
SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 39, No. 3, pp. 874–903

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY∗

PHONG Q. NGUYEN† AND DAMIEN STEHLÉ‡

Abstract. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (called LLL or L3)
is a fundamental tool in computational number theory and theoretical computer science, which
can be viewed as an efficient algorithmic version of Hermite’s inequality on Hermite’s constant.
Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an n-
dimensional space, the L3 algorithm outputs a reduced basis in O(d3n log B ·M(d log B)) bit opera-
tions, where M(k) denotes the time required to multiply k-bit integers. This worst-case complexity
is problematic for applications where d or/and log B are often large. As a result, the original L3 algo-
rithm is almost never used in practice, except in tiny dimension. Instead, one applies floating-point
variants where the long-integer arithmetic required by Gram–Schmidt orthogonalization is replaced
by floating-point arithmetic. Unfortunately, this is known to be unstable in the worst case: the
usual floating-point L3 algorithm is not even guaranteed to terminate, and the output basis may
not be L3-reduced at all. In this article, we introduce the L2 algorithm, a new and natural floating-
point variant of the L3 algorithm which provably outputs L3-reduced bases in polynomial time
O(d2n(d+log B) log B ·M(d)). This is the first L3 algorithm whose running time (without fast inte-
ger arithmetic) provably grows only quadratically with respect to log B, like Euclid’s gcd algorithm
and Lagrange’s two-dimensional algorithm.

Key words. lattice reduction, L3, floating-point arithmetic

AMS subject classifications. 11Y16, 11H06, 11H55

DOI. 10.1137/070705702

1. Introduction. For 1 ≤ d ≤ n, let b1, . . . ,bd be linearly independent vectors
in R

n: often, n = d or n = O(d). We denote by L(b1, . . . ,bd) = {∑d
i=1 xibi | xi ∈ Z}

the set of all integer linear combinations of the bi’s. This set is called a lattice of R
n

and (b1, . . . ,bd) a basis of that lattice. A lattice basis is usually not unique, but all
the bases have the same number d of elements, called the dimension of the lattice. If
d ≥ 2, there are infinitely many bases, but some are more interesting than others: they
are called reduced. Roughly speaking, a reduced basis is a basis made of reasonably
short vectors which are almost orthogonal. Finding good reduced bases has proved
invaluable in many fields of computer science and mathematics (see the books [12, 6]),
particularly in cryptology (see [36, 29]). This problem is known as lattice reduction
and can intuitively be viewed as a vectorial generalization of gcd computations.

Hermite [13]1 published in 1850 the first lattice reduction algorithm in arbitrary
dimension, by trying to generalize Lagrange’s two-dimensional algorithm [21]2 (often

∗Received by the editors October 18, 2007; accepted for publication (in revised form) January
21, 2009; published electronically August 26, 2009. A preliminary version of this work appeared in
conference proceedings as [34].

http://www.siam.org/journals/sicomp/39-3/70570.html
†INRIA & Ecole normale supérieure, DI, 45 rue d’Ulm, 75005 Paris, France (pnguyen@di.ens.fr,

http://www.di.ens.fr/∼pnguyen/). Part of this author’s work was supported by the Commission of
the European Communities through the IST program under contract IST-2002-507932 ECRYPT.

‡CNRS & Ecole normale supérieure de Lyon/LIP/INRIA Arenaire/Université de Lyon, 46 allée
d’Italie, F-69364 Lyon Cedex 07, France, and ACAC/Department of Computing, Macquarie Uni-
versity, Sydney NSW 2109, Australia, and Department of Mathematics and Statistics, Univer-
sity of Sydney, Sydney NSW 2006, Australia (damien.stehle@ens-lyon.fr, http://perso.ens-lyon.fr/
damien.stehle/).

1This text is also available in the first volume (pages 100–121) of Hermite’s collected works,
published by Gauthier-Villars. The exact date of the letters is unknown, but the first letter seems
to have been written in 1847.

2This text can also be found on pages 695–795 of the third volume of Lagrange’s collected works.

874

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 875

wrongly attributed to Gauss). In his famous letters [13] to Jacobi, Hermite actually
described two reduction algorithms: the first letter presented an algorithm to show the
existence of Hermite’s constant (which guarantees the existence of short lattice vec-
tors), while the second letter presented a slightly different algorithm to further prove
the existence of lattice bases with bounded orthogonality defect. The subject had a
revival around 1981 with Lenstra’s celebrated work on integer programming [24, 25],
which was, among others, based on a novel lattice reduction technique. This reduction
technique, which can be found in the preliminary version [24] of [25], turns out to be
a relaxed variant of Hermite’s second algorithm, perhaps because the reduction goal
of [24] was to bound the orthogonality defect. Lenstra’s algorithm is polynomial-time
only for fixed dimension, which was, however, sufficient in [24]. This inspired Lovász
to develop a polynomial-time variant of the algorithm, which reached a final form
in the seminal paper [23], where Lenstra, Lenstra, and Lovász applied it to factor
rational polynomials in polynomial time, from which the name LLL or L3 comes:
the L3 algorithm was the first polynomial-time reduction algorithm, and it provides
bases almost as reduced as Hermite’s second algorithm. Further refinements of the
L3 algorithm were later proposed, notably by Kaltofen [17], Schnorr [39, 40], Gama
et al. [8], and Gama and Nguyen [9]: [17, 40] improve the running time of L3, and
[39, 8, 9] improve the output quality of L3 while keeping polynomial-time complexity.
Reduction algorithms (in particular, L3) have arguably become the most popular tool
in public-key cryptanalysis (see the survey [36]). In the past 25 years, they have been
used to break many public-key cryptosystems, including knapsack cryptosystems [37],
RSA in particular settings [7, 5, 4], DSA and similar signature schemes in particular
settings [15, 32], etc.

Given as input an integer d-dimensional lattice basis whose n-dimensional vec-
tors have norm less than B, the L3 algorithm outputs a so-called L3-reduced basis
in time O(d3n log B · M(d log B)), using arithmetic operations on integers of bit-
length O(d log B). Kaltofen [17] improved the analysis and obtained the complexity
bound O(d4n log2 B

d+log B ·M(d+logB)), proving that the worst-case multiplications involve
operands of bit-sizes O(d log B) and O(d + log B). This worst-case complexity turns
out to be problematic in practice, especially for lattices arising in cryptanalysis where
d or/and log B are often large. For instance, in a typical RSA application of Copper-
smith’s lattice-based theorem [7], we may need to reduce a 64-dimensional lattice with
vectors having coefficients whose size is a multiple of an RSA modulus (at least 2048
bits), in which case the complexity of [23] becomes “d5n log3 B = 269 ,” with naive in-
teger multiplication. As a result, the original L3 algorithm is seldom used in practice.
Instead, one applies floating-point variants, where the long-integer arithmetic required
by Gram–Schmidt orthogonalization (which plays a central role in L3) is replaced by
floating-point arithmetic on much smaller numbers. The use of floating-point arith-
metic in the L3 algorithm dates back to the early eighties when the L3 algorithm was
used to solve low-density knapsacks [20]. Unfortunately, floating-point arithmetic may
lead to stability problems, both in theory and practice, especially when the dimension
increases: the running time of floating-point variants of the L3 algorithm such as that
in Schnorr and Euchner [42] is not guaranteed to be polynomial or even finite, and
the output basis may not be L3-reduced at all. This phenomenon is well known to
L3 practitioners and is usually solved by sufficiently increasing the precision. For in-
stance, experimental problems arose during the cryptanalyses [31, 30] of lattice-based
cryptosystems, which led to improvements in Shoup’s NTL library [45].

There is, however, one provable floating-point variant of L3, due to Schnorr [40],

876 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

which significantly improves the worst-case complexity. Schnorr’s variant outputs an
approximate L3-reduced basis in time O(d3n log B ·M(d+logB)), using O(d+log B)
precision floating-point numbers. However, this algorithm is mostly of theoretical
interest and is not implemented in any of the main computational libraries [45, 28,
3, 27]. This is perhaps explained by the following reasons: it is not clear which
floating-point arithmetic model is used, the algorithm is not easy to describe, and the
hidden complexity constants are rather large. More precisely, the required precision
of floating-point numbers in [40] seems to be higher than 12d + 7 log2 B.

Our results. We present the L2 algorithm, a new and simple floating-point variant
of the L3 algorithm, in a standard floating-point arithmetic model, which provably
outputs approximate L3-reduced bases in polynomial time. More precisely, its com-
plexity is O(d2n(d + log B) log B · M(d)) using a precision of only (log2 3) · d bits,
which is independent of log B. This is the first L3 algorithm whose running time
grows only quadratically with respect to log B (hence the name L2), whereas the
growth is cubic—without fast integer arithmetic—for all other known provable L3 al-
gorithms. This improvement is significant for lattices where log B is larger than d, for
example those arising from minimal polynomials [6] and Coppersmith’s technique [7].
Interestingly, the L3 algorithm can be viewed as a generalization of the famous Euclid
gcd algorithm and Lagrange’s two-dimensional algorithm [21] whose complexities are
quadratic without fast integer arithmetic, not cubic like the original L3. This arguably
makes L2 closer to Euclid’s algorithm. The table of Figure 1 draws a comparison be-
tween L3 [23], Schnorr’s floating-point LLL algorithm from [40], and L2.

At first glance, it may look surprising that there is anM(d) term in the complex-
ity of L2 but noM(log B) term. This can be explained as follows. Most of the integer
multiplications in L2 are of two types: either two arguments of bit-length O(d), or one
argument of bit-length O(d) and the other of bit-length O(log B). Multiplications of
the second type can be performed withinM(d)(1+ log B

d) bit operations, by subdivid-
ing the O(log B)-bit number in O(1 + log B

d) numbers of bit-length O(d). Of course,
L2 also performs a few multiplications between O(log B)-bit numbers (in the initial
computation of the Gram matrix), but these are much less frequent: their overall cost
vanishes with the log2 B term of the complexity bound above.

L3 [23] Schnorr [40] L2

Required precision O(d log B) > 12d + 7 log2 B d log2 3 ≈ 1.58d
O()-complexity with
naive multiplication

d5n log3 B d3n(d + log B)2 log B d4n(d + log B) log B

O()-complexity with
fast multiplication

d4+εn log2+ε B d3n(d + log B)1+ε log B d3+εn(d + log B) log B

Fig. 1. Comparison of different L3 algorithms.

The L2 algorithm is based on several improvements, both in the L3 algorithm
itself and more importantly in its analysis. From an algorithmic point of view, we
improve the accuracy of the usual Gram–Schmidt computations by a systematic use of
the Gram matrix, and we adapt Babai’s nearest plane algorithm [2] to floating-point
arithmetic in order to stabilize the so-called size-reduction process extensively used
in L3. We give tight bounds on the accuracy of Gram–Schmidt computations to prove
the correctness of L2. The analysis led to the discovery of surprisingly bad lattices:
for instance, we found a 55-dimensional lattice with 100-bit vectors which makes
NTL’s LLL FP [45] (an improved version of [42]) loop forever, which contradicts [19],

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 877

where it is claimed that double precision is sufficient in [42] to L3-reduce lattices
up to dimension 250 with classical Gram–Schmidt. However, for random looking
lattice bases, stability problems seem to arise only in dimensions much higher than
55, due perhaps to the well-known experimental fact that for such input bases, the
L3 algorithm outputs better bases than for the worst case (see [35]). Finally, to
establish a quadratic running time, we generalize a well-known cascade phenomenon in
the complexity analysis of the Gaussian and Euclidean algorithms. This was inspired
by the so-called greedy lattice reduction algorithm of [33],3 which is quadratic in
low dimension thanks to another cascade. The cascade analysis is made possible
by the efficiency of our floating-point variant of Babai’s algorithm and cannot be
adapted to the standard L3 algorithm: it is unlikely that the complexity of the original
L3 algorithm could be proved quadratic in log B.

Related work. Much work [43, 40, 48, 18, 19, 41] has been devoted to improve L3,
specifically the exponent of d in the complexity, but none has improved the log3 B
factor (except [51, 44] for dimension two). We hope that some of these improvements
might be adaptable to L2.

Floating-point stability has long been a mysterious issue in L3. When it was
realized during experiments that classical Gram–Schmidt orthogonalization could be
very unstable, it was suggested in the late nineties to use well-known alternative
techniques (see [22, 11]) like Givens rotations (implemented in NTL) or Householder
reflections, which are more expensive but seem to be more stable in practice. However,
from a theoretical point of view, the best results known on the worst-case accuracy of
such techniques are not significantly better than the so-called modified Gram–Schmidt
algorithm. Besides, most numerical analysis results refer to backward stability and
not accuracy: such a mistake is made in [19], where a theorem from [22] is incorrectly
applied. At the moment, it is therefore not clear how to provably exploit known
results on Givens rotations and Householder reflections to improve the L3 algorithm
theoretically, though Schnorr [41] provides heuristic arguments suggesting it might be
possible. This is why L2 uses a process only close to classical Gram–Schmidt.

Road map. In section 2 we provide necessary background on lattices and L3. We
describe the L2 algorithm in section 3. Section 4 proves the correctness of L2, while
section 5 analyzes its complexity. In section 6, we generalize the L2 algorithm to
generating sets.

