ,b∗

i 〉|
‖b∗

i
‖2 decrease by ≈ Cd bits. By making

O
(

1 + log M
d

)

such calls to Babai’s algorithm, size-reduction can be achieved.

Theorem 4. Let (δ, η) be a valid pair (like in Th. 1) and ρ = (1+η)2

δ−η2 . Let C > 0

be a constant. Let [b1, . . . , bd] be a d-dimensional lattice basis in Z
n given as

input to the algorithm of Fig. 7, and B = maxi‖bi‖. Suppose that [b1, . . . , bκ−1]
is (δ, η)-L3-reduced and that the given r̄i,j ’s, µ̄i,j ’s are those that would have
been returned by the CFA with precision `. Let M = maxj<κ|µκ,j |. If ` satisfies
d2ρd2−`+6+Cd ≤ η − 1

2 , the algorithm of Fig. 5 provides a correct output and
the returned r̄κ,j ’s, µ̄κ,j ’s, s̄j ’s are those that would have been returned by the
CFA with precision `. Moreover, if ` = O(d), then the running time is O(dn(d+
log B)(d + log M)).

Proof. We start by the correctness properties of the algorithm. At the last it-
eration of the main loop, the computed Xj ’s are all zero, which implies that
nothing happens during Steps 3–6. This gives that for any j < κ, |µ̄κ,j | ≤ η−,

from which we derive
|〈b′

κ,b∗
i 〉|

‖b∗
i
‖2 ≤ η, by using Theorem 3 and the hypothesis on `.

This also gives the correctness of the returned r̄κ,j ’s, µ̄κ,j ’s and s̄j ’s.
We now consider the impact of one iteration of the main loop on M . Let M1

be the “new M” after the loop iteration. Theorem 3 and the hypothesis on `
give the inequality:

M1 ≤ η̄ + dρd(1 + M)2−`+4 ≤ 1/2 + 2η

3
+ 2−CdM.

As a consequence, there can be at most 1+ 1
Cd(log η−1/2

3 +log M) loop iterations.
Theorem 3 gives that the cost of one loop iteration is bounded by O(d2n(d+

log B)), because during the execution of the algorithm, the entries of the Gram
matrix remain integers of length bounded by O(d + log B). The fact that we
have additional vectors in the basis (namely bκ+1, . . . , bd) is taken into account
in the complexity bound. Finally, the overall cost of the algorithm is bounded
by:

O
(

d2n(d + log B)
(

1 + log M
d

))

= O(dn(d + log B)(d + log M)). ut
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4.3 Application to L2

We now prove the correctness of L2. To do this, we show the following:

Theorem 5. Let [b
(0)
1 , . . . , b

(0)
d ] in Z

n be a lattice basis given as input to the

L2 algorithm. For any loop iteration t, let [b
(t)
1 , . . . , b

(t)
d ] denote the current basis

at the beginning of the t-th iteration. We have:

1. For any i ≤ κ(t)−1, b
(t)
i is η-size-reduced, and [b

(t)
1 , . . . , b

(t)
κ(t)−1] is L3-reduced

with factor pair (δ, η).

2. For any i ≤ d, maxj≤i‖b(t)∗
j ‖ ≤ maxj≤i‖b(0)∗

j ‖ and ‖b(t)
i ‖ ≤

√
dmaxj≤i‖b(0)

i ‖.

Proof. Clearly, all these properties are valid for t = 0, and size-reduction comes
from Theorem 4. Assume now that we are performing the t-th loop iteration.

We now show that Lovász’s tests work as desired. Recall that bκ is swapped
with bi for i < κ if and only if for any j ∈ [i, κ − 1] we have s̄j ≤ δ̄r̄j,j . Assume
first that bκ is swapped with bj . Theorem 2 gives that:

sj(1 − d2−`) ≤ r̄j,j(δ̄ + dρj−12−`+8).

Therefore, as soon as dρd2−`+5 ≤ 1 − δ, if a swap is done in L2 then Lovász’s
condition was not fulfilled for the factor 2−δ

3 ∈ (δ, 1). On the opposite, assume
that bκ and bj are not swapped. Theorem 2 gives:

sj(1 + d2−`) ≥ rj,j(δ̄ − dρj−12−`+8).