2. Preliminaries.
Notation. All logarithms are in base 2. Let ‖ · ‖ and 〈·, ·〉 be the Euclidean

norm and inner product of R
n. The notation �x	 denotes a closest integer to x.

Bold variables are vectors. All the lattices we consider are integer lattices, as usual.
The complexity model we use is the RAM model, and the computational cost is
measured in elementary operations on bits. Our floating-point arithmetic model is a
smooth extension of the IEEE-754 standard [16], as provided by NTL [45] (RR class)
and MPFR [49]. With an �-bit working precision, an fp-number is of the form x =
±mx · 2ex , where the mantissa mx ∈ [1/2, 1) is (� + 1)-bit long and the exponent ex

is an integer. If a is a real number, we denote by
(a) a closest fp-number to it.
This directly implies that |
 (a) − a| ≤ 2−�−1|a|. We expect all four basic floating-
point operations to be correctly rounded: the returned value for (a op b) with op ∈
{+,−, /, ∗} is
(a op b). In our complexity analysis, we do not consider the cost of the
arithmetic on the exponents: it can be checked easily that the exponents are integers
of length O(log(d + log B)), so that the cost is indeed negligible.

3The full version of this extended abstract will appear in ACM Transactions on Algorithms.

878 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

We now recall a few basic notions from algorithmic geometry of numbers (see [29])
before describing the classical LLL algorithm.

2.1. Lattice background. The Gram matrix G(b1, . . . ,bd) of b1, . . . ,bd ∈ R
n

is the d×d symmetric positive definite matrix (〈bi,bj〉)1≤i,j≤d formed by all the inner
products.

Lattice volume. A lattice L has infinitely many lattice bases as soon as dimL ≥
2. Any two bases are related to each other by an integral matrix of determinant ±1,
and therefore the determinant of the Gram matrix of a basis depends only on the
lattice. The square root of this determinant is called the volume vol L (or determinant)
of the lattice. This volume is sometimes called covolume because it is the volume of
the torus span(L)/L.

Hermite’s constant. Any lattice L has a nonzero vector of minimal Euclidean
norm: this minimal norm is called the first minimum and is denoted by λ1(L). It
is a classical fact that for any d-dimensional lattice L, λ1(L)/vol(L)1/d can be upper
bounded independently of L: Hermite’s constant γd is defined as the supremum of
(λ1(L)/vol(L)1/d)2 over all d-dimensional lattices L.

Gram–Schmidt orthogonalization. Let b1, . . . ,bd be linearly independent
vectors. Their Gram–Schmidt orthogonalization (GSO) b∗

1, . . . ,b
∗
d is the orthogonal

family defined recursively as follows: the vector b∗
i is the component of the vector bi

which is orthogonal to the linear span of the vectors b1, . . . ,bi−1. We have b∗
i =

bi −
∑i−1

j=1 μi,jb∗
j , where μi,j = 〈bi,b

∗
j 〉

‖b∗
j ‖2 . For i ≤ d we let μi,i = 1. The reason why

the GSO is widely used in lattice reduction is because the matrix representing the
vectors b1, . . . ,bd with respect to the orthonormal basis (b∗

1/‖b∗
1‖, . . . ,b∗

d/‖b∗
d‖) is

lower triangular, with diagonal coefficients ‖b∗
1‖, . . . , ‖b∗

d‖. It follows that the lattice L

spanned by the bi’s satisfies vol L =
∏d

i=1 ‖b∗
i ‖.

Notice that the GSO family depends on the order of the vectors. If the bi’s
are integer vectors, the b∗

i ’s and the μi,j ’s are rational. We also define the vari-
ables ri,j for i ≥ j as follows: for any i ∈ �1, d�, we let ri,i = ‖b∗

i ‖2, and for
any i ≥ j we let ri,j = μi,j‖b∗

j‖2. In what follows, the GSO family denotes the ri,j ’s
and μi,j ’s. Some information is redundant in rational arithmetic, but in the context
of our floating-point calculations, it is useful to have all these variables.

Size-reduction. A basis (b1, . . . ,bd) is size-reduced with factor η ≥ 1/2 if its
GSO family satisfies |μi,j | ≤ η for all 1 ≤ j < i ≤ d. The ith vector bi is size-reduced
if |μi,j | ≤ η for all j ∈ �1, i− 1�. Size-reduction usually refers to η = 1/2, but it is
essential for the L2 algorithm to allow at least slightly larger factors η.

2.2. From Hermite’s reductions to the LLL reduction. A pair (b1,b2) of
linearly independent vectors is Lagrange-reduced [21] if ‖b1‖ ≤ ‖b2‖ and |〈b1,b2〉| ≤
‖b1‖2/2. This definition is often wrongly attributed to Gauss [10]. Lagrange’s algo-
rithm [21] shows that any two-dimensional lattice has a Lagrange-reduced basis: the
algorithm is very similar to Euclid’s gcd algorithm. Furthermore, such a basis (b1,b2)
satisfies the following property:

‖b1‖ · ‖b2‖ ≤
√

4/3 · vol (L(b1,b2)) ,

which means that the vectors b1 and b2 are almost orthogonal. It also follows that

‖b1‖ ≤ (4/3)1/4 · vol (L(b1,b2))
1/2

,(1)

which gives a tight upper bound on Hermite’s constant γ2 =
√

4/3.

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 879

Hermite’s reductions. In his famous letters to Jacobi (see [13]), Hermite de-
scribed two reduction notions (along with algorithms) in the language of quadratic
forms. We will briefly describe both, since Hermite’s algorithms can be viewed as the
ancestors of the L3 algorithm.

The first reduction notion is described at the end of the first letter [13], but we
only present a simplified version in the spirit of the second letter, which we call H1.
To the best of our knowledge, it is the first reduction notion in arbitrary dimension,
which was introduced to prove the existence of Hermite’s constant, by establishing an
upper bound called Hermite’s inequality. The H1 reduction is defined by induction:

• A single vector b1 �= 0 is always H1-reduced.
• A d-dimensional basis (b1, . . . ,bd) is H1-reduced if and only if the following

hold:
– The basis is size-reduced with factor 1/2; that is, the GSO satisfies all

the inequalities |μi,j | ≤ 1/2 for all i > j.
– The first basis vector b1 satisfies the following inequality:

‖b1‖ ≤ (4/3)(d−1)/4 · vol(L(b1, . . . ,bd))1/d,(2)

which generalizes (1) and implies Hermite’s inequality:

γd ≤ γd−1
2 = (4/3)(d−1)/2.(3)

– By induction, the projected (d−1)-tuple (b′
2, . . . ,b

′
d) itself is H1-reduced,

where for any i ∈ �2, d� the vector b′
i is the component of the vector bi

which is orthogonal to the vector b1.
This H1 reduction notion is useful only to prove Hermite’s inequality: the first vector
of an H1-reduced basis may be arbitrarily far from the first minimum of the lattice,
and the orthogonality defect of the basis may be arbitrarily large. To prove the
existence of H1-reduced bases, Hermite presented the following recursive algorithm:

• Let (b1, . . . ,bd) be a basis of a lattice L.
• Apply recursively the algorithm to the projected basis (b′

2, . . . ,b
′
d), in such a

way that all the basis vectors b2, . . . ,bd are size-reduced with respect to b1:
|μi,1| ≤ 1/2 for all i ≥ 2.

• If b1 satisfies Hermite’s inequality, the algorithm terminates. Otherwise, it
can be shown that ‖b2‖ < ‖b1‖, so exchange b1 and b2, and restart from the
beginning.

The main differences with this algorithm and L3 are the following: L3 starts working
with the first two basis vectors, but Hermite will start working with the last two basis
vectors; and Hermite’s algorithm uses Hermite’s inequality instead of the so-called
Lovász condition. Hermite proved that his algorithm must terminate. However,
because his algorithm did not match Lagrange’s algorithm in dimension two, and
perhaps also because the orthogonality defect of a H1-reduced basis can be arbitrarily
large, Hermite presented a slightly different algorithm in his second letter [13] to
Jacobi:

• Let (b1, . . . ,bd) be a basis of a lattice L.
• Ensure that b1 has minimal norm among all bi’s: otherwise, swap b1 with

the shortest basis vector bi.
• Apply recursively the algorithm to the projected basis (b′

2, . . . ,b
′
d), in such a

way that all the basis vectors b2, . . . ,bd are size-reduced with respect to b1:
|μi,1| ≤ 1/2 for all i ≥ 2.

880 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

• If b1 has minimal norm among all bi’s, the algorithm terminates. Otherwise,
swap b1 with the shortest basis vector bi, and restart from the beginning.

Hermite also proved that this algorithm must terminate. One can note that this
algorithm matches Lagrange’s algorithm when d = 2. But one can also note that this
second algorithm achieves a reduction notion (H2) which is stronger than H1:

• A single vector b1 �= 0 is always H2-reduced.
• A d-dimensional basis (b1, . . . ,bd) is H2-reduced if and only if the following

hold:
– The basis is size-reduced with factor 1/2; that is, the GSO satisfies all

the inequalities |μi,j | ≤ 1/2 for all i > j.
– The first basis vector b1 has minimal norm among all basis vectors:
‖b1‖ ≤ ‖bi‖ for all i.

– By induction, the (d − 1)-tuple (b′
2, . . . ,b

′
d) itself is H2-reduced, where

for any i ∈ �2, d� the vector b′
i is the component of the vector bi which

is orthogonal to the vector b1.
As opposed to H1, this reduction notion implies a bounded orthogonality defect: more
precisely, an H2-reduced basis satisfies

∏d
i=1 ‖bi‖ ≤ (4/3)

d(d−1)
4 · vol(L). Surprisingly,

Lenstra’s reduction notion [24] (resp., his algorithm) turns out to be a relaxed variant
of H2 (resp., Hermite’s second algorithm): more precisely, one replaces the condi-
tions ‖b1‖ ≤ ‖bi‖ by c‖b1‖ ≤ ‖bi‖ for some constant 1/4 < c < 1. This allowed
Lenstra [24] to prove that his algorithm was polynomial-time in fixed dimension d.
The H2 reduction was also rediscovered by Schnorr and Euchner [42] in 1994 with
their L3 algorithm with deep insertion: Schnorr–Euchner’s algorithm is different from
Hermite’s second algorithm, but both try to achieve the same reduction notion. It is
unknown if Hermite’s algorithms are polynomial-time in varying dimension.

The LLL reduction. Roughly speaking, the LLL reduction [23] modifies Her-
mite’s second reduction notion by replacing the conditions ‖b1‖ ≤ ‖bi‖ by the single
condition c‖b1‖ ≤ ‖b2‖ for some constant 1/4 < c < 1. More precisely, a ba-
sis (b1, . . . ,bd) is L3-reduced with factor (δ, η), where δ ∈ (1/4, 1] and η ∈ [1/2,

√
δ)

if the basis is size-reduced with factor η and if its GSO satisfies the (d − 1) Lovász
conditions: for all 2 ≤ κ ≤ d,(

δ − μ2
κ,κ−1

) · rκ−1,κ−1 ≤ rκ,κ,

or equivalently δ · ‖b∗
κ−1‖2 ≤ ‖b∗

κ + μκ,κ−1b∗
κ−1‖2. This implies that the norms

‖b∗
1‖, . . . , ‖b∗

d‖ of the GSO vectors never drop too much: intuitively, the vectors are
not far from being orthogonal. Such bases have very useful properties, like providing
approximations to the shortest vector problem and the closest vector problem. In
particular, their first vector is relatively short. More precisely, the following result is
classical.

Theorem 1 (see [23]). Let δ ∈ (1/4, 1] and η ∈ [1/2,
√

δ). Let (b1, . . . ,bd) be a
(δ, η)-L3-reduced basis of a lattice L. Then

‖b1‖ ≤
(
1/(δ − η2)

) d−1
4 · (vol L)

1
d ,(4)

d∏
i=1

‖bi‖ ≤ (1/(δ − η2))
d(d−1)

4 · (vol L).(5)

Proof. We have ri−1,i−1 ≤ (δ− η2)−1 · ri,i for any i ∈ �2, d�. This implies that for
any j ≤ i

rj,j ≤ (δ − η2)−(i−j) · ri,i.

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 881

Taking j = 1 and multiplying these inequalities for all i ∈ �1, d� gives (4). Since the
basis is size-reduced, we have, for any i,

‖bi‖2 = ri,i +
i−1∑
j=1

μ2
i,jrj,j ≤

⎛
⎝1 +

i−1∑
j=1

η2 rj,j

ri,i

⎞
⎠ · ri,i

≤
⎛
⎝1 + η2

i−1∑
j=1

(
δ − η2

)−(i−j)

⎞
⎠ · ri,i

=

(
1 + η2

(
δ − η2

)−i − (δ − η2
)−1

(δ − η2)−1 − 1

)
· ri,i

=
1− δ + η2

(
δ − η2

)−i+1

1− δ + η2
· ri,i

≤ (δ − η2
)−i+1 · ri,i.

By multiplying these d inequalities, we obtain (5).
The inequality (4) is reminiscent of Hermite’s inequality (3). Indeed, if we take

(δ, η) = (1, 1/2), then (4) becomes exactly (2), and (5) corresponds to the orthogo-
nality defect of the H2 reduction.

The L3 reduction usually refers to the factor (3/4, 1/2) initially chosen in [23], in
which case the approximation constant 1/(δ−η2) is equal to 2. But the closer δ and η
are, respectively, to 1 and 1/2, the shorter the vector b1 should be. In practice, one
usually selects δ ≈ 1 and η ≈ 1/2, so that we almost have ‖b1‖ ≤ (4/3)

d−1
4 · (vol L)

1
d .

The L3 algorithm obtains in polynomial time a basis reduced with factor (δ, 1/2),
where δ < 1 can be chosen arbitrarily close to 1: this algorithm can thus be viewed
as an efficient algorithmic version of Hermite’s inequality (3). The new L2 algorithm
achieves a factor (δ, η), where δ < 1 can be arbitrarily close to 1 and η > 1/2 arbitrarily
close to 1/2. It is unknown whether or not δ = 1 can be achieved in polynomial time
(attempts to prove it can be found in [1] and [26]). However, one can achieve η = 1/2
in quadratic time by first running the L2 algorithm on the given input basis with
δ′ = δ+2(η−1/2) and an η > 1/2 such that δ′ < 1, and then running the L3 algorithm
on the output basis. Because the first reduction outputs an almost-reduced basis, the
second reduction will perform only size-reduction operations, in which case L3 has
the same complexity bound as the L2 algorithm given in Theorem 2.

The L3 algorithm. The usual L3 algorithm [23] is described in Figure 2. It
computes an L3-reduced basis in an iterative fashion: the index κ is such that at
any stage of the algorithm, the truncated basis (b1, . . . ,bκ−1) is L3-reduced. At each
loop iteration, the index κ is either incremented or decremented: the loop stops when
the index κ reaches the value d + 1, in which case the entire basis (b1, . . . ,bd) is
L3-reduced.

The L3 algorithm performs two kinds of operations: swaps of consecutive vectors
and size-reductions (see Figure 3), which consist of at most d translations of the
form bκ ← bκ − m · bi, where m is some integer and i < κ. Swaps are used to
achieve Lovász’s conditions, while the size-reduction algorithm is used to size-reduce
vectors. Intuitively, size-reductions intend to shorten (or upper bound) the projection
of bκ over the linear span of (b1, . . . ,bκ−1), while swaps shorten the projection of bκ

over the orthogonal complement of (b1, . . . ,bκ−1), that is, b∗
κ. We explain steps 4–

6: if Lovász’s condition is satisfied, nothing happens in step 5 and the index κ is

882 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

Input: A basis (b1, . . . ,bd) and δ ∈ (1/4, 1).
Output: An L3-reduced basis with factor (δ, 1/2).

1. Compute the rational GSO, i.e., all the μi,j ’s and ri,i’s.
2. κ← 2. While κ ≤ d do
3. Size-reduce the vector bκ using the size-reduction algorithm of Figure 3,

which updates the GSO.

4. κ′ ← κ. While κ ≥ 2 and δ · rκ−1,κ−1 > rκ′,κ′ +
∑κ′−1

i=κ−1 μ2
κ′,iri,i, do κ← κ− 1.

5. Insert the vector bκ′ right before the vector bκ and update the GSO accordingly.
6. κ← κ + 1.
7. Output (b1, . . . ,bd).

Fig. 2. The L3 algorithm.

Input: A basis (b1, . . . ,bd), its GSO, and an index κ.
Output: The basis where the vector bκ is size-reduced and the updated GSO.

1. For i = κ− 1 down to 1 do
2. bκ ← bκ − �μκ,i� · bi.
3. Update the GSO accordingly.

Fig. 3. The size-reduction algorithm.

incremented like in more classical descriptions of the L3 algorithm. Otherwise, step 4
finds the right index to insert the vector bκ, by collecting consecutive failures of
Lovász’s test.

If the L3 algorithm terminates, it is clear that the output basis is L3-reduced.
What is less clear a priori is why this algorithm has a polynomial-time complexity. A
standard argument shows that each swap decreases the quantity Δ=

∏d
i=1‖b∗

i ‖2(d−i+1)

by at least a factor δ < 1. On the other hand, we have that Δ ≥ 1 because the bi’s
are integer vectors and Δ can be viewed as a product of squared volumes of lat-
tices spanned by some subsets of the bi’s. This proves that there can be no more
than O(d2 log B) swaps, and therefore loop iterations, where B is an upper bound on
the norms of the input basis vectors. It remains to estimate the cost of each loop
iteration. This cost turns out to be dominated by O(dn) arithmetic operations on
the basis matrix and GSO coefficients μi,j and ri,i which are rational numbers of
bit-length O(d log B). Thus, the overall complexity of the L3 algorithm described in
Figure 2 can be bounded by

O
((

d2 log B
) · dn · M (d log B)

)
= O

(
d3n log B · M (d log B)

)
.

Note, however, that, as mentioned in the introduction, this analysis can be (slightly)
improved. First, Kaltofen [17] showed that the most expensive arithmetic operations
do not involve two operands of bit-length O(d log B): at least one of them has bit-
length at most O(d + log B), which leads to the bound

O

(
d4n log2 B

d + log B
· M(d + log B)

)
.

Furthermore, the dependency with respect to n can be improved when n � d: the
arithmetic operations on the basis vectors are actually cheaper than the operations on
the GSO coefficients, because they involve only operands of bit-length O(d + log B).

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 883

2.3. The L3 algorithm with floating-point arithmetic. The cost of the
L3 algorithm is dominated by the arithmetic operations on the GSO coefficients
which are rationals with huge numerators and denominators. It is therefore tempting
to replace the exact GSO coefficients by floating-point approximations that will be
represented with far fewer bits. But doing so in a straightforward manner leads to
instability. The algorithm is no longer guaranteed to be polynomial-time: it may not
even terminate, because the quantity Δ used to bound the complexity of L3 algorithm
no longer necessarily decreases at each swap. It could be that the new algorithm per-
forms a swap when the initial L3 algorithm would not have performed such a swap.
And if the algorithm ever terminates, the output basis may not be L3-reduced, due
to potential inaccuracy in the GSO coefficients. Prior to this work, the only provable
floating-point L3 algorithm was the one of Schnorr [40], which simulates the behav-
ior of the L3 algorithm using floating-point approximations of the coefficients of the
inverse matrix of the μi,j ’s. The number of loop iterations and the number of arith-
metic operations (in each iteration) remain the same as in the L3 algorithm (up to
a constant factor): only the cost of each arithmetic operation related to the GSO
decreases. Instead of handling integers of length O(d log B), Schnorr’s algorithm uses
floating-point numbers with O(d + log B)-bit long mantissae (with large hidden con-
stants, as mentioned in the introduction). This decreases the worst-case complexity
of the L3 algorithm to O(d3n log B · M(d + log B)). With naive multiplication, this
cost remains cubic in log B. Because this algorithm is mostly of theoretical inter-
est, the main number theory computer packages [3, 28, 45] used to contain heuristic
floating-point variants of the L3 algorithm à la Schnorr and Euchner [42], which suffer
from stability problems in high dimension. This is no longer the case in [28], which
contains an implementation of the L2 algorithm.

3. The L2 algorithm. In this section, we present the L2 algorithm. Its com-
plexity analysis is postponed to the next section.

3.1. Overview. The L2 algorithm is a natural floating-point variant of the L3 al-
gorithm, which follows the same structure as the L3 algorithm [23] described in Fig-
ure 2, with two important differences:

• Instead of keeping the GSO in exact rational arithmetic, we will keep only
a sufficiently good floating-point approximation, and we will try to simulate
the execution of the rational L3 algorithm. If the floating-point precision
is too large, it will be too expensive to compute with the GSO. But if the
floating-point precision is too small, the approximation might become too
inaccurate, to the point of being meaningless: accuracy is crucial for the size-
reductions and for checking the Lovász conditions. We will select a floating-
point precision linear in d only, whereas Schnorr’s floating-point L3 algorithm
described in [40] uses a larger precision (linear in both d and log B). The
fact that the floating-point precision is independent of log B is crucial to the
quadratic complexity of L2.
• We replace the size-reduction algorithm described in Figure 3 by an algorithm

better suited to floating-point arithmetic. The new algorithm will perform
more operations, but it will be more stable: it will tolerate an approxima-
tion of the GSO. We will use the fact that when L2 calls the size-reduction
algorithm, we already know that the first κ−1 vectors are almost L3-reduced.

When computing a floating-point approximation of the GSO, it is very important to
use exact scalar products 〈bi,bj〉: we will keep only a floating-point approximation of
the GSO, but we will also keep the exact Gram matrix formed by 〈bi,bj〉 and update

884 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

it during the reduction.

3.2. Gram–Schmidt computations. It is important for the L2 algorithm to
have accurate formulae for the computation of the GSO coefficients. In [42], the
following recursive formulae were used:

μi,j =
〈bi,bj〉 −

∑j−1
k=1 μj,k · μi,k · ‖b∗

k‖2∥∥b∗
j

∥∥2 and ‖b∗
i ‖2 = ‖bi‖2 −

i−1∑
j=1

μ2
i,j ·

∥∥b∗
j

∥∥2
.

In these formulae, the inner products 〈bi,bj〉 are computed in floating-point arith-
metic, which possibly leads to an absolute error of 2−� · ‖bi‖ · ‖bj‖, where � is the
chosen precision. This happens, for example, when the vectors bi and bj are almost
orthogonal, i.e., when their scalar product is very small compared to the product of
their norms. This has the following drawback: to ensure that the basis returned by
the L2 algorithm is size-reduced, absolute error bounds on the μi,j ’s are required;
if the absolute error on 〈bi,bj〉 can be larger than 2−�‖bi‖‖bj‖, the precision �
must be Ω(log B) in the worst case (for example, when the vector bi is very long
while ‖bj‖ = O(1)). The analyses of [40, 41] do not tackle this issue. We solve this
problem by computing the exact Gram matrix at the beginning of the execution of the
L2 algorithm and by updating it every time the basis matrix is modified: in fact, the
transformations are computed from the Gram matrix and applied to the basis matrix.
The additional cost is proportional to the cost of the update of the basis matrix. The
advantage is that it allows us to require a floating-point precision of only O(d) bits
within the underlying orthogonalization process.

Besides, we use slightly different formulae by introducing the quantities ri,j =
μi,j · ‖b∗

j‖2 = 〈bi,b
∗
j 〉 for all i ≥ j:

ri,j = 〈bi,bj〉 −
j−1∑
k=1

μj,k · ri,k and μi,j =
ri,j

rj,j
.

The accuracy is improved because the inner products are extracted from the exact
Gram matrix and because each term of the sum now requires only a single multiplica-
tion instead of two. For i = j, we have ri,i = ‖bi‖2 −

∑i−1
k=1 μi,k · ri,k, which suggests

defining the quantities s
(i)
j = ‖bi‖2−

∑j−1
k=1 μi,k ·ri,k for all j ∈ �1, i�. In particular, we

have s
(i)
1 = ‖bi‖2 and s

(i)
i = ‖b∗

i ‖2 = ri,i. The quantities s
(i)
j will be useful to check

consecutive Lovász’s conditions. Indeed, Lovász’s condition
(
δ − μ2

κ,κ−1

) · ‖b∗
κ−1‖2 ≤

‖b∗
κ‖2 can be rewritten as δ · ‖b∗

κ−1‖2 ≤ ‖b∗
κ‖2 + μ2

κ,κ−1‖b∗
κ−1‖2, i.e.,

δ · rκ−1,κ−1 ≤ s
(κ)
κ−1.

Whenever the condition is not satisfied, the L3 algorithm would swap the vectors bκ−1

and bκ and check the following Lovász’s condition:

δ · rκ−2,κ−2 ≤ s
(κ)
κ−2.

Thus, storing the s
(κ)
j ’s allows us to check consecutive Lovász’s conditions (when con-

secutive swaps occur) without any additional cost since they appear in the calculation
of rκ,κ. The computation of the ri,j ’s, μi,j ’s, and s

(d)
j ’s is summarized in the so-called

Cholesky factorization algorithm (CFA) of Figure 4.

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 885

Input: The Gram matrix of (b1, . . . ,bd).

Output: All the ri,j ’s, μi,j ’s, and s
(d)
j ’s defined by the GSO.

1. For i = 1 to d do
2. For j = 1 to i− 1 do
3. ri,j ← 〈bi,bj〉.
4. For k = 1 to j − 1 do ri,j ← ri,j − μj,k · ri,k.
5. μi,j ← ri,j/rj,j .

6. s
(i)
1 ← ‖bi‖2. For j = 2 to i do s

(i)
j ← s

(i)
j−1 − μi,j−1 · ri,j−1.

7. ri,i ← s
(i)
i .

Fig. 4. The Cholesky factorization algorithm.

Of course, because one uses floating-point arithmetic, the exact values are un-
known. Instead, one computes floating-point approximations r̄i,j , μ̄i,j , and s̄

(i)
j .

Steps 3–6 are performed in the following way:

r̄i,j ←
 (〈bi,bj〉) ,

r̄i,j ←
 (r̄i,j −
(μ̄j,k · r̄i,k)) ,

μ̄i,j ←
 (r̄i,j/r̄j,j) ,

s̄
(i)
j ←

(
s̄
(i)
j−1 −
(μ̄d,j−1 · r̄d,j−1)

)
.