Thus, as soon as dρd2−`+4 ≤ 1 − δ, if there is no swap, then Lovász’s condition
was fulfilled for δ. This gives the first statement for the new loop iteration. For
the second statement, observe that during a swap between bk and bk−1:

– ‖b∗new
k−1 ‖ ≤ ‖b∗old

k−1‖ because of Lovász’s condition,

– ‖b∗new
k ‖ ≤ ‖b∗old

k−1‖ because b
∗new
k is an orthogonal projection of b

∗old
k−1,

which gives the first part of the second statement. Finally, if b
(t)
i appears during

the execution of the algorithm and is size-reduced, we have:

‖b(t)
i ‖2 ≤ d · maxj≤i‖b(t)∗

j ‖2 ≤ d · maxj≤i‖b(0)∗
j ‖2 ≤ d · maxj≤i‖b(0)

j ‖2.

This proves the second part for i < κ(t). If i ≥ κ(t), we consider the largest

t′ < t such that κ(t′ +1)−1 = i. The iteration t′ was the one which created b
(t)
i .

If t′ does not exist, this vector is an initial vector and the result is obvious.

Otherwise b
(t)
i = b

(t′+1)
κ(t′+1)−1 is size-reduced at the (t′ + 1)-th iteration. Thus we

have ‖b(t)
i ‖2 ≤ d ·maxj≤κ(t′+1)−1‖b(0)

j ‖2. Since κ cannot increase by more than 1
in a single iteration, we must have i ≥ κ(t′ + 1) − 1, which ends the proof.

5 Complexity Analysis of the L2 Algorithm

We now prove the complexity statement of Theorem 1.



15

5.1 On the Number of Loop Iterations of L2

In Section 4.3, we showed that the accuracy suffices to check Lovász’s conditions.
For any Lovász test, either κ increases or decreases by one and when it decreases,
the quantity

∏d
i=1 ‖b∗i ‖2(d−i) decreases by a factor of at least 3

2δ+1 > 1. It is a

standard L3 argument that this quantity is actually an integer (it is a product

of squared volumes of integer lattices) and is initially bounded by BO(d2). But
during the execution of the algorithm, the difference between the numbers of
decreases and increases of κ is exactly d, so there are at most O(d2 log B) loop
iterations.

In the rest of this section we show how to achieve the complexity bound
O(d4n log B(d + log B)). This is done by generalizing a cascade phenomenon
which appears in the analyses of the Euclidean and Gaussian algorithms.

5.2 Analyses of the Euclidean Algorithm

As mentioned in the introduction, the L3 algorithm can be viewed as a high-
dimensional generalisation of the Euclidean algorithm to compute gcds. But
this analogy is incomplete: the Euclidean algorithm has a quadratic complexity
bound, whereas the L3 algorithm is cubic for any fixed dimension. In some sense,
the analysis of the standard L3 algorithm corresponds to a naive analysis of the
Euclidean algorithm which also gives a cubic complexity. Recall the Euclidean
algorithm: given as input two numbers r0 > r1 > 0, Euclid successively computes
the quotients qi and remainders ri defined by qi = bri−1/ric and ri+1 = ri−1 −
qiri, until rτ+1 = 0 for some τ . Then rτ is the gcd of r0 and r1. It is well-
known that the remainders decrease at least geometrically, so that the number of
Euclidean divisions is τ = O(log r0). A naive analysis of the Euclidean algorithm
states that the algorithm performs O(log r0) arithmetic operations on integers of
lengths bounded by O(log r0), so that the overall cost is bounded by O(log3 r0).
A well-known more subtle analysis notices that the cost of computing qi and ri+1

without fast integer arithmetic is bounded by O(log ri−1 · log qi) = O(log r0 · (1+
log ri−1 − log ri)). Summed over all the steps, all but two terms “log ri” vanish,
leading to the classical quadratic complexity bound.