We will not use the CFA directly in the L2 algorithm. Instead, we will use parts of
it during the execution of the algorithm: because the orthogonalization is performed
vector by vector, there is no need for recomputing everything from scratch if the ri,j ’s
and μi,j ’s are already known for any i and j below some threshold. The CFA will also
prove useful in section 4, as a first step in the proof of correctness of the L2 algorithm.

3.3. A lazy floating-point size-reduction algorithm. The core of the L2 al-
gorithm is a lazy floating-point version of the size-reduction algorithm, described in
Figure 5. Instead of size-reducing the vector bκ at once like in Figure 3, our floating-
point version tries to do the same progressively in several small steps that use the
CFA of Figure 4. Size-reducing in a single step requires a very high accuracy for the
floating-point calculations: the required mantissa size could possibly be linear in log B
(see the discussion after Theorem 4). Rather than doing this, we perform the size-
reduction progressively: we make the μi,j ’s decrease a bit, we recompute them with
more accuracy (with the CFA), and we go on until they are small enough and known
with good accuracy. If we consider the integer translation coefficients xi that would
have been computed if we had performed the size-reduction at once, it intuitively
means that we discover them progressively, from the most significant bits to the least
significant ones. Although the lazy size-reduction requires more steps than the initial
size-reduction, it will overall be less expensive because replacing the exact rational
arithmetic of the GSO by floating-point arithmetic outweighs the cost.

At step 1, we define η̄ ← 	((η)+1/2)
2 . The division by 2 is exact because the

base of the floating-point arithmetic is 2. The variable η̄ is meant to be in (1/2, η),
which is the case if � is large enough. At step 6, it suffices to update the scalar

886 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

Input: A factor η > 1/2, an fp-precision � + 1, an index κ, a basis (b1, . . . ,bd)
with its Gram matrix, and floating-point numbers r̄i,j and μ̄i,j for j ≤ i < κ.

Output: Floating-point numbers r̄κ,j , μ̄κ,j , and s̄
(κ)
j for j ≤ κ,

a basis (b1, . . . , bκ−1, b
′
κ,bκ+1, . . . ,bd) with its Gram matrix, where

b′
κ = bκ −∑i<κ xi · bi for some xi ∈ Z and |〈b′

κ,b∗
i 〉| ≤ η ‖b∗

i ‖2 for any i < κ.

1. η̄ ← �(�(η)+1/2)
2

.

2. Compute the r̄κ,j ’s, μ̄κ,j ’s, s̄
(κ)
j ’s with steps 2–7 of the CFA with “i = κ.”

3. If maxj<κ |μ̄κ,j | ≤ η̄, terminate. Else, for i = κ− 1 down to 1, do
4. Xi ← �μ̄κ,i�.
5. For j = 1 to i− 1, μ̄κ,j ←
 (μ̄κ,j −
(Xi · μ̄i,j)).

6. bκ ← bκ −∑κ−1
i=1 Xi · bi, update G(b1, . . . ,bd) accordingly.

7. Goto step 2.

Fig. 5. The lazy size-reduction algorithm.

Input: A valid pair (δ, η), like in Theorem 2, a basis (b1, . . . ,bd), and an
fp-precision � + 1.
Output: An L3-reduced basis with factor pair (δ, η).
Variables: An integral matrix G, floating-point numbers r̄i,j , μ̄i,j , and s̄i.

1. Compute exactly G = G(b1, . . . ,bd).

2. δ̄ ← �(�(δ)+1)
2

, r̄1,1 ←
(〈b1,b1〉), κ← 2. While κ ≤ d, do
3. Size-reduce the vector bκ using the algorithm of Figure 5, updating the fp-GSO.

4. κ′ ← κ. While κ ≥ 2 and
(δ̄ · r̄κ−1,κ−1) > s̄
(κ′)
κ−1, do κ← κ− 1.

5. For i = 1 to κ− 1 do μ̄κ,i ← μ̄κ′,i, r̄κ,i ← r̄κ′,i, r̄κ,κ ← s̄
(κ′)
κ .

6. Insert the vector bκ′ right before the vector bκ and update G accordingly.
7. κ← κ + 1.
8. Output (b1, . . . ,bd).

Fig. 6. The L2 algorithm.

products 〈bi,bκ〉 for i ≤ d with the following relations:

‖b′
κ‖2 = ‖bκ‖2 +

∑
j
=κ

X2
j · ‖bj‖2 − 2

∑
j
=κ

Xj · 〈bj ,bκ〉+ 2
∑

j
=κ,i
=κ

Xi ·Xj · 〈bi,bj〉,

〈bi,b
′
κ〉 = 〈bi,bκ〉 −

∑
j
=κ

Xj · 〈bi,bj〉 for i �= κ.

3.4. Main results. A description of the L2 algorithm is given in Figure 6.
There is no need for keeping approximations of all the GSO coefficients: because

the algorithm is iterative, it suffices to have approximations up to the threshold κ. No-
tice that the cost of the first step is bounded by O(d2nM(logB)) and is thus negligible
compared to the rest of the execution. At step 4, instead of δ we use δ̄ = 	((δ)+1)

2 ,
which is hopefully in (δ, 1), to take into account the fact that the quantities r̄κ−1,κ−1

and s̄
(κ′)
κ−1 are known only approximately. The main result of this paper is the following.

Theorem 2. Let (δ, η) be such that 1/4 < δ < 1 and 1/2 < η <
√

δ. Let c >

log (1+η)2

δ−η2 be a constant. Given as input a d-dimensional lattice basis (b1, . . . ,bd)
in Z

n with maxi ‖bi‖ ≤ B, the L2 algorithm of Figure 6 with � = cd + o(d) outputs

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 887

a (δ, η)-L3-reduced basis in time O
(
d2n log B(d + log B) ·M(d)

)
. Furthermore, the

running time is O (n(τ + d log dB)(d + log B) ·M(d)) if τ denotes the number of loop
iterations.

Let us make a few remarks.
1. If one considers naive multiplication, then the L2 algorithm decreases by a

multiplicative factor d+log B
d the complexity bound O(d3n log B(d + log B)2)

of [40].
2. We can choose δ arbitrarily close to 1 and η arbitrarily close to 1/2, so that the

coefficient c > log (1+η)2

δ−η2 can be chosen arbitrarily close to log 3 < 1.585. More
precisely, we can show the following complexity bound, up to a multiplicative
universal O(·)-constant:

dn log B(d + log B)M (cd− log(1− δ)− log(η − 1/2)) · (d− log
(
η − 1

2

))
− log δ ·

(
c− log (1+η)2

δ−η2

) .

We can therefore choose η = 1/2 + 2−Θ(d) and δ = 1− 1
Θ(log d) while keeping

almost the same complexity bound as in Theorem 2. The right-most terms in
the numerator and denominator come from the number of loop iterations of
the lazy size-reductions, and the term − log δ comes from the loop iterations
of the L2 algorithm.

3. The additional statement of the theorem that is related to the number of
loop iterations is useful for certain lattices which arise in practice, like lattices
arising in knapsacks and minimal polynomials, where we possibly have τ =
O(d log B) instead of the worst-case bound O(d2 log B).

4. Finally, the o(d) term in the condition � = c·d+o(d) can be made explicit (see
Theorem 6) and may be used backwards: if we perform calculations with a
fixed precision (e.g., in the normalized 53-bit mantissae double precision), the
correctness will be guaranteed up to some computable dimension. We give in
Figure 7 the dimensions up to which common precisions will suffice for two
pairs of parameters (η, δ). Note that the values are not very high. We refer
the reader to [47] for a description of a practical and provable implementation
of L2.

(δ, η)
Double precision

(� = 52)
Double extended precision

(� = 63)
Quadruple precision

(� = 112)
(0.75, 0.55) 11 15 34
(0.99, 0.51) 15 21 50

Fig. 7. Largest valid dimensions for given precisions and parameters.

The following two sections are devoted to proving Theorem 2. We will obtain
the correctness property in section 4, by studying successively the CFA when given
as input bases appearing during an L3-reduction (Theorem 3), and the lazy size-
reduction algorithm (Theorem 5), to finally obtain the desired result in Theorem 6.
The complexity statement of Theorem 2 will be proved in section 5.

4. Correctness of the L2 algorithm. To guarantee the correctness of the
L2 algorithm, we need to estimate the accuracy of the floating-point approximations
at various stages.

888 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

4.1. Accuracy of the Gram–Schmidt computations. In general, the classi-
cal Gram–Schmidt algorithm is known to have very poor numerical stability proper-
ties [11, 22, 50]. However, it must be stressed that in the context of the L3 algorithm,
the bases are reduced in an iterative fashion, which implies that we can study the
accuracy of Gram–Schmidt computations under the hypothesis that the first d − 1
vectors of the input basis are L3-reduced. In this particular setting, because an L3-
reduced basis is almost orthogonal, the following result shows that a working precision
of ≈ d log 3 bits is sufficient for the CFA if the reduction factor (δ, η) is sufficiently
close to the optimal pair (1, 1/2).

Theorem 3. Let (δ, η) be a valid factor pair like in Theorem 2, ρ = (1+η)2+ε
δ−η2

with ε ∈ (0, 1/2], and (b1, . . . ,bd) in Z
n be a d-dimensional lattice basis whose Gram

matrix is given as input to the CFA described in Figure 4. Assume that (b1, . . . ,bd−1)
is (δ, η)-L3-reduced. In the case of floating-point arithmetic with � satisfying � ≥
5 + 2 log d − log ε + d log ρ, the output floating-point numbers satisfy the following
equations: for all j ≤ i < d,

|r̄i,j − ri,j |
rj,j

≤ dρj2−�+2 and |μ̄i,j − μi,j | ≤ dρj2−�+4.

Furthermore, if M = maxj<d |μd,j|, then we have for any j < d

|r̄d,j − rd,j |
rj,j

≤ dρj2−�+2 ·M and |μ̄d,j − μd,j| ≤ dρj2−�+4 ·M.

Finally, if the vector bd is η-size-reduced with respect to (b1, . . . ,bd−1), then for
any j ≤ d ∣∣∣s̄(d)

j − s
(d)
j

∣∣∣ ≤ dρj2−�+9 · rj,j + d2−� · s(d)
j .

The second set of inequalities is useful for the analysis of the size-reduction algo-
rithm, while the last set provides guarantees when checking Lovász’s conditions.

It is crucial in the theorem to assume that the first vectors are L3-reduced. More
precisely, if the Lovász condition or the size-reduction condition is not satisfied, the re-
sult is no longer valid. Heuristically, the Lovász condition ensures that when some ri,j

is computed by using the ri,k’s with k < j, the error on ri,k relative to rk,k cannot
be arbitrarily large relative to rj,j (since rj,j cannot be arbitrarily small compared
to rk,k). The size-reduction condition allows us to bound the error on ri,j relative
to rj,j , independently of the vector bi (this vector could be arbitrarily longer than
the vector bj). At the end, it provides an absolute error on the μi,j ’s.

Before giving the proof of Theorem 3, we first give a sketch of it for the case η ≈
1/2 and δ ≈ 1. Most of the accuracy loss comes from step 4, which amplifies the
error. We define errj = maxj≤i<d

|r̄i,j−ri,j |
rj,j

, i.e., the error on ri,j relative to rj,j , and
we bound its growth as j increases. Obviously

err1 ≤ |
 〈bi,b1〉 − 〈bi,b1〉|
‖b1‖2 ≤ 2−� ·max

i<d

|〈bi,b1〉|
‖b1‖2 ≤ 2−�,

because of the size-reduction condition. We now choose j ∈ �2, d− 1�. The result
for i = d can intuitively be derived from the proof for i ≤ d − 1, by replacing “bd”
by “ 1

M bd” in it. Because of step 5, we have, for any i < d and any k < j,

|μ̄i,k − μi,k| ≤
∣∣∣∣rk,k

r̄k,k

∣∣∣∣ errk + |ri,k|
∣∣∣∣ 1
r̄k,k
− 1

rk,k

∣∣∣∣ <∼
(

3
2

)
errk,

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 889

where we neglected low-order terms and used the fact that |ri,k| <∼ 1
2‖bk‖2, which

comes from the size-reduction condition. This implies that

|
 (μ̄j,k · r̄i,k)− μj,kri,k| ≤ |μ̄j,k − μj,k| · |r̄i,k|+ |μj,k| · |r̄i,k − ri,k|
<∼
(

5
4

)
errk · ‖b∗

k‖2,

where we also neglected low-order terms and used the size-reduction condition twice.
Thus,

errj
<∼
(

5
4

)∑
k<j

‖b∗
k‖2∥∥b∗
j

∥∥2 errk
<∼
(

5
4

)∑
k<j

(
4
3

)j−k

errk,

by using Lovász’s conditions. This last inequality finally gives

errj
<∼ 3j · err1

<∼ 3j2−�.

Proof. The result being easy to obtain for d = 1, we assume that d ≥ 2. We
start with the first inequalities. The goal is to bound the error that we make while
computing the ri,j ’s. At step 4 of the CFA, we compute the sum 〈bi,bj〉−

∑j−1
k=1 μj,k ·

ri,k in a naive way. It is classical (see [14], for example) that the error performed during
the summation is bounded by

d2−�−1

1− d2−�−1
·
(
|
 〈bi,bj〉|+

j−1∑
k=1

|
(μ̄j,k · r̄i,k)|
)

.

As a consequence, the quantity |r̄i,j − ri,j | is, by the triangular inequality,

≤ d2−�−1

1− d2−�−1
·
(
|
 〈bi,bj〉|+

j−1∑
k=1

|
 (μ̄j,k · r̄i,k)|
)

+

j−1∑
k=1

|
 (μ̄j,k · r̄i,k)− μj,kri,k|+ |
 〈bi,bj〉 − 〈bi,bj〉|

≤
(
|
 〈bi, bj〉 − 〈bi,bj〉|+∑j−1

k=1 |
 (μ̄j,k r̄i,k)− μj,kri,k|+ d
2�+1 (|〈bi,bj〉|+∑j−1

k=1 |μj,kri,k|)
)

1− d2−�−1

≤
(
|
 〈bi, bj〉 − 〈bi,bj〉|+∑j−1

k=1 |
 (μ̄j,k r̄i,k)− μj,kri,k|+ d
2�+1 · (|〈bi,bj〉|+∑j−1

k=1 rk,k)
)

1− d2−�−1
, (∗)

where we used the fact that η < 1, which implies that |μj,kri,k| ≤ η · rk,k ≤ rk,k. We
show by induction on j < d the following error bound:

∀i ∈ �j, d− 1� ,
|r̄i,j − ri,j |

rj,j
≤ dρj2−�+2.

To do this, we define errj = maxi∈�j,d−1�
|r̄i,j−ri,j |

rj,j
and E = dρd2−�+2 ≤ ε/16. We

first consider the case j = 1. We have

|
〈bi,b1〉 − 〈bi,b1〉| ≤ 2−�−1|μi,1|r1,1 ≤ 2−�−1ηr1,1 ≤ 2−�−1r1,1.

890 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

Assume now that j ∈ �2, d− 1� and that we know that the result holds for all k < j.
If k < j ≤ i, we have

|μ̄i,k − μi,k| ≤
∣∣∣∣μ̄i,k − r̄i,k

r̄k,k

∣∣∣∣+
∣∣∣∣ r̄i,k

r̄k,k
− ri,k

rk,k

∣∣∣∣
≤ (1 + 2−�−1

) · ∣∣∣∣ r̄i,k

r̄k,k
− ri,k

rk,k

∣∣∣∣+ 2−�−1η

≤ (1 + 2−�−1
) ·(|r̄i,k − ri,k|

rk,k

rk,k

r̄k,k
+ |ri,k| |r̄k,k − rk,k|

rk,k

1
r̄k,k

)
+ 2−�−1

≤ (1 + 2−�−1
)
errk(1 + η)

rk,k

r̄k,k
+ 2−�−1

≤ errk(1 + η)
1 + 2−�−1

1− E
+ 2−�−1,

by the induction hypothesis. Hence, if k < j ≤ i, |
 (μ̄j,k · r̄i,k)− μj,kri,k| · 1
rk,k

is

≤ (1 + 2−�−1) · |μ̄j,k r̄i,k − μj,kri,k|
rk,k

+ 2−�−1

≤ (1 + 2−�−1) ·
(|r̄i,k − ri,k|

rk,k
μ̄j,k + |μ̄j,k − μj,k| ri,k

rk,k

)
+ 2−�−1

≤ (1 + 2−�−1) · (η · errk + (η + E)|μ̄j,k − μj,k|) + 2−�−1

≤ (1 + 2−�−1) · errk

(
η(2 + η) +

8E

1− E

)
+ 129 · 2−�−7

≤ errk

(
η(2 + η) + 2−�+2 + 9E

)
+ 129 · 2−�−7

≤ errk (η(2 + η) + ε) + 129 · 2−�−7,

where we used the induction hypothesis and the inequalities E ≤ ε/16 ≤ 1/32, � ≥ 6,

ε ≤ 1/2, and η < 1. Hence, if j ≤ i, then
∑j−1

k=1 |
 (μ̄j,k · r̄i,k)− μj,kri,k| × 1
rj,j

is

≤
j−1∑
k=1

(
(η(2 + η) + ε) errk

rk,k

rj,j
+ 129 · 2−�−7(δ − η2)k−j

)

≤ (η(2 + η) + ε) ·
j−1∑
k=1

(
errk(δ − η2)k−j

)
+ 3 · 129 · 2−�−7(δ − η2)−j ,

where we used the fact that δ − η2 ≤ 3/4. Similarly, we have

|〈bi,bj〉|
rj,j

≤ |ri,j |
rj,j

+
j−1∑
k=1

|μj,k||μi,k|rk,k

rj,j
≤

j∑
k=1

(δ − η2)k−j ≤ 3(δ − η2)−j .

Finally, by using the inequalities d2−�−1 ≤ 2−7 and d ≥ 2, we get, with equation (∗),

errj ≤ 1

1− d2−�−1
·
(

2−�−1 + (η(2 + η) + ε)

j−1∑
k=1

(
errk(δ − η2)k−j

)
+ 6d2−�−1(δ − η2)−j

)

≤ η(2 + η) + ε

1− d2−�−1
·

j−1∑
k=1

(
errk(δ − η2)k−j

)
+

d2−�+2

1− d2−�−1
(δ − η2)−j .

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 891

Let A = η(2+η)+ε
1−d2−�−1 and B = d2−�+2

1−d2−�−1 . We define u1 = B and ui = A
∑i−1

k=1 uk + B

for i > 1. Then we have erri ≤ (δ − η2)−iui for any i ≤ j. Besides, we also
have ui ≤ B(1 + A)i−1. Overall, this gives

errj ≤ d2−�+2

1− d2−�−1
(δ − η2)−j ·

(
1 +

η(2 + η) + ε

1− d2−�−1

)j−1

≤ d2−�+2

1− d2−�−1
·
(

1 + η(2 + η) + ε

δ − η2

)j

· 1
1 + η(2 + η) + ε

· (1 + d2−�+3
)j

≤ d2−�+2ρj ,

where we used the fact that (1 + d2−�+3)d ≤ 2, itself implied by d22−�+5 ≤ 1.
The result on the μ’s is straightforward if we use the facts that E ≤ 1/32 and � ≥

6. Furthermore, it is easy to slightly modify the proof to get the desired results on
the rd,j ’s and μd,j’s for j < d.

We now consider the third set of inequalities. We assume that the vector bd is
size-reduced for the factor η. The analysis is similar to the one just above. If j ≤ d,
we can bound the quantity |s̄(d)

j − s
(d)
j | by

d2−�−1

1− d2−�−1

(

‖bd‖2 +

j−1∑
k=1

|
(μ̄d,k · r̄d,k)|
)

+
j−1∑
k=1

|
(μ̄d,k · r̄d,k)− μd,krd,k|

+
∣∣
‖bd‖2 − ‖bd‖2

∣∣
≤ d2−�−1

1− d2−�−1

(
s
(d)
j + 2

j−1∑
k=1

rk,k

)

+
1

1− d2−�−1

(
j−1∑
k=1

|
(μ̄d,k · r̄d,k)− μd,krd,k|+ 2−�−1‖bd‖2
)

≤ d2−� · s(d)
j + d2−�+1 ·

j−1∑
k=1

rk,k + d2−�+6 ·
j−1∑
k=1

rk,kρk,

where we used the second set of inequalities of the theorem. As a consequence, we
have

∣∣∣s̄(d)
j − s

(d)
j

∣∣∣ ≤ d2−� · s(d)
j + rj,jd2−�+4(δ − η2)−j + rj,jd2−�+6 ·

j−1∑
k=1

(δ − η2)k−jρk

≤ d2−�s
(d)
j + rj,jd2−�+9ρj .

This ends the proof of the theorem.
The bound in Theorem 3 seems to be tight in the worst case: the classical Gram–

Schmidt algorithm or the CFA become experimentally inaccurate with a precision ≤
d log 3 bits for certain lattice bases. Consider indeed the L3-reduced lattice basis given
by the rows of the following d× d matrix L:

Li,j =

⎧⎪⎨
⎪⎩

(√
4/3
)d−i

if i = j,

(−1)i−j+1Lj,j · random[0.49, 0.5] if j < i,
0 if j > i.

892 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

To obtain an integral lattice, one can multiply the matrix L by a large scaling factor
and round its entries. This matrix is already L3-reduced. With double precision
calculations, i.e., with 53-bit mantissae, the error on the μi,j ’s becomes significant
(higher than 0.5) in dimension 35.

These bases show the tightness of the d log 3 bound. By adding a suitable random
vector to such bases, it is possible to make the LLL FP routine of NTL loop forever
in dimension 55 (see http://perso.ens-lyon.fr/damien.stehle/FPLLL.html). Never-
theless, these lattice bases seem to be pathological and the floating-point calculations
seem to behave much more nicely in practice than in the worst case (see [35] for more
details).

4.2. Accuracy of Babai’s nearest plane algorithm. To estimate the accu-
racy of the lazy floating-point size-reduction algorithm given in Figure 5 and used in
the L2 algorithm, we first study a simpler floating-point version that is described in
Figure 8.

Input: A factor η > 1/2, an fp-precision � + 1, a basis (b1, . . . ,bd), its Gram
matrix G(b1, . . . ,bd), and floating-point numbers r̄i,j and μ̄i,j for j ≤ i < d.
Output: x1, . . . , xd−1 ∈ Z, a vector b′

d = bd −
∑

i<d xibi, and G(b1, . . . , bd−1,b
′
d).

1. Compute the μ̄d,j ’s for j < d with steps 2–7 of the CFA with “i = d.”
2. For i = d− 1 down to 1 do
3. xi ← �μ̄d,i�.
4. For j = 1 to i− 1 do μ̄d,j ←
(μ̄d,j −
 (xi · μ̄i,j)).
5. Compute b′

d and G(b1, . . . , bd−1,b
′
d).

Fig. 8. A floating-point size-reduction algorithm.

We use Theorem 3 to show stability properties of the algorithm of Figure 8.
Theorem 4. Let (δ, η) be a valid reduction factor (like in Theorem 2) and ρ =

(1+η)2+ε
δ−η2 with ε ∈ (0, 1/2]. Let (b1, . . . ,bd) in Z

n be a d-dimensional lattice basis
given as input to the algorithm of Figure 8 and B = maxi ‖bi‖. Assume that the
truncated basis (b1, . . . ,bd−1) is (δ, η)-L3-reduced and that the given Gram–Schmidt
coefficients r̄i,j and μ̄i,j are those that would have been returned by the CFA with
working precision �+1. Let M = maxj |μd,j|. Suppose that � satisfies � ≥ 5+2 logd−
log ε + d log ρ. Then the algorithm of Figure 8 finds integers x1, . . . , xd−1 such that
for any i < d

|xi| ≤ 3(1 + η + ε)d−1−i(M + 1) and
|〈b′

d,b
∗
i 〉|

‖b∗
i ‖2

≤ 1
2

+ dρd(M + 1)2−�+8.

Furthermore, the execution finishes in O
(

dn
� (� + d + log B) · M(�)

)
bit operations.

Proof. We define μ
(i)
d,j = μd,j −

∑d−1
k=i xkμk,j for i > j. By using the first set of

inequalities of Theorem 3, we have

|
(xi · μ̄i,j)− xiμi,j | ≤
(
1 + 2−�−1

) |xi||μ̄i,j − μi,j |+ 2−�−1|xi||μi,j |
≤ |xi|2−�−1

(
1 + 25(1 + 2−�−1)dρj

)
≤ |xi|dρj2−�+5,

where we used the inequalities η < 1 and � ≥ 6. At step 4, we update the quantity μd,j.
It can be seen that in fact we compute sequentially the sum μ̄

(i)
d,j = μ̄d,j−

∑d−1
k=i xk ·μ̄k,j .

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 893

By using the error bound of [14] for this naive summation, we obtain that we can
bound the quantity |μ̄(i)

d,j − μ
(i)
d,j| by

d2−�−1

1− d2−�−1

(
|μ̄d,j|+

d−1∑
k=i

|
 (xk · μ̄k,j)|
)

+
d−1∑
k=i

|
 (xk · μ̄k,j)− xkμk,j |

+ |μ̄d,j − μd,j |

≤ d2−�−1

1− d2−�−1

(
M +

d−1∑
k=i

|xkμk,j |
)

+
1

1− d2−�−1

d−1∑
k=i

|
 (xk · μ̄k,j)− xkμk,j |

+
|μ̄d,j − μd,j |
1− d2−�−1

≤ d2−�−1

1− d2−�−1

(
M +

d−1∑
k=i

|xk|
)

+
d2−�+5ρj

1− d2−�−1

d−1∑
k=i

|xk|+ d2−�+4ρjM

1− d2−�−1

≤ d2−�+6ρj

(
M +

d−1∑
k=i

|xk|
)

,

where we used the second set of inequalities of Theorem 3. Assume that xj �= 0. By
taking i = j + 1 in the previous inequality and using dρj2−�+6 ≤ min(ε, 1/2), we get

|xj | ≤ 1
2

+
∣∣∣μ̄(j+1)

d,j

∣∣∣
≤ 1

2
+
∣∣∣μ̄(j+1)

d,j − μ
(j+1)
d,j

∣∣∣+ ∣∣∣μ(j+1)
d,j

∣∣∣
≤ 1

2
+
(
1 + d2−�+6ρj

)
M + (η + ε)

d−1∑
k=j+1

|xk|

≤ (1 + η + ε)d−1−j

(
1
2

+
(
1 + d2−�+6ρj

)
M

)

≤ 3
2
(1 + η + ε)d−1−j(1 + M).