This improved Euclidean analysis cannot unfortunately be extended to the
standard L3, because the GSO coefficients are too big. The bit-length of the
numerator and denominator of most GSO coefficients is O(d log B): computing
the exact GSO of an L3-reduced basis already takes cubic time. Surprisingly,
the improved Euclidean analysis can be extended to L2: this would not be pos-
sible without a working precision independent of log B. The main difficulty is to
generalize the cancellation of all but a very few terms in the sum of the costs
of consecutive loop iterations. In the Euclidean and Gaussian algorithms, this
cancellation is trivial because two consecutive costs compensate each other di-
rectly. The phenomenon is much more complicated in higher dimension: the cost
of the t-th iteration will not necessarily be balanced by the cost of the previous
(t− 1)-th iteration, but by the cost of the t′-th iteration for some t′ < t. Special
care must be taken so that the t′’s do not collide.
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5.3 A Cascade in Arbitrary Dimension

In this subsection we complete the proof of Theorem 1. We already know that
the number of loop iterations is τ = O(d2 log B). The t-th loop iteration costs
O(dn(d + log B)(d + log M(t))) where M(t) = maxj<κ(t) |µκ(t),j(t)|. By analogy
with the Euclidean algorithm, we make terms cancel out in the sum over the
loop iterations of the “log M(t)’s”. For this purpose, we define the index α(t) as
the smallest swapping index since the last time κ was at least κ(t).

Lemma 1. Let t be a loop iteration. Let φ(t) = max(t′ < t | κ(t′) ≥ κ(t)) if it
exists and 1 otherwise, and let α(t) = min(κ(t′) | t′ ∈ [φ(t), t)) − 1. Then we

have log M(t) ≤ d + log ‖b(t)
κ(t)‖ − log ‖b(t)

α(t)‖.

We are to subdivide the sum of the log M(t)’s over the successive loop iter-
ations into O(d) subsums according to the value of κ(t):

∑

t≤τ

[

d + log ‖b(t)
κ(t)‖ − log ‖b(t)

α(t)‖
]

≤ τd +
d

∑

k=2

∑

{t|κ(t)=k}

[

log ‖b(t)
k ‖ − log ‖b(t)

α(t)‖
]

.

For each of these subsums, we keep k−1 positive terms and k−1 negative terms,
and make the others vanish in a progressive cancellation. Terms proportional to d
can appear from such cancellations, but they will be absorbed in “O(τd)”. The
crucial point to do this is the following:

Lemma 2. Let k ∈ [2, d] and t1 < . . . < tk be loop iterations of the L2 algorithm
such that for any j ≤ k, κ(tj) = k. Then there exists j < k with:

‖b(tj)

α(tj)
‖ ≥ d(δ − η2)−d/2‖b(tk)

k ‖.

To prove this result, we need the following technical fact:

Lemma 3. Let T and j be integers such that κ(T ) ≥ j ≥ κ(T + 1). We have:

maxi≤j‖b(T+1)∗
i ‖ ≤ maxi<j‖b(T )∗

i ‖ and maxi≤j‖b(T+1)
i ‖ ≤

√
d · maxi<j‖b(T )

i ‖.

It is now possible to finish the complexity analysis. Let k ∈ [2, d] and t1 <
. . . < tτk

= {t ≤ τ | k(t) = k}. We extract from the global sum the terms
corresponding to these loop iterations. Theorem 5 and the fact we are dealing
with an integer lattice ensures that:

τk
∑

i=1

log
‖b(ti)

k ‖
‖b(ti)

α(ti)
‖
≤ (k − 1) log(

√
dB) +

τk
∑

i=k

log ‖b(ti)
k ‖ −

τk−k+1
∑

i=1

log ‖b(ti)
α(ti)

‖.

Lemma 2 helps to tighly bound the right-hand term above. First, we apply it

with t1, . . . , tk. This shows that there exists j < k such that ‖b(tk)
k ‖ ≤ d(δ −

η2)−d/2‖b(tj)

α(tj)
‖. The indices “i = k” in the positive sum and “i = j” in the

negative sum cancel out and a term “ d
2 log(δ − η2)−1 + log d” appears. Then
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we use Lemma 2 with tk+1 and the k − 1 first ti’s that remain in the negative
sum. It is easy to see that tk+1 is larger than any of them, so that we can have
another “positive-negative” pair which cancels out in a “ d

2 log(δ−η2)−1 +log d”.
We perform this operation τk − k + 1 times, to obtain:

τk
∑

i=1

log
‖b(ti)

k ‖
‖b(ti)

α(ti)
‖
≤ (k − 1) log(

√
dB) + τk

[

d

2
log(δ − η2)−1 + log d

]

.

The fact that
∑

k τk = τ finally gives
∑

t≤τ (d+log M(t)) = O(τd+d2 log(dB)).
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