So far, we have proved the first statement of the theorem. Besides, for any i > j,
we have the following inequalities:

∣∣∣μ̄(i)
d,j − μ

(i)
d,j

∣∣∣ ≤ (d2−�+6ρj
)(

M +
3
2
(1 + M)

d−1∑
k=i

(1 + η + ε)d−1−k

)

≤ d2−�+8ρj(1 + M)(1 + η + ε)d−i,

where we used the fact that η > 1/2. This allows us to prove the second statement
of the theorem and to bound the numbers occurring during the computation:

|〈b′
d,b

∗
i 〉|

‖b∗
i ‖2

≤ 1
2

+ d2−�+8ρd(1 + M),

∣∣∣μ̄(i)
d,j

∣∣∣ ≤ d2−�+8ρj(1 + M)(1 + η + ε)d−i + M +
d−1∑
k=i

|xk| = 2O(d)(1 + M).

894 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

We now consider the costs of arithmetic operations. The most expensive opera-
tions involving floating-point numbers are the multiplications. The computations on
the exponents that correspond to these operations cost O

(
log log(2O(d)(1 + M))

)
bit

operations. From now on, we consider only the bit costs coming from the operations
on the mantissae. Step 1 costs O(d log B+d2 ·M(�)) bit operations. The cost of step 3
is lower than the cost of step 4. There are at most O(d2) arithmetic operations during
the successive steps 4. Among them, the multiplications
(xi · μ̄i,j) are the most ex-
pensive. Since xi = �μ̄(i+1)

d,i �, the integer xi can be represented on O(�) bits: if � < d,
then xi can be written 2tix′

i for some integers x′
i and ti = O(log(d+ log(1+M))). As

a consequence, the total cost of the successive steps 4 is O(d2 · M(�)). At step 5,
we have O(dn) arithmetic operations involving integers only. By using the rela-
tion |〈bi,bd〉| ≤ ‖bi‖·‖bd‖ and our bound on the xi’s, we see that all the involved inte-
gers are of length 2O(d)·B2. The most costly operations are of the type xi ·〈bd,bi〉, and
since the xi’s are of length O(�), the cost of step 5 is O

(
dn
� (d + log B) ·M(�)

)
.

Notice that by using the relation log M = O(d+log B) (coming from the fact that
the d−1 first vectors are L3-reduced), the last theorem implies that taking � = O(d+
log B) is sufficient to make the |μd,i|’s smaller than η. The drawback of this approach
is that one should have previously computed the ri,j ’s and μi,j ’s with precision O(d+
log B). This seems an overkill since O(d + log M) bits suffice and M is usually far
smaller than B. Indeed, in the case of Euclid’s gcd algorithm, the analogy is that the
quotients would be computed by using all the bits of the remainders, instead of only
the most significant ones (see below for more details).

The lazy size-reduction algorithm from Figure 5 is a way to work around the diffi-
culty that M cannot be tightly bounded in advance. Using only a O(d)-bit precision,
it finds the xj ’s progressively by performing successive size-reduction steps, each one
making log M decrease by Ω(d), until we reach maxj<κ |μ̄κ,j | ≤ η̄. This strategy is
somewhat similar to the size-reduction routine of the floating-point L3 algorithm of
NTL [45], which repeatedly applies the size-reduction algorithm until nothing hap-
pens.

The lazy size-reduction algorithm uses � = (log (1+η)2

δ−η2 + C)d + o(d) with an arbi-
trary C > 0. The CFA with � gives the input r̄i,j ’s and μ̄i,j ’s, which by Theorem 3
have their ≈ Cd leading bits correct. Therefore, the ri,j ’s and μi,j ’s may not be known
sufficiently well to perform the size-reduction in one single step, but Theorem 4 gives
that their approximations suffice to make M = maxi<κ

|〈bκ,b∗
i 〉|

‖b∗
i ‖2 decrease by ≈ Cd

bits. By making O(1 + log M
d) such incomplete size-reductions, size-reduction can be

achieved.
Theorem 5. Let (δ, η) be a valid pair (like in Theorem 2) and ρ = (1+η)2+ε

δ−η2

with ε ∈ (0, 1/2]. Let C > 0 be a constant. Let (b1, . . . ,bd) be a d-dimensional lattice
basis in Z

n given as input to the algorithm of Figure 5 and B = maxi ‖bi‖. Assume
that the truncated basis (b1, . . . ,bκ−1) is (δ, η)-L3-reduced and that the given r̄i,j ’s
and μ̄i,j’s are those that would have been returned by the CFA. Let M = maxj<κ |μκ,j|.
If � ≥ 10 + 2 log d− log min

(
ε, η − 1

2

)
+ d (C + log ρ), the algorithm of Figure 5 pro-

vides a correct output and the returned r̄κ,j’s, μ̄κ,j’s, and s̄
(κ)
j ’s are those that would

have been returned by the CFA. Furthermore, if � = O(d), the execution finishes
in O

(
n
d (d + log B)(d + log M) · M(d)

)
bit operations.

Proof. We start by the correctness properties of the algorithm. At the last
iteration of the main loop, we have |μ̄κ,j| ≤ η̄ for all j < κ. By using the second set

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 895

of inequalities of Theorem 3, we obtain

max
j<κ
|μκ,j | ≤ η̄ + dρd−12−�+4

≤ 1 + 2−�−1

2

(

(η) +

1
2

)
+ dρd−12−�+4

≤ 1 + 2−�−1

2

(
η + 2−�−1 +

1
2

)
+ dρd−12−�+4

≤ η + 1/2
2

+ 2−� + dρd−12−�+4

≤ η + 1/2
2

+ dρd2−�+5.

With the hypothesis on �, we obtain that dρd2−�+5 ≤ 2−6
(
η − 1

2

)
. This gives us

that |〈b′
κ,b∗

i 〉|
‖b∗

i ‖2 ≤ η for all j < κ.
We now consider the impact on M of one iteration of the main loop. Let M1 be

the “new M” after the loop iteration. Theorem 4 and the hypothesis on � give the
inequalities

M1 ≤ 1
2

+ dρd(M + 1)2−�+8 ≤ 1
2

+
ε

8
+ 2−Cd ε

8
M,

where ε = η − 1/2. The kth iterate of M is thus smaller than 1/2+ε/8
1−ε/8 + 2−CdkM .

Therefore, within 1 + 1
CdO (− log ε + log M) loop iterations, we have that the cur-

rent value of M is ≤ 1/2+ε/8
1−ε/8

(
1 + ε

128

)
. Theorem 3 implies that at that moment

we have maxj<κ |μ̄κ,j| ≤ 1/2+ε/8
1−ε/8

(
1 + ε

64

)
. Since η̄ ≥ 1

2 + ε
2 − 2−� ≥ 1

2 + ε
2 − ε

128 ,
we then have maxj<κ |μ̄κ,j| ≤ η̄. We conclude that the number of loop iterations
is 1 + 1

CdO (− log ε + log M).
Suppose now that � = O(d). Theorem 4 gives that the cost of one loop iteration

is bounded by O (n(d + log B)M(d)), since during the execution of the algorithm, the
entries of the Gram matrix remain integers of length bounded by O(d + log B). The
fact that we have additional vectors in the basis (namely bκ+1, . . . ,bd) is taken into
account in the complexity bound. Finally, the overall cost of the algorithm is bounded
by O(n(d + log B)(1 + log M

d) · M(d)).

4.3. Application to the L2 algorithm. The correctness of the L2 algorithm
directly follows from the following theorem.

Theorem 6. Let (δ, η) be a valid pair (like in Theorem 2) and ρ = (1+η)2+ε
δ−η2

with ε ∈ (0, 1/2]. Let C > 0 be a constant. Let (b(1)
1 , . . . ,b(1)

d) in Z
n be a lattice

basis given as input to the L2 algorithm. For any loop iteration t, let (b(t)
1 , . . . ,b(t)

d)
denote the current basis at the beginning of the tth iteration. Assume that � satis-
fies d2ρd2−�+10+Cd ≤ min

(
ε, η − 1

2 , 1− δ
)
. Then the following hold:

1. For any t, the truncated basis (b(t)
1 , . . . ,b(t)

κ(t)−1) is L3-reduced with factor
pair (δ, η).

2. For any 1 ≤ i ≤ d, we have maxj≤i ‖b(t)∗
j ‖ ≤ maxj≤i ‖b(1)∗

j ‖ and ‖b(t)
i ‖ ≤√

d ·maxj≤i ‖b(1)
i ‖.

Proof. We show the result by induction on t. Clearly, all these properties are valid
for t = 1, since κ(1) = 2. Assume now that we are performing the tth loop iteration.

896 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

We show that Lovász’s tests work as desired. Recall that the vector bκ is swapped with
the vector bi for i < κ if and only if for any j ∈ �i, κ− 1� we have s̄

(κ)
j ≤
 (δ̄ · r̄j,j

)
.

First of all, let us analyze the relevance of the quantity
 (δ̄ · r̄j,j

)
. We have∣∣∣∣δ̄ − δ + 1

2

∣∣∣∣ ≤ 1
2
(
2−�−1(δ + 1) + (1 + 2−�−1) · |
 (δ)− δ|) ≤ 2−�.

The inequalities above and Theorem 3 give us that∣∣∣∣
 (δ̄ · r̄j,j

)− δ + 1
2

rj,j

∣∣∣∣ ≤ 2−�−1 δ + 1
2

rj,j + (1 + 2−�−1)
∣∣∣∣δ̄ · r̄j,j − δ + 1

2
rj,j

∣∣∣∣
≤ 2−�−1rj,j + (1 + 2−�−1)

∣∣∣∣δ̄ − δ + 1
2

∣∣∣∣ r̄j,j

+ (1 + 2−�−1)
δ + 1

2
|rj,j − r̄j,j |

≤ 2−�−1rj,j + (1 + 2−�−1)2−� (rj,j + |rj,j − r̄j,j |)
+ (1 + 2−�−1) |rj,j − r̄j,j |

≤ 2−�+1rj,j + (1 + 2−�)(1 + 2−�−1)dρd−12−�+2rj,j

≤ dρd2−�+3rj,j .

Assume now that the vector bκ is swapped with the vector bi. The study above
and Theorem 3 give us that

s
(κ)
i (1− d2−�) ≤ ri,i

(
δ + 1

2
+ dρd2−�+3 + dρd−12−�+9

)
≤ ri,i

(
δ + 1

2
+ dρd2−�+9

)
.

Therefore, since d2ρd2−�+9 ≤ 1 − δ, if the vector bκ is swapped with the vector bi,
then they would have also been swapped with the classical L3 algorithm with the
factor δ+7

8 ∈ (δ, 1). Oppositely, assume that the vectors bκ and bi are not swapped.
Theorem 3 gives

s
(κ)
i (1 + d2−�) ≥ ri,i

(
δ + 1

2
− dρd2−�+3 − dρd−12−�+9

)
≥ ri,i

(
δ + 1

2
− dρd2−�+9

)
.

As a consequence, if the vectors bκ and bi are not swapped, they would not have
been swapped with the classical L3 algorithm with the factor δ. This gives the first
statement of the theorem.

For the second statement, observe that during a swap between the vectors bκ

and bκ−1, we have
1.
∥∥b∗new

κ−1

∥∥ ≤ ∥∥b∗old
κ−1

∥∥ because of Lovász’s condition,
2. ‖b∗new

κ ‖ ≤ ∥∥b∗old
κ−1

∥∥ because the vector b∗new
κ is an orthogonal projection of

the vector b∗old
κ−1,

which gives the first part of the second statement. Finally, if the vector b(t)
i appears

during the execution of the algorithm and is size-reduced, we have∥∥∥b(t)
i

∥∥∥2

≤ d ·max
j≤i

∥∥∥b(t)∗
j

∥∥∥2

≤ d ·max
j≤i

∥∥∥b(1)∗
j

∥∥∥2

≤ d ·max
j≤i

∥∥∥b(1)
j

∥∥∥2

.

This proves the second part of the statement for all i < κ(t). If i ≥ κ(t), we consider
the largest t′ < t such that κ(t′ + 1)− 1 = i. The loop iteration t′ was the one during

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 897

which the vector b(t)
i was created. If t′ does not exist, this vector is an initial vector

and the result is obvious. Otherwise the vector b(t)
i = b(t′+1)

κ(t′+1)−1 is size-reduced at

the (t′ + 1)th loop iteration. Thus we have ‖b(t)
i ‖2 ≤ d ·maxj≤κ(t′+1)−1 ‖b(1)

j ‖2. This
ends the proof of the theorem.

5. Complexity analysis of the L2 algorithm. In section 4.3, we showed that
an accuracy of O(d) bits suffices to check Lovász’s conditions. For any Lovász test,
the index κ either increases or decreases by one, and when it decreases, the quan-
tity

∏d
i=1 ‖b∗

i ‖2(d−i+1) decreases by a factor of at least δ+7
8 < 1. It is a standard

L3 argument that this quantity is actually an integer (it is a product of squared vol-
umes of integer lattices) and is initially bounded by BO(d2). But during the execution
of the algorithm, the difference between the numbers of decreases and increases of κ
is O(d), so there are O(d2 log B) loop iterations.

In this section, we prove the claimed complexity bound O(d4n logB(d + log B)).
This is done by generalizing a cascade phenomenon appearing in the analysis of Eu-
clid’s gcd algorithm.

5.1. Analyzing Euclid’s gcd algorithm. As mentioned in the introduction,
the L3 algorithm can be viewed as a high-dimensional generalization of Euclid’s algo-
rithm to compute gcds. But this analogy is not completely satisfying: indeed, Euclid’s
algorithm has a quadratic complexity bound without fast integer arithmetic, whereas
the L3 algorithm is cubic for any fixed dimension without fast integer arithmetic.

Recall Euclid’s algorithm: given as input two integers r0 > r1 > 0, it successively
computes the quotients qi and remainders ri defined by

qi = �ri−1/ri	 and ri+1 = ri−1 − qiri,

until rτ+1 = 0 for some loop iteration τ . Then rτ is the gcd of the integers r0

and r1. It is well known that the remainders decrease at least geometrically, so
that the number of Euclidean divisions is τ = O(log r0). A very naive analysis of
Euclid’s algorithm states that the algorithm performs O(log r0) arithmetic opera-
tions on integers of lengths bounded by O(log r0), so that the overall cost is bounded
by O(log3 r0). A well-known more subtle analysis notices that the cost of comput-
ing qi and ri+1 without fast integer arithmetic is bounded by O(log ri−1 ·(1+log qi)) =
O(log r0 · (1+ log ri−1− log ri)). Summed over all the steps, all but two terms “log ri”
vanish, leading to the classical quadratic complexity bound.

Unfortunately, this amortized analysis of Euclid’s algorithm cannot be extended
to the standard L3 algorithm, because the GSO coefficients stay big. In Euclid’s algo-
rithm, the numbers get smaller and smaller: in L3, the basis vectors get shorter and
shorter, but there still remain very large GSO coefficients. Surprisingly, we will show
that the amortized analysis of Euclid’s algorithm can be extended to the L2 algo-
rithm, and this would not be possible without a floating-point precision independent
of log B. The main difficulty is to generalize the cancellation of all but a very few
terms in the sum of the costs of consecutive loop iterations. In Euclid’s algorithm, this
cancellation is trivial because two consecutive costs compensate each other directly.
The phenomenon is much more complicated in higher dimension: the cost of the tth
iteration will not necessarily be balanced by the cost of the previous (t−1)th iteration
but by the cost of the t′th iteration for some t′ < t. Special care must be taken so
that the t′’s do not collide.

898 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

5.2. An amortized analysis in arbitrary dimension. We now complete the
proof of Theorem 2. We already know that the number of loop iterations is τ =
O(d2 log B). Thanks to Theorem 5, we also know that the tth loop iteration costs
O(dn(d + log B)(d + log M(t))) bit operations, where M(t) = maxj<κ(t) |μ(t)

κ(t),j |. By
analogy with Euclid’s gcd algorithm, we make terms cancel out in the sum over the
loop iterations of the “logM(t)’s.” For this purpose, we define the index α(t) as the
smallest swapping index since the last time the index κ was at least κ(t) and 1 if this
is the first time we have κ = κ(t).

Lemma 7. Let t be a loop iteration. Let ϕ(t) = max(t′|t′ < t, κ(t′) ≥ κ(t)) if it
exists and 1 otherwise, and let α(t) = min (κ(t′), t′ ∈ �ϕ(t), t− 1�) − 1 if t �= 1 and 1
otherwise. Then we have

log M(t) ≤ O(d) + log
∥∥∥b(t)

κ(t)

∥∥∥− log
∥∥∥b(t)

α(t)

∥∥∥ .

Proof. Between the loop iterations ϕ(t) and t, the vectors b1, . . . ,bα(t)−1 remain
unchanged, and because of the size-reductions, each vector created during these loop
iterations is size-reduced with respect to the vectors b1, . . . ,bα(t)−1. This includes the
vector b(t)

κ(t). As a consequence, by using the fact that (b(t)
1 , . . . ,b(t)

κ(t)−1) is L3-reduced
(thanks to Theorem 6), we have

M(t) = max
i<κ(t)

|μκ(t),i| = max
(

max
i<α(t)

|μκ(t),i|, max
i∈�α(t),κ(t)−1�

|μκ(t),i|
)

≤ max

⎛
⎝η, max

i∈�α(t),κ(t)−1�

∥∥∥b(t)
κ(t)

∥∥∥∥∥∥b(t)∗
i

∥∥∥
⎞
⎠

≤ η + (δ − η2)−(κ(t)−α(t))/2

∥∥∥b(t)
κ(t)

∥∥∥∥∥∥b(t)∗
α(t)

∥∥∥
≤ η +

√
d(δ − η2)−d/2

∥∥∥b(t)
κ(t)

∥∥∥∥∥∥b(t)
α(t)

∥∥∥ ,

since ‖b(t)
α(t)‖ ≤

√
d ·maxi≤α(t) ‖b(t)∗

i ‖ ≤ √d(δ − η2)−α(t)/2‖b(t)∗
α(t)‖.

We will subdivide the sum of the log M(t)’s over the successive loop iterations
into O(d) subsums according to the value of the index κ(t):

∑
t≤τ

(
d + log

∥∥∥b(t)
κ(t)

∥∥∥− log
∥∥∥b(t)

α(t)

∥∥∥) ≤ τd +
d∑

k=2

∑
t,κ(t)=k

(
log
∥∥∥b(t)

k

∥∥∥− log
∥∥∥b(t)

α(t)

∥∥∥) .

For each of these subsums, we keep k− 1 positive terms and k− 1 negative terms and
make the others vanish in a progressive cancellation. Terms proportional to d can
appear from such cancellations, but they will be dominated by the above “τd.” The
crucial point to do this is the following.

Lemma 8. Let k ∈ �2, d� and t1 < · · · < tk be loop iterations of the L2 algorithm
such that for any j ≤ k, we have κ(tj) = k. Then there exists j < k with

d(δ − η2)−d
∥∥∥b(tj)

α(tj)

∥∥∥ ≥ ∥∥∥b(tk)
k

∥∥∥ .

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 899

To prove this result, we need the following technical fact.
Lemma 9. Let T and j be integers such that κ(T) ≥ j ≥ κ(T + 1). We have

max
i≤j

∥∥∥b(T+1)∗
i

∥∥∥ ≤ max
i<j

∥∥∥b(T)∗
i

∥∥∥ and max
i≤j

∥∥∥b(T+1)
i

∥∥∥ ≤ √d ·max
i<j

∥∥∥b(T)
i

∥∥∥ .

Proof. If i ≤ j is different from κ(T +1)−1, then the vector b(T+1)
i is a vector b(T)

i′

for some i′ ≤ j − 1. Thanks to the size-reduction and to Theorem 6, it suffices to
show that ‖b(T+1)∗

κ(T+1)−1‖ ≤ maxi<j ‖b(T)∗
i ‖. Since the Lovász test has failed for the

loop iteration T and the index κ(T +1)−1, we have ‖b(T+1)∗
κ(T+1)−1‖2 ≤ δ · ‖b(T)∗

κ(T+1)−1‖2,
which implies ∥∥∥b(T+1)∗

κ(T+1)−1

∥∥∥ ≤ ∥∥∥b(T)∗
κ(T+1)−1

∥∥∥ .

Proof of Lemma 8. We choose j = max (i < k, α(ti) ≥ i). This definition is
valid because the maximized set is not empty (it contains i = 1). Since α(tk) < k
and κ(tk) = κ(tk−1) = k, there exists a first loop iteration Tk ∈ �tk−1, tk − 1� such
that κ(Tk) ≥ k ≥ κ(Tk + 1). Because of Theorem 6 (for the first inequality) and
Lemma 9 (for the second inequality), we have∥∥∥b(tk)

k

∥∥∥ ≤ √d ·max
i≤k

∥∥∥b(Tk+1)
i

∥∥∥ ≤ d · max
i≤k−1

∥∥∥b(Tk)
i

∥∥∥ .

By definition of Tk, the vectors b1, . . . ,bk−1 do not change between the loop itera-
tions tk−1 and Tk. Since the vectors b(tk−1)

1 , . . . ,b(tk−1)
k−1 are L3-reduced, we have∥∥∥b(tk)

k

∥∥∥ ≤ d · max
i≤k−1

∥∥∥b(tk−1)
i

∥∥∥ ≤ d(δ − η2)−d/2 · max
i≤k−1

∥∥∥b(tk−1)∗
i

∥∥∥ .

If j = k − 1, we have the result because in this case

max
i≤k−1

∥∥∥b(tk−1)∗
i

∥∥∥ ≤ (δ − η2)−d/2
∥∥∥b∗

α(tk−1)

∥∥∥ ≤ (δ − η2)−d/2
∥∥bα(tk−1)

∥∥ .

Otherwise there exists a first loop iteration Tk−1 ∈ �tk−2, tk−1 − 1� such that κ(Tk−1) ≥
k − 1 ≥ κ(Tk−1 + 1). From Lemma 9, we have∥∥∥b(tk)

k

∥∥∥ ≤ d(δ − η2)−d/2 · max
i≤k−1

∥∥∥b(Tk−1+1)∗
i

∥∥∥
≤ d(δ − η2)−d/2 · max

i≤k−2

∥∥∥b(Tk−1)∗
i

∥∥∥
≤ d(δ − η2)−d/2 · max

i≤k−2

∥∥∥b(tk−2)∗
i

∥∥∥ .

If j = k− 2, we have the result; otherwise we go on constructing loop iterations Ti in
a similar fashion to obtain the result.

It is now possible to complete the complexity analysis of the L2 algorithm. Let k ∈
�2, d� and t1 < · · · < tτk

= {t ≤ τ, κ(t) = k}. We extract from the global sum the
terms corresponding to these loop iterations. Theorem 6 and the fact we are dealing
with an integer lattice ensure that

τk∑
i=1

log

∥∥∥b(ti)
k

∥∥∥∥∥∥b(ti)
α(ti)

∥∥∥ ≤ (k − 1) log(
√

dB) +
τk∑

i=k

log
∥∥∥b(ti)

k

∥∥∥− τk−k+1∑
i=1

log
∥∥∥b(ti)

α(ti)

∥∥∥ .

900 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

Lemma 8 helps to tightly bound the right-hand term above. First, we apply it
with t1, . . . , tk. This shows that there exists j < k such that ‖b(tk)

k ‖ ≤ d(δ −
η2)−d‖b(tj)

α(tj)
‖. The indices “i = k” in the positive sum and “i = j” in the neg-

ative sum cancel out, and a term “−d log(δ − η2) + log d” appears. Then we use
Lemma 8 with tk+1 and the k− 1 first ti’s that remain in the negative sum. It is easy
to see that tk+1 is larger than any of them, so that we can have another “positive-
negative” pair which cancels out in another “−d log(δ− η2)+ log d.” We perform this
operation τk − k + 1 times to obtain

τk∑
i=1

log

∥∥∥b(ti)
k

∥∥∥∥∥∥b(ti)
α(ti)

∥∥∥ ≤ (k − 1) log(
√

dB) + τk

(−d log(δ − η2) + log d
)
.

The fact that
∑

k τk = τ finally gives
∑
t≤τ

(O(d) + log M(t)) = O(τd + d2 log dB).

6. The L2 algorithm for linearly dependent vectors. We show in this
section that the L2 algorithm can be extended to linearly dependent vectors. The
modification resembles the one described in [38]. It can be used to find integer linear
relations between linearly dependent lattice vectors. We add a new index ζ that has
the following meaning: any vector of index < ζ is a zero vector, while any vector of in-
dex ≥ ζ is nonzero. At any loop iteration of the algorithm, the vectors bζ+1, . . . ,bκ−1

are L3-reduced. The rest of the modified algorithm is the same as in the L2 algorithm
of Figure 6. The modified algorithm is given in Figure 9.

Input: A valid pair (δ, η) like in Theorem 2, nonzero vectors (b1, . . . ,bd),
and an fp-precision � + 1.
Output: An L3-reduced basis with factor pair (δ, η).
Variables: An integral matrix G, floating-point numbers r̄i,j , μ̄i,j , and s̄i.

1. Compute exactly G = G(b1, . . . ,bd).

2. δ̄ ← �(�(δ)+1)
2

, r̄1,1 ←
(〈b1,b1〉), κ← 2, ζ ← 0. While κ ≤ d, do
3. Size-reduce bκ using the algorithm of Figure 5 for the vectors bζ+1, . . . ,bκ.
It updates the floating-point GSO.

4. κ′ ← κ. While κ ≥ ζ + 2 and
(δ̄ · r̄κ−1,κ−1) ≥ s̄
(κ′)
κ−1, do κ← κ− 1.

5. For i = ζ + 1 to κ− 1 do μ̄κ,i ← μ̄κ′,i, r̄κ,i ← r̄κ′,i, r̄κ,κ ← s̄
(κ′)
κ .

6. Insert bκ′ right before bκ and update G accordingly.
7. If bκ = 0, ζ ← ζ + 1.
8. κ← max (ζ + 2, κ + 1).
9. Output (bζ+1, . . . ,bd).

Fig. 9. The modified L2 algorithm.

The following theorem gives the bit complexity of the modified L2 algorithm.
Theorem 10. Let (δ, η) be such that 1/4 < δ < 1 and 1/2 < η <

√
δ. Let c >

log (1+η)2

δ−η2 be a constant. Given as input d vectors (b1, . . . ,bd) in Z
n with maxi ‖bi‖ ≤

B, the modified L2 algorithm of Figure 9 with � = ck+o(k) outputs a (δ, η)-L3-reduced
basis of the lattice L generated by the bi’s in O(n(k+log B)(k2 log B+d(d−k))·M(k))

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 901

bit operations, where k = dimL ≤ d. More precisely, if τ denotes the number of loop
iterations, then the running time is O(n(τ + k log kB)(k + log B) ·M(k)).

Since most of the proof of this theorem is identical to the one of Theorem 2, we
point out only the differences. Notice first that at any moment of the algorithm, there
can be no more than k nonzero vectors of index smaller than κ: Theorem 6 remains
valid, so that the vectors bζ+1, . . . ,bκ−1 are L3-reduced, but L3-reduced vectors must
be linearly independent. This implies that in the modified version of Theorem 5, the
complexity bound of the lazy size-reduction becomes

O
(n

k
(k + log B)(k + log M) ·M(k)

)
bit operations.

It remains to bound the number of loop iterations of the modified L2 algorithm.
For all i ≤ k, let di be the product of the i first nonzero ‖b∗

i ‖2’s. The di’s are positive
integers since they are the determinants of the Gram matrices of subsets of the bi’s.
We also define

D =

⎛
⎝ ∏

i≤dim L

di

⎞
⎠ ·

⎛
⎝ ∏

i,b∗
i =0

2i

⎞
⎠ .

The quantity D is an integer that is initially bounded by BO(k2) · 4d(d−k). We show
that this quantity decreases by some constant factor each time there is a swap in
the modified L2 algorithm of Figure 9. This implies that there can be no more
than O(k2 log B + d(d− k)) loop iterations.

Assume that the vectors bκ and bκ−1 are not swapped. We consider three cases:
1. Both vectors b∗

κ−1 and b∗
κ are nonzero. Then the right-hand side of the

quantity D is constant, and the left-hand side decreases by a factor ≥ 1/δ:
the first di’s do not change because none of the terms of the corresponding
products is changing; the last di’s do not change either because the only
terms of the corresponding products that change are ‖b∗

κ−1‖ and ‖b∗
κ‖, but

their product remains the same; the remaining di has a single term that is
changing, the term ‖b∗

κ−1‖2, which is decreasing by a factor ≥ 1/δ.
2. If b∗

κ−1 �= 0 and b∗
κ = 0 and if the new vector b∗

κ−1 is zero, after the swap
we will have b∗

κ−1 = 0 and b∗
κ �= 0. More precisely, the new vector b∗

κ will
exactly be the last vector b∗

κ−1. As a consequence, the left-hand side of the
quantity D is constant, while the right-hand side decreases by a factor 2.

3. If b∗
κ−1 �= 0 and b∗

κ = 0 and if the new vector b∗
κ−1 is nonzero, then the

new vector b∗
κ must be zero since the dimension of the lattice L(b1, . . . ,bκ)

shall remain constant. So the right-hand side of the quantity D is constant.
Oppositely, all the di’s above some threshold are decreasing by a factor ≥
1/δ: none of the ‖b∗

i ‖2’s is changing except ‖b∗
κ−1‖2, which decreases by a

factor ≥ 1/δ.
The case b∗

κ−1 = 0 cannot occur, since at the loop iteration for which the vec-
tor bκ−1 would have been created and inserted at a rank κ − 1 ≥ ζ + 1, Lovász’s
condition between this vector and the previous one would not have been satisfied.

Remark. Like the L3 algorithm, the L2 algorithm and its modified version work on
the underlying quadratic form. In particular, the modified L2 algorithm of Figure 9
can easily be adapted to the case of possibly nondefinite and possibly nonpositive
integer quadratic forms, by adding absolute values in the Lovász conditions (see [46]
for more details).

902 PHONG Q. NGUYEN AND DAMIEN STEHLÉ

Acknowledgments. We thank Richard Brent, Guillaume Hanrot, Florian Hess,
Claus Peter Schnorr, Victor Shoup, and Paul Zimmermann for numerous discussions.
We also thank the reviewers for their helpful comments.

REFERENCES

[1] A. Akhavi, Worst-case complexity of the optimal LLL algorithm, in Proceedings of the
2000 Latin American Theoretical Informatics (LATIN 2000), Lecture Notes in Comput.
Sci. 1776, Springer, Berlin, 2000, pp. 355–366.

[2] L. Babai, On Lovász lattice reduction and the nearest lattice point problem, Combinatorica, 6
(1986), pp. 1–13.

[3] C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier, PARI/GP Computer
Package Version 2, Université de Bordeaux I, Talence, France.

[4] D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices Amer. Math. Soc., 46
(1999), pp. 203–213.

[5] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than n0.292, in
Proceedings of Eurocrypt ’99, Lecture Notes in Comput. Sci. 1592, Springer, Berlin, 1999,
pp. 1–11.

[6] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, Berlin, 1995.
[7] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabil-

ities, J. Cryptology, 10 (1997), pp. 233–260.
[8] N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen, Rankin’s constant and block-

wise lattice reduction, in Advances in Cryptology, Proceedings of CRYPTO ’06, Lecture
Notes in Comput. Sci. 4117, Springer, Berlin, 2006, pp. 112–130.

[9] N. Gama and P. Q. Nguyen, Finding short lattice vectors within Mordell’s inequality, in
Proceedings of the 40th ACM Symposium on the Theory of Computing (STOC ’08), ACM,
New York, 2008.

[10] C. Gauss, Disquisitiones Arithmeticae, G. Fleischer, Leipzig, 1801.
[11] G. H. Golub and Charles F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins

University Press, Baltimore, MD, 1996.
[12] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, Springer, Berlin, 1993.
[13] C. Hermite, Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie

des nombres, J. Reine Angew. Math., 40 (1850), pp. 279–290.
[14] N. J. Higham, The accuracy of floating point summation, SIAM J. Sci. Comput., 14 (1993),

pp. 783–799.
[15] N. A. Howgrave-Graham and N. P. Smart, Lattice attacks on digital signature schemes,

Des. Codes Cryptogr., 23 (2001), pp. 283–290.
[16] Ieee, ANSI/IEEE Standard 754–1985 for Binary Floating-Point Arithmetic; reprinted in ACM

SIGPLAN Notices, 22 (1987), pp. 9–25.
[17] E. Kaltofen, On the complexity of finding short vectors in integer lattices, in Proceedings of

EUROCAL’83, Lecture Notes in Comput. Sci. 162, Springer, Berlin, 1983, pp. 236–244.
[18] H. Koy and C. P. Schnorr, Segment LLL-reduction of lattice bases, in Cryptography and

Lattices, Proceedings of CALC’01, Lecture Notes in Comput. Sci. 2146, Springer, Berlin,
2001, pp. 67–80.

[19] H. Koy and C. P. Schnorr, Segment LLL-reduction of lattice bases with floating-point or-
thogonalization, in Cryptography and Lattices, Proceedings of CALC’01, Lecture Notes in
Comput. Sci. 2146, Springer, Berlin, 2001, pp. 81–96.

[20] J. C. Lagarias and A. M. Odlyzko, Solving low-density subset sum problems, J. Assoc.
Comput. Mach., 32 (1985), pp. 229–246.

[21] L. Lagrange, Recherches d’arithmétique, Nouv. Mém. Acad., Berlin, 1773.
[22] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, 1995.
[23] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational

coefficients, Math. Ann., 261 (1982), pp. 515–534.
[24] H. W. Lenstra, Jr., Integer Programming with a Fixed Number of Variables, Technical report

81-03, Mathematisch Instituut, Universiteit van Amsterdam, Amsterdam, The Nether-
lands, 1981.

[25] H. W. Lenstra, Jr., Integer programming with a fixed number of variables, Math. Oper. Res.,
8 (1983), pp. 538–548.

[26] H. W. Lenstra, Jr., Flags and lattice basis reduction, in Proceedings of the Third European
Congress of Mathematics, Vol. 1, Birkhäuser, Basel, 2001, pp. 37–51.

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY 903

[27] Lidia, A Library for Computational Number Theory, http://www-jb.cs.uni-sb.de/LiDIA/
linkhtml/lidia/lidia.html.

[28] Magma, The Magma Computational Algebra System for Algebra, Number Theory and Geom-
etry, http://magma.maths.usyd.edu.au/magma/.

[29] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Per-
spective, Kluwer Internat. Ser. Engrg. Comput. Sci. 671, Kluwer Academic Publishers,
Boston, MA, 2002.

[30] P. Nguyen, Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from Crypto ’97,
in Proceedings of the 19th IACR Cryptology Conference (Crypto ’99), Lecture Notes in
Comput. Sci. 1666, Springer, Berlin, 1999, pp. 288–304.

[31] P. Nguyen and J. Stern, Cryptanalysis of the Ajtai-Dwork cryptosystem, in Proceedings of
the 18th IACR Cryptology Conference (Crypto ’98), Lecture Notes in Comput. Sci. 1462,
Springer, Berlin, 1998, pp. 223–242.

[32] P. Q. Nguyen and I. E. Shparlinski, The insecurity of the digital signature algorithm with
partially known nonces, J. Cryptology, 15 (2002), pp. 151–176.

[33] P. Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited (extended
abstract), in Proceedings of the 6th International Algorithmic Number Theory Symposium
(ANTS-VI), Lecture Notes in Comput. Sci. 3076, Springer, Berlin, 2004, pp. 338–357.

[34] P. Q. Nguyen and D. Stehlé, Floating-point LLL revisited, in Advances in Cryptology—
Proceedings of EUROCRYPT ’05, Lecture Notes in Comput. Sci. 3494, Springer, Berlin,
2005, pp. 215–233.

[35] P. Q. Nguyen and D. Stehlé, LLL on the average, in Proceedings of the 7th International
Algorithmic Number Theory Symposium (ANTS-VII), Lecture Notes in Comput. Sci. 4076,
Springer, Berlin, 2006, pp. 238–256.

[36] P. Q. Nguyen and J. Stern, The two faces of lattices in cryptology, in Proceedings of
CALC ’01, Lecture Notes in Comput. Sci. 2146, Springer, Berlin, 2001, pp. 146–180.

[37] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, in Cryptology and Computational
Number Theory, Proc. Sympos. Appl. Math. 42, AMS, Providence, RI, 1990, pp. 75–88.

[38] M. Pohst, A modification of the LLL reduction algorithm, J. Symbolic Comput., 4 (1987),
pp. 123–127.

[39] C. P. Schnorr, A hierarchy of polynomial lattice basis reduction algorithms, Theoret. Comput.
Sci., 53 (1987), pp. 201–224.

[40] C. P. Schnorr, A more efficient algorithm for lattice basis reduction, J. Algorithms, 9 (1988),
pp. 47–62.

[41] C. P. Schnorr, Fast LLL-type lattice reduction, Inform. Comput., 204 (2006), pp. 1–25.
[42] C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and

solving subset sum problems, Math. Programming, 66 (1994), pp. 181–199.
[43] A. Schönhage, Factorization of univariate integer polynomials by Diophantine approxima-

tion and improved basis reduction algorithm, in Proceedings of the 1984 International
Colloquium on Automata, Languages and Programming (ICALP 1984), Lecture Notes in
Comput. Sci. 172, Springer, Berlin, 1984, pp. 436–447.

[44] A. Schönhage, Fast reduction and composition of binary quadratic forms, in Proceedings of
the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC’91),
ACM, New York, 1991, pp. 128–133.

[45] V. Shoup, Number Theory C++ Library (NTL), http://www.shoup.net/ntl/.
[46] D. Simon, Solving quadratic equations using reduced unimodular quadratic forms, Math.

Comp., 74 (2005), pp. 1531–1543.
[47] D. Stehlé, Floating-point LLL: Theoretical and practical aspects, in Proceedings of LLL + 25,

P. Q. Nguyen and B. Vallée, eds., Springer, Berlin, to appear.
[48] A. Storjohann, Faster Algorithms for Integer Lattice Basis Reduction, Technical report, ETH

Zürich, Zürich, Switzerland, 1996.
[49] The SPACES Project, MPFR, a LGPL-Library for Multiple-Precision Floating-Point Com-

putations with Exact Rounding, http://www.mpfr.org/.
[50] J. H. Wilkinson, The Algebraic Eigenvalue Problem, The Clarendon Press, Oxford University

Press, New York, 1988.
[51] C. K. Yap, Fast unimodular reduction: Planar integer lattices, in Proceedings of the 1992 Sym-

posium on the Foundations of Computer Science (FOCS 1992), IEEE Computer Society,
Los Alamitos, CA, 1992, pp. 437–446.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